
Pattern Discovery in
Complex Networks
using Parallelism

David Oliveira Aparício
Mestrado em Ciência de Computadores
Departamento de Ciência de Computadores
2014

Orientador
Professor Pedro Ribeiro, Faculdade de Ciências da Universidade do
Porto

Coorientador
Professor Fernando Silva, Faculdade de Ciências da Universidade
do Porto

M

c S

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório Aberto da Universidade do Porto

https://core.ac.uk/display/143403218?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

M

c S

Todas as correções determinadas
pelo júri, e só essas, foram
efetuadas.

O Presidente do Júri,

Porto, ______/______/_________

Para os meus pais e para as minhas irmãs

3

Acknowledgments

First and foremost, I want express my gratitude to my supervisors, Prof. Pedro Ribeiro

and Prof. Fernando Silva, for their support, guidance and trust. I also want to thank

them for the opportunities they have given me that have greatly contributed to my

academic career.

I would like to thank the financial back up offered by FCT in project Sibila (Scientific

Grant (NORTE-07-0124-FEDER-000059)). Before this grant I had a Scientific Initi-

ation Grant from CRACS and I also want to thank them for it. I also thank Miguel

Areias for providing me with tools that greatly helped me uncovering problems that

would be very difficult to find without them. I also want to thank Hugo Ribeiro

for answering all of my requests relative to the machines I used for development and

testing purposes, both from CRACS and Sibila.

I want to thank my friends over these five years and particularly João Silva, for helping

me decisively in the early times of this course and all throughout it, and Rafael Nunes

and João Patŕıcio for giving me many fun moments and interesting discussions. To

Ana, for giving me focus during the six years that we spent together, helping and

comforting me in too many situations to count.

Finally, I want to thank my parents for the love they have given me, for the crucial

financial support and for enforcing the idea that I could always improve. And to my

sisters that, despite being in another country, are always interested in offering me

advice.

5

6

Abstract

Networks are used to represent systems in a multitude of fields, from biology and

chemistry to telecommunication and transport networks. Networks have specific pat-

terns that are characteristic to them and give important information relative to their

structure and even to their function. Therefore, finding these relatively small patterns

from large networks is an important data mining primitive. Network motifs and

graphlet based metrics are examples of methodologies that look for small subgraphs in

a large network.

Counting all occurrences of a set of subgraphs on a large network is, however, a

computationally hard task closely related to the graph isomorphism problem, which has

no known polynomial solution. A possible way to reduce the computing time necessary

for this task is by avoiding isomorphism tests. The g-trie is a novel data structure that

uses common sub-topologies between graphs to encapsulate isomorphism information,

substantially reducing execution time when compared to past solutions.

To further speed up the execution of subgraph counting, we present parallel alterna-

tives for both multicore and GPU architectures that build upon past g-trie algorithms.

Both multicores and powerful GPUs are pervasive in today’s personal computers,

giving our work a broad scope.

We developed an efficient work sharing mechanism that performs dynamic load balanc-

ing of work units. We performed a thorough analysis of our algorithms’ performance,

using a large array of real-world networks from different fields, and obtained near-linear

speedup for both multicore algorithms that we developed, showcasing the scalability

of our approach. This work expands the applicability of subgraph counting algorithms

for larger subgraph and network sizes without the obligatory access to a cluster.

7

Resumo

As redes são usadas para modelar sistemas em várias áreas, desde a biologia e a qúımica

até às redes de comunicação ou de transporte. As redes têm padrões espećıficos que

as caracterizam e oferecem informação valiosa quanto à sua estrutura e mesmo da sua

função. Encontrar esses padrões relativamente pequenos é, portanto, uma primitiva

importante em data mining. Network motifs (padrões de rede) e métricas baseadas em

graphlets são alguns exemplos de metodologias usadas com o propósito de encontrar

pequenos subgrafos numa rede de grande dimensão.

Contar todas as ocorrências de um conjunto de subgrafos numa rede de grandes

dimensões é, porém, uma tarefa computacionalmente dif́ıcil, fortemente ligada ao

problema do isomorfismo de subgrafos, para o qual não se conhece nenhuma solução

polinomial. Uma forma de reduzir o tempo computacional necessário para esta tarefa

é evitando o recurso a testes de isomorfismo. A g-trie é uma estrutura de dados

recentemente desenvolvida que usa subtopologias comuns entre grafos para encapsular

informação relativa a isomorfismos, reduzindo substancialmente o tempo de execução

quando comparado com soluções anteriores.

Com o fim de acelerar o processo de contagem de subgrafos, apresentamos alternativas

paralelas para algoritmos que usam g-tries na sua base, quer para multicores como para

GPUs. Tanto os multicores como os GPUs são ub́ıquos nos computadores pessoais de

hoje em dia, dando ao nosso trabalho um vasto alcance.

Desenvolvemos um mecanismo de balanceamento de carga eficiente que divide o tra-

balho dinamicamente pelos recursos computacionais. Fizemos uma análise aprofun-

dada do desempenho dos nossos algoritmos, usando para o efeito um conjunto vasto

de redes reais provenientes de diversas áreas, e conseguimos escalar quase linearmente

os dois algoritmos que desenvolvemos para multicores, provando a eficiência da nossa

abordagem. Este trabalho possibilita o uso de algoritmos de contagem de subgrafos

em redes de maior escala e para encontrar padrões maiores, sem ser necessário o acesso

a um cluster dedicado.

9

Contents

Abstract 7

Resumo 9

List of Tables 13

List of Figures 15

List of Algorithms 17

1 Introduction 19

1.1 Motivation . 20

1.2 Graph Terminology and Subgraph Counting Problem Definition 22

1.3 Pattern Definition . 24

1.3.1 Network Motifs . 24

1.3.2 Frequent Subgraph Mining . 26

1.3.3 Graphlet Degree Distributions 27

1.4 Thesis Outline . 28

1.5 Bibliographic Note . 29

2 The G-Trie Data Structure 31

2.1 Basis and Motivation . 31

2.2 Subgraph Counting using G-Tries . 33

2.2.1 G-Trie Creation . 33

2.2.2 gtrieScanner . 35

2.2.3 FaSE . 37

2.3 Opportunities for Parallelism . 39

2.4 Summary . 40

3 Parallel Subgraph Census For Multicores 41

3.1 Motivation . 41

3.1.1 Shared and Distributed Memory 42

11

3.1.2 Related Work . 43

3.2 General Overview . 43

3.3 Parallel Frequency Counting . 44

3.3.1 Parallel gtrieScanner . 44

3.3.2 Parallel FaSE . 46

3.4 Work Sharing . 47

3.4.1 Work Request . 47

3.4.2 Work Division . 48

3.4.3 Work Resuming . 49

3.5 Obtaining the subgraph frequencies . 51

3.6 Summary . 51

4 Parallel Subgraph Census using GPUs 53

4.1 Motivation . 53

4.2 GPU Algorithm . 55

4.2.1 Memory Types . 58

4.3 Problems and Related Work . 59

4.4 Summary . 60

5 Performance Evaluation 61

5.1 Common Materials . 61

5.1.1 Computational Environments 61

5.1.2 Networks . 62

5.2 Multicore Algorithms . 64

5.2.1 gtrieScanner . 65

5.2.2 FaSE . 69

5.3 GPU Approach . 73

5.3.1 Thread and Work List Sizes . 73

5.3.2 Comparison with CPU version 75

5.4 Summary . 77

6 Conclusions and Future Work 79

6.1 Main Contributions . 79

6.2 Future Work . 80

6.3 Closing Remarks . 81

References 83

12

List of Tables

2.1 Compression rates of the search space achieved by using g-tries. 34

5.1 Our GPU’s main characteristics. 62

5.2 The set of representative real networks used for parallel performance eval-

uation. 64

5.3 gtrieScanner: Comparison between the original sequential version and

the parallel version with one thread. 65

5.4 Overall execution information for gtrieScanner. 68

5.5 Results with compiler optimizations for gtrieScanner. 68

5.6 Results without compiler optimizations for gtrieScanner. 68

5.7 FaSE: Comparison between the original sequential version and the parallel

version with one thread. 69

5.8 Overall execution information for FaSE. 72

5.9 Results with compiler optimizations for FaSE. 72

5.10 Results without compiler optimizations for FaSE. 72

5.11 Execution times of our GPU algorithm using different list sizes (units) and

number of threads for 2 networks (blogcat and neural). 75

5.12 Comparison between the original gtrieScanner and an adapted sequential

version. 76

5.13 Comparison between CPU and GPU execution times. 76

13

14

List of Figures

1.1 A food-web network highlighting some occurrences of two distinct network

motifs. 21

1.2 A graph and its representation in the adjacency matrix and adjacency list

formats. 23

1.3 Occurrences of a subgraph S in a larger graph G. 24

1.4 A network and a set of 3 similar random networks, keeping degree sequence. 25

1.5 The set of all possible graphlets of sizes 3 to 5. 28

2.1 A prefix-tree (trie) of 5 words. 32

2.2 Common sub-topology between three non-isomorphic graphs. 32

2.3 A g-trie of all size-4 undirected graphs. 33

2.4 A g-trie being populated with four size-4 graphs. 34

2.5 Two occurrences of distinct subgraphs, mapped to a g-trie. 35

2.6 Summary of the enumeration and encapsulation steps of FaSE. 39

3.1 A complete state diagram of our parallel approach. 48

3.2 The constructed work tree and its division for gtrieScanner when a thread

Q receives a work request from thread P . 49

4.1 The CPU and GPU contrasting architectures (taken from NVIDIA CUDA C

Programming Guide). 53

4.2 The CUDA programming model (taken from NVIDIA CUDA C Programming

Guide). 55

4.3 The gtrieScanner search tree. 56

4.4 The work units assigned for each GPU thread. 56

5.1 A screen capture from Intel VTune showing relative sharing time. 66

5.2 A screen capture from Intel VTune showing thread communication. . . . 67

5.3 A screen capture from Intel VTune comparing the impact of a global lock

versus lock striping when inserting a new g-trie node. 71

15

5.4 A screen capture from Intel VTune showing time spent on a lock for label

insertion in the g-trie. 71

5.5 A screen capture from Nvidia nvpp showing various metrics applied to our

algorithm. 77

16

List of Algorithms

2.1 gtrieScanner: Algorithm for computing the frequency of subgraphs

stored in a g-trie T in graph G. 36

2.2 FaSE: Algorithm for computing the frequency of all subgraphs of size k

in graph G . 38

3.1 The parallel gtrieScanner algorithm. 45

3.2 The parallel FaSE algorithm. 47

3.3 Algorithm for resuming work after sharing is performed, applied to

gtrieScanner. 50

3.4 Algorithm for resuming work after sharing is performed, applied to FaSE. 51

4.1 GPU Algorithm for computing the frequency of subgraphs of g-trie T

in graph G. 57

17

18

Introduction 1
The chemical interactions between atoms give rise to molecules, some of them in-

dispensable to the formation of the living organisms that inhabit the Earth. These

living organisms constitute an intricate web of interactions between themselves and

their environment. The planet they live in orbits around its star, as do seven other

planets, and has itself enough gravitational pull to have a satellite of its own, with

some of the other planets having much more than one. All this information, with much

more detail, can nowadays be found on the Internet, a web of computers connected

worldwide.

This kind of organization, with entities interacting and forming complex relations,

can be found everywhere and our ability to recognize and build them is one of our

strengths. Networks (or graphs) are an abstract model to represent these interactions.

The structure of a network is constituted by the connections between its entities.

Studying it may give us new insights into the network function itself. In particular,

finding patterns that appear throughout the network more times than would be ex-

pected on similar randomized networks is a method for analyzing the underlying design

of networks from a wide variety of fields. These specific patterns are called network

motifs and there have been significant research contributions since their introduction

in 2002 [MSOI+02].

One way to find patterns in a large network is to follow a bottom-up approach,

starting from a single element and iteratively adding a new one from its neighborhood.

However, this strategy gives rise to an exponentially large search space. Analyzing the

structure of very large networks, comprising thousands or millions of nodes and edges,

is not a trivial task and requires either a reduction of the search space or augmented

computing power to be performed in a reasonable amount of time.

G-Tries are data structures specialized in efficiently storing graphs. They are akin to

prefix trees (tries) but, instead of having each tree node represent (part of) a word,

they represent (part of) a graph. How g-tries are created and how they can be used

19

CHAPTER 1. INTRODUCTION

for subgraph frequency counting is detailed in Chapter 2. G-Tries are currently at the

core of some of the fastest known methods for subgraph counting [RS10, PR13] and

they achieve their heightened performance by narrowing the search space.

Before the early 2000s, personal computers consisted of a single core, with multicore

machines being found almost exclusively on dedicated clusters available only at very

high prices. Today, personal computers with up to 8 cores are ubiquitous and sold

inexpensively. Powerful GPUs are also commonplace due to the ever-rising popularity

of videogames and the pressure put on graphic processing companies to support games

with increasingly realistic graphics and physics. With the progresses made in multicore

and GPU hardware capabilities, problems previously unfeasible in a reasonable amount

of time due to their exponential nature are now made possible. Strategies that manage

to achieve almost linear speedups can reduce the computing time from weeks to days

or hours, depending on the number of cores. With the commonplace 8 cores, programs

that take 1 day sequentially can execute in 3 hours.

The aim of this thesis is to provide some of the fastest known ways to discover network

patterns in large networks and, at the same time, make them widely available. For

that purpose we implemented parallel strategies for both the multicore and GPU

architectures, which are pervasive nowadays, using the g-trie data structure at the

core of our algorithms.

1.1 Motivation

The network representation model is used in many different fields, including sciences

like physics, chemistry and biology but also encompassing social networks, citation

circles and transportation networks [dFCRTB07]. With their use being so widespread,

a multitude of real-world data has been aggregated over the years, leading to the

composition of several large data-sets. This extensive data collection has made it

possible to study the structure of different types of networks, in a quest to find distinct

topological features. Research has corroborated this view by finding that networks

from different fields have specific patterns that distinguish them from random networks

and from each other.

Network motifs are a possible way to discover patterns that would not likely be present

in a random network. The concept was introduced by Milo et al. in [MSOI+02]

where they found that some small subnetworks appeared in the studied networks

with a much higher frequency than it would be expected in similar randomized net-

works. Network motifs were then presented as the building blocks of complex net-

20

1.1. MOTIVATION

works and they have been used to study the structure of networks from various

areas. They have been most notably studied in biological and biochemical networks

[LBY+04, SK04, KA05, PIL05, Kon08] and they have been extensively applied to

protein-protein-interaction networks [YLSK+04, AA04] and transcriptional regulatory

networks [SOMMA02, LRR+02, MKD+04, LBY+04, TZvO07]. Other areas where

they have been studied include electronic circuits [ILK+05] and software architecture

networks [VS05].

Figure 1.1 displays a food-web network of the Maspalomas town in the Canary Islands

[ABAU99]. It contains information from 18 living organisms and 3 kinds of carbon.

We also show two network motifs, (a) and (b), and some of their occurrences in the

food-web network. In the context of this network, (a) represents two organisms that

share a food source but do not predate one another, while in (b) we have a circular

food chain, with A eating C, C eating B and B eating A. Both subgraphs do appear

in the network but their frequencies are quite different: (a) appears 82 times while

(b) only 2. This appears to make sense for this kind of network since it seems more

common in Nature for organisms to share food-sources than to be part of a circular

food-chain. For other kinds of networks the frequencies could be very different.

(a)

(b)

A

A

B

B

C

C

Figure 1.1: A food-web network highlighting some occurrences of two distinct
network motifs.

The problem of finding subgraphs inside a larger graph is closely related to the subgraph

isomorphism problem and is a known computationally hard (NP-Complete) problem.

This means that, either by using larger networks or by querying bigger subgraphs,

the time necessary for computation exponentially rises. It is therefore mandatory to

reduce the enormous search space to a more manageable size.

21

CHAPTER 1. INTRODUCTION

A g-trie is a data-structure for storing and compressing a collection of graphs. They

achieve that by building a tree where a path in it represents a way to arrive at a

specific graph, with a new graph node being added in each tree descendent. Graphs

may share a portion of a path if they have a common sub-topology. Looking at motifs

(a) and (b) from Figure 1.1 we can see that they both share a connection from node A

to node C. Therefore, by searching a portion of (a) we are, at the same time, searching

the same portion of (b) and do not need to find them completely independently. If

the number of graphs is sufficiently large, g-tries achieve a high compression of the

search space. This makes them a good basis for subgraph counting algorithms since

less independent isomorphism tests are needed.

The purpose of this work was to achieve the fastest known way to do subgraph

frequency counting, also called subgraph census and we will use the two terms in-

terchangeably. Our chosen method was to build parallel algorithms that use g-tries.

We also intend to make our work available for any user, without the need of a dedicated

cluster. With that in mind we targeted both the multicore and GPU architectures.

The two of them are now commonplace, broadening the applicability of our work. By

being able to find bigger patterns in a reasonable amount of time, researchers from

many areas can more thoroughly analyze the structure of networks, possibly giving

them a new insight into the field.

We conclude this initial chapter by presenting the graph terminology we use through-

out this thesis and by more clearly defining what a pattern is in our context.

1.2 Graph Terminology and Subgraph Counting

Problem Definition

A network, or a graph, is comprised of a set V (G) of vertices or nodes and a set E(G)

of edges or connections. The nodes represent entities and the edges relationships

between them. The size of the graph is given by the number of vertices and is written

as |V (G)|. Edges are represented as pairs of vertices of the form (a, b). In directed

graphs the edges are ordered pairs, while in undirected graphs there is no order since

the nodes are connected in both directions.

In undirected graphs, the degree of a vertex is the number of vertices v connected to

vertex u. For directed graphs there are two types of degrees. The indegree of u is

|v|, (v, u) ∈ E(G). Similarly, the outdegree of u is |v|, (u, v) ∈ E(G).

22

1.2. GRAPH TERMINOLOGY AND SUBGRAPH COUNTING
PROBLEM DEFINITION

A graph is considered a simple graph if it has no self-loops (meaning it has no nodes

connecting back to itself) and has no more than a single connection to any one node.

The graphs we work with in this thesis are always simple graphs but g-tries can

be adapted to support other kinds of graphs. The concept of complex networks is

unrelated to this definition of simple graph. A network is said to be complex when it

appears to have topological features that are neither purely random nor purely regular.

The set of vertices v ∈ V (G) that have an edge (v, u) constitute the neighborhood,

N(u), of u ∈ V (G). To easily recognize vertices they are labeled from 0 to |V (G)| - 1.

The comparison v < u translates to v having a lower label index than u. Two graphs

are said to be isomorphic if we obtain one from another just by changing the node

labels, without affecting the connections between them.

Two possible representations of a graph are the adjacency matrix and adjacency list

formats. In the matrix representation, denoted by GM , an edge (u, v) is represented by

GM [u][v]. The matrix has an entry for every possible edge, if (u, v) ∈ E(G), GM [u][v]

has value 1, and 0 otherwise. In an adjacency list, each row represents the connections

of a particular vertex. This means that not every possible edge is stored, saving storage

space, but makes the process of checking an edge connection more computationally

expensive (which could be done using binary search, taking logarithmic instead of the

constant time required when using an adjacency matrix). In Figure 1.2 a graph and

its respective representations in adjacency matrix and adjacency list are presented.

Generally, the matrix representation is well-suited for dense graphs whereas adjacency

lists are most often used for sparse graphs.

Figure 1.2: A graph and its representation in the adjacency matrix and adjacency
list formats.

A subgraph Gk of G is a graph of size k where V (Gk) ⊆ V (G) and E(Gk) ⊆ E(G).

A subgraph is induced if ∀u, v ∈ V (G), (u, v) ∈ E(Gk) if and only if (u, v) ∈ E(G). A

match or occurrence happens when G has a set of nodes that induce some Gk. Two

matches m1 and m2 are considered distinct if they have at least one different vertex.

23

CHAPTER 1. INTRODUCTION

The frequency of Gk in G is the number of occurrences of Gk in G. Figure 1.3 gives

an example of the frequency concept explained before.

Figure 1.3: Occurrences of a subgraph S in a larger graph G.

The purpose of this work is to find the frequency of all possible subgraphs of a given

size in a single large graph. A formal definition is given in Definition 1.1.

Definition 1.1 (Subgraph Census Problem). Given a set of all subgraphs of size

k and a graph G, determine the exact frequency of all induced occurrences of the

subgraphs in G. Two occurrences are considered different if they have at least one

node or edge that they do not share. Other nodes and edges can overlap.

1.3 Pattern Definition

There are numerous ways a pattern can be defined in the context of graphs. Next we

introduce fields of study strongly related to the subgraph census problem that find and

classify patterns in different fashions.

1.3.1 Network Motifs

The concept of network motifs was first presented in [MSOI+02] as small subgraphs

that appeared in a network with a higher frequency than in similar randomized

networks. The authors introduced them as basic structural elements that could

effectively characterize networks into classes. They were also confident that these

patterns could not only define the structure of the networks, but also give hints to its

function.

24

1.3. PATTERN DEFINITION

To study network patterns using motifs it is required to build a set of random networks

that are similar to the original. The motifs are then first searched in the original

network and afterwards on the set of similar random networks. How these random

networks are considered similar to the original and how we calculate if a pattern is over-

represented may differ according to our goal, but here we will describe the standard

and most common way to accomplish these tasks.

An undirected random network similar to the original is generated by creating a new

network with the same amount of vertices and edges. The set of (u, v) is randomized

while keeping the degree (or indegree and outdegree, in the case of directed networks)

of each vertex. An example of a set of similar random networks is shown in Figure 1.4.

Figure 1.4: A network and a set of 3 similar random networks, keeping degree
sequence.

The majority of network motif related papers require the following properties to hold:

• Over-representation: The probability that the motif appears more times in a

similar random network should be less than some pre-calculated probability P .

• Minimum frequency: For a motif to be significant it should have a frequency

higher than some set threshold. It is left to the user the choice of a proper

threshold, giving flexibility to the definition.

• Minimum deviation: Finally, the motif needs to appear with a substantially

higher frequency in the original network than its average frequency in the random

networks. Once again, what is considered significant depends on the network

being studied and what the researcher pretends to achieve.

25

CHAPTER 1. INTRODUCTION

Network motifs can be applied to either directed or undirected networks in the same

manner. The concept has been extended to colored networks, with colored mo-

tifs having to check not only the connections of the vertices but also their color

[LFS06, FFHV07, RS14a]. Anti-motifs are a variant of the motif concept with the

purpose of finding under-represented patterns that may be meaningful depending on

the application [MIK+04, JJCL06, BGP07]. Another example of an extension to the

original network motifs adds in the weight of the connections [OSKK05, CRS12].

Finally, the concept of trend motifs was introduced to account for dynamic networks

that change over time and have recurring subgraphs with similar dynamics over a

period of time [JMA07].

In their seminal paper, Milo et al. [MSOI+02] proposed a brute-force algorithm that

paved the way for future improvements. Some of the algorithms for motif discovery

include mfinder [KIMA04], ESU [WR06], Kavosh [KAE+09], gtrieScanner [RS10]

and FaSE [PR13]. Currently, gtrieScanner and FaSE are the two fastest algorithms

for subgraph census that the authors know of, performing, generally, one or two orders

of magnitude faster than competing algorithms.

1.3.2 Frequent Subgraph Mining

Network motifs are used to find the set of subgraphs that are overrepresented in a

large single graph. The concept of frequent subgraph mining (FSM) is broader and

usually divided into two problem formulations: (i) graph transaction based FSM and

(ii) single graph based FSM. In graph transaction based FSM the input consists of a set

of graphs, called transactions, a term borrowed from association rule mining [AS94],

another Data Mining field.

For a subgraph to be considered frequent, its frequency has to be greater than some

predefined threshold. The frequency of a subgraph in FSM is commonly called sup-

port. The support of a subgraph may be computed either in a transaction-based or

occurrence-based fashion. Transaction-based means that the support of a subgraph is

equal to the number of transaction in which it appears divided by the total amount

of graphs. On the other hand, in occurrence-based counting the support of the graph

is the total number of times it appears, either in the single graph or in the set of

transactions. In single graph based FSM the only possible method for counting is

occurrence-based while graph transaction based FSM most often uses transaction

based counting [JCZ13], thus, two definitions are given next.

26

1.3. PATTERN DEFINITION

Definition 1.2 (Graph Transaction Based FSM). Given a collection of n transac-

tions G = {G1, G2, ..., Gn}, find all frequent subgraphs in G. The support of a subgraph

S is supG(S) = |{Gi|S ⊆ Gi}|/n. S is considered frequent if sups ≥ δ, with δ as a

predefined value where 0 < δ ≤ 1.

Definition 1.3 (Single Graph FSM). Given a single graph G, find all its frequent

subgraphs. The support sups of a subgraph S is G(S) = |{Gi|S ⊆ Gi}|. S is considered

frequent if its support sups ≥ δ, where δ is a predefined value bigger than 0.

Algorithms for FSM typically start by generating the possible candidates and then

doing the census on the set of graphs. Candidate generation can be done using either

breadth-first or depth-first search. The downward closure property used in frequent

itemset mining is also prevalent in FSM algorithms. Applied to graphs, what the

property essentially says is that if a graph is not frequent, a supergraph containing it

will also not be frequent. Similarly, if a graph is frequent, its subgraphs are assuredly

frequent.

Numerous algorithms for FSM exist in the literature. Some of the most well known

include MoFa [BB02], gSpan [YH02], FFSM [HWP03] and Gaston [NK04]. There

have been experimental studies to compare the performance of these and some other

algorithms from the field and the general consensus is that there is no clear best

algorithm for all cases, the performance depends on the type of network being studied,

the size of the graphs and memory constraints [WMFP05, KRSA11].

1.3.3 Graphlet Degree Distributions

A similar concept to network motifs is graphlets [PCJ04]. They are also small graphs

that can be seen as building blocks of a network, the main difference being that random

networks are not used to verify their over-representation. Figure 1.5 shows the set of

the 29 graphlets of sizes 3 to 5, taken from [PCJ04].

Basically, a set of graphlets is chosen and their frequency is computed on a set of

networks. The similarity of two networks is calculated as the difference between their

graphlet frequencies.

To calculate the relative frequency of a graphlet i we simply divide its frequency by the

frequency of all n graphlets combined. Since graphs can immensely differ in number

of nodes and edges, the negative logarithm of that number is used, as displayed in

Equation 1.1. The relative graphlet frequency distance between two graphs G1 and

G2 can then be calculated as shown in Equation 1.2.

27

CHAPTER 1. INTRODUCTION

Figure 1.5: The set of all possible graphlets of sizes 3 to 5.

Rfreqi(G) = −log(
Freqi∑n

i=1 Freqi(G)
) (1.1)

Dist(G1, G2) =
n∑

i=1

|Rfreqi(G1)−Rfreqi(G2)| (1.2)

Some applications using graphlets include the concept of orbits that are, essentially,

the different kinds of nodes that the graphlets have. The set shown in Figure 1.5 has

72 different orbits. Nodes from a graphlet are counted as the same orbit if they have

the same type of connections. For example, graphlet G2 has 3 nodes all pertaining to

the same orbit while G6 has 4 nodes and 3 different orbits. Using this method we can

not only count the frequency of each subgraph (or graphlet) but also how many times

each node appears in each position of a subgraph (or orbit).

Graphlets have been used to study biological [Prž07, MP08], biochemical [PCJ06] and

social networks [JHK12].

1.4 Thesis Outline

This thesis is structured in six major chapters. A brief description for each one is

provided below.

Chapter 1 - Introduction. Offers an overall view of the problem being studied in

this thesis as well as the motivation behind it. Elaborates on the problem definition and

the graph terminology adopted throughout this work. Also discusses related problems

28

1.5. BIBLIOGRAPHIC NOTE

and their importance. Additionally presents the thesis organization and mentions the

scientific work published.

Chapter 2 - The G-Trie Data Structure. An explanation of how g-tries are

created and how they are used for sequential subgraph census is provided. Here we

also discuss two algorithms that are built on top of the g-trie data-structure, their

similarities and differences. We end by discussing the opportunities for parallelism

offered by g-tries.

Chapter 3 - Parallel Subgraph Census for Multicores. We justify the option

to apply parallel computing to our particular problem and provide a overview of the

related work. Our two parallel algorithms for multicores and the general sharing

mechanism that we developed are detailed.

Chapter 4 - Parallel Subgraph Census using GPUs. Discusses the GPU

architectural model and the problems it inflicts on graph traversal algorithms. Also

presents an initial algorithm for GPUs using CUDA.

Chapter 5 - Performance Evaluation. We access the scalability of our multicore

implementations by doing a thorough study using a dozen of large scale networks from

different fields. We also evaluate our GPU algorithm and identify the problems with

its efficiency.

Chapter 6 - Concluding Remarks. Concludes the thesis with the progresses

achieved and gives directions for future work.

1.5 Bibliographic Note

Our pattern discovery parallel strategy and implementation for multicores resulted

in two papers that were accepted for publication in peer-reviewed conferences. In the

papers we used the g-trie data structure and achieved almost linear speedup for a set of

wide-range large scale networks, both for gtrieScanner [ARS14] and FaSE [APR14].

29

30

The G-Trie Data Structure 2
In this chapter we present the novel data structure that we use at the core of our

algorithms, the g-trie. We discuss how g-tries are created, how they can be used for

subgraph census and how their structure offers opportunities for parallelism. For this

purpose we detail two sequential algorithms that use g-tries to encapsulate isomor-

phism information.

2.1 Basis and Motivation

G-Tries were primarily designed for finding network motifs [RS10]. Algorithms for

network motif discovery can, traditionally, be separated in two distinct approaches:

network-centric and subgraph-centric. Network-centric methods start by finding all

occurrences of k connected nodes in the network and then performing isomorphism

tests to determine which subgraph type each occurrence belongs to. On the other hand,

subgraph-centric methods pre-compute a list of all subgraphs to be searched and then

find the occurrences of each type, one at a time, in the network. ESU [WR06], Kavosh

[KAE+09] and FaSE [PR13] are example of network-centric methods while Grachow

and Kellis’ algorithm [GK07] is subgraph-centric.

Typical g-tries, as used in [RSL10b], stand conceptually in the middle as set-centric:

not just one subgraph is searched at a time but neither are, necessarily, all subgraphs

of a certain size k. Compared to past competing sequential algorithms for motif

discovery they were shown to perform one or two orders of magnitude faster. Their

enhanced performance comes from the way g-tries heavily constrain the search space.

This is done by identifying common structures between the different subgraphs that

are searched in the larger network.

The concept is similar to that of a prefix tree (or trie) [Fre60]. A prefix tree of a set of

words identifies sub-words that start with the same letters and represent them as the

tree nodes. In this fashion, a full word is a path in the trie and the words in that path

share a common sub-topology (or a prefix in this case). Figure 2.1 is an example of

31

CHAPTER 2. THE G-TRIE DATA STRUCTURE

a prefix tree built from the words in the phrase ”The sixth sick sheikh’s sixth sheep’s

sick”. White letters on a black background are the letters being added at that trie

node while black letters on a white background are words from the ancestor nodes.

Prefix trees can thus be used to compress information.

Figure 2.1: A prefix-tree (trie) of 5 words.

The same thinking can be applied to graphs. In Figure 2.2 we show three graphs

containing the same 3-node sub-topology. Whereas tries use nodes to represent words,

g-tries use nodes to represent graphs instead, hence the name g(raph)-tries.

Figure 2.2: Common sub-topology between three non-isomorphic graphs.

An example g-trie built to contain all undirected graphs of size 4 is presented in

Figure 2.3. To avoid confusion, henceforth we will use nodes to mean nodes of the

g-trie and vertices as vertices of the network or vertices of the g-trie nodes. The

vertices in clear color are the vertices already in the parent g-trie node and the node

in black is the new one being added. The edges between the g-trie nodes mean that

the children nodes share the common sub-topology of the parent node. The conditions

of the form X < Z translate to ”Vertex Z needs to have an higher index than vertex

X” and are used to deal with isomorphisms.

32

2.2. SUBGRAPH COUNTING USING G-TRIES

Figure 2.3: A g-trie of all size-4 undirected graphs.

2.2 Subgraph Counting using G-Tries

As stated in Definition 1.1, our problem is to find all subgraphs of size k in a large

network G. We will now explain how g-tries are built and can efficiently be used for

that purpose. With that objective we detail two algorithms, gtrieScanner and FaSE,

that rely on g-tries to heavily constrain the induced search space.

2.2.1 G-Trie Creation

G-Tries can either be fully constructed before the subgraph census begins or be built

on-the-fly. gtrieScanner and FaSE diverge on this option, with the first having a

g-trie built before computation starts and the latter building it during execution. For

gtrieScanner, a g-trie could also be stored in a file and loaded to memory prior to

the computation.

Before creating the g-trie, it is necessary to establish a canonical representation since

there exist many possible ways, by modifying the vertex labels, to represent the same

graph. These distinct representations give origin to different g-tries because the order

of the nodes influences how fast a common sub-topology is found. For instance, using

a representation that creates a g-trie node with a new vertex that has no connections

to previous vertices (a list with only zeros, in the adjacency matrix format) will not

be very effective to achieve a good compression since, certainly, that vertice will have

a future connection that could share a common sub-topology. Therefore, some care

has to be taken in order to achieve a canonical representation that creates the least

possible amount of nodes in the g-trie.

33

CHAPTER 2. THE G-TRIE DATA STRUCTURE

Regardless of when the g-trie is created, the creation process itself is similar. In

Figure 2.4 we show an empty g-trie being populated with four size-4 graphs. Dotted

nodes are nodes that the g-trie had to build to accommodate the new graph. Nodes

with a grey background represent the path in the g-trie leading to the newly inserted

graph. Notice that, while in the first step all 4 g-trie nodes had to be built, in the

second step only a new node was created due to the shared topology between the

two graphs. Without the g-trie, these four graphs would need a representation of 16

nodes (4 for each graph) but, using g-tries, only 8 nodes were necessary, achieving

a compression rate of 50% for this small example. For larger collections of graphs

the compression rate gets increasingly more significant. In Table 2.1 we display the

compression rates for all undirected graphs of different sizes and we can see that, as

the size gets bigger, the compression rate gets close to 90%. G-Tries heavily constrain

the search by having different subgraphs in the same path being searched at the same

time, without the need to do the full computation for all distinct subgraphs.

Empty

G-Trie

Insert Insert Insert Insert

Figure 2.4: A g-trie being populated with four size-4 graphs.

Subgraph #Graphs in the
Compression

Size G-Trie

3 2 33%

4 6 58%

5 21 70%

6 112 78%

7 853 82%

8 11,117 85%

9 261,080 87%

Table 2.1: Compression rates of the search space achieved by using g-tries.

34

2.2. SUBGRAPH COUNTING USING G-TRIES

2.2.2 gtrieScanner

After a g-trie is created it can be used to count subgraph frequencies. The core idea

of the algorithm is to search for a set of vertices Vused that match a path in the g-

trie, thus corresponding to an occurrence of the subgraph represented by that path.

To illustrate how this is done, we show two occurrences with a shared common sub-

path being mapped into two distinct g-trie subgraphs in Figure 2.5. For these two

occurrences, Vused is {3, 7, 2, 6} and {3, 7, 4, 5}, respectively. The first two vertices,

corresponding to {3, 7}, are common to the two subgraphs.

Figure 2.5: Two occurrences of distinct subgraphs, mapped to a g-trie.

Algorithm 2.1 depicts the pseudo-code of gtrieScanner used to compute the fre-

quency of the subgraphs stored in a g-trie T in graph G. In the beginning, all vertices

from G are possible candidates for the initial g-trie root node (lines 2 to 4) since there

are no connections in the g-trie that they must match. Note that this is only true since

we are not considering self-loops, in which case two root nodes would be necessary,

one with the self-loop and one without it. The algorithm proceeds by looking for the

set of vertices that fully match with the current g-trie node (line 6) and traverses that

set. If it arrives at a leaf, it has found an occurrence of a subgraph and increments its

respective frequency (line 9). If not, the algorithm continues recursively to the other

possible g-trie descendants until it reaches a leaf. Function matchingVertices() gives

some detail on how matches for the current g-trie node are efficiently found. We start

by, at the current partial match, looking for the vertices that are connected to the

vertex being added (line 14). To clarify this point we will make use of Figure 2.3

where, for subgraph T1, we can see that the only vertex connected to D is A, so it

would be the only valid option for Vconn, whereas in T6, A, B and C are all connected

35

CHAPTER 2. THE G-TRIE DATA STRUCTURE

to D, so they are all put in Vconn. We then look for the vertex m from Vconn with

the smallest number of neighbors in the input network (line 15). The candidates for

the new position are then the vertices that are neighbors of m, have the exact set of

needed connections with the already matched vertices and also respect the symmetry

breaking conditions stored in the g-trie node (lines 16 to 18).

Algorithm 2.1 gtrieScanner: Algorithm for computing the frequency of subgraphs
stored in a g-trie T in graph G.

1: procedure countAll(T,G)
2: for all vertex v of G do
3: for all child c of T.root do
4: count(c, {v})
5: procedure count(T, Vused)
6: V ← matchingVertices(T, Vused)
7: for all vertex v of V do
8: if T.isLeaf then
9: T.frequency++
10: else
11: for all child c of T do
12: count(c, Vused ∪ {v})
13: function matchingVertices(T, Vused)
14: Vconn ← vertices connected to the vertex being added
15: m ← vertex of Vconn with smallest neighborhood
16: Vcand ← neighbors of m that respect both
17: connections to ancestors and
18: symmetry breaking conditions
19: return Vcand

To further illustrate how g-tries work, we will now exemplify how one occurrence

is found using Figures 2.3 and 2.5. We use the notation (X, k) to denote that

vertex k is matched to X in the g-trie node. Take for instance the occurrence

{2, 3, 7, 6} of type T2 subgraph. Looking at the respective g-trie leaf, we can see

that the only path leading to this occurrence will be (A, 3)→(B, 7)→(C, 2)→(D, 6).

A path like (A, 2)→(B, 3)→(C, 7)→(D, 6) could not happen because if we added

(C, 7) there would be no matching g-trie node regarding the connections. A path

like (A, 7)→(B, 3)→(C, 6)→(D, 2) could not happen either because, even if that cor-

responded to valid connections, it would break symmetry conditions. In particular, T2

imposes the condition A < B which is false since 7 is not smaller than 3. These two

simple mechanisms (verifying connections and symmetry conditions) form the basis of

how a g-trie is able to highly constrain and limit the candidates it is checking and, at

the same time, guarantee that each occurrence is found only once.

36

2.2. SUBGRAPH COUNTING USING G-TRIES

2.2.3 FaSE

gtrieScanner offers a set-centric approach to subgraph counting by giving the user the

ability to search only the set of graphs that the user wishes to find, and not necessarily

just one graph at a time nor all possible graphs. A downside of this strategy is that the

g-trie created may have graphs that do not appear in the queried network, resulting

in wasted storage space. FaSE avoids this problem by using g-tries differently: instead

of building a complete g-trie before the subgraph census, the g-trie is constructed

on-the-fly with each g-trie node being added only when it appears on the network.

Like previous algorithms such as ESU or Kavosh, FaSE follows a network-centric paradigm.

However, contrarily to them, FaSE does not withhold the isomorphism tests until

the end of the enumeration. Instead, it checks if two subgraphs belong to the same

intermediate class during the actual enumeration process. Thus, a single isomorphism

test per intermediate class is needed, contrasting with previous methods that required

one per subgraph occurrence. This leads to a major speed up when compared to past

algorithms, since the number of intermediate classes will assuredly be much smaller

than the total number of subgraph occurrences, which is corroborated empirically.

Comparing FaSE’s generated g-trie with the g-trie from Figure 2.3, a major difference

is that symmetry conditions do not exist. Thus, in FaSE, it is possible for isomorphic

graphs to exist in the same g-trie, as can be seen in Figure 2.6. To deal with this, FaSE

instead labels each g-trie node and performs isomorphic tests at the leaves to ensure

that, despite following a different path in the g-trie, isomorphic graphs are counted as

the same subgraph class [PR13].

In practice the algorithm performs two main intertwined tasks: enumerating subgraphs

and storing isomorphism information in a g-trie. The enumeration process simply

iterates through each subgraph occurrence, similarly to previous network-centric meth-

ods. At the same time, a tree is used to encapsulate the topological features of the

enumerated subgraphs. It does so by generating a new label, which represents further

information from each newly added vertex and uses it to describe an edge in a tree.

This effectively partitions the set of subgraphs into intermediate classes. The entire

process is summarized in Algorithm 2.2.

FaSE essentially works by enumerating all size k subgraphs only once. It does so by

keeping two ordered sets of vertices: Vs and Vext. The former represents the partial

subgraph that is currently being enumerated as a set of connected vertices. The latter

represents the set of vertices that can be added to Vs as a valid extension. To start the

counting process, the algorithm initializes an empty g-trie (line 2). Each vertex v in

37

CHAPTER 2. THE G-TRIE DATA STRUCTURE

Algorithm 2.2 FaSE: Algorithm for computing the frequency of all subgraphs of size
k in graph G

1: procedure FaSE(G, k)
2: initGTrie(T)
3: for all vertex v of G do
4: enumerate({v}, {u ∈ N(v) : u > v}, T.root)
5: for all l in T.leaves() do
6: frequency[canonicalLabel(l.Graph)] += l.count

7: procedure enumerate(Vs, Vext, current)
8: if |Vs| = k then
9: current.count++
10: else
11: for all vertex v in Vext do
12: V ′

ext ← Vext ∪ {u ∈ Nexc(v, Vs) : u > Vs[0]}
13: V ′

s ← Vs ∪ {v}
14: current′ ← current.Child(NewLabel(Vs))
15: Enumerate(V ′

s , V
′
ext, current

′)

the network is used to set Vs = {v} and Vext = N(v), where N(v) are the neighbors of

v (lines 3 and 4). Then, one element u of Vext is removed at a time, and a recursive call

is made adding u to Vs and each element in Nexc(u, Vs) with label greater than Vs[0] to

Vext (lines 11 to 15). Nexc(u, Vs) are the exclusive neighbors, that is, the neighbors of

u that are not neighbors of Vs. This, along with the condition u > Vs[0], ensures that

there is no subgraph enumerated twice. When the size of Vs reaches k the algorithm

has found a new occurrence of a size k subgraph (lines 8 and 9).

The enumeration step is wrapped by a g-trie that stores information of the subgraphs

being enumerated in order to divide them into intermediate classes, one class in each

of the g-trie nodes. When adding a new vertex to the current subgraph, a label is

generated describing its relation to the previously added vertices (line 14). This label

will govern the edges in the tree, that is, each edge is represented by a label generated

by a vertex addition.

This label creation process is required to run in polynomial time since, otherwise, it

could even become computationally heavier to use than simply doing the isomorphism

test (NP-C). Thus there is a trade-off between time spent creating the label and time

spent enumerating and running isomorphism tests on subgraphs. For this work we use

an adjacency list labeling, which generates a label corresponding to an ordered list of

at most k−1 integers where each value i (0 < i < k) is present if there is a connection

from the new vertex to the i-th added vertex.

38

2.3. OPPORTUNITIES FOR PARALLELISM

Figure 2.6 summarizes the whole algorithm. The tree on the left represents the implicit

recursion tree that FaSE creates during enumeration. Note that it is naturally skewed

towards the left. This is an important fact that justifies, as we will see later, the need

to redistribute work in the parallel version of the algorithm. The induced g-trie on

the right is a visual representation of the actual g-trie that FaSE creates.

Figure 2.6: Summary of the enumeration and encapsulation steps of FaSE.

2.3 Opportunities for Parallelism

One of the most important aspects of both g-trie sequential algorithms is that they

generate completely independent search tree branches. The order by which they are

explored is also irrelevant for the frequency computation. In fact, looking at Figure

2.1, we observe that each call to count(T, Vused) produces a new different branch and

the same is true for FaSE. Knowing the g-trie node T and the already matched vertices

Vused (or Vs and Vext for FaSE) is sufficient for continuing the search from that point.

Each of these calls can thus be thought of as a work unit. This independence between

work units makes work division a less cumbersome task.

For gtrieScanner, another factor that facilitates the parallelization is the fact that

neither the original network nor the g-trie are changed during computation. This

removes the need to guarantee safe writes to the centralized structures. As discussed

earlier, in FaSE the g-trie undergoes changes during execution and special care must

be taken to ensure consistency.

39

CHAPTER 2. THE G-TRIE DATA STRUCTURE

2.4 Summary

In this chapter we gave a general overview of the g-trie data structure and how it

can be used for the general subgraph counting problem that we tackle in this work.

We detailed two efficient sequential algorithms that use g-tries to store subgraph

isomorphism information. We also put forward some key points of g-tries that make

them a good basis for parallelization.

40

Parallel Subgraph Census For
Multicores 3

The purpose of this chapter is to detail our two parallel algorithms that use g-tries

to perform subgraph counting. We parallelized both gtrieScanner [RS10]1 and FaSE

[PR13]. Despite the differences highlighted in the previous chapter, the two algorithms

are functionally similar and what is discussed in this chapter applies to both, unless

stated otherwise. Namely, the workload balancing mechanism suffers only minor

changes between them and is general enough to be applicable to other subgraph census

algorithms.

We will first discuss why parallelization is an appropriate solution to improve our

algorithms’ execution time and why it can be successfully applied to subgraph census,

despite proving to be a challenging task.

3.1 Motivation

Improving the execution time of subgraph counting can have a broad impact. For

instance, even increasing by just one node the size of the subgraphs being searched

may lead to the discovery of new patterns, providing a new insight into the network.

Since networks are present virtually in every field of study, from biology to chemistry

and computer science, this can impact a multitude of areas.

One possible way to improve an algorithm’s execution time is by using parallel com-

puting. The idea is to split the work between CPUs, or the cores inside the same CPU,

effectively reducing the time necessary to perform the task when compared with using

just one unit to compute the complete task. At this point the distinction between

computers and cores is not relevant and we will use cores as the general term for both.

Speedup Si is calculated by dividing the time that a single core took to execute some

task T1 by the time Ti that i cores expended in the same task, as shown in Equation 3.1.

1The code for both the sequential algorithm and our parallel version can be found at the following
URL: http://www.dcc.fc.up.pt/gtries/

41

http://www.dcc.fc.up.pt/gtries/

CHAPTER 3. PARALLEL SUBGRAPH CENSUS FOR MULTICORES

Si =
T1
Ti

(3.1)

Linear speedup is obtained when, by using k cores, we reduce the computing time by a

factor of k. If a program with linear speedup takes 1 day to run sequentially (meaning

in a single core), it would only take 1 hour using 24 cores.

However, achieving linear speedup is usually not a trivial task and depends on many

factors. Some programs are inherently sequential, meaning that they can not be effi-

ciently parallelized. On the other hand, generating all possible permutations of a given

size is an example of an intrinsically parallel program where order has no relevance.

Data dependencies between different tasks can severely limit parallel performance. If

multiple cores need to write to the same place in memory at the same time some

locking mechanism has to be applied, usually mutexes and/or condition variables. If

all cores have the same number of tasks and each task takes approximately the same

time, parallelization is trivial; otherwise, a more equitable work division has to be

made and dynamic load balancing has to be taken into account.

In the subgraph counting problem, and most graph problems in general, work division

is clearly not balanced. Graphs are completely irregular, with some nodes having

a very high degree, such as hubs, and others having almost no connections. This

means that, if a static work division strategy was adopted, a core with computationally

heavier nodes would have much more work to do than other cores with lighter nodes.

Therefore, a dynamic load balancing strategy is a requirement to achieve an efficient

parallel subgraph counting algorithm.

3.1.1 Shared and Distributed Memory

The two main parallel paradigms are distributed memory and shared memory. In the

distributed memory approach every core has a copy of the data in its own memory

and works with it individually. On the other hand, with shared memory a unique

copy of the data is used by all cores. Shared memory has the advantage of having

less overhead, since data transfers are faster, but raises concerns on how memory is

accessed. Distributed memory is more commonly adopted when multiple individual

computers are used, such as in a cluster.

In this work we chose a shared memory approach, with our target being the multicore

architecture. Multicore computers are now commonplace, with as many as 8 cores

being widely available (and this number will surely increase in the coming years),

42

3.2. GENERAL OVERVIEW

giving us a broader scope than a distributed memory implementation that would

require the users to have access to a dedicated cluster to be efficient. For this purpose

we chose Pthreads, due to its flexibility and portability, being currently supported by

all major operating systems.

3.1.2 Related Work

Although numerous sequential algorithms for network motif discovery do exist, parallel

approaches are scarcer. Parallel distributed memory algorithms for both ESU [RSL12]

and gtrieScanner [RSL10a] have been implemented, using MPI for communication.

Our work here differs from those previous approaches because we instead aim for

a shared memory environment with multiple cores. A different parallel algorithm

is the one by Wang et al. [WTZ+05], which employs a static pre-division of work

and limits the analysis to a single network and a fixed number of cores (32). In

our work, we instead apply dynamic load balancing and more thoroughly study the

scalability of our approach. A subgraph-centric parallel algorithm using map-reduce

was developed by Afrati et al. [AFU13], where they enumerate only one individual

subgraph at a time. By contrast, we use two g-trie approaches, one set-centric and the

other network-centric, and aim for a different target platform (multicores). For more

specific types of subgraphs there are other parallel algorithms such as Sahad [ZWB+12]

(a hadoop subgraph-centric method for tree subgraphs), Fascia [SM13] (a multicore

subgraph-centric method for approximate count of non-induced tree-like subgraphs) or

ParSE. [ZKKM10] (approximate count for subgraphs that can be partitioned in two by

a cut-edge), but our work stands apart by aiming at a more general set of subgraphs.

3.2 General Overview

Both algorithms start in the same way: each vertex in the input graph G is given as

a candidate for the root node (lines 2 and 3 of Algorithm 2.1 for gtrieScanner and

lines 3 and 4 of Algorithm 2.2 for FaSE). A näıve approach would be to simply divide

these initial work units between the available computing resources. The problem with

this static strategy is that the generated search tree is highly irregular and unbalanced,

as discussed previously. A few of the vertices may take most of the computing time,

leading to some resources being busy processing them for a long time while others are

idle. To achieve a scalable approach for this kind of problem, we need an efficient

dynamic sharing mechanism that redistributes work during execution time.

43

CHAPTER 3. PARALLEL SUBGRAPH CENSUS FOR MULTICORES

A major factor for both algorithms performance is that there is no explicit queue

of unprocessed work units. Instead they are implicitly stored in the recursive stack.

To achieve the best efficiency we kept this characteristic in our parallel approach as

the queues would introduce a significant overhead both on the execution time and

on the needed memory that would significantly deteriorate the sequential algorithms

performance. Our goal is, therefore, to scale up our original efficient algorithm,

providing the best possible overall running time.

We allocate one thread per core, with each thread being initially assigned an equal

amount of vertices. When a thread P finishes its allotted computation, it requests new

work from another active thread Q, which responds by first stopping its computation

and then building a representation of its state, bottom-up, to enable sharing. Q

proceeds by dividing the unprocessed work units in a round-robin fashion, achieving

a diagonal split of the entire work tree, allowing itself to keep half of the work units

and giving another half to P . Both threads then resume their execution, starting at

the bottom (meaning the lowest levels of the g-trie) of their respective work trees.

When all vertices for a certain g-trie node are computed, the thread moves up in the

work tree. The execution starts at the bottom so that only one vector containing the

current path is necessary, taking advantage of the common subtopology of ancestor

and descendant nodes in the same path. When there is no more work, the threads

terminate and the computed frequencies are aggregated. We will now describe in

more detail the various components of our algorithms, starting by describing how each

algorithm was adapted for a parallel execution and then detailing our general work

sharing strategy.

3.3 Parallel Frequency Counting

3.3.1 Parallel gtrieScanner

Algorithm 3.1 depicts our parallel version of gtrieScanner. All threads start by

executing parallelCountAll() with an initially empty work tree W (line 2). The

first vertex that a thread computes is that of position threadid (lines 3 and 5). At

each step, the thread computes the vertex threadnum positions after the previous one

(line 13). Every vertex is used as a candidate for the g-trie root node by some thread

(lines 11 and 12). This division gives approximately |V (G)|
num threads

vertices for each thread

to initially explore. We do this division in a round-robin fashion because it generally

provides a more equitable initial division than simply allocating continuous intervals to

each thread, due to the way we use the symmetry breaking conditions. Our intuition

44

3.3. PARALLEL FREQUENCY COUNTING

was verified empirically by observing that the threads would ask for work sooner if

continuous intervals were used. When a thread Q receives a work request from P (line

6) it needs to stop its computation, saving what it still had left to do (line 7), divide

the work tree (line 8), give P some work (line 9) and resume the remaining work (line

10). On the other hand, if a thread finishes its initially assigned work, it issues a work

request to get new work (line 14).

Algorithm 3.1 The parallel gtrieScanner algorithm.

1: procedure parallelCountAll(T , G)
2: W ← ∅
3: i← threadid
4: while i ≤ |V (G)| do
5: v ← V (G)i
6: if WorkRequest(P) then
7: W.addWork()
8: (WQ,WP)← splitWork(W)
9: giveWork(WP , P)
10: resumeWork(WQ)

11: for all children c of T.root do
12: parallelCount(c, {v})
13: i← i+ threadnum
14: askForWork()

15: procedure parallelCount(T, Vused)
16: V ← matchingVertices(T, Vused)
17: for all vertex v of V do
18: if WorkRequest(P) then
19: W.addWork()
20: return
21: if T.isLeaf then
22: threadfreq[T]++
23: else
24: for all children c of T do
25: parallelCount(c, Vused ∪ {v})

parallelCount() remains almost the same as the sequential version, except for at-

tending work requests and storing subgraph frequencies. If the thread receives a work

request while computing matches, it first adds the vertices it still had to explore to

the work tree W and then stops the current execution (lines 18 to 20) to compute

the current state and finish building the work tree. In the sequential version we

simply needed to increase the frequency of a certain subgraph in the g-trie structure.

As for the parallel version, multiple threads may be computing frequencies for the

same subgraph, using different vertices from the input graph, and so they need to

45

CHAPTER 3. PARALLEL SUBGRAPH CENSUS FOR MULTICORES

coordinate the way they store the frequencies. Initially, we kept in each g-trie node

a shared array Fr[1..num threads] where the threads would update the array at the

position of their threadid. In the end, the global frequencies would be obtained by

summing up the values in the array. This resulted in significant false sharing due to

having too many threads update the frequency arays simultaneously, and became a

severe bottleneck. Our solution was to create thread private arrays indexing g-trie

nodes, i.e. Fr[1..numgtrieNodes], which impacted very favorably our efficiency. In our

testing phase with a 24-core machine, we had cases with speedups below 5 that, just

with this change, went to a speedup of over 22, thus converting a modest speedup into

an almost linear one.

The matchingVertices() procedure remains the same as the sequential version, the

only difference being that Vused is now thread local, with threads computing a different

set of vertices.

3.3.2 Parallel FaSE

For FaSE, each Vs and Vext pair can be regarded as composing a work unit and, along

with the position in the g-trie, are sufficient to resume computation. At the start, Vs

corresponds to each single node in the network and Vext to its neighbors with higher

index. We recall that FaSE creates the g-trie during execution, whereas gtrieScanner

uses a previously built g-trie. We decided to use one central g-trie, as opposed to one

g-trie per thread. While this option leads to contention when accessing the g-trie, it

saves memory and removes the redundant work caused by multiple threads creating

their own g-trie, with most connections being common for every thread. If a thread

arrives at a new type of node it updates the g-trie. All threads see this change and do

not need to update the g-trie if the node is found again.

Algorithm 3.2 details our parallel approach for FaSE. The graph G, the g-trie T and the

subgraph size k are global variables, while current is a pointer to the g-trie location and

is specific to each thread. Computation starts with an initially empty g-trie (line 2) and

work queues (line 3), one for every thread. The condition in line 12 of Algorithm 2.2,

u > Vs[0], makes vertices with a smaller index more likely to be computationally

heavier than higher indexed vertices. Because of this, network vertices are split in a

round-robin fashion, giving all threads V (G)|/num threads top vertices to initially

explore (lines 4 to 6 and 13). This division is not necessarily balanced but finding

the best possible division is as computationally heavy as the census itself. If a thread

does not receive a work request it does the enumeration process starting at each of

its assigned vertices (line 12). The enumerate() procedure is very similar to the

46

3.4. WORK SHARING

sequential version but with Vs and Vext now being thread local and the count variable

becoming an array indexing threads, i.e. count[threadid], in each leaf. Another relevant

difference is that, when a new node in the g-trie needs to be created, its parent node

has to be locked before creation. This is done to ensure that the same node is not

created by multiple threads. If a thread Q receives a work request from P , it needs to

stop its computation, add the remaining work to W (line 8), split the work (line 9),

give half the work to P (line 10) and resume its work (line 11). After the enumeration

phase is finished, the leaves are also distributed among the threads and isomorphism

tests are performed to verify the appropriate canonical type of each occurrence.

Algorithm 3.2 The parallel FaSE algorithm.

1: procedure ParallelFaSE(G,T, k)
2: T ← ∅
3: W ← ∅
4: i, j ← threadid
5: while i ≤ |V (G)| do
6: v ← V (G)i
7: if workRequest(P) then
8: W.addWork()
9: (WQ,WP)← splitWork(W)
10: giveWork(WP , P)
11: resumeWork(WQ)

12: enumerate({v}, {u ∈ N(v) : u > v}, T.root)
13: i← i+ numthreads

14: while j ≤ |T.leaves()| do
15: l← T.leaves()j
16: frequency[canonicalLabel(l.Graph)] += l.count
17: j ← j + numthreads

3.4 Work Sharing

We will now describe the work sharing process which can be divided in three main

phases: work request, work division and work resuming. The process is very similar

for both algorithms, only suffering minor changes due to the way the work units differ.

A diagram with all thread states is shown in Figure 3.1 to depict the big picture of

our approach.

3.4.1 Work Request

A work request is performed when some thread P has completed its assigned work.

Since there is no efficient way of predicting exactly how much computation each active

47

CHAPTER 3. PARALLEL SUBGRAPH CENSUS FOR MULTICORES

WORKING

BUILDING

STATE

IDLE

W W . . .1 2

COMPUTATION

OVER

WAITING

FOR WORK

ANSWERED

SHARE

WORK

RECEIVED

WORK

NO

WORK

finished

 work

 join waiting

threads

 all threads

waiting
got lock

calling

send work

received

work

try to get

work again
handle received

work

stop execution

recursively build

work tree

 split work

treeresume work

Figure 3.1: A complete state diagram of our parallel approach.

thread still has in its work tree, it asks a random thread Q for more work. Note that

this kind of random polling has been established as an efficient heuristic for dynamic

load balancing [San02]. If Q sends some unprocessed work, then P computes the

work it was given. If Q did not have work to share, P tries asking another random

thread. When all threads are trying to get work, no more work units are left to be

computed and the enumeration phase ends. All this process of requesting work has to

be protected by locks to ensure that a thread is only called by one other thread and

that all requests are answered. To avoid busy waiting we use a conditional variable

that is activated by thread Q to signal P that its request has been answered and it

can proceed its execution with the new work queue.

3.4.2 Work Division

When a thread Q receives a work request it builds a work tree representing its current

recursive state. In Figure 3.2 we show a resulting work tree and its division with a

caller thread P , for gtrieScanner. The yellow colored circles constitute Vused and the

yellow colored squares form the g-trie path up to the current level. The other nodes

and vertices are still left to be explored and are split in a round-robin fashion. This

division results in two work trees with approximately the same number of work units.

This does not imply that two halves have the the same computational dimension, given

the irregularity of the search tree they will induce, but nevertheless they constitute

our best guess of a fair division across all levels.

48

3.4. WORK SHARING

As said before, we only build an explicit work tree when a work request is received.

In that situation, a thread saves the current and the other unexplored vertices for the

current node and moves up in the recursive tree. This process is repeated up to the

top level, effectively populating the work tree with the unprocessed work units, i.e.,

the unexplored g-trie nodes and network vertices. This is a very fast operation and it

is done by stopping the execution of the recursive parallelCount() calls and adding

the work to the work tree (line 19 in Figure 2.1) until we get to parallelCountAll()

and add the remaining nodes and vertices of the top level (line 7). We also store the

current g-trie path and network vertices.

Figure 3.2: The constructed work tree and its division for gtrieScanner when a
thread Q receives a work request from thread P .

The main difference in FaSE is that, during work division, each thread is given a

complete g-trie level, constituted by Vs, Vused and the current g-trie position. For

example, if a thread is stopped when it is in the fourth g-trie level, Q keeps level 3

and 1 while P receives 4 and 2. The topmost level is fully split since splitting it is the

same as the initial division from lines 4 to 6 of Algorithm 3.2.

3.4.3 Work Resuming

After the threads have shared work, they need to resume their operation. We will

describe how this process is applied to gtrieScanner and then point out the minor

differences present in FaSE. First, the thread signals that it has not done any work yet

(line 2), so that threads are not constantly sharing without advancing the computation.

The work tree is then traversed in a bottom-up fashion (lines 3 to 6) and the vertices of

each level are computed (line 7). If the thread receives a work request and has already

done some work, work sharing is performed (line 8). There is no call to addWork()

since the work is already on the work structure: either it was unfinished work already

on W or it was added by the recursive parallelCount() calls. After having divided

49

CHAPTER 3. PARALLEL SUBGRAPH CENSUS FOR MULTICORES

and shared the work (lines 9 and 10) the thread continues its computation with the

new work tree (line 11) and the current execution is discarded (line 12). If the thread

does not have pending work requests it proceeds to process the vertex. Thus, the

thread has already done a minimum amount of work (line 13) and will attend work

requests. Then the thread checks if it has arrived at a desired subgraph (line 14) and

if so increases its frequency (line 15). If not, the thread calls parallelCount() with

the new vertex in Vused for each child of the g-trie node (lines 17 and 18). When all

work is completed it requests work from another thread (line 19).

The pseudo-code for FaSE is very similar, as shown in algorithm 3.4. The work levels

are also ordered from top to bottom (line 2 and 3) so that only one Vs is necessary.

If a work request is received, the general process of work sharing is performed (lines 4

to 8). No call to addWork() is necessary since the work was either added previously

to W before the current resumeWork() call was made or was added by the recursive

addWork() calls from enumerate(). If the level being computed is the root of the

g-trie, the top vertices are individually computed (lines 9 to 11), in the same manner

as line 12 of Algorithm 3.2. Otherwise, the stored values of Vs, Vused and current are

used to continue the previously halted computation (lines 12 and 13). If the thread

finishes its alloted work it asks for more (line 14).

Algorithm 3.3 Algorithm for resuming work after sharing is performed, applied to
gtrieScanner.

1: procedure resumeWork(W)
2: did work ← false
3: OrderByLowest(W)
4: for all level L of W do
5: depth← L.depth− 1
6: Vused ← active vertices[1..depth]
7: for all vertices v of L.nodes do
8: if WorkRequest(P) and did work then
9: (WQ,WP)← splitWork(W)
10: giveWork(WP , P)
11: resumeWork(WQ)
12: return
13: did work ← true
14: if L.T.isLeaf then
15: threadfreq[T]++
16: else
17: for all children c of L.T do
18: ParallelCount(c, Vused ∪ {v})
19: askForWork()

50

3.5. OBTAINING THE SUBGRAPH FREQUENCIES

Algorithm 3.4 Algorithm for resuming work after sharing is performed, applied to
FaSE.

1: procedure resumeWork(W)
2: OrderByLowest(W)
3: for all level L of W do
4: if WorkRequest(P) then
5: (WQ,WP)← splitWork(W)
6: giveWork(WP , P)
7: resumeWork(WQ)
8: return
9: if L.depth = 0 then
10: for all vertex v of L.Vext do
11: enumerate({v}, {u ∈ N(v) : u > v}, T.root)
12: else
13: enumerate(L.Vs, L.Vext, L.current)

14: askForWork()

3.5 Obtaining the subgraph frequencies

In the end, both algorithms need to output the total number of occurrences of the

queried subgraphs on the network and also the frequency of each subgraph type.

The user may also choose to output the specific occurrences of each subgraph in the

network.

In gtrieScanner the frequency of each subgraph type is stored by each thread in a

private array indexing g-trie leaves (line 22 of Algorithm 3.1) and, in the end, the

overall frequencies are aggregated by adding the values computed by every thread for

each subgraph type.

As for FaSE, since we can not know how many leaves will eventually be created,

the frequencies are actually stored in an array (indexing threads) in each g-trie leaf.

The cycle from lines 14 to 17 of Algorithm 3.2 traverses all leaves to compute their

canonical label to ensure that isomorphic graphs pertain to the same subgraph type.

During the process the frequencies of every subgraph type computed by each thread

are aggregated.

3.6 Summary

Here we discussed why we chose to parallelize g-trie based solutions and presented

two parallel algorithms for subgraph counting based on two of the fastest sequential

approaches for this same task. Both of them use a g-trie as their core but differ when

51

CHAPTER 3. PARALLEL SUBGRAPH CENSUS FOR MULTICORES

the g-trie is created and have minor changes in what information they store. We also

detailed our general dynamic work sharing strategy and applied it to both algorithms.

52

Parallel Subgraph Census
using GPUs 4

The purpose of this chapter is to discuss the differences between the GPU and CPU

architectures and why the GPU model makes it possible to improve the speed of

existing algorithms. We present an algorithm for subgraph census based on g-tries

that was implemented using CUDA. The chapter ends with a discussion of related work

and the problems associated with graph traversal algorithms for this architecture.

4.1 Motivation

A graphics processing unit (GPU) is a device composed of a microchip specialized in

visual output. They are highly efficient in processing mathematically-intensive tasks

in parallel and can nowadays be found on video game consoles, personal computers

and portable devices. The architecture of a GPU differs from that of a CPU by

having hundreds of thousands of cores instead of one or just a few (Figure 4.1). This

many-core architecture makes GPUs much faster than CPUs for tasks such as image

processing that apply a single instruction to multiple data (SIMD).

Cache

ALUControl

ALU

ALU

ALU

DRAM

CPU

DRAM

GPU

Figure 4.1: The CPU and GPU contrasting architectures (taken from NVIDIA CUDA

C Programming Guide).

Despite their deep focus in graphics processing, the potential of GPUs offers pro-

grammers the opportunity to apply them to many different problems, such as sorting

53

CHAPTER 4. PARALLEL SUBGRAPH CENSUS USING GPUS

algorithms for very large lists or molecular dynamics simulations. This field was

called general-purpose computing on graphics processing units (GPGPU), but effi-

ciently mapping applications to the GPU proved to be too difficult. This task was

made easier when NVIDIA developed the Tesla GPU architecture, that consisted of

fully programmable processors with their own memory and a control logic similar

to that of a CPU, and the CUDA framework to readily use the GPU in a relatively

straightforward way. Currently, the dominant frameworks for GPU computing are

OpenCL and CUDA. CUDA is unique to the NVIDIA graphics cards while OpenCL is open-

source and supported by all major graphics card manufacturers, including NVIDIA.

For NVIDIA cards, CUDA currently extracts better performances from the GPUs and

we used it to implement our algorithm.

Modern NVIDIA GPUs consist of dozens of streaming multiprocessors (SMP) that

are themselves split into dozens or hundreds of processors. Each SMP can manage

thousands of hardware-scheduled threads. This physical structure is hidden from the

typical programmer and is instead presented logically, as shown on Figure 4.2. A

function to be executed on the GPU is called a kernel and is handled by a number of

threads, called a grid. Grids are split into blocks that, themselves, contain the threads.

Each thread has its unique set of registers and local memory, with an array of shared

memory being common to threads of the same block. Threads of different blocks can

not communicate between themselves and there is no synchronization of blocks, only

threads of the same block can be synchronized. There are three other types of memory

that all threads can access: global memory, which is a large memory that threads can

read and write to, and two small read-only memories, constant memory and texture

memory. Constant memory is particularly useful when there is data that never changes

during the program’s runtime and is accessed by all threads at the same position and

at the same time. The CPU can transfer data in and out of these memories to make

it available for all threads.

Rather than running individually, threads are grouped in warps of, usually, 32 threads

that execute the same instruction at the same time. This limits the usage of branching

code since having a branch forces each thread in the warp to execute both branches,

adding non-productive computing time for each divergence in the code.

Using this architecture we developed an initial algorithm for subgraph counting based

on g-tries that we will now describe.

54

4.2. GPU ALGORITHM

Grid

Constant
Memory

Texture
Memory

Global
Memory

Block (0, 0)

Shared Memory

Local
Memory

Thread (0, 0)

Registers

Local
Memory

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Local
Memory

Thread (0, 0)

Registers

Local
Memory

Thread (1, 0)

Registers

Figure 4.2: The CUDA programming model (taken from NVIDIA CUDA C Programming
Guide).

4.2 GPU Algorithm

First of all, we need to decide what portion of the algorithm remains to be computed

on the CPU and what portion is transferred to the GPU. In gtrieScanner, verifying

if a found set of vertices corresponds to a valid subgraph, takes about 90% of the

computing time. This corresponds to lines 17 and 18 of Algorithm 2.1, where the edge

connections and symmetry conditions are evaluated. Thus, this is the section of the

work that we want to send to the GPU to be executed in parallel.

Considering the enormous amount of matches the algorithm has to verify, sending one

match at a time to the GPU is not practical due to the overhead of sending the work

and receiving the results each time. Also, generally, the subgraphs that we want to

search on the network are very small. GPU programming is ideal for executions with

many threads, so we need a much bigger grain than a single graph verification.

55

CHAPTER 4. PARALLEL SUBGRAPH CENSUS USING GPUS

In Figure 4.3 we have a partial search tree of a g-trie consisting of the size-3 undirected

graphs in a small network. The lists of the form [x1, ..., xk] are the currently matched

nodes and the list {y1, ..., yn} contains the candidates for expansion. A work-unit

thus corresponds to a list [x1, ..., xk] and one of the ym associated to it. What the

sequential version does is similar to a DFS, following the path: (T1, []) → (T2, [1]) →
(T3, [1, 2]) → (T4, [1, 2]) → (T3, [1, 9]) → (T4, [1, 9]) → (T2, [2]) → ..., but it could do

something closer to a BFS, completing a level of the g-trie before moving to the next.

Adopting this method, we can send a large quantity of work-units to the GPU.

Figure 4.3: The gtrieScanner search tree.

Besides the g-trie and the input network, two lists, MapList and V ertexList, are sent

to the GPU, the first containing all partial matches (or maps) for the current g-trie

node and the latter the list of candidates, as illustrated in Figure 4.4. Each map points

to its first associated vertex in V ertexList. After the GPU threads are created, they

receive k vertices from V ertexList.

Figure 4.4: The work units assigned for each GPU thread.

56

4.2. GPU ALGORITHM

Algorithm 4.1 GPU Algorithm for computing the frequency of subgraphs of g-trie
T in graph G.

1: procedure countAll(T,G)
2: MapList← V (G)
3: blocksize← max threads per block
4: gridsize← max concurrent threads/blocksize
5: count(MapList, T.root)

6: procedure count(MapList, T)
7: size← T.depth
8: V ertexList← ∅
9: for [xi, ..., xsize] as map in MapList do
10: V ertices← neighborV ertices(T,map)
11: V ertices.map← map
12: V ertexList.add(Nodes)

13: doMatch<blocksize, gridsize>(V ertexList,MapList, T)
14: newV ertexList← ∅
15: for all vertex v of V ertexList that matched do
16: newMapList.add([Map(v), v])
17: if T.isLeaf then
18: T.frequency++

19: for all child c of T do
20: count(newMapList, c)

21: function neighborVertices(T, Vused)
22: Vconn ← vertices connected to the vertex being added
23: m ← vertex of Vconn with smallest neighborhood
24: Vcand ← neighbors of m
25: return Vcand

26: kernel doMatch<blocksize, gridsize>(V ertexList,MapList, T)
27: k ← V ertexList.size/totalthreads
28: i← threadid ∗ k
29: while i ≤ (threadid + 1) ∗ k
30: vertex← V ertexList[i]
31: map←Map(vertex)
32: V ertexList← match([map, vertex], T)
33: i++

Our GPU algorithm is depicted in Algorithm 4.1. The program begins by setting the

initial MapList as V (G) (line 2). The block and grid sizes can be given as parameters

but here we chose to use the max threads per block as the blocksize and use the

max concurrent threads as the total number of threads (lines 3 and 4). The count()

procedure is then called to evaluate the MapList, starting at the g-trie root (line 5).

In the count() procedure we start by checking the depth of the current g-trie node

(line 7) and setting V ertexList as an empty list (line 8). Then, for each map from

57

CHAPTER 4. PARALLEL SUBGRAPH CENSUS USING GPUS

MapList, we populate V ertexList with the neighborVertices(T, map) (lines 9 to

12). Notice that neighborVertices() is the same function as matchingVertices()

from gtrieScanner (Algorithm 2.1) but without asserting if the subgraphs actually

correctly match the g-trie since that is the bulk of the work and it will be done in the

GPU. The GPU kernel doMatch() is called with the given block and grid sizes, the

work lists and the g-trie position (line 13). The work-units are equally split between

the threads (lines 27 and 28) and each thread in the kernel traverses its portion of

V ertexList (lines 29 to 33). The threads verify if their respective alloted vertex

(line 30) added to its partial match (line 31) - [map, vertex] - respect the g-trie node

connections and symmetry breaking conditions (line 32). The execution returns to

the CPU that creates a list and populates it with the new partial matches (lines 15

and 16). If the match is actually a leaf, its frequency is incremented (lines 17 to 18).

The whole process is repeated, matching newMapList to all descendant nodes of the

current g-trie position (lines 19 and 20) until the g-trie is fully explored.

4.2.1 Memory Types

CUDA supports distinct kinds of memory that serve different purposes and using them

correctly can boost the application’s efficiency. Next we discuss where we use different

kinds of memories and how they affect our performance.

Pinned Memory

In cases, such as ours, where data is transferred between CPU and GPU many times,

the transactions between host and device can lead to a serious overhead and affect

overall performance. In CUDA, when a regular memory transfer is issued, memory has to

be transferred from pageable memory to pinned memory. This whole process involves

creating a block of pinned memory, copying from pageable to pinned memory in the

host, transferring the data from pinned memory to the GPU’s RAM and deallocating

the pinned memory. A better option is to allocate memory directly in pinned memory,

allowing the GPU to transfer data from there without the intervention of the CPU.

With this option, memory transfers become faster but allocation itself is slower. In

our case we only need to allocate a large chunk of memory and use it when necessary.

Even if we did not have to worry about the allocation overhead we would still need

to limit the allocated memory since the number of work units can get so large that

they do not fit memory. We solve this by not creating the exceeding vertices when

the list limit is reached and proceeding with the computation to the next g-trie node.

Eventually the program returns to the incomplete level and generates a list with the

unexplored vertices.

58

4.3. PROBLEMS AND RELATED WORK

Constant Memory

Constant memory is very useful when data never changes during the program’s execu-

tion and all threads are accessing the same portion of memory because, if all threads

from a warp read the same position from constant memory, only a single read is

necessary. However, it is severely limited in size, with most GPUs having only a few

dozen kilobytes. In our program, the g-trie is a good candidate for constant memory

since it never changes during execution, all threads are computing the same g-trie

node at the same time and is small enough to fit in this chunk of memory.

Global Memory

The global memory stores data that is common to all threads, such as the input

network in the case of our algorithm. The network is generally too big to be put in

constant memory and, as such, it is allocated in global memory.

Shared Memory

This is an additional type of memory that is shared between threads of the same

block and has a faster bandwidth than global memory. The work lists MapList and

V ertexList are initially stored in global memory. If each map from MapList has a

number of vertices from V ertexList comparable to the number of threads per block,

it would mean that threads in the same block likely share the same map. We explored

this property by having a leader thread creating an array in shared memory, mapblock

composed of its map. Threads from the same block, that have the same map, can then

use mapblock instead of their own map from global memory. In practice, the effects are

diminute because the subgraphs searched are small and, accordingly, so is the map.

4.3 Problems and Related Work

The GPU architecture achieves incredible speedups for problems with static and

regular data, such as matrix-multiplication. However, adapting it for graph traversal

problems is a challenging task due to their irregularity and data-dependency.

An approach by Pawan Harish and P.J. Narayanan [HN07] implemented a BFS solution

using CUDA that gave a vertex to each thread. At each level of the BFS they had a

frontier array with the vertices that were to be explored, with the source vertex being

the only vertex in the frontier at the beginning. If the vertex of the thread was in

the frontier, it would compute its vertex neighbors that were not yet explored. If

it was not, the thread would do no work. This was an initial GPU approach that

59

CHAPTER 4. PARALLEL SUBGRAPH CENSUS USING GPUS

clearly did not achieve a balanced work division. They also tried a similar approach

for single shortest path and all pairs shortest path. A more recent work, by Hong et al.

in [HKOO11], tested various graph algorithms and tried to deal with work imbalance

by using a warp-centric programming method that better uses the underlying GPU

architectures and improves upon previous solutions. Still, the results achieved depend

greatly on the benchmark they apply their solution to, with some cases with 15.1x

speedup and others with virtually no speedup. In [MGG12], a BFS parallelization is

offered and interesting speedups are achieved. However, the speedups still appear to

depend on the network since the results range from 6x to 29x speedup. In the field of

frequent subgraph mining, a GPU parallel implementation of gSpan [YH02] was made

by Wang et al. [WDY13] which achieved speedups of about one order of magnitude

when compared to the original gSpan. The results presented are for very small cases

(less than a 100 vertices) and so it remains to be seen how well it would scale to bigger

graphs.

4.4 Summary

We gave a general overview of the GPU programming model and its differences when

compared to the traditional CPU architecture. An initial approach for subgraph

counting using g-tries was presented and discussed. Finally, we exposed the reader to

some related work and to the inherent difficulties to adapt graph traversal algorithms

for the GPU.

60

Performance Evaluation 5
In this chapter we present empirical data obtained by running our parallel methods

on a large and representative set of complex networks. Our purpose is to study the

general scalability of the developed algorithms.

To study the multicore algorithms efficiency we first compare their original sequential

version with our parallel implementations using only one thread. We then discuss the

relative overhead of our sharing mechanism and end with scalability tests, showing the

speedups we obtained.

We also present results for our proposed GPU algorithm in an effort to study how

GPU architectures can fit the subgraph census problem. A comparison between our

GPU approach and a modified sequential version is also put forward.

5.1 Common Materials

We gathered results for both multicore algorithms using the same computational

environment. For the GPU tests we had to use a different machine with access to

a high-end CUDA-capable GPU. The set of complex networks used for evaluation was

also kept similar for all tests. We should note that, for brevity, not all networks are

used in every test we performed.

5.1.1 Computational Environments

Our experimental results for both multicore algorithms were obtained on a 64-core

machine, consisting of four 16-core AMD Opteron 6376 processors at 2.3GHz with

a total of 252GB of memory installed. Each 16-core processor is split in two banks

of eight cores, each with its own 6MB L3 cache. Each bank is then split into sets

of two cores sharing a 2MB L2 and a 64KB L1 instruction cache. A 16KB L1 data

cache is dedicated to each core. We disabled the turbo boost functionality because it

would give us inconsistent results by having executions with less cores running at an

61

CHAPTER 5. PERFORMANCE EVALUATION

Device Tesla C2050
CUDA Cores 448 (14 MP x 32 Cores)

Global Memory 2,687 MB
Constant Memory 64KB

Shared Memory 48KB
Warp Size 32 threads

Max. Threads p/MP 1,536
Max. Threads p/block 1024

Max. Concurrent Threads 21,504

Table 5.1: Our GPU’s main characteristics.

increased clock rate. All code was developed in C++11 and compiled using gcc 4.8.2.

We used NPTL 2.18 for Pthreads support.

We performed the tests relative to our GPU approach on a 16-core machine consisting

of four 4-core Intel Xeon E5620 processors at 2.4GHz with a total of 12GB of memory

installed. The code was developed in C++11, using the latest CUDA driver version 6.0,

and compiled with nvcc 6.0.1. The main characteristics of our GPU are shown in

Table 5.1.

5.1.2 Networks

During our development phase we used a set consisting of a few dozen networks in

an effort to guarantee that our parallel algorithms did not severely depend on the

network structure. We will now describe the chosen representative subset of them

and, in Table 5.2, give some general information concerning the dimension and type of

the networks. In order to showcase the general scalability of our algorithm, we chose

networks that vary in their field of application, their use of edge direction and their

dimension, as can be seen in the aforementioned table.

• Social Networks: describe relations between users from social networks. These

networks are becoming increasingly popular and studying their structure may

give important insights into social organization [TMP12].

– facebook: undirected network consisting of friend circles gathered from

Facebook [ML12]. Source: [Les14].

– blogcat: undirected network formed from friendship and group member-

ship networks from BlogCat [TL09]. Source: [Uni14].

62

5.1. COMMON MATERIALS

• Collaboration Networks: networks consisting of relations between entities col-

laborating in the same subject. Much attention has been given to co-authorship

networks and in uncovering their underlying structure [Glä01, GS05].

– astroph: undirected network of author collaborations on papers submitted

to arXiv in the Astro Physics category [LKF07]. Source: [Les14].

– jazz: undirected network composed of collaborations between jazz musi-

cians from 1912 to 1940. [GD03]. Source: [Are14].

– netsc: undirected network containing co-authorships of scientists working

on network experiments and analysis [New06]. Source: [New10].

• Communication Networks: represent networks related to communications.

– polblogs: directed network of hyperlinks between weblogs on United States

politics [AG05]. Source: [New10].

– routes: undirected network consisting of the traffic flow between routers

[LKF05]. Source: [Les14].

– company: directed network of ownership of media and telecommunication

companies [NLGC02]. Source: [BM06].

– enron: directed network aggregating around half a million emails [LLDM09].

Source: [Les14].

• Biological Networks: networks that model biological concepts. These net-

works are the most prevalent in the study of network motifs and their structure

has be found to give important information, such as in the case of transcriptional

regulation of Escherichia coli [SOMMA02]. They have also been important in

the study of protein-protein-interaction [BZC+03, CG08].

– ppi: undirected network of protein-protein interaction between budding

microorganisms (yeasts) [BZC+03]. Source: [BM06].

– neural: directed network of the nervous system of a small nematode (C.

elegans) [WS98, WSTB86] Source: [New10].

– metabolic: directed metabolic network of the same small nematode round-

worm, C. elegans [DA05]. Source: [Are14].

63

CHAPTER 5. PERFORMANCE EVALUATION

Network Group |V (G)| |E(G)| |E(G)|
|V (G)| Directed

jazz collaboration 198 2,742 13.85 No

netsc collaboration 1,589 2,742 1.73 No

ppi biological 2,361 6,646 2.81 No

facebook social 4,039 88,234 21.85 No

routes communication 6,474 12,572 1.94 No

blogcat social 10,312 333,983 32.39 No

astroph collaboration 18,772 198,050 10.55 No

neural biological 297 2,345 7.90 Yes

metabolic biological 453 2,025 4.47 Yes

polblogs communication 1,491 19,022 12.76 Yes

company communication 8,497 6,724 0.79 Yes

enron communication 36,692 367,662 10.02 Yes

Table 5.2: The set of representative real networks used for parallel performance
evaluation.

5.2 Multicore Algorithms

For the two multicore algorithms we compared the execution time of our version using

only one thread with the original sequential algorithm to verify that our parallel

solution does not impose a serious overhead. We also made extensive use of code

profilers, such as Intel VTune and AMD CodeXL, to look for hotspots, particularly to

study the overhead caused by our work sharing strategy. Finally, the speedups of our

parallel algorithms are presented, to assess the scalability of our approach.

Having chosen the networks that will be queried, we also need to decide which sub-

graphs should be searched in those networks. For that purpose we use all possible

subgraphs of a given size k, again to highlight general applicability. Note that when

we consider directed networks, the number of possible subgraphs of size k increases

drastically. For example, for k = 4 there are only 6 undirected graphs and 199 directed

ones. One query on a directed network for k = 4 would thus imply counting the

occurrences of 199 different types of subgraphs. Therefore, the chosen k for directed

networks will, generally, be smaller than that of undirected networks in order to obtain

more manageable execution times.

The g-trie sequential algorithms, FaSE and gtrieScanner, take a few seconds in cases

where competing algorithms would take a considerable amount of time [RS14b, PR13].

Our purpose here is to explicitly pick very large cases even for g-tries. The sequential

time for the examples used range from a couple of minutes to several hours. We chose

64

5.2. MULTICORE ALGORITHMS

this approach to show the real importance of our work, since going from a few seconds

to tenths of seconds is of minimal practical interest to the user. Searching for larger

subgraphs and using bigger networks takes longer but can provide new important

insights and, from a practitioner point of view, our parallel approach increases the

limits of what is feasible to compute in a reasonable amount of time.

5.2.1 gtrieScanner

Parallel Overhead

As said before, we wanted our parallel strategy with one thread to perform similarly

to the original sequential version. Empirically we observed that our parallel imple-

mentation with one thread does not produce a high overhead, being less than 10% for

all the networks we tested. The overhead lies mostly in threads having to check if they

received a work request, with sharing itself having minimal impact. The results are

shown on Table 5.3. Henceforth, we will use the single thread time as the sequential

time and use it to measure speedups. This means that our speedups are relative

speedups and not absolute speedups. Nevertheless, the overhead is sufficiently low to

give a clear idea of the actual gain.

Network Directed-Size
Sequential Single Thread

Overhead
Time (s) Time (s)

netsc undir-9 463.77 466.48 ≈ 1%

facebook undir-5 6,001.79 6,043.90 ≈ 7%

routes undir-5 4,824.76 4,936.54 ≈ 2%

blogcat undir-4 5,204.64 5,410.45 ≈ 4%

metabolic dir-6 532.03 580.28 ≈ 9%

polblogs dir-5 985.23 1,018.27 ≈ 3%

company dir-5 212.89 220.45 ≈ 4%

enron dir-4 973.82 1,038.60 ≈ 7%

Table 5.3: gtrieScanner: Comparison between the original sequential version and
the parallel version with one thread.

Work Sharing

Using code profilers, such as Intel VTune and AMD CodeXL, we verified that sharing

took a negligible amount of time (less than 1% of the total time), as can be verified

in Figure 5.1. This gives us strong evidence that our dynamic workload balancing

mechanism is extremely lightweight when compared to the actual subgraph counting

process itself, substantiating its effectiveness. Thus, our mechanism is able to quickly

65

CHAPTER 5. PERFORMANCE EVALUATION

divide and share the work between threads and the diagonal task splitting gives a

probably balanced division that reduces the amount of times that work needs to be

shared.

In Figure 5.2 the communication between threads is represented by yellow lines con-

necting two threads and the requester thread is identified by a yellow dot. As the

figure shows, more threads communicate nearing the end of the computation since

the work trees become smaller and, accordingly, the threads finish their work faster,

resulting in work requests being sent in increasingly smaller time intervals.

Figure 5.1: A screen capture from Intel VTune showing relative sharing time.

Speedup

Our algorithm was evaluated up to 64 cores. As mentioned before, we searched in the

network for all possible graphs of a given size k. In Table 5.4 we show the size k used

and the resulting number of all possible subgraphs of that size and type (directed or

undirected) that will be counted in that network. The sequential time and the obtained

speedups for 8, 16, 32 and 64 cores are shown in Tables 5.5 and 5.6. We present two

tables containing the speedups with and without compiler optimization (gcc -O0 and

-O3 flags, respectively) because we observed significant differences in the results. This

happens due to some compiler optimizations that are effective for sequential programs

not being designed for parallel programs. For example, some cache optimizations that

greatly reduce the sequential time do not work as well when multiple cores are running

at the same time. This effect may cause an unfair comparison between sequential and

parallel executions. Nevertheless, results from Table 5.5 are also positive and users

will be more interested in real execution times than speedups, therefore we decided to

include both tables for the sake of completeness.

66

5.2. MULTICORE ALGORITHMS

Figure 5.2: A screen capture from Intel VTune showing thread communication.

The results we obtained are very promising and up to 32 cores we achieved near-

linear speedup, for both directed and undirected networks. With 64 cores we still

achieve over 75% efficiency. We should reassert that each pair of cores shares its 2MB

L2 and 64KB L1 instruction cache. This makes it harder to obtain perfect linear

speedup because these cores are not completely independent. For testing purposes,

we experimented with the well known pbzip5 parallel data compression algorithm,

which should achieve near-linear speedup on shared memory machines. Nevertheless,

pbzip had a performance similar to our own algorithm, with near-linear speedup up

to 32 cores and with a speedup of around 50 for 64 cores, further substantiating the

idea that, with a different architecture, our algorithm could still present near-linear

speedup with more than 32 cores.

We can also observe that as the network size increases, the performance slightly

degrades. This is particularly noticeable in the two largest networks, which show the

worst behavior. This is mostly due to their large size leading to memory constraints

and cache issues. Note, however, that their behavior without compiler optimizations

is not significantly worse. Furthermore, we used an adjacency matrix to represent the

network. This gives the best possible algorithmic complexity for verifying if an edge

exists but, at the same time, imposes a quadratic representation in memory. Other

5Parallel BZIP2 (PBZIP2): http://compression.ca/pbzip2/

67

CHAPTER 5. PERFORMANCE EVALUATION

Network
Subgraph #Subgraphs

size searched

netsc 9 261,080

facebook 5 21

routes 5 21

blogcat 4 6

metabolic 6 1,530,843

polblogs 6 1,530,843

company 6 1,530,843

enron 4 199

Table 5.4: Overall execution information for gtrieScanner.

Network
Sequential #Threads: speedup
time (s) 8 16 32 64

netsc 466.48 7.90 15.78 30.91 51.09

facebook 6,043.90 6.75 14.72 30.23 52.47

routes 4,936.54 6.53 14.52 30.34 48.76

blogcat 5,410.45 7.72 14.37 24.92 25.69

metabolic 580.28 6.38 14.12 29.46 40.44

polblogs 91,190.73 7.87 15.69 31.31 52.96

company 26,955.71 6.74 14.54 29.99 45.12

enron 1,038.60 6.23 12.69 23.78 24.41

Table 5.5: Results with compiler optimizations for gtrieScanner.

Network
Sequential #Threads: speedup
time (s) 8 16 32 64

netsc 2,030.39 7.91 15.74 31.36 51.65

facebook 17,851.16 6.78 14.67 30.31 53.84

routes 20,706.67 6.80 14.67 30.53 52.44

blogcat 15,666.05 7.88 15.40 29.60 48.69

metabolic 1,920.41 6.61 14.44 30.18 49.73

polblogs 222,210.76 7.91 15.78 31.38 52.11

company 94,384.39 6.69 14.61 30.17 47.09

enron 2,768.74 6.42 13.69 27.43 45.59

Table 5.6: Results without compiler optimizations for gtrieScanner.

68

5.2. MULTICORE ALGORITHMS

data structures would degrade edge verification performance but also significantly

decrease the memory footprint, and thus would contribute to a potentially more

scalable shared memory parallel performance. We should also note that previous work

has been done to parallelize gtrieScanner in a distributed memory environment which

obtained near-linear speedup up to 128 processors [RSL10a]. In that architecture,

each CPU has its own dedicated main memory storing a copy of the graph, which

means that the problems related with competing memory and caching are not present.

However, the typical practitioner may not have access to a dedicated cluster, limiting

that approach’s scope. Using our implementation, any user can run the algorithm and

have it run 2, 4 or 8 times faster, depending on the user’s machine number of cores.

5.2.2 FaSE

Following the same idea that we used to evaluate gtrieScanner, we decided to find all

graphs of a given size k that gave a sufficiently large sequential time for parallelism to

be meaningful but not so large that it would take more than a few hours to complete

the computation. FaSE, in general, is slower than gtrieScanner and, for some cases,

we reduced k in order to have a more manageable reproducibility.

Parallel Overhead

As with gtrieScanner, in order to have our parallel version with one thread perform

similarly to the sequential algorithm we did not artificially create work queues. This

choice led us to have a very small overhead (no more than 6% for all tested cases) and,

from now onwards, we will use the parallel execution with one thread as the sequential

time.

Network Directed-Size
Sequential Single Thread

Overhead
Time (s) Time (s)

jazz undir-6 291.68 295.95 ≈ 1%

netsc undir-9 288.17 295.12 ≈ 2%

facebook undir-5 3,402.01 3,598.41 ≈ 6%

astroph undir-4 169.49 179.47 ≈ 6%

polblogs dir-5 1,734.64 1,722.55 ≈ 0%

company dir-5 739.07 739.12 ≈ 0%

enron dir-4 1,287.64 1,370.46 ≈ 6%

Table 5.7: FaSE: Comparison between the original sequential version and the parallel
version with one thread.

69

CHAPTER 5. PERFORMANCE EVALUATION

Locking and Work Sharing

In FaSE the g-trie is created on-the-fly, with new nodes (corresponding to subgraphs)

being inserted only when they appear for the first time in the network. Since the

algorithm has multiple threads updating the g-trie, a synchronization mechanism needs

to be enforced in order to create a consistent g-trie. In a first approach we used a

lock to fully protect the g-trie: every time a thread wanted to insert a new node, a

global lock was made keeping other threads from adding new nodes. This strategy

caused a severe overhead, most significantly when k was large (8 or above) and for

directed networks because the total number of created nodes is in the order of the

millions or billions, increasing the time threads spent waiting for the lock. The best

possible option would be to use one lock per node, that way a thread would only

get locked if another thread was creating a child node precisely in the same g-trie

node. Unfortunately, we do not know the total number of nodes that will effectively

be created and using the total number of possible nodes is impractical. Another option

is to use lock striping, composed of an array of 105 or 106 indices, and mapping each

g-trie node in a position of the array of locks. This choice, however, has different nodes

mapping to the same array position, therefore making the lock unnecessary but, in

practice, works fairly well if the key for each node is random enough. For that purpose

we simply use the pointer of the node. For example, if we have an array of 500,000

locks and the pointer to the current node is 0×b8000000, it would map to position

ddec(0×b8000000)/500000e = 6174. We show the impact of this change in Figure 5.3

where the red colored areas represent locking intervals and with this change we can

clearly see that the red areas greatly diminished.

Each time a thread arrives at a leaf, it needs to verify its canonical representation. If

the leaf does not correspond to an already matched class, a new label has to be created

so that we can start counting subgraph occurrences for that class. For isomorphism

tests we use the external nauty module to which we had to make minor changes in

order to support multi-threading. If indeed a new node has to be created, a global

lock is made on the g-trie. This lock does not interfere with the locks to insert new

nodes, since inserting a new node and creating a label are totally independent tasks.

However, this means that only one thread can identify a new class at a time. We

can not adopt a similar strategy to the one we used for node insertion since we need

to keep a global leaf counter, and having multiple threads updating it would lead to

inconsistency. However, finding new classes is a relatively rare occurrence when doing

subgraph census. For example, for one of our test cases that takes in total over 300

seconds, only 4 seconds are spent on the lock, as shown on Figure 5.4.

70

5.2. MULTICORE ALGORITHMS

Work sharing itself, as we observed for gtrieScanner takes a negligible amount of

time (less than 1%), again highlighting the effectiveness of our workload balancing

mechanism and demonstrating that it can be successfully applied to different algo-

rithms.

Figure 5.3: A screen capture from Intel VTune comparing the impact of a global
lock versus lock striping when inserting a new g-trie node.

Figure 5.4: A screen capture from Intel VTune showing time spent on a lock for
label insertion in the g-trie.

Speedup

We ran our algorithm up to 64 cores although obtaining near-linear for that number of

cores is not possible due to the machine’s cache architecture, as explained before. The

turbo boost functionality was again disabled and we show the results with compiler

optimizations in Table 5.9 and without them in Table 5.10.

We show the size of the subgraphs being queried, along with the number of g-trie

leaves (the intermediate classes) and the actual number of different subgraph types in

71

CHAPTER 5. PERFORMANCE EVALUATION

Network
Subgraph #Leafs #Subgraphs

size found types found

jazz 6 3,113 112

netsc 9 445,410 14,151

routes 5 125 19

blogcat 4 17 6

polblogs 5 409,845 9,360

company 5 1,379 310

enron 4 17 6

Table 5.8: Overall execution information for FaSE.

Network
Sequential #Threads: speedup
time (s) 8 16 32 64

jazz 121.19 6.20 14.34 28.71 44.89

netsc 122.02 7.66 13.76 16.83 15.54

facebook 1,358.97 7.60 15.50 31.01 46.43

astroph 93.46 6.15 12.49 20.77 19.35

polblog 801.94 7.81 15.23 28.34 37.74

company 319.71 7.91 12.59 30.57 43.50

enron 710.02 7.46 12.39 22.99 24.33

Table 5.9: Results with compiler optimizations for FaSE.

Network
Sequential #Threads: speedup
time (s) 8 16 32 64

jazz 295.95 6.75 14.86 29.92 49.74

netsc 295.12 7.83 15.05 23.82 26.54

facebook 3,598.41 7.67 15.34 31.00 51.81

astroph 179.47 6.62 13.60 24.69 30.42

polblogs 1,722.55 7.85 15.56 30.04 47.48

company 739.12 7.94 15.81 31.02 48.53

enron 1,370.46 7.70 13.32 25.44 35.85

Table 5.10: Results without compiler optimizations for FaSE.

Table 5.8. The sequential time and the obtained speedups for 8, 16, 32 and 64 cores

are also shown.

The results we obtained are promising and achieved almost linear speedup for most

cases. We should observe that our algorithm performs worse in networks where many

leaves need to be created. This problem arises because we use a unique g-trie and need

to protect it when a new node (or leaf) is inserted and when a thread tries to insert

a new label, as elaborated on previously. We found cases where our speedups were

72

5.3. GPU APPROACH

severely limited by this fact. On the other hand, using one g-trie per thread would

lead to a lot of redundant work that would deteriorate our algorithm’s performance.

Memory also becomes a concern when many threads are used because each leaf has

an array to keep the frequencies. This limits the size of the subgraphs and networks

that can be run. Another problem comes from the way we store the frequencies in the

g-trie since it can sometimes lead to false sharing when too many threads are trying

to update the array at the same time. A better option would be to, instead, have each

thread keep an array of the frequencies for each leaf but, since the g-trie is created

during execution, we can not know the total number of leaves and set a unique id

in each one without resorting to locks. Finally, we observed that memory allocations

became heavier when more threads are used. Something we intend to explore is an

efficient pre-allocation of memory, where the threads would retrieve memory when

needed. Similarly to gtrieScanner, we used an adjacency matrix to represent the

input network that, while giving the best possible algorithmic complexity for verifying

node connections, imposes a quadratic memory representation. We also tried different

memory allocators, such as jemalloc and tcmalloc, but found no significant and

consistent performance improvement.

By comparison, gtrieScanner obtained almost linear speedup for every case we tested.

Besides using a conceptually different base approach (here we follow a network-centric

algorithm), the main difference between the two algorithms is that, for gtrieScanner,

the g-trie is created before subgraph counting, removing the need to have locks when

modifying the g-trie and making it possible to have subgraph frequencies outside of

the g-trie, eliminating false sharing.

5.3 GPU Approach

We did some initial experimentation using CUDA for subgraph counting and here present

the results obtained for the algorithm discussed in Chapter 4.

5.3.1 Thread and Work List Sizes

To have an amount of work units comparable to the number of threads GPUs can

offer, we chose to transfer all possible matches of a given g-trie node to the GPU. For

big networks this number can be so large that it does not fit in memory, so we had to

chose a proper size for the maximum number of work units in the work list.

73

CHAPTER 5. PERFORMANCE EVALUATION

At the same time, we want our program to have an efficient occupancy. Occupancy

is the relation between active and maximum active warps, for which having a value

between 60 and 70% is recommended. There are factors that limit occupancy such

as registers (only 32 thousand per streaming multiprocessor) or shared memory (only

a total of 16 to 48 KB depending on the GPU). The number of threads is also a

limiting factor, with the number of concurrent threads being restrained by the number

of streaming multiprocessors (SMP), the number of resident warps and the number of

threads each warp is constituted by, as shown in Equation 5.1. Our Tesla GPU has 14

SMPs, 42 resident warps and 32 threads per warp, giving a total of 21,504 maximum

concurrent threads.

maxconc threads = NSMP ∗NWarps ∗Warpsize (5.1)

For all results presented here we set the block size as the maximum number of threads

that out GPU supported (512). This number should always be a multiple of 32, due

to the way the threads are managed in warps, and big enough to achieve a good

occupancy, since the number of active blocks per streaming processor is limited.

To study the best size for the work list and the optimal number of threads we used

multiples of maxconc threads. So, if we have ∼21 thousand threads and ∼86 thousand

work units, each thread will get 4 units to compute. We present the results in

Table 5.11 with the values inside parentheses being the number of work units per

thread. Looking at the table we see that the total number of threads does not make

much difference in the execution times, but rather the number of work units per thread

does.

Giving one work unit per thread yields the best results, regardless of the total number

of threads. This may happen since using more than one thread leads to branching

problems inside the same warp, with threads still executing some work unit while

others already moved to the next one because the first unit failed some matching test

(symmetry conditions or ancestor connections). For each branch in a warp, the work

is therefore doubled because all threads need to execute both sides of the branch and

ignore the results of the incorrect path.

Using more than the maximum number of concurrent threads gives slightly faster

times for some cases. This may be because the time spent creating threads is so small

that, in practice, it becomes irrelevant that only some threads can execute at the same

time. On the other hand using, for instance, ∼21 thousand instead of ∼86 thousand

74

5.3. GPU APPROACH

threads has 3 times the overhead of creating the kernel and waiting for it to execute,

which degrades the executing time.

The results also show that using up to 16 work units per thread gives better results,

but after 32 work units per thread the performance becomes worse. Again, this may

happen because of the overhead caused by entering and waiting for the kernel to

execute. Executions with fewer threads have a relatively larger kernel execution

overhead, while executions with many threads have more problems with branching

code. A better balance is achieved by using 16 units per thread. Since using one

thread has poses no branching problems, its performance is the best despite the kernel

execution overhead.

Threads
21k 43k 86k 172k 344k

Units

21k 13 – – – –

43k 95(2) 12 – – –

86k 83(4) 96(2) 12 – –

172k 62(8) 84(4) 96(2) 13 –

344k 24(16) 62(8) 84(4) 96(2) 13

688k 32(32) 25(16) 63(8) 85(4) 96(2)

Threads
21k 43k 86k 172k 344k

Units

21k 364 – – – –

43k 1,335(2) 358 – – –

86k 1,144(4) 1,327(2) 356 – –

172k 826(8) 1,142(4) 1,326(2) 356 –

344k 360(16) 828(8) 1,144(4) 1,328(2) 362

688k 489(32) 359(16) 833(8) 1,149(4) 1,134(2)

Table 5.11: Execution times of our GPU algorithm using different list sizes (units)
and number of threads for 2 networks (blogcat and neural).

5.3.2 Comparison with CPU version

Since our GPU algorithm creates a work list for every g-trie node, whereas the original

CPU sequential algorithm for gtrieScanner did not, the overhead introduced limits

our algorithm’s performance. We therefore implemented a sequential algorithm that

performs the same tasks as the GPU alternative: (i) creation of the work lists, (ii)

doing the matching and (iii) checking if the matches were valid. We did this to get a

better feel of the actual gains we obtain by running the matching process in the GPU.

The comparative results are displayed in Table 5.12.

The comparison between our modified CPU sequential algorithm and the GPU version

is shown in Table 5.13, with the same subgraph sizes being used. We ran ∼86 thousand

units for the list size as well as the total number of threads, because they were the

parameters that achieved the best results.

75

CHAPTER 5. PERFORMANCE EVALUATION

Network
Subgraph Original Version Adapted Version

Overhead
size Time (s) Time (s)

jazz 6 116.23 273.64 2.35x

facebook 5 370.78 2,111.43 5.69x

routes 5 2,970.42 14,602.85 4.92x

blogcat 4 2,705.38 8,209.92 3.03x

astroph 4 29.79 79.19 2.66x

Table 5.12: Comparison between the original gtrieScanner and an adapted
sequential version.

Network
Work Creation (s) Matching (s) Checking (s) Total Time (s)
CPU GPU CPU GPU CPU GPU CPU GPU

jazz 10.73 11.91 205.72 1,371.55 49.63 52.90 273.64 1,449.25

facebook 55.34 79.99 1,388.11 386.22 670.11 605.28 2,111.43 1,130.34

routes 311.06 622.36 8,572.37 2,839.55 4,245.15 4,984.36 14,062.85 8,930.80

blogcat 185.77 256.80 5,577.52 7,330.96 2,550.83 2,628.23 8,209.92 10,377.47

astroph 2.40 2.77 52.20 134.57 23.33 22.19 79.19 164.19

Table 5.13: Comparison between CPU and GPU execution times.

We separated the execution times of the three aforementioned tasks. For the work

creation and checking tasks it is expected to have an overhead on the GPU alternative

since the memory has to be made available to the GPU. As for the core of the algorithm,

the matching process, the results depend on the graph. There are cases, such as

facebook and routes, where the GPU algorithm is faster but others where it is

slower.

To understand why this is, we used the profiler nvpp that comes with the CUDA SDK. We

show an adapted screen-shot, for space reasons, from nvpp in Figure 5.5. It informs

us that our implementation has two major problems: memory transfers and warp

execution lack of efficiency.

The first problem is caused by the accesses to global memory which are not coalesced,

with nearby threads possibly checking vertices from totally distinct positions in mem-

ory. This is an inherent problems in graph traversing since we can not separate the

graph in sections and split them among threads. We could try to do some preprocessing

on the graph, in an effort to get closely numbered labels to nearby vertices but the

efficiency of that strategy would depend on the graph.

Warp execution efficiency is lowered when branching code is used. For example, if a

thread fails the symmetry conditions it does not need to process the connections to

76

5.4. SUMMARY

ancestors, and therefore it creates a new branch. In a similar way if a thread fails one

of the connections it does not need to process any further connections.

The occupancy is high since we are using a block size that does not limit the number

of active blocks, a low amount of registers (15 out of a possible 63, for our GPU) and

we do not surpass the amount of shared memory per block.

Figure 5.5: A screen capture from Nvidia nvpp showing various metrics applied to
our algorithm.

5.4 Summary

In this chapter we showed the results we obtained for our multicore and GPU algo-

rithms.

For multicores we developed an efficient sharing mechanism that lead us to near-linear

speedup for two different algorithms that use g-tries at their core. This paves the

way for the usage of subgraph counting algorithms on larger networks and for bigger

subgraph sizes on the user’s personal multicore machine.

We also developed an initial approach to subgraph counting using GPUs. Much work

has yet to be done in the field but there is much potential for this approach and

interesting results can, in principle, be obtained.

77

78

Conclusions and Future Work 6
Complex Networks are used in virtually every field of study, with large real-world

datasets being widely available. Finding patterns in their structure can lead to a

better comprehension of their function. Specific patterns, called network motifs, have

been extensively applied to biological networks but also to chemical and engineering

networks. Building on previous fast algorithms for subgraph census, the purpose of

this work was to develop parallel strategies that further speed up the finding of network

patterns, increasing the size of the patterns that can be found in a reasonable amount

of time and also in bigger networks.

This final chapter summarizes our main contributions and concludes with directions

for future research.

6.1 Main Contributions

In this work we targeted both the multicore and the GPU architectures. The two of

them are ubiquitous, being present on most of the personal computers today. This

gives our work a large field of applicability. We now describe our main contributions

for each of these approaches.

• Multicore Approach: Our implementation was done using Pthreads and the

results were obtained with one thread per core. Pthreads are supported by all

major operating systems, not limiting our work to a specific architecture.

– We developed two efficient parallel algorithms to count subgraph

frequencies for multicore architectures. They were based on two of the

fastest algorithms for subgraph counting. Both used the g-trie data struc-

ture to encapsulate isomorphism information. G-Tries are multiway trees,

much like prefix trees, that use common topologies in subgraphs in order to

prune the search tree. The sequential versions of gtrieScanner and FaSE

79

CHAPTER 6. CONCLUSIONS AND FUTURE WORK

already performed significantly better than competing algorithms, making

them a solid base for improvement. We were able to keep the original

recursive nature of the counting algorithms only creating a more explicit

work tree when needed. To dynamically divide the search tree among the

threads, we developed an efficient sharing mechanism that is able to stop,

split and resume the execution. By being able to successfully apply our

sharing strategy to two different algorithms we also display our strategy’s

generality.

– We performed a thorough study of our algorithms’ scalability on

several representative networks from various fields and presented near-linear

speedup up to 32 cores. To the best of our knowledge, our parallel algo-

rithms constitute the two fastest available methods for shared memory envi-

ronments and allow practitioners to take advantage of either their personal

multicore machines or more dedicated computing resources. This expands

the limits of subgraph counting applicability, allowing an exploration of

larger subgraphs in bigger networks.

• GPU Approach: We provided an initial algorithm built using the g-trie data

structure. We studied the GPU architecture, and the CUDA model in particular,

and identified the difficulties in adapting graph traversing algorithms to it.

6.2 Future Work

Much work remains to be done in the field, either by improving the algorithms exe-

cuting times or by applying them to real world data and extract valuable information

about the network’s structure. Next we give a few points for the future.

• Scalable GPU Approach: In this work we presented an initial approach using

GPUs. While it did not present very good results we intend to further explore

this architecture and develop a more efficient algorithm. For this purpose we

might have to put g-tries aside and find a strategy that more efficiently takes

advantage of the GPU organization. Looking at the current best results achieved

for breadth-first search in the literature [HKOO11, MGG12] it appears to be a

challenging task but, at least, a reasonable speedup seems to be possible.

• Mixing GPU and Multicore Approaches: If a scalable GPU algorithm

is achieved it would be interesting to combine it with our multicore approach.

CUDA supports multi-threading in the way of streams but the management of

80

6.3. CLOSING REMARKS

those streams may not be trivial. Nevertheless, a strategy combining the two

approaches would take full advantage of both the multicores and the GPU of a

personal computer and could lead to very interesting results that would further

expand the applicability of subgraph finding.

• Mixing Distributed and Shared Memory Approaches: Previous work

has been done in distributed memory [RSL10a] and very promising results were

obtained, with near-linear speedup up to 128 cores. Combining our multicore

algorithm with a distributed approach could, in principle, obtain similar results.

An initial idea could be to use distributed memory for communication between

different machines from a cluster and use shared memory for the cores of each

machine.

• Study Real World Scenarios: On a more practical angle, we may use our

method to analyze several data sets, searching for new subgraph patterns that

can lead to novel insight into the structure of these real-life networks. For

example, we are in the process of building a large co-authorship network and

plan to explore its structure using our algorithm.

6.3 Closing Remarks

The main objectives of this thesis were accomplished. Two parallel algorithms using a

general work sharing mechanism were obtained and an initial study of the applicability

of subgraph census to GPU computing was also made.

For the author, this work contributed to develop his programming skills, especially in

the parallel programming paradigm. The scientific work produced, resulting in two

accepted papers was most rewarding.

81

82

References

[AA04] I. Albert and R. Albert. Conserved network motifs allow protein-protein

interaction prediction. Bioinformatics, 20(18):3346–3352, 2004.

[ABAU99] J Almunia, G Basterretxea, J Aristegui, and RE Ulanowicz. Benthic-

pelagic switching in a coastal subtropical lagoon. Estuarine, Coastal and

Shelf Science, 49(3):363–384, 1999.

[AFU13] Foto N. Afrati, Dimitris Fotakis, and Jeffrey D. Ullman. Enumerating

subgraph instances using map-reduce. In IEEE 29th International

Conference on Data Engineering (ICDE), pages 62–73, Los Alamitos,

CA, USA, 2013. IEEE CS.

[AG05] Lada A. Adamic and Natalie Glance. The political blogosphere and the

2004 u.s. election: Divided they blog. In 3rd International Workshop on

Link Discovery, LinkKDD ’05, pages 36–43, New York, NY, USA, 2005.

ACM.

[APR14] David Aparicio, Pedro Paredes, and Pedro Ribeiro. A scalable parallel

approach for subgraph census computation. In 7th International

Workshop on Multi/many-Core Computing Systems (MuCoCoS 2014).

Springer, August 2014.

[Are14] Alex Arenas. Alex arenas datasets, 2014.

http://deim.urv.cat/˜aarenas/data/welcome.htm.

[ARS14] David Aparicio, Pedro Ribeiro, and Fernando Silva. Parallel subgraph

counting for multicore architectures. In IEEE International Symposium

on Parallel and Distributed Processing with Applications. IEEE CS,

August 2014.

[AS94] R. Agrawal and R. Srikant. Fast algorithms for mining association rules.

In 20th International Conference on Very Large Data Bases, pages 487–

499, 1994.

83

REFERENCES

[BB02] Christian Borgelt and Michael R Berthold. Mining molecular fragments:

Finding relevant substructures of molecules. In Data Mining, 2002.

ICDM 2003. Proceedings. 2002 IEEE International Conference on, pages

51–58. IEEE, 2002.

[BGP07] Kim Baskerville, Peter Grassberger, and Maya Paczuski. Graph animals,

subgraph sampling, and motif search in large networks. Physical Review

E, 76(3):036107, 2007.

[BM06] Vladimir Batagelj and Andrej Mrvar. Pajek datasets, 2006.

http://vlado.fmf.uni-lj.si/pub/networks/data/.

[BZC+03] Dongbo Bu, Yi Zhao, Lun Cai, Hong Xue, Xiaopeng Zhu, Hongchao

Lu, Jingfen Zhang, Shiwei Sun, Lunjiang Ling, Nan Zhang, Guojie

Li, and Runsheng Chen. Topological structure analysis of the protein-

protein interaction network in budding yeast. Nucleic Acids Research,

31(9):2443–2450, 2003.

[CG08] G. Ciriello and C. Guerra. A review on models and algorithms for motif

discovery in protein-protein interaction networks. Brief Funct Genomic

Proteomic, 7(2):147–156, 2008.

[CRS12] Sarvenaz Choobdar, Pedro Ribeiro, and Fernando Silva. Motif mining in

weighted networks. In Data Mining Workshops (ICDMW), 2012 IEEE

12th International Conference on, pages 210–217. IEEE, 2012.

[DA05] Jordi Duch and Alex Arenas. Community detection in complex networks

using extremal optimization. Physical review E, 72(2):027104, 2005.

[dFCRTB07] Luciano da F. Costa, Francisco A. Rodrigues, Gonzalo Travieso, and

P. R. Villas Boas. Characterization of complex networks: A survey of

measurements. Advances In Physics, 56:167, 2007.

[FFHV07] Michael R. Fellows, Guillaume Fertin, Danny Hermelin, and Stéphane

Vialette. Sharp tractability borderlines for finding connected motifs

in vertex-colored graphs. In Proceedings of the 34th International

Colloquium on Automata, Languages and Programming (ICALP), pages

340–351, 2007.

[Fre60] Edward Fredkin. Trie memory. Communications of the ACM, 3(9):490–

499, 1960.

84

REFERENCES

[GD03] Pablo M Gleiser and Leon Danon. Community structure in jazz.

Advances in complex systems, 6(04):565–573, 2003.

[GK07] J. Grochow and M. Kellis. Network motif discovery using subgraph enu-

meration and symmetry-breaking. Research in Computational Molecular

Biology, pages 92–106, 2007.

[Glä01] Wolfgang Glänzel. National characteristics in international scientific co-

authorship relations. Scientometrics, 51(1):69–115, 2001.

[GS05] Wolfgang Glänzel and András Schubert. Analysing scientific networks

through co-authorship. In Handbook of quantitative science and technol-

ogy research, pages 257–276. Springer, 2005.

[HKOO11] Sungpack Hong, Sang Kyun Kim, Tayo Oguntebi, and Kunle Olukotun.

Accelerating cuda graph algorithms at maximum warp. SIGPLAN Not.,

46(8):267–276, February 2011.

[HN07] Pawan Harish and PJ Narayanan. Accelerating large graph algorithms

on the gpu using cuda. In High performance computing–HiPC 2007,

pages 197–208. Springer, 2007.

[HWP03] Jun Huan, Wei Wang, and Jan Prins. Efficient mining of frequent

subgraphs in the presence of isomorphism. In Data Mining, 2003. ICDM

2003. Third IEEE International Conference on, pages 549–552. IEEE,

2003.

[ILK+05] S. Itzkovitz, R. Levitt, N. Kashtan, R. Milo, M. Itzkovitz, and U. Alon.

Coarse-graining and self-dissimilarity of complex networks. Physical

Review E, 71(1 Pt 2), 2005.

[JCZ13] Chuntao Jiang, Frans Coenen, and Michele Zito. A survey of frequent

subgraph mining algorithms. Knowledge Engineering Review, 28(1):75–

105, 2013.

[JHK12] Jeannette Janssen, Matt Hurshman, and Nauzer Kalyaniwalla. Model

selection for social networks using graphlets. Internet Mathematics,

8(4):338–363, 2012.

[JJCL06] Ronald Jackups Jr, Sarah Cheng, and Jie Liang. Sequence motifs

and antimotifs in β-barrel membrane proteins from a genome-wide

analysis: the ala-tyr dichotomy and chaperone binding motifs. Journal

of molecular biology, 363(2):611–623, 2006.

85

REFERENCES

[JMA07] Ruoming Jin, Scott McCallen, and Eivind Almaas. Trend motif: A graph

mining approach for analysis of dynamic complex networks. In Data

Mining, 2007. ICDM 2007. Seventh IEEE International Conference on,

pages 541–546. IEEE, 2007.

[KA05] Nadav Kashtan and Uri Alon. Spontaneous evolution of modularity and

network motifs. Proceedings of the National Academy of Sciences of the

United States of America, 102(39):13773–13778, 2005.

[KAE+09] Z. Kashani, H. Ahrabian, E. Elahi, A. Nowzari-Dalini, E. Ansari,

S. Asadi, S. Mohammadi, F. Schreiber, and A. Masoudi-Nejad. Kavosh:

a new algorithm for finding network motifs. BMC bioinformatics,

10(1):318, 2009.

[KIMA04] N. Kashtan, S. Itzkovitz, R. Milo, and U. Alon. Efficient sampling

algorithm for estimating subgraph concentrations and detecting network

motifs. Bioinformatics, 20(11):1746–1758, 2004.

[Kon08] Michio Kondoh. Building trophic modules into a persistent food web.

Proceedings of the National Academy of Sciences, 105(43):16631–16635,

2008.

[KRSA11] Varun Krishna, NNR Ranga Suri, and G Athithan. A comparative

survey of algorithms for frequent subgraph discovery. Current Science

(00113891), 100(2), 2011.

[LBY+04] Nicholas M Luscombe, M Madan Babu, Haiyuan Yu, Michael Snyder,

Sarah A Teichmann, and Mark Gerstein. Genomic analysis of reg-

ulatory network dynamics reveals large topological changes. Nature,

431(7006):308–312, 2004.

[Les14] Jure Leskovec. Snap: Network datasets, 2014.

http://snap.stanford.edu/data/.

[LFS06] Vincent Lacroix, Cristina G. Fernandes, and Marie-France Sagot. Motif

search in graphs: Application to metabolic networks. IEEE/ACM

Transactions on Computational Biology and Bioinformatics, 3(4):360–

368, 2006.

[LKF05] Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. Graphs over time:

Densification laws, shrinking diameters and possible explanations. In

86

REFERENCES

11th ACM SIGKDD International Conference on Knowledge Discovery

in Data Mining, KDD ’05, pages 177–187, New York, NY, USA, 2005.

ACM.

[LKF07] Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. Graph evolution:

Densification and shrinking diameters. ACM Transactions on Knowledge

Discovery from Data (TKDD), 1(1):2, 2007.

[LLDM09] Jure Leskovec, Kevin J. Lang, Anirban Dasgupta, and Michael W.

Mahoney. Community structure in large networks: Natural cluster sizes

and the absence of large well-defined clusters. Internet Mathematics,

6(1):29–123, 2009.

[LRR+02] Tong Ihn Lee, Nicola J Rinaldi, François Robert, Duncan T Odom, Ziv

Bar-Joseph, Georg K Gerber, Nancy M Hannett, Christopher T Harbi-

son, Craig M Thompson, Itamar Simon, et al. Transcriptional regulatory

networks in saccharomyces cerevisiae. Science, 298(5594):799–804, 2002.

[MGG12] Duane Merrill, Michael Garland, and Andrew Grimshaw. Scalable gpu

graph traversal. SIGPLAN Not., 47(8):117–128, February 2012.

[MIK+04] R. Milo, S. Itzkovitz, N. Kashtan, R. Levitt, S. Shen-Orr, I. Ayzenshtat,

M. Sheffer, and U. Alon. Superfamilies of evolved and designed networks.

Science, 303(5663):1538–1542, March 2004.

[MKD+04] Hong-Wu Ma, Bharani Kumar, Uta Ditges, Florian Gunzer, Jan Buer,

and An-Ping Zeng. An extended transcriptional regulatory network of

escherichia coli and analysis of its hierarchical structure and network

motifs. Nucleic acids research, 32(22):6643–6649, 2004.

[ML12] Julian McAuley and Jure Leskovec. Learning to discover social circles in

ego networks. In P. Bartlett, F.C.N. Pereira, C.J.C. Burges, L. Bottou,

and K.Q. Weinberger, editors, Advances in Neural Information Process-

ing Systems 25, pages 548–556. 2012.

[MP08] Tijana Milenković and Nataša Pržulj. Uncovering biological network

function via graphlet degree signatures. Cancer informatics, (6), 2008.

[MSOI+02] R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and

U. Alon. Network motifs: simple building blocks of complex networks.

Science, 298(5594):824–827, 2002.

87

REFERENCES

[New06] M. E. J. Newman. Finding community structure in networks using the

eigenvectors of matrices. Physical Review E, 74(3):036104, 2006.

[New10] Mark Newman. Network data sets, 2010. http://www-

personal.umich.edu/˜mejn/netdata/.

[NK04] Siegfried Nijssen and Joost N Kok. A quickstart in frequent structure

mining can make a difference. In Proceedings of the tenth ACM SIGKDD

international conference on Knowledge discovery and data mining, pages

647–652. ACM, 2004.

[NLGC02] Kim Norlen, Gabriel Lucas, Michael Gebbie, and John Chuang. EVA:

Extraction, Visualization and Analysis of the Telecommunications and

Media Ownership Network. In International Telecommunications Society

14th Biennial Conference (ITS2002), Seoul Korea, 2002.

[OSKK05] Jukka-Pekka Onnela, Jari Saramäki, János Kertész, and Kimmo Kaski.

Intensity and coherence of motifs in weighted complex networks. Physical

Review E, 71(6):065103, 2005.

[PCJ04] N Pržulj, Derek G Corneil, and Igor Jurisica. Modeling interactome:

scale-free or geometric? Bioinformatics, 20(18):3508–3515, 2004.

[PCJ06] N Pržulj, Derek G Corneil, and Igor Jurisica. Efficient estimation of

graphlet frequency distributions in protein–protein interaction networks.

Bioinformatics, 22(8):974–980, 2006.

[PIL05] Robert J Prill, Pablo A Iglesias, and Andre Levchenko. Dynamic prop-

erties of network motifs contribute to biological network organization.

PLoS biology, 3(11):e343, 2005.

[PR13] Pedro Paredes and Pedro Ribeiro. Towards a faster network-centric

subgraph census. In International Conference on Advances in Social

Networks Analysis and Mining, pages 264–271. IEEE, 2013.

[Prž07] Nataša Pržulj. Biological network comparison using graphlet degree

distribution. Bioinformatics, 23(2):e177–e183, 2007.

[RS10] Pedro Ribeiro and Fernando Silva. G-tries: an efficient data structure for

discovering network motifs. In ACM Symposium on Applied Computing,

2010.

88

REFERENCES

[RS14a] Pedro Ribeiro and Fernando Silva. Discovering colored network motifs.

In Proceedings of the 5th International Workshop on Complex Networks

(CompleNet), March 2014.

[RS14b] Pedro Ribeiro and Fernando Silva. G-tries: a data structure for storing

and finding subgraphs. Data Mining and Knowledge Discovery, 28:337–

377, March 2014.

[RSL10a] Pedro Ribeiro, Fernando Silva, and Lúıs Lopes. Efficient parallel

subgraph counting using g-tries. In IEEE International Conference on

Cluster Computing (Cluster), pages 1559–1566. IEEE Computer Society

Press, September 2010.

[RSL10b] Pedro Ribeiro, Fernando Silva, and Lúıs Lopes. Parallel calculation of

subgraph census in biological networks. In 1st International Conference

on Bioinformatics, Valencia, Spain, 2010.

[RSL12] Pedro Ribeiro, Fernando Silva, and Lúıs Lopes. Parallel discovery of

network motifs. Journal of Parallel and Distributed Computing, 72:144–

154, 2012.

[San02] Peter Sanders. A detailed analysis of random polling dynamic loadbal-

ancing. In International Symposium on Parallel Architectures Algorithms

and Networks, pages 382–389. IEEE, 2002.

[SK04] Olaf Sporns and Rolf Kotter. Motifs in brain networks. PLoS Biology,

2, 2004.

[SM13] George M. Slota and Kamesh Madduri. Fast approximate subgraph

counting and enumeration. In 42nd International Conference on Parallel

Processing (ICPP), pages 210–219, 2013.

[SOMMA02] S. S. Shen-Orr, R. Milo, S. Mangan, and U. Alon. Network motifs in the

transcriptional regulation network of escherichia coli. Nature Genetics,

31(1):64–68, 2002.

[TL09] Lei Tang and Huan Liu. Relational learning via latent social dimensions.

In 15th ACM SIGKDD Conference on Knowledge Discovery and Data

Mining (KDD09), pages 817–826, 2009.

[TMP12] Amanda L Traud, Peter J Mucha, and Mason A Porter. Social

structure of facebook networks. Physica A: Statistical Mechanics and

its Applications, 391(16):4165–4180, 2012.

89

REFERENCES

[TZvO07] John Tsang, Jun Zhu, and Alexander van Oudenaarden. Microrna-

mediated feedback and feedforward loops are recurrent network motifs

in mammals. Molecular cell, 26(5):753–767, 2007.

[Uni14] Arizona State University. Social computing data repository at ASU,

2014. http://socialcomputing.asu.edu/pages/datasets.

[VS05] Sergi Valverde and Ricard V. Solé. Network motifs in computational

graphs: A case study in software architecture. Physical Review E, 72(2),

2005.

[WDY13] Fei Wang, Jianqiang Dong, and Bo Yuan. Graph-based substructure

pattern mining using cuda dynamic parallelism. In Intelligent Data

Engineering and Automated Learning–IDEAL 2013, pages 342–349.

Springer, 2013.

[WMFP05] Marc Wörlein, Thorsten Meinl, Ingrid Fischer, and Michael Philippsen.

A quantitative comparison of the subgraph miners MoFa, gSpan, FFSM,

and Gaston. Springer, 2005.

[WR06] S. Wernicke and F. Rasche. Fanmod: a tool for fast network motif

detection. Bioinformatics, 22(9):1152–1153, 2006.

[WS98] D. J. Watts and S. H. Strogatz. Collective dynamics of ’small-world’

networks. Nature, 393(6684):440–442, 1998.

[WSTB86] John G White, Eileen Southgate, J Nichol Thomson, and Sydney

Brenner. The structure of the nervous system of the nematode

caenorhabditis elegans. Philosophical Transactions of the Royal Society

of London. B, Biological Sciences, 314(1165):1–340, 1986.

[WTZ+05] Tie Wang, Jeffrey W. Touchman, Weiyi Zhang, Edward B. Suh, and

Guoliang Xue. A parallel algorithm for extracting transcription regula-

tory network motifs. IEEE International Symposium on Bioinformatics

and Bioengineering, pages 193–200, 2005.

[YH02] Xifeng Yan and Jiawei Han. gSpan: Graph-based substructure pattern

mining. In Data Mining, 2002. ICDM 2003. Proceedings. 2002 IEEE

International Conference on, pages 721–724. IEEE, 2002.

[YLSK+04] Esti Yeger-Lotem, Shmuel Sattath, Nadav Kashtan, Shalev Itzkovitz,

Ron Milo, Ron Y Pinter, Uri Alon, and Hanah Margalit. Network motifs

90

REFERENCES

in integrated cellular networks of transcription–regulation and protein–

protein interaction. Proceedings of the National Academy of Sciences of

the United States of America, 101(16):5934–5939, 2004.

[ZKKM10] Zhao Zhao, M. Khan, V. S. Anil Kumar, and M. V. Marathe. Subgraph

Enumeration in Large Social Contact Networks Using Parallel Color

Coding and Streaming. In 39th International Conference on Parallel

Processing (ICPP), pages 594–603, 2010.

[ZWB+12] Zhao Zhao, Guanying Wang, Ali R. Butt, Maleq Khan, V.S. Anil

Kumar, and Madhav V. Marathe. Sahad: Subgraph analysis in massive

networks using hadoop. Parallel and Distributed Processing Symposium,

International, 0:390–401, 2012.

91

	Abstract
	Resumo
	List of Tables
	List of Figures
	List of Algorithms
	Introduction
	Motivation
	Graph Terminology and Subgraph Counting Problem Definition
	Pattern Definition
	Network Motifs
	Frequent Subgraph Mining
	Graphlet Degree Distributions

	Thesis Outline
	Bibliographic Note

	The G-Trie Data Structure
	Basis and Motivation
	Subgraph Counting using G-Tries
	G-Trie Creation
	gtrieScanner
	FaSE

	Opportunities for Parallelism
	Summary

	Parallel Subgraph Census For Multicores
	Motivation
	Shared and Distributed Memory
	Related Work

	General Overview
	Parallel Frequency Counting
	Parallel gtrieScanner
	Parallel FaSE

	Work Sharing
	Work Request
	Work Division
	Work Resuming

	Obtaining the subgraph frequencies
	Summary

	Parallel Subgraph Census using GPUs
	Motivation
	GPU Algorithm
	Memory Types

	Problems and Related Work
	Summary

	Performance Evaluation
	Common Materials
	Computational Environments
	Networks

	Multicore Algorithms
	gtrieScanner
	FaSE

	GPU Approach
	Thread and Work List Sizes
	Comparison with CPU version

	Summary

	Conclusions and Future Work
	Main Contributions
	Future Work
	Closing Remarks

	References

