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An important aspect in the data mining process is the discovery of patterns having a great 
influence on the studied problem. The purpose of this paper is to study the frequent episodes 
data mining through the use of parallel pattern discovery algorithms. Parallel pattern 
discovery algorithms offer better performance and scalability, so they are of a great interest 
for the data mining research community. In the following, there will be highlighted some 
parallel and distributed frequent pattern mining algorithms on various platforms and it will 
also be presented a comparative study of their main features. The study takes into account the 
new possibilities that arise along with the emerging novel Compute Unified Device 
Architecture from the latest generation of graphics processing units. Based on their high 
performance, low cost and the increasing number of features offered, GPU processors are 
viable solutions for an optimal implementation of frequent pattern mining algorithms.  
Keywords: Frequent Pattern Mining, Parallel Computing, Dynamic Load Balancing, 
Temporal Data Mining, CUDA, GPU, Fermi, Thread 

 
Introduction 
Most of the data mining processes 

analyze unordered data collections, but there 
are also many important applications in 
which the analyzed data is ordered. Given the 
importance and usefulness of real time data 
mining, in recent years numerous researches 
have been aimed towards the discovery of 
new hardware architectures that could 
manage and process huge amounts of data. 
Real time data mining enables scientists to 
conduct research at an unimaginable scale.  
Not only the hardware architecture but also 
the implemented data mining algorithms 
must properly manage and process a huge 
amount of data, otherwise data analysis risks 
becoming irrelevant in certain fields, like that 
of neuroscience. The optimization of a data 
mining algorithm can be achieved by 
improving both the quality of the data mining 
process and by minimizing the response time.  
An episode is defined as a partially ordered 
set of events for consecutive and fixed-time 
intervals in a sequence. A specific issue of 
temporal data mining is the one concerning 
the mining and analysis of frequent episodes, 
meaning the sequences of frequent 
appearances for certain groups of events in a 
time ordered database [1]. The main purpose 

in mining frequent episodes is to discover 
relations between different events, relations 
that could determine a certain event or help 
to anticipate future results.   
Frequent episodes mining is used 
successfully in different fields such as 
security analysis and intrusion detection in 
case of computer systems, biomedical data 
analysis [2], [3], predicting the evolution of 
the stock shares, disaster risk management in 
climatology [4] or in mining significant 
episodes from statistical models.  
A frequent pattern is a pattern (a set of items, 
subsequences, substructures, etc.) that occurs 
frequently in a data set. The term was first 
proposed in [5] in the context of frequent 
item sets and association rule mining. 
Frequent patterns are widespread in our daily 
life such as products that are often purchased 
together, subsequent purchases after buying a 
computer,  establishing what kinds of DNA 
are sensitive to a new drug, some molecular 
fragments frequently appearing in a certain 
class of molecules with similar functions [6], 
[7]. Frequent pattern mining can be 
successfully applied to Basket data analysis, 
cross marketing, catalog design, sale 
campaign, analysis, Web log (click stream) 
analysis, and DNA sequence analysis. 
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In the purpose of defining frequent patterns, 
it will be considered a transaction database 

},...,,{ 21 ntttD = , where },...,1{, njt j ∈  are 
transactions, and a real number ]1,0(∈ε  
called user-specified minimum support. In a 
frequent pattern mining problem the aim is to 
discover all pattern sets contained in a 
percentage greater than or equal to the user-
specified minimum support, ε  in the 
transactions from the database. The input 
transaction and pattern depends on the type 
of the studied problem and it can be a graph, 
a tree, an itemset or a sequence. In frequent 
pattern mining, patterns are layered 
depending on their size and sorted in 
correspondence to a certain order at each 
layer, modeled as a lattice structure [6]. The 
problem size influences the dimension of this 
pattern lattice. Considering a transaction 
database which contains m distinct items, the 
number of possible patterns is m2 .  
On large databases, the frequent pattern 
mining requires a lot of computational 
power. Serial frequent pattern mining 
algorithms cannot scale to large data sets 
because they are limited to the computing 
capability of a single processor and to the 
memory space, which is finite. In order to fix 
this problem, it is required to use parallel or 
distributed high-performance computing, 
which will overcome the problems of 
sequential algorithms.  
When a serial frequent pattern mining 
algorithm is designed and it is intended to 
use its parallelizability, it is essential to 
understand the properties of pattern lattice 
and techniques of common pattern 
enumeration. The redundancy or 
incompleteness in enumerating frequent 
patterns are eliminated because all serial 
frequent pattern mining algorithms use a 
specific method of browsing the lattice.  
The main criteria for the algorithms 
classification are the cutting technique of a 
serial frequent pattern mining algorithm, 
along with the support counting method 
adopted and the type of pattern lattice 
enumeration. In recent years there have been 
proposed many efficient algorithms using a 

wide variety of features and details. Some of 
them use hash table or other special data 
structures in order to improve their 
performance. 
Regarding the space enumeration paradigm, 
frequent pattern mining episodes could be 
classified into two categories. In the first 
class of algorithms, it is used the level-wise 
candidate-generation-and-test method, which 
consists of the following: it is selected the set 
of already mined frequent patterns of length 
l , then by joining patterns of length l  it is 
generated the set of all candidates patterns of 
length 1+l and these candidates are tested in 
order to filter out infrequent patterns. The 
process is iteratively repeated until the 
longest pattern is obtained. Representative 
algorithms in this class include Apriori, GSP 
and AGM, which correspond to frequent 
itemset, frequent sequence, and frequent 
graph mining problems, respectively [6].  
The second class of algorithms for frequent 
pattern mining implements the depth-first 
pattern growth and database projection 
method. When a frequent pattern of length 
l is mined, it is extended in a predefined 
order by one item in order to obtain a pattern 
of length 1+l . Gradually, by increasing the 
pattern size, it is obtained a projection 
database. The procedure is repeated 
recursively until all the elements of the 
pattern tree are browsed. Representative 
algorithms in this class are FP-growth for 
itemset mining, PrefixSpan for sequence 
mining, and gSpan for graph mining [6].  
 
2 About Parallel Pattern Discovery  
In order to solve frequent pattern mining 
problems multiple processors can be used. In 
this case, the number of processors leads to a 
significant speedup, but there are some facts 
(arising from the specificity of the frequent 
pattern mining problems) that must be taken 
into account. A first step in order to find the 
support for a pattern is a count operation that 
has to be done in the database, against all the 
transactions. If the transactions are 
distributed evenly among the processors, 
during the process of pattern mining each 
processor performs its operations on its local 
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set of transactions. This method, called 
count-distribution, has some problems related 
to communications and synchronization. This 
is the reason why the method is inconvenient. 
Because a transaction contains many patterns 
and a frequent pattern appears in more than 
one transaction, each transaction is counted 
for each of the frequent patterns contained.  
When it comes to discover an aggregate 
pattern, this task could be distributed among 
multiple processors. In fact, the pattern 
lattice is split on the processors which deal 
with mining the subset of patterns assigned to 
them. In this case, almost all the transactions 
in the database should be available for all the 
processors.  
Non-Uniform Memory Access or Non-
Uniform Memory Architecture (NUMA) is a 
computer memory design used in 
multiprocessors, where the memory access 
time depends on the memory location 
relative to a processor. Under NUMA, a 
processor can access its own local memory 
faster than non-local memory, that is, 
memory local to another processor or 
memory shared between processors. For such 
a system, the database is replicated on each 
processor in order to avoid an excessive 
number of non-local transactions. The 
benefits of having a large quantity of 
aggregate memory and a storage space on 
parallel platforms are affected by database 
replication. If the database were replicated 
selectively as to satisfy the required needs, 
additional statistics process would be 
required in the database.  
A load balancing technique is essential in 
order to improve the response time in the 
case of parallel algorithms. For this, a 
method that approximates the tasks unit 
relative mining time is required. The 
approximation must reach at an adequate 
level of granularity when designing a static 
load balancing strategy. A strategy for task 
assignment must be applied afterwards when 
distributing (in a balanced way) work over 
multiple processors. In most datasets the 
workload can only be approximate in a 
heuristic manner because the pattern tree is 
unbalanced. The running time necessary to 

discover a subset of frequent pattern must be 
approximated accurately.  
In order to achieve an accurate 
approximation, a dynamic load balancing 
technique can be used. As tasks have to be 
split among multiple processors, any parallel 
frequent pattern mining algorithm must 
partition the task of pattern discovery so that 
it produces fine granulated or tasks 
recursively partitioned.  
The task transfers introduce an overhead 
which has to be minimized and this problem 
is more serious when the overhead is 
accompanied by a large amount of 
transaction transfers or when the architecture 
incorporates a slow network.  
The parallelization of frequent pattern mining 
algorithms must implement sophisticated 
pattern space pruning techniques and 
compact data structures. A pruning strategy 
makes use of patterns that had already been 
mined by other processors but has the 
disadvantage of introducing additional costs. 
An efficient frequent pattern mining 
algorithm design must balance all these 
factors very carefully.  

 
3 The most important parallel algorithms 
In the following are depicted some of the 
most representative frequent pattern mining 
algorithms, emphasizing itemset mining, 
sequence mining, and graph mining. 
a) The parallel frequent itemset mining is the 

simplest of all the frequent pattern mining 
problems. In this case it is considered a set 
J of items, and a  transaction database 

},...,,{ 21 ntttD = , where },...,1{, njt j ∈  are 
subsets of J . In the following, the most 
important methodologies for parallel 
frequent items mining algorithms (of the 
candidate-generation-and-test class) are 
presented.  There are three methods for 
parallel frequent items mining algorithms 
of the candidate-generation-and-test class 
[6]: count distribution, data distribution 
and hybrid methods.  

- In the count distribution method, the 
database must be partitioned evenly and 
the patterns of length l must be replicated 
over all processors. The processors 
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generate the set of candidate patterns with 
length 1+l  and count them in each of 
their local database. In the next step, the 
global count is obtained, by performing a 
sum reduction. The whole process is in a 
level-wise approach.  

- Regarding the data distribution method, 
one must take into account that the 
database is partitioned among the 
processors, each of them generating a 
disjoint set of candidates. The processors 
must intercommunicate in order to have 
access to the entire database for counting 
the candidates.  

- In hybrid methods, the parallelization 
strategy of the distributed memory, is the 
same as in the count-distribution method 
algorithm. A general purpose parallel data 
mining middleware processes datasets 
resident on the disk. 
Generally, in the case of parallel frequent 
itemset mining algorithms, which 
implement the level-wise candidate-
generation-and-test (CGT) method, some 
steps must be followed. In the beginning, 
the candidate generation phase must be 
computed by all the processors and then, 
through an intensive inter-processors 
cooperation, a higher level for the next 
pattern length is achieved. It is difficult to 
obtain a dynamic load balance strategy 
due to the running mode presented below, 
which leads to a cascade of steps and a 
huge amount of synchronization stages.  
An example of frequent itemset mining 
algorithm, implementing the depth-first 
pattern growth and database projection 
paradigm is FP-growth (Frequent Pattern). 
First, in order to hold all the data in the 
original database a compact data structure, 
the FP-tree, is built. In the next stage, on 
the read-only FP-tree structure is 
performed a search according to a specific 
method, named divide-and-conquer [8]. 
Because FP-growth has an intrinsic 
divide-and-conquer nature it can easily be 
parallelized. 
A particular case of simple parallel 
algorithm based on the FP-growth model 
is the Multiple Local Frequent Pattern 

Tree (MLFPT) [9]. This is useful for 
mining frequent itemsets on shared 
memory machines. First, each processor 
builds a local FP-tree structure using the 
part of the transaction assigned to it, 
which means that a parallel paradigm is 
used. A global header table is shared by 
the FP-tree structures and through this 
table, every processor has access to the 
entire structure. Using the header table, 
the frequent items are assigned among 
processors in a manner that takes into 
account the best execution time for 
mining. Then, based on the frequent item 
assigned, each processor independently 
mines patterns. As mentioned below, the 
FP-growth algorithm (on which the 
Multiple Local Frequent Pattern Tree 
algorithm is based) uses for mining a 
divide-and-conquer method, which is 
essential in this case.  
Another parallel algorithm based on the 
FP-growth model is the PFP-tree [10]. 
This algorithm uses a distributed memory 
architecture. In the first stage the 
construction of the parallel frequent 
pattern trees similar to that in MLFPT is 
realized, but in this case multiple FP-trees 
reside in different physical memory 
spaces. In the second stage, the mining of 
these data structures is executed. This task 
is also divided among processors, 
similarly as in the Multiple Local 
Frequent Pattern Tree parallel algorithm. 
An important difference between this 
algorithm and the one presented below is 
that in this case each processor can keep 
the needed part of the database locally. 
Both Multiple Local Frequent Pattern 
Tree and PFP-tree algorithms have a 
major drawback, related to the estimate of 
the relative mining time that is done in a 
coarse way.  
Another method for mining frequent 
itemsets on distributed memory 
architectures is the Inverted Matrix [11]. 
First a matrix structure is created, which 
reorganizes the transaction database into 
it. This structure, called inverted matrix, is 
then replicated among all the processors 
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nodes. As in the Multiple Local Frequent 
Pattern Tree algorithm, the next stage 
consists in the assignation of frequent 
items among the processors. Each 
processor is responsible for mining 
patterns containing items which have been 
assigned to it and also items with a larger 
rank in the ascending order of the items’ 
frequency. In the next stage, for each 
assigned items, each processor builds a 
structure named co-occurrence frequent 
item tree and finally on this structure it is 
performed a non-recursive mining. The 
Inverted matrix algorithm has no serial 
counterpart. This algorithm offers a good 
static load balancing strategy, more 
reasonable than that one offered by the 
Multiple Local Frequent Pattern Tree  
algorithm or the PFP-tree.    

b) The parallel frequent sequence mining 
algorithms deal with the mining of 
patterns taking into account the temporal 
order between items. A sequence is a list 
of temporally ordered itemsets (events). 
For the most serial frequent sequence 
mining algorithms, the methodologies are 
similar with those implemented in the case 
of frequent itemset mining algorithms, but 
in the case of frequent sequence mining 
special features arising from the temporal 
order between events must be taken into 
account.  
In the literature, there are less results and 
studies about parallel frequent sequence 
mining than about parallel frequent 
itemset mining. Some of them are 
depicted below. 
In [12] are proposed three variants of 
parallel algorithms (NPSPM, SPSPM and 
HPSPM) for distributed memory 
computer based on GSP (mentioned 
before, as a classic level-wise candidate-
generation-and-test style frequent 
sequence mining algorithm). A common 
characteristic of these three algorithms is 
the fact that they implement a partition of 
the database among the processor nodes. 
Two of these algorithms, NPSPM and 
SPSPM, are similar to Counter 
Distribution and Data Distribution 

algorithms designed for parallel frequent 
itemset mining problems (mentioned 
previously). The HPSPM algorithm is an 
improved version of the SPSPM algorithm 
because it uses a hashing mechanism in 
order to partition candidate sequences 
among the processors and also reduces the 
amount of communication overhead used 
to count the global support.  
Also based on the distributed memory 
architecture, the algorithm proposed in 
[13] is a variant of the parallel tree-
projection-based frequent sequence 
mining algorithm. In this case, each 
processor builds the same pattern tree and 
this leads to redundancy as in the serial 
algorithm. An interesting feature of this 
algorithm is that it switches to task 
parallel mode after running the data 
parallel on the first l  levels of the pattern 
tree. Processors generate independently 
sub-forests rooted at the assigned nodes 
after the distribution of the nodes at the l  
level among them. In order to be able to 
run independently, processors must 
exchange part of their local databases. 
This algorithm uses a dynamic load-
balancing strategy for overcoming 
consequences of the inaccurate estimation 
of the task run time (as the load 
imbalance).  
In [14] it is proposed another parallel 
algorithm, pSADE, based on hardware 
distributed shared memory architecture. 
This algorithm is similar with other 
parallel pattern growth and database 
projection algorithms. Each of the 
processors works on different partitions of 
the database, but the whole pattern tree is 
processed synchronously. One copy of the 
database can be accessed by every 
processor. For this algorithm, the static 
load balancing is designed so that top-
level tasks are partitioned among 
processors. In [14] is proposed a strategy 
for improving the efficiency of the 
algorithm, the recursive dynamic load 
balancing strategy. Briefly, the strategy 
helps the splitting of tasks between busy 
processors and idle ones. A busy 



170  Informatica Economică vol. 14, no. 3/2010 

processor that detects an idle processor 
inserts nodes from its current working 
class into the global task queue. In the 
next stage, idle processors choose a task 
from this list.  
A parallel closed sequential pattern-
mining algorithm (Par-CSP) is proposed 
in [15]. This algorithm runs on distributed 
memory system and is based on depth-
first-search and divide-and-conquer 
strategies. In order to perform the mining, 
the tasks are distributed among 
processors. A specific feature of this 
algorithm is that a selective sampling 
technique to achieve good load balance is 
used, but except that, the method is 
similar to that one implemented in the 
case of parallel frequent itemset mining 
algorithms. The sampling technique 
selects small portions of the projected 
database. Each of these representative 
samples is used to approximate the 
relative mining time of the projected 
database that it belongs, and the runtime 
estimated is later used for the static task 
assignments.  

c) The parallel frequent graph mining 
involves computational complexity of the 
graph-based algorithms and also 
graph/subgraph isomorphism test 
requirements. In a graph database, 
transactions are usually undirected labeled 
graphs. Some examples of frequent graph 
mining algorithms are Subdue, MolFea, 
FSG, MoSS/MoFa, gSpan, CloseGraph, 
FFSM and Gaston.  
The major problem in parallelizing 
frequent graph mining algorithms is the 
risk of severe load imbalance in task 
partitioning, as a consequence of the 
irregularity of the graph pattern lattice. In 
order to solve this problem, there are 
required a good load balancing strategy 
and a proper parallelism granularity.  
A first example of frequent graph mining 
algorithms is MoFa [7] which was 
developed to discover connected 
discriminative molecular fragments for 
drug discovery. This algorithm models 
molecular fragments as attributed graphs. 

An interesting fragment is infrequent in a 
non-active set and frequent in another 
active molecular set. MoFa applies a 
depth-first search on the frequent 
fragment search tree and then extends one 
bond. In order to record the exact position 
information of the studied fragment, the 
algorithm uses an embedding list. An 
interesting feature is that algorithm uses a 
local order based structural strategy 
according to which the algorithm does not 
need to extend an atom inserted before the 
last extended atom.  
Based on the above depicted MoFa 
algorithm, in [16] it is proposed a 
distributed frequent subgraph mining 
algorithm in which each worker machine 
has local access to the entire active 
database. An independent sub-task for the 
worker machine is generated by the job 
management machine by pruning the 
search tree. In the task assignment 
message intermediate mining states are 
also included. When the worker machine 
has just finished a job or it is idle, it gets a 
new task from the job pool.  
Similar to the above-depicted algorithm 
an improved version of it was developed 
in [17]. This algorithm, based on the fact 
that every machine is a donor and a 
worker at the same time, also offers 
enhanced search space partitioning. Each 
time a worker finishes his job, a donor is 
selected by the worker in order to spawn a 
new job. This is a dynamic load balancing 
strategy called ranked-random polling. A 
centralized machine keeps the ranking 
information.  
Another parallel frequent graph-mining 
algorithm on a shared memory machine is 
presented in [18]. The algorithm is a 
parallelized version of MoFa. In this case, 
the graph database, the idle worker 
processor list and the global frequent 
fragment set are the globally shared data 
structures. In order to track for each 
processor its depth first search path is 
used a stack structure. At the proper time, 
locally mined frequent fragment set of 
each processor is merged into the global 
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set. At the beginning of the mining 
process, every processor starts mining on 
the whole database. Before starting the 
search step, the processor checks the 
global idle processor list, finds an 
available co-worker and donates out a part 
of its working stack. 
Based on the parallelization of the gSpan 
algorithm [19] another algorithm was 
developed in [20]. In this case, instead of 
work donation, it is implemented the so-
called work stealing technique which uses 
a global busy processor list. For part of its 
work stack, idle processors actively 
request one of the busy processors.  
A revolution in computer architecture 
technology, Chip Multiprocessing or 
simply multicore, is a combination of two 
or more independent processors (multi-
core systems) into a single integrated 
circuit package. The processors share the 
same memory space. The Chip 
Multiprocessing allows the device to 
exhibit some sort of parallelism - thread-
level parallelism and/or instruction level 
parallelism - while enjoying fewer 
components, lower cost, and less 
interconnection overheads.  
In the case of a Chip Multiprocessing 
architecture some algorithms have been 
developed, their design being similar to 
that for shared memory system. A 
characteristic of these cases is the lower 
processor communication cost. An 
example of a parallelized graph mining 
algorithm for the Chip Multiprocessing 
architecture is proposed in [21]. First, the 
algorithm performs a depth search on the 
frequent graph tree with each candidate 
extension from a tree node being a task 
unit. It is used a distributed task queuing 
model, each processor core performing 
operations of enqueue and dequeue on its 
own task queue. When a processor core’s 
queue is empty, it searches other cores’ 
queue for work and if all queues are 
empty it waits until a core, which has a 
nonempty queue, queries it. In order to 
reduce memory consumption a pointer 
based compact embedding list is used.  

Systems on which are designed most of 
the parallel frequent pattern mining 
algorithms are based on shared memory, 
distributed memory, hybrid systems, 
heterogeneous environments, chip 
multiprocessing or simultaneous 
multithreading.  
As a consequence of the importance and 
usefulness of real time data mining, in 
recent years researchers intensified their 
efforts to discover new hardware 
architectures that can manage and process 
large volumes of data. A real potential in 
optimizing the data mining process is 
offered by graphics processing units 
(GPUs). They are multithreaded and 
multicore processing units and that is the 
reason why a GPU has a computational 
capacity and memory bandwidth far 
beyond than those of central processing 
units (CPU). As a consequence, most of 
the databases operations are accelerated, 
the entire data mining process is 
simplified, the necessary time for 
extracting knowledge from data analysis 
is reduced. Combining hundreds of 
simplified parallel processing cores, these 
graphics processing units also improve the 
performance per watt consumed (obtained 
from the GPU when compared to the CPU 
processors). Based on their high 
performance, low cost and on the 
increasing number of features offered, an 
increasingly wide range of applications 
from different fields could be solved by 
GPU processors, and among them the 
study of the temporal data mining process 
and its applications in financial data 
prediction, telecommunication control, 
neuroscience, medical data analysis.  
Below are depicted some temporal data 
mining algorithms and as a solution for 
improving their performances, the 
algorithms are implemented on the new 
Compute Unified Device Architecture 
(CUDA) from the latest generation of 
graphics processing units (GPU). For each 
temporal data mining problem it is 
required to address specific technical 
issues. The size of the problem and the 
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type of the algorithm implemented on the 
GPU are important factors used to 
determine the optimal algorithm, the data 
access model and the number of threads 
that are necessary to achieve the desired 
performance.  
Graphics processing units processors have 
been used in order to accelerate graphics 
rendering on computers and over time the 
GPU has evolved through specialized 
architecture (from one-purpose 
components to multiple purposes complex 
architectures). A broad class of 
applications could be accelerated as a 
consequence of this development, and the 
GPU is able to do much more than just 
provide video rendering.  

 
4 The Compute Unified Device 
Architecture – a viable solution for 
improving algorithms performances 
The Compute Unified Device Architecture 
(CUDA) is a software and hardware parallel 
computing architecture (developed by 
NVIDIA) that allows the NVIDIA graphics 
processor to execute programs written in C, 
C++, FORTRAN, OpenCL, Direct Compute 
and other languages. CUDA gives developers 
access to the native instruction set and 
memory of the parallel computational 
elements in CUDA GPUs. Using CUDA, the 
latest NVIDIA GPUs effectively become 
open architectures like CPUs. Unlike CPUs 
however, GPUs have a parallel "many-core" 
architecture, each core being capable of 
running thousands of threads simultaneously 
- if an application is suited to this kind of an 
architecture, the GPU can offer large 
performance benefits. This approach of 
solving general-purpose problems on GPUs 
is known as GPGPU. 
A CUDA program calls parallel program 
kernels.  A set of parallel threads is executed 
by the kernel in parallel. These threads are 
organized by the programmer or compiler 
into thread blocks and grids of thread blocks. 
The graphics processor unit instantiates a 
kernel program on a grid containing parallel 
thread blocks. Each thread from the block 
executes an instance of the kernel and has an 

unique ID associated to registers, to thread’s 
private memory from the thread block [22].  
In the CUDA programming model, when 
algorithms are developed, the most important 
concern of developers is to divide the 
required work in fragments that can be 
processed by a number of thread blocks, each 
containing more threads. In order to avoid 
that the threads within a block will be 
executed by more cores within a streaming 
multiprocessor, it is recommended that the 
number of thread blocks matches the number 
of processors. The most important factor in 
achieving performance is the repartition of 
tasks to be performed between the thread 
blocks.  
An usual method used to discover how 
certain subsets of elements are associated 
with other subsets is the technique of data 
mining through association, and a restricted 
version of that technique is temporal data 
mining (in which temporal relationships 
between elements are taken into account). In 
a timed ordered database,  a specific problem 
of temporal data mining is the mining of 
frequent episodes. The purpose in this case is 
to find sequences of frequent items 
(episodes) appearances. An episode is 
defined as a partially ordered set of events 
for consecutive time intervals, embedded in a 
sequence [1]. 
Below are depicted four algorithms based on 
the CUDA programming model [23]. For 
each of these algorithms it is implemented 
some kind of parallelism but a common 
feature of them is that all  are based on the 
MapReduce programming model [24].  
Algorithm 1 uses a search of a single episode 
by each thread, using data stored in graphics 
memory. This algorithm doesn’t implement 
buffering. The database is placed by the first 
algorithm in the texture memory. For each 
thread, this feature facilitates the use of the 
high bandwidth of the GPU. As a 
consequence, threads are allocated in thread 
blocks one by one until the maximum 
number of threads per block is reached.  
In the case of Algorithm 2, each thread is 
looking for a single episode. The second 
algorithm loads a block of data from the 
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database into a buffer of shared memory. 
After the data from the buffer is processed, 
the algorithm then loads another block of 
data in the buffer and the process is repeated 
along the entire database. The thread 
allocation method within the thread blocks is 
the same as in Algorithm 1.  
 Algorithm 3 does not use buffering. All the 
threads in a block search one episode. The 
data from the graphic card memory is used 
and different blocks are looking for different 
episodes. Even if there are similarities with 
the first algorithm (in both cases threads 
within each block access data through the 
texture memory), there are also some 
characteristics that differentiate them: threads 
within a block are starting at different 
positions within the database, while threads 
with the same ID from different blocks are 
starting from the same position.   
In the fourth algorithm analyzed the same 
episode is searched by all the threads in a 
block. A data buffer is created by means of 
shared memory and then this buffer is used 
by different blocks which are looking for 
different episodes. Algorithm 4 uses block-
level parallelism with shared memory 
database buffering. As in Algorithm 3, for 
each thread the starting point depends on 
buffer size and not on the size of the 
database. During all searches, a thread will 
always access the same area of shared 
memory, but each time when buffer updates 
the data content from the shared memory will 
change. 

 
5 Experimental results 
In the following are presented the most 
relevant experimental results and 
interpretations on the performance of above 
depicted algorithms implemented on CUDA 
architecture, for episodes at different levels 
with different numbers of threads per block. 
At the L level of an episode, an algorithm 
searches an episode of length L. In the 
considered cases, L was chosen 1, 2 or 3.  
A test consists of selecting an episode’s 

level, an algorithm, a graphics card and the 
block size. The execution period (measured 
in milliseconds) is considered the period 
between the moment when the kernel is 
invoked and the moment when it returns the 
answer.  
The configuration used in tests was Intel i7-
965  operating at 3.2 GHz with 6 GB 
(3x2GB) of 1333Mhz Triple Channel 
Memory. The graphic card chosen was 
nVIDIA GTX470, based on nVidia's new 
Fermi architecture. The feature-list is 
considerable: over 3 billion transistors double 
the processing units of its predecessors, and a 
strong emphasis on geometric realism. This 
card has a huge computational capability and 
is based on the latest FERMI architecture. 
Some specifications of this graphic card are: 
448 CUDA cores, the graphics clock’s 
frequency 607 MHz,  the processor clock’s 
frequency 1,215 MHz, the texture fill rate 34 
billion/sec, the memory clock’s frequency 
1,674 MHz, the memory bandwidth 133.9 
GB/sec, the amount of memory 1,280 MB, 
the maximum number of threads per block is 
512. 
It was considered a database which consists 
of 393,019 letters from the capital letters of 
the English alphabet that repeat themselves. 
It was chosen a different number of episodes 
at each level as follows: the first level 
contained 26 episodes, level 2 contained 650 
episodes and level three contained 15,600 
episodes [23].  
Below is depicted the effect of algorithm 
selection on execution time. When an 
algorithm is chosen, it must always be taken 
into account the size of the considered 
problem. Mostly, a programmer wants to 
solve a problem of a certain size and he has 
access only to a certain type of hardware. 
Because he can modify only the algorithm 
and the number of threads that he uses within 
this algorithm, in order to obtain the best 
results he will use the fastest algorithm for 
the problem (Figure 1). Some conclusions of 
tests are mentioned in the following. 
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Fig. 1. The effect of algorithm selection on execution time 



Informatica Economică vol. 14, no. 3/2010  175 

 

 

 
1) For small problems (Level 1), one thread 

per episode is not enough. In the case of 
small lower levels problems, the number 
of threads generated by episodes is low, 
(because the number of episodes is low) 
and therefore there are no sufficient 
threads to use the graphic card’s 
resources. In the case of Algorithms 1 and 
2, as the number of episodes is fixed and 
there is just one thread per episode, one 
can observe the tendency to increase the 
execution time along with the number of 
threads. Unlike these cases, Algorithm 4 
obtains a search time of a milliseconds 
order. The most important observation is 
that when using the GTX470, practically 
real-time data mining can be achieved. In 
the future, for significant size databases, 
servers incorporating more of these 
parallel cards and future GPU 
architectures will reach startling 
performance.  

2) For medium size problems (Level 2), the 
block level depends on its size. In the case 
of Algorithms 1 and 2 the number of 
blocks decreases while the number of 
threads per block increases. Because there 
is a fixed number of episodes, there is also 
a fixed number of threads. Therefore, the 
number of blocks and the number of 
threads per block changes in the same 
time.  

3) For large problems (Level 3), the thread 
level parallelism is enough. In this case 
there are 25,230 episodes to search [5]. 
One can observe that Algorithms 1 and 2 
(parallel thread processing algorithms) are 
much faster than Algorithms 3 and 4 
(block-level algorithms). In the case of 
Algorithms 1 and 2 each thread within a 
block will look for one episode so more 
episodes may be searched.  

 
6 Comparisons among algorithms and 
conclusions 
The algorithms presented in the first part of 
this paper, designed to solve various types of 
pattern discovery (for frequent itemset, 
frequent sequence and frequent graph mining 

problems), have some common 
characteristics. The pattern lattice/tree 
traversal paradigm is useful in the 
implementation of the parallelism for most of 
the recently developed parallel frequent 
pattern mining algorithms. The divide-and-
conquer pattern enumeration scheme of the 
FP-growth algorithm is used by MLFPT, 
PFP-tree, and Inverted Matrix algorithms. A 
prefix tree or suffix tree manner is used for 
many serial frequent sequence mining 
algorithms when the pattern lattice is 
traversed. This is the reason why in the case 
of frequent sequence mining task parallelism 
the method frequently used is to partition the 
tree nodes of a certain level.  
Regarding the static load balancing, in 
parallel pattern discovery is required the 
estimation of the relative mining time for 
each task unit, but there is a low 
communication overhead. The dynamic load 
balancing (recommended especially in the 
case of graph databases) can be used only if 
the mining task associated with a pattern can 
be recursively partitioned into smaller ones.  
The database replication is also an important 
feature in parallel frequent pattern mining. 
As mentioned before, a database can be 
partitioned with no overlaps among 
processors. In order to reduce the 
communication overhead, some algorithms 
duplicate the whole database on each 
processor (Par-CSP, pSPADE, all the 
reviewed parallel frequent graph mining 
algorithms). The problem which appears in 
this case is that this replication does not 
facilitate the efficient use of aggregate disk 
or memory space of a parallel platform, 
consequently a tradeoff is needed. In the 
future, for the designing of parallel frequent 
pattern mining algorithms there will be 
useful techniques as the minimum-cut 
bipartite graph partition model in pTPSM 
[13] or the idlist partitioning based data 
parallel formulation in pSPADE.   
In the second part of the article, we analyzed 
and compared some temporal data mining 
algorithms implemented on the latest CUDA 
based architecture Fermi, As experimental 
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results outlined, in order to obtain an 
increased performance, any implementation 
(based on the MapReduce framework) must 
dynamically adapt the type and parallelism 
level.  
Even if the practical implementation of data 
mining algorithms on a GPU architecture 
brings a lot of advantages, there are many 
difficulties and some limitations in this 
process. First of all it is the fact that a CUDA 
programmer must have thorough knowledge 
of how threads work and how thread blocks 
are mapped, must know in detail six different 
areas of memory and especially inter-
threading communication.  
Another problem is caused by the limitations 
on the performance of temporal data mining 
algorithms in memory size and the transfer 
time between the GPU and the memory. 
When it comes to huge dimensions data 
warehouses even if current NVIDIA cards 
support memory sizes up to 6 GB, this size is 
still insufficient, being far below from the 
required size. With the launch of the new 
Fermi architecture, this size was extended: 
before Fermi was 4 GB and Fermi brings 6 
GB. Even if the size of the memory 
supported by the GPU has increased, 6 GB is 
still insufficient. In practice, many databases` 
sizes are of the order of terabytes or even 
petabytes. Therefore, this remains a 
significant hardware limitation.  
The performance (when applying temporal 
data mining algorithms) is also influenced by 
the considerable amount of execution time 
consumed by the transfer of memory blocks 
between the CPU and GPU.  
Compared to conventional architectures 
based on CPUs, the results offered by the 
new Fermi architecture highlight a huge 
potential for improving the performance of 
temporal data mining process. Some 
limitations of the implemented algorithms’ 
performance, caused by hardware issues, can 
be overcome since the new Fermi hardware 
architecture has been launched. When 
dealing with dynamically accessed arrays, 
there is an important limitation that must be 
take into account. In this case, because 
dynamically accessed arrays cannot be 

accessed directly by an index at compile 
time, occurs a direct impact on algorithms 
runtime.  
In the CUDA programming model, 
dynamically accessed arrays are 
automatically stored in local memory. They 
cannot be stored in the registry memory. The 
problem is that the local memory is an 
abstraction and it has the same latency time 
as global memory of GPU. As a 
consequence, it is many times slower than 
registry memory. A significant restriction in 
the case of the four algorithms for temporal 
data mining presented below is the fact that 
the registry memory cannot be used, as a 
consequence of the frequent use of this type 
of arrays addressing.  
Most of the limitations mentioned above can 
be solved by the Fermi architecture, the new 
generation of NVIDIA architecture, which 
also allows improved execution times for the 
algorithms. Studying the experimental results 
one can state that the new nVIDIA CUDA 
architecture can be a viable solution for the 
parallelization of algorithms.  
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