
Software & Systems Modeling
https://doi.org/10.1007/s10270-019-00716-1

REGULAR PAPER

Profiling the publish/subscribe paradigm for automated analysis using
colored Petri nets

Abel Gómez1 · Ricardo J. Rodríguez2 ·María-Emilia Cambronero3 · Valentín Valero3

Received: 9 April 2018 / Accepted: 7 December 2018
© The Author(s) 2019

Abstract
UML sequence diagrams are used to graphically describe the message interactions between the objects participating in a
certain scenario. Combined fragments extend the basic functionality of UML sequence diagrams with control structures, such
as sequences, alternatives, iterations, or parallels. In this paper, we present a UML profile to annotate sequence diagrams
with combined fragments to model timed Web services with distributed resources under the publish/subscribe paradigm.
This profile is exploited to automatically obtain a representation of the system based on Colored Petri nets using a novel
model-to-model (M2M) transformation. This M2M transformation has been specified using QVT and has been integrated in
a new add-on extending a state-of-the-art UML modeling tool. Generated Petri nets can be immediately used in well-known
Petri net software, such as CPN Tools, to analyze the system behavior. Hence, our model-to-model transformation tool allows
for simulating the system and finding design errors in early stages of system development, which enables us to fix them at
these early phases and thus potentially saving development costs.

Keywords UML 2.5 · Distributed resources · Publish/Subscribe · Automated analysis · WSRF · WSN · Colored Petri nets ·
CPN tools

1 Introduction

Web services are usually stateless [1], which means that
no state information from clients is stored as interactions
with the server occur. RESTful web services, for instance,

Communicated by Antonio Vallecillo.

B Ricardo J. Rodríguez
rjrodriguez@unizar.es

Abel Gómez
agomezlla@uoc.edu

María-Emilia Cambronero
memilia.cambronero@uclm.es

Valentín Valero
valentin.valero@uclm.es

1 Internet Interdisciplinary Institute (IN3), Universitat Oberta
de Catalunya, Avda. Carl Friedrich Gauss, 5, Castelldefels,
08060 Barcelona, Spain

2 Centro Universitario de la Defensa, Academia General
Militar, Carr. de Huesca s/n, 50090 Zaragoza, Spain

3 Dpto. de Sistemas Informáticos, Escuela Superior de
Ingeniería Informática de Albacete, Universidad de
Castilla-La Mancha, 02071 Albacete, Spain

are built to work on resources (data and services) under a
client/server architecture using a stateless communication
protocol (such as HTTP). However, in many cases, we have
stateful distributed services, in which the user has got the
ability to access and manipulate states, that is, data val-
ues that persist and evolve as a result of Web service (WS)
interactions. Consider, for instance, a user shopping through
an online website, in which the user can add/remove items
to/from the shopping cart during the interaction. In this case,
simple object access protocol (SOAP) is usually the mes-
saging protocol used for the cient/server interactions. SOAP
is a platform- and language-independent standardized pro-
tocol, which has some WS-extensions to provide additional
functionalities, such as WS-Addressing, WS-Security, and
WS-AtomicTransaction.

It is therefore desirable to have Web service conventions
to enable the discovery of, introspection on, and interaction
with stateful distributed resources in standard and inter-
operable ways. In particular, we focus our attention on
timed Web services managing a collection of distributed
resources using the publish/subscribe (PS) paradigm and
the OASIS WSRF standard. The publish/subscribe paradigm
[2] provides a loosely coupled form of interaction between

123

A. Gómez et al.

the participants in a distributed system that want to be
notified when some event of interest occurs. Publish/sub-
scribe systems are usually divided into two categories:
subject-based and content-based. In subject-based systems,
a publisher makes visible a message (within a topic) and
all subscribers to such a topic will then receive the noti-
fication message. In the content-based approach, however,
subscribers indicate a predicate or condition related to a
resource, so they are only notified when a change in the
resource makes such a predicate to hold. The latter is
the case we consider in this paper, where resources are
published by some publisher, with an initial state (integer
value) and subscribers can submit their subscription con-
ditions in order to be notified when these conditions are
true. On the other hand, WSRF is the de facto OASIS stan-
dard for modeling and accessing stateful resources using
Web services, so it provides us with standardized opera-
tions for the resource management. These operations allow
us to set/get the resource property values and lifetime.
In addition, Web services notification (WSN) [3] comple-
ments WSRF by establishing a standardized way for Web
services to interact by using subscriptions and event notifi-
cations.

In this paper, we use UML 2.5 sequence diagrams
extended with the so called Combined Fragments [4] to
define the interactions in a Web service composition man-
aging a collection of distributed resources. However, UML
sequence diagrams are not very suitable to execute or to ana-
lyze the modeled system in an automatic way. A common
solution to overcome this issue in the scientific commu-
nity is to transform these UML models to other formal
models for which a well-defined mathematical framework
exists, and hence these obtained models are suitable for
analysis purposes. In this paper, we consider an exten-
sion of Petri nets, particularly Colored Petri nets (CPN1)
[5], as formal model since Petri nets are a mathematical
formalism that easily represent common characteristics of
computer systems, such as concurrency, synchronization,
conditional branching, and sequencing. A CPN model also
allows for expressing the timing events occurring in the sys-
tem.

UML can be also extended to customize UML models
for a particular domain by means of profiling [6]. The par-
ticular problem domain is first mapped to a UML model,
obtaining a UML domain model. Then, a UML profile is built
from this UML domain model. A UML profile defines one
or more stereotypes that are used to mark a model element
as representing a particular kind of object in the corre-
sponding domain. These stereotypes can also be extended
with a list of properties (termed as attribute values), use-

1 In this paper, we use CPN interchangeably as a singular and plural
acronym.

ful to enrich the type description. A UML model in which
a profile is being used is usually termed a UML annotated
model.

The contribution of this paper is threefold. First, we
present a UML profile for the publish/subscribe paradigm.
This UML profile, created following the guidelines given
in Lagarde et al. [7] and Selic [6], enables us to easily
represent the underlying concepts of the publish/subscribe
paradigm in UML models. Second, we propose a pattern-
based M2M transformation to translate UML annotated
models into CPNs. We describe the model transformation
using a running example. Third, we present a tool that
implements the M2M transformation using the QVT [8]
OMG standard. This tool is able to automatically trans-
form UML models annotated with our novel profile into
a CPN model. The obtained CPN model is compatible
with the format used by CPN Tools, a widespread tool
for editing, simulating, and analyzing CPN models [9].
Hence, the obtained models can be analyzed to find design
errors, thus enabling us to detect and fix design errors in
early stages of system development and hence, to save
production (and other) costs [10]. We describe also the
validation that can be carried out in the generated CPN
model.

This paper stems from previous proposals. A first prelim-
inary version of this work was published in Cambronero and
Valero, [11], where a smaller set of UML 2.0 constructions
was considered. However, the time aspects were excluded in
such a model. Afterward, in Valero and Cambronero [12], an
algebraic syntax for sequence diagrams with combined frag-
ments and WSRF was defined. An operational semantics to
define the behavior of the modeled systems in a rigorous way
was also introduced. In this paper, we consider those previous
works as basis, and introduce a (more abstract) system view
of the publish/subscribe paradigm by providing a new UML
profile. This UML profile is complemented by a novel M2M
transformation implemented in its companion tool. This tool
allows us to obtain the corresponding formal models and thus
enables us to analyze the modeled system in an effective way.

This paper is organized as follows. Section 2 gives some
background on the publish/subscribe paradigm and Col-
ored Petri nets. The technical approach that we followed in
this paper is introduced in Sect. 3. Section 4 describes the
UML profile for the publish/subscribe paradigm that we con-
structed, as well as the CPN metamodel used. We illustrate
how our transformation tool performs by means of a running
example. Section 5 briefly describes the implementation of
the tool, including the QVT specification. The verification
and validation of the generated TCPN models are explained
in Sect. 6. Related work is presented in Sect. 7. Finally, Sect. 8
concludes the paper and provides possible lines of future
work.

123

Profiling the publish/subscribe paradigm for automated analysis using CPNs

2 Background

This section first describes the required background on the
publish/subscribe paradigm. Then, colored Petri nets are
introduced.

2.1 The Publish/subscribe paradigm

Web service systems consist of a collection of services,
resources, and clients. Clients and services are interacting
with each other, so they are the participants in the system.
Resources are published and managed by their corresponding
Web services, according to the WSRF standard. Hence, the
services provide a set of operations for the other participants
to access and manipulate the resources.

These participants have their own local variables, whose
values or properties range over specific domains. Variable
values can be assigned, read, or checked in guards, whereas
resources are assumed to have a lifetime and a numeric
property that can be read or assigned.2 Resources must
be published before they are available for the participants.
Before using a resource, a participant must first discover the
resource. Once the resource is discovered, the participant is
ready to use it. Furthermore, the participants can subscribe
to resources, so they will be notified and some actions will
be performed when subscription conditions related to the
resource property value hold.

The behavior of the system interaction is then defined by
using sequence diagrams, extended with Combined Frag-
ments (CF). Specifically, we use the following basic control
structures: parallel (par), strict sequencing (strict), guarded
choice (alt), and iteration (loop). These are the most relevant
operators, capturing the main control structures usually con-
sidered in the scope of system workflows, and rich enough
to describe the general workflow of interactions among the
participants and the resources being used.

On the other hand, taking as reference the algebraic syntax
defined in Valero and Cambronero [12], participants can also
execute local actions, such as variable assignments or time
delays.

In this paper, we assume that WS-Resources are pub-
lished during the system deployment (publish operation).
WS-Resources contain different properties. A textual tag
serves to identify the specific WS-Resource type, so the
clients or other services that need to use a WS-Resource of
such a class can invoke a discover operation indicating this
tag. An End Point Reference (EPR)3 must also be indicated
to identify the resource, as well as its initial property values

2 Without loss of generality, in this paper we assume a single Real
property.
3 An integer value that unequivocally identifies each published
resource.

and lifetime. There can be several distinct implementations
of a WS-Resource (e.g., a printing service may be offered
using different printers), so the discovery mechanism will
only return the EPR of one of them.

We have also operations to get or set the resource property
values and a subscription operation. As previously men-
tioned, this operation can be used by a participant to perform
some actions when the resource property value fulfills a cer-
tain condition. As actions, a reference to a UML sequence
diagram can be used. As conditions to be fulfilled, a numeric
interval is indicated so the actions enclosed in the corre-
sponding UML sequence diagram are performed when the
resource property takes a value in this interval. Furthermore,
subscriptions have also a lifetime, so they are removed once
its lifetime expires.

2.2 Colored Petri nets

Colored Petri nets [5,13] are a well-known formalism for
the design and analysis of concurrent systems. CPN are sup-
ported by CPN Tools [14], which is a tool that allows us to
easily create, edit, simulate, and analyze CPN. In the follow-
ing, the reader is assumed to be familiar with the basics of
Petri nets. First, we give an informal introduction to Petri
nets and Colored Petri nets. Next, we provide a formal def-
inition of the CPN formalism. For a complete description
of the CPN formalism, the reader is referred to Jensen and
Kristensen [13].

Petri nets [15] are a mathematical and graphical formal-
ism that easily represent common characteristics of computer
systems such as branching, sequencing, or concurrency, to
name a few. Roughly speaking, a Petri net is a bipartite graph
of places and transitions joined by arcs, describing the flow of
a system with concurrency and synchronization capabilities.
Graphically, places are represented by circles, transitions by
rectangles, and arcs are represented by directed arrows. An
arc can have an integer inscription, indicating the weight of
the arc. A place can hold tokens, graphically represented by
black dots or by a number inside the place and denoted as the
marking of the place. When all input places of a transition
t are marked with a number of tokens equal or greater than
their weights, the transition t is said to be enabled. An enabled
transition can fire, yielding to a new marking obtained from
removing tokens from input places and setting tokens in out-
put places. The number of tokens removed/set from/in each
place corresponds to the arc weight connecting every place
with the transition.

A CPN is an extension of Petri nets, in which places have
a color set (a data type) associated with them that specifies
the set of allowed token colors at this place. That is, each
token in a place of a CPN has an attached data value (color)
to it that matches the corresponding color set of the place.
For instance, a place can have as color set the set of integer

123

A. Gómez et al.

numbers INT, the untimed color set of the Cartesian product
INT2 = INT × INT, or a singleton color set (UNIT), which
contains a single value (), denoted by unit. Other complex
data types can also be defined by using data types construc-
tors, such as list, union, and record.

Timed Colored Petri nets (TCPN) [13] are a timed exten-
sion of CPN, in which there is a global clock that represents
the total time (either discrete or continuous) elapsed in the
system model. In this paper, we consider a discrete time scale,
since as mentioned in Baeten and Middelburg [16], measur-
ing time on a discrete time scale means that time is divided
into slices, and timing of actions is done with respect to the
time slices in which they are performed. Actually, comput-
ers measure time by means of discrete clocks, and if they are
used to control a physical system, the state of the physical
system is sampled and adjusted at discrete points in time.

The inclusion of time and data makes that the classical
properties on PNs (e.g., reachability, liveness, and deadlock
freeness) become undecidable in the TCPN model. In addi-
tion, state space exploration usually leads to infinite state
graphs, because now the nodes in these graphs are timed
markings. Thus, the analysis of properties must usually be
done by simulations, i.e., properties are checked by executing
the model with different initial markings and then drawing
conclusions from the experimental results.

Color sets can then be timed or untimed in a TCPN.
Therefore, tokens from timed color sets have a timestamp,
indicating the time at which they will be available for the
firing of transitions. Tokens from untimed color sets do not
carry any time information and they are always considered
available.

Let us illustrate this by means of a running example.
Figure 1 shows a TCPN as it is presented in CPN Tools.
Specifically, it consists of four places (with timed and
untimed color sets) and two transitions. Places p1 and p2

Fig. 1 Graphical view of a TCPN in CPN tools

have INTT as timed color set (INT timed, as specified by
the color set annotation in the left corner of the figure). Sim-
ilarly, p3 has INT2 as untimed color set, whereas p4 has the
untimed singleton color set, expressed by UNIT (this color
set is not explicitly indicated in CPN Tools, since all places
have UNIT as color set by default). In CPN Tools, the current
number of tokens on every place is drawn at the top right-hand
side of the graphical place representation, while the color set
of the place is drawn at the bottom right-hand side. The spe-
cific color of the current tokens in a place are described by the
notation n‘v@s, meaning that there are n instances of color
v with timestamp s. A symbol ‘+++’ (respectively, ‘++’) is
used to represent the union of timed (resp. untimed) colors
in CPN Tools. Thus, place p1 has one token with value 1 and
timestamp 2, and two tokens with value 2 and timestamp 5.

In CPN, arc inscriptions are now arc expressions, con-
structed using variables, constants, operators, and functions.
Arc expressions must evaluate to a color or multiset of col-
ors in the color set of the attached place. For instance, the
integer variable x in the arc connecting the place p1 with the
transition t1 can evaluate either to the token with value 1 or
one of the tokens with value 2, since x is an INT variable.

Enabling of transitions is then redefined in CPNs. For any
transition t with variables x1, x2, . . . , x N in its input arc
expressions, a binding of t is an assignment of concrete values
to these variables, which are used to evaluate the input and
output arc expressions of t . A binding of a transition t is
enabled if there are tokens in its precondition places matching
the obtained values of the corresponding arc expressions.
Thus, arc expressions are evaluated by assigning values to the
variables and those values are then used to select the tokens
that must be removed or added when firing the corresponding
transition.

Furthermore, transitions can have guards that can restrict
their firing, as well as priorities. Guards are predicates con-
structed by using the variables, constants, operators, and
functions of the model. A guard must evaluate to true with the
selected binding for the transition to be fireable. Transitions
can also have a priority. In the event of a conflict between
two transitions that can be fired (executed) at a given time,
the transition with the highest level of priority is fired first,
where smaller values of priority correspond to higher levels
of priority. Obviously, we can also have conflicts that cannot
be resolved by priorities. In that case, the transition to be fired
is non-deterministically chosen.

In TCPNs, we can also include delays associated either
to output arcs or to transitions, which are used to age the
time stamps of the tokens produced at the output places with
respect to the current time. Hence, an enabled and fireable
transition in a TCPN model means that: the transition is
binding enabled, its guard evaluates to true with the selected
binding, and the tokens selected for the firing from its pre-
condition places are available, i.e., their timestamps are less

123

Profiling the publish/subscribe paradigm for automated analysis using CPNs

than or equal to the current model time. In addition, the tran-
sition can only fire if there is no other enabled transition with
a higher level of priority.

The semantics of firing a TCPN is similar to firing a Petri
net, but considering color sets: When an enabled transition
is fired, new tokens are generated at the output places, with
colors according to the corresponding output arc expressions,
and the selected tokens for its firing (from the binding) are
removed from its input places. As previously mentioned,
tokens on timed places are only available at the time they
have attached. This time will therefore determine the instant
at which a transition will be able to use these tokens for its
firing. When there are no enabled transitions at the current
instant, the global clock is advanced to the earliest time at
which a transition is enabled.

Let us now introduce the TCPN model in a more formal
way.

Definition 1 (Timed Colored Petri Nets) We define a Timed
Colored Petri Net (TCPN) as a tuple (P, T , A, V , G, E, π),
where4:

– P is a finite set of places, with colors in a set Σ , which
can be either timed or untimed. We denote the color set
of place p by Σp.

– T is a finite set of transitions (P ∩ T = ∅).
– A ⊆ (P × T) ∪ (T × P) is a set of directed arcs. PT-

arcs are those connecting places with transitions (P ×T),
while TP-arcs connect transitions with places (T × P).

– V is a finite set of typed variables in Σ , i.e., Type(v) ∈ Σ ,
for all v ∈ V .

– G : T −→ EXPRV is the guard function, which
assigns a Boolean expression to each transition, i.e.,
Type(G(t)) = Bool.

– E : A −→ EXPRV is the arc expression function, which
assigns an expression to each arc. Arc expressions eval-
uate to multisets of the color set of the place connected
to the arc. For any transition t ∈ T , the arc expressions
of the PT-arcs connected to t are called PT-arc expres-
sions of t (respectively, for TP-arcs). In the case of timed
color sets, the arc expressions can indicate a delay for
the time at which the tokens will be available, with the
syntax ms@ + x , where ms is the multiset of tokens and
x the time delay.

– π : T −→ IN is the priority function, which
assigns a priority level to each transition. We use levels
P1, P2, P3, and P4, where P1 is the greatest priority
level.

4 We use the classical notation on Petri nets to denote the precondition
•x and postcondition x• of both places and transitions: ∀x ∈ P ∪ T :
•x = {y | (y, x) ∈ A}; x• = {y | (x, y) ∈ A}

In this definition, EXPRV denotes the expressions con-
structed using the variables in V , with the same syntax
admitted by CPN Tools. 	

Definition 2 (Markings) Given a TCPN N = (P, T , A, V ,

G, E, π), a marking M is defined as a function M : P −→
B(Σ), such that ∀p ∈ P, M(p) ∈ B(Σp), i.e., the marking
of p must be a multiset of colors in Σp (which can be empty).

A marked TCPN (MTCPN) is then defined as a pair
(N , M), where N is a TCPN, and M a marking of it. 	

We define the semantics for MTCPNs as in Jensen and
Kristensen, [13], taking into account that transitions have
associated priorities. We first introduce the notion of binding,
then the enabling condition and finally the firing rule for
MTCPNs.

Definition 3 (Bindings) Let N = (P, T , A, V , G, E, π) be
a TCPN. For any transition t , Var(t) denotes the set of vari-
ables that appear in the PT-arc expressions of t . Then, a
binding of a transition t ∈ T is a function b that maps each
variable v ∈ Var(t) into a value b(v) ∈ Type(v). B(t) will
denote the set of all possible bindings for t ∈ T . For any
expression e ∈ EXPRV , e〈b〉 will denote the evaluation of
e for the binding b. A binding element is then defined as a
pair (t, b), where t ∈ T and b ∈ B(t). The set of all binding
elements is denoted by BE. 	

Definition 4 (Enabling condition) Let N = (P, T , A, V , G,

E, π) be a TCPN and M a marking of it. We say that a binding
element (t, b) ∈ BE is enabled at the current time at marking
M when the following conditions are fulfilled:

1. The guard of t is evaluated to true for binding b:
G(t)〈b〉 = true.

2. For all p ∈ •t , E(p, t)〈b〉 is included in M(p), and these
tokens on M(p) have a timestamp less than or equal to
the current time, i.e., we have in M(p) enough available
tokens to fire t with the binding b.

3. There is no other binding element (t ′, b′) ∈ BE fulfilling
the previous conditions such that π(t ′) < π(t).

Time can only elapse when there is no enabled binding
element for the current time. In this case, time elapses to the
earliest time at which some transition can be fired. 	

Definition 5 (Firing rule) Let N = (P, T , A, V , G, E, π)

be a TCPN, M a marking of N , and (t, b) ∈ BE an enabled
binding element at marking M .

The firing of (t, b) has the following effects on M :

– For any p ∈ •t , the tokens in E(p, t)〈b〉 are removed
from M(p).

123

A. Gómez et al.

– For any p ∈ t•, the tokens in E(t, p)〈b〉 are produced in
M(p).

	

Example 1 Let us illustrate how the execution of a TCPN
works. Consider the TCPN depicted in Fig. 1. In this TCPN
places p1 and p2 have the INTT color set (timed integer),
p3 has INT2 as color set (INT × INT), and p4 has the UNIT
color set (untimed with no information). Place p1 has three
tokens at the initial marking, one with value 1 and available
at time 2, and two tokens with value 2 available at time 5. In
the same way, place p2 has also three tokens, one with value
3 available at time 1, and two tokens with value 6 available
at time 7. Place p3 is initially empty and p4 has one token.
This is usually written using vector notation as follows:

M0 = (1‘1@2 + + + 2‘2@5, 1‘3@1 + + + 2‘6@7,∅, 1)

According to the token timestamps in p1 and p2, transition t1
can be fired at time 2, by using the token on p1 with value 1,
the token on p2 with value 3, and the token on p4. Hence, the
corresponding binding for this firing is x = 1, y = 3. Once
t1 is fired, these tokens are removed from their places and
a new token is obtained in p3, with color (2x, y) = (2, 3).
Then, the marking at time 2, after the firing of t1 is:

M1 = (2‘2@5, 2‘6@7, 1‘(2, 3),∅)

Now, the only transition that is fireable is t2, at time 2, too,
because p3 has an untimed color set. The binding now is

(x = 2, y = 3), so the firing of t2 produces the following
marking:

M2 = (1‘2@2 + + + 2‘2@5, 1‘3@2 + + + 2‘6@7,∅, 1)

Thus, we can intuitively see that transitions t1 and t2 fire
alternatively in this TCPN until the following marking is
reached:

M = (1‘8@2 + + + 2‘8@3, 1‘3@3 + + + 2‘6@5,∅, 1)

Given this marking, no further transition can be fired. Hence,
we have reached a dead marking. 	

3 Methodology

In this section, we describe our proposed methodology to
build timed colored petri nets from UML systems annotated
with the publish/subscribe profile. This methodology con-
sists of three phases, as sketched in Fig. 2 (the scope of this
paper is enclosed with a dotted line).

The first phase devotes to the analysis and design phase
using UML. In this phase, we consider three different UML
diagrams that cover the static and dynamic behavior of the
system, as well as all actors involved in the publish/subscribe
system under consideration. In particular, a UML deploy-
ment diagram (UML-DD) is used to describe the resources
and services, a UML class diagram (UML-CD) is used to rep-
resent the clients, and a UML sequence diagram (UML-SD)

Fig. 2 UML-WSRF to CPNS methodology

123

Profiling the publish/subscribe paradigm for automated analysis using CPNs

is used to represent the interactions between clients, ser-
vices, and resources. As a final step, these UML models are
automatically transformed into colored petri nets using the
model transformation that we introduce in Sect. 4.3, which
are similar to the approaches given in Bernardi et al. [17] and
Distefano et al. [18].

The second phase refers to the verification and validation
phase. Here, the TCPN models obtained after transforma-
tion are first syntactically checked by using some OCL rules
in order to guarantee their correctness, after which they are
validated by using CPN Tools, and specifically the moni-
tor features, which allow us to validate some properties of
TPCN models in an easy way. General properties of the pub-
lish/subscribe paradigm can thus be checked at this point by
simulations, using monitors defined on the obtained models.
For instance, we can check that “a resource whose lifetime
expires is not available any more, and all subscriptions to
this resource have also been removed”. We can also check
that “an active subscription whose condition holds is imme-
diately notified”, which means that the associated actions are
performed as soon as the subscription condition is met.

Let us remark that in this paper we focus on the analysis,
design, verification, and validation phases. As future work,
we aim at extending our work with the possibility of coming
back to the UML model from errors detected at the valida-
tion phase by using the CPN Tools monitors features. This
feedback to the user at the UML models would allow the
user to edit the UML specification to fix these errors and
generate again the corresponding TCPN model. This point
requires further research in order to link the properties with
the UML models in an automatic way, specially in the case
of properties that are specifically defined for a particular sce-
nario. Moreover, currently our tool is integrated with the CPN
Tools, which provides simulation and analysis capabilities,
but always through the use of its graphical interface.

The last phase in the figure concerns implementation,
which is also out of the scope of this paper. Once we are
aware that the UML models are correct, several techniques
can be used to transform UML models directly into code [19].
This code can later be extended to implement other system
aspects not considered by the PS paradigm.

4 UML profile for the publish/subscribe
paradigm

In this section, we first introduce the UML domain model
and the profile that leverages the Publish/Subscribe paradigm
(described in Sect. 2.1) we propose to annotate UML mod-
els. Then, we describe the metamodel used for CPN and the
model transformation patterns from UML models annotated
with our profile to timed colored petri nets.

4.1 Description of the profile

The Unified Modeling Language (UML) [4]—a standard
modeling language in the software development industry—is
a powerful language that allows representing from architec-
tural to behavioral aspects of systems.

UML can be tailored for specific purposes through pro-
filing [6]. A UML profile provides a set of stereotypes and
tagged values that are added into UML models to extend its
semantics. To build a UML profile, a domain model shall be
modeled in first place. This model captures all intrinsic char-
acteristics of the domain under consideration. In our case,
we defined a domain model for the PS paradigm. Then, fol-
lowing the rules given in Lagarde et al. [7] and Selic [6], a
UML profile conformed by a set of stereotypes and its tags
is obtained. Stereotypes define concepts in the domain under
study, while tags are the attributes of a stereotype.

For instance, the modeling and analyzing of real-time
embedded systems (MARTE) UML profile—actually, a
standard promoted by the Object Management Group [20]—
enables schedulability and performance analysis for real-
time and other application domains. A specialization of
MARTE, the non-standard dependability analysis and mod-
eling (DAM) UML profile [21], enables to express depend-
ability issues in UML models. Similarly, the non-standard
security analysis and modeling (SecAM) profile [22] allows
to express security characteristics into UML models.

Figure 3 depicts the UML domain model for the pub-
lish/subscribe paradigm. A Service can publish one or more
Resources, while a Resource can only belong to a Service. A
service can update both the lifetime and value of its resources
(association class TimedSetter), in which both the operation
to be applied over the resource value and a new expiring
time are indicated. This operation can also be delayed as
indicated by the optional argument Delay. A Client can per-
form different actions on a Resource, such as subscribing to
the resource (specifying the minimum and maximum value
of interest to the client and the subscription time, association
class Subscription), getting the resource value and storing
it into a variable (association class Getter), or updating the
resource value (association class Setter). Finally, a Client
can also assign values to local variables (association class
Assignments).

UpdateOperation and AssignmentOperation are defined
as complex data types. UpdateOperation has two attributes,
operator and value. The operator values are specified as an
enumeration type (SignKind), which consists of the arith-
metic operators that allow us to update a resource value.
AssignmentOperation has also two attributes, property and
value.

The corresponding UML profile that maps the con-
tents of the publish/subscribe domain model is depicted
in Fig. 4. Since we need to identify the UML sequence

123

A. Gómez et al.

Fig. 3 UML domain model for publish/subscribe paradigm

diagram (UML-SD) scenarios in which the publish/sub-
scribe paradigm is being used, we have incorporated the
PublishSubscribeScenario stereotype that extends
the Interaction metaclass. This stereotype indicates the
UML-SD in which the subscription from a client to some
resources are expressed.

Service, Resource, and Client classes have been mod-
eled with stereotypes. The Service stereotype extends the
Node UML metaclass, which belongs to the Deployments
UML package. The Resource stereotype extends the Arti-
fact UML metaclass (which also belongs to the Deployments
UML package). Both stereotypes are related through an asso-
ciation, indicating that a Service may publish an arbitrary
number of resources, while a resource only belongs to a
single service. To verify the correctness of the annotated
UML model, we added an OCL expression [23] into the
Resource stereotype to check whether the container of the
UML artifact is indeed stereotyped with Service. Finally,
the Client stereotype extends the Lifeline metaclass, from
the Interactions UML package.

The association classes related to the interactions between
services and clients with resources have been modeled as
stereotypes extending the Message metaclass. The tagged
values of these stereotypes match with the attributes of
the corresponding associated classes. The optional attribute
delay of the class TimedSetter has also been transformed to
a stereotype, also extending the Message metaclass. Fur-
thermore, we have also included an AbstractSetter
stereotype, which defines the operation attribute as an
UpdateOperation complex type. This complex type is
used to update the value of a Resource and thus it defines a

tuple with the operation to apply (indicated by operator) and
the value of interest (indicated by variable).

Finally, the association class Assignments has been mod-
eled as the AssignmentExecution stereotype, which
extends the ExecutionSpecification metaclass and
enables us to indicate the initial assignment of Clients’
attributes.

4.2 Ametamodel for Colored Petri nets

Figure 5 shows the metamodel for Timed Colored Petri nets,
which has been defined by extending a previous work [24].
The metamodel has been designed in such a way that it cap-
tures all the specifities of CPN Tools. This design poses two
main advantages (at the cost of being tied to this specific tool):
first, it allows us to deal with all the interesting concepts of
this simulation and analysis tool from a single M2M transfor-
mation, without the need of any kind of preprocessing; and
second, it eases the serialization of the final XML file that
needs to be fed into the analysis and simulation tool, because
the metamodel is a close representation of the schema that
native CPN Tools net files must validate.
Cpnet is the main class of the model (see Fig. 5), and

elements in the model can be differentiated into two groups.
On the right-hand side of the figure, and contained within
the Globbox class, we find the elements to declare color
sets, variables, etc., while on the left-hand side of the figure,
and contained within a Binder, we find the elements that
visually represent a Petri net.

More specifically, declarations can be grouped in nested
Blocks, and can be formed by color sets (ColorSet)

123

Profiling the publish/subscribe paradigm for automated analysis using CPNs

Fig. 4 UML profile for publish/subscribe paradigm

(either simple or compound—SimpleColorSets or
CompoundColorSets, respectively), variables (Var),
reference variables (Globref), or CPN ML expressions5

(Ml). Examples of SimpleColorSet are basic datatypes,
such as Unit, Integer, Real, String, etc., while for
CompountColorSet are complex types, such as Carte-
sian Product, disjoint Union, etc.

On the other hand, graphical elements are placed inside
Pages, which may be grouped in Binders. All graph-
ical elements inherit from the DiagramElement class,
and can be organized in different Groups. Thus, a Page
can hold places (Place), transitions (Trans), arcs (Arc),
annotations (Annot), etc. Places must have an associated
color set, which must be defined in the declarations part.
The relationship between the place and its color set is repre-

5 CPN Tools uses the CPN ML language to specify declarations and
net inscriptions. This language is an extension of the functional pro-
gramming language Standard ML [25].

sented by means of the type role from the class Place
to the class ColorSet. The InitMark determines the
initial marking of a given place, i.e., the tokens owned by
the place before starting the simulation. Transitions may
have different inscriptions attached, such as firing conditions
(TransCond), priorities (TransPriority), and transi-
tion delays (TransTime). Arcs link a place to a transition
and have an orientation (from place to transition, or
vice versa).

Finally, places can be fused via the Fusion class. Fused
places act as a single place, thus allowing reuse, and making
easier the partitioning of a single CPN in different pages
(every page contains a CPN model).

4.3 Model transformation: from UMLmodels to CPN

In the following, we detail the transformation of the UML
models annotated with the profile into TCPN. We first

123

A. Gómez et al.

Fi
g.
5

C
ol

or
ed

Pe
tr

in
et

s
m

et
am

od
el

123

Profiling the publish/subscribe paradigm for automated analysis using CPNs

describe the UML parts, annotated with the profile, and then
how the transformation is carried out for each part. To illus-
trate the transformation process, we have adapted the online
purchase process example already introduced in Valero et
al. [26] and used it as a running example. A detailed expla-
nation regarding the patterns of the model transformation
is given in https://github.com/abelgomez/publish-subscribe/
blob/master/plugins/io.github.abelgomez.ps.transformer/do
c/README.md.

4.3.1 PS core net

Figure 6 illustrates the TCPN of the PS core net model.
This core net rules the resource publication, resource sub-
scription, notifications, and resource expiration. The PS
core net model generated by our model transformation is
(slightly) simplified with regard to the previous model intro-
duced in Valero et al. [26]. This modification was needed
to cope with all automatic transformation contributed in
this paper an later explained for the following stereotypes.
A single core net is generated for each UML sequence
diagram stereotyped asPublishSubscribeScenario.
PublishSubscribeScenarios should include the ini-
tialization of resources, the subscription messages of the
different clients, and the additional interactions which are
triggered when notifications are sent. In the core net, the ini-
tial marking of the Roles and Resources places—which are
explained below—are the only variable parts.

In this TCPN, the resources to be published are repre-
sented by tokens on the Resources place, which contain their
EPR, tag, value and lifetime. Resources are then published
by firing the Publish_ok transition, but if we try to publish
a resource with an existing EPR, this operation fails (by
firing publish_fail). Published resources are written to the
ResourceRegistry place. Clients’ behaviors are represented
by tokens on place Roles, where we indicate a client’s iden-
tifier, a resource tag and the subscription conditions for the
indicated resource. The Discover transition is then fired to
find published resources and write the corresponding sub-
scription conditions into the SubscriptionRequest place. The
Subscribe transition is then fired to submit the subscriptions,
which are written on the SubscriptionRegistry place.

When the lifetime of a resource expires, the Resource-
Expire transition is fired, which removes the resource token
from ResourceRegistry, as well as its current subscriptions
(transition RemoveSubscription). Furthermore, subscriptions
can also expire. In that case, the SubscriptionTime-Out tran-
sition will be fired, thus removing the corresponding token
from SubscriptionRegistry. Finally, notifications occur as
soon as the associated conditions hold, which is captured
by transition Notify, which has the greatest priority (P1).

4.3.2 Publish/Subscribe scenarios

Figure 7 (left side) illustrates the UML-DD (left side) and
the UML-CD (right side, annotated with the Publish
SubscribeScenario stereotype) of the running exam-
ple. There exists a client who is willing to buy a laptop using
her credit card. She is waiting for a good offer due to her
limited amount of money, though. The artifact CR in the
UML-DD diagram represents her current budget, as main-
tained by her personal bank. She also disposes of some cash,
as indicated by the attribute m of Client class. Surfing on the
Internet, the client finds two offers from two different online
shops. However, both laptop prices still overrun her budget.
Services Shop1, Shop2, and resources L1, L2, represent the
online shops and the laptops, respectively.

Figure 8 depicts the actions of the client with the resources
in a UML-SD annotated with PublishSubscribe
Scenario stereotype. Consider that the client has some
cash (for instance, 2000e). Since she wants to pay by credit
card, she first decides to subscribe to her bank deposit dur-
ing 1 year to let her know when her credit is lower than
1000e and then make a deposit to increase it (triggering
UML-SD Deposit). After that, she decides to subscribe to
both resources during 1 year to keep posted as soon as some
offer in the laptop price comes up (triggering UML-SD Pur-
chase L1 and Purchase L2, respectively).

A UML-SD stereotyped with PublishSubscribe
Scenario creates a place Start Subscription and two tran-
sitions (Acquire Locks and End Subscription) into the gen-
erated TCPN. Additionally, every Client and Resource
lifelines have an associated place which is used to avoid race
conditions issues when handling client/resources attributes.

These places are in fact fusioned places, i.e., places that
act as a single one although they are drawn multiple times in
different parts of the CPN. The Acquire Locks and End Sub-
scription transitions represent respectively the beginning and
the ending of the UML-SD. In particular, the first transition
also has as input places the client/resource lock places that
represent the client/resources involved into the UML-SD.
Similarly, the ending transition has as output places the same
client/resource lock places, ensuring the conservativeness of
the tokens (i.e., the acquired locks are eventually released).
The subnet resulting from all the interactions described in the
UML-SD lifelines is then enclosed between these two tran-
sitions. This internal subnet is built in a compositional way,
by applying the rest of the patterns explained in this section.
The places that serve to connect these patterns have UNIT as
color set.

A PublishSubscribeScenario SD should be
accompanied by a DD describing the allocation of Services
and Resources (a node Service1 and an artifact Resource1
in this case). Note that the association between resources and
services is directly taken from the node-artifact relationship.

123

A. Gómez et al.

Fig. 6 Timed Colored Petri net of the PS core model (simplified with regard to Valero et al. [26]

123

Profiling the publish/subscribe paradigm for automated analysis using CPNs

Fig. 7 Running example: UML
deployment diagram (left side)
and UML Class diagram (right
side) of the online purchase
process annotated with the PS
profile

Finally, let us also note that both Service1 and Resource1 are
also included in the UML-SD.

As introduced in Sect. 3, in addition to UML-DD, UML-
CD are also used to provide the static view of the system
under analysis. Recall that Fig. 7 (right side) shows the Client
class of the running example. In this case, it has two attributes,
a boolean-type brought and a real-type m. The transforma-
tion of this part is straightforward. The Client class is directly
transformed into a timed product color set. The first compo-
nent is a single string used to unequivocally identify every
instance of the class (i.e., to identify the class objects), while
the rest of the components are each of the class attributes).
For the sake of simplicity, our transformation algorithm also
defines a set of variables following the attributes defined
within the class (e.g., “var att1: DATATYPE1”, “var att2:
DATATYPE2”, etc.). Therefore, the existence of a lifeline
in a UML-SD stereotyped as Client is straightforwardly
transformed to a colored place having the previously men-
tioned timed product color set as color set and an initial token
with the values of object Client1.

The set of variables and color sets in the CPN model gen-
erated by the annotations in the UML-SD PublishSubscribe
scenario, the UML-CD, and the UML-DD are collected in

Listing 1 Variables and colorsets generated by transformation of Fig. 7.

1 (∗ Clients declarations ∗)
2 colset CLIENT = product STRING ∗ BOOL ∗ REAL timed;
3 var client : STRING;
4 var bought: BOOL;
5 var m: REAL;
6 (∗ Resources declarations ∗)
7 (∗ L2 ∗)
8 var cr_R2: INT;
9 var EPR_R2: INT;
10 (∗ CR_USER ∗)
11 var cr_R3: INT;
12 var EPR_R3: INT;
13 (∗ L1 ∗)
14 var cr_R1: INT;
15 var EPR_R1: INT;
16 (∗ Value declarations ∗)
17 val m1 = 1
18 val m2 = 1
19 colset V0m1 = int with 0. .m1;
20 colset V0m2 = int with 0. .m2;
21 val PosCli=1‘("Client " ,"CR_USER",0.0,1000.0,365,"Deposit")@0++
22 1‘("Client " ,"L2",0.0 ,850.0,365,"Purchase L2")@0++
23 1‘("Client " ,"L1",0.0 ,850.0,365,"Purchase L1")@0;
24 val PosRec=1‘(3,"CR_USER",1500.0,365)@0++
25 1‘(1 ,"L1",950.0,365)@0++
26 1‘(2 ,"L2",980.0,365)@0;
27 val maxTime=4

Listing 1. Note that it also sets the initial marking of the PS
core CPN model introduced previously.

123

A. Gómez et al.

Fig. 8 Running example: UML-SD Subscription of the online purchase process annotated with the PS profile

The TCPN generated by our approach is depicted in Fig. 9.
The “Fusion n” tag in some places of the net means that they
are Fusion places, and thus they correspond to a same place
that is used in several CPN pages. For instance, this is the
case of the Resource Registry place, which also appears in
the PS core net model shown in Fig. 6. In the following, we
describe each part of the net considering the transformation
of the stereotypes shown in Fig. 8. For the sake of readability,
we have added dashed boxes in the figure to highlight from
which stereotype comes each part of the net.
The Subscription stereotype. Once the basic elements
have been transformed (core net, client definitions, and exter-
nal structure of the Subscription PN), let us explain the trans-
formation for subscription interactions (Subscription
stereotype). Consider the resource L1, owned by Shop1 and
having (1, ’RL’, 950.0, 365) as attribute values. Consider
also the Client who subscribes to such a resource by means
of a Subscription stereotyped message, as depicted in
Fig. 8 (third subscription message). Note that Client sub-
scribes for a time frame of 365 days, triggering the UML-SD
named Purchase L1 once the values of L1 are in the interval
of [0, 850.0]. As shown in Listing 1, both Resource and

Subscription stereotypes are transformed into the cor-
responding initial colored tokens in the PS core CPN. Let us
remark that the Resource stereotype serves us to populate
the Resources place, whereas the Subscription stereo-
typed message serves us to populate the Roles place.
The AssignmentExecution stereotype. This stereotype
is used in a UML-SD stereotyped with
PublishSubscribeScenario to indicate when the
attributes of a Client object are modified.

Our transformation tool automatically verifies the correct-
ness of the model, i.e., it checks whether every property
specified in each AssignmentOperation matches to
some attribute of the Client class. Any datatype error in the
specified values is indicated by the tool, indicating a mis-
match data type error in the corresponding arc inscription.

Regarding the transformation, every execution specifica-
tion in the annotated UML-SD generates a branch in the
sequential Colored Petri net that represents the execution
of the overall UML-SD. Then, each execution specification
annotated withAssignmentExecutiongenerates a tran-
sition for each of the AssignmentOperation attributes.
This transition is connected to the place that stores the cur-

123

Profiling the publish/subscribe paradigm for automated analysis using CPNs

Fig. 9 Running example: TCPN model of UML-SD depicted in Fig. 8

123

A. Gómez et al.

rent status (values) of the object Client through an input
and output arc. As input arc, it receives a tuple of the form
(client1, att1, att2, . . .,atti , . . . , attn), which represents the
particular instance of Client and the values of its set of
attributes. As output arc, it returns a colored token conformed
by (client1, att1, att2, . . . , atti , . . . , attn). The only value
that is modified in the tuple of the output arc inscription is
the one specified in the attributes of the stereotype.

For instance, in the UML-SD depicted in Fig. 8 the Client
assigns the values of false and 2000.0 to its attributes brought
and m, respectively. This execution specification, annotated
with AssignmentExecution, generates the part of the
net depicted in the second dashed box (from the top) in Fig. 9,
following the aforementioned pattern. Note that the transfor-
mation model follows the assignment operations from left to
right (that is, first the value of brought is set, and then the
value of m).

Moreover, let us remark that since this action occurs inside
a PublishSubscribeScenario UML-SD, the Client
lock was acquired at the beginning (first dashed box) and
hence no race conditions arise.
The TimedSetterand Delayedstereotypes. Let us recall
the running example as depicted in Fig. 8. The client was sub-
scribed to both resources to be aware if some changes were
produced in their prices for a year. Let us consider now that a
few days later after the subscription (consider for instance 10
days), the sales period begins so both shops simultaneously
reduce their laptop prices. In particular, Shop1 offers a 30%
off for Laptop1 during 30 days, while Shop2 offers a 20%
off for Laptop2 during 15 days. Note that both resource sub-
scriptions and the update of the laptop prices occur inside a
parallel combined fragment. These actions have been anno-
tated with TimedSetter and Delayed stereotypes in the
UML-SD Subscription.

Recall that the TimedSetter stereotype allows us to
update the value of a resource as indicated by the operator
attribute. This stereotype also allows us to update the resource
lifetime. In the running example, the current value of the
resource L1 is multiplied by 0.7, representing the 30% off
of the sales offer. The generated subnet of TimedSetter
stereotype (red dashed box in the central part of Fig. 9) con-
tains two places and one transition (SET_L1_0), which is
connected to the Resource Registry place. The arc inscription
of the arc from the transition to the Registry place is used to
update the value of the resource, taking into account the oper-
ation to perform and the value specified as stereotype attribute
values. For instance, the incoming arc of SET_L1_0 is (EPR,
“L1”, v, cr), while the output arc is (E P R, “L1′′, v×0.7, 30).
(See the attribute values of the TimedSetter stereotype
in Fig. 9.)

The Delayed stereotype allows us to specify a delay on
a given message. Let us remark that the transformation pat-
tern for the Delayed stereotype will be inserted before any

other pattern produced by other stereotypes also applied on
the same message (see the green dashed boxes in 9). Its trans-
formation follows a similar scheme to the TimedSetter
stereotype. Recall that the update of the price of L1 was
done 10 days after the client subscription, as specified by
the Delayed stereotype in Fig. 8. In this case, two places
and a new transition connected to them are generated. These
new places represent the beginning and ending of the delay
operation, and thus they are connected to the sequential CPN
representing the evolution of the whole UML-SD. The tran-
sition is connected to the Resource Registry place through
input/output arcs that do not change the resource attributes,
but serve us to check that it is already published. The value
of the Delayed::delay attribute is the time that the new
transition generated takes to fire (see the annotation @+10
under the transition in Fig. 9).
Transformation of parallel combined fragments. Combined
fragments are UML structural components whose trans-
formation is not directly linked to any stereotype of the
UML profile. Consider the parallel combined fragment of
the UML-SD as depicted in Fig. 8 (bottom side). The trans-
formation of this fragment is as follows (third dashed box
in the figure). First, a fork transition creates a new branch
of execution, separate from the sequential execution of the
overall UML-SD, which terminates with a corresponding
join transition. This branch corresponds in the figure with
the part indicated in the right-hand side of the enclosing box.
Notice that two places are also produced as the output of
this fork transition. Then, for the new branch a new fork
transition splits the execution into the parts indicated in the
parallel fragment (two in this case), creating the initial and
final places for each one. A join transition is also created in
order to link the termination of the parallel branches with
the original sequential flow (penultimate dashed box). Then,
each part of the parallel fragment is transformed into its cor-
responding TCPN, following the patterns explained along
this section.

4.3.3 Triggered sequence diagrams

Triggered sequence diagrams (triggeredSDs) are those UML-
SD describing the interactions happening when the value of
a Resource is between the minimum and maximum values
specified by a subscribed Client. That is, they represent the
UML-SD that takes place when the given conditions are ful-
filled.

Let us illustrate how the transformation of a triggeredSD
is carried out by means of the UML-SD Deposit. Recall that
this UML-SD was triggered when the credit of the client is
lower than 1000e (see the first Subscription message
in Fig. 8). The UML-SD Deposit of the running example is
depicted in Fig. 10, while the TCPN generated is shown in

123

Profiling the publish/subscribe paradigm for automated analysis using CPNs

Fig. 10 Running example: UML-SD Deposit, annotated with PS profile

Fig. 11. As before, we have highlighted with dashed boxes
the interesting parts of the generated net.

The transformation into TCPN is very similar to the
one of a UML-SD stereotyped with the
PublishSubscribeScenario. In particular, two places
Start Deposit and Finish Deposit, and two transitions are
created. The first transition works similar to the previ-
ous Acquire Locks transition: as input arc, it consumes
tokens from the Start Deposit place, from all places that
represent the client and resource locks of the clients and
resources which interact in the UML-SD, and from the
Notifications place. As initial marking, the Start Deposit
place contains a string-typed token with the “Deposit”
value.

The Notifications place is then used to activate this subnet
when a notification occurs. As an illustration, in our running
example the input arc of the initial transition and the Notifica-
tions place has as inscription the tuple (EPR, “CR_USER”,
“Client”, v, “Deposit”), which indicates the participants of
the UML-SD stereotyped (“Client” and “CR_USER”) and
the name of the triggered SD (“Deposit”).
Transformation of alternative combined fragments. Notice
now the use of an alternative combined fragment in Fig. 10 to
specify a conditional flow in a sequence diagram. With this
alternative combined fragment, we indicate an interaction
between a Client and a CR that only occurs if the condition
m > 1000.0 is fulfilled.

The transformation of this fragment is similar to the par-
allel combined fragment. First, a branch is created by the
transition below the Start Deposit place, which separates
the sequential Petri net that represents the execution of the
overall UML-SD from the new branch for the combined frag-
ment (on the right). The part produced for the alternative
combined fragment is enclosed in the dashed boxes at the
top and bottom of the figure. The combined fragment has

its own sequential flow, so a new fork transition is used to
separate this flow from the alternatives, which are started
by transitions labeled with the corresponding guards. These
transitions are connected with the Client place so as to obtain
the attribute values (m and bought) required in their guards.
Only one of these transitions can fire (see the conflict place
in the right-hand side), and they must fire before the tran-
sition corresponding to the default condition, so they have
a higher priority than the transition representing the default
condition.

Finally, each part in the alternative combined fragment is
individually transformed into its corresponding TCPN fol-
lowing the rules explained in this section. In our running
example the default case is empty, so its transformation is
straightforward. Thus, there are two branches in the gener-
ated TCPN (see Fig. 11), one branch without any activity
(left branch) and the other branch having the condition m >

1000.0 (right branch). Furthermore, this branch contains the
generated TCPN of the contents shown in the alternative frag-
ment (the transformation of an AssignmentExecution
stereotype and a Setter stereotype, explained later).
The Setter stereotype. The UML-SD depicted in Fig. 10
also shows a message stereotyped with Setter. The Client
is modifying the value of resource CR by operating on its
current value (in particular, its value is being incremented in
1000 units).

The transformation of this stereotyped message fol-
lows a similar approach to the TimedSetter stereotype
(see the dashed box in the central part of Fig. 11). The
generated subnet contains two places and one transition
(SET_CR_USER_0), which is also connected to the Resource
Registry place in order to modify the resource property value.

Let us now see the UML-SD Purchase L1 depicted
in Fig. 12, which corresponds to the triggeredSD for the
third client’s subscription in the UML-SD Subscription (see
Fig. 8). The generated TCPN for this UML-SD Purchase L1
is shown in Fig. 13. In this UML-SD, the Getter stereotype
is used in order to get the values of the resource properties.
The Getter stereotype. The Getter stereotype is used in
the UML-SD to indicate the variable in which the value of
a resource is stored. Note that in the UML-SD depicted in
Fig. 12 there are two messages stereotyped with Getter,
getting the values of the resources L1 and CR in the client’s
variables PPL1 and balance. These variables are then used
as part of the guard condition in the subsequent alternative
combined fragment.

The transformation of the Getter stereotype is enclosed
in a dashed box in Fig. 13. As in the previous cases, input
and output arcs are produced to link the transition starting the
corresponding branch with the Resource Registry place, so as
to obtain the property values and assign the client’s variables
with the values obtained (PPL1 and balance).

123

A. Gómez et al.

Fig. 11 Running example: TCPN model of UML-SD depicted in Fig. 10

Fig. 12 Running example:
UML-SD Purchase L1,
annotated with PS profile

123

Profiling the publish/subscribe paradigm for automated analysis using CPNs

Fig. 13 Running example: TCPN model of UML-SD depicted in Fig. 12

5 A tool for modeling and simulating the
publish/subscribe paradigm

To effectively automate the analysis of models express-
ing publish/subscribe interactions, we have implemented a
complete toolset for their definition and automatic trans-
formation. This toolset has been implemented using the
Eclipse ecosystem due to its variety of tools for model-
based development. In fact, Eclipse and its Eclipse Mod-
eling Framework (EMF) [27] have become a de facto
standard for building model-based tools, providing a com-
mon base for different purposes, e.g., model transfor-
mation [8,28], reverse engineering [29,30], code gener-
ation [31,32], or document generations [33], to name a
few.

Eclipse is an open-source software development environ-
ment aimed at providing a platform for highly integrated
tools. Indeed, it is usually described as “an open extensible
IDE for anything and yet nothing in particular” [27] Spe-
cific tools can be plugged-in the base Eclipse platform to
define a particular IDE configuration all together. Some pre-
eminent projects within the Eclipse ecosystem that provide
tools extending such core framework are the Eclipse Mod-
eling Framework (EMF) [34], Eclipse Papyrus [35], or the
QVT Operational SDK [36].

All these tools, among others that are presented next, are
the baseline for our tool. In the following, we first introduce
the description of the architecture of our tool and then illus-
trate how the UML models are transformed to CPN using
QVT by means of a practical example. Finally, we show
what our tool looks like from the final user’s point of view.

123

A. Gómez et al.

Fig. 14 Architecture of the publish/subscribe modeling and simulation tool

5.1 Architecture and components description

Figure 14 describes the architecture of our tool, showing
the most remarkable components. The components with a
white background represent coarse-grained Eclipse compo-
nents, on which our tool relies, while the components with a
light gray background represent the different component that
were developed in the context of this work, and make our
toolset for the modeling and transformation of the publish/-
subscribe paradigm up. Finally, the dark gray component on
the lower right-hand side of the figure represents the external
CPN Tools tool. Next, a more detailed description follows:

Eclipse Runtime and Eclipse UI are the component-based
runtime environment [37,38] and the user interface facil-
ities provided by Eclipse, respectively.
EMF Runtime provides the modeling, meta-modeling,
and code generation capabilities within the Eclipse plat-
form. EMF uses Ecore [39] as the canonical language to
describe models. An Ecore model is, essentially, a subset
of the UML class diagram and thus can be considered
as the reference implementation of the EMOF language
proposed by the OMG [20].
Eclipse UML2 is an EMF-based implementation of the
Unified Modeling Language 2.x OMG metamodel for the
Eclipse platform. This component is considered to be a
reference platform for UML that guarantees interoper-
ability and provides the basis for the adoption and use of
Model-Based Software Engineering (MBSE). This is the
metamodel implementation used by our tool to support

the definition of UML Class Diagrams, Sequence Dia-
grams, and Deployment Diagrams as presented in Sect. 3.
Papyrus UML is an industrial-grade open-source Model-
Based Engineering (MBE) tool built on top of Eclipse.
Papyrus has notably been used in industrial projects and
is the base platform for several industrial modeling tools.
Papyrus offers a very advanced support of UML profiles
that enables users to define editors for DSLs based on
the UML2 standard and its extension mechanisms. The
main feature of Papyrus regarding this latter point is a
set of very powerful customization mechanisms which
can be leveraged to create user-defined Papyrus perspec-
tives and give it the same look and feel as a native DSL
editor. This component has been used to implement our
publish/subscribe profile described in Sect. 4.1.
QVT Operational provides an implementation and an
interpreter for the Operational Mappings Language
defined in the query/view/transformation (QVT) [8] stan-
dard. The transformation patterns described in Sect. 4.3
are encoded in a QVT Operational Mappings transfor-
mation (as we briefly illustrate in the next subsection),
which is executed by invoking this component.
CPN Tools Toolkit6 provides the implementation of the
metamodel presented in Sect. 4.2.7 This metamodel is
an extended and cleaned up version of a previous imple-

6 https://github.com/abelgomez/cpntools.toolkit
7 In fact, and following the model-driven development principles [19,
40], the metamodel shown in Fig. 5 is indeed the implementation itself.

123

Profiling the publish/subscribe paradigm for automated analysis using CPNs

mentation,8 and is provided in a separate fashion from
the Publish/Subscribe SDK tool for reusability purposes.
This component also provides the ability to automati-
cally post-process the generated Petri nets, applying a
graph layout algorithm for a proper visualization.
Publish/Subscribe SDK is our Eclipse-based tool, which
reuses, extends, and interacts with all the previous com-
ponents. It is composed by:

– the Publish/Subscribe Profile, an implementation of
the profile described in Sect. 4.1, which is based on
Eclipse UML2 and Papyrus UML;

– the Publish/Subscribe Transformer, an implemen-
tation of the transformation presented in Sect. 4.3
from the Eclipse UML2 metamodel profiled with the
Publish/Subscribe Profile to the CPN Tools Toolkit
metamodel; and

– the Publish/Subscribe UI, the extensions plugged-in
into the Eclipse User Interface, which allows invok-
ing our transformation tool.

The CPN Tools component represents the external tool
that is automatically invoked by the Publish/Subscribe UI
once a UML model annotated with the Publish/Subscribe
Profile is transformed into a Petri net by the Publish/Sub-
scribe Transformer component.

5.2 FromUMLmodels to TCPN: a practical example

using QVT

As previously introduced, the transformation patterns
described in Sect. 4.3 have been encoded using the QVT
Operational Mappings Language (QVTo).

A QVTo transformation represents the definition of a uni-
directional transformation that is expressed imperatively. As
Listing 2 shows, a transformation defines a signature indicat-
ing the models involved in the transformation and an entry
operation for its execution (named main). The code excerpt
shows the signature and the entry point of a transformation
calledps2cpntools, which transform a UML model into a
CPN Tools (TCPN) net. In the example, the main entry oper-
ation firstly calls the interaction() helper (which is not
shown, but simplifying, retrieves the Interaction selected by
the user) and then applies a mapping operation called cpnet
on it. As shown in the listing, the cpnet mapping opera-
tion is the operation in charge of creating the corresponding
instance of the Cpnet class of the metamodel shown in Fig. 5.
Additionally, it initializes some of the Cpnet attributes by
calling other mapping operations (line 14), or by directly
instantiating new objects (lines 15–23). Objects that are cre-

8 https://issigit.dsic.upv.es/agomez/intergenomics.

Listing 2 Transformation declaration and main entry point, excerpt
of the UML+Publish/Subscribe to CPN Tools QVT transformation
(ps2cpntools)

1 transformation ps2cpntools(in uml : UML , out
cpn : CPN);

2

3 main() {
4 var cpnet := uml.interaction ().map cpnet ()

;
5 -- Once the transformation has been

executed , force the
6 -- automatic layout of the CPNet for all

its pages
7 cpnet.binder.pages ->forEach(p) {
8 var nNodes := p.places ->size() + p.

transs ->size();
9 p.layout(nNodes * 40, nNodes * 40, 3000)

;
10 }
11 }
12

13 mapping UML:: Interaction :: cpnet () : CPN::
Cpnet {

14 globbox := self.map invariantGlobbox ();
15 binder := object CPN:: Binder {
16 posx := 300;
17 posy := 30;
18 width := 500;
19 height := 500;
20 pages += self.map invariantPage ();
21 pages += self.map scenarioPage ();
22 pages += self.message[isSubscription ()].

subscription ().map subscriptionPage
();

23 }
24 }

Listing 3 A transformation mapping, excerpt of the
UML+Publish/Subscribe to CPN Tools QVT transformation
(ps2cpntools)

1 mapping PS:: Getter :: getterSubnet
2 (inout _page : CPN::Page , in trans : CPN

::Trans) {
3 var pResourceRegistryGetter =

pResourceRegistry(_page);
4 self.variable.map asRealVariable ();
5 var inscription : String =
6 ’(EPR_R {1}, "{2}", {3}, cr_R {4})’
7 ._format(
8 self.resource.epr , self.resource._tag ,

self.variable , self.resource.epr)
;

9 create_arc(_page , pResourceRegistryGetter ,
trans , inscription);

10 create_arc(_page , trans ,
pResourceRegistryGetter , inscription);

11 }

ated inline (such as the Binder) can also call subsequent
mapping operation to initialize their attributes (lines 20–22).

Listing 3 shows another example mapping that, thanks
to its simplicity, serves as a clear demonstration of how
the transformation patterns described in Sect. 4.3 can be
described using QVTo. Specifically, it shows the basic pat-
tern for the Getter stereotype. The mapping specifies that
the getterSubnet mapping operation will be applied for
a Getter stereotype application (line 1). Additionally, the
mapping will receive a modifiable page and a read-only tran-

123

A. Gómez et al.

Fig. 15 Publish/Subscribe modeling and simulation tool

sition (line 2). The page is the element owning the place and
the arcs created by this mapping, while the transition is the
element to which the subnet created by this pattern will be
attached. The pResourceRegistry operation will cre-
ate and retrieve a fusioned place representing the Resource
Registry. The instruction in line 4 creates a Real variable
in the global Globbox, which will be later used in the arc
expressions. Finally, lines 5–8 create the arc expression (the
same for both arcs, making use of the Resource identifiers
to avoid naming collisions), and lines 9–10 create the arcs
between the place representing the Resource Registry and the
transition passed as argument.

To inspect how other transformation patterns have been
translated into QVTo, the full code of the ps2cpntools
transformation can be checked online.9

9 The full code is available at https://github.com/abelgomez/publish-
subscribe/tree/master/plugins/io.github.abelgomez.ps.transformer/
transformation.

5.3 Users’ view

Although our tool for Modeling and Simulating the Pub-
lish/Subscribe Paradigm interacts with different tools and
components, as well as relies on different models and file
types, the orchestration among all these elements is per-
formed in a transparent way from the final users’ point of
view. Thus, what a user sees is a light-weight integration of
our tool within the Papyrus modeling environment.10 Once
the Publish/Subscribe profile is loaded into a UML model,
users can apply the stereotypes defined in Sect. 4.1 to their
models.

Figure 15 shows what the modeling environment looks
like. In particular, this figure illustrates the Purchase L1
UML-SD shown in Fig. 12a (all the UML diagrams in Sects. 4
and 5 have been directly included in this paper as they have

10 Please refer to our online documentation for a detailed descrip-
tion of the tool user interface https://github.com/abelgomez/publish-
subscribe/.

123

Profiling the publish/subscribe paradigm for automated analysis using CPNs

Fig. 16 Generated Petri net in CPN tools

been modeled with the only help of Papyrus and our profil-
ing tool). The bottom part of the figure shows the Properties
view, which allows setting the different tagged values. Specif-
ically, the figure shows how the operation tagged value of
the updateBalance message (stereotyped as Setter) is set to
(operator=minus, value=’PPL1’).

Finally, after a transformation process is launched from the
Eclipse UI, a CPN Tools Petri net is generated and opened in
the CPN Tools simulator, as show in Fig. 16. The figure shows
in the active page the Purchase L1 subnet (i.e., the same
net that the one shown in Fig. 12b), with the automatically
generated layout11 during a simulation.

A limitation of our current approach is that the user must
know how to use the CPN Tools for simulating the generated
TCPN model. Unfortunately, CPN Tools does not provide
a way to interact with it in a seamlessly mode (e.g., via
command-line interface). Our next step is to solve this limi-
tation by investigating how to interact with the graphical user
interface of CPN Tools without any user intervention.

6 Verification and validation phases

In this section, we describe the verification and validation
phases that are performed for the generated TCPN models,

11 Please note, that Figs. 12b and 16 look different because the lay-
out of the Petri net shown in Fig. 12b has been manually tweaked for
readability purposes.

after the transformation of UML annotated models with the
PS profile.

6.1 Verification phase

The verification phase takes place in two phases. Firstly, dur-
ing the annotation of the UML model with the PS profile.
This profile contains a set of OCL rules to verify the correct-
ness of the annotated model with regard to the UML profile.
For instance, the ownerIsService OCL rule shown at
the top of Fig. 4 that verifies if the owner of a resource has
been stereotyped with the Service stereotype. Secondly,
during the transformation phase. The transformation patterns
that have been defined for each stereotype are applied in a
compositional way. Thus, as we have seen in the previous
section, we define the transformation by pieces, where the
behavior of each individual operator is first translated into a
corresponding TCPN representation, whose behavior is the
same as the operator it comes from. Thus, from this compo-
sitional approach, we guarantee that generated TCPN model
reflect the behavior indicated in the UML annotated model.
In addition, the QVT transformation also incorporates sev-
eral OCL rules to verify that the UML annotated model is
well-formed.

6.2 Validation phase

Once we have the generated CPN models, we can accomplish
the validation phase. Table 1 contains a general set of prop-

123

A. Gómez et al.

Table 1 Global properties of Publish/Subscribe paradigm to be fulfilled
in the generated TCPN models

Property to check

1 If a resource is published, this resource becomes published with
the information provided by the publisher

2 If a resource was already published, the publish operation fails

3 A published resource becomes expired when its lifetime runs
out

4 All subscriptions to an expired resource are removed

5 A discovery operation must work for a published resource

6 A discovery operation fails when there is no published resource
with the indicated tag

7 If TimedSetter is invoked with time argument 0 (new lifetime)
and the resource is published, it becomes immediately
expired or unpublished

8 Operations TimedSetter, Setter, Getter and Subscription fail
when they are invoked for an expired or not published
resource

9 If TimedSetter is invoked with a positive argument time, the
resource becomes expired (unpublished) once the new
indicated lifetime elapses

10 Operation Getter returns the actual property value of the
resource, if it is currently published

11 Operation Setter changes the actual value of the resource, if it is
published

12 A Subscription operation is immediately notified if the resource
is published or a Setter operation or TimedSetter operation is
performed such that the current value of the resource belongs
to the indicated subscription interval

13 A subscription is removed when its associated lifetime runs out

erties that must hold for the TCPN model obtained by the
translation. These properties have been checked by using the
monitor features of the CPN Tools in the running example
used in Sect. 4.3, and all of them are satisfied. A monitor
is a mechanism to observe, inspect, control, or modify a
simulation of a TCPN. Monitors allow to inspect the mark-
ings of places and the occurring binding elements during a
simulation, and they can take appropriate actions based on
the observations. Therefore, monitors are used for different
purposes, such as stopping a simulation when a particular
place is empty, counting the number of times a transition
occurs, updating a file when a transition occurs with a vari-
able bound to a specific value, or calculating the average
number of tokens on a place.

Property 1 in Table 1 checks the basic functionality
regarding the eventual publication of a resource. Property 2
allows us to check whether the publish operation fails when
the resource is already published. Property 3 captures the
resource expiration when its lifetime runs out. Property 4
checks whether all the subscriptions to an expired resource
are removed. Properties 5 and 6 state the behavior of the
discovery operation; specifically, property 5 checks if the dis-

Fig. 17 Monitor feature of CPN tools defined for Property 2

covery operation works with an already published resource,
and property 6 if the discovery operation fails when the
resource with the indicated tag does not exist. Properties 7, 8,
9, 10, and 11 capture the behavior of TimedSetter, Getter and
Setter operations. Specifically, property 7 checks whether
the resource becomes immediately unpublished when the
TimedSetter operation is invoked with time argument 0 for
a published resource. Property 8 captures whether Timed-
Setter, Setter and Getter fail when they are invoked for an
expired resource. Property 9 tests the behavior of TimedSetter
when it is invoked with a positive argument and the updated
lifetime elapses. Properties 10 and 11 check whether Get-
ter and Setter operations work properly when the resource is
published. Properties 12 and 13 capture the basic functional-
ity regarding the subscription and notification, respectively.
Specifically, property 12 checks whether the Subscription
operation works properly, that is, if the notification is sent
when the resource value belongs to the subscription interval,
once it has been published or a Setter operation has modified
its value. Finally, property 13 checks whether the subscrip-
tion is removed when its lifetime expires.

As an example, Fig. 17 depicts the monitor used to check
property 2 (we cannot publish twice a same resource). This
monitor is defined as a breakpoint monitor (specifically, a
transition enabled monitor), which checks whether a transi-
tion is enabled or not, stopping the simulation when enabled
[14]. Thus, in this example, the monitor stops the simula-
tion when the transition Publish_fail is enabled. To start the
simulation, we consider the following initial marking in the
Resource Registry place:

1‘(1,"L1",950.0,365)@0+++
1‘(2,"L2",980.0,365)@0+++
2‘(3,"CR_USER",1500.0,365)@0

As shown, there are both laptop resources of types L1 and
L2 and two identical user credit cards (CR_USER), with the
same EPR (3). Thus, once the first instance of the credit card
is published, the second instance cannot be published and
transition Publish_fail becomes enabled, activating the mon-
itor and stopping the simulation process. Figure 18 shows
the state at which the simulation stopped, in which only one
credit card has been published.

123

Profiling the publish/subscribe paradigm for automated analysis using CPNs

Fig. 18 TCPN final marking with monitor

Validation of the running example

Finally, the obtained TCPN model of the running example has
been simulated, obtaining the following sequence of relevant
events in the system:

1. Once the CPN Tools simulator tool opens, the initial
TCPN marking for the PS_Core_Subscription page is
that shown in Listing 1.

2. After 10 days, both laptop prices are reduced to 665e
and 784e, respectively.

3. Both subscription conditions are then fulfilled, so the
Notification place becomes marked with the two corre-
sponding tokens.

4. Only one purchase can proceed, because we only have
one token in the Lock places. Thus, we have obtained
the two possible purchases in different simulations. For

123

A. Gómez et al.

Fig. 19 Laptop 2 is bought and credit card balance low

instance, when laptop 2 is bought, the Credit Card balance
is now 716e. This situation is shown in Fig. 19.

5. Since the credit card is lower than 1000e, the subscrip-
tion condition for the Deposit UML-SD is fulfilled, so
it is notified (the corresponding token is included in the
Notification place. This situation is shown in Fig. 20.

6. The Purchase subnet is activated again with the other
token (laptop 1), but as we now have that variable bought
is true, its execution follows the default branch (no action)
and terminates its execution.

7. Finally, the subnet corresponding to Deposit is therefore
executed, and the client’s credit card balance is increased
by 1000e.

In this model, we have also checked other situations by
changing the initial values of resources and client’s infor-
mation (initial credit card budget and cash available). For
instance, we have checked the situation in which the ini-
tial credit card balance is 300e, with a cash of 300e. In
this scenario, we have obtained that the Deposit subnet is
immediately performed, so the credit card balance increases
to 600e, and even when the laptop prices are reduced, she

cannot afford to buy any of them, so the default branch is
executed on both subnets with no action at all. Figure 21
shows that even though the laptop prices are reduced and the
credit card balance is increased, she cannot buy any laptop.
The enabled transition in the center of the figure corresponds
to not buying the laptop, since the credit card balance is not
enough. This transition has priority P2, so it fires because
the transition on the right, which has a greater priority (P1)
cannot be fired.

7 Related work

The Publish/Subscribe paradigm has received considerable
attention in the last few years. A survey on this subject was
carried out by Lin and Plade [2] and also by Eugster et al. [41],
and formalizations of this paradigm can be found in Baldoni
et al. [42] and Garlan et al. [43]. From these works, it becomes
obvious that the way in which the Publish/Subscribe systems
are modeled varies considerably depending on the specific
model’s goals. In our case, we have used a mechanism to
publish distributed resources identified by a textual name,

123

Profiling the publish/subscribe paradigm for automated analysis using CPNs

Fig. 20 Credit card low balance notified

and a mechanism to allow clients to discover these resources,
by using these names.

To the best of our knowledge, there is no work combining
the main features of UML 2.5 sequence diagrams with the
WSRF standard for the description of distributed resources so
as to automatically generate its corresponding representation
in colored Petri nets to simulate and validate the system. In a
preliminary work [12], we presented a UML formal frame-
work based on a timed process algebra to model timed Web
services with distributed resources and then, we provided a
graphical model of timed Web services based on sequence

diagrams that integrates the publish/subscribe paradigm in
the context of distributed resources, with the goal that users
have a formal framework to design these systems. In this
work, we have used the formal framework presented in Valero
and Cambronero, [12] as basis to define a UML profile and
develop a tool that allows us to obtain automatically a corre-
sponding TCPN.

Bran Selic [44] presented a generic framework for mod-
eling resources with UML, focusing on the notion of
abstract resources, which define the common characteristics
of resources regardless of their specific manifestation. The

123

A. Gómez et al.

Fig. 21 Credit card balance low, no purchase

Publish/Subscribe paradigm was not considered in this paper
and resources were modeled as servers with services, char-
acterized by both their functional and non-functional aspects
(such as response time and availability), thus focusing on
Quality of Service (QoS) analysis.

There is considerable work on providing translations from
UML sequence diagrams to colored Petri nets but, as previ-
ously mentioned, none of them integrate WSRF-resources
in UML sequence diagrams. For instance, Mirandola and
Cortellessa [45] used UML diagrams (in particular, use case
diagrams, sequence diagrams, and deployment diagrams) to
obtain a performance model of the system based on a queue-
ing network, which can therefore be helpful as a support
for early design decision making. Fernandes et al. [46] also
presented a translation of use cases and UML 2.0 sequence
diagrams to colored Petri nets supported by CPN Tools,
but the transformation is only performed on a specific case
study, an elevator controller. Bowles and Meedeniya [47]
defined a formal strongly consistent transformation from
UML sequence diagrams to colored Petri nets by using a
set of transformation rules, showing that the obtained CPNs
are equivalent in terms of trace semantics.

Translations of UML sequence diagrams to other for-
malisms have also been done. A true-concurrent semantics
for UML sequence diagrams was defined by Juliana Bowles

[48,49], using a two-level logic interpreted over labeled event
structures. Starting from these two works, Bowles, Bordbar
and Alwanain [50] checked the consistency of a compo-
sition of UML sequence diagrams, using a set of logical
constraints to describe their behavior. Bernardi et al. [17] pro-
posed patterns for model transformation from UML sequence
diagrams and state-charts into a particular subclass of timed
Petri nets. However, only plain UML models (not annotated)
were considered. A transformation of UML sequence dia-
grams into State Machines by using graph transformation
techniques was defined by Grønmo and Møller-Pedersen
[51], by taking the parallel, choice, loop, and neg Combined
Fragments, although time and resources were not consid-
ered in that approach. In Cambronero et al. [52], we used
the RT-UML profile [20] for UML 2.0 and defined a corre-
sponding process algebra, capturing the main aspects related
to sequence diagrams extended with combined fragments
to obtain a translation into a network of timed automata.
Hence, the modeled system is suitable for simulation and
analysis by means of the existing tools supporting timed
automata, such as UPPAAL [53]. In that work resources were
not considered, so the current work extends such a previ-
ous work by introducing a WSRF-compliant UML profile
of distributed resource management, including the Publish/-
Subscribe paradigm. Tribastone and Gilmore [54] defined

123

Profiling the publish/subscribe paradigm for automated analysis using CPNs

a translation of UML sequence diagrams annotated with
stochastic information into the stochastic process algebra
PEPA [55] to carry out quantitative evaluation. In Distefano et
al. [18], proposed a methodology to validate the performance
of a UML model representing a software architecture. They
annotated the UML models and derived a Stochastic Petri net
where performance measures are assessable.

Testing and analysis of model transformation has also
been studied by Hilken et al. [56]. In that paper, the authors
proposed the use of partitioning techniques based on clas-
sifying terms for testing models and model transformation.
Anatasakis et al. [57] describe how to transform UML mod-
els into Alloy in order to apply the Alloy analyzer [58] and
thus check and identify design faults within a specification.
In a similar way, Gogolla et al. [59] study the testing and cer-
tification of UML and OCL models by using the validation
tool USE [60].

8 Conclusions and future work

Many Web services behave as stateful distributed services,
allowing a user to access and manipulate states when the
user interacts with the service. In this paper, we focus on
timed Web services that manage a collection of distributed
resources using the Publish/Subscribe paradigm and the
OASIS WSRF standard. These systems present the follow-
ing characteristics: (i) the resources are published by some
publisher and subscribers can submit their subscription con-
ditions to be notified when these conditions become true; and
(ii) resources have standardized operations for the manage-
ment of resources.

In this paper, we have proposed a UML profile for the
Publish/Subscribe paradigm that enables us to represent the
underlying concepts of this paradigm in the UML models
by means of annotations. We have also introduced a set of
rules for transforming a UML annotated system into a formal
model; particularly, to Colored Petri nets. Furthermore, we
have developed a model-to-model transformation tool that
follows these rules and provides us with a Colored Petri net
model compatible with the format used by CPN Tools, a well-
known tool for editing, simulating, and analyzing these nets.
The obtained model becomes useful to detect and fix design
errors in early stages of system development, thus saving
production costs. To foster research in this area and for the
sake of the reproducibility of our research in this paper, we
publish our tool and the UML models of the case study that we
used for the evaluation under an open-source license, namely,
the Eclipse Public License [27]. All information is available
at https://github.com/abelgomez/publish-subscribe/.

As future work, we aim at further extending the validation
of properties of the Publish/Subscribe paradigm to include
also properties more specific to the particular problem under

consideration. Furthermore, we aim at improving the feed-
back to the user regarding the design errors detected and at
providing a more seamlessly integration with CPN Tools to
facilitate the adoption of our approach for non-expert users in
Petri nets. Similarly, the automatic generation of code is also
an important phase of our methodology that needs further
research.

Acknowledgements The research of A. Gómez and R. J. Rodríguez
was supported in part by the EU H2020 through the DICE Project under
Grant 644869 and in part by the Spanish MINECO through CyCriSec
Project under Grant TIN2014-58457-R. The research of M. E. Cam-
bronero and V. Valero was supported by the Spanish Ministry of Science
and Innovation and the European Union FEDER Funds through the
DArDOS Project under Grant TIN2015-65845-C3, subproject 2-R, and
also by the JCCM regional project SBPLY/17/180501/000276, which
is also co-financed by the European Union FEDER Funds.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.

References

1. Alonso, G., Casati, F., Kuno, H., Machiraju, V.: Web Services:
Concepts. Architectures and Applications. Springer, Berlin (2004)

2. Lin, Y., Plade, B.: Survey of Publish-Subscribe Event Systems.
Technical Report 16, Computer Science Department, Indiana Uni-
versity (2003)

3. Niblett, P., Graham, S.: Events and service-oriented architecture:
the OASIS web services notification specifications. IBM Syst. J.
44(4), 869–886 (2005)

4. OMG (2015) Unified Modeling Language (UML), v2.5. http://
www.omg.org/spec/UML/2.5

5. Jensen, K.: Coloured Petri Nets. Monographs in Theoretical Com-
puter Science. Analysis Methods and Practical Use. Springer,
Berlin, Basic Concepts (1997)

6. Selic, B.: A systematic approach to domain-specific language
design using UML. In: 10th IEEE International, Symposium on
Object and Component-Oriented Real-Time Distributed Comput-
ing (ISORC), IEEE Computer Society, Santorini Island, Greece,
pp. 2–9 (2007)

7. Lagarde, F., Espinoza, H., Terrier, F., Gérard, S: Improving UML
profile design practices by leveraging conceptual domain models.
In: Proceedings of the 22nd IEEE/ACM International Conference
on Automated Software Engineering, ACM, New York, ASE’07,
pp. 445–448 (2007)

8. OMG (2016) Meta Object Facility (MOF) 2.0 Query/View/Trans-
formation Specification, Version 1.3. http://www.omg.org/spec/
QVT/1.3/

9. Jensen, K., Kristensen, L.M., Wells, L.: Coloured Petri nets and
CPN tools for modelling and validation of concurrent systems. Int.
J. Softw. Tools Technol. Transf. 9(3), 213–254 (2007)

10. Randimbivololona, F.: Orientations in Verification Engineering
of Avionics Software. In: Wilhelm, R. (ed.) Informatics, Lecture
Notes in Computer Science, vol. 2000, pp. 131–137. Springer,
Berlin (2001)

11. Cambronero, M.E., Valero, V.: Modelling distributed service sys-
tems with resources using UML. In: Proceedings International

123

A. Gómez et al.

Conference on Computational Science (ICCS’13), Procedia Com-
puter Science, pp. 140–148 (2013)

12. Valero, V., Cambronero, M.E.: Using unified modelling language
to model the Publish/Subscribe paradigm in the context of timed
web services with distributed resources. Math. Comput. Model.
Dyn. Syst. 23(6), 570–594 (2017)

13. Jensen, K., Kristensen, L.: Coloured Petri Nets. Modelling and
Validation of Concurrent Systems. Springer, Berlin (2009)

14. CPN Tools.: CPN Tools Homepage. http://www.cpntools.org/
(2017). Accessed 12 Oct 2018

15. Murata, T.: Petri nets: properties, analysis and applications. Proc.
IEEE 77(4), 541–580 (1989)

16. Baeten, J., Middelburg, C.: Process Algebra with Timing. EATCS
Monographs Series. Springer, Berlin (2002)

17. Bernardi, S., Donatelli, S., Merseguer, J.: From UML sequence
diagrams and statecharts to analysable Petri Net models. In: Pro-
ceedings of the Third International Workshop on Software and
Performance (WOSP2002), ACM, Rome, Italy, pp. 35–45 (2002)

18. Distefano, S., Scarpa, M., Puliafito, A.: From UML to Petri nets: the
PCM-based methodology. IEEE Trans. Softw. Eng. 37(1), 65–79
(2011)

19. Czarnecki, K., Eisenecker, U.W.: Generative Programming: Meth-
ods, Tools, and Applications. ACM Press/Addison-Wesley Pub-
lishing Co., New York (2000)

20. OMG.: Object Management Group. http://www.omg.org/ (1989) .
Accessed 12 Oct 2018

21. Bernardi, S., Merseguer, J., Petriu, D.: A dependability profile
within MARTE. J. Softw. Syst. Model. 10(3), 313–336 (2011)

22. Rodríguez, R.J., Merseguer, J., Bernardi, S.: Modelling security
of critical infrastructures: a survivability assessment. Comput. J.
58(10), 2313–2327 (2015)

23. OMG.: Object Constraint Language (OCL), Version 2.3.1. http://
www.omg.org/spec/OCL/2.3.1/ (2012). Accessed 12 Oct 2018

24. Gómez, A.: Intergenomics—Transpat2CPN. https://issigit.dsic.
upv.es/agomez/intergenomics (2006). Accessed 12 Oct 2018

25. Milner, R., Tofte, M., Macqueen, D.: The Definition of Standard
ML. MIT Press, Cambridge (1997)

26. Valero, V., Macià, H., Díaz, G., Cambronero, M.E.: Colored Petri
net modeling of web services resources. In: 20th International
Workshop on Formal Methods for Industrial Critical Systems
(FMICS’15), Lecture Notes in Computer Science, vol. 9128, pp.
81–95 (2015)

27. Eclipse Foundation.: Eclipse: The Platform for Open Innovation
and Collaboration. https://www.eclipse.org/ (2004). Accessed 12
Oct 2018

28. INRIA, LINA.: ATLAS transformation language. http://www.
eclipse.org/atl/ (2014). Accessed 9 Apr 2018

29. Bruneliére, H., Cabot, J., Dupé, G., Madiot, F.: MoDisco: a model
driven reverse engineering framework. Inf. Softw. Technol. 56(8),
1012–1032 (2014)

30. The Eclipse Foundation.: MoDisco Eclipse Project. http://www.
eclipse.org/MoDisco/, http://www.eclipse.org/MoDisco/ (2014).
Accessed 9 Apr 2018

31. Bettini, L.: Implementing Domain-Specific Languages with Xtext
and Xtend, 2nd edn. Packt Publishing, Birmingham (2016)

32. Eclipse Foundation: ATL - a model transformation technology.
http://www.eclipse.org/atl/. Accessed 3 Jan 2019

33. Gómez, A., Penadés, M.C., Canós, J.H., Borges, M.R., Llavador,
M.: A framework for variable content document generation with
multiple actors. Inf. Softw. Technol. 56(9), 1101–1121 (2014)

34. Eclipse Foundation.: Eclipse Modeling Project. http://www.
eclipse.org/emf/ (2017). Accessed 12 Oct 2018

35. Eclipse Foundation.: Papyrus. https://eclipse.org/papyrus/ (2017).
Accessed 12 Oct 2018

36. Eclipse Foundation.: Eclipse QVT Operational. https://projects.
eclipse.org/projects/modeling.mmt.qvt-oml (2017). Accessed 12
Oct 2018

37. McAffer, J., VanderLei, P., Archer, S.: OSGi and Equinox: Creating
Highly Modular Java Systems. Eclipse Series. Addison-Wesley,
Boston (2009)

38. OSGi Alliance.: OSGi Service Platform Core Specification. Tech.
rep., OSGi Alliance. http://www.osgi.org/Specifications/ (2008).
Accessed 9 Apr 2018

39. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF
Eclipse Modeling Framework 2.0, 2nd edn. Addison-Wesley Pro-
fessional, Boston (2009)

40. Selic, B.: The pragmatics of model-driven development. IEEE Soft.
20(5), 19–25 (2003)

41. Eugster, P.T., Felber, P.A., Guerraoui, R., Kermarrec, A.M.: The
many faces of Publish/Subscribe. ACM Comput. Surv. 35(2), 114–
131 (2003)

42. Baldoni, R., Contenti, M., Tucci, S., Virgilio, A.: Modelling
Publish/Subscribe communication systems: towards a formal
approach. In: Proceedings 8th IEEE International Workshop on
Object-Oriented Real-Time Dependable Systems, pp. 304–311
(2003)

43. Garlan, D., Khersonsky, S., Kim, J.: Model-checking publish-
subscribe systems. In: Proceedings 10th International SPIN Work-
shop on Model Checking Software (SPIN’03), pp. 166–180 (2003)

44. Selic, B.: A generic framework for modeling resources with UML.
Comput. J. 6, 64–69 (2000)

45. Mirandola, R., Cortellessa, V.: UML based performance mod-
elling of distributed systems. In: Proceedings 3rd International
Conference on the Unified Modelling Language: Advancing on
the Standard, UML’00, Lecture Notes in Computer Science, vol.
1939, pp. 178–193 (2000)

46. Fernandes, J.M., Tjell, S., Jorgensen, J.B., Ribeiro, O.: Design-
ing tool support for translating use cases and UML 2.0 sequence
diagrams into a Coloured Petri net. In: Sixth International Work-
shop on Scenarios and State Machines, 2007. SCESM ’07: ICSE
Workshops 2007, pp. 2–2 (2007)

47. Bowles, J., Meedeniya, D.: Formal transformation from sequence
diagrams to Coloured Petri nets. In: 2010 Asia Pacific Software
Engineering Conference, pp. 216–225 (2010)

48. Juliana, B.: Modelling Concurrent Interactions. Theor. Comput.
Sci. 351(2), 203–220 (2006b)

49. Juliana, B.: Decomposing interactions. In: Michael, J., Varmo, V.
(eds.) Algebraic Methodology and Software Technology, pp. 189–
203. Springer, Heidelberg (2006a)

50. Juliana, B., Behzad, B., Mohammed, A.: A logical approach for
behavioural composition of scenario-based models. In: 17th Inter-
national Conference on Formal Engineering Methods (ICFEM
2015), LNCS vol. 9407, pp. 252–269 (2015)

51. Grønmo, R., Møller-Pedersen, B.: From UML 2 sequence diagrams
to state machines by graph transformation. J. Object Technol. 10(8),
1–2 (2011)

52. Cambronero, M.E., Valero, V., Díaz, G.: Verification of real-time
systems design. Softw. Test. Verif. Reliab. 20(1), 3–37 (2010)

53. Larsen, K.G., Pettersson, P., Yi, W.: UPPAAL in a Nutshell. Int. J.
Softw. Tools Technol. Transf. 1(1–2), 134–152 (1997)

54. Tribastone, M., Gilmore, S.: Automatic translation of UML
sequence diagrams into PEPA models. In: International Conference
on Quantitative Evaluation of Systems (QEST’08), pp. 205–214
(2008)

55. Hillston, J.: A Compositional Approach to Performance Modelling.
Cambridge University Press, Cambridge (1996)

56. Hilken, F., Gogolla, M., Burgueño, L., Vallecillo, A.: Testing mod-
els and model transformations using classifying rerms. Softw. Syst.
Model. 17(3), 885–912 (2018)

123

Profiling the publish/subscribe paradigm for automated analysis using CPNs

57. Anastasakis, K., Bordbar, B., Georg, G., Ray, I.: On challenges of
model transformation from UML to alloy. Softw. Syst. Model. 9,
69–86 (2010)

58. Jackson, D.: Software Abstractions: Logic, Language, and Analy-
sis. The MIT Press, London (2006)

59. Gogolla, M., Bohling, J., Richters, M.: Validating UML and OCL
models in USE by automatic snapshot generation. Softw. Syst.
Model. 4(4), 386–398 (2005)

60. Richters, M., Gogolla, M.: Validating UML models and OCL
constraints. In: Evans, A., Kent, S., Selic, B. (eds.) International
Conference on the Unified Modeling Language 2000, pp. 265–277.
Springer, Heidelberg (2000)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Abel Gómez is an Assistant Pro-
fessor at the Faculty of Computer
Science, Multimedia and Telecom-
munications, and a researcher of
the Internet Interdisciplinary Insti-
tute, both belonging to the Uni-
versitat Oberta de Catalunya,
Spain. Previously, he has hold dif-
ferent positions at the Universi-
dad de Zaragoza, the École des
Mines de Nantes & Inria, and the
Universitat Politècnica de Valèn-
cia, being this latter institution
where he obtained his PhD degree
in Computer Science. His research

interests fall in the broad field of model-driven engineering (MDE),
and his research lines have evolved in two complementary directions:
On the one hand, the development of core technologies to support
MDE activities; and on the other hand, the application of MDE tech-
niques to solve Software Engineering problems. More information is
available at https://abel.gomez.llana.me.

Ricardo J. Rodríguez is an Assis-
tant Professor at Centro Universi-
tario de la Defensa, General Mil-
itary Academy, Zaragoza, Spain.
He received the M.S. and Ph.D.
degrees in computer science from
the University of Zaragoza, Spain,
in 2010 and 2013, respectively.
He was a Visiting Professor at the
Dept. of Mathematics and Physics,
University of Campania “Luigi
Vanvitelli”, Caserta, Italy, during
a three-month period in 2016 and
other 3-month period in 2018. He
was also a Visiting Professor at

the Technische Universität Ilmenau, Germany, during a three-month
period in 2017. His current research interests include performability
and dependability model-based analysis, program binary analysis, and
contactless cards security.

Marıia Emilia Cambronero is an
Associate Professor in Computer
Science at University of Castilla-
La Mancha, Spain, obtaining the
tenure distinction in 2012. She
received her PhD in 2007 and was
an Assistant Professor for sev-
eral years in the same university.
Her research goals are aimed to
make software more reliable, more
secure, and easier to design. Her
primary technical interests include
software engineering and related
areas, including contract specifi-
cation, program monitoring, test-

ing, and verification. Her research combines strong theoretical foun-
dations with realistic experimentation in the area of web services and
cloud computing.

Valentin Valero is a full Pro-
fessor of Distributed Systems and
Operating Systems at the Univer-
sity of Castilla-La Mancha, in
the Computer Science School of
Albacete, Spain. He received his
degree in Mathematics from the
Complutense University of Madrid
in 1987, and his PhD. in Math-
ematics in 1993 at the Depart-
ment of Computer Science of
the Complutense University of
Madrid. Since October 1987 he is
a member of the Computer Sci-
ence Department at the University

of Castilla-La Mancha. His current research areas are in the field of
concurrency, specifically in formal models for analysis and design of
concurrent systems and real-time systems.

123

