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Abstract. The paper describes a transformational approach for the
specification and formal verification of concurrent and real-time systems.
At upper level, one system is specified using the timed process algebra
RT-LOTOS. The output of the proposed transformation is a Time Petri
net (TPN). The paper particularly shows how a TPN can be automat-
ically constructed from an RT-LOTOS specification using a composi-
tionally defined mapping. The proof of the translation consistency is
sketched in the paper and developed in [1]. The RT-LOTOS to TPN
translation patterns formalized in the paper are being implemented. in
a prototype tool. This enables reusing TPNs verification techniques and
tools for the profit of RT-LOTOS.

1 Introduction

The design of time-critical systems is a complex task. Given the risk to not
detect transient errors by using conventional techniques such as simulation or
testing, it is strongly recommended to use formal verification techniques such
as model checking, that have been proven to facilitate early detection of design
errors, and to contribute to produce systems at a correctness level that cannot
be reached by using simulation and testing techniques.

The use of formal verification techniques is usually linked to the use of formal
specifications. Among the wealth of formal specification techniques proposed in
the literature, process algebras play a special role. Their compositional opera-
tors allow one to describe a system made up of components that communicate
and operate concurrently. Besides its notion of compositionality, the capacity
to model real-time mechanisms is an essential feature of RT-LOTOS [2, 3], the
timed process algebra addressed in this paper.

Several verification tools have been developed for timed process algebras.
Few of them are really efficient. They usually implement translations into timed
automata, which permits to reuse model checkers such as [4, 5]. Petri nets verifi-
cation tools may be considered as well. The possibility to reuse a Time Petri Nets
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analyzer for verifying RT-LOTOS specifications is one of the main motivation
behind the work presented in this paper.

The RT-LOTOS to TPN translation approach discussed in this paper relies
on the TPN component model first introduced in [6]. The model published in [6]
is extended and improved. Discussion is not restricted to RT-LOTOS. The paper
highlight difficulties and most important issues one might face while translating
timed process algebras into Time Petri nets.

The paper is organized as follows. Section 2 introduces the RT-LOTOS lan-
guage. Section 3 introduces the Time Petri net (TPN) model. Section 4 details
RT-LOTOS to TPN translation patterns and explains the intuition behind the
proof. In particular, it is shown how TPNs are embedded in components and
composed. Section 5 surveys related work. We particularly compare our ap-
proach with the Petri Box Calculus [7]. Section 6 concludes the paper.

2 RT-LOTOS

The Language of Temporal Ordering Specifications (LOTOS[8]) is a formal de-
scription technique based on CCS [9] and extended by a multi-way synchroniza-
tion mechanism inherited from CSP [10]. RT-LOTOS [2] extends LOTOS with
three temporal operators: a deterministic delay, a latency operator which en-
ables description of temporal indeterminism and a time limited offer. The main
difference between RT-LOTOS and other timed extensions of LOTOS lies in the
way a non-deterministic delay may be expressed. RT-LOTOS supports the so-
called latency operator. Its usefulness and efficiency have been proved in control
command applications and hypermedia authoring [11].
The following processes P and PL illustrate the use of the three temporal opera-
tors of RT-LOTOS.

Process P[a]: exit:=
delay(2)a{5}; exit
endproc

Process PL[a]: exit:=
delay(2)latency(6)a{5}; exit

endproc

Process P starts with a 2 time units delay. Once the delay expires, action a
is offered to the environment during 5 time units. If the process’s environment
does not synchronize on a before this deadline, a time violation occurs and the
process transforms into stop. Process PL differs from P, for it contains a la-
tency operator. Action a is delayed by a minimum dealy of 2 units of time and
a maximum delay of 8 units of time(in case the latency goes to its maximum
value). From the environment’s point of view, if the latency lasts l time units,
the process behaves like delay(2+l)a{5-l} (cf. the left part of Fig. 1). Of course,
if the duration of the latency goes beyond 5 units of time, a temporal violation
occurs and process PL transforms into stop(cf. the right part of Fig. 1).

The originality and interest of the latency operator is more obvious when one
combines that operator with the hiding operator. In LOTOS, hiding allows one
to transform an external observable action into an internal one. In RT-LOTOS,
hiding has the form of a renaming operator which renames action a into i(a).



In most timed extensions of LOTOS, hiding implies urgency. It thus removes
any time indeterminism inherent to the limited time offering. In RT-LOTOS,
a hidden action is urgent as soon as it is no longer delayed by some latency
operator. Let us, e.g., consider the RT-LOTOS behavior hide a in PL where
action a is hidden in process PL. If l is the duration of the latency, i(a) will
necessarily occur at date 2 + l, if l < 5. (cf. Fig. 2). But, if (l > 5), a temporal
violation occurs (similarly to the situation where action a was an observable
action).
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Fig. 1. Combining delay, latency and limited offering
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Fig. 2. Adding hiding

Let us now point out some differences between RT-LOTOS and E-LOTOS
[12]. In E-LOTOS, urgency may apply to observable actions as soon as the latter
are defined as exceptions. Conversely, the RT-LOTOS semantics states that one
cannot enforce urgency on visible events. The only way to introduce urgency in
RT-LOTOS is to use the hide operator (cf Fig. 2). E-LOTOS further allows one
to introduce temporal non-determinism by combining the operator used for non
deterministic variable assignment with the deterministic delay operator (applied
on the same variable). It is clear that E-LOTOS implements a data-oriented
approach for specifying temporal non determinism (for example: var t: time
in ?t := any time [1<t<4]; wait (t) endvar; P). Conversely RT-LOTOS
implements a control oriented approach. In RT-LOTOS, the temporal non de-
terministic variable is a particular variable introduced by a specific operator.
E-LOTOS and RT-LOTOS also use different ways to combine a non determin-
istic delay with a time limited offer. As depicted in Fig 1, the RT-LOTOS se-
mantics states that the latency and the time limited offer start simultaneously.
This makes it possible to express temporal violations when t < l. Conversely, for
the E-LOTOS counterpart, the constraint on offering one action inside a time
interval will not be active before the non deterministic delay elapses.

3 Time Petri nets

To our knowledge, Petri nets were the first theoretical model augmented with
time constraints [13, 14], and the support of the first reachability algorithms for
timed system [15, 16].

The basic idea of time Petri nets (TPN [13, 14]) is to associate an interval
Is(t) = [a, b] (static interval) with each transition t. A transition can be fired if
it has continuously been enabled during at least a time units, and it must fire if
continuous enabling time reaches b time units. That is to say, once a transition
is enabled (M [t〉), a firing interval If (t) is created with initial value Is(t). Time



passing decreases the bounds of the interval. The transition may be fired once
the lower bound reaches 0 and has to be fired when the upper bound reaches
0 (unless it conflicts with another transition). Figure 3 is a first example. In
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Fig. 3. Priority from ur-
gency
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Fig. 4. Synchronization

the initial marking, only t0 and t1 are enabled. After one time unit delay, t1 is
firable. Because t1 reaches its upper interval always before t0 becomes enabled
(3 > 2), then t0 can never be fired. t2 is fired five time units after the firing of t1.
Figure 4 illustrates the synchronization rule: t0 (resp. t1) is fired at an absolute
date θ0 ≤ 2 (resp. θ1 ≤ 2), and t2 is fired at max(θ0, θ1) + 1.

4 Translation from RT-LOTOS into TPN

The quality of a translation depends on its capability to guarantee a close relation
between the properties that hold in the source and those that still hold in the
target [17]. This is why we defined a one-to-one mapping of actions between RT-
LOTOS and TPNs. Since we do not use auxiliary transitions, we ensure that the
proposed translation patterns do not add any behavior. Moreover, RT-LOTOS is
compositional by nature. It is then inevitable, during the translation procedure,
to consider TPNs as composable entities. Unfortunately, TPNs in their original
form miss a convenient way of composing or decomposing larger nets from or to
smaller ones by means of a set of high level operators. We solve this problem
by introducing the concept of TPN component as basic building block. We also
define a set of operations on components (Section 4.2). These operations match
the composition and temporal operators supported by RT-LOTOS.

4.1 Time Petri net Component

A Component encapsulates a labeled TPN which describes its behavior. A com-
ponent is endowed with interfaces and interactions points. It performs an action
by firing the appropriate transition. A component has two sets of labels: Act the
alphabet of the component and T ime = {tv, delay, latency}. These three labels
are introduced to represent the temporal behavior of components. The tv (for
“temporal violation”) label represents a time-limited offer expiration. A delay or
latency label represents the expiration of some deterministic or non deterministic
delay, respectively.

A component is graphically represented by a box containing one TPN. The
black-filled boxes at the component boundary represent interaction points. For



Fig. 5. Component example

Fig. 6. The exit pattern

instance, the component CP in Figure 5 is built from some RT-LOTOS term
P. During its execution, it may perform observable action a. The ini (initially
marked places) represent the component input interface, and the out place de-
notes its output interface. A token in the out place of a component means that
the component has successfully completed its execution. A component is acti-
vated by filling its input places. A component is active if at least one of its
transitions is enabled. Otherwise, the component is inactive.

Definition 1 (Component).
Let Act = Ao ∪ Ah ∪ {exit} be an alphabet of actions, where Ao is a set of

observable actions (with i �∈ Ao, exit �∈ Ao), Ah = {i} × Ao is the set of hidden
actions (If a is an observable action, ia denotes a hidden action).

A component is a tuple C = 〈Σ, Lab, I, O〉 where

– Σ = 〈P, T, Pre, Post, M0, IS〉 is a TPN.
– Lab : T → (Act ∪ T ime) is a labeling function which labels each tran-

sition in Σ with either an action name (Act) or a time-event (T ime =
{tv, delay, latency}). Let T Act (resp. T Time) be the set of transitions with
labels in Act (resp. T ime).

– I ⊂ P is a non empty set of places defining the input interface.
– O ⊂ P is the output interface of the component. A component has an output

interface if it has at least one transition labeled by exit. If so, O is the
outgoing place of those transitions. Otherwise, O = ∅.
Moreover, a set of invariants is associated with the components:

H1 There is no source transition in a component.
H2 The encapsulated TPN is 1-bounded (cf. safe nets in [7]). H2 is called the

”safe marking” property. It is essential for the decidability of reachability
analysis procedure applied to TPNs.

H3 If all the input places are marked, all other places are empty (I ⊂ M ⇒
M = I).

H4 If the out place is marked, all other places are empty (O �= ∅ ∧ O ⊂ M ⇒
M = O).

H5 For each transition t such that Lab(t) ∈ Act, if the label is an observable
action (Lab(t) ∈ A0), its time interval is [0,∞), otherwise4, it is [0, 0].

Hypotheses H3–H4 are called clean markings in [7].
4 Lab(t) ∈ Ah ∪ {exit}



4.2 Translation patterns

When translating RT-LOTOS specifications into TPNs, we associate a specific
operation (involving some component(s)) with each RT-LOTOS operator. These
operations are graphically depicted through a set of patterns presented in next
sections. To these graphical translation patterns, we add a complementary formal
definition. For space reasons, the formalization of some patterns is not presented
in this paper. A complete formal definition can be found in the extended version
of this paper [1].

Notation: f ′ = f ∪ (a, b) denotes the function f ′ : A ∪ {a} �→ B ∪ {b} such
that f ′(x) = f(x) if x ∈ A and f ′(a) = b otherwise .

Low level Petri net operations. The formal definition of the translation patterns
uses the following low level Petri nets operators: ∪, \,�.
Let N = 〈P, T, Pre, Post, M0, IS〉 be a TPN.
Adding a place: Let p be a new place (p �∈ P ), Prep and Postp two sets of
transitions of T . N ′ = N ∪ 〈Prep, p, Postp〉 is the TPN augmented with place p
such that •p = Prep and p• = Postp.

N ′ = 〈P ∪ {p} , T, Pre ∪
⋃

t∈Prep

(p, t), Post ∪
⋃

t∈Postp

(t, p), M0, IS〉

Adding a transition: Let t be a new transition (t �∈ T ), and I its time interval,
Pret and Postt two sets of places of P . N ′ = N ∪〈Pret, (t, I), Postt〉 is the TPN
augmented with transition t such that •t = Pret and t• = Postt.

N ′ = 〈P, T ∪ {t} , P re ∪
⋃

p∈Pret

(p, t), Post ∪
⋃

p∈Postt

(t, p), M0, IS ∪ (t, I)〉

Basic components The Cstop component is simply the empty net (no place, no
transition). The Cexit is a component which performs a successful termination.
It has one input place, one output place, and a single transition labelled with
exit and a static interval [0, 0] (Fig.6).

Patterns applying to one component Let us consider the component CP of
Fig. 5. Fig. 7 depicts different patterns applied to CP.

– Ca;P (Fig. 7(a)) is the component resulting from prefixing CP with action a.
Ca;P executes a then activates CP.
Ca;P = 〈Σa;P, Laba;P, {in}, OP〉 where the TPN Σa;P is obtained by adding a
place in and a transition t0 to ΣP, Laba;P associates a to transition t0.

Σa;P = (ΣP ∪ 〈∅, (t0, [0,∞)), IP〉) ∪ 〈∅, in, t0〉
Laba;P = LabP ∪ (t0, a)



   

(a) a;P (b) a{d}P (c) delay(d)P (d) latency(d)P

Fig. 7. Patterns applying to one component

– Ca{d};P (Fig. 7(b)) is the component resulting from prefixing CP with a lim-
ited offer of d units of time on action a. If for any reason, a cannot occur
during this time interval, the tv transition will be fired (temporal violation
situation) and Ca{d};P will transform into an inactive component.
The pattern is very similar to the one of Ca;P. Therefore, its definition reuses
that of Ca;P.

Ca{d};P = 〈Σa{d};P, Laba;P ∪ {(t1, tv)} , {in} , OP〉
Σa{d};P = Σa;P ∪ 〈{in} , (t1, [d, d]), ∅〉

– Cdelay(d)P (Fig 7(c)) is the component resulting from delaying the first action
of P with a deterministic delay of d units of time. This is exactly the same
pattern as Ca;P except that the added transition has a delay label and a
static interval equal to [d, d].

Cdelay(d)P = 〈Σdelay(d)P, LabP ∪ {(t0, delay)} , {in} , OP〉
Σdelay(d)P = (ΣP ∪ 〈∅, (t0, [d, d])), IP〉) ∪ 〈∅, in, t0〉

– Clatency(d)P (Fig 7(d)) is the component resulting from delaying the first
actions of CP with a non deterministic delay of d units of time.
Like the delay operator, the latency operator is defined by connecting a new
transition to the input interface of CP. This time, we add a static interval
equal to [0, d]. The definition of the latency translation pattern must cope
with the “subtle” situation where one (or several) action(s) among CP’s first
actions is (are) constrained with a limited offer (this set is denoted by FAlo).
For instance, in Fig 7(d), action a is offered to the environment during dx

units of time. The RT-LOTOS semantics states that the latency and the
offering of a start simultaneously, which means that if the latency duration
goes beyond dx units of time, the offer on a will expire. To obtain the same
behavior, we add the input place in0 of a to the input interface of the
resulting component Clatency(d)P. In the definition of the pattern, we denote
Ilo the set of these input places (Ilo ⊂ IP). Thus t1 and t are enabled as soon
as the component is activated (all its input places being marked). Clatency(d)P

is able to execute a (fire t0) if t0 is enabled (i.e if in0 and p are marked) before



t1 is fired (at dx). Therefore, action a is possibly offered to the environment
for no more than dx units of time, hence conforming to the RT-LOTOS
semantics.
Let FA (CP) be the set of transitions associated to the first actions of P5,
and FAlo (CP) be the set of first actions constrained by a time limited offer:

FAlo (CP) =
{
ta ∈ FA (CP) tv ∈ (•ta)•

}
Ilo = •FAlo (CP)

Clatency(d)P = 〈Σlatency(d)P, LabP ∪ {(t, latency)} , Ilo ∪ {in} , OP〉
Σlatency(d)P = ΣP ∪

⋃
ta∈FAlo(CP)

〈t, pta , ta〉 ∪ 〈∅, in, ∅〉

∪
〈
{in} , (t, [0, d]), (IP\Ilo) ∪

⋃
ta∈FAlo(CP)

{pta}
〉

– CµX.(P;X) is the component which executes CP’s actions ad infinitum. The
recursion operator translation is mainly an untimed problem. It is not pre-
sented in this paper, since the focus is laid on timed aspects.

– Chide a in P is the component resulting from hiding action a in CP. Hiding
allows one to transform observable (external) actions into unobservable (in-
ternal) actions, then making the latter unavailable for synchronization with
other components. In RT-LOTOS, hiding one or several actions induces a
notion of urgency on action occurrence. Consequently, a TPN transition cor-
responding to one hidden action will be constrained by a time interval equal
to [0, 0]. This implies that as soon as a transition is enabled, it is candidate
for being fired.

Patterns applying to a set of components Each of the following patterns
transforms a set of components into one component.

– CP|[a]|Q (Fig.8)
The concept of handshake communication is an important feature of process
algebras. It consists of a symmetric synchronization by which an action that
is shared between n processes can be executed only if all of them are ready
to do so. In Petri nets, such a scenario is represented by a transition with
n input places. This transition can fire only if all its input places contain a
token (cf. Fig. 4). At the PN level, the synchronization operation is achieved
through transition merging. While transitions merging is straightforward in
Petri nets, it turns to be a rather tricky issue in Time Petri nets. Indeed, it
requires explicit handling of the time intervals assigned to transitions to be
merged. These time intervals may be incompatible, which leads to express
global timing constraints as a conjunction of intervals whose consistency is
not guaranteed. This problem is not solved in [18](where each transition is
assigned a time interval), as presented in Sect. 5.2.

5 Its formal definition is given in Def. 2, Sect. A.
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Fig. 8. Parallel synchronization pattern

CP

CQ

CP>>Q

Fig. 9. Sequential composition pattern

To solve this problem and make transition merging always a possible oper-
ation, we avoid assigning time intervals to action transitions. Instead, the
timing constraints are assigned to dedicated transitions (cf. time limited offer
pattern).
The synchronization on a of CP and CQ is achieved by merging each a tran-
sition in CP with each a transition in CQ, thus creating n∗m a transitions in
CP|[a]|Q (n and m being the number of a transitions in CP and CQ, respec-
tively).

– CP>>Q (Fig. 9) depicts a sequential composition of CP and CQ which means
that if CP successfully completes its execution then it activates CQ. This kind
of composition is possible only if CP has an output interface. The resulting
component CP>>Q is obtained by merging the output interface of CP and the
input interface of CQ, and by hiding the exit interaction point of CP.

CP>>Q = 〈ΣP>>Q, Labhide exit in P ∪ LabQ, IP, 0Q〉
ΣP>>Q = 〈PP\OP ∪ PQ, Thide exit in P ∪ TQ, P reP ∪ PreQ, PostP>>Q, ISP ∪ ISQ〉
PostP>>Q = (PostP\ {(t, OP) t ∈ •OP}) ∪ {(t, inQ) inQ ∈ IQ ∧ t ∈ •OP} ∪ PostQ

– CP[]Q (Fig. 10) is the component which behaves either as CP or CQ.
We do not specify whether the choice between the alternatives is made by
the component CP[]Q itself, or by the environment, but it should be made at
the level of the first actions in the component. In other words, the occurrence
of one of the first actions in either component determines which component
will continue its execution and which one must be deactivated. The problem
can be viewed as a competition between CP and CQ. These two components
compete to execute their first action. As long as the latter has not yet oc-
curred, CP and CQ age similarly, which means that T ime transitions (labeled
by tv, delay or latency) may occur in both components without any conse-
quence on the choice of the wining component. Once one first action occurs,
the control is irreversibly transferred to the winning component. The other



one is deactivated, in the sense that it no longer contains enabled transi-
tions. The choice operator is known to cause trouble in presence of initial
parallelism. [19] defines a choice operator where each alternative has just one
initial place. Therefore, none of the alternative allows any initial parallelism.
We think that it is a strong restriction. We do not impose any constraint on
the choice alternatives.
The solution we propose to define a choice between two components is as
follows: to obtain the intended behavior, we introduce a set of special places,
called lock places. Those places belong to the input interface of component
CP[]Q. Their function is to undertake control transfer between the two compo-
nents. For each first action of CP we introduce one lock place per concurrent
first action in CQ (for instance a has one concurrent action in CQ: c, while
c has two concurrent actions in CP: a and b) and vice versa. A lock place
interacts only with those transitions representing the set of initial actions
and the time labeled transitions they are related with (delay for a and tv
for b). T ime transitions restore the token in the lock place, since they do
not represent an action occurrence, but a time progression which has not
to interfere with the execution of the other component (as long as the first
action has not occurred, the two components age similarly). The occurrence
of an initial action of CP (respectively CQ) locks the execution of CQ (re-
spectively CP) by stealing the token from the lock places related to all CQ’s
(respectively CP’s) first actions. A unique out place is created by merging
the out places of CP and CQ.

Fig. 10. Choice between CP and CQ

CP [>Q

CP CQ

Fig. 11. The disrupt pattern

– CP[>Q (Fig. 11) is the component representing the behavior where component
CP can be interrupted by CQ at any time during its execution. It means that



at any point during the execution of CP, there is a choice between executing
one of the next actions from CP or one of the first actions from CQ. For this
purpose, CQ steals the token from the shared place named disrupt (which
belongs to the input interface of CP[>Q). Thus the control is irreversibly trans-
ferred from CP to CQ (disrupt is an input place for CQ first action and exit
transition of CP; it is also an input/output place for all the others transitions
of CP). Once an action from CQ is chosen, CQ continues executing, and CP’s
transitions are no longer enabled.

4.3 Sketch of the proof

We prove that the translation preserves the RT-LOTOS semantics and that the
defined compositional framework preserves the good properties (H1–H5) of the
components.

Intuitively an RT-LOTOS term and a component are timed bisimilar [20]
iff they perform the same action at the same time and reach bisimilar states.
For each operator, we prove that, from each reachable state, if the occurrence of
a time progression (respectively an action) is possible in an RT-LOTOS term,
it is also possible in its associated component, and conversely. Therefore, we
ensure that the translation preserves the sequences of possible actions but also
the occurrence dates of these actions. The entire proof may be found in [1].

5 Related work

Much work has been done on translating process algebras into Petri Nets, by
giving a Petri net semantics to process terms [21, 19, 22]. [22] suggests that a
good net semantics should satisfy the retrievability principle, meaning that no
new ”auxiliary” transitions should be introduced in the reachability graph of
the Petri net. [21, 19] do not satisfy this criterion. In this paper, we define a
one-to-one mapping which is compliant with this strong recommendation.

5.1 Untimed models

A survey of the literature indicates that proposals for LOTOS to Petri net trans-
lations essentially address the untimed version of LOTOS [23–28]. The opposite
translation has been discussed by [27] where only a subset of LOTOS is con-
sidered, and by [29] where the authors addressed the translation of Petri nets
with inhibitor arcs into basic LOTOS by mapping places and transitions into
LOTOS expressions. [26] demonstrated the possibility to verify LOTOS specifi-
cations using verification techniques developed for Petri nets by implementing a
Karp and Miller procedure in the LOTOS world.

[23, 28] operate a complete translation of LOTOS, handling both the control
and data parts. Moreover, they just consider regular LOTOS terms. So do we.
The LOTOS to PN translation algorithms of [23, 28] were implemented in the
CAESAR tool. Besides the temporal aspects addressed in this paper, a technical



difference with [23, 28] lies in the way we structure TPNs. Our solution is based
on TPNs components. In our approach, a component may contain several tokens.
Conversely, [23, 28] structure Petri nets into units, each of them containing one
token at most. This invariant limits the size of markings, and permits optimiza-
tions on memory consumption. The counterpart is that [23, 28] use ε-transitions.
The latter introduce non determinism. They are eliminated when the underlying
automaton is generated (by transitive closure). The use of ε-transitions may be
inefficient in some particular cases (see the example provided in [6])

The major theoretical study on taking advantage of both Petri nets and
process algebras is presented in [7]. The proposed solution is Petri Box Calculus
(PBC), a generic model that embodies both process algebra and Petri nets. The
authors start from Petri nets to come up with a CCS-like process algebra whose
operators may straightforwardly be expressed by means of Petri nets.

5.2 Timed models

[30] pioneered work on timed enhancements of the control part of LOTOS
inspired by timed Petri nets models. [31] defined a mapping from TPNs to
TE-LOTOS which makes it possible to incorporate basic blocks specified as 1-
bounded TPNs into TE-LOTOS specifications. However, because of the strong
time semantics of TPNs (a transition is fired as soon as the upper bound of its
time interval is reached unless it conflicts with another one) a direct mapping
was not always possible.

Timed extensions of PBC have been proposed in [18, 32]. Although the com-
ponent model proposed in this paper is not a specification model but an in-
termediate model used as gateway between RT-LOTOS and TPNs, we find it
important to compare our work with [18].

Of prime interest to us is the way [18] introduces temporal constraints in
his framework by providing each action with two time bounds representing the
earliest firing time and latest firing time. This approach is directly inspired
by TPNs, where the firing of actions is driven by necessity. However, a well
known issue with this strategy is that it is inappropriate for a compositional and
incremental building of specifications. The main difficulty is to compose time
intervals when dealing with actions synchronization. The operational semantics
of [18] relies on intervals intersection to calculate a unique time interval for a
synchronized transition. However, this approach is not always satisfactory, as
shown in the following example.

let us consider the following timed PBC term:
E1 = ((a[10, 10]; b[2, 2]) || b̂[12, 12]) sy{b}. It expresses the parallel synchroniza-
tion on b (The synchronization of two conjugate actions b and b̂ gives rise to the
silent action i) of the following terms:

– a[10, 10]; b[2, 2] executes a after 10 time moves (time has a discrete seman-
tics), then it executes b, 2 time moves after the occurrence of a,

– b̂[12, 12] executes b̂ after 12 times moves.



That is to say, b̂ and b occur at the same date (12 times units after the ini-
tial instant). Thus the synchronization on b should be possible. Nevertheless
E1 cannot execute the synchronization action i since [2, 2] ∩ [12, 12] = ∅. The
synchronization rule of [18] states that the synchronization is possible only if it
leads to a well-defined action, i.e. with consistent timing information. Therefore,
the corresponding TPN (called ctbox in [18]) cannot be constructed.

To avoid this difficult interval composition, we do not assign any time interval
to action transitions. In our framework, timed constraints are assigned to ded-
icated transitions (cf Fig. 7(b), 7(c) and 7(d)). Thus action transitions are free
from any timing constraint. This way, the synchronization can be obtained by
merging the action transitions without changing the timing constraints. Hence,
we are able to straightforwardly construct the TPN of Fig. 12 (obtained by the
application of the pattern of Fig 7(c), 7(a) and 8) corresponding to the following
RT-LOTOS expression which is behaviorally equivalent to the above timed PBC
expression:

P1= Hide a ,b in ( (delay(12)b; stop)
|[b]| (delay(10)a; delay(2)b; stop))

Synchronization on b occurs indeed 12 time units after initial instant.

Fig. 12. CP1

Fig. 13. ctbox1
Fig. 14. ctbox2

Fig. 15. CP2

Moreover, even if the synchronization leads to a well-defined action. It was
necessary to the author of [18] to enrich the semantics of the timed PBC with
rules for allowing the firing of illegal actions. An action is said illegal if it has
inconsistent timing information. For example, an action which has been enabled
for an amount of time which exceeds its latest bound firing time.
As an illustration, let us now consider the following timed PBC expression taken
from [18]: E2 = (a[0, 0]||(b[1, 1]; â[0, 1]))sy{a}. E2 cannot execute the synchro-
nization action i which is consistent with the TPN semantics (cf Fig 13 ). How-
ever, the situation changes for E2rs{a}. The synchronization is enforced by the
restriction operator. The corresponding net is obtained by removing a and â



transitions (cf Fig 14). Now it is possible to execute b at [1, 1] followed immedi-
ately by i. However, rules based only on legal actions could not produce a similar
result in the operational semantics since no legal action occurrence is possible
for a[0, 0] after the elapsing of 1 time unit. Therefore, a rule permitting the firing
of a after one unit of time was introduced. The rules on allowing illegal actions
were certainly unavoidable to ensure behavioural consistency between Timed
PBC terms and their translation into Time Petri nets, but they badly impact
on the simplicity of the operational semantics of [18].
The following RT-LOTOS expression which is behaviourally equivalent to E2rs{a}
: P2= Hide a,b in (a;stop)|[a]|(delay(1)b;a{1};stop) has to our opinion
a more intuitive behavior. The consistency between the RT-LOTOS term and
its corresponding TPN of Fig 15 is ensured without departing from the original
RT-LOTOS semantics.

Finally, [32] extends PBC with actions durations. This model captures timing
information in a different manner. In our framework, actions are taken to be
indivisible. As a consequence it is difficult to compare [32] with the approach
proposed in this paper.

6 Conclusions

The paper discusses an efficient transformational approach for the verification
of RT-LOTOS specifications. Our intent is to use the reachability graph of a
TPN to represent and analyze the behavior of real time systems described in
RT-LOTOS. After taking a closer look at the semantics of the two timed mod-
els, we formally define the concept of TPN component, together with a set of a
translation patterns which match the set of RT-LOTOS operators. These pat-
terns are implemented in RTL2TPN, a prototype tool which takes as input an
RT-LOTOS specification and generates a TPN in a suitable format. Thus, it
becomes possible to integrate TINA[33], a powerful TPN analyzer tool, to our
verification platform. First experimental results are promising and confirm the
advantage of using TPNs as an intermediate model [6]. It worth to be noticed
that the transformation gives RT-LOTOS a formal semantics in terms of TPNs.
Thus, we start with a top level RT-LOTOS view, which describes the architec-
ture of the system together with its desired communication behavior. We end
up with a more detailed view at the TPNs level, which describes the opera-
tional machine behavior of the system and clarifies the use of some RT-LOTOS
operators, such as the latency operator.

This work is not limited to the verification of real-time systems specified in
RT-LOTOS. The ultimate goal is to provide a more powerful verification envi-
ronment for real-time systems modeled in TURTLE [34], a real-time UML profile
whose formal semantics is expressed in RT-LOTOS.The translation patterns may
be reused for other timed extensions of LOTOS, in particular ET-LOTOS.
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A First actions

Definition 2 (First actions set). Let C be a component. The set of first actions
FA (CP) can be recursively built using the following rules6:

FA (Cstop) = ∅ FA (Cexit) = {texit} FA (Ca;P) = FA �
Ca{d}P

�
= {ta}

FA (CµX.(P;X)) = FA (Cdelay(d)P) = FA (Clatency(d)P) = FA (CP;Q) = FA (CP>>Q) = FA (CP)

FA (CP|[A]|Q) = FA (CP[]Q) = FA (CP[>Q) = FA (CP) ∪ FA (CQ)

FA (Chide a in P) = ha (FA (CP))

6 where ta is transition labelled by a. ha(α) = α if α �= a and ha(a) = ia


