7 research outputs found

    Remote attestation mechanism for embedded devices based on physical unclonable functions

    Get PDF
    Remote attestation mechanisms are well studied in the high-end computing environments; however, the same is not true for embedded devices-especially for smart cards. With ever changing landscape of smart card technology and advancements towards a true multi-application platform, verifying the current state of the smart card is significant to the overall security of such proposals. The initiatives proposed by GlobalPlatform Consumer Centric Model (GP-CCM) and User Centric Smart Card Ownership Model (UCOM) enables a user to download any application as she desire-depending upon the authorisation of the application provider. Before an application provider issues an application to a smart card, verifying the current state of the smart card is crucial to the security of the respective application. In this paper, we analyse the rationale behind the remote attestation mechanism for smart cards, and the fundamental features that such a mechanism should possess. We also study the applicability of Physical Unclonable Functions (PUFs) for the remote attestation mechanism and propose two algorithms to achieve the stated features of remote attestation. The proposed algorithms are implemented in a test environment to evaluate their performance. © 2013 The authors and IOS Press. All rights reserved

    Physically Uncloneable Functions in the Stand-Alone and Universally Composable Framework

    Get PDF
    In this thesis, we investigate the possibility of basing cryptographic primitives on Physically Uncloneable Functions (PUF). A PUF is a piece of hardware that can be seen as a source of randomness. When a PUF is evaluated on a physical stimulus, it answers with a noisy output. PUFs are unpredictable such that even if a chosen stimulus is given, it should be infeasible to predict the corresponding output without physically evaluating the PUF. Furthermore, PUFs are uncloneable, which means that even if all components of the system are known, it is computational infeasible to model their behavior. In the course of this dissertation, we discuss PUFs in the context of their implementation, their mathematical description, as well as their usage as a cryptographic primitive and in cryptographic protocols. We first give an overview of the most prominent PUF constructions in order to derive subsequently an appropriate mathematical PUF model. It turns out that this is a non- trivial task, because it is not certain which common security properties are generally necessary and achievable due to the numerous PUF implementations. Next, we consider PUFs in security applications. Due to the properties of PUFs, these hardware tokens are good to build authentication protocols that rely on challenge/response pairs. If the number of potential PUF-based challenge/response pairs is large enough, an adversary cannot measure all PUF responses. Therefore, the at- tacker will most likely not be able to answer the challenge of the issuing party even if he had physical access to the PUF for a short time. However, we show that some of the previously suggested protocols are not fully secure in the attacker model where the adversary has physical control of the PUF and the corresponding reader during a short time. Finally, we analyze PUFs in the universally composable (UC) framework for the first time. Although hardware tokens have been considered before in the UC framework, designing PUF-based protocols is fundamentally different from other hardware token approaches. One reason is that the manufacturer of the PUF creates a physical object that outputs pseudorandom values, but where no specific code is running. In fact, the functional behavior of the PUF is unpredictable even for the PUF creator. Thus, only the party in possession of the PUF has full access to the secrets. After formalizing PUFs in the UC framework, we derive efficient UC-secure protocols for basic tasks like oblivious transfer, commitments, and key exchange

    Hardware security design from circuits to systems

    Get PDF
    The security of hardware implementations is of considerable importance, as even the most secure and carefully analyzed algorithms and protocols can be vulnerable in their hardware realization. For instance, numerous successful attacks have been presented against the Advanced Encryption Standard, which is approved for top secret information by the National Security Agency. There are numerous challenges for hardware security, ranging from critical power and resource constraints in sensor networks to scalability and automation for large Internet of Things (IoT) applications. The physically unclonable function (PUF) is a promising building block for hardware security, as it exposes a device-unique challenge-response behavior which depends on process variations in fabrication. It can be used in a variety of applications including random number generation, authentication, fingerprinting, and encryption. The primary concerns for PUF are reliability in presence of environmental variations, area and power overhead, and process-dependent randomness of the challenge-response behavior. Carbon nanotube field-effect transistors (CNFETs) have been shown to have excellent electrical and unique physical characteristics. They are a promising candidate to replace silicon transistors in future very large scale integration (VLSI) designs. We present the Carbon Nanotube PUF (CNPUF), which is the first PUF design that takes advantage of unique CNFET characteristics. CNPUF achieves higher reliability against environmental variations and increases the resistance against modeling attacks. Furthermore, CNPUF has a considerable power and energy reduction in comparison to previous ultra-low power PUF designs of 89.6% and 98%, respectively. Moreover, CNPUF allows a power-security tradeoff in an extended design, which can greatly increase the resilience against modeling attacks. Despite increasing focus on defenses against physical attacks, consistent security oriented design of embedded systems remains a challenge, as most formalizations and security models are concerned with isolated physical components or a high-level concept. Therefore, we build on existing work on hardware security and provide four contributions to system-oriented physical defense: (i) A system-level security model to overcome the chasm between secure components and requirements of high-level protocols; this enables synergy between component-oriented security formalizations and theoretically proven protocols. (ii) An analysis of current practices in PUF protocols using the proposed system-level security model; we identify significant issues and expose assumptions that require costly security techniques. (iii) A System-of-PUF (SoP) that utilizes the large PUF design-space to achieve security requirements with minimal resource utilization; SoP requires 64% less gate-equivalent units than recently published schemes. (iv) A multilevel authentication protocol based on SoP which is validated using our system-level security model and which overcomes current vulnerabilities. Furthermore, this protocol offers breach recognition and recovery. Unpredictability and reliability are core requirements of PUFs: unpredictability implies that an adversary cannot sufficiently predict future responses from previous observations. Reliability is important as it increases the reproducibility of PUF responses and hence allows validation of expected responses. However, advanced machine-learning algorithms have been shown to be a significant threat to the practical validity of PUFs, as they can accurately model PUF behavior. The most effective technique was shown to be the XOR-based combination of multiple PUFs, but as this approach drastically reduces reliability, it does not scale well against software-based machine-learning attacks. We analyze threats to PUF security and propose PolyPUF, a scalable and secure architecture to introduce polymorphic PUF behavior. This architecture significantly increases model-building resistivity while maintaining reliability. An extensive experimental evaluation and comparison demonstrate that the PolyPUF architecture can secure various PUF configurations and is the only evaluated approach to withstand highly complex neural network machine-learning attacks. Furthermore, we show that PolyPUF consumes less energy and has less implementation overhead in comparison to lightweight reference architectures. Emerging technologies such as the Internet of Things (IoT) heavily rely on hardware security for data and privacy protection. The outsourcing of integrated circuit (IC) fabrication introduces diverse threat vectors with different characteristics, such that the security of each device has unique focal points. Hardware Trojan horses (HTH) are a significant threat for IoT devices as they process security critical information with limited resources. HTH for information leakage are particularly difficult to detect as they have minimal footprint. Moreover, constantly increasing integration complexity requires automatic synthesis to maintain the pace of innovation. We introduce the first high-level synthesis (HLS) flow that produces a threat-targeted and security enhanced hardware design to prevent HTH injection by a malicious foundry. Through analysis of entropy loss and criticality decay, the presented algorithms implement highly resource-efficient targeted information dispersion. An obfuscation flow is introduced to camouflage the effects of dispersion and reduce the effectiveness of reverse engineering. A new metric for the combined security of the device is proposed, and dispersion and obfuscation are co-optimized to target user-supplied threat parameters under resource constraints. The flow is evaluated on existing HLS benchmarks and a new IoT-specific benchmark, and shows significant resource savings as well as adaptability. The IoT and cloud computing rely on strong confidence in security of confidential or highly privacy sensitive data. As (differential) power attacks can take advantage of side-channel leakage to expose device-internal secrets, side-channel leakage is a major concern with ongoing research focus. However, countermeasures typically require expert-level security knowledge for efficient application, which limits adaptation in the highly competitive and time-constrained IoT field. We address this need by presenting the first HLS flow with primary focus on side-channel leakage reduction. Minimal security annotation to the high-level C-code is sufficient to perform automatic analysis of security critical operations with corresponding insertion of countermeasures. Additionally, imbalanced branches are detected and corrected. For practicality, the flow can meet both resource and information leakage constraints. The presented flow is extensively evaluated on established HLS benchmarks and a general IoT benchmark. Under identical resource constraints, leakage is reduced between 32% and 72% compared to the baseline. Under leakage target, the constraints are achieved with 31% to 81% less resource overhead

    Reflective-Physically Unclonable Function based System for Anti-Counterfeiting

    Get PDF
    Physically unclonable functions (PUF) are physical security mechanisms, which utilize inherent randomness in processes used to instantiate physical objects. In this dissertation, an extensive overview of the state of the art in implementations, accompanying definitions and their analysis is provided. The concept of the reflective-PUF is presented as a product security solution. The viability of the concept, its evaluation and the requirements of such a system is explored

    A User Centric Security Model for Tamper-Resistant Devices

    Get PDF
    In this thesis we propose a design for a ubiquitous and interoperable device based on the smart card architecture to meet the challenges of privacy, trust, and security for traditional and emerging technologies like personal computers, smart phones and tablets. Such a de- vice is referred a User Centric Tamper-Resistant Device (UCTD). To support the smart card architecture for the UCTD initiative, we propose the delegation of smart card owner- ship from a centralised authority (i.e. the card issuer) to users. This delegation mandated a review of existing smart card mechanisms and their proposals for modifications/improve- ments to their operation. Since the inception of smart card technology, the dominant ownership model in the smart card industry has been refer to as the Issuer Centric Smart Card Ownership Model (ICOM). The ICOM has no doubt played a pivotal role in the proliferation of the technology into various segments of modern life. However, it has been a barrier to the convergence of different services on a smart card. In addition, it might be considered as a hurdle to the adaption of smart card technology into a general-purpose security device. To avoid these issues, we propose citizen ownership of smart cards, referred as the User Centric Smart Card Ownership Model (UCOM). Contrary to the ICOM, it gives the power of decision to install or delete an application on a smart card to its user. The ownership of corresponding applications remains with their respective application providers along with the choice to lease their application to a card or not. In addition, based on the UCOM framework, we also proposed the Coopetitive Architecture for Smart Cards (CASC) that merges the centralised control of card issuers with the provision of application choice to the card user. In the core of the thesis, we analyse the suitability of the existing smart card architectures for the UCOM. This leads to the proposal of three major contributions spanning the smart card architecture, the application management framework, and the execution environment. Furthermore, we propose protocols for the application installation mechanism and the application sharing mechanism (i.e. smart card firewall). In addition to this, we propose a framework for backing-up, migrating, and restoring the smart card contents. Finally, we provide the test implementation results of the proposed protocols along with their performance measures. The protocols are then compared in terms of features and performance with existing smart cards and internet protocols. In order to provide a more detailed analysis of proposed protocols and for the sake of completeness, we performed mechanical formal analysis using the CasperFDR.EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    corecore