1,685 research outputs found

    Parallel Graph Transformation for Model Simulation applied to Timed Transition Petri Nets

    Get PDF
    Proceedings of the Workshop on Graph Transformation and Visual Modelling Techniques (GT-VMT 2004)This work discusses the use of parallel graph transformation systems for (multi-formalism) modeling and simulation and their implementation in the meta-modeling tool AToM3. As an example, a simulator for Timed Transition Petri Nets (TTPN) is modeled using parallel graph transformation.This work has been partially sponsored by the SEGRAVIS network and the Spanish Ministry of Science and Technology (TIC2002-01948)

    Automating the transformation-based analysis of visual languages

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/s00165-009-0114-yWe present a novel approach for the automatic generation of model-to-model transformations given a description of the operational semantics of the source language in the form of graph transformation rules. The approach is geared to the generation of transformations from Domain-Specific Visual Languages (DSVLs) into semantic domains with an explicit notion of transition, like for example Petri nets. The generated transformation is expressed in the form of operational triple graph grammar rules that transform the static information (initial model) and the dynamics (source rules and their execution control structure). We illustrate these techniques with a DSVL in the domain of production systems, for which we generate a transformation into Petri nets. We also tackle the description of timing aspects in graph transformation rules, and its analysis through their automatic translation into Time Petri netsWork sponsored by the Spanish Ministry of Science and Innovation, project METEORIC (TIN2008-02081/TIN) and by the Canadian Natural Sciences and Engineering Research Council (NSERC)

    Formal and efficient verification techniques for Real-Time UML models

    Get PDF
    The real-time UML profile TURTLE has a formal semantics expressed by translation into a timed process algebra: RT-LOTOS. RTL, the formal verification tool developed for RT-LOTOS, was first used to check TURTLE models against design errors. This paper opens new avenues for TURTLE model verification. It shows how recent work on translating RT-LOTOS specifications into Time Petri net model may be applied to TURTLE. RT-LOTOS to TPN translation patterns are presented. Their formal proof is the subject of another paper. These patterns have been implemented in a RT-LOTOS to TPN translator which has been interfaced with TINA, a Time Petri Net Analyzer which implements several reachability analysis procedures depending on the class of property to be verified. The paper illustrates the benefits of the TURTLE->RT-LOTOS->TPN transformation chain on an avionic case study

    Reliability models for dataflow computer systems

    Get PDF
    The demands for concurrent operation within a computer system and the representation of parallelism in programming languages have yielded a new form of program representation known as data flow (DENN 74, DENN 75, TREL 82a). A new model based on data flow principles for parallel computations and parallel computer systems is presented. Necessary conditions for liveness and deadlock freeness in data flow graphs are derived. The data flow graph is used as a model to represent asynchronous concurrent computer architectures including data flow computers

    Scale-invariant cellular automata and self-similar Petri nets

    Full text link
    Two novel computing models based on an infinite tessellation of space-time are introduced. They consist of recursively coupled primitive building blocks. The first model is a scale-invariant generalization of cellular automata, whereas the second one utilizes self-similar Petri nets. Both models are capable of hypercomputations and can, for instance, "solve" the halting problem for Turing machines. These two models are closely related, as they exhibit a step-by-step equivalence for finite computations. On the other hand, they differ greatly for computations that involve an infinite number of building blocks: the first one shows indeterministic behavior whereas the second one halts. Both models are capable of challenging our understanding of computability, causality, and space-time.Comment: 35 pages, 5 figure

    Effective representation of RT-LOTOS terms by finite time petri nets

    Get PDF
    The paper describes a transformational approach for the specification and formal verification of concurrent and real-time systems. At upper level, one system is specified using the timed process algebra RT-LOTOS. The output of the proposed transformation is a Time Petri net (TPN). The paper particularly shows how a TPN can be automatically constructed from an RT-LOTOS specification using a compositionally defined mapping. The proof of the translation consistency is sketched in the paper and developed in [1]. The RT-LOTOS to TPN translation patterns formalized in the paper are being implemented. in a prototype tool. This enables reusing TPNs verification techniques and tools for the profit of RT-LOTOS

    Modelling and analysis of traffic networks based on graph transformation

    Full text link
    This is an electronic version of the paper presented at the Symposium on Formal Methods for Automation and Safety in Railway and Automotive Systems, FORMS/FORMATS 2004 , held in Braunschweig on 2004We present the formal definition of a domain specific visual language (Traffic) for the area of traffic networks. The syntax has been specified by means of meta-modelling. For the semantics, two approaches have been followed. In the first one, graph transformation is used to specify an operational semantics. In the second one we include timing information and a denotational semantics is defined in terms of Timed Transition Petri Nets (TTPN). The transformation from the Traffic formalism into TTPN was also defined by graph transformation. Both approaches have been used for the analysis of Traffic models. The ideas have been implemented in the AToM3 tool and are illustrated with examples.Juan de Lara’s work has been partially sponsored by a grant from the E.U. SEGRAVIS research network (HPRN-CT-2002-00) and the Spanish Ministry of Science and Technology (TIC2002-01948). Hans Vangheluwe gratefully acknowledges partial support for this work by a National Sciences and Engineering Research Council of Canada (NSERC) Individual Research Grant

    Petri nets for systems and synthetic biology

    Get PDF
    We give a description of a Petri net-based framework for modelling and analysing biochemical pathways, which uni¯es the qualita- tive, stochastic and continuous paradigms. Each perspective adds its con- tribution to the understanding of the system, thus the three approaches do not compete, but complement each other. We illustrate our approach by applying it to an extended model of the three stage cascade, which forms the core of the ERK signal transduction pathway. Consequently our focus is on transient behaviour analysis. We demonstrate how quali- tative descriptions are abstractions over stochastic or continuous descrip- tions, and show that the stochastic and continuous models approximate each other. Although our framework is based on Petri nets, it can be applied more widely to other formalisms which are used to model and analyse biochemical networks

    Profiling the publish/subscribe paradigm for automated analysis using colored Petri nets

    Get PDF
    UML sequence diagrams are used to graphically describe the message interactions between the objects participating in a certain scenario. Combined fragments extend the basic functionality of UML sequence diagrams with control structures, such as sequences, alternatives, iterations, or parallels. In this paper, we present a UML profile to annotate sequence diagrams with combined fragments to model timed Web services with distributed resources under the publish/subscribe paradigm. This profile is exploited to automatically obtain a representation of the system based on Colored Petri nets using a novel model-to-model (M2M) transformation. This M2M transformation has been specified using QVT and has been integrated in a new add-on extending a state-of-the-art UML modeling tool. Generated Petri nets can be immediately used in well-known Petri net software, such as CPN Tools, to analyze the system behavior. Hence, our model-to-model transformation tool allows for simulating the system and finding design errors in early stages of system development, which enables us to fix them at these early phases and thus potentially saving development costs
    corecore