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ABSTRACT

The advent of the era of cheap and pervasive many-core and multicore parallel sys-

tems has highlighted the disparity of the performance achieved between novice and expert

developers targeting parallel architectures. This disparity is most notifiable with software

for running general purpose computations on grachics processing units (GPGPU programs).

Current methods for implementing GPGPU programs require an expert level understanding

of the memory hierarchy and execution model of the hardware to reach peak performance.

Even for experts, rewriting a program to exploit these hardware features can be tedious

and error prone. Compilers and their ability to make code transformations can assist in the

implementation of GPGPU programs, handling many of the target specific details.

This thesis presents CUDA-CHiLL, a source to source compiler transformation and code

generation framework for the parallelization and optimization of computations expressed

in sequential loop nests for running on many-core GPUs. This system uniquely uses a

complete scripting language to describe composable compiler transformations that can be

written, shared and reused by nonexpert application and library developers.

CUDA-CHiLL is built on the polyhedral program transformation and code generation

framework CHiLL, which is capable of robust composition of transformations while preserv-

ing the correctness of the program at each step. Through its use of powerful abstractions and

a scripting interface, CUDA-CHiLL allows for a developer to focus on optimization strategies

and ignore the error prone details and low level constructs of GPGPU programming. The

high level framework can be used inside an orthogonal auto-tuning system that can quickly

evaluate the space of possible implementations. Although specific to CUDA at the moment,

many of the abstractions would hold for any GPGPU framework, particularly OpenCL.

The contributions of this thesis include a programming language approach to providing

transformation abstraction and composition, a unifying framework for general and GPU

specific transformations, and demonstration of the framework on standard benchmarks that

show it capable of matching or outperforming hand-tuned GPU kernels.
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CHAPTER 1

INTRODUCTION

In the history of microprocessors, the Central Processing Unit (CPU) processor has

been the focus of the industry for its powerful ability to run general purpose sequential

programs. While hugely successful in meeting the majority of computing needs, there

has also been a legacy of programmable accelerators to improve performance for specific

domains of applications. In the embedded world, Digital Signal Processors (DSPs) are used

to encode and decode audio. In High Performance Computing (HPC), there have been many

examples of coprocessors going back to the 1970s designed for floating point calculations

or other specific tasks. In consumer computing, discrete video processors have long been

included to meet specialized needs of rendering images at the demanding rate of stutter-free

video.

Under the pressures of the consumer gaming and professional workstation market,

Graphical Processing Units (GPUs) have evolved to deliver ever-increasing amounts of

computational performance. Reacting from the market demand to provide more direct

means of accessing this potential performance, hardware manufacturers starting providing

developer SDKs to treat the GPU as a programmable stream processor, instead of a

specialized device only accessible through graphics oriented fixed-function APIs. This

opened to door for GPUs to be used for massively parallel computations on nongraphics

data. Scientific computing has had a long history of using coprocessors and programmable

accelerators to serve its seemingly unbounded need for computational performance. In

fact, modern high end super computers often include a hybrid of traditional processors and

stream processors in the form of GPUs [56].

1.1 Programmable Accelerators for
Scientific Computing

When hardware accelerators of various forms are designed, there is always a trade-off

between how general versus function-specific to make the programming model. DSPs, for
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example, are specialized to handle streams of audio or video data but usually are designed

to be programmable to support different and changing encoding standards.

This trade-off can also be seen in the field of Vector Computers such as the Cray 1

in Figure 1.1. The potential speed of the machine was really only unlocked by the use of

special vector instructions for doing floating point operations. This required the creation of

nonportable programs, but the potential speedup of six to ten times often outweighed the

cost.

Other vector computer manufactures added language extensions to high level languages

like FORTRAN to make developing for the platform more attractive. The Control Data

Cyber 205, for example, made its vector instructions accessible by FORTRAN with nota-

tions like a(1;n) + b(2;n), which would add n elements of vector a starting at position 1

with vector b starting at 2.

Eventually, vectorizing compilers that could compile loops to platform specific vector

instructions matured to the point that they were good enough for general programming

purposes. However, highly tuned libraries were often still written in assembly language

to take advantage of the nuanced behavior of the vector instructions. Soon, commercially

successful compilers provided feedback and diagnostics to the programmer when a loop was

not able to be vectorized. This feedback directed the programmer with specific information

as to what was blocking the vecotorization process. With these tools, programmers were

then able to write in a portable, high-level language and be certain to have the benefits of

vectorized code across hardware vendors.

Figure 1.1. The Cray 1 at the Computer History Museum in Mountain View, CA.
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When Intel added the SSE instructions extensions to the x86 family in 1999, there was

a similar situation with the vector-based SIMD instructions. At first, manual work was re-

quired from programmers to gain access to the potential performance. Eventually, compilers

used the existing body of knowledge on vectorizing compilers to generate SSE instructions,

when possible, automatically. Again, for programmers seeking this performance, it was key

to have some feedback from the compiler on when vectorization was not possible and for

what reason.

With GPUs today, we find a lot of similarities to vector computers and SIMD instructions

in their requirements on programmers. Platform-specific program changes are required to

take advantage of the hardware. Also similarly, although the set of programs that can

be adapted with these changes is significant, it will never be universal. In a historical

progression, you might expect the next step would be a compiler focused solution that

auto-parallizes loops to GPU optimized programs. For various reasons discussed below, the

programming of GPUs does not lend itself to this type of automatic and opaque solution.

1.2 Using GPUs for General Purpose
Computation

1.2.1 The Early Years

The use of computer graphics hardware for general-purpose computation has been an

area of active research for many years. The Ikonas system in 1978 [17], a programmable

raster display system for cockpit visualization, allowed the microprogrammable coprocessor

to not just handle image processing but flight simulation, ray tracing and solid modeling.

The Pixel-Planes group designed a heterogeneous multiprocessor for graphic rendering

and “nonscreen” oriented calculations in 1989 [18]. With its independent scheduling of

rendering units and message-passing interface between host and device, this general purpose

architecture may have been the inspiration for the latest generation of GPUs designed for

heterogeneous uses.

Graphics applications themselves have a history of using graphics hardware for proce-

dural texturing and shading [42, 51]. In the early 90s, OpenGL was standardized across

platforms and hardware as a way of using GPU resources. Thus, OpenGL was used by

researchers as an intermediate language in their abstractions that provided general proce-

dural programming [43, 46]. Clearly, there were still a lot of limitations and unnecessary

complexity in using a purely graphics-centric API to gain access to the underlying SIMD
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capabilities of the hardware. This need was acknowledged by both the API developers and

the hardware manufacturers, leading to different but ultimately converging solutions.

1.2.2 GPGPU Frameworks

The two primary hardware vendors in the discrete GPU market, NVIDIA and ATI (now

part of AMD), felt the pressure to provide more programmable access to their processors.

Clearly, a market was emerging for general purpose computations on non-graphics data on

the GPUs. Leading the way with a General Purpose GPU solution (GPGPU), NVIDIA

introduced CUDA (Compute Unified Device Architecture) in 2007. AMD also released a

similar, but less popular SDK for targeting their GPUs called ATI Stream Technology,

based on their own Brook+ compiler and runtime.

With the advent of CUDA, there was an increased use of GPGPU in various research

efforts, but consumer providers were reluctant to develop libraries and code based on the

proprietary SDKs of a single vendor. In response, a couple of frameworks have emerged to

provide a vendor-neutral solution.

Originally developed by Apple and later submitted to the industry consortium that

handled the OpenGL specification, Open Computing Language (OpenCL) is a framework for

writing programs that can execute on a heterogeneous platform. This framework supports

running programs on both GPUs and CPUs, and potentially other accelerator hardware.

AMD soon decided to adopt OpenCL as their primary GPGPU framework in favor of their

previous Brook+ based system. By 2009, NVIDA had also added support for running

OpenCL programs in its updated GPU drivers.

Although OpenCL is gaining more interest for its potential cross platform support, it

currently does not run well outside the Mac operating system. Also, by trying to target

heterogeneous parallel processing models, OpenCL programs give up some GPU specific

optimizations. Currently, an OpenCL program generally performs poorly when compared

to a hand-tuned CUDA equivalent.

Microsoft has also developed its own high-level general purpose computing API called

DirectCompute, part of DirectX 11 APIs released in 2009. DirectCompute provides a

comfortable interface for current Direct3D programmers and abstracts away the vendor-

specific hardware. However, its requirement on the DirectX 11 capable GPU has kept it

from wide adoption in an industry that tries to target widely adopted technologies.
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1.3 Compiler Assisted Targeting of the GPU

It is not hard to see why the GPU is an attractive target for general purpose computing.

Figure 1.2 shows that the number of execution units on modern GPUs has grown substan-

tially in the past few years. But unlike earlier targets of vectorizing compilers, GPUs offer

a number of challenges to fully exploit their resources.

First, GPUs have two levels of parallelism. At the first level, there is MIMD parallelism

across multiple independent streaming multiprocessors (SM). Within each SM, there are

multiple thread units that provide SIMD parallelism. Any program that needs to synchro-

nize data between running threads must take into account on which level of parallelism it is

operating. While there are built-in methods for synchronizing across SIMD threads, custom

and often slow methods are required to synchronize between SMs on the GPU.

Secondly, GPUs have a deep memory hierarchy. Although global memory is most

commonly used, there is a relatively high latency cost for fetches and stores to global

memory. Certain parts of global memory have special performance characteristics such as

constant and texture memory. Outside of global memory, each SM has a certain amount of

shared memory locally available. Also, the register file for each SM is large enough to be
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Figure 1.2. # Execution Units (Texture/Vertex Pipelines < 2007) in NVIDA GPUs
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considered a memory target for scaler variables in computations.

To target the complex nature of the GPU architecture, programs often have to go

through profound transformations. A decomposition of the computational space may be

required to match the levels of parallelism on the GPU. Then, to hide the latency of global

memory fetches, some data may need to be copied to shared memory or registers. The

optimal optimization strategy may not be the obvious one, so various different versions of

a GPGPU program may need to be tested and evaluated.

Although it is clear that this process may not be fully automated by a compiler, it is

also potentially labor intensive and error prone if unassisted. This thesis proposes that a

compiler-assisted solution may be the best for iteratively exploring optimization strategies

for the GPU.

1.4 Research Contributions of this Thesis

The contributions of this thesis follow:

• A programming language approach to describing code transformations which provides

library and application developers high level abstractions for code generation and

compiler transformation capabilities.

• Adding novel transformations and code generations to a unified framework alongside

standard compiler transformations in an integrated and composable manner. This

framework is capable of generating code targeting GPUs from sequential loop nests by

composing these data and computation space partitioning transformations to achieve

kernels that match or surpass the performance of hand-tuned equivalents.

• Demonstration of this approach on standard BLAS library routines and some common

benchmark kernels yielding results comparable to hand-tuned versions in some cases,

outperforming hand-tuned in other cases.

1.5 Organization of this Thesis

This thesis is organized into six chapters. The first two chapters provide background

and details of the problem space of optimizing GPGPU programs for today’s modern GPU

architectures. In Chapter 3, we introduce a programming language approach to directing

compiler assistance for this problem space. Chapter 4 provides the details of the system in its

underlying technologies and novel components. Then, in Chapter 5, we present benchmarks
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of the techniques discussed. Finally, we present related work and conclusions in Chapter 6

and 7.



CHAPTER 2

THE GPU AS AN OPTIMIZATION

TARGET

As we have seen in the previous chapter, the GPU has progressed to a powerful and

programmable parallel architecture, with its multiple streaming multiprocessors with po-

tentially hundreds of cores. Currently, the CUDA framework is the most widely used

method of accessing this attractive architecture for general purpose computations. Our

goal is to automate many of the difficult programming tasks in generating high-performing,

equivalent CUDA code from a sequential computation. The approach presented in this

thesis is motivated by the following observations:

• There is a standard and well-defined protocol for GPU kernel computations that

involves allocating memory for GPU input and output, copying data to and from the

GPU, and performing block and thread decomposition. Given appropriate parameters

for computation and data decomposition, these tasks can be automated in a compiler.

• Known compiler transformations can be adapted and applied both in the decomposi-

tion and mapping process, and in subsequently optimizing the kernel code to manage

the memory hierarchy and parallelism tradeoffs.

• Since there is significant performance variation on GPUs for very subtle differences in

code, we would like our system to explore a space of different implementations, and

different values of parameters associated with the mapping.

• A programming tool should support both automated compiler optimization as well as

programmer-guided optimization, and not get in the programmer’s way in achieving

high performance.

In the remainder of this chapter, we will describe the salient features of the architecture,

the ways in which CUDA accesses these features, and elements of a transformation process
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Figure 2.1. The GPU memory hierarchy and latencies between each level.

from a sequential loop nest to a optimized CUDA program.

2.1 GPU Architecture Features

The target GPU architecture for this thesis is an NVIDIA GeForce GTX 280, which

is representative of the current generation of GPU offerings from NVIDIA. The GTX 280

is organized into 30 streaming multiprocessors (SM), each of which has an 8-core SIMD

unit; the device, therefore, has 240 cores, each clocked at nearly 1.3GHz. Using all cores, a

single chip can perform an impressive 933 GFLOPS for single-precision computations, and

78 GFLOPS for double precision. Synchronization between threads in an SM is supported

by a barrier; synchronization between threads mapped to different SMs typically relies on

atomic operations.

The GTX 280 also has a heterogeneous, and mostly software-controlled, memory hier-

archy, consisting of 16K registers and a 16 KByte shared memory per SM, and a 1GByte

global memory shared among SMs. As seen in Figure 2.1, read-only constant and texture

data in global memory are cached for low-latency average access time – but the bulk of

global memory accesses are typically not cached, with latencies on the order of hundreds

of cycles. To improve bandwidth to global memory, the memory controller will coalesce

accesses to multiple data into a single memory transfer if the accessed data has spatial

reuse within the size of a memory transfer [58].
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2.2 Properties of High-Performance CUDA Code

CUDA, introduced in the previous chapter, includes a computing engine, language

and compiler tools for running general purpose applications on NVIDIA GPUs [1]. The

programming model involves some extensions to the C programming language. These

extensions delineate a kernel function to be executed on a GPU, attach memory attributes

to variables and provide special syntax to invoke kernel calls. A PathScale Open64 compiler

is used to convert the CUDA C program to the NVIDIA GPU native instructions.

A CUDA program describes a computation decomposition into a one- or two-dimensional

space of thread blocks called a grid, where a block is indivisibly mapped to one of the 30

SMs. Each thread block defines a multidimensional space with up to three dimensions and

a maximum of 512 threads. A kernel code is executed for each point in the grid, providing

a two-level parallelism hierarchy represented by this five-dimensional space. Threads within

a block run concurrently on the same SM in batches, called warps, under a SIMT1execution

model.

With so many parallel threads simultaneously accessing memory, effective utilization of

the memory hierarchy has significant impact on performance. The programmer or compiler

can reduce memory latency through locality optimizations that copy data into lower-latency

portions of the memory hierarchy as compared to global memory on data that has temporal

or spatial reuse. Whenever possible, registers provide the most ready low-latency access and

the large size of the register file (16K registers per SM) permits code to exploit significant

reuse within a thread. Shared memory has latency comparable to registers (as long as

there are no memory bank conflicts) for data that can be shared by all threads in a block.

To maximize memory bandwidth, the programmer/compiler can order data accesses across

neighboring threads (a half-warp) so that global memory accesses are coalesced whenever

possible, and shared memory accesses avoid bank conflicts.

While the large body of prior work on locality optimization for conventional architectures

sheds some light on compiler optimizations for this and similar GPUs, new challenges

arise due to the significant differences between the two levels of parallelism (blocks and

threads), and how they synchronize and share data. As mentioned earlier, a low-cost

barrier implemented with a CUDA function call permits synchronization between threads.

1Single-instruction, multiple-thread (SIMT) is the name given to the NVIDIA execution model where
multiple threads in a SM execute concurrently in a lock-step manner.
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Synchronization across blocks is not supported directly in hardware, and is therefore costly

and usually avoided.

2.3 Translating Sequential Loop Nests to CUDA

As most computations that are candidates for being run on the GPU start out as nested

loops, we look at the process of translating these computations to efficient CUDA code. As

we have observed earlier, there is a body of knowledge for compiler transformations that

should provide the basis for compiler assistance in this translation process.

As a contemporary example of this translation process, in [70], Wolfe writes about tuning

a simple single-precision matrix multiplication kernel on an NVIDIA GeForce GTX 280.

Wolfe presents several versions of the matmul code obtained by using code transformations

such as loop permutation, loop strip mine and loop unroll, and caching data in local memory.

Performance ranges from 1.7 to 208 GFLOPs depending on the number of threads per block,

the loop(s) unrolled and unroll sizes, and the amount of data cached in local memory.

Summarizing the article, Wolfe writes “Matmul is just one simple example here, three

loops, three matrices, lots of parallelism, and yet I put in several days of work to get this

seven line loop optimized for GPU.”

All seven versions of matmul in [70] can be derived with a combination of loop permu-

tation, strip mine and unroll, and data copy optimization. In the following chapter, we

discuss how these standard transformations can be expressed as an optimization strategy in

the form of a transformation recipe. Next, we explore in more detail the two fundamental

types of transformations made when translating a loop nest to an optimized CUDA program.

2.3.1 Computation Decomposition

Programs written for CUDA must be explicitly aware of the two levels of parallelism

of the GPU represented by the two grid dimensions and three block dimensions. It is

often the case that the original nested loop computation does not embody the iteration

space partitioning to match the GPU index space dimensions. Subdividing the iteration

space of a loop into blocks or tiles with a fixed maximum size has been widely used when

constructing parallel computations [68, 31]. The shape and size of the tile can be chosen to

take advantage of the target parallel hardware and memory architecture, maximizing reuse

while maintaining a data footprint that meets memory capacity constraints. Sometimes

referred to as loop blocking, tiling involves deconstructing an iteration space into a control

loop and tile loop.
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Given an iteration space of size N and a tile size of TX, the tile loop will iterate over

a maximum space defined by the tile size (TX), while the constructed control loop then

has N/TX steps (when TX divides N evenly). If tiling is used properly, the end result

should be a loop nest where some loop levels match the iteration space of the GPU block

and thread dimensions for a CUDA kernel. The constraints of loops representing threads

and blocks are that they have a stride of 1 and can have their bounds coerced to the fixed

iteration space of a GPU grid or block dimension.

In Figure 2.2, we show an example of using tile transformations to do an example

deconstruction of the iteration space of a matrix vector multiplication source code shown

in Figure 2.2 (a). In Figure 2.2 (b), two tile transformations are done on the first statement

of the source code in (a), referenced as statement 0. Both transformations use the tile size

of 16 and place the control loop at their default position of being right above the original

loop. The tile on line 3 uses the counted method, which makes the control loop of stride 1,

while the tile on line 5 uses the strided method, which results in a control loop with a stride

of the tile size. The results given N=1024 and TX=16 can be seen in Figure 2.2 (c), where

the outermost ii loop is the counted control loop and the jj loop at level 3 demonstrates a

strided control loop. The counted tile method is used when the objective is to build loops

to match the iteration space of GPU thread dimensions.

for (i = 0; i < N; i++)

for (j = 0; j < N; j++)

a[i] = a[i] + c[j][i] * b[j];

(a) Matrix vector source code (BLAS)

for(ii = 0; ii < 64; ii++)

for(i = 16 * ii; i < 16 * ii + 16; i++)

for(jj = 0; jj < 1009; jj += 16)

for(j = jj; j < jj + 16; j++)

a[i] = a[i] + c[j][i] * b[j];

(c) Result of tile command from (b) on input from
(a) where N=1024

1 TX=16

2 l1 = find cur level(0,"i")

3 tile(0,l1,TX,l1,"i","ii",counted)

4 l2 = find cur level(0,"j")

5 tile(0,l2,TX,l2,"j","jj",strided)

(b) Tile transformations as commands

Figure 2.2. Example of tile transformations to deconstruct iteration space
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2.3.2 Targeting the GPU Memory Hierarchy

Other than computation space partitioning, to get optimal performance on a GPU

architecture, transformations need to be made to target the deep memory hierarchy. With

the high latency associated with a global memory fetch or store discussed earlier, locality

optimizations should be used to copy data into lower-latency portions of the memory

hierarchy.

Similar to how a tile operation helps with the computation space decomposition, a

datacopy operation helps with targeting specific portions of the memory hierarchy. A

datacopy transformation will introduce a new, smaller dimensional data structure from

the array access pattern of statements in a given loop nest. The new data structure can be

placed in shared memory and benefit from reuse and low-latency accesses from concurrently

running threads.

Various data copy strategies can be used to utilize the shared memory structure acces-

sible to all threads running concurrently on a streaming multiprocessor (SM). Although

not an explicitly controlled memory structure, the large register file can be exploited by

copying data into fixed sized thread-local arrays and scalars. A variant of datacopy variant,

which we refer to as datacopy privatized, targets registers by only copying local data touched

within a loop nest with respect to a subset of parallelized loops inside the loop nest.

In both cases of targeting shared memory or the register file, it may be necessary to

employ a variety of different optimization strategies and empirically test to determine

their relative merits. It is therefore extremely useful to have high level constructs that

quickly allow for the generation of bug-free implementations of these strategies. In general,

the advantage of these operations being done by the compiler are clear. For example,

the compiler can ensure correctness by understanding the data dependences between loop

statements and handling edge cases of unevenly divisible loop bounds.

In conclusion, although it is somewhat straightforward to convert a loop nest compu-

tation to a correct CUDA variant using compiler technology, generating high-performance

code requires a sophisticated compiler tool to integrate complex loop transformations for

parallelism and flexible data movement to fully utilize all the GPU architecture features

that impact performance.



CHAPTER 3

TRANSFORMATION SCRIPTS TO

DIRECT OPTIMIZATIONS

The compiler research community has developed a significant body of work in code

transformation techniques that improve performance by optimizing for specific architectural

features, especially by increasing parallelism or better managing the memory hierarchy [69,

64, 65, 54, 57, 12, 40, 34, 52, 47, 5, 37, 38, 28]. However, the prevailing interface for

code optimization on production compilers remains compile-time flags, which limits the

utilization of the transformation capabilities of the compiler to optimizations using static

analysis. Furthermore, with the complex run-time behavior and hardware interplay of

modern processor architectures, it is more effective to evaluate an optimization strategy

in a representative execution context. Because of these limitations, application developers

are often left with writing optimized code by hand, which is not only difficult and time

consuming but results in low-level architecture-specific code that is difficult to port and

maintain.

As an alternative to the compile-time flags paradigm, our compilation system exposes

its code transformation and code generation capabilities through a transformation recipe in-

terface [16, 23]. A transformation recipe expresses an optimization strategy as a sequence of

composable transformations. In this form, recipes bring the benefits of separating algorithm

writing and architecture specific optimization to application and library developers.

In this chapter, we discuss the use of transformation recipes as a powerful solution

to leverage compiler optimization capabilities and achieve very high performance code.

We describe the development of transformation recipes in the research community and

their limitations in their current form. Finally, we present a more powerful language-based

foundation for building layers of abstraction of transformations and provide examples from

the CUDA-CHiLL framework.



15

3.1 Capabilities of Transformation Recipes

3.1.1 Composition of Transformations

In the domain of complex nested loop optimizations, which are quite relevant to scientific

and HPC applications, there is a large body of research on loop transformations employed

in the optimization process [11, 2, 19]. A key challenge to loop nest optimization is that

it is difficult to express and compose a sequence of loop transformations. The ability

to express and handle composition is an important feature of an optimization framework

because multiple carefully combined program transformations can be necessary to improve

performance in many-core architecture with deep memory hierarchies.

For example, after a permutation of the loop order of a loop nest, which is a common

transformation to improve memory access patterns, a subsequent transformation must be

aware of the difference in the new loop order to perform correctly. Other transformations

that manipulate the iteration space may dramatically change the structure of the program.

For these reasons, a purely syntactic transformation framework [16, 71, 48] will have difficul-

ties with handling long and complex compositions of transformations in a flexible manner.

More powerful transformation frameworks are based on a polyhedral model of represent-

ing a statement’s iteration space. Transformations with this model allow for the exploration

of alternative iteration spaces while abstracting away many of the implementation artifacts

of the syntactic representations. Figure 3.1 (b) shows an example of a transformation recipe

using the CHiLL polyhedral framework that performs a long compositions of standard

transformations on LU input code in Figure 3.1 (a). The result of applying this recipe is

the automatically generated code in Figure 3.1 (c).

Alternative interesting methods of manipulating polyhedral models have been proposed.

For example, a purely matrix-operation-based approach was proposed by Cohen et al. [14].

While limiting transformations to those expressible in a purely mathematical manipulation

of the polyhedral model, this approach does not resolve the issue of referencing intermediate

and newly created semantic constructs.

3.1.2 Auto-Tuning

A well-recognized challenge in code optimizations for modern architectures is making

trade-offs between different strategies, or identifying optimal values of optimization pa-

rameters such as unroll factors or loop tile sizes. Without sufficient knowledge of the

execution environment, which is extremely difficult to model statically, compilers often make

suboptimal choices, sometimes even degrading performance. The choice between trade-offs
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DO K=1,N-1

DO I=K+1,N

A(I,K)=A(I,K)/A(K,K)

DO I=K+1,N

DO J=K+1,N

A(I,J)=A(I,J)-

A(I,K)*A(K,J)

(a) Original code

permute([L1,L2,L3])
tile(S1,L3,TJ,L1)
split(S1,L2,[L2≤L1-2])
permute(S2,[L1,L2,L4,L3])
permute(S1,[L1,L3,L4,L2])
split(S1,L2,[L2≥L1-1])
tile(S3,L2,TI1,L3)
split(S3,L3,[L5≤L2-1])
tile(S3,L5,TK1,L3)
tile(S3,L5,TJ1,L4)
datacopy(S3,L4,[D1],1)
datacopy(S3,L5,[D2])
unroll(S3,L5,UI1)
unroll(S3,L6,UJ1)
datacopy(S4,L3,[D1],1)
tile(S1,L4,TK2,L2)
tile(S1,L3,TI2,L3)
tile(S1,L5,TJ2,L4)
datacopy(S1,L4,[D1],1)
datacopy(S1,L5,[D2])
unroll(S1,L5,UI2)
unroll(S1,L6,UJ2)

(b) Recipe

DO T2=2,N,64

DO T4=2,T2-64,256

DO T6=1,T4-1,256

DO T8=T6,MIN(T4-1,T6+255)

DO T10=T4,MIN(T2-2,T4+255)

P1(T8-T6+1,T10-T4+1)=A(T10,T8)

DO T8=T2,MIN(T2+56,N),8

DO T10=T8,MIN(N,T8+7)

DO T12=T6,MIN(T6+255,T4-1)

P2(T12-T6+1,T10-T8+1)=A(T12,T10)

DO T10=T4,MIN(T2-2,T4+255)

DO T12=T8,MIN(N,T8+7)

DO T14=T6,MIN(T6+255,T4-1)

A(T10,T12)=A(T10,T12)-P1(T14-T6+1,T10-T4+1)

*P2(T14-T6+1,T12-T8+1)

DO T6=T4,MIN(T4+254,T2-3)

DO T8=T6+1,MIN(T4+255,T2-2)

P3(T6-T4+1,T8-(T4+1)+1)=A(T8,T6)

DO T6=T4+1,MIN(T4+255,T2-2)

DO T8=T2,MIN(N,T2+63)

DO T10=T4,T6-1

A(T6,T8)=A(T6,T8)-P3(T10-T4+1,T6-T4+2)*A(T10,T8)

DO T4=1,T2-65,256

DO T6=T2-1,N,256

DO T8=T4,MIN(T4+255,T2-2)

DO T10=T6,MIN(T6+255,N)

P4(T8-T4+1,T10-T6+1)=A(T10,T8)

DO T8=T2,MIN(T2+56,N),8

DO T10=T8,MIN(N,T8+7)

DO T12=T4,MIN(T4+255,T2-2)

P5(T12-T4+1,T10-T8+1)=A(T12,T10)

DO T10=T6,MIN(T6+255,N)

DO T12=T8,MIN(N,T8+7)

DO T14=T4,MIN(T2-2,T4+255)

A(T10,T12)=A(T10,T12)-P4(T14-T4+1,T10-T6+1)

*P5(T14-T4+1,T12-T8+1)

DO T4=T2-1,MIN(N-1,T2+62)

DO T8=T4+1,N

A(T8,T4)=A(T8,T4)/A(T4,T4)

DO T6=T4+1,MIN(N,T2+63)

DO T8=T4+1,N

A(T8,T6)=A(T8,T6)-A(T8,T4)*A(T4,T6)

(c) Generated code from (b) with bound parameters

Figure 3.1. Transformation recipe for LU with the CHiLL framework. Recipe syntax
simplified for illustration purposes.



17

can to be made by a developer, a compiler decision algorithm with empirical feedback or a

collaboration of the two. A recent body of work on auto-tuning uses empirical techniques

to execute code segments in representative execution environments to determine the best-

performing optimization sequence and parameter values [32, 33, 61, 39, 49, 44, 45, 50, 25].

When parameterized and machine-generated, transformation recipes can form the core

foundation of an auto-tuning compiler. Not limited to just simple changes in parameters,

auto-tuning compilers can propose multiple code variants representing different optimization

strategies that can be compared empirically. A desirable hybrid model involves allowing

the developer to guide and interact with the auto-tuning framework, sometimes called

collaborative auto-tuning.

3.1.3 Remain Architecture and Compiler Agnostic

Transformation recipes allow application and library developers to interact directly with

optimization and code generation constructs to transform their code, including expressing

parallelism. As proven time and again, hand-coding these changes will result in the unde-

sirable effect of creating a machine-specific program that is difficult to port.

The recipes themselves can be fine-tuned by other developers or modified for different

architectures, while the original machine-independent code is maintained with the program.

Additionally, using such a system, a developer can now focus on the performance impact

of transformations on the target code, instead of the nitty-gritty implementation details of

writing correct GPU code.

3.1.4 Interface to Multiple Compilers

The structure of today’s compilers makes it difficult to migrate new ideas into practice;

retargeting optimizations and decision algorithms for a new compiler infrastructure is often

simply infeasible. Every commonly-used compiler infrastructure has strengths and weak-

nesses, as well as years of development, that are costly to repeat. Converging on one or a

small subset of compiler infrastructures is therefore unrealistic.

Composing compiler tools from the collective capabilities of independent systems by

ensuring tool interoperability allows for the strengths of each system to be utilized. Transfor-

mation recipes can remain compiler and sometimes source language agnostic to be a bridging

tool in this interoperable tool chain. A single recipe may even be able to use multiple

compiler back-ends to perform the complex set of transformation and code-generation steps.
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3.2 A Programming Language Approach to
Directing Optimizations

3.2.1 Limitations of a Flat Sequential Transformation Recipe

What have so far been referred to as transformation recipes are flat sequences of trans-

formation commands and parameters. When building a framework that targets a specific

architecture, it is necessary to provide layers of abstraction that can automatically handle

a variety of input scenarios. Abstraction layers allow the optimization strategy to work at

a level of detail more general than the ultimate target architecture.

To build such a rich and effective abstraction layer, the following traits are desirable.

• Parameters as variables Mutable variables allow for parameters to be set by the

auto-tuning framework or by other methods.

• Queryable program state Queries capture the side-effects, results of commands

and other code state.

• Control flow Branches and iteration constructs react to captured or parameterized

information.

• Encapsulation Group together commands that are context insensitive to previous

commands.

• Readability Reference semantic constructs in a way that carries over to the final

generated program.

With these goals, it becomes immediately apparent that we are thinking of transfor-

mation recipes as programs written in a very limited language. Function outputs, logical

branching and the ability to build layers of abstraction and reusable, generic components

are easily obtained by using a more fully featured language. In doing so, we no longer refer

to these objects as transformation recipes, but transformation scripts.

3.2.2 Scripting Language Foundation for Compiler Scripts

Although there may be a few promising candidates when selecting a language on which to

base a compiler framework for expressing code transformations, the Lua [27] programming

language should certainly be on the short list.

Lua is a lightweight, embeddable scripting language with extensible semantics and easy
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integration with a host program. With its small set of general features, it can be extended to

fit a variety of different problem types. In fact, Lua has been described as “multiparadigm”

with features that allow for functional, imperative and object-oriented programming styles.

Lua syntax is also very familiar. Transformation recipes of existing frameworks should

be convertible to a script of Lua functions with very minimal syntax changes. Moving to a

standard and easily embeddable language also allows for scripts to be potentially universal

to more than just a single compiler framework if the compiler community were to establish

a standard API for common transformation commands.

3.3 CUDA-CHiLL: A Compiler Framework for Generating
Optimized CUDA Code

In this section, we introduce CUDA-CHiLL, a unified framework for novel transfor-

mations and code generation targeting CUDA code. The CUDA-CHiLL framework is

capable of transforming sequential loop nests with standardized loop transformations and

data movement commands. The commands are issued by a Lua script and can include

complex compositions and use of abstraction layers. When the script execution is finished,

CUDA-CHiLL outputs the resulting CUDA source program.

3.3.1 Basis on CHiLL

CUDA-CHiLL expands upon the standardized loop transformation commands of

CHiLL [2]. A polyhedral transformation framework, CHiLL provides a powerful collection

of polyhedral transformations for handling computation partitioning targeting parallelism

on multicore architectures and data copy and layout operations that target deep memory

hierarchies. CHiLL uses a modified version of the Omega Library [29] for polyhedral

manipulation and scanning.

The following is a summary of some of the additional functionality that CUDA-CHiLL

provides compared to CHiLL.

• Lua scripting bindings CHiLL uses a sequentially executed custom recipe language

to provide its transformation and code generation constructs to the script writer.

• Use of loop variables as semantic handles CHiLL commands use a statement

group and loop level to reference specific loop constructs. As each statement modifies

the shape and order of the polyhedral space, each command’s addressing must reflect
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the current state of the program. By adding loop index variables to CUDA-CHiLL,

more context-free groups of transformations and abstraction layers can be written.

• New introspective functions To allow for scripts to handle a variety of input code

and parameters, a number of functions were added to query the framework’s internal

representation of the polyhedral model, index variables and CUDA mappings.

• CUDA-specific functions and code generation New commands were needed to

generate CUDA-specific constructs and allow the code generation to output valid

CUDA programs. These include directing the mapping of loops to grid indices and

data transfers between the host and GPU. Also, support was added for thread syn-

chronization calls and special variable attributes like shared memory data structures.

3.3.2 Loop Variables as Semantic Handles

The ability to reference newly created semantic constructs is important to support

composition of multiple transformations and also to encapsulate groups of transformations

in a context-independent manner. CHiLL’s current method of addressing constructs in its

polyhedral model uses a statements group number and a loop level. A tile command, for

example, will produce a new loop level. Subsequent transformation commands must take

into account this change in the internal representation of the polyhedral model when they

make references using statement numbers and loop levels. The result of this addressing

method can be hard to follow recipes such as the LU transformation recipe in Figure 3.1

(b). For example, L4, L5 and L6 refer to loops created by tile and split commands. Although

powerful in its ability to compose multiple transformations, it is almost necessary to print

out generated code at each line in the recipe in order to see what constructs are being

referenced in the next command.

We make the observation that a loop index variable uniquely identifies a nested loop

for a given statement. Thus, instead of specifying loop levels, the index variable for that

level can be used. But as a loop level may reference different semantic constructs with each

change to the polyhedral model, a loop index is a sticky handle that stays valid as new loop

levels are introduced or others removed. As an additional advantage, having to specify a

fresh index variable for newly created loops provides both a handle for referencing the loop

in later operations and a more readable output from code generation.

For example, Figure 3.2 shows a transformation script applied to matrix vector multiply
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that introduces two new control loops to be used as CUDA block and thread indices, ii

and jj. In Figure 3.2 (b), these new loops are used as handles for the CUDA mapping

operation at line 7 and they can be seen as the loop indices of the first two loop levels of

the intermediate code shown in (c).

3.4 Abstraction Layers with Lua

Another feature of the underlying scripting language of CUDA-CHiLL that allows for

shorter, more powerful and easily readable transformation scripts is the ability to write

usable abstraction layers. Although every script can use the functions provided by CUDA-

CHiLL directly to express the optimization strategies, building a domain-specific abstraction

layer allows for shorter scripts and the reuse of common patterns.

Such abstraction layers themselves may collect the best strategies for targeting a specific

architecture, which may change over time as better optimization techniques arise. By being

specific to an architecture, simplifying assumptions can be made that allow the script writer

a proper level of detail for constructing their optimization strategies.

In CUDA-CHiLL, the high-level functions described in the next section are written in

Lua and built using the functions provided by CUDA-CHiLL. At the top of a transformation

script, a Lua command dofile(hlcuda.lua) is used to import these functions into the

current script namespace.

3.4.1 High Level Description of Tiling

With the CUDA-CHiLL hlcuda.lua abstraction layer, the function tile by index

provides a powerful and quick way to direct the computation space decomposition of the

original nested loop. As shown in usage in Figure 3.3 (c), tile by index can express a

group of tile operations and loop permutations through a high level Lua function. The

original code is shown in Figure 3.3 (a) and the generated code in (d). Table 3.1 provides

descriptions of each parameter of the tile by index command.

An algorithm discussed in Chapter 4 is employed to determine the tile operations and

loop order permutations required to achieve an end result that matches the list of index

variables given as the final parameter to tile by index. As shown when comparing the

original CHiLL tile commands in Figure 3.3 (b) to the CUDA-CHiLL equivalent in Figure

3.3 (c), tile by index is often performing more than one tile transformation per function

call.
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void seqMV(float c[N][N], float a[N],

float b[N])

{
int i, j;

for (i = 0; i < N; i++)

for (j = 0; j < N; j++)

a[i] = a[i] + c[j][i] * b[j];

}

(a) The matrix-vector sequential source code.

1 init("seqMV.suif", 0, 0)

2 dofile(hlcuda.lua)

3 N=1024

4 TI=16

5 tile by index({"i","j"}, {TI,TI},
{l1 control="ii", l2 control="jj"},
{"ii", "jj", "i", "j"})

6 print code()

7 cudaize("gpuMV", {a=N, b=N, c=N*N},
{block={"ii"}, thread={"jj"}})

(b) A very simple transformation recipe.

for (ii = 0; ii < 64; ii++)

for (jj = 0; jj < 64; jj++)

for (i = 16 * ii; i < 16 * ii + 16; i++)

for (j = 16 * jj; j < 16 * jj + 16; j++)

a[i] = a[i] + c[j][i] * b[j];

(c) The results of output at line 6 from (b).

void seqMV(float **c, float *a, float *b)

{
float *devO1Ptr, *devI1Ptr, *devI2Ptr;

cudaMalloc(&devO1Ptr, 1024 * 4);

cudaMemcpy(devO1Ptr, a, 1024 * 4,

cudaMemcpyHostToDevice);

cudaMalloc(&devI1Ptr, 1048576 * 4);

cudaMemcpy(devI1Ptr, c, 1048576 * 4,

cudaMemcpyHostToDevice);

cudaMalloc(&devI2Ptr, 1024 * 4);

cudaMemcpy(devI2Ptr, b, 1024 * 4,

cudaMemcpyHostToDevice);

dim3 dimGrid(64, 1);

dim3 dimBlock(64, 1);

gpuMV<<<dimGrid,dimBlock>>>(devO1Ptr,

devI1Ptr, devI2Ptr);

cudaMemcpy(a, devO1Ptr, 1024 * 4,

cudaMemcpyDeviceToHost);

cudaFree(devO1Ptr);

cudaFree(devI1Ptr);

cudaFree(devI2Ptr);

}

(d) The resulting CUDA scaffolding in the
original host-executed function.

global void gpuMV(float *a, float **c,

float *b)

{
int bx = blockIdx.x; int tx = threadIdx.x;

for (i = 16 * bx; i < 16 * bx + 16; i++)

for (j = 16 * tx; j < 16 * tx + 16; j++)

a[i] = a[i] + c[j][i] * b[j];

}

(e) The resulting CUDA kernel

Figure 3.2. A simplified example of tiled and CUDAized matrix-vector multiply
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Table 3.1. Description of prominent commands in CUDA-CHiLL scripts.

Command Example Parameter Description

tile by index

{"i","j"} The index variables of the loops that will be tiled
{TI,TJ} The respective tile sizes for each index variable
{l1 control="ii",

l2 control="jj"}
A mapping that specifies control loop variable
names and optionally renames tile loop index vari-
ables.

{"ii", "jj", "i", "j"} Final order of nested loops with update loop index
names

cudaize

"gpuMV" The name of the kernel function
{a=N, b=N, c=N*N} The data sizes of the arrays if not statically deter-

minable
{block={"ii"},
thread={"jj"}}

Block and thread indices for mapping. The
bounds for these loops are used to define the grid
dimensions.

copy to registers
"kk" The loop level, given as an index variable, that is

the target of register structure
"c" The name of the array variable to be copied

copy to shared

"tx" The loop level, given as an index variable, that is
the target of the copied data

"b" The name of the array variable to be copied
-16 Ensure the dimensions of the temporary array are

coprime with 16
unroll to level 1 Unrolls all statements up to one level from in-

nermost loops outwards. This construct will stop
unrolling if it encounters a CUDA thread mapped
index.
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3.4.2 High Level Description of Data Copy

The hlcuda.lua abstraction layer also provides functions for locality optimizations that

target shared memory and registers. These functions, copy to shared and

copy to registers, are based on CUDA-CHiLL’s datacopy and datacopy privatized oper-

ations, discussed more in Chapter 4, but utilize other features of CUDA-CHiLL to meet

their objectives.

For example, copy to shared must ensure that the resulting extracted loops match

one of the defined CUDA dimensions and that stores to the shared memory are properly

synchronized. For targeting registers, the CUDA C compiler will predictably place local

array accesses into registers providing the index expressions are simply determinable. Thus,

copy to registers unrolls loops introduced by datacopy privatized to remove variables from

the array index expressions.

for (i = 0; i < n; i++)

for (j = 0; j < n; j++)

for (k = 0; k < n; k++)

c[j][i] = c[j][i] + a[k][i] * b[j][k]

(a) Matrix multiply source code (BLAS)

1 original()

2 tile(0,1,TI,1,counted)

3 tile(0,3,TJ,2,counted)

4 tile(0,5,TK,3,strided)

5 tile(0,4,TK,4,counted)

6 tile(0,5,1,5,counted)

7 tile(0,5,1,4,counted)

(b) CHiLL tile commands

1 tile by index({"i","j"}, {TI,TJ}, {l1 control="ii", l2 control="jj"},
{"ii", "jj", "i", "j"})

2 tile by index({"k"}, {TK}, {l1 control="kk"}, {"ii", "jj", "kk","i", "j","k"},
strided)

3 tile by index({"i"}, {TJ}, {l1 control="tt",l1 tile="t"},
{"ii", "jj", "kk","t","tt","j","k"})

(c) CUDA-CHiLL tile by index equivalent

for (ii = 0; ii < 16; ii++)

for (jj = 0; jj < 64; jj++)

for (kk = 0; kk < 1009; kk += 16)

for (t = 0; t < 16; t++)

for (tt = 0; tt < 4; tt++)

for (j = 16 * jj; j < 16 * jj + 16; j++)

for (k = kk; k < kk + 16; k++)

c[j][64 * ii + 16 * tt + t] = c[j][64 * ii + 16 * tt + t] +

a[k][64 * ii + 16 * tt + t] * b[j][k];

(d) Generated code after tile commands

Figure 3.3. Initial tiling for matrix multiply for GPU parallelism (CUBLAS 2)
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As seen in Figure 3.4, the resulting use of these high level functions to target the deep

memory hierarchy of a GPU is much shorter and expressive than the CHiLL equivalent.

The commands used in Figure 3.4 (b) have their parameters explained in Table 3.1. Note

that the CHiLL recipe shown in Figure 3.4 (a) does not handle CUDA-specific constructs

such as designating shared memory and inserting synchronization barriers but is otherwise

comparable in the resulting transformations.

Figure 3.5 depicts how the computation of a small N=8 matrix-vector multiply (MV)

problem shown in Figure 2.2 (a) can be optimized with these high level data copy commands.

A copy to shared command is used to copy sections of the b vector into shared memory using

multiple threads. A copy to registers is used to copy individual values picked by the thread

and block index (tid and bid, respectively, in the figure) from the a result vector to a tmp

variable where it is used in the computation and then copied back to the result vector.

Although minimal in its problem size and tile size for example purposes, this is the same

1 --register copy

2 datacopy privatized(0, 3, "c", 4, 5, false, -1, 1, 1)

3 --shared memory copy

4 datacopy(0, 4, "b", false, 0, 1, -16)

5 --thread parallelism for shared memory copy

6 tile(3,4,(TJ*TJ)/TI,4,counted)

7 tile(3,6,1,4,counted)

8 --unroll register copy loops

9 unroll(1,5,0)

10 unroll(2,5,0)

11 --fully unroll shared copy loop

12 unroll(3,6,0)

13 --finally unroll main computation

14 unroll(0,8,0)

15 unroll(0,9,0)

16 --unroll additional cleanup loops

17 unroll(8,6,0)

18 unroll(4,5,0)

19 unroll(6,5,0)

(a) CHiLL commands

1 copy to registers("kk", "c")

2 copy to shared("tx", "b", -16)

3 unroll to depth(2)

(b) CUDA-CHiLL equivalent where "kk" and "tx" are index variables

Figure 3.4. Data copy and unroll for matrix multiply for GPU memory hierarchy
(CUBLAS 2)
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}
bid=0

tid 0:4 }

bid=1

tid 0:4}

k=0

}

k=1

}

k=0

}

k=1

=

}

bid=0

tid 0:4 }

bid=1

tid 0:4

c b a

s0 s1 s2 s3

__shared__

tid
 0:4

a0 a1 a2 a3

tid=3

a0 = tmp

N=8

TX=4
k=0

bid=0

shared float s[4];

float tmp = a[4*bid+tid];

for (k = 0; k < 2; k++)

{
s[tid] = b[4*k+tid];

syncthreads();

tmp += c[4*k+0][4*bid+tid] * s[0];

tmp += c[4*k+1][4*bid+tid] * s[1];

tmp += c[4*k+2][4*bid+tid] * s[2];

tmp += c[4*k+3][4*bid+tid] * s[3];

syncthreads();

}
a[4 * bid + tid] = tmp;

Figure 3.5. Given an easy to depict, although trivially small problem size of N=8 for
matrix-vector multiplication, the decomposition using a tile size of TX=4 is visually depicted
with the global memory matrix, vectors and shared memory structures. The corresponding
kernel code is also given.

strategy used in the MV script discussed in Chapter 5 for running benchmarks.

3.4.3 High Level Description of Unroll

Part of a CUDA optimization strategy is sufficient granularity that the performance

benefits of running on the GPU outweigh the overhead of data transfer and thread execution.

This often means leaving some loop levels inside the kernel. Unrolling these loops in the

GPU kernel provides the same performance benefits that unroll provides on conventional

processors, except because of some GPU attributes discussed below, these benefits may be

even more notable on the GPU.

Because hardware vendors try to provide as many execution units as possible in a GPU

processor, the complexity of each execution unit is fairly simple. Without much silicon

devoted to branch prediction, and with the lock-step manner in which threads are executed

inside a SM, unrolling sometimes improves performance purely by removal of loop iteration

overhead. Also, the compiler may be able to reuse data in registers and improve instruction

scheduling when compiling statements from unrolled fixed-size loops.

The unroll to level command unrolls the innermost loops of compute statements. It

may unroll up to a specified number of levels, but never unrolls a loop mapped to a thread

or block. Also inherent in this CUDA-specific abstraction is the careful treatment of extra

clean-up statements often created by the unroll transformation. These statements may not

be created for every combination of data set size and tile dimensions. But, when generating

library code for all potential problem sizes, various dimensions will result in different sets
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of clean up statements. In this case, unroll to level makes certain to have the iteration

spaces of the clean-up statements also mapped to CUDA thread dimensions for optimal

performance.

Because unroll to level can query to detect side effects, this approach dramatically

simplified generating optimized code for every potential matrix size of the matmul case

study discussed in Chapter 5. Earlier research iterations required individually handling

the sequence of unroll operations required for the different variations of clean-up loops

generated by the various problem sizes.

3.5 Summary

With the high level abstraction interface and its specialization in building optimized

GPU code, CUDA-CHiLL exemplifies the utility of using scripting languages as the interface

to compiler transformations and code generation. Applicable transformations such as

tiling and loop unrolling can be made available at a level of detail suited to a developer

composing an optimization strategy. Next, we discuss the details of CUDA-CHiLL behind

the abstraction interface.



CHAPTER 4

CUDA-CHILL TRANSFORMATIONS AND

CODE GENERATION

In this chapter, we present how the organization of our compiler system falls into two

phases. Phase I builds an internal representation of the source program and performs trans-

formations and queries on that representation. Phase II of the compiler generates optimized

code for the CUDA platform for various problem sizes and optimization techniques.

4.1 The Two Phase Structure

To allow for the most flexible and powerful model of code transformations and target-

specific optimizations, CUDA-CHiLL’s compiler framework is partitioned into two phases

of operation, as shown in Figure 4.1. Phase I is governed by the running of a Lua

transformation script. The start of the script loads and initializes the internal representation

of CUDA-CHiLL based on an input source file. Each API call of the script performs a

transformation or query on this internal representation.

When the script finishes its execution, the framework enters Phase II. With the newly

transformed and updated internal representation, a code generation library is given groups

of statements and constraints and attempts to generate as output the cleanest sequential

code representation for the statements. This intermediate generated code is then specialized

for the CUDA architecture with the details of the CUDA grid space and data movement

gathered from running the transformation script. Finally, the output is ready to be trans-

lated to compilable CUDA C that should be functionally equivalent to the input source

program.

4.1.1 Interpreting Transformation Scripts

Executing transformation scripts in CUDA-CHiLL involves creating, updating and query-

ing an internal representation of the source program. When initialized at the beginning of

a script, CUDA-CHiLL is given a source file that is preprocessed into a high-level source



29

Phase I Phase II

Figure 4.1. CUDA-CHiLL System Diagram

intermediate representation (IR) based on SUIF [62]. Along with the SUIF source file, a

specific procedure and loop are given as the target of the transformation script.

At initialization, the input IR for the specified loop is transformed into a set of groups

of statements where each group shares the same index space. The internal representation

of CUDA-CHiLL then consists of the following items.

• The original IR for the statements themselves, which may be updated and finally used

in Phase II to reconstruct program code.

• A polyhedral model of the iteration space and transformations on that iteration space

for each group of statements.

• Ordering of statements at each dimension of the polyhedral space.

• A data dependence graph between statements.

• A set of index variables per statement as handles to dimensions of the polyhedral

model (and ultimately the loops that could be generated from those dimensions).

• Details to transform the output to parallel GPU code. This includes grid dimensions,

details for kernel function extraction and memory management between the host and

GPU.

Through API calls made in the Lua script, this internal representation is updated and

queried. As we discussed in Chapter 3, polyhedral models for program transformations

Internal Representation 

Polyhedral Model 
Index Names 

Dependency Graph 
CUDA Dimensions 

Statement IR 

Code Generation 

Code Generation of 
Polyhedral Model 
Kernel Extraction 

Call Site Generation 
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provide the most flexibility in allowing for the composition of many transformations while

ensuring a valid representation of the program. CUDA-CHiLL builds on CHiLL’s polyhedral

model for representing the iteration space of groups of statements. Transformations such

as tile and datacopy introduced in Chapter 2 mutate the polyhedral model and potentially

the other states that compose the internal representation.

Special commands such as cudaize described in more detail in this chapter may not

perform transformations to the polyhedral model but provide the binding information to

be used later in Phase II of the framework.

4.1.2 Code Generation

Once the Lua transformation script finishes execution, Phase II of the framework con-

verts the internal representation into the optimized output source code. Along with the

polyhedral model for each statement, other internal representation is used to generate

sequential code that uses specified index variables for the generated loop levels. Also, given

details on how the computation will be translated to a GPU kernel, the code generation is

instructed not to split up iteration spaces that need to be mapped to a single GPU grid

dimension.

At this stage, the code is generated as a single nested sequential loop. Although CUDA-

CHiLL focuses on targeting CUDA C as the destination language and framework, this

last stage of the compiler could be parameterized for other GPU language targets such as

OpenCL or even multicore CPU targets such as OpenMP or pthreads. From the sequential

nested loop, the provided GPU mapping information is used to extract a kernel and generate

a call site that is inserted in place of the original loop in the final output code.

4.2 Phase I

Once the internal representation of the input code is initialized, there is a number

of functional interfaces to transformation and query commands in CUDA-CHiLL. Many

transformation commands operate on a given statement group (often thought of as just a

statement) and a dimension of the polyhedral iteration model for that statement. Since

the dimensions of the polyhedral model are always ordered in terms of the nesting level of

the equivalent loop representation, a single dimension of the model can be referenced by its

nesting depth (level).

More conveniently and for reasons previously discussed, since each nesting level corre-

sponds to an index variable, and commands that introduce new levels must also specify a
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new index variable, the index variable itself can be used in transformations. Thus, with

the pair of a statement number and an index variable, most transformations have a named

handle that uniquely identifies a program object.

4.2.1 Querying the Internal Representation

To build powerful abstraction layers such as hlcuda.lua introduced in the previous

chapter, some functions were introduced to provide useful run-time querying into the

internal representation of the input code. These functions could be used at any time to

dynamically query the various transformation states caused by different problem sizes or

parameters. For example, since unroll may or may not require the creation of clean-up

statements, num statements could be used before and after a call to unroll to determine

if new statements were created that need extra handling. Table 4.1 lists the functions and

their description.

4.2.2 CUDA Mapping Semantics

To enable a transformation script to target a transformed nested loop to a GPU, a

transformation construct must be introduced to specify the mapping from well-formatted

loop nests to GPU dimensions. In CUDA-CHiLL, the cudaize command provides the

necessary information to extract from the sequential loop produced in Phase II a separate

kernel function that will execute as GPU threads. The compiler also generates scaffolding

to invoke this kernel and manage the data movement from the host to the GPU and back

for relevant data structures for the computation. Figure 3.2 (d) shows an example of this

Table 4.1. Description of CUDA-CHiLL querying commands

Function Description
num statements Retrieves the total number of statements
cur indices Retrieves the index variable names of each loop level as a list for a given

statement
block indices Retrieves a list of the mapped indices for the block or thread grid
thread indices dimensions as specified by an earlier cudaize call.
block dims Retrieves a list of the integral dimensions of the block or thread dimensions
thread dims as specified by an earlier cudaize call.
hard loop bounds Returns the lower and upper bounds if available for a given statement

group and loop. -1 returned for when hard bounds are not calculable.
does exist Returns whether a given variable exists in the procedure or global symbol

tables
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generated scaffolding and (e) shows its related generated kernel function.

In the Table 3.1, we describe the details of the parameters used in the cudaize command.

Notice the indices that specify which dimensions of the polyhedral space are placeholders

for the CUDA grid dimensions. These indices will be explicitly renamed to the appropriate

abbreviated CUDA index name from the set bx,by,tx,ty,tz. We later discuss how other

CUDA-CHiLL operations utilize this naming convention to intelligently map their own

computation space to CUDA grid dimensions. Also, these index variables are used during

code generation to transform the generated sequential loop nest to CUDA code.

4.2.3 Additional Block and Thread Index Mapping

Because PHASE II of CUDA-CHiLL uses the specially named loop index variables to

direct which loops are to be replaced by CUDA grid indices, new statements created after the

cudaize call can also have CUDA grid indices. For example, transformations like datacopy

and unroll create new statements. For some of these new statements, like in the case of an

unroll clean-up statement, index names will be properly inherited. These include CUDA

grid index names that will be replaced by dimensions of the CUDA grid space during code

generation. For others, especially those created by datacopy, statements may need to be

tiled to match the appropriate grid dimensions. Finally, some of the index names for the

iteration space of these new statements must be explicitly set to have the statements be

properly executed in a parallel manner on the GPU.

CUDA-CHiLL provides a rename index command that given a statement, loop level

and variable name, will explicitly set the loop index variable for code generation. In the

case of the given name being one of the grid dimension abbreviated names, the effect of the

renaming is that the specified loop will be mapped to that grid dimension just like the ones

specified by cudaize.

4.2.4 Other Available Transformations

CUDA-CHiLL expands upon the transformations in CHiLL to provide all the neces-

sary tools for targeting the CUDA framework. Table 4.2 describes some of the common

commands used in the CUDA-CHiLL framework by higher level abstractions like the one

provided by hlcuda.lua. These commands have been updated with CUDA-specific features

and the use of index variables as semantic handles.

High level functions use these commands, as well as other CUDA-CHiLL commands such

as the querying interfaces, to build their powerful abstractions for the target architectures.
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Table 4.2. Description of common CUDA-CHiLL commands

Command Description
tile Tile a given loop with a given tile size. Provide an index variable

for the newly generated control loop and second index variable to
optionally rename the original index variable in the tile loop.

permute Reorder the loop nest for a given statement according to a given loop
order. The order is specified by a list of index variables.

datacopy For a specified statement and starting loop level, copy array access
of a specified array to a smaller dimensional structure. Optionally
annotate the new data structure with shared to specify a copy to
shared memory.

datacopy privatized Similar to datacopy but used to copy data private to a thread and
thus doesn’t have an option to flag for shared memory.

Figure 4.2 and Figure 4.3 present the details of the algorithms used in the tile by index

and unroll to level high level functions introduced in the previous chapter.

4.2.5 Adding Synchronization of Shared Memory Structures

Shared memory data structures can be used concurrently by threads running on the

same SM. But before a thread examines memory locations in a shared data structure that

were written by other threads, a call to syncthreads() is necessary.

The copy to shared high level function discussed in Chapter 3 creates a copy of data in

shared memory to achieve better reuse and lower latency access. The high level function uses

the add sync command to insert the synchronization calls during code generation. add sync

takes a statement group number and index name to identify the loop level containing writes

to shared memory. The syncthreads() command is then inserted after this loop during

code generation.

4.3 Phase II

4.3.1 Directing the Polyhedral Code Generation

Building on the foundation of CHiLL’s code generation features that in turn utilize the

Omega Library [29], CUDA-CHiLL must handle CUDA-specific constructs and constraints

when converting the internal representation to a sequential loop nest. For example, CUDA

uses special attributes, such as global , to identify kernel functions and memory classi-

fications of data structures that are not valid ANSI C. Also, left to its own constraints, the

code generation libraries sometimes split up the generated loops based on the polyhedral
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TileByIndexCommands(s,I,S,M,O)

Input: s: Statement number; I : Indices to tile; S : Tile sizes;
M : Map of names for indices; O : Final loop nest order

Output: F : Set of transformation operations
begin

F := ∅
C := extract control loop name list from M
I ′ := extract renamed tile loop name map from M ∪ I
order := BuildOrder(O, C, I ′, 0)
F := F + [[permute(s,order)]]
for i in 1..|I| do

level := FindLevel(Ii)
order := BuildOrder(O, C, I ′, i)
offset := offset between I ′i and Ci in order
if offset < 0 then

F := F + [[tile(s,level,Si,level + offset,I ′i,Ci)]]
then

F := F + [[tile(s,level,Si,level,I
′
i,Ci)]]

end
order := BuildOrder(O, C, I ′,i)
F := F + [[permute(s,order)]]

end
return F

end

BuildOrder(O,C,I,n)

Input:
O: Final loop nest order;
C : Control loop list;
I : Index loop mapping;
n: Current index

Output: B: Built order
begin

B := {}
C ′ := C after position n
for o in O do

Skip if o ∈ C ′

if o ∈ I then
o := I(o)

end
B := B :: o

end
return B

end

Figure 4.2. Algorithm used by tile by index where FindLevel finds the loop level of an
index variable in the current internal representation and BuildOrder builds the snapshot of
what the order should be between its current state and its final state given n tile operations
were already processed.

UnrollToLevelCommands(l)

Input: l: maximum levels to unroll;
Output: Set of transformation operations
begin

F := ∅
repeat

for each statement s do
for l’ innermost to outermost levels of s, stopping when reaching a thread
index level or iterated l times do

F := F + [[unroll(s,l′)]]
end

end
until no new statements are introduced
return F

end

Figure 4.3. Algorithm used by unroll to level
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model for multiple statements to produce readable and minimally gated code. CUDA-

CHiLL must then specify when a dimension of the polyhedral model must be contiguous

for the purposes of later transformations of the output code to parallel GPU code.

4.3.2 Transforming Sequential to Parallel Code

As we previously outlined, after the internal representation is directed through the

generation of a sequential loop nest, transformations are performed on this code IR to

produce the desired GPU code.

As an example of what this transformation looks like, consider the CUDA code shown

in Figure 3.2(d). This code is generated to provide the proper scaffolding to handle data

movement and make the GPU kernel call. The array references in the sequential loop nest

are analyzed to determine their read and write properties. Appropriate cudaMalloc and

cudaMemcpy calls are then generated for each array to transfer data to and from GPU global

memory. If size attributes were specified in the cudaize call during the running of the

transformation script, they will be used in these memory copy operations.

The kernel call requires parameters to define the CUDA grid space used when executing

the kernel. In this case, there is only one grid dimension and thread dimension (all other

dimensions are set to 1). The call to the generated GPU kernel, gpuMV, is made with the

dim3 variables that define the execution grid space as extra parameters. CUDA uses the

<<< >>> syntax in a C++-template manner prefixing the parameter list at the call site of

the kernel function with these dimension variables.

Finally, as an effect of the cudaize call in the transformation script, for each statement

group, there should be loop levels with specially renamed index variables from the set

bx,by,tx,ty,tz. During the transformation to CUDA code, loops with these indices are

removed and references to these variables are replaced with the CUDA provided index

variables from the set block.x, block.y, thread.x, thread.y, thread.z. If there was

a compound upper bound for a removed loop, it is replaced with a bounds check to ensure

correctness. For example, if the upper bound for the tx loop was min(-(58 * bx) + 116,

128) and the thread.x grid dimension was 128, the loop construct would be replaced with

the condition if(tx < -(58 * block.x) + 116).

4.4 Summary

With the desired GPU code produced, CUDA-CHiLL has completed Phase II. The

output code is ready to be compiled by the CUDA C compiler and will be functionally
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equivalent to the original sequential code but execute on the GPU. As part of an auto-tuning

or library-building strategy, CUDA-CHiLL can rapidly produce many code variants based

on different problem sizes or optimization parameters. Its high level abstraction layer and

low level constructs discussed in this chapter can be intermixed to provide the ultimate

flexibility in construction transformation scripts that produce high performance GPU code.



CHAPTER 5

EVALUATION

In this chapter, we show how CUDA-CHiLL, combined with insights on how to optimize

CUDA for the target GPU architecture, can be used to generate high-performance GPU

code. As we will show in some examples, this generated code often matches or exceeds the

performance of manually tuned libraries. We describe the optimization strategy for the three

BLAS kernels matrix-vector multiply, transposed-matrix-vector multiply and matrix-matrix

multiply. BLAS kernels are well studied and their deceptively simple nature allows for the

full range of transformation choices. They thus provide a good baseline for comparing

different optimization strategies, including those vetted by previous research and adopted

in high performance libraries.

5.1 Optimization Heuristics

Before analyzing each individual kernel, we first provide some compiler optimization

heuristics that are used to design the optimization strategies embodied in the transformation

scripts described later in this chapter. These heuristics could also be used in future work

to design an automated compiler decision algorithm for generating scripts that represent

the potential search space of optimization strategies. In combination with an auto-tuning

framework, such a system may find strategies for existing or new code that exceed the

performance of the current method of expertly constructed strategies.

As discussed in Chapter 2, there are multiple architecture features at play in any

given optimization strategy. We make the observation that these three BLAS kernels have

significant parallelism and few data dependences (only on the accumulation to the output),

so strategies that maximized memory hierarchy performance are by and large safe from

a parallelization perspective. Although it is also necessary to consider computation space

partitioning when looking to optimize for the deep memory hierarchy of GPUs. Locality

optimizations assume a computational parallelism is already in place to be able to target

relevant memory structures.
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We therefore considered multiple areas of research targeting parallel architectures and

locality optimizations to be able to define the optimization heuristics and the transformation

scripts that use them in this chapter. These include manual tuning strategies for GPUs [59,

9, 6], compiler approaches for combining parallelism with locality optimization (e.g., [31])

and memory hierarchy optimization strategies that compose multiple optimizations [13, 40].

The memory hierarchy optimization approach is an adaptation of the algorithm in [13].

However, it is also significantly influenced by the work of Volkov et al. in optimizing

matrix-matrix multiply for the NVIDIA GTX, which was incorporated into the CUBLAS

2.0 library [59]. The key insight from the algorithm in [13] is to use compiler transformations

to control placement of data in different levels of the memory hierarchy according to the

amount of reuse. The data with maximum reuse is placed in the fastest portion of the

memory hierarchy, and tiling is used to match the data footprint of the reused data to the

capacity of the different storage levels. We consider three levels of memory hierarchy in the

target GPU: register, shared memory and global memory. 1 Unlike a conventional cache-

based memory hierarchy where different memory hierarchies have an order of magnitude

difference in size, the GPU’s register file size collectively in a thread block is larger than the

size of shared memory. Locality optimizations should take this into account when defining

loop ordering.

The following is a list of the optimization heuristics for high performance GPGPU code.

• H1: Dependences and Parallelization We permute the loops in the nest so that

any loop carrying a dependence is within a thread or a thread block. In the latter case,

thread synchronization must be inserted. Loops representing blocks should not carry

dependences, as this would require costly global synchronization. Different levels of

subloops within a loop nest can be parallelized as long as they use the same thread

block size and proper synchronizations are inserted.

• H2: Global Memory Coalescing All data is initially copied into global memory.

Therefore, we select a loop order such that the x dimension for the thread index is

linearly accessing the bulk of its data in global memory, resulting in coalesced access.

If global memory coalescing is not possible due to interference with another array

accessed in a different order, an array that is reused across threads may be copied by

1We do not use constant memory or texture memory for these codes, following Volkov et al.
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different threads into shared memory in a coalesced order, and accessed directly from

shared memory.

• H3: Shared Memory and Bank Conflicts Data shared across threads, either

as a result of the global memory access coalescing optimization above, or through

significant inherent reuse, are placed in shared memory. Shared memory accesses

need to avoid bank conflicts along the thread index, and two-dimensional arrays that

are loaded into shared memory linearly along one dimension and accessed linearly

in another dimension will require padding of one of the dimensions to avoid shared

memory bank conflicts.

• H4: Maximize Reuse in Registers Registers provide low latency storage local to

a thread, and data that are reused within a thread can benefit by being placed in

registers. Due to the large register file size, tile sizes for register tiling are also good

candidates for partitioning the computation across streaming multiprocessors, thus

avoiding an additional level of tiling and overhead.

5.2 BLAS Library Benchmarks

Note that the CUBLAS library obeys the convention of standard Fortran BLAS imple-

mentations: “For maximum compatibility with existing Fortran environments, CUBLAS

uses column-major storage and 1-based indexing” [41]. Since C uses row-major storage, the

two-dimensional matrices are implicitly transposed for the CUBLAS calls. In this section,

we use the CUBLAS naming, so, for example, what we refer to as “transposed-matrix-vector

multiply” is not actually transposed.

5.2.1 Matrix Vector Multiply

Figure 3.2(a) and Figure 5.1 (a) shows matrix vector multiply source code and its CUDA-

CHiLL transformation script, respectively. Following H1, there is a reduction on loop j

but no dependence on loop i, so loop i is tiled to provide multiprocessor and thread-level

parallelism (lines 2 and 3). Following H2, there is no reuse of array c and with the i loop

parallelized, its accesses to global memory are already coalesced, so it remains in global

memory. After the computation space decomposition, the transformed code is matched

to CUDA block and thread indices in line 3. Now we use only one block dimension (for

unsynchronized parallelism) and one thread dimension (for synchronized data sharing). This
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effects a change in the naming of the specified indices in later parts of the script.

Following H3, array b, which exhibits reuse across threads, is copied to shared memory

in line 5. Inside the copy to shared construct, additional tiling of the new parallel copy

statement is done to follow the thread partitioning of the main computation. Following

H4, line 6 holds the privately computed array a for each thread in registers. To reduce

loop overhead, line 7 fully unrolls the main computation loop. This unroll may create extra

cleanup loop structures that will automatically be configured to match the thread parallisim

of the main loop and be unrolled themselves if necessary. It turns out that properly handling

these cleanup loops which occur for not evenly divisible tile sizes has a huge performance

impact on the problem sizes that require them.

Figure 5.1(b) shows the simplest generated CUDA kernel from this script, when array

sizes are divisible by the tile size of 64. Notice the vector notation, such as P1[0:15], that

is an abbreviation for multiple source lines of code in the generated output.

5.2.2 Transpose Matrix Vector Multiply

Figure 5.2 shows transpose-matrix-vector multiply source code (a) and associated CUDA-

CHiLL script (b). The loop nest is parallelized in the same way as MV, as shown in lines

2 and 3. The CUDA mapping is also the same as MV in line 5. We can also exploit reuse

on b by copying to shared memory in line 5.

Array c in transpose-matrix-vector multiply is not accessed in a coalesced order from

global memory. So even though c has no reuse within the thread block, we copy to shared

1 dofile(hlcuda.lua)

2 tile by index({"i","j"}, {TI,TI},
{l1 control="ii", l2 control="k"},
{"ii", "k", "i", "j"})

3 normalize index("i")

4 cudaize("mv GPU", {a=N, b=N, c=N*N},
{block={"ii"}, thread={"i"}})

5 copy to shared("tx", "b", 1)

6 copy to registers("k", "a")

7 unroll to depth(1)

(a) CUDA-CHiLL script for MV

float tmp;

__shared__ float P1[16];

bx = blockIdx.x;

tx = threadIdx.x;

tmp = a[tx+16*bx][0];

for (k = 0; k <= 63; k++) {

P1[tx] = b[16*k+tx];

__syncthreads();

tmp += c[16*k:16*k+15][16*bx+tx]

*P1[0:15];

__syncthreads();

}

a[tx+16*bx] = tmp;

(b) Generated CUDA kernel code from
above script (N=1024,TI=16)

Figure 5.1. MV transformation recipe and generated code.
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for (i = 0; i < n; i++)

for (j = 0; j < n; j++)

a[i] = a[i] + c[i][j] * b[j];

(a) Transpose-matrix-vector multiply source code (BLAS)

1 dofile(hlcuda.lua)

2 tile by index({"i","j"}, {TI,TI}, {l1 control="ii", l2 control="k"},
{"ii", "k", "i", "j"})

3 normalize index("i")

4 cudaize("tmv GPU", {a=N, b=N, c=N*N}, {block={"ii"}, thread={"i"}})
5 copy to shared("tx", "b", 1)

6 copy to shared("tx", "c", -16)

7 copy to registers("k", "a")

8 unroll to depth(1)

(b) CUDA-CHiLL script for TMV

float tmp;

__shared__ float P1[16];

__shared__ float P2[16][17];

bx = blockIdx.x;

tx = threadIdx.x;

tmp = a[tx + 16 * bx];

for (k = 0; k <= 63; k++) {

P1[tx] = b[16 * k + tx];

__syncthreads();

P2[0:15][tx] = c[16 * bx:16 * bx + 15][16 * k + tx];

__syncthreads();

tmp += P2[tx][16 * k:16 * k + 15] * P1[0:15];

__syncthreads();

}

a[tx + 16 * bx] = tmp;

(c) Generated CUDA kernel code from above script (N=1024,TI=16)

Figure 5.2. Transformation recipe and generated code for TMV.
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memory in coalesced order by different threads so that in the computation, the threads

access the data from shared memory. Line 6 performs this shared memory copy. The

last parameter to copy to shared, −16, is used in the datacopy transformation to pad

the temporary array size to be coprime with 16, which is the number of banks in shared

memory, to avoid shared memory bank conflicts.

Again, we unroll the main computation in line 8. This time, the unroll to depth

abstraction also handles unrolling the inner loop of the shared memory copy code for

c. Because of the extra shared memory copy, there may be even more clean-up loops

generated for the various problem and tile sizes for this code transformation that will be

optimally handled. An example of optimized code generated from the above script is shown

in Figure 5.2(c).

5.2.3 Matrix Multiply

Figure 5.3 shows the matrix multiply source code (a) and CUDA-CHiLL transformation

script (b). For matrix multiply, array c has dependences carried by the k loop, and it has

the most reuse, so it is the best candidate to be kept in fast registers and thus, the k loop

is kept as the innermost loop during computation space partitioning (see lines 2, 3 and

4). The main computation loop is partitioned with the tile size TJ × TI/TJ. The CUDA

mapping uses two block indices and two thread indices in line 5.

We apply the register copy transformation on line 6 to calculate the correct temporary

array footprint with regard to parallelized loops access of c. An unroll is implicitly done on

the loop that copies into and out of the this local array so that the compiler will see it as

a target for register allocation. Line 7 is for the shared memory copy, similar to the TMV

example above, where b is copied in a coalesced order by one set of threads, and accessed

in a different order from shared memory. Again, there will be some tiling of the shared

memory copy loop to use match the thread parallelism of the computation.

The unroll to depth abstraction is instructed to unroll up to two loop levels in line

8. The main compute loop with its j and k indices will be unrolled fully, as well as the

shared memory copy loops. Finally, the initial unrolls will be creating clean-up loops that

themselves will be properly mapped to threads and unrolled.

Figure 5.3(c) shows one resulting CUDA kernel from the above script. The resulting

code closely matches the Matrix Multiply code in [59] except for a slightly different parallel

mapping scheme for the shared memory copy code.
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for (i = 0; i < n; i++)

for (j = 0; j < n; j++)

for (k = 0; k < n; k++)

c[j][i] = c[j][i] + a[k][i] * b[j][k]

(a) Matrix multiply source code (BLAS)

1 dofile(hlcuda.lua)

2 tile by index({"i","j"}, {TI,TJ}, {l1 control="ii", l2 control="jj"},
{"ii", "jj", "i", "j"})

3 tile by index({"k"}, {TK}, {l1 control="kk""},
{"ii", "jj", "kk", "i", "j", "k"}, strided)

4 tile by index({"i"}, {TJ}, {l1 control="tt", l1 tile="t"},
{"ii", "jj", "kk", "t", "tt", "j", "k"}, strided)

5 cudaize("mm GPU", {a=N*N, b=N*N, c=N*N},
{block={"ii", "jj"}, thread={"t", "tt"}})

6 copy to registers("kk", "c")

7 copy to shared("tx", "b", -16)

8 unroll to depth(2)

(b) CUDA-CHiLL script for MM

float P1[16];

__shared__ float P2[16][17];

bx = blockIdx.x, by = blockIdx.y;

tx = threadIdx.x, ty = threadIdx.y;

P1[0:15] = c[16 * by:16 * by + 15][tx + 64 * bx + 16 * ty];

for (kk = 0; t10 <= 1008; kk += 16) {

P2[tx][4 * ty:4 * ty + 3] = b[16 * by + 4 * ty:16 * by + 4 * ty + 3][tx + kk];

__syncthreads();

P1[0:15] += a[kk + 0][64 * bx +16 * ty + tx] * P2[0][0:15]

P1[0:15] += a[kk + 1][64 * bx +16 * ty + tx] * P2[1][0:15]

...

P1[0:15] += a[kk + 15][64 * bx + 16 * ty + tx] * P2[15][0:15]

__syncthreads();

}

c[16 * by:16 * by + 15][tx + 64 * bx + 16 * ty] = P1[0:15];

(c) Generated CUDA kernel code from above script (N=1024,TI=64,TJ=TK=16)

Figure 5.3. Transformation recipe and generated code for MM.
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5.3 Performance

We applied the recipes from the previous section to the sequential code for the three

BLAS kernels: matrix-vector multiplication (MV), transposed-matrix-vector multiplication

(TMV) and matrix-matrix multiplication (MM). We measured performance of each kernel

against the CUBLAS 2.0 library released by Nvidia for a range of problem sizes with square

matrices ranging from 128 to 8192 elements for each kernel.

We used auto-tuning in a limited way to identify tile sizes that performed best for a each

matrix size with MV and TMV and a small set of tile sizes for the more computationally

expensive MM. The size and layout of the tile determines the number of threads active in a

block, and the total number of threads. Further, when tiling is used with data copy, tile size

dictates amount of shared memory used per block or registers used per thread. With these

considerations, we constrained the tile sizes to relatively small numbers, and multiples of 8.

Once tile sizes were chosen, each version of the generated code and the CUBLAS library

was run 3 times, and we used the average of those runs recording time using CUDA events.

We graph the results for all data points on the three kernels in Figures 5.4 and Figures 5.5.

Figures 5.4(a) and (b) compare the performance of the CUDA-CHiLL automatically-

generated code with CUBLAS for MV, and the speedup of CUDA-CHiLL over CUBLAS,

respectively, within the range of matrix sizes. On average, CUDA-CHiLL provides a 1.8x

speedup over the CUBLAS libraries. While more speedup was achieved for smaller problem

sizes, with a maximum of 2.7x, the CUDA-CHiLL automatically-generated code never fell

below the performance of the CUBLAS libraries. The tile sizes chosen for each matrix

size varied from 8 to 120. In previous experiments, a fixed tile size of 16 was used for all

problem sizes, but as the problem sizes went over 2k, performance suffered in comparison

to the CUBLAS libraries.

Figure 5.4(c) and Figure 5.5(a) present the performance comparison between CUDA-

CHiLL and CUBLAS for TMV. The automatically-generated code stays very close to the

performance of the library numbers. It excels in the smaller problem sizes, with a maximum

of 1.7x speedup and falls to a minimum 0.8x the library performance in a few larger problem

sizes. Again, various tile sizes are tested for each problem, with sizes ranging from 8 to 56

chosen based on performance.

Figures 5.5(b) and (c) compare performance between CUDA-CHiLL and CUBLAS for

MM. The performance is consistently better with the CUDA-CHiLL code, with an average

1.5x speedup over the library code and a maximum 2.5x speedup. CUBLAS achieving 372
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(a)MV GFLOPS

(b)MV Speedup

(c)TMV GFLOPS

Figure 5.4. Performance comparison of automatically generated code with CUBLAS 2.0
for matrix-vector (a,b), transposed-matrix-vector (c) multiplication kernels.
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(a)TMV Speedup

(b)MM GFLOPS

(c)MM Speedup

Figure 5.5. Performance comparison of automatically generated code with CUBLAS 2.0
for transposed-matrix-vector (a) and matrix-matrix (b,c) multiplication kernels.
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GFLOPS at its highest, wile CUDA-CHiLL is able to achieve 435 GFLOPS. While it is

significant that compiler-generated code can beat the performance of manually-tuned code,

an even more significant accomplishment of our compiler is the difference in performance for

all other matrix sizes that are not multiples of 16, where the CUBLAS library performance

drops by 40-50%. There were, however, some points in the range where the CUDA-CHiLL

performed only 0.9x the library code. In our experiments, we used relatively few tile size

centered around 64x16. Further performance improvements may be achieved by testing

a wider selection of tile sizes and potentially different optimization strategies for specific

problem sizes.

From this experiment, when coupled with the heuristics of the previous section, we have

learned that various capacity and architectural features point to a small set of strategies for

generating highly-tuned GPU code. We plan to generalize this work to increase the level

of automation, incorporating the heuristics of the previous section with the constraints on

tile sizes we learned from these experiments into a compiler decision algorithm that relies

on auto-tuning to fine-tune tile sizes.



CHAPTER 6

RELATED WORK

While the literature richly describes high-level compiler optimization strategies for tar-

geting architectural features, as we have discussed in Chapter 3, the prevailing interface

of compile-time flags falls short of achieving performance levels compared to what can

be derived manually. As a notable contemporary example, GPU programmers aggres-

sively tune their code, due to wide variations in performance of GPU codes resulting from

subtle differences. Manual code optimizations for CUDA code have been performed in

[9, 15, 70, 59, 6], showing phenomenal improvement in performance.

The research in this thesis and the CUDA-CHiLL system are based on the idea of a

transformation script that performs source-to-source transformations. It uses a polyhedral

model to allow for powerful composition of transformations, and it is specialized to the

targeting of GPU multicore and deep memory hierarchy architecture features with CUDA-

specific code generation. In this chapter, we progress through the related research in each

of these topics upon which CUDA-CHiLL builds.

6.1 Source Transformation Frameworks

A number of works related to describing compiler transformations are similar to the

transformation scripts in this thesis. A common model for describing transformations

involves inlining the description of the transformation into the original source code itself as

pragmas such as in LoopTool [48] or as well-formed comments such as with Orio [25].

The X language [16] allows transformation commands to exist inline with tagging prag-

mas in the source or in a separate file. It uses pragma and macro substitution to perform

predefined or custom pattern-matching-based rewrite rules on source syntax. A related tool,

POET uses an XML-based description of code transformation behavior to produce portable

code transformation implementations [71].

As discussed in Chapter 3, syntax-focused transformation systems have a hard time

expressing long compositions of transformations, especially those that introduce new se-
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mantic elements. The separation of the transformation recipe or script from the original

source code provides the benefit of keeping the source code architecture independent and

increases the potential for the transformation script to be reused with similarly-structured

code.

6.2 Polyhedral Loop Transformations

A major strength of CUDA-CHiLL in terms of applying transformations is composition

of multiple transformations. CUDA-CHiLL builds on CHiLL and inherits its polyhedral

transformation framework to manipulate mathematical representations of iteration spaces

and loop bounds.

The PLuTo [11] compiler framework and others [30, 20] also use a polyhedral model

for source to source transformations. These low-level frameworks allow for multiple trans-

formations to be performed, but often fall short of providing high level interfaces to the

transformations. CUDA-CHiLL incorporates both high-level transformations that operate

on complete loop nests and other target relevant commands affecting code generation.

6.3 Parallelization and CUDA Targeting

The basic components of building a transformation framework that targets the GPU

architecture are subcomponents that partition computation to achieve higher levels of

parallelism and align or copy memory to perform on the deep memory hierarchy. A

compile-time transformation scheme [3] has shown efficient global memory access can be

achieved by employing program transformations. CUDA-lite [58] focuses on achieving this

optimization automatically by using simple annotations to improve the coalescing of global

memory accesses and the bandwidth to global memory.

There is a nontrivial amount of complexity just in provisioning of the correct program

constructs of a complex algorithm written in CUDA. To help with this problem, there has

been research on the CUDA code generation given an already parallel program source.

These include a framework to convert a parallel OpenMP source program to CUDA [7]

and a pragma-based approach to auto-parallelization of sequential loops [24] .

Although not a transformation framework, PyCUDA [4] provides ways of limiting the

amount of CUDA code to just the compute kernel function itself by providing Python

libraries for code generation of call-site scaffolding as well as interfaces to the CUDA C

compiler.
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CONCLUSION

This thesis presents a programming language interface to GPGPU optimizations and

code generation. GPUs provide an attractive target for running parallel computations with

the potential for order of magnitude speedups over conventional CPU implementations.

Because of the complex nature of the GPU architecture, it is often very difficult to construct

programs that utilize the deep memory hierarchy of the GPU for maximum performance.

Although compilers are capable of many useful transformations of loop nests that can be

applied to target the parallel execution units and memory hierarchy of the GPU, current

ways of utilizing these transformations are difficult to compose and lack constructs for

generating GPGPU code. We present CUDA-CHiLL as a unifying framework to transform

complex loop nests to highly optimized NVIDIA CUDA programs using a programming

language approach. We show that this approach can match or outperform the performance

of hand-tuned, standard math libraries.

Although CUDA-CHiLL currently targets CUDA during its code generation phase,

the high level transformations and even GPU memory structure targeting are completely

relevant to other GPGPU frameworks, specifically OpenCL. Most computations benefit

the most from explicitly-managed data movement between uncached global memory and

low latency shared memory. For computations that have data reuse but less determinable

access patterns, further research could be done in incorporating other memory structures

such as the cached texture memory into CUDA-CHiLL. Due to its automated nature and

programmable interface, CUDA-CHiLL could easily be a component in a larger compiler

infrastructure. For example, an auto-tuning framework that targets GPUs could leverage

CUDA-CHiLL for generating code variants that reflect various optimization strategies or

sets of parameters that get continuously narrowed through empirical feedback. It may also

be desirable to build even higher level abstractions for this purpose. One could imagine

OpenMP-like parallelization directives that, in turn, use complex scripts to target loop nests

to GPUs.
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Because it separates the optimization strategy from the sequential source code on which

it operates, CUDA-CHiLL permits expression of the code in a high-level architecture in-

dependent way. This advantage could be realized when targeting new architectures with

a potentially different balance of hardware features. Also, heterogeneous platforms share

the complexity problem with GPUs. High level transformation abstractions can allow for

targeting these platforms while leveraging existing optimization strategies such as those

described in this thesis.

Finally, another advantage of keeping the transformation script separate from the target

source code is the ability to reuse scripts on multiple programs. Already, scripts could be

written to be fairly program agnostic, as index names can be queried and used as variables,

new index names can be generated without symbol conflicts and scripts can have divergent

behavior based on the program it is transforming. Further research could explore ways of

making scripts even more general or creating libraries of common optimization strategies

as functional snippets.
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