30 research outputs found

    A Comparative Analysis of STM Approaches to Reduction Operations in Irregular Applications

    Get PDF
    As a recently consolidated paradigm for optimistic concurrency in modern multicore architectures, Transactional Memory (TM) can help to the exploitation of parallelism in irregular applications when data dependence information is not available up to run- time. This paper presents and discusses how to leverage TM to exploit parallelism in an important class of irregular applications, the class that exhibits irregular reduction patterns. In order to test and compare our techniques with other solutions, they were implemented in a software TM system called ReduxSTM, that acts as a proof of concept. Basically, ReduxSTM combines two major ideas: a sequential-equivalent ordering of transaction commits that assures the correct result, and an extension of the underlying TM privatization mechanism to reduce unnecessary overhead due to reduction memory updates as well as unnecesary aborts and rollbacks. A comparative study of STM solutions, including ReduxSTM, and other more classical approaches to the parallelization of reduction operations is presented in terms of time, memory and overhead.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Преобразование программ из исходного представления в целевое представление на основе описаний проекций языка исходного представления на язык целевого представления

    Get PDF
    В статье представлена общая идея использования проекционного подхода к решению задачи преобразования программ из заданного исходного представления в требуемое целевое представление. Приведен фрагмент модели онтологии проекций языков исходного представления программ на языки целевого представления и на примере продемонстрировано, как в соответствии с данной моделью представляется описание (фрагмента) конкретной проекции.У статті представлена загальна ідея використання проекційного підходу до рішення задачі перетворення програм із заданого початкового представлення в необхідне цільове представлення. Наведений фрагмент моделі онтології проекцій мов початкового представлення програм на мови цільового представлення і на прикладі продемонстровано, як відповідно до даної моделі представляється опис (фрагмента) конкретної проекції.The paper presents the general idea of using the mapping approach for solving the task of transformation of programs from the source representation to required target representation. The paper demonstrates a fragment of the ontology model for mappings of programs’ source representation languages into programs’ target representation languages and gives the example of how a description of (a fragment of) a particular mapping is represented in accordance with the ontology model

    Ontology-Based Model of Representation of Knowledge about Language Mappings

    Get PDF
    The paper presents a short review of some systems for program transformations performed on the basis of the internal intermediate representations of these programs. Many systems try to support several languages of representation of the source texts of programs and solve the task of their translation into the internal representation. This task is still a challenge as it is effort-consuming. To reduce the effort, different systems of translator construction, ready compilers with ready grammars of outside designers are used. Though this approach saves the effort, it has its drawbacks and constraints. The paper presents the general idea of using the mapping approach to solve the task within the framework of program transformations and overcome the disadvantages of the existing systems. The paper demonstrates a fragment of the ontology model of high-level languages mappings onto the single representation and gives the example of how the description of (a fragment) a particular mapping is represented in accordance with the ontology model

    Compiler and runtime support for shared memory parallelization of data mining algorithms

    Get PDF
    Abstract. Data mining techniques focus on finding novel and useful patterns or models from large datasets. Because of the volume of the data to be analyzed, the amount of computation involved, and the need for rapid or even interactive analysis, data mining applications require the use of parallel machines. We have been developing compiler and runtime support for developing scalable implementations of data mining algorithms. Our work encompasses shared memory parallelization, distributed memory parallelization, and optimizations for processing disk-resident datasets. In this paper, we focus on compiler and runtime support for shared memory parallelization of data mining algorithms. We have developed a set of parallelization techniques that apply across algorithms for a variety of mining tasks. We describe the interface of the middleware where these techniques are implemented. Then, we present compiler techniques for translating data parallel code to the middleware specification. Finally, we present a brief evaluation of our compiler using apriori association mining and k-means clustering.

    A Novel Compiler Support for Automatic Parallelization on Multicore Systems

    Get PDF
    [Abstract] The widespread use of multicore processors is not a consequence of significant advances in parallel programming. In contrast, multicore processors arise due to the complexity of building power-efficient, high-clock-rate, single-core chips. Automatic parallelization of sequential applications is the ideal solution for making parallel programming as easy as writing programs for sequential computers. However, automatic parallelization remains a grand challenge due to its need for complex program analysis and the existence of unknowns during compilation. This paper proposes a new method for converting a sequential application into a parallel counterpart that can be executed on current multicore processors. It hinges on an intermediate representation based on the concept of domain-independent kernel (e.g., assignment, reduction, recurrence). Such kernel-centric view hides the complexity of the implementation details, enabling the construction of the parallel version even when the source code of the sequential application contains different syntactic variations of the computations (e.g., pointers, arrays, complex control flows). Experiments that evaluate the effectiveness and performance of our approach with respect to state-of-the-art compilers are also presented. The benchmark suite consists of synthetic codes that represent common domain-independent kernels, dense/sparse linear algebra and image processing routines, and full-scale applications from SPEC CPU2000.[Resumen] El uso generalizado de procesadores multinúcleo no es consecuencia de avances significativos en programación paralela. Por el contrario, los procesadores multinúcleo surgen debido a la complejidad de construir chips mononúcleo que sean eficiente energéticamente y tengan altas velocidades de reloj. La paralelización automática de aplicaciones secuenciales es la solución ideal para hacer la programación paralela tan fácil como escribir programas para ordenadores secuenciales. Sin embargo, la paralelización automática continua a ser un gran reto debido a su necesidad de complejos análisis del programa y la existencia de incógnitas durante la compilación. Este artículo propone un nuevo método para convertir una aplicación secuencial en su contrapartida paralela que pueda ser ejecutada en los procesadores multinúcleo actuales. Este método depende de una representación intermedia basada en el concepto de núcleos independientes del dominio (p. ej., asignación, reducción, recurrencia). Esta visión centrada en núcleos oculta la complejidad de los detalles de implementación, permitiendo la construcción de la versión paralela incluso cuando el código fuente de la aplicación secuencial contiene diferentes variantes de las computaciones (p. ej., punteros, arrays, flujos de control complejos). Se presentan experimentos que evalúan la efectividad y el rendimiento de nuestra aproximación con respecto al estado del arte. La serie programas de prueba consiste en códigos sintéticos que representan núcleos independientes del dominio comunes, rutinas de álgebra lineal densa/dispersa y de procesamiento de imagen, y aplicaciones completas del SPEC CPU2000.[Resumo] O uso xeralizado de procesadores multinúcleo non é consecuencia de avances significativos en programación paralela. Pola contra, os procesadores multinúcleo xurden debido á complexidade de construir chips mononúcleo que sexan eficientes enerxéticamente e teñan altas velocidades de reloxo. A paralelización automática de aplicacións secuenciais é a solución ideal para facer a programación paralela tan sinxela como escribir programas para ordenadores secuenciais. Sen embargo, a paralelización automática continua a ser un gran reto debido a súa necesidade de complexas análises do programa e a existencia de incógnitas durante a compilación. Este artigo propón un novo método para convertir unha aplicación secuencias na súa contrapartida paralela que poida ser executada nos procesadores multinúcleo actuais. Este método depende dunha representación intermedia baseada no concepto dos núcleos independentes do dominio (p. ex., asignación, reducción, recurrencia). Esta visión centrada en núcleos oculta a complexidade dos detalles de implementación, permitindo a construcción da versión paralela incluso cando o código fonte da aplicación secuencial contén diferentes variantes das computacións (p. ex., punteiros, arrays, fluxos de control complejo). Preséntanse experimentos que evalúan a efectividade e o rendemento da nosa aproximación con respecto ao estado da arte. A serie de programas de proba consiste en códigos sintéticos que representan núcleos independentes do dominio comunes, rutinas de álxebra lineal densa/dispersa e de procesamento de imaxe, e aplicacións completas do SPEC CPU2000.Ministerio de Economía y Competitividad; TIN2010-16735Ministerio de Educación y Cultura; AP2008-0101

    Master of Science

    Get PDF
    thesisThe advent of the era of cheap and pervasive many-core and multicore parallel sys-tems has highlighted the disparity of the performance achieved between novice and expert developers targeting parallel architectures. This disparity is most notiable with software for running general purpose computations on grachics processing units (GPGPU programs). Current methods for implementing GPGPU programs require an expert level understanding of the memory hierarchy and execution model of the hardware to reach peak performance. Even for experts, rewriting a program to exploit these hardware features can be tedious and error prone. Compilers and their ability to make code transformations can assist in the implementation of GPGPU programs, handling many of the target specic details. This thesis presents CUDA-CHiLL, a source to source compiler transformation and code generation framework for the parallelization and optimization of computations expressed in sequential loop nests for running on many-core GPUs. This system uniquely uses a complete scripting language to describe composable compiler transformations that can be written, shared and reused by nonexpert application and library developers. CUDA-CHiLL is built on the polyhedral program transformation and code generation framework CHiLL, which is capable of robust composition of transformations while preserving the correctness of the program at each step. Through its use of powerful abstractions and a scripting interface, CUDA-CHiLL allows for a developer to focus on optimization strategies and ignore the error prone details and low level constructs of GPGPU programming. The high level framework can be used inside an orthogonal auto-tuning system that can quickly evaluate the space of possible implementations. Although specicl to CUDA at the moment, many of the abstractions would hold for any GPGPU framework, particularly Open CL. The contributions of this thesis include a programming language approach to providing transformation abstraction and composition, a unifying framework for general and GPU specicl transformations, and demonstration of the framework on standard benchmarks that show it capable of matching or outperforming hand-tuned GPU kernels

    Logical Inference Techniques for Loop Parallelization

    Get PDF
    This paper presents a fully automatic approach to loop parallelization that integrates the use of static and run-time analysis and thus overcomes many known difficulties such as nonlinear and indirect array indexing and complex control flow. Our hybrid analysis framework validates the parallelization transformation by verifying the independence of the loop’s memory references. To this end it represents array references using the USR (uniform set representation) language and expresses the independence condition as an equation, S = ∅, where S is a set expression representing array indexes. Using a language instead of an array-abstraction representation for S results in a smaller number of conservative approximations but exhibits a potentially-high runtime cost. To alleviate this cost we introduce a language translation F from the USR set-expression language to an equally rich language of predicates (F(S) ⇒ S = ∅). Loop parallelization is then validated using a novel logic inference algorithm that factorizes the obtained complex predicates (F(S)) into a sequence of sufficient-independence conditions that are evaluated first statically and, when needed, dynamically, in increasing order of their estimated complexities. We evaluate our automated solution on 26 benchmarks from PERFECT-CLUB and SPEC suites and show that our approach is effective in parallelizing large, complex loops and obtains much better full program speedups than the Intel and IBM Fortran compilers

    Reference idempotency analysis: A framework for optimizing speculative execution

    Get PDF
    Recent proposals for multithreaded architectures allow threads with unknown dependences to execute speculatively in parallel. These architectures use hardware speculative storage to buffer uncertain data, track data dependences and roll back incorrect executions. Because all memory references access the speculative storage, current proposals implement this storage using small memory structures for fast access. The limited capacity of the speculative storage causes considerable performance loss due to speculative storage overflow whenever a thread's speculative state exceeds the storage capacity. Larger threads exacerbate the over-flow problem but are preferable to smaller threads, as larger threads uncover more parallelism. In this paper, we discover a new program property called memory reference idempotency. Idempotent references need not be tracked in the speculative storage, and instead can directly access non-speculative storage (i.e., the conventional memory hierarchy). Thus, we reduce the demand fo r speculative storage space. We define a formal framework for reference idempotency and present a novel compiler-assisted speculative execution model. We prove the necessary and sufficient conditions for reference idempotency using our model. We present a compiler algorithm to label idempotent memory references for the hardware. Experimental results show that for our benchmarks, over 60% of the references in non-parallelizable program sections are idempotent

    Automatic parallelization of array-oriented programs for a multi-core machine

    Get PDF
    Abstract We present the work on automatic parallelization of array-oriented programs for multi-core machines. Source programs written in standard APL are translated by a parallelizing APL-to-C compiler into parallelized C code, i.e. C mixed with OpenMP directives. We describe techniques such as virtual operations and datapartitioning used to effectively exploit parallelism structured around array-primitives. We present runtime performance data, showing the speedup of the resulting parallelized code, using different numbers of threads and different problem sizes, on a 4-core machine, for several examples
    corecore