
Remote Attestation Mechanism for Embedded

Devices based on Physical Unclonable Functions

Raja Naeem AKRAM a Konstantinos MARKANTONAKIS b Keith MAYES b

aCyber Security Lab, Department of Computer Science, University of Waikato, Hamilton,

New Zealand. Email: rnakram@waikato.ac.nz
b ISG Smart Card Centre, Royal Holloway, University of London, Egham, United Kingdom.

Email: k.markantonakis, keith.mayes@rhul.ac.uk

Abstract. Remote attestation mechanisms are well studied in the high-
end computing environments; however, the same is not true for em-
bedded devices - especially for smart cards. With ever changing land-
scape of smart card technology and advancements towards a true multi-
application platform, verifying the current state of the smart card is
signi�cant to the overall security of such proposals. The initiatives pro-
posed by GlobalPlatform Consumer Centric Model (GP-CCM) and User
Centric Smart Card Ownership Model (UCOM) enables a user to down-
load any application as she desire - depending upon the authorisation
of the application provider. Before an application provider issues an
application to a smart card, verifying the current state of the smart
card is crucial to the security of the respective application. In this pa-
per, we analyse the rationale behind the remote attestation mechanism
for smart cards, and the fundamental features that such a mechanism
should possess. We also study the applicability of Physical Unclonable
Functions (PUFs) for the remote attestation mechanism and propose
two algorithms to achieve the stated features of remote attestation. The
proposed algorithms are implemented in a test environment to evaluate
their performance.

1. Introduction

Fundamentally, both the GlobalPlatform Consumer Centric Model (GP-CCM) [1] and User
Centric Smart Card Ownership Model (UCOM) [2] are similar in a sense that they both ad-
vocate for the user's �freedom of choice� � the users can install or delete any application as
they please on their smart cards. In this paper, we focus on the UCOM; however, the proposed
solutions are also applicable to the GP-CCM. The UCOM requires that smart cards must have
adequate security and operational functionality to support a) enforcement of security policies
stipulated by the card platform and individual Service Providers (SPs) for their respective ap-
plications, and b) operational functionality that enables an SP to manage its application(s), and
a cardholder to manage her ownership privileges. The smart card architecture has to represent
this change in ownership architecture. For this purpose, we require a trusted module as part
of the smart card architecture. The module would validate the current state of the platform
to requesting entities in order to establish the trustworthiness of a smart card in the overall
UCOM ecosystem.

In the UCOM, the card manufacturers make sure that smart cards have adequate security
and operational functionality (i.e. �rewall, application sharing, tamper-evidence and secure ex-
ecution environment etc.) to support the user ownership. The cardholder manages her relation-
ship with individual SPs. These relationships enable her to request installation of their applica-
tions. Before leasing an application, SPs will require an assurance of the smart card's security
and reliability [3]. This assurance will be achieved through a third party security evaluation of
the smart cards before they are issued to individual users [4]. Furthermore, to provide a dy-
namic security validation [4], the evaluated smart cards implement an attestation mechanism.
The attestation mechanism should accommodate remote validation, as in the UCOM an SP
will not always have physical access to the smart card. In addition, the attestation mechanism

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Commons@Waikato

https://core.ac.uk/display/29202604?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

will certify that the current state of the smart card is as evaluated by the independent third
party. Therefore, the trust architecture in the UCOM is based on the adequacy of the third
party evaluation, and the security and reliability of the remote attestation mechanism.

1.1. Contributions

In this paper, we brie�y describe the core architecture of the remote attestation mechanism
followed by a discussion regarding the fundamental design requirements for such a mechanism.
Subsequently, we describe the proposed remote attestation mechanism, and two algorithms
based on PUFs. Finally, we discuss an attestation protocol for the proposed remote attestation
mechanism and present the implementation details and performance measurements.

Section 2, discusses the core architecture of the attestation mechanism that provides se-
curity and reliability assurance to (remote) requesting entities. Subsequently, we extend the
discussion to the remote attestation framework and the proposed algorithms in section 3. In
section 4 we propose an attestation protocol; in section 5 we detail the test implementation
results of the attestation protocol and proposed algorithms.

2. Attestation Mechanism Framework

In this section, we discuss the core architecture of the attestation mechanism followed by the
discussion on the design requirements and possible solutions.

2.1. The Core Architecture for the Attestation Mechanism

On a typical smart card, several mechanisms are in place to test and verify the state of the
platform (both software and hardware). At the software level, GlobalPlatform card speci�cation
has proposed the controlling authority (termed CA in the GlobalPlatform card speci�cation) [5]
and the Mandated Data Authentication Pattern (Mandated DAP) mechanism [5,6]. In the DAP
mechanism, an o�-card entity (controlling authority) signs applications that are being loaded
onto a smart card, and this approval of the applications is veri�ed by an on-card entity referred
to as the GlobalPlatform card manager [6]. At the hardware level, the Known Answer Test
(KAT) for cryptographic modules mandated by FIPS [7] and similar mechanism are deployed
by the smart card manufacturers (i.e. RAM test, and checksum of non-volatile memory) [8].

However, there is no proposal for remote attestation of the smart card and applications
installed on it. The UCOM proposes the Trusted Environment & Execution Manager (TEM) as
a trusted module for embedded devices like smart cards. The TEM is fundamentally di�erent
from the Trusted Platform Module (TPM) [9] and Mobile Trusted Module (MTM) [10] in two
respects. Firstly, the TEM implements a self-test mechanism that includes hardware parameters
to provide remote attestation and a dynamically con�gurable integrity measurement mechanism
that is based on a challenge-response framework. Secondly, the TEM is not based on a static
architecture; in fact, it enforces platform security policies during the application execution
rather than just generating the hash (once) at the start of the application execution.

The concept of TEM is to group/provide similar and enhanced functionality that provides
assurance and validation of the platform to requesting on-card or o�-card entities. The TEM
is independent of the platform con�guration that is mainly concerned with the smart card
runtime environment, which can be based on a technology such as Java Card or Multos. A
detailed discussion on the TEM, its features and comparison with other trusted modules (i.e.
TPM, and MTM) is beyond the scope of this paper.

The proposed remote attestation mechanism is based on the following two TEM features;
the attestation handler and the self-test manager, which are the core components of the attes-
tation mechanism and are discussed in the following sections.

2.2. The Attestation Handler

The attestation handler and the self-test manager are part of core architecture and the di�erence
between these two modules is that the attestation handler focuses on the software and the self-
test manager on the hardware. However, in the proposed attestation mechanism (section 3) they
complement each other to provide proof that a smart card is secure, reliable and trustworthy.

During the attestation mechanism, the attestation handler will verify the current state of
the platform runtime environment (e.g. security and operationally sensitive parts of the Smart
Card Operating System) and a�rm to the appropriate SP or requesting entity that the platform
is as secure and reliable as it is claimed to be in the security evaluation certi�cate discussed
in [4]. In addition, respective SPs can ask the TEM to generate the state validation of their
applications (e.g. a signed hash of the application) after they have been installed, ensuring that
the application is downloaded without any errors. This function of the attestation handler is
similar to the Data Authentication Pattern (DAP) [5,6].

2.3. Self-test Manager

The self-test mechanism checks whether the smart card is tamper-resistant as certi�ed by a
security evaluation certi�cate [4]. The aim of the self-test mechanism is to provide a remote
hardware validation in a way that enables a requesting entity (e.g. an SP) to independently
verify that the smart card tamper-resistance mechanism is still secure and reliable. As our focus
not at the hardware end of the smart card technology, we do not propose any hardware-based
mechanism in this paper, which is one of the possible directions for future research.

A self-test mechanism in the UCOM should provide the properties that are listed below:

1. Robustness: On input of certain (random) data, it should always produce associated
(random) output in an e�cient manner. If on input of `i' it generates `z', the next time
`i' is used as input the output should be the same `z'.

2. Independence: When the same data is input to a self-test mechanism implemented on two
di�erent devices, they should output di�erent (random) values.

3. Pseudo-randomness: The generated output should be computationally di�cult to distin-
guish from a pseudo-random function.

4. Tamper-evidence: Any attack aiming to access the se�-test function should cause irre-
versible changes which render the device unusable/inaccessible.

5. Unforgeable: It should be computationally di�cult to simulatethe self-test mechanism.

6. Assurance: the self-test mechanism should provide assurance (either implicitly or explic-
itly) to independent veri�ers. It should not require an active connection with the device
manufacturer to provide the assurance.

Table 1. Comparison of di�erent proposals for self-test mechanism.

Features Active-Shield HMAC PRNG PUF

Robustness Yes Yes Yes Yes

Independence No No Yes Yes

Pseudo-randomness No Yes Yes Yes

Tamper-evidence Yes � Yes* Yes

Unforgeable No Yes Yes* Yes

Assurance Yes No Yes Yes*

Note. �Yes� means that the mechanism supports the feature. �No� indicates that the mechanism does not
support the required feature. The entry �Yes*� means that it can support this feature if adequately catered for

during the design.

There are several possibilities for a self-test mechanism for smart cards including using
active (intelligent) shield/mesh [11], the Known Answer Test (KAT) [7], and the Physical
Unclonable Function (PUF) [12].

To provide protection against invasive attacks, smart card manufacturers implement an
active shield/mesh around the chip. If a malicious user removes the active shield then the chip
will be disabled. The self-test mechanism can be associated with this shield to provide a limited
assurance that the protective measures of the chip are still in place and active.

Furthermore, Hash-based Message Authentication Code (HMAC) can be deployed with
a hard-wired key that would be used to generate a checksum of randomly selected memory
addresses that have non-mutable code related to the Smart Card Operating System (SCOS).
This mechanism requires the involvement of the device manufacturer, as the knowledge of the
correct HMAC key would be a secret known only to the manufacturer (or associated partners).

Another potential protection strategy is to utilise Physical Unclonable Functions (PUFs)
[12] to provide hardware validation. It is di�cult to �nd a single and consistent de�nition
of PUF in the literature [13]. Usual applications of the PUF described in the literature are
in anti-counterfeiting [14], Intellectual Property protection [15], tamper-evident hardware [16],
hardware based cryptography [17] and secure/trusted processors [18].

If a manufacturer maintains separate keys for individual smart cards that support the
HMAC then it can provide the independence feature. However the HMAC key is hard-wired
that makes it di�cult to be di�erent on individual smart cards of the same batch. It also requires
other features to provide tamper evidence, like active-shield. Whereas, PUFs and adequately
designed Pseudorandom Number Generators (PRNGs) can provide assurance that the platform
state and the tamper-resistant protections of a smart card are still active.

Based on the above listed features, table 1 shows the comparison between di�erent possible
functions that can act as the self-test mechanism. Although the debate regarding the viability,
security, and reliability of the PUFs is still open in both academic circles and the industry [19];
for completeness, we use them as a self-test mechanism in our proposals because they meet
most of the requirements listed in table 1.

3. Attestation Mechanisms

In this section, we discuss the two attestation mechanisms based on non-simulatable PUFs
that combines the functionality of the attestation handler and self-test manager discussed in
previous section.

3.1. Non-simulatable PUFs

A non-simulatable PUF is a PUF that is computationally di�cult to simulate including the
device manufacturer, user (device owner) and malicious entities. This has made PUF a suitable
candidate for the true/pseudo random number and secret key generators [20,21].

Algorithm 1: Self-test algorithm for o�ine attestation based on a PUF

Input : l; list (array) of selected memory addresses.
Output : S; signature key of the smart card.
Data: seed; temporary seed value for the PRNG set to zero.
n; number of memory addresses in the list l.
i; counter set to zero.
a; memory address.
k; secret key used to encrypt the signature key of the smart card.
Se; encrypted signature key using a symmetric algorithm with key k.
Notation:
x ←− y+z: �rst the operation on the right of the arrow will be performed and the
result will be stored in x. This notation is common for all algorithms in this paper.

1 SelfTestOffline (l) begin
2 while i < n do

3 a←− ReadAddressList (l,i)
4 seed ←− Hash (ReadMemoryContents (a), seed)
5 i ←− i+1

6 if seed 6= ∅ then
7 k ←− nmPUF (seed)

8 else

9 return testfailed

10 S ←− DecryptionFunction (k, Se)
11 return S

Based on non-simulatable PUFs, we describe two algorithms 1 and 2 that take into account
the o�ine and online modes of the attestation mechanism. In the o�ine mode, the communica-

tion is only between the requesting entity (i.e., application provider) and the respective smart
card. In the online mode, the card manufacturer or management authority is included in the
attestation mechanism.

The o�ine algorithm is based on the function SelfTestOffline that takes a list of selected
memory addresses (l) stored on the card by the card manufacturer. The list has memory
addresses of critical components related to the security and reliability of the given smart card
platform. The function SelfTestOffline iterates through the `l' and generates a hash of the
contents of the given memory location. The generated hash value is then stored as a seed.
After traversing through the `l', the SelfTestOffline checks the value of the seed. If the seed
value is zero then throw an attestation fail exception; otherwise, proceed to the next step. The
generated seed value is then input to the PUF that produces a sequence referred as `k' in
algorithm 1. Using the generated `k', the SelfTestOffline will decrypt the signature key for
the given device, then return the signature key to the attestation handler. The handler will
generate a signature and send it to the requesting entity (e.g. the SP) along with the relevant
cryptographic certi�cate. If the signature is veri�ed correctly then the smart card state is in
conformance to the evaluation state.

The PUF based secret key and associated public key pair and certi�cate is generated at
the time of card manufacturing. The private key is certi�ed by the evaluation authority that
also provides the security and reliability details of their evaluation as part of the certi�cate [4].
The certi�cate hierarchy and associated keys in a smart card are discussed in section 3.2.

Algorithm 2: Self-test algorithm for online attestation based on a PUF

Input :
c; challenge sent by the card manufacturer.
n; random number send by the card manufacturer.
Output :
r; hash value generated on selected memory addresses, set at zero.
p; response part of the CRP for the implemented PUF.
Data:
seedfile; seed �le that has a list of non-zero values.
seed; temporary seed value for the PRNG set to zero.
ns; number of entries in a seedfile.
s; unique reference to an entry in the seedfile.
nc; number of bytes in the n.
i; counter set to zero.
l; upper limit of memory address de�ned by the card manufacturer.
m; memory address.
mK; shared secret between a smart card and respective card manufacturer.
Notation:
x % y: represents x modulus y. This notation is common for all algorithms in this
paper.

1 SelfTestOnline (c, n) begin
2 mK ←− nmPUF(c)
3 while i < nc do
4 s←− ReadSingleByte(n, i) % ns
5 seed←− ReadSeedFile(s)
6 m←− GenPRNG(seed) % l
7 r ←− Hash(ReadMemoryContents(m), r,mK)
8 if (nc− i) = 1 then

9 p←− nmPUF(r)

10 i ←− i+1

11 return r, p

For online attestation, the card manufacturers will have to generate (limited) Challenge-
Response Pairs (CRPs), which will be unique to the individual device. The rationale behind

this is based on the design of a non-simulatable PUF in which the designer tries to make the
CRP space su�ciently large to make it di�cult for an adversary to simulate the PUF [22,20].
This design decision even makes it di�cult for the card manufacturer to simulate the PUF. The
limited set of generated CRPs will lead to a limited number of device validations (before they
start to repeat), which is not a scalable solution. Therefore, we use a rolling update mechanism
in which at the end of each successful device validation (section 4) a new CRP will be generated
for future use. A valid CRP response can also help the card manufacturer to ascertain that the
device is not counterfeit as only the issued device's CRPs are registered in its CRP database.

The PUF-based online attestation mechanism represented in algorithm 2 implements a
function SelfTestOnline that takes two parameters: a challenge `c' and random number `n'
from the respective card manufacturer. The challenge `c' is input to the PUF at line two and
a response is generated, which is the response to the challenge `c' and we treat it as a shared
secret (mK). The function SelfTestOnline then treats the random number `n' as a collection
of bytes, reading one byte at a time and taking modulus of the byte with the length of the
seedfile. By doing so, we generate an index to the seedfile and in the next step we read a
seed value from that index. The seed value is used to generate a new random number, whose
modulus with upper memory limit (l) de�ned by the manufacturer gives us a memory location.
In the next step (line seven), we read and hash the memory contents from the memory location,
and the result is stored in `r'. This process is repeated for the number of bytes the random
number `n' has, which is represented by the nc. At nc − 1 iteration, the value of �rnc−1� (the
value of r at the iteration �nc− 1�) is used as input to the PUF again to generate a new CRP.

In function SelfTestOnline, the generated `r' and `p' are then securely communicated
back to the smart card manufacturer, which can verify the generated `r' and stores the CRP.
The card manufacturer can verify the `r' by executing instructions from lines three to seven of
the algorithm 2. The function SelfTestOnline does not send the challenge (�rnc−1�) which was
used to generate the response `p' because the card manufacturer can also generate the value of
`r' at iteration �ns− 1�.

3.2. Key Generation

Individual smart cards have a unique set of cryptographic keys that the card uses for di�erent
protocols/mechanisms during its lifetime. Therefore, after the hardware fabrication and masking
of the SCOS is completed [8] the card manufacturer initiates the key generation process.

Figure 1. Certi�cate hierarchy in the UCOM.

Each smart card will generate a signature key pair (SCSign) that does not change for the
lifetime of the smart card. The SCSign is certi�ed by the card manufacturer, and it is used
to provide o�ine attestation. Furthermore, in the certi�cate hierarchy shown in �gure 1, the
SCSign is linked with the Platform Assurance Certi�cate (PAC) [4] via the card manufacturer's
certi�cate. The PAC is a cryptographic certi�cate that certi�es the card manufacturer's key for
the particular batch of smart cards that are evaluated by a third party like Common Criteria
(CC) for their security and reliability. At present, such certi�cates are not issued however, the
framework proposed in [4] can be adopted for such purposes.

As discussed in section 3.1, the evaluation authority issues a certi�cate (e.g. PAC) which
certi�es that the signature key of the card manufacturer is valid only for the evaluated product.
If an adversary can get hold of the manufacturer's signature key pairs then he can successfully
masquerade as the smart card; either as a dumb device or by simulating the smart card on a
powerful device like a computer.

Finally, the smart card and card manufacturer share an encryption key for symmetric
algorithms (e.g. TDES, AES) and a MAC key. These keys will be used to encrypt and for
generating MAC communication messages between the smart card and the card manufacturer.

4. Attestation Protocol

The Attestation Protocol (ATP), involves the card manufacturer in the online attestation mech-

anisms. The aim of the protocol is to provide an assurance to a remote SP that the current state

of the smart card is not only secure but also (dynamically) attested by the card manufacturer.

The card manufacturer generates a security validation message that testi�es to the requesting

SP that its product is safe and still in compliance with the security evaluation indicated by the

associated PAC.

4.1. Intruder's Capabilities

The aim of an adversary A could be to retrieve enough information to enable him to successfully

masquerade as a card manufacturer or as a smart card. Therefore, we assume an adversary A
is able to intercept all messages communicated between a smart card and its manufacturer. In

addition, A can modify, change, replay, and delay the intercepted messages.

If A is able to masquerade as a card manufacturer then A can issue fake attestation certi�-

cates to individual smart cards, which might compromise the security and privacy of the user

and related SPs. On the other hand, if A is able to compromise the smart card then he can

e�ectively simulate the smart card environment. This will enable him to reverse engineer the

downloaded applications and retrieve sensitive data related to the user and application (e.g.

intellectual property of the SP).

4.2. Protocol Notation and Terminology

Table 2 summarises the notation used in the proposed attestation protocol.

Notation Description

SC Denotes a smart card.
SP Denotes a Service Provider.
CM Denotes the respective card manufacturer of the SC.
CC Denotes the respective Common Criteria evaluation laboratory that evaluates the SC.
Xi Indicates the identity of an entity X.
NX Random number generated by entity X.
h(Z) The result of applying a hash algorithm (e.g. SHA-256) on data Z.
KX−Y Long term encryption key shared between entities X and Y.
mKX−Y Long term MAC key shared between entities X and Y.
BX Private decryption key associated with an entity X.
VX Public encryption key associated with an entity X.
eK(Z) Result of encipherment of data Z with symmetric key K.
fK(Z) Result of applying a MAC algorithm on data Z with key K.
SignX(Z) Represents the signature on data Z with the signature key belonging to an entity X

using a signature algorithm like DSA or based on the RSA function.
CertSX←Y Represents the certi�cate for the signature key belonging to an entity X, issued by

an entity Y.
CertEX←Y Certi�cate for the public encryption key belonging to an entity X, issued by an entity

Y.
VM The Validation Message (VM) issued by the respective CM to a SC representing

that the current state of the SC is as secure as at the time of third party evaluation,
which is evidenced by the PAC [4].

X → Y : C Entity X sends a message to entity Y with contents C.
X||Y Represents the concatenation of data items X and Y.
SID Session identi�er that is used as an authentication credential and to avoid Denial of

Service (DoS) attacks. The SID generated during the protocol run 'n' is used in the
subsequent protocol run (i.e. n+1).

4.3. Protocol Description

In this section, we describe the attestation protocol, and each message is represented by ATP-

n, where n represents the message number. The structure of this representation would be the

protocol acronym (i.e. ATP for attestation protocol) followed by the message number.

Table 3. Messages in the Proposed Protocol.

ATP-1. SC : mE = ekSC−CM
(SCi||N ′SC ||CMi||ReqV al)

SC → CM : SCi′ ||mE||fmkSC−CM
(mE)||SID

ATP-2. CM : mE = ekSC−CM
(CMi||N ′SC ||NCM ||Challenge)

CM → SC : mE||fmkSC−CM
(mE)||SID

ATP-3. SC : mE = ekSC−CM
(N ′SC ||NCM ||NSP ||NSC ||Response||Optional)

SC → CM : mE||fmkSC−CM
(mE)||SID

ATP-4. CM : VM = SignCM (CMi||SCi||NSP ||NSC ||PAC)

CM : mE = ekSC−CM
(N ′SC ||VM ||SC+

i′ ||SID
+||CertSCM)

CM → SC : mE||fmkSC−CM
(mE)||SID

ATP-1 Before issuing the smart card to the user, the SC and CM will establish two secret
keys; an encryption key KSC−CM and a MAC key mKSC−CM . The SC and CM can use
these long-term shared keys to generate the session encryption key kSC−CM and the MAC
key mkSC−CM . The method deployed to generate session keys is left to the sole discretion
of the card manufacturer. Each SC has a unique identi�er SCi that is the identity of the
smart card. To provide privacy to each smart card (and its user) the identity of the SC is
not communicated in plaintext. Therefore, the pseudo-identi�er SCi′ is used in the ATP-1,
which is generated by the SC and the corresponding CM on the successful completion of the
previous run of the attestation protocol. We will discuss the generation of SCi′ and SID in
subsequent messages, as the generated SCi′ and SID during this message will be used in the
next execution of the attestation protocol. A point to note is that for the very �rst execution of
the attestation protocol, the smart card uses the pseudo-identi�er (SCi′) that was generated by
the card manufacturer and stored on the smart card before the card was issued to the user. The
SID is used for two purposes: �rstly to authenticate the SC and secondly, to prevent a Denial
of Service (DoS) attack on the attestation server. The ReqV al is the request for attestation
process.

On receipt of the �rst message, the CM will check whether it has the correct values of SCi′

and SID. If these values are correct, it will then proceed with verifying the MAC. If the MAC
is valid, it will then decrypt the encrypted part of the message.

ATP-2 After the message is successfully decrypted, the CM generates a random number NCM

and a Challenge. In case of the PRNG-based attestation mechanism, the Challenge would also
be a random number; however, in case of PUF-based attestation mechanism it would be the
pre-calculated challenge part of the CRP.

ATP-3 After generating the Response using the algorithms discussed in section 3, the SC
will proceed with message three. It will concatenate the random numbers generated by the SC,
CM, and SP, with the Response. The rationale for including the random number from the SP
in message three is to request CM to generate a validation message that can be independently
checked by the SP to ensure it is fresh and valid. The function of the Optional element is to
accommodate the CRP updates if the CM implements a PUF-based attestation process.

While the SC was generating the Response based on the Challenge, the CM also calculates
the correct attestation response. When the CM receives message three, it will check the values
and if they match then it will issue the validation message. Otherwise the attestation process
has failed and CM does not issue any validation message (VM).

ATP-4 If the attestation response is successful then the CM will take the random numbers
generated by the SP and the SC during the Secure and Trusted Channel Protocols (STCPs)
discussed in paper [23] and include the identities of the SC and CM. All of these items are then
concatenated with the SC's evaluation certi�cate PAC and then signed by the CM. The signed
message is then communicated to the SC.

In the ATP-4, the CM will also generate a SID and SCi′ that will used in the subsequent
execution of the attestation protocol between the SC and CM. The SID and SCi′ for the
subsequent run of the attestation protocol is represented as SID+ and SC+

i′ . The SID+ is
basically a (new) random number that is associated with the pseudo-identi�er of the smart card
that it will be used to authenticate in the subsequent attestation protocol runs. Furthermore,
the SC+

i′ is generated as SC+
i′ = fmKCM

(CMi||NSC ||NCM ||SID), where mKCM is the MAC
key that the CM does not share

5. Protocol Analysis

In this section, we detail the test performance results.

5.1. Implementation Results & Performance Measurements

The test protocol implementation and performance measurement environment in this paper
consists of a laptop with a 1.83 GHz processor, 2 GB of RAM running on Windows XP. The o�-
card entities execute on the laptop and for on-card entities, we have selected two distinct 16bit
Java Cards referred as C1 and C2. Each implemented protocol is executed for 1000 iterations
to adequately take into account the standard deviation between di�erent protocol runs, and
the time taken to complete an iteration of protocol was recorded. The test Java Cards (e.g. C1
and C2) were tested with di�erent numbers of iterations to �nd out a range, which we could
use as a common denominator for performance measurements in this paper. As a result, the
�gure of 1000 iterations was used because after 1000 iterations, the standard deviation becomes
approximately uniform.

Regarding the choice of cryptographic algorithms we have selected Advance Encryption
Standard (AES) [27] 128-bit key symmetric encryption with Cipher Block Chaining (CBC)
[28] without padding for both encryption and MAC operations. The signature algorithm is
based on the Rivest-Shamir-Aldeman (RSA) [28] 512-bit key. We used SHA-256 [29] for hash
generation. For Di�e-Hellman key generation we used a 2058-bit group with a 256-bit prime
order subgroup speci�ed in the RFC-5114 [30]. The average performance measurements in this
paper is rounded up to the nearest natural number.

The attestation mechanism implemented in our test environment executes all the instruc-
tions on a pair of Java Cards, except for the PUF whose execution time from [22] was added
later. The performance measurement taken from two di�erent 16-bit Java Cards are listed in
table 4. The o�ine attestation mechanism based on PUF takes in total 2292 bytes of memory
space. Similarly, the online attestation mechanism and associated attestation protocol based on
PUF takes in total 6392 bytes.

Table 4. Test performance measurement (milliseconds) for the attestation protocol.

Measures O�ine Attestation Online Attestation

Card Speci�cation C1 C2 C1 C2

Average 532.75 584.26 1128.65 1284.85

Best time 506 495 992 1075

Worse time 749 838 1312 1638

Standard Deviation 53.22 83.31 103.62 112.72

6. Summary

In this paper, we discussed the overall architecture of the attestation mechanism that includes
hardware validation with the traditional software attestation. We proposed two modes for the
attestation process: o�ine and online attestation. In designing the attestation process, we based
our proposal on PUFs. To have an online attestation, we proposed the attestation protocol
that communicates with the card manufacturer to get a dynamic validation of assurance (i.e.,
a signed message from the card manufacturer) that the smart card is still secure and reliable.
We implemented o�ine and online attestation mechanisms, along with an attestation protocol
on 16-bit Java Cards and detailed the performance measurements.

References

[1] �GlobalPlatform A NewModel: The Consumer-Centric Model and How It Applies to the Mobile Ecosystem,�
GlobalPlatform, Whitepaper, March 2013.

[2] R. N. Akram, K. Markantonakis, and K. Mayes, �A Paradigm Shift in Smart Card Ownership Model,� in
the 2010 Int. Conf. on Computational Science and Its Applications (ICCSA 2010), B. O. Apduhan and
O. Gervasi, Eds. Fukuoka, Japan: IEEE CS, March 2010, pp. 191�200.

[3] R. N. Akram, K. Markantonakis, and K. Mayes, �Application Management Framework in User Cen-
tric Smart Card Ownership Model,� in The 10th Int. Workshop on Information Security Applications
(WISA09), H. Y. YOUM and M. Yung, Eds., Busan, Korea: Springer, August 2009, pp. 20�35.

[4] R. N. Akram, K. Markantonakis, and K. Mayes, �A Dynamic and Ubiquitous Smart Card Security Assurance
and Validation Mechanism,� in 25th IFIP Int. Information Security Conf. (SEC 2010), K. Rannenberg and
V. Varadharajan, Eds. Brisbane, Australia: Springer, September 2010, pp. 161�172.

[5] �The GlobalPlatform Proposition for NFC Mobile: Secure Element Management and Messaging,� Glob-
alPlatform, White Paper, April 2009.

[6] GlobalPlatform: GlobalPlatform Card Speci�cation, Version 2.2,, GlobalPlatform Std., March 2006.
[7] FIPS 140-2: Security Requirements for Cryptographic Modules, Online, NIST Federal Information Process-

ing Standards Publication, Rev. Supercedes FIPS PUB 140-1, May 2005.
[8] W. Rankl and W. E�ng, Smart Card Handbook, 3rd ed. NY, USA: John Wiley & Sons, Inc., 2003.
[9] Trusted Module Speci�cation 1.2: Part 1- Design Principles, Part 2- Structures of the TPM, Part 3-

Commands, Trusted Computing Group Std., Rev. 103, July 2007.
[10] �TCG Mobile Trusted Module Speci�cation,� Trusted Computing Group (TCG), V1.0, June 2008.
[11] K. Eagles, K. Markantonakis, and K. Mayes, �A Comparative Analysis of Common Threats, Vulnerabilities,

Attacks and Countermeasures within Smart Card and Wireless Sensor Network Node Technologies,� in the
1st Int. Conf. on Information Security Theory and Practices, ser. WISTP'07. Springer, 2007, pp. 161�174.

[12] B. Gassend, D. Clarke, M. van Dijk, and S. Devadas, �Silicon Physical Random Functions,� in Proceedings
of the 9th ACM Conf. on Computer and Communications Security, NY, USA: ACM, 2002, pp. 148�160.

[13] H. Busch, M. Sotáková, S. Katzenbeisser, and R. Sion, �The PUF Promise,� in Proceedings of the 3rd Int.
Conf. on Trust and Trustworthy Computing. Springer, June 2010, pp. 290�297.

[14] D. Kirovski, �Anti-Counterfeiting: Mixing the Physical and the Digital World,� in Foundations for Forgery-
Resilient Cryptographic Hardware, ser. Dagstuhl Seminar Proceedings, J. Guajardo, B. Preneel, A.-R.
Sadeghi, and P. Tuyls, Eds., Germany, 2010.

[15] S. S. Kumar, J. Guajardo, R. Maes, G.-J. Schrijen, and P. Tuyls, �Extended Abstract: The Butter�y PUF
Protecting IP on every FPGA,� in Proceedings of the 2008 IEEE Int. Workshop on Hardware-Oriented
Security and Trust. Washington, DC, USA: IEEE CS, 2008, pp. 67�70.

[16] P. Tuyls, G.-J. Schrijen, B. �kori¢, J. van Geloven, N. Verhaegh, and R. Wolters, �Read-proof Hardware
from Protective Coatings,� in Cryptographic Hardware and Embedded Systems Workshop, ser. LNCS, vol.
4249. Springer, October 2006, pp. 369�383.

[17] R. S. Pappu, �Physical One-way Functions,� Ph.D. dissertation, MIT, March 2001.
[18] G. E. Suh, C. W. O'Donnell, I. Sachdev, and S. Devadas, �Design and Implementation of the AEGIS

Single-Chip Secure Processor Using Physical Random Function,� vol. 33, pp. 25�36, May 2005.
[19] D. Merli, D. Schuster, F. Stumpf, and G. Sigl, �Side-Channel Analysis of PUFs and Fuzzy Extractors,� in

Trust and Trustworthy Computing, ser. LNCS, J. McCune, Eds. Springer, 2011, vol. 6740, pp. 33�47.
[20] G. E. Suh and S. Devadas, �Physical Unclonable Functions for Device Authentication and Secret Key

Generation,� in the 44th Annual Design Automation Conf., NY, USA: ACM, 2007, pp. 9�14.
[21] A. Maiti, R. Nagesh, A. Reddy, and P. Schaumont, �Physical Unclonable Function and True Random

Number Generator: a Compact and Scalable Implementation,� in Proceedings of the 19th ACM Great Lakes
symposium on VLSI, ser. GLSVLSI '09. New York, NY, USA: ACM, 2009, pp. 425�428.

[22] S. Schulz, C. Wachsmann, and A.-R. Sadeghis, �Lightweight Remote Attestation using Physical Functions,�
Technische Universitat Darmstadt, Darmstadt, Germany, TR-2001-06-11, July 2011.

[23] R. N. Akram, K. Markantonakis, and K. Mayes, �A Secure and Trusted Channel Protocol for the User Cen-
tric Smart Card Ownership Model,� in 12th IEEE Int. Conf. on Trust, Security and Privacy in Computing
and Communications (IEEE TrustCom-13). Australia: IEEE CS, 2013.

[24] G. Lowe, �Casper: a compiler for the analysis of security protocols,� J. Comput. Secur., vol. 6, Jan 1998.
[25] C. A. R. Hoare, Communicating Sequential Processes. NY, USA: ACM, 1978, vol. 21, no. 8.
[26] P. Ryan and S. Schneider, The Modelling and Analysis of Security Protocols: the CSP Approach. Addison-

Wesley Professional, 2000.
[27] Joan Daemen and Vincent Rijmen, The Design of Rijndael: AES - The Advanced Encryption Standard.

Berlin: Springer, 2002.
[28] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone, Handbook of Applied Cryptography. CRC, October

1996.
[29] FIPS 180-2: Secure Hash Standard (SHS), NIST Spec., 2002.
[30] M. Lepinski and S. Kent, �RFC 5114 - Additional Di�e-Hellman Groups for Use with IETF Standards,�

Tech. Rep., January 2008.
[31] �Trusted Computing Group, TCG Speci�cation Architecture Overview,� The Trusted Computing Group

(TCG), Beaverton, Oregon, USA, revision 1.4, August 2007.
[32] A. Seshadri, M. Luk, A. Perrig, L. van Doorn, and P. Khosla, �SCUBA: Secure Code Update by Attestation

in Sensor Networks,� in the 5th ACM workshop on Wireless security, NY, USA: ACM, 2006, pp. 85�94.
[33] Y. Li, J. M. McCune, and A. Perrig, �SBAP: Software-based Attestation for Peripherals,� in Proceedings

of the 3rd Int. Conference on Trust and Trustworthy Computing, Berlin, Springer, 2010, pp. 16�29.
[34] A. Seshadri, A. Perrig, L. van Doorn, and P. Khosla, �SWATT: SoftWare-based ATTestation for Embedded

Devices,� Security and Privacy, IEEE Symposium on, vol. 0, p. 272, 2004.
[35] D. Schellekens, B. Wyseur, and B. Preneel, �Remote Attestation on Legacy Operating Systems with

Trusted Platform Modules,� Sci. Comput. Program., vol. 74, pp. 13�22, December 2008.
[36] H. Busch, S. Katzenbeisser, and P. Baecher, �PUF-Based Authentication Protocols - Revisited,� in Infor-

mation Security Applications, ser. LNCS, H. Youm and M. Yung, Eds. Springer, 2009, pp. 296�308.

