
Informatica Economică vol. 14, no. 3/2010 165

Algorithms for Extracting Frequent Episodes
in the Process of Temporal Data Mining

Alexandru PIRJAN

Romanian-American University, Bucharest, Romania
alexparjan@yahoo.com

An important aspect in the data mining process is the discovery of patterns having a great
influence on the studied problem. The purpose of this paper is to study the frequent episodes
data mining through the use of parallel pattern discovery algorithms. Parallel pattern
discovery algorithms offer better performance and scalability, so they are of a great interest
for the data mining research community. In the following, there will be highlighted some
parallel and distributed frequent pattern mining algorithms on various platforms and it will
also be presented a comparative study of their main features. The study takes into account the
new possibilities that arise along with the emerging novel Compute Unified Device
Architecture from the latest generation of graphics processing units. Based on their high
performance, low cost and the increasing number of features offered, GPU processors are
viable solutions for an optimal implementation of frequent pattern mining algorithms.
Keywords: Frequent Pattern Mining, Parallel Computing, Dynamic Load Balancing,
Temporal Data Mining, CUDA, GPU, Fermi, Thread

Introduction
Most of the data mining processes

analyze unordered data collections, but there
are also many important applications in
which the analyzed data is ordered. Given the
importance and usefulness of real time data
mining, in recent years numerous researches
have been aimed towards the discovery of
new hardware architectures that could
manage and process huge amounts of data.
Real time data mining enables scientists to
conduct research at an unimaginable scale.
Not only the hardware architecture but also
the implemented data mining algorithms
must properly manage and process a huge
amount of data, otherwise data analysis risks
becoming irrelevant in certain fields, like that
of neuroscience. The optimization of a data
mining algorithm can be achieved by
improving both the quality of the data mining
process and by minimizing the response time.
An episode is defined as a partially ordered
set of events for consecutive and fixed-time
intervals in a sequence. A specific issue of
temporal data mining is the one concerning
the mining and analysis of frequent episodes,
meaning the sequences of frequent
appearances for certain groups of events in a
time ordered database [1]. The main purpose

in mining frequent episodes is to discover
relations between different events, relations
that could determine a certain event or help
to anticipate future results.
Frequent episodes mining is used
successfully in different fields such as
security analysis and intrusion detection in
case of computer systems, biomedical data
analysis [2], [3], predicting the evolution of
the stock shares, disaster risk management in
climatology [4] or in mining significant
episodes from statistical models.
A frequent pattern is a pattern (a set of items,
subsequences, substructures, etc.) that occurs
frequently in a data set. The term was first
proposed in [5] in the context of frequent
item sets and association rule mining.
Frequent patterns are widespread in our daily
life such as products that are often purchased
together, subsequent purchases after buying a
computer, establishing what kinds of DNA
are sensitive to a new drug, some molecular
fragments frequently appearing in a certain
class of molecules with similar functions [6],
[7]. Frequent pattern mining can be
successfully applied to Basket data analysis,
cross marketing, catalog design, sale
campaign, analysis, Web log (click stream)
analysis, and DNA sequence analysis.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6612709?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

166 Informatica Economică vol. 14, no. 3/2010

In the purpose of defining frequent patterns,
it will be considered a transaction database

},...,,{ 21 ntttD = , where },...,1{, njt j ∈ are
transactions, and a real number]1,0(∈ε
called user-specified minimum support. In a
frequent pattern mining problem the aim is to
discover all pattern sets contained in a
percentage greater than or equal to the user-
specified minimum support, ε in the
transactions from the database. The input
transaction and pattern depends on the type
of the studied problem and it can be a graph,
a tree, an itemset or a sequence. In frequent
pattern mining, patterns are layered
depending on their size and sorted in
correspondence to a certain order at each
layer, modeled as a lattice structure [6]. The
problem size influences the dimension of this
pattern lattice. Considering a transaction
database which contains m distinct items, the
number of possible patterns is m2 .
On large databases, the frequent pattern
mining requires a lot of computational
power. Serial frequent pattern mining
algorithms cannot scale to large data sets
because they are limited to the computing
capability of a single processor and to the
memory space, which is finite. In order to fix
this problem, it is required to use parallel or
distributed high-performance computing,
which will overcome the problems of
sequential algorithms.
When a serial frequent pattern mining
algorithm is designed and it is intended to
use its parallelizability, it is essential to
understand the properties of pattern lattice
and techniques of common pattern
enumeration. The redundancy or
incompleteness in enumerating frequent
patterns are eliminated because all serial
frequent pattern mining algorithms use a
specific method of browsing the lattice.
The main criteria for the algorithms
classification are the cutting technique of a
serial frequent pattern mining algorithm,
along with the support counting method
adopted and the type of pattern lattice
enumeration. In recent years there have been
proposed many efficient algorithms using a

wide variety of features and details. Some of
them use hash table or other special data
structures in order to improve their
performance.
Regarding the space enumeration paradigm,
frequent pattern mining episodes could be
classified into two categories. In the first
class of algorithms, it is used the level-wise
candidate-generation-and-test method, which
consists of the following: it is selected the set
of already mined frequent patterns of length
l , then by joining patterns of length l it is
generated the set of all candidates patterns of
length 1+l and these candidates are tested in
order to filter out infrequent patterns. The
process is iteratively repeated until the
longest pattern is obtained. Representative
algorithms in this class include Apriori, GSP
and AGM, which correspond to frequent
itemset, frequent sequence, and frequent
graph mining problems, respectively [6].
The second class of algorithms for frequent
pattern mining implements the depth-first
pattern growth and database projection
method. When a frequent pattern of length
l is mined, it is extended in a predefined
order by one item in order to obtain a pattern
of length 1+l . Gradually, by increasing the
pattern size, it is obtained a projection
database. The procedure is repeated
recursively until all the elements of the
pattern tree are browsed. Representative
algorithms in this class are FP-growth for
itemset mining, PrefixSpan for sequence
mining, and gSpan for graph mining [6].

2 About Parallel Pattern Discovery
In order to solve frequent pattern mining
problems multiple processors can be used. In
this case, the number of processors leads to a
significant speedup, but there are some facts
(arising from the specificity of the frequent
pattern mining problems) that must be taken
into account. A first step in order to find the
support for a pattern is a count operation that
has to be done in the database, against all the
transactions. If the transactions are
distributed evenly among the processors,
during the process of pattern mining each
processor performs its operations on its local

Informatica Economică vol. 14, no. 3/2010 167

set of transactions. This method, called
count-distribution, has some problems related
to communications and synchronization. This
is the reason why the method is inconvenient.
Because a transaction contains many patterns
and a frequent pattern appears in more than
one transaction, each transaction is counted
for each of the frequent patterns contained.
When it comes to discover an aggregate
pattern, this task could be distributed among
multiple processors. In fact, the pattern
lattice is split on the processors which deal
with mining the subset of patterns assigned to
them. In this case, almost all the transactions
in the database should be available for all the
processors.
Non-Uniform Memory Access or Non-
Uniform Memory Architecture (NUMA) is a
computer memory design used in
multiprocessors, where the memory access
time depends on the memory location
relative to a processor. Under NUMA, a
processor can access its own local memory
faster than non-local memory, that is,
memory local to another processor or
memory shared between processors. For such
a system, the database is replicated on each
processor in order to avoid an excessive
number of non-local transactions. The
benefits of having a large quantity of
aggregate memory and a storage space on
parallel platforms are affected by database
replication. If the database were replicated
selectively as to satisfy the required needs,
additional statistics process would be
required in the database.
A load balancing technique is essential in
order to improve the response time in the
case of parallel algorithms. For this, a
method that approximates the tasks unit
relative mining time is required. The
approximation must reach at an adequate
level of granularity when designing a static
load balancing strategy. A strategy for task
assignment must be applied afterwards when
distributing (in a balanced way) work over
multiple processors. In most datasets the
workload can only be approximate in a
heuristic manner because the pattern tree is
unbalanced. The running time necessary to

discover a subset of frequent pattern must be
approximated accurately.
In order to achieve an accurate
approximation, a dynamic load balancing
technique can be used. As tasks have to be
split among multiple processors, any parallel
frequent pattern mining algorithm must
partition the task of pattern discovery so that
it produces fine granulated or tasks
recursively partitioned.
The task transfers introduce an overhead
which has to be minimized and this problem
is more serious when the overhead is
accompanied by a large amount of
transaction transfers or when the architecture
incorporates a slow network.
The parallelization of frequent pattern mining
algorithms must implement sophisticated
pattern space pruning techniques and
compact data structures. A pruning strategy
makes use of patterns that had already been
mined by other processors but has the
disadvantage of introducing additional costs.
An efficient frequent pattern mining
algorithm design must balance all these
factors very carefully.

3 The most important parallel algorithms
In the following are depicted some of the
most representative frequent pattern mining
algorithms, emphasizing itemset mining,
sequence mining, and graph mining.
a) The parallel frequent itemset mining is the

simplest of all the frequent pattern mining
problems. In this case it is considered a set
J of items, and a transaction database

},...,,{ 21 ntttD = , where },...,1{, njt j ∈ are
subsets of J . In the following, the most
important methodologies for parallel
frequent items mining algorithms (of the
candidate-generation-and-test class) are
presented. There are three methods for
parallel frequent items mining algorithms
of the candidate-generation-and-test class
[6]: count distribution, data distribution
and hybrid methods.

- In the count distribution method, the
database must be partitioned evenly and
the patterns of length l must be replicated
over all processors. The processors

http://en.wikipedia.org/wiki/Computer_storage�
http://en.wikipedia.org/wiki/Multiprocessor�

168 Informatica Economică vol. 14, no. 3/2010

generate the set of candidate patterns with
length 1+l and count them in each of
their local database. In the next step, the
global count is obtained, by performing a
sum reduction. The whole process is in a
level-wise approach.

- Regarding the data distribution method,
one must take into account that the
database is partitioned among the
processors, each of them generating a
disjoint set of candidates. The processors
must intercommunicate in order to have
access to the entire database for counting
the candidates.

- In hybrid methods, the parallelization
strategy of the distributed memory, is the
same as in the count-distribution method
algorithm. A general purpose parallel data
mining middleware processes datasets
resident on the disk.
Generally, in the case of parallel frequent
itemset mining algorithms, which
implement the level-wise candidate-
generation-and-test (CGT) method, some
steps must be followed. In the beginning,
the candidate generation phase must be
computed by all the processors and then,
through an intensive inter-processors
cooperation, a higher level for the next
pattern length is achieved. It is difficult to
obtain a dynamic load balance strategy
due to the running mode presented below,
which leads to a cascade of steps and a
huge amount of synchronization stages.
An example of frequent itemset mining
algorithm, implementing the depth-first
pattern growth and database projection
paradigm is FP-growth (Frequent Pattern).
First, in order to hold all the data in the
original database a compact data structure,
the FP-tree, is built. In the next stage, on
the read-only FP-tree structure is
performed a search according to a specific
method, named divide-and-conquer [8].
Because FP-growth has an intrinsic
divide-and-conquer nature it can easily be
parallelized.
A particular case of simple parallel
algorithm based on the FP-growth model
is the Multiple Local Frequent Pattern

Tree (MLFPT) [9]. This is useful for
mining frequent itemsets on shared
memory machines. First, each processor
builds a local FP-tree structure using the
part of the transaction assigned to it,
which means that a parallel paradigm is
used. A global header table is shared by
the FP-tree structures and through this
table, every processor has access to the
entire structure. Using the header table,
the frequent items are assigned among
processors in a manner that takes into
account the best execution time for
mining. Then, based on the frequent item
assigned, each processor independently
mines patterns. As mentioned below, the
FP-growth algorithm (on which the
Multiple Local Frequent Pattern Tree
algorithm is based) uses for mining a
divide-and-conquer method, which is
essential in this case.
Another parallel algorithm based on the
FP-growth model is the PFP-tree [10].
This algorithm uses a distributed memory
architecture. In the first stage the
construction of the parallel frequent
pattern trees similar to that in MLFPT is
realized, but in this case multiple FP-trees
reside in different physical memory
spaces. In the second stage, the mining of
these data structures is executed. This task
is also divided among processors,
similarly as in the Multiple Local
Frequent Pattern Tree parallel algorithm.
An important difference between this
algorithm and the one presented below is
that in this case each processor can keep
the needed part of the database locally.
Both Multiple Local Frequent Pattern
Tree and PFP-tree algorithms have a
major drawback, related to the estimate of
the relative mining time that is done in a
coarse way.
Another method for mining frequent
itemsets on distributed memory
architectures is the Inverted Matrix [11].
First a matrix structure is created, which
reorganizes the transaction database into
it. This structure, called inverted matrix, is
then replicated among all the processors

Informatica Economică vol. 14, no. 3/2010 169

nodes. As in the Multiple Local Frequent
Pattern Tree algorithm, the next stage
consists in the assignation of frequent
items among the processors. Each
processor is responsible for mining
patterns containing items which have been
assigned to it and also items with a larger
rank in the ascending order of the items’
frequency. In the next stage, for each
assigned items, each processor builds a
structure named co-occurrence frequent
item tree and finally on this structure it is
performed a non-recursive mining. The
Inverted matrix algorithm has no serial
counterpart. This algorithm offers a good
static load balancing strategy, more
reasonable than that one offered by the
Multiple Local Frequent Pattern Tree
algorithm or the PFP-tree.

b) The parallel frequent sequence mining
algorithms deal with the mining of
patterns taking into account the temporal
order between items. A sequence is a list
of temporally ordered itemsets (events).
For the most serial frequent sequence
mining algorithms, the methodologies are
similar with those implemented in the case
of frequent itemset mining algorithms, but
in the case of frequent sequence mining
special features arising from the temporal
order between events must be taken into
account.
In the literature, there are less results and
studies about parallel frequent sequence
mining than about parallel frequent
itemset mining. Some of them are
depicted below.
In [12] are proposed three variants of
parallel algorithms (NPSPM, SPSPM and
HPSPM) for distributed memory
computer based on GSP (mentioned
before, as a classic level-wise candidate-
generation-and-test style frequent
sequence mining algorithm). A common
characteristic of these three algorithms is
the fact that they implement a partition of
the database among the processor nodes.
Two of these algorithms, NPSPM and
SPSPM, are similar to Counter
Distribution and Data Distribution

algorithms designed for parallel frequent
itemset mining problems (mentioned
previously). The HPSPM algorithm is an
improved version of the SPSPM algorithm
because it uses a hashing mechanism in
order to partition candidate sequences
among the processors and also reduces the
amount of communication overhead used
to count the global support.
Also based on the distributed memory
architecture, the algorithm proposed in
[13] is a variant of the parallel tree-
projection-based frequent sequence
mining algorithm. In this case, each
processor builds the same pattern tree and
this leads to redundancy as in the serial
algorithm. An interesting feature of this
algorithm is that it switches to task
parallel mode after running the data
parallel on the first l levels of the pattern
tree. Processors generate independently
sub-forests rooted at the assigned nodes
after the distribution of the nodes at the l
level among them. In order to be able to
run independently, processors must
exchange part of their local databases.
This algorithm uses a dynamic load-
balancing strategy for overcoming
consequences of the inaccurate estimation
of the task run time (as the load
imbalance).
In [14] it is proposed another parallel
algorithm, pSADE, based on hardware
distributed shared memory architecture.
This algorithm is similar with other
parallel pattern growth and database
projection algorithms. Each of the
processors works on different partitions of
the database, but the whole pattern tree is
processed synchronously. One copy of the
database can be accessed by every
processor. For this algorithm, the static
load balancing is designed so that top-
level tasks are partitioned among
processors. In [14] is proposed a strategy
for improving the efficiency of the
algorithm, the recursive dynamic load
balancing strategy. Briefly, the strategy
helps the splitting of tasks between busy
processors and idle ones. A busy

170 Informatica Economică vol. 14, no. 3/2010

processor that detects an idle processor
inserts nodes from its current working
class into the global task queue. In the
next stage, idle processors choose a task
from this list.
A parallel closed sequential pattern-
mining algorithm (Par-CSP) is proposed
in [15]. This algorithm runs on distributed
memory system and is based on depth-
first-search and divide-and-conquer
strategies. In order to perform the mining,
the tasks are distributed among
processors. A specific feature of this
algorithm is that a selective sampling
technique to achieve good load balance is
used, but except that, the method is
similar to that one implemented in the
case of parallel frequent itemset mining
algorithms. The sampling technique
selects small portions of the projected
database. Each of these representative
samples is used to approximate the
relative mining time of the projected
database that it belongs, and the runtime
estimated is later used for the static task
assignments.

c) The parallel frequent graph mining
involves computational complexity of the
graph-based algorithms and also
graph/subgraph isomorphism test
requirements. In a graph database,
transactions are usually undirected labeled
graphs. Some examples of frequent graph
mining algorithms are Subdue, MolFea,
FSG, MoSS/MoFa, gSpan, CloseGraph,
FFSM and Gaston.
The major problem in parallelizing
frequent graph mining algorithms is the
risk of severe load imbalance in task
partitioning, as a consequence of the
irregularity of the graph pattern lattice. In
order to solve this problem, there are
required a good load balancing strategy
and a proper parallelism granularity.
A first example of frequent graph mining
algorithms is MoFa [7] which was
developed to discover connected
discriminative molecular fragments for
drug discovery. This algorithm models
molecular fragments as attributed graphs.

An interesting fragment is infrequent in a
non-active set and frequent in another
active molecular set. MoFa applies a
depth-first search on the frequent
fragment search tree and then extends one
bond. In order to record the exact position
information of the studied fragment, the
algorithm uses an embedding list. An
interesting feature is that algorithm uses a
local order based structural strategy
according to which the algorithm does not
need to extend an atom inserted before the
last extended atom.
Based on the above depicted MoFa
algorithm, in [16] it is proposed a
distributed frequent subgraph mining
algorithm in which each worker machine
has local access to the entire active
database. An independent sub-task for the
worker machine is generated by the job
management machine by pruning the
search tree. In the task assignment
message intermediate mining states are
also included. When the worker machine
has just finished a job or it is idle, it gets a
new task from the job pool.
Similar to the above-depicted algorithm
an improved version of it was developed
in [17]. This algorithm, based on the fact
that every machine is a donor and a
worker at the same time, also offers
enhanced search space partitioning. Each
time a worker finishes his job, a donor is
selected by the worker in order to spawn a
new job. This is a dynamic load balancing
strategy called ranked-random polling. A
centralized machine keeps the ranking
information.
Another parallel frequent graph-mining
algorithm on a shared memory machine is
presented in [18]. The algorithm is a
parallelized version of MoFa. In this case,
the graph database, the idle worker
processor list and the global frequent
fragment set are the globally shared data
structures. In order to track for each
processor its depth first search path is
used a stack structure. At the proper time,
locally mined frequent fragment set of
each processor is merged into the global

Informatica Economică vol. 14, no. 3/2010 171

set. At the beginning of the mining
process, every processor starts mining on
the whole database. Before starting the
search step, the processor checks the
global idle processor list, finds an
available co-worker and donates out a part
of its working stack.
Based on the parallelization of the gSpan
algorithm [19] another algorithm was
developed in [20]. In this case, instead of
work donation, it is implemented the so-
called work stealing technique which uses
a global busy processor list. For part of its
work stack, idle processors actively
request one of the busy processors.
A revolution in computer architecture
technology, Chip Multiprocessing or
simply multicore, is a combination of two
or more independent processors (multi-
core systems) into a single integrated
circuit package. The processors share the
same memory space. The Chip
Multiprocessing allows the device to
exhibit some sort of parallelism - thread-
level parallelism and/or instruction level
parallelism - while enjoying fewer
components, lower cost, and less
interconnection overheads.
In the case of a Chip Multiprocessing
architecture some algorithms have been
developed, their design being similar to
that for shared memory system. A
characteristic of these cases is the lower
processor communication cost. An
example of a parallelized graph mining
algorithm for the Chip Multiprocessing
architecture is proposed in [21]. First, the
algorithm performs a depth search on the
frequent graph tree with each candidate
extension from a tree node being a task
unit. It is used a distributed task queuing
model, each processor core performing
operations of enqueue and dequeue on its
own task queue. When a processor core’s
queue is empty, it searches other cores’
queue for work and if all queues are
empty it waits until a core, which has a
nonempty queue, queries it. In order to
reduce memory consumption a pointer
based compact embedding list is used.

Systems on which are designed most of
the parallel frequent pattern mining
algorithms are based on shared memory,
distributed memory, hybrid systems,
heterogeneous environments, chip
multiprocessing or simultaneous
multithreading.
As a consequence of the importance and
usefulness of real time data mining, in
recent years researchers intensified their
efforts to discover new hardware
architectures that can manage and process
large volumes of data. A real potential in
optimizing the data mining process is
offered by graphics processing units
(GPUs). They are multithreaded and
multicore processing units and that is the
reason why a GPU has a computational
capacity and memory bandwidth far
beyond than those of central processing
units (CPU). As a consequence, most of
the databases operations are accelerated,
the entire data mining process is
simplified, the necessary time for
extracting knowledge from data analysis
is reduced. Combining hundreds of
simplified parallel processing cores, these
graphics processing units also improve the
performance per watt consumed (obtained
from the GPU when compared to the CPU
processors). Based on their high
performance, low cost and on the
increasing number of features offered, an
increasingly wide range of applications
from different fields could be solved by
GPU processors, and among them the
study of the temporal data mining process
and its applications in financial data
prediction, telecommunication control,
neuroscience, medical data analysis.
Below are depicted some temporal data
mining algorithms and as a solution for
improving their performances, the
algorithms are implemented on the new
Compute Unified Device Architecture
(CUDA) from the latest generation of
graphics processing units (GPU). For each
temporal data mining problem it is
required to address specific technical
issues. The size of the problem and the

172 Informatica Economică vol. 14, no. 3/2010

type of the algorithm implemented on the
GPU are important factors used to
determine the optimal algorithm, the data
access model and the number of threads
that are necessary to achieve the desired
performance.
Graphics processing units processors have
been used in order to accelerate graphics
rendering on computers and over time the
GPU has evolved through specialized
architecture (from one-purpose
components to multiple purposes complex
architectures). A broad class of
applications could be accelerated as a
consequence of this development, and the
GPU is able to do much more than just
provide video rendering.

4 The Compute Unified Device
Architecture – a viable solution for
improving algorithms performances
The Compute Unified Device Architecture
(CUDA) is a software and hardware parallel
computing architecture (developed by
NVIDIA) that allows the NVIDIA graphics
processor to execute programs written in C,
C++, FORTRAN, OpenCL, Direct Compute
and other languages. CUDA gives developers
access to the native instruction set and
memory of the parallel computational
elements in CUDA GPUs. Using CUDA, the
latest NVIDIA GPUs effectively become
open architectures like CPUs. Unlike CPUs
however, GPUs have a parallel "many-core"
architecture, each core being capable of
running thousands of threads simultaneously
- if an application is suited to this kind of an
architecture, the GPU can offer large
performance benefits. This approach of
solving general-purpose problems on GPUs
is known as GPGPU.
A CUDA program calls parallel program
kernels. A set of parallel threads is executed
by the kernel in parallel. These threads are
organized by the programmer or compiler
into thread blocks and grids of thread blocks.
The graphics processor unit instantiates a
kernel program on a grid containing parallel
thread blocks. Each thread from the block
executes an instance of the kernel and has an

unique ID associated to registers, to thread’s
private memory from the thread block [22].
In the CUDA programming model, when
algorithms are developed, the most important
concern of developers is to divide the
required work in fragments that can be
processed by a number of thread blocks, each
containing more threads. In order to avoid
that the threads within a block will be
executed by more cores within a streaming
multiprocessor, it is recommended that the
number of thread blocks matches the number
of processors. The most important factor in
achieving performance is the repartition of
tasks to be performed between the thread
blocks.
An usual method used to discover how
certain subsets of elements are associated
with other subsets is the technique of data
mining through association, and a restricted
version of that technique is temporal data
mining (in which temporal relationships
between elements are taken into account). In
a timed ordered database, a specific problem
of temporal data mining is the mining of
frequent episodes. The purpose in this case is
to find sequences of frequent items
(episodes) appearances. An episode is
defined as a partially ordered set of events
for consecutive time intervals, embedded in a
sequence [1].
Below are depicted four algorithms based on
the CUDA programming model [23]. For
each of these algorithms it is implemented
some kind of parallelism but a common
feature of them is that all are based on the
MapReduce programming model [24].
Algorithm 1 uses a search of a single episode
by each thread, using data stored in graphics
memory. This algorithm doesn’t implement
buffering. The database is placed by the first
algorithm in the texture memory. For each
thread, this feature facilitates the use of the
high bandwidth of the GPU. As a
consequence, threads are allocated in thread
blocks one by one until the maximum
number of threads per block is reached.
In the case of Algorithm 2, each thread is
looking for a single episode. The second
algorithm loads a block of data from the

http://en.wikipedia.org/wiki/NVIDIA�
http://en.wikipedia.org/wiki/Parallel_computing�
http://en.wikipedia.org/wiki/CPU�
http://en.wikipedia.org/wiki/GPGPU�

Informatica Economică vol. 14, no. 3/2010 173

database into a buffer of shared memory.
After the data from the buffer is processed,
the algorithm then loads another block of
data in the buffer and the process is repeated
along the entire database. The thread
allocation method within the thread blocks is
the same as in Algorithm 1.
 Algorithm 3 does not use buffering. All the
threads in a block search one episode. The
data from the graphic card memory is used
and different blocks are looking for different
episodes. Even if there are similarities with
the first algorithm (in both cases threads
within each block access data through the
texture memory), there are also some
characteristics that differentiate them: threads
within a block are starting at different
positions within the database, while threads
with the same ID from different blocks are
starting from the same position.
In the fourth algorithm analyzed the same
episode is searched by all the threads in a
block. A data buffer is created by means of
shared memory and then this buffer is used
by different blocks which are looking for
different episodes. Algorithm 4 uses block-
level parallelism with shared memory
database buffering. As in Algorithm 3, for
each thread the starting point depends on
buffer size and not on the size of the
database. During all searches, a thread will
always access the same area of shared
memory, but each time when buffer updates
the data content from the shared memory will
change.

5 Experimental results
In the following are presented the most
relevant experimental results and
interpretations on the performance of above
depicted algorithms implemented on CUDA
architecture, for episodes at different levels
with different numbers of threads per block.
At the L level of an episode, an algorithm
searches an episode of length L. In the
considered cases, L was chosen 1, 2 or 3.
A test consists of selecting an episode’s

level, an algorithm, a graphics card and the
block size. The execution period (measured
in milliseconds) is considered the period
between the moment when the kernel is
invoked and the moment when it returns the
answer.
The configuration used in tests was Intel i7-
965 operating at 3.2 GHz with 6 GB
(3x2GB) of 1333Mhz Triple Channel
Memory. The graphic card chosen was
nVIDIA GTX470, based on nVidia's new
Fermi architecture. The feature-list is
considerable: over 3 billion transistors double
the processing units of its predecessors, and a
strong emphasis on geometric realism. This
card has a huge computational capability and
is based on the latest FERMI architecture.
Some specifications of this graphic card are:
448 CUDA cores, the graphics clock’s
frequency 607 MHz, the processor clock’s
frequency 1,215 MHz, the texture fill rate 34
billion/sec, the memory clock’s frequency
1,674 MHz, the memory bandwidth 133.9
GB/sec, the amount of memory 1,280 MB,
the maximum number of threads per block is
512.
It was considered a database which consists
of 393,019 letters from the capital letters of
the English alphabet that repeat themselves.
It was chosen a different number of episodes
at each level as follows: the first level
contained 26 episodes, level 2 contained 650
episodes and level three contained 15,600
episodes [23].
Below is depicted the effect of algorithm
selection on execution time. When an
algorithm is chosen, it must always be taken
into account the size of the considered
problem. Mostly, a programmer wants to
solve a problem of a certain size and he has
access only to a certain type of hardware.
Because he can modify only the algorithm
and the number of threads that he uses within
this algorithm, in order to obtain the best
results he will use the fastest algorithm for
the problem (Figure 1). Some conclusions of
tests are mentioned in the following.

http://news.techworld.com/data-centre/3203067/nvidia-unveils-fermi-gpu-for-supercomputers/�

174 Informatica Economică vol. 14, no. 3/2010

Fig. 1. The effect of algorithm selection on execution time

Informatica Economică vol. 14, no. 3/2010 175

1) For small problems (Level 1), one thread

per episode is not enough. In the case of
small lower levels problems, the number
of threads generated by episodes is low,
(because the number of episodes is low)
and therefore there are no sufficient
threads to use the graphic card’s
resources. In the case of Algorithms 1 and
2, as the number of episodes is fixed and
there is just one thread per episode, one
can observe the tendency to increase the
execution time along with the number of
threads. Unlike these cases, Algorithm 4
obtains a search time of a milliseconds
order. The most important observation is
that when using the GTX470, practically
real-time data mining can be achieved. In
the future, for significant size databases,
servers incorporating more of these
parallel cards and future GPU
architectures will reach startling
performance.

2) For medium size problems (Level 2), the
block level depends on its size. In the case
of Algorithms 1 and 2 the number of
blocks decreases while the number of
threads per block increases. Because there
is a fixed number of episodes, there is also
a fixed number of threads. Therefore, the
number of blocks and the number of
threads per block changes in the same
time.

3) For large problems (Level 3), the thread
level parallelism is enough. In this case
there are 25,230 episodes to search [5].
One can observe that Algorithms 1 and 2
(parallel thread processing algorithms) are
much faster than Algorithms 3 and 4
(block-level algorithms). In the case of
Algorithms 1 and 2 each thread within a
block will look for one episode so more
episodes may be searched.

6 Comparisons among algorithms and
conclusions
The algorithms presented in the first part of
this paper, designed to solve various types of
pattern discovery (for frequent itemset,
frequent sequence and frequent graph mining

problems), have some common
characteristics. The pattern lattice/tree
traversal paradigm is useful in the
implementation of the parallelism for most of
the recently developed parallel frequent
pattern mining algorithms. The divide-and-
conquer pattern enumeration scheme of the
FP-growth algorithm is used by MLFPT,
PFP-tree, and Inverted Matrix algorithms. A
prefix tree or suffix tree manner is used for
many serial frequent sequence mining
algorithms when the pattern lattice is
traversed. This is the reason why in the case
of frequent sequence mining task parallelism
the method frequently used is to partition the
tree nodes of a certain level.
Regarding the static load balancing, in
parallel pattern discovery is required the
estimation of the relative mining time for
each task unit, but there is a low
communication overhead. The dynamic load
balancing (recommended especially in the
case of graph databases) can be used only if
the mining task associated with a pattern can
be recursively partitioned into smaller ones.
The database replication is also an important
feature in parallel frequent pattern mining.
As mentioned before, a database can be
partitioned with no overlaps among
processors. In order to reduce the
communication overhead, some algorithms
duplicate the whole database on each
processor (Par-CSP, pSPADE, all the
reviewed parallel frequent graph mining
algorithms). The problem which appears in
this case is that this replication does not
facilitate the efficient use of aggregate disk
or memory space of a parallel platform,
consequently a tradeoff is needed. In the
future, for the designing of parallel frequent
pattern mining algorithms there will be
useful techniques as the minimum-cut
bipartite graph partition model in pTPSM
[13] or the idlist partitioning based data
parallel formulation in pSPADE.
In the second part of the article, we analyzed
and compared some temporal data mining
algorithms implemented on the latest CUDA
based architecture Fermi, As experimental

176 Informatica Economică vol. 14, no. 3/2010

results outlined, in order to obtain an
increased performance, any implementation
(based on the MapReduce framework) must
dynamically adapt the type and parallelism
level.
Even if the practical implementation of data
mining algorithms on a GPU architecture
brings a lot of advantages, there are many
difficulties and some limitations in this
process. First of all it is the fact that a CUDA
programmer must have thorough knowledge
of how threads work and how thread blocks
are mapped, must know in detail six different
areas of memory and especially inter-
threading communication.
Another problem is caused by the limitations
on the performance of temporal data mining
algorithms in memory size and the transfer
time between the GPU and the memory.
When it comes to huge dimensions data
warehouses even if current NVIDIA cards
support memory sizes up to 6 GB, this size is
still insufficient, being far below from the
required size. With the launch of the new
Fermi architecture, this size was extended:
before Fermi was 4 GB and Fermi brings 6
GB. Even if the size of the memory
supported by the GPU has increased, 6 GB is
still insufficient. In practice, many databases`
sizes are of the order of terabytes or even
petabytes. Therefore, this remains a
significant hardware limitation.
The performance (when applying temporal
data mining algorithms) is also influenced by
the considerable amount of execution time
consumed by the transfer of memory blocks
between the CPU and GPU.
Compared to conventional architectures
based on CPUs, the results offered by the
new Fermi architecture highlight a huge
potential for improving the performance of
temporal data mining process. Some
limitations of the implemented algorithms’
performance, caused by hardware issues, can
be overcome since the new Fermi hardware
architecture has been launched. When
dealing with dynamically accessed arrays,
there is an important limitation that must be
take into account. In this case, because
dynamically accessed arrays cannot be

accessed directly by an index at compile
time, occurs a direct impact on algorithms
runtime.
In the CUDA programming model,
dynamically accessed arrays are
automatically stored in local memory. They
cannot be stored in the registry memory. The
problem is that the local memory is an
abstraction and it has the same latency time
as global memory of GPU. As a
consequence, it is many times slower than
registry memory. A significant restriction in
the case of the four algorithms for temporal
data mining presented below is the fact that
the registry memory cannot be used, as a
consequence of the frequent use of this type
of arrays addressing.
Most of the limitations mentioned above can
be solved by the Fermi architecture, the new
generation of NVIDIA architecture, which
also allows improved execution times for the
algorithms. Studying the experimental results
one can state that the new nVIDIA CUDA
architecture can be a viable solution for the
parallelization of algorithms.

References
[1] N. Satish, M. Harris and M. Garland,

“Designing Efficient Sorting Algorithms
for Manycore GPUs,” in Proc. 23rd
IEEE International Parallel and
Distributed Processing Symposium,
2009.

[2] G.C. Garriga, “Discovering unbounded
episodes in sequential data,” in Proc.
Seventh European Conference on
Principles and Practice of Knowledge
Discovery in Databases (PKDD), 2003.

[3] N. Meger, N.L.C. Leschi and C. Rigotti,
“Mining episode rules in stulong
dataset,” ECML/PKDD 2004 Discovery
Challenge (PKDD), 2004.

[4] S. Harms, J. Deogun, J. Saquer and T.
Tadesse, “Discovering representative
episodal association rules from event
sequences,” in Proc. 2001 IEEE
International Conference on Data
Mining (ICDM’01), 2001.

[5] R. Agrawal, T. Imielinski and
A. Swami, “Mining association rules

Informatica Economică vol. 14, no. 3/2010 177

between sets of items in large database,”
in Proc. ACM SIGMOD International
Conference on Management of Data,
pages 207-216, Washington D.C., May
1993.

[6] Z. Yuzhou, W. Jianyong and Z. Lizhu,
“Parallel Frequent Pattern Discovery:
Challenges and Methodology,”
Tsinghua Science And Technology,
ISSN 1007-0214 15/20, pp.719-728,
vol. 12, no. 6, December 2007.

[7] C. Borgelt and M.R. Berthold, “Mining
molecular fragments: Finding relevant
substructures of molecules,” in Proc.
2002 IEEE International Conference on
Data Mining, Maebashi, Japan, 2002,
pp.51-58,

[8] J. Han, J. Pei and Y. Yin, “Mining
frequent patterns without candidate
generation,” in Proc. 2000 ACM
SIGMOD International Conference on
Management of Data, Dallas, USA,
2000, pp.1-12.

[9] O.R. Zaïane, M. El-Hajj and P. Lu,
“Fast parallel association rule mining
without candidacy generation,” in Proc.
2001 IEEE international Conference on
Data Mining, San Jose, USA, 2001,
pp.665-668.

[10] A. Javed and A. Khokhar, “Frequent
pattern mining on message passing
multiprocessor systems,” Distrib.
Parallel Databases, 2004, 16(3),
pp.321-334.

[11] M. El-Hajj and O.R. Zaiane, “Parallel
association rule mining with minimum
inter-processor communication,” in
Proc. 14th International Workshop on
Database and Expert Systems
Applications, Prague, Czech Republic,
2003: 519.

[12] T. Shintani and M. Kitsuregawa,
“Mining algorithms for sequential
patterns in parallel: Hash based
approach,” in Proc. Second Pacific-Asia
Conference on Research and
Development in Knowledge Discovery
and Data Mining, Melbourne, Australia,
1998, pp.283-294.

[13] V. Guralnik and G. Karypis, “Parallel

tree-projection-based sequence mining
algorithms,” Parallel Computing, 2004,
30(4), pp. 443-472.

[14] M.J. Zaki, “Parallel sequence mining on
shared-memory machines,” Journal on
Parallel Distributed Computing, 2001,
61(3), pp.161-189.

[15] S. Cong, J. Han and D. Padua, “Parallel
mining of closed sequential patterns,”
in Proc. Eleventh ACM SIGKDD
International Conference on Knowledge
Discovery in Data Mining, Chicago,
USA, 2005, pp.562-567.

[16] G.D. Fatta and M.R. Berthold,
“Distributed mining of molecular
fragments,” in Proc. IEEE International
Conference on Data Mining, Workshop
on Data Mining and the Grid. Brighton,
UK, 2004, pp.1-9.

[17] G. D. Fatta and M. R. Berthold,
“Dynamic load balancing for the
distributed mining of molecular
structures,” IEEE Transactionson
Parallel and Distributed Systems, 2006,
17(8), pp.773-785.

[18] T. Meinl, I. Fischer and M. Philippsen,
“Parallel mining for frequent fragments
on a shared-memory multiprocessor,”
LWA 2005. German Research Center
for Artificial Intelligence, 2005, pp.196-
201.

[19] X. Yan and J. Han, “gSpan: Graph-
based substructure pattern mining,”
Proc. IEEE International Conference on
Data Mining, Maebashi, Japan, 2002,
pp.721-723.

[20] T. Meinl, M. Worlein, I. Fischer, et al.,
“Mining molecular datasets on
symmetric multiprocessor systems,” in
Proc. 2006 IEEE International
Conference on Systems, Man and
Cybernetics, Taipei, China, 2006,
pp.1269-1274.

[21] G. Buehrer, S. Parthasarathy, D. Kim,
et al., “Towards data mining on
emerging architectures,” in Proc. 9th
SIAM Workshop on High Performance
and Distributed Mining, Bethesda,
USA, 2006.

[22] “NVIDIA CUDA Compute Unified

178 Informatica Economică vol. 14, no. 3/2010

Device Architecture” - Programming
Guide, Version 3.1, 2010.

[23] J. Archuleta, Y. Cao, W. Feng and T.
Scogland, “Multi-Dimensional
Characterization of Temporal Data
Mining on Graphics Processors,”
Technical Report TR-09-01, Computer
Science, Virginia Tech, 2009.

[24] J. Dean and S. Ghemawat,
“MapReduce: Simplified Data
Processing on Large Clusters,”
OSDI'04: Sixth Symposium on
Operating System Design and
Implementation, San Francisco, CA,
2004.

Alexandru PIRJAN has graduated the Faculty of Computer Science for
Business Management in 2005. He holds a MA Degree in Computer Science
for Business from 2007. He joined the staff of the Romanian-American
University as a teaching assistant in 2005 and a Full Teaching Assistant in
2008. He is currently a member of the Department of Informatics, Statistics
and Mathematics from the Romanian-American University. He is the author
of more than 15 journal articles and a member in 4 national scientific

research projects. His work focuses on artificial intelligence, database applications and quality
of software applications.

	Romanian-American University, Bucharest, Romania

