

© 2017 Choden Konigsmark

HARDWARE SECURITY DESIGN

FROM CIRCUITS TO SYSTEMS

BY

S. T. CHODEN KONIGSMARK

DISSERTATION

Submitted in partial fulfillment of the requirements

for the degree of Doctor of Philosophy in Electrical and Computer Engineering

in the Graduate College of the

University of Illinois at Urbana-Champaign, 2017

Urbana, Illinois

Doctoral Committee:

 Professor Deming Chen, Co-Chair

 Professor Martin D. F. Wong, Co-Chair

 Professor William H. Sanders

 Professor David M. Nicol

ii

ABSTRACT

The security of hardware implementations is of considerable importance, as even the

most secure and carefully analyzed algorithms and protocols can be vulnerable in their

hardware realization. For instance, numerous successful attacks have been presented against

the Advanced Encryption Standard, which is approved for top secret information by the

National Security Agency. There are numerous challenges for hardware security, ranging

from critical power and resource constraints in sensor networks to scalability and

automation for large Internet of Things (IoT) applications.

The physically unclonable function (PUF) is a promising building block for hardware

security, as it exposes a device-unique challenge-response behavior which depends on

process variations in fabrication. It can be used in a variety of applications including random

number generation, authentication, fingerprinting, and encryption. The primary concerns for

PUF are reliability in presence of environmental variations, area and power overhead, and

process-dependent randomness of the challenge-response behavior.

Carbon nanotube field-effect transistors (CNFETs) have been shown to have excellent

electrical and unique physical characteristics. They are a promising candidate to replace

silicon transistors in future very large scale integration (VLSI) designs. We present the

Carbon Nanotube PUF (CNPUF), which is the first PUF design that takes advantage of

unique CNFET characteristics. CNPUF achieves higher reliability against environmental

variations and increases the resistance against modeling attacks. Furthermore, CNPUF has

a considerable power and energy reduction in comparison to previous ultra-low power PUF

designs of 89.6% and 98%, respectively. Moreover, CNPUF allows a power-security

tradeoff in an extended design, which can greatly increase the resilience against modeling

attacks.

Despite increasing focus on defenses against physical attacks, consistent security

oriented design of embedded systems remains a challenge, as most formalizations and

security models are concerned with isolated physical components or a high-level concept.

Therefore, we build on existing work on hardware security and provide four contributions

to system-oriented physical defense: (i) A system-level security model to overcome the

chasm between secure components and requirements of high-level protocols; this enables

synergy between component-oriented security formalizations and theoretically proven

iii

protocols. (ii) An analysis of current practices in PUF protocols using the proposed system-

level security model; we identify significant issues and expose assumptions that require

costly security techniques. (iii) A System-of-PUF (SoP) that utilizes the large PUF design-

space to achieve security requirements with minimal resource utilization; SoP requires 64%

less gate-equivalent units than recently published schemes. (iv) A multilevel authentication

protocol based on SoP which is validated using our system-level security model and which

overcomes current vulnerabilities. Furthermore, this protocol offers breach recognition and

recovery.

Unpredictability and reliability are core requirements of PUFs: unpredictability implies

that an adversary cannot sufficiently predict future responses from previous observations.

Reliability is important as it increases the reproducibility of PUF responses and hence allows

validation of expected responses. However, advanced machine-learning algorithms have

been shown to be a significant threat to the practical validity of PUFs, as they can accurately

model PUF behavior. The most effective technique was shown to be the XOR-based

combination of multiple PUFs, but as this approach drastically reduces reliability, it does

not scale well against software-based machine-learning attacks. We analyze threats to PUF

security and propose PolyPUF, a scalable and secure architecture to introduce polymorphic

PUF behavior. This architecture significantly increases model-building resistivity while

maintaining reliability. An extensive experimental evaluation and comparison demonstrate

that the PolyPUF architecture can secure various PUF configurations and is the only

evaluated approach to withstand highly complex neural network machine-learning attacks.

Furthermore, we show that PolyPUF consumes less energy and has less implementation

overhead in comparison to lightweight reference architectures.

Emerging technologies such as the Internet of Things (IoT) heavily rely on hardware

security for data and privacy protection. The outsourcing of integrated circuit (IC)

fabrication introduces diverse threat vectors with different characteristics, such that the

security of each device has unique focal points. Hardware Trojan horses (HTH) are a

significant threat for IoT devices as they process security critical information with limited

resources. HTH for information leakage are particularly difficult to detect as they have

minimal footprint. Moreover, constantly increasing integration complexity requires

automatic synthesis to maintain the pace of innovation. We introduce the first high-level

synthesis (HLS) flow that produces a threat-targeted and security enhanced hardware design

to prevent HTH injection by a malicious foundry. Through analysis of entropy loss and

iv

criticality decay, the presented algorithms implement highly resource-efficient targeted

information dispersion. An obfuscation flow is introduced to camouflage the effects of

dispersion and reduce the effectiveness of reverse engineering. A new metric for the

combined security of the device is proposed, and dispersion and obfuscation are co-

optimized to target user-supplied threat parameters under resource constraints. The flow is

evaluated on existing HLS benchmarks and a new IoT-specific benchmark, and shows

significant resource savings as well as adaptability.

The IoT and cloud computing rely on strong confidence in security of confidential or

highly privacy sensitive data. As (differential) power attacks can take advantage of side-

channel leakage to expose device-internal secrets, side-channel leakage is a major concern

with ongoing research focus. However, countermeasures typically require expert-level

security knowledge for efficient application, which limits adaptation in the highly

competitive and time-constrained IoT field. We address this need by presenting the first

HLS flow with primary focus on side-channel leakage reduction. Minimal security

annotation to the high-level C-code is sufficient to perform automatic analysis of security

critical operations with corresponding insertion of countermeasures. Additionally,

imbalanced branches are detected and corrected. For practicality, the flow can meet both

resource and information leakage constraints. The presented flow is extensively evaluated

on established HLS benchmarks and a general IoT benchmark. Under identical resource

constraints, leakage is reduced between 32% and 72% compared to the baseline. Under

leakage target, the constraints are achieved with 31% to 81% less resource overhead.

v

ACKNOWLEDGMENTS

I would like to express my deepest gratitude to my advisers, Prof. Martin D. F. Wong

and Prof. Deming Chen, who have been great mentors and always encouraged me to tackle

new challenges and think about problems from different angles. I am especially grateful for

their support for my request to complete the latter stages of my PhD remotely.

In addition to my advisers, I am very grateful to my doctoral committee, Prof. Bill

Sanders and Prof. David Nicol. Meaningful new ideas and research directions were the

result of discussions with them; this was incredibly valuable to my thesis.

I have been incredibly lucky to work with Mrs. Leslie K. Hwang, who has been the

greatest mentor to me from the start of my graduate studies. This dissertation would not

have been possible without our fruitful research discussions and her ongoing support in all

aspects of my graduate research and beyond.

I wish to thank my co-workers at Microsoft and Google for creating an enjoyable and

creative atmosphere during work hours. I am particularly grateful to Dr. Jeremy Condit, Mr.

Dan Delorey, Ms. Danielle Hanks, Mr. Eugene Koblov, Mr. Wade Lamble, Mr. Srivastava

Nanduri, Mr. Xuejian Pan, and Mr. Minh Tran.

Additionally, I would like to thank all research group members for the meaningful

discussions and their support, especially Mr. Keith Campbell, Dr. Yao Chen, Mr. Ashutosh

Dhar, Dr. Yuelin Du, Mr. Yi Liang, Mr. Chen-Hsuan Lin, and Dr. Ting Yu.

Finally, I owe my deepest gratitude to my parents and my wife. My parents have always

encouraged me to strive for greater challenges and have made me believe that nothing is

impossible. My wife, Paema Konigsmark, has always been supportive of my goals, and has

been incredibly patient and understanding during the entire length of my graduate studies.

vi

TABLE OF CONTENTS

LIST OF TABLES ... viii

LIST OF FIGURES .. x

CHAPTER 1 INTRODUCTION .. 1

1.1 BACKGROUND AND MOTIVATION ... 1
1.2 OVERVIEW OF THIS DISSERTATION ... 2

CHAPTER 2 CARBON NANOTUBE PUF .. 4

2.1 INTRODUCTION .. 4
2.2 BACKGROUND ... 6
2.3 CARBON-NANOTUBE PUF ... 7
2.4 EXTENDED CNPUF ... 11
2.5 EXPERIMENTAL EVALUATION ... 13
2.6 CONCLUSION AND OUTLOOK .. 18

CHAPTER 3 SYSTEM-OF-PUFS: MULTILEVEL SECURITY FOR EMBEDDED

SYSTEMS .. 20

3.1 INTRODUCTION .. 20
3.2 BACKGROUND ... 22
3.3 SYSTEM-LEVEL SECURITY MODEL ... 27
3.4 PUF SECURITY ISSUES .. 32
3.5 SYSTEM OF PUFS .. 36
3.6 SECURITY CONSIDERATIONS ... 40
3.7 EXPERIMENTAL EVALUATION ... 43
3.8 CONCLUSION ... 46

CHAPTER 4 POLYPUF: PHYSICALLY SECURE SELF-DIVERGENCE 47

4.1 INTRODUCTION .. 47
4.2 BACKGROUND ... 50
4.3 POLYPUF ARCHITECTURE .. 57
4.4 POLYPUF APPLICATION .. 61
4.5 SECURITY CONSIDERATIONS ... 64
4.6 ATTACK ANALYSIS ... 66
4.7 EXPERIMENTAL EVALUATION ... 71
4.8 CONCLUSION ... 79

vii

CHAPTER 5 HIGH-LEVEL SYNTHESIS FOR HARDWARE TROJAN HORSE

DEFENSE ... 81

5.1 INTRODUCTION .. 81
5.2 BACKGROUND ... 83
5.3 ADVERSARY OBJECTIVE AND THREAT MODEL .. 86
5.4 THREAT-TARGETED SYNTHESIS.. 88
5.5 EXPERIMENTAL EVALUATION ... 101
5.6 CONCLUSION ... 105

CHAPTER 6 HIGH-LEVEL SYNTHESIS FOR SIDE-CHANNEL DEFENSE 107

6.1 INTRODUCTION .. 107
6.2 BACKGROUND ... 109
6.3 SYNTHESIS FLOW .. 114
6.4 EXPERIMENTAL EVALUATION ... 119
6.5 CONCLUSION AND OUTLOOK .. 124

CHAPTER 7 CONCLUSIONS .. 125

REFERENCES ... 128

viii

LIST OF TABLES

Table 2.1 Experimental results for reliability ... 15
Table 2.2 Power and energy comparison between CNPUF and ultra -low power current-

based PUF [10] at 14nm and 90nm. ... 16
Table 2.3 Simulation parameters for CNPUF. .. 16
Table 2.4 Comparison of 𝐻𝐷𝑖𝑛𝑡𝑟𝑎 in different simulated PUF designs. Lower

percentages mean higher robustness. .. 18
Table 2.5 Comparison of 𝐻𝐷𝑖𝑛𝑡𝑟𝑎 between real PUF circuits and CNPUF under

extended environment simulation. .. 18

Table 3.1 Comparison of PUF designs in reliability (lower 𝐹𝐻𝐷𝑖𝑛𝑡𝑟𝑎 is better) and

randomness (0.5 for 𝐹𝐻𝐷𝑖𝑛𝑡𝑒𝑟 is ideal). ... 22

Table 3.2 PUF design criteria and example implementation .. 39
Table 3.3 Gate equivalent (GE) cost of proposed SoP.. 44
Table 3.4 Gate equivalent (GE) cost of Reverse Fuzzy Extractor. 44
Table 4.1 Model-building error rates for multiple PUF configurations with varying

number of hidden neurons and one million CRPs training set size. The most

effective number of neurons is bolded and used for the following evaluation

steps. ... 71
Table 4.2 Comparison of a basic PUF architecture, NBPUF, and PolyPUF architecture,

each with multiple different internal Arbiter PUFs. For model-building error

rate, closer to 50% is better, as it characterizes modeling resistivity. For

random guessing probability 𝑃𝑟𝑎𝑛𝑑, lower is better. 73

Table 4.3 Results of the simple and improved targeted model-building attacks that

attempt to exploit the statistical weakness of the internal PUF. 75
Table 4.4 Energy cost comparison of lightweight PUF architectures based on a

comparison of individual operations. These operations reflect a generation

and transmission of one full response. .. 78
Table 4.5 Implementation cost comparison of the primary security components of

lightweight PUF architectures measured in look-up tables (LUT). 78
Table 5.1 Information Capacity of operators for entropy estimation. 93
Table 5.2 Resource utilization in established benchmarks when a given security level is to

be achieved. The proposed security optimized defense reduces the hardware

implementation cost on average by 54.4% (𝛥1) and 26.3% 𝛥2 compared to

the modular defense and targeted defense, respectively. Resource costs are

reported in thousands. ... 102
Table 5.3 Evaluation of the ability to maximize the target security information dispersion

𝑑𝑡 under resource constraints. The proposed flow achieves on average three

times higher information dispersion than the modular defense baseline (𝛥1)

and 41% higher dispersion than the targeted defense 𝛥2. 102

Table 5.4 Comparison of the threat-targeted synthesis under resource constraints for two

different configurations. Resource costs are reported in thousands. 104

ix

Table 5.5 Continued evaluation of the security metric from data presented in Table 5.4.

Δ1 and Δ2 are the respective factors of improvement over pure information

dispersion. ... 104
Table 6.1 Countermeasures employed in the evaluation. Resource overhead and effect on

leakage are component-dependent – general estimates are provided. 119
Table 6.2 Evaluation of the side-channel optimized synthesis. Compared to the baseline,

leakage is reduced between 32% and 72% (%𝐵). Compared to the modular

synthesis, leakage is reduced by up to 38% (%𝑀). 119

Table 6.3 Evaluation of the proposed side-channel optimized synthesis against a modular

baseline under more stringent resource constraints. Leakage is reduced by

20% to 40%. ... 120
Table 6.4 Evaluation of the proposed synthesis under explicit side-channel leakage target.

Compared to the baseline, the leakage target is achieved with 31% to 81%

less overhead (%𝐵). Compared to modular synthesis, overhead is reduced by

up to 44% (%𝑀). .. 122
Table 6.5 Evaluation of leakage targeted synthesis under less severe leakage targets.

Side-channel leakage is denoted by θ. Target is achieved with up to 30% to

67% reduced overhead. ... 124

x

LIST OF FIGURES

Figure 2.1 Row of the CNPUF design. A series of CNPUF-PE are evaluated by a

comparator (COMP) to generate the output bit. ... 8
Figure 2.2 Design of the extended CNPUF (ex-CNPUF) to allow a power vs. security

tradeoff and more complex challenge-response behavior. All shaded blocks

contain the XOR-gate and CNPUF-PE structure shown to the top left. 11
Figure 2.3 Simulation model for the metallic CNTs in the CNFETs contained in CNPUF.

 .. 13
Figure 2.4 Robustness of CNPUF in a standard simulation environment (top) and in an

extended simulation environment (bottom). ... 15
Figure 3.1 Overview of various PUF designs. .. 23
Figure 3.2 Modeling susceptibility (MS) due to PUF-IO is removed using IO-Fuses,

which are tamper susceptible (TS) and diminish the tamper volatile

functionality (TVF) of PUF. ... 32
Figure 3.3 System-level security model of slender PUF protocol. Tamper volatile

functionality (TVF) of TRNGs is unfulfilled, which introduces susceptibility

against invasive attacks... 34
Figure 3.4 Components of the lightweight System of PUF. ... 36
Figure 3.5 Proposed multilevel authentication protocol between the Prover and the

Verifier. ... 37
Figure 3.6 System-level security model of SoP. Due to the size of the Secure PUF, the

level-2 behavior is modeling resistant through infeasibility (MRI). The system

exhibits tamper-volatile functionality (TVF). ... 41
Figure 3.7 Intra-Chip Hamming distances of each of PUF component. We observe that an

error in the Hidden PUF (left) will propagate and lead to a large error in the

Guard PUF (center) and the Secure PUF (right) due to the strict avalanche

criterion. .. 45
Figure 4.1. An Arbiter PUF with three input bits and one output bit, 3x1 Arbiter PUF. .. 51
Figure 4.2 PolyPUF with challenge self-divergence (CSD), response self-divergence

(RSD), and internal PUF structure. ... 57
Figure 4.3 Example of polymorphic behavior of PolyPUF with 𝑥𝑐 = 2 and 𝑥𝑟 = 1. The

left side shows the overall processing steps in PolyPUF. A third party may

observe any of the responses in R, as the actually observed response is non-

deterministically generated through challenge and response self-divergence,

which are shown in the center and right boxes, respectively. 60
Figure 4.4 Comparison of five thousand malicious ANN authentication attempts.

Depicted is the error rate of malicious authentication attempts, where higher is

better. From left to right, the internal PUF is a simple Arbiter PUF, 2-XOR

Arbiter PUF, and 4-XOR Arbiter PUF. Only PolyPUF has a consistent

threshold to the illustrated typical PUF error rate. .. 75
Figure 4.5 Hamming distances between the original seed value and the seed values in the

selected responses in the simplified targeted model-building attack. 76

xi

Figure 5.1. a) Simplified example of a hardware Trojan for indirect leakage of the cipher

key in AES, b) dispersed cipher key to prevent hardware Trojan insertion. .. 82
Figure 5.2 The threat-targeted high-level synthesis flow extends typical high-level

synthesis steps with a dispersion analysis, resource analysis with optimization

of security parameters, and obfuscation as well as dispersion flows. 87
Figure 5.3 Example of targeted insertion of information dispersion. Due to modulo

entropy loss, only upstream critical instructions are dispersed....................... 92
Figure 5.4. a) Dispersion leads to clear separation of critical paths that can be exploited

by adversaries. b) Obfuscation introduces links among critical paths

(operators (1) and (2)), and between critical and non-critical paths (operator

(3)). ... 93
Figure 6.1 Overview of the side-channel leakage optimized synthesis flow. The flow

combines typical HLS flows (orange) with analysis (blue) and culminates in

leakage minimization operations (green). ... 113
Figure 6.2 Example of branch balancing. One branch of a conditional statement is

supplemented with dummy instructions to minimize information leakage. . 115
Figure 6.3 Example of leakage-driven binding. High risk operations are bound against

one FU, while low risk instructions are bound against a different FU. 115

1

CHAPTER 1

INTRODUCTION

1.1 Background and Motivation

Computer security is of utmost importance to our society due to the constantly increasing

reliance on ubiquitous computing. With emerging devices in areas such as health care,

wireless sensor networks, wearable devices, and the Internet of Things, privacy is no longer

the primary concern, and the confidentiality and authenticity of data and devices has to be

guaranteed to avoid physical damage.

Secure hardware is of fundamental importance to computer security, as it provides the

foundation on which algorithms and protocols are built. If the hardware components are

insecure, any higher-level implementation is inherently vulnerable. For instance, a

cryptographic module that implements the Advanced Encryption Standard (AES), which is

approved by the U.S. National Security Agency (NSA) for top-secret documents, was

successfully attacked through analysis of side-channel information leakage.

One promising building block for hardware security is the physically unclonable

function (PUF). It implements a device-unique hardware fingerprint that has applications

ranging from authentication to random number generation. As PUFs rely on physical

variations to generate a device-specific fingerprint, most proposed PUF designs suffer from

reliability concerns. The major weakness of PUFs is their vulnerability against machine-

learning attacks.

In addition to the threat of invasive attacks, ongoing outsourcing efforts in integrated

circuit manufacturing have increased the threat of information leakage due to hardware

Trojan horses. It has been shown that minimal area footprint is required to introduce a

hardware Trojan horse which has the capability of leaking internal bits in an AES

implementation, which could lead to the full disclosure of the secret key employed in

encryption.

The amount of power consumption in a circuit depends primarily on the dynamic

switching behavior. When the output of a gate is toggled, there are notable spikes in the

2

power trace. This correlation between device behavior and power consumption can be

exploited in side-channel analysis attacks. Without any modifications to the circuit or

insertion of hardware Trojan horses, successful side-channel analysis attacks have been

launched against AES implementations. While mitigating defense techniques exist, for

example by normalizing the power consumption, these techniques are very costly and

require detailed security understanding for efficient application.

1.2 Overview of this Dissertation

In this dissertation, we study the three primary threats to hardware security: invasive

physical attacks which can change device behavior after manufacturing; insertion of

hardware Trojan horses by a malicious foundry which can leak secret information with

minimal footprint; side-channel analysis of power traces to reveal device-internal secrets

without any noticeable modification to the device.

We propose the first carbon-nanotube (CNT) based PUF in Chapter 2. It exhibits strong

cryptographic characteristics while reducing power consumption compared to conventional

designs by taking advantage of the inherent uniqueness of the metal-to-semiconductor ratio

of CNTs in a carbon-nanotube field-effect transistor (CNFET).

We introduce a System-of-PUFs (SOP) in Chapter 3. The SoP utilizes the difference

among multiple proposed PUF designs to improve the resistance against machine-learning

attacks and introduces a new multi-level authentication scheme that allows recovery from

attacks.

We introduce the first polymorphous PUF (PolyPUF) in Chapter 4. PolyPUF

dynamically changes its runtime behavior to defend against machine-learning attacks while

still allowing a trusted third party to perform authentication. Through this polymorphous

behavior, it can achieve resistance against machine-learning attacks beyond any existing

PUF design or architecture. We evaluate PolyPUF against neural network based machine-

learning attacks and demonstrate its strength.

The defense against hardware Trojan horses (HTH) as part of high-level synthesis is

presented in Chapter 5. HTH insertion by a malicious foundry is a significant threat due to

ongoing outsourcing of integrated circuit manufacturing. Through an HTH, information can

be leaked with minimal footprint in area and power consumption, which leads to a very low

detection probably in post-manufacturing. The high-level synthesis flow mitigates this risk

3

by automatically detecting vulnerable circuit areas and increasing the difficulty of HTH

insertion by dispersing security critical information.

A high-level synthesis flow to protect against power analysis attacks is introduced in

Chapter 6. It has been shown that hardware implementations can leak significant side-

channel information which can be extracted by analyzing power traces. For example,

successful attacks against the advanced encryption standard were demonstrated. Defending

against side-channel analysis is a difficult problem, as power consumption depends on

several factors and is highly dependent on the underlying data being processed. Existing

defense mechanisms are very resource intensive and require deep design and security

understanding for efficient application. The proposed high-level synthesis flow identifies

operations with high leakage potential and effectively applies countermeasures to achieve

high resilience against side-channel leakage with strongly reduced resource requirements.

4

CHAPTER 2

CARBON NANOTUBE PUF

2.1 Introduction

Modern life depends heavily on electronics. Not only are companies’ valuable and

confidential assets stored and managed by technology but also our daily lives are connected

with technology. Therefore, our privacy and confidential assets are vulnerable to attacks

against the technologies we use. This trend leads to an increased interest in security. In

addition to these common security concerns, wireless sensor networks and wearable

technology have emerged as trends in new devices and can pose significant security risks

for our society. Nodes in a sensor network are typically exposed to the public and can

contain or handle sensitive data, e.g. power grid information or military defense mechanisms

[1]. Wearable technology is emerging as part of ubiquitous computing and may accumulate

as much information as the actual wearer, which represents a threat against privacy. Due to

the nature of these new devices, they not only require higher security and privacy, but are

also critically limited in circuit area, power, and energy budgets. This trend was already

observed in current mobile devices, such as smartphones or tablets, but wearable technology

tightens these constraints [2].

Software security typically assumes correctness and security of hardware and can only

discover hardware based intrusions on a very limited scale [3]. Hardware security provides

the building block for secure devices and aims to reduce hardware vulnerability to imaging,

probing and intrusion. It is generally designed to take advantage of each chip’s unique

physical aspects.

Gassend et al. introduced the concept of silicon based physically unclonable functions

(PUFs)[4], which has gained attention as an emerging hardware security technology. It maps

a digital input, considered to be a challenge, to a digital output, defined as the response,

based on intrinsic physical parameters of the circuit. Therefore, the mapping between the

input and output of a PUF is called the challenge-response behavior.

A major advantage of PUF is the fast and simple response generation, but extremely

difficult challenge-response prediction and duplication. Although manufactured instances

of PUF share an identical design, the manufacturing process introduces unpredictable

5

variations to the intrinsic physical parameters of the chip. Along with the large size of the

challenge-response space, this leads to nearly impossible challenge-response behavior

replication [5].

Various PUF designs were studied using different physical parameters of the device;

silicon PUF [4], arbiter PUF [6], ring-oscillator PUF (RO-PUF) [7], butterfly PUF [8], clock

PUF [9], and low-power current-based PUF [10] are examples of PUF designs taking

advantage of very different circuit characteristics. The first silicon PUF, presented by

Gassend et al., uses the delay of wires and digital logic devices within one circuit. RO-PUF

is also designed to evaluate and compare inherent delay characteristics of wires and

transistors, but compares distinct circuits. It is based on ring oscillators and uses the unique

oscillation frequency for response generation. Butterfly PUF is based on FPGA-specific

physical variations. ClockPUF is designed using the clock skew at the sink of the clock

network. Ultra-low power current-based PUF converts analog current variations to unique

digital quantities.

Critical characteristics of PUF are reliability and uniqueness. The former is measured as

the reverse of the average Hamming distance of a single chip under varying environment

conditions and the same challenge. The latter is the average Hamming distance between

multiple manufactured instances of the same design, and is desired to be 50%.

Most of the existing PUFs focus on conventional silicon devices, and several of them are

not geared towards low power operation. Furthermore, as technology moves forward,

silicon devices for low-power, high-speed applications are facing a miniaturization

bottleneck. Carbon-based structures, such as carbon nanotubes (CNT), are one of the

promising emerging technologies that are considered as possible replacements for current

silicon technology. Moreover, CNTs have great potential in flexible or wearable electronics

[11].

In this chapter, we present a novel carbon-nanotube based PUF (CNPUF), which uses

carbon nanotube field-effect transistors (CNFET). Our contributions and the advantages of

CNPUF are as follows:

 A PUF design that takes advantage of its unique CNFET characteristics and actively

uses metallic CNTs, which are currently inevitable but typically considered a major

issue for digital designs.

 Considerable reduction in footprint by using CNFET-unique properties to reduce the

transistor count.

6

 Extremely low power and energy consumption that is 89.6% and 98% lower than

ultra-low power current based PUF [10] at 90 nm.

 Very high reliability against environmental variations and SPICE-accurate

experimental evaluation in two different settings.

 An extended design that enables a power-security tradeoff, highly relevant for

practical usage scenarios.

 Evaluation of PUF behavior with regard to different CNT technology parameters

The rest of this chapter is structured as follows. In section 2.2, we provide background

knowledge and explain CNT behavior and characteristics. In section 2.3, we propose

CNPUF and theoretically evaluate it. An extension of CNPUF, which can be used for high

security applications, is presented in section 2.4. A SPICE accurate experimental evaluation

and comparison is provided in section 2.5. Finally, we summarize our findings and give an

outlook in section 2.6. This chapter is based on [12].

2.2 Background

Carbon nanotubes (CNTs) are cylindrical carbon molecules that have superior electrical,

mechanical and thermal properties [13]. Thus, CNT technology is considered as one of the

potential candidates for future electronics [13]. CNFETs, first introduced by S. Tans et al.

[14], are transistors with channels consisting of CNTs instead of bulk silicon. Conventional

methods in technology scaling will likely encounter physical limitations and these molecular

electronics have attracted much interest as they can lead to further technology scaling.

Regardless of the superior properties, there exist fundamental limitations and obstacles

in fabrication of CNTs. Due to intense research studies, yield and performance of CNFETs

are fast improving and they will be realized as digital circuits in the near future [15]. Most

recently, a first fully CNT based subsystem was presented [16], and a first digital carbon

nanotube computer was created [17]. Nevertheless, it is still impossible to guarantee perfect

alignment, semiconducting property, and uniform distribution, which lead to performance

variations [18]. The major CNT variations [19] are: (i) chirality, which defines the type to

metallic or semiconducting; (ii) diameter; (iii) growth density; (iv) alignment; (v) doping

concentration.

Some of these variations correlate with one another and all of them result in electrical

property variation and can lead to malfunction of digital circuits in the worst case.

Particularly the lack of chirality (and thus type) control is a major issue for CNT usage in

7

digital circuits, as metallic CNTs in transistors lead to direct drain-to-source shorting. Due

to the lack of precise chirality control, removal of metallic CNTs became necessary [20].

However, removal of undesired CNTs can lead to further circuit variations and even

malfunctioning. For CNPUF design, we inherently consider this CNT specific property and

take advantage of the type variation for extremely high efficiency digital secret generation.

The CNT chirality is a pair of indices (𝑛, 𝑚) and represents the 2-dimensional wrapping

of graphene and determines the type to either metallic or semiconducting [21]. Based on the

chirality, CNTs are categorized into three categories. If 𝑛 = 𝑚, it is called an armchair

nanotube. Another structure is zigzag nanotube with 𝑚 = 0 . Otherwise, it is a chiral

nanotube. For a given chirality (𝑛, 𝑚), a CNT is metallic when it satisfies either of following

two cases.

1) 𝑛 = 𝑚

2) 𝑛 − 𝑚 = 3𝑁 for any 𝑁 𝜖 ℕ

Metallic and semiconducting CNTs have different impacts on different operating modes.

When the CNFET is turned off, the metallic CNTs are still conducting, as they lead to a

direct gate-source shorting. However, both metallic and semiconducting CNTs contribute

when the transistor is on. Hence, the ratio of the semiconducting to metallic CNT is closely

related to the on and off current (Ion, Ioff) ratio. By utilizing this CNT specific characteristic,

our CNPUF design provides a simple, but unconventional and extremely energy efficient

security solution.

2.3 Carbon-Nanotube PUF

In this section, we will explain the CNFET based PUF design. Subsection 2.3.1 gives an

overview of the basic design and explains the challenge-response behavior. Then, the main

internal block of the CNPUF design, the CNPUF Parallel-Element (CNPUF-PE), will be

discussed in subsection 2.3.2. An analysis of area cost is provided in subsection 2.3.3. In

subsection 2.3.4, we will elaborate on the design characteristics responsible for providing

high reliability, which is experimentally shown in section 2.5. Subsection 2.3.5 shows the

complexity of the PUF design and the dimensions that affect the challenge-response

behavior, which leads to resistance against modeling attacks.

8

2.3.1 Basic Design

The design of the CNPUF is shown in Figure 2.1. We define a CNPUF Parallel-Element

(CNPUF-PE) as a pair of CNFETs that share the same gate voltage, which is an input to the

CNPUF-PE. These inputs form the challenge. Each bit of the challenge is associated with a

single CNPUF-PE, by directly providing the input challenge as the gate voltage. A high gate

voltage corresponds to logic 1, and a low gate voltage corresponds to logic 0.

Each CNPUF-PE has two distinct states, one for a high input gate voltage and one for a

low voltage. These two states differ among all CNPUF-PEs because of the static variations

caused by the manufacturing process. A detailed explanation of the variation sources is

provided in subsection 2.3.5. The output bit of CNPUF is generated by comparing two

currents through a series connection of CNPUF-PEs. In Figure 2.1, when I1 > I2, the output

is 1; otherwise, it is 0.

CNPUF can be used in different configurations to achieve multi-bit responses: The

simplest approach is to replicate and parallelize a one-output-bit CNPUF to achieve multiple

output bits. While this appears costly, each output bit is truly generated by different physical

circuits and thus they are fully independent of each other. An area saving alternative to this

approach can be achieved by reusing a one-bit CNPUF with a pseudo random number

generator (PRNG) as a challenge translator. However, the output bits are no longer

independent and the area saving can be very limited, as the CNPUF can be implemented

with a small number of transistors, whereas a multi-bit PRNG can introduce high area

overhead.

Figure 2.1 Row of the CNPUF design. A series of CNPUF-PE are evaluated by a comparator

(COMP) to generate the output bit.

9

2.3.2 CNPUF Parallel-Element

The CNPUF mainly consists of a serial connection of CNPUF-PEs. Internally, the

CNPUF-PE consists of two parallel CNFETs that share the same gate voltage. Each CNFET

consists of a large number of semiconducting CNTs and a few metallic CNTs, typically with

a metallic-to-semiconducting ratio between 10% and 33% [3]. Due to this difference, a

CNPUF-PE has two distinct and nearly independent states for a high gate voltage and a low

gate voltage. The current characteristics for a low gate voltage are dominated by the metallic

CNTs, as the off-current for semiconducting CNTs is considerably lower than the current

for metallic CNTs, even when the number of semiconducting CNTs is large. For a high gate

voltage, the semiconducting CNTs dominate the current characteristics due to their much

larger number. As CNT technology improves, we expect the ratio of semiconducting to

metallic CNTs to increase, and thus the correlation between both states to further reduce.

2.3.3 Area Comparison

In practice, the number of challenge bits is larger than 128 bit. In this case, the area cost

per bit of a one-output-bit CNPUF, 𝐴𝐶𝑁𝑃𝑈𝐹,𝑏𝑖𝑡, is approximately the area of a CNPUF-PE

and thus two times the area of a transistor, 𝐴𝑇𝑟𝑎𝑛𝑠𝑖𝑠𝑡𝑜𝑟:

𝐴𝐶𝑁𝑃𝑈𝐹,𝑏𝑖𝑡 ≅ 2 ∗ 𝐴𝑇𝑟𝑎𝑛𝑠𝑖𝑠𝑡𝑜𝑟

This compares favorably to the basic implementation of the Arbiter PUF [1], which

requires two multiplexers per input bit (assuming that the challenge bit length is large

enough to neglect the Arbiter). Using a transmission gate implementation, the area cost per

bit of a basic Arbiter PUF, 𝐴𝐴−𝑃𝑈𝐹,𝑏𝑖𝑡, is

𝐴𝐴−𝑃𝑈𝐹,𝑏𝑖𝑡 ≅ 2 ∗ 𝐴𝑀𝑈𝑋 ≅ 8 ∗ 𝐴𝑇𝑟𝑎𝑛𝑠𝑖𝑠𝑡𝑜𝑟

Here, 𝐴𝑀𝑈𝑋 is the area of a 2:1 multiplexer (or MUX).

The area advantage of CNPUF is even larger when compared with a ring oscillator PUF

(RO-PUF) [2]: A RO-PUF requires at least 2𝑁 − 1 ring oscillators (ROs) for 𝑁 input bits.

Considering the usage of very small ROs consisting of only three inverters, the cost of a

RO-PUF per bit 𝐴𝑅𝑂−𝑃𝑈𝐹,𝑏𝑖𝑡 depends on the challenge length 𝑁 and is

𝐴𝑅𝑂−𝑃𝑈𝐹,𝑏𝑖𝑡 ≅
(2𝑁 − 1)

𝑁
∗ 6 ∗ 𝐴𝑇𝑟𝑎𝑛𝑠𝑖𝑠𝑡𝑜𝑟

10

2.3.4 High Reliability

The reliability of PUF designs is typically evaluated with regard to variations in

environmental parameters, such as the temperature, and variations in the operating

conditions, e.g. the supply voltage. As explained in section 2.2, CNTs have exceptional

electrical characteristics and are known to have high stability under environment variations.

The reliability of our proposed CNPUF builds on the highly stable characteristics of CNTs,

but has two additional features that support reliability:

 Strong impact of physical variations

 Regular design

The physical variations are large and have a strong impact on the PUF challenge-

response behavior. Particularly the ratio variations between semiconducting and metallic

CNTs have a very strong impact on the circuit behavior. Our design takes advantage of the

difficulty of controlling CNT chirality to create a secret by comparing the current through a

series connection of CNPUF-PE. Since metallic and semiconducting CNTs are randomly

mixed during the fabrication process, the exact ratio of metallic and semiconducting CNTs

for each FET is not predictable and can be treated as a random number.

Except for the comparator, our design is very regular, and therefore the dynamic effects

in the upper and lower path can average out. Only the comparator has to be specifically

designed to be resilient to dynamic variations such as temperature changes or voltage peaks.

In comparison, a ring oscillator PUF has MUXes, counters and also a comparator that have

to be tuned, because they affect both paths and therefore have to treat these paths equally.

This can be difficult in practice, as the variations on different metal layers and in different

chip regions can be different, so that the number of circuit elements that require fine tuning

has to be minimized.

2.3.5 Resistance against Modeling Attacks

The proposed CNPUF design takes advantage of inherent CNT properties and variations

to represent a complex challenge-response behavior to modeling attacks. Some of this is due

to the many varying physical factors as described in section 2.2. Even more important is that

these varying physical properties can have a different level of impact on the challenge-

response behavior. Therefore, a model based attack has to accurately identify and mirror

different physical characteristics. Due to an increase in this dimension, CNPUF has a high

11

resistance against such attacks. However, the basic implementation of CNPUF has

independent output bits and thus does not take full advantage of the existing circuitry.

Furthermore, some applications, such as secret key generation, require very high

randomness and must have an even more complex challenge-response-behavior. Therefore,

we also present an extended version of CNPUF that introduces a power vs. security tradeoff

and has area overhead to create a feedback based design with even higher modeling

complexity.

2.4 Extended CNPUF

2.4.1 Extended Design

While the basic CNPUF has many desirable properties, such as low power consumption

and minimal area requirements, its static nature does not allow fine-tuning by the designer

to specific application needs. Therefore, we also present the extended CNPUF (ex-CNPUF),

which is shown in Figure 2.2. As a basic element, the ex-CNPUF contains one basic CNPUF

per output bit, shown in Figure 2.1. However, ex-CNPUF buffers each bit response and

feeds it back into the CNPUF-PE elements through an XOR-element with the original

challenge. This may be repeated a specific number of times for each challenge, depending

on the application specific requirements. As a result of this response feedback, the

complexity at the bit level increases, which further improves the resistance against modeling

Figure 2.2 Design of the extended CNPUF (ex-CNPUF) to allow a power vs. security tradeoff

and more complex challenge-response behavior. All shaded blocks contain the XOR-gate and

CNPUF-PE structure shown to the top left.

12

attacks. Furthermore, the output bits will no longer be independent of each other, a feature

that drastically increases the design complexity a modeling attack has to consider.

The additional area overhead compared to the basic CNPUF is one XOR gate per

CNPUF-PE element. Considering that the CNPUF-PE was designed for minimal area and

consists of only two transistors, the area overhead of the extended design is approximately

300%. The area of ex-CNPUF is:

𝐴𝑒𝑥−𝐶𝑁𝑃𝑈𝐹 ≈ 8𝐴(𝑇)

Although the area overhead over CNPUF is not negligible, ex-CNPUF still compares

favorably to several PUF implementations. It has approximately the same area as a simple

arbiter PUF and less area than an RO-PUF. However, the greatest advantage is the power-

security tradeoff, which is explained in subsection 2.4.2.

2.4.2 Power-Security Tradeoff

As shown in subsection 2.4.1, ex-CNPUF brings several advantages in flexibility and

security, but introduces area overhead relative to the basic CNPUF design. The design of

ex-CNPUF is very feasible for high-security applications that require more modeling

resistance or higher randomness than what CNPUF can provide. By increasing the number

of ex-CNPUF iterations, the complexity and randomness of the response increases. This

comes at the cost of higher energy consumption and reduced reliability. The reduced

reliability is a result of error propagation within the PUF and the fact that even a single bit-

error in the challenge can profoundly change the response, if no error correction schemes

are used. Note that the area tradeoff is static and has to be made at design time, but the power

tradeoff can be dynamically adjusted. Thus, ex-CNPUF can power a security interface that

provides different degrees of resistance for different domains.

13

2.5 Experimental Evaluation

2.5.1 Simulation Setup

For the experimental evaluation of CNPUF, we simulated the design in HSPICE1 in a

Linux environment. To simulate the CNFETs contained in CNPUF, we employed the

Stanford CNFET HSPICE model [22], [23]. For standard logic and comparison purposes,

we employed the Predictive Technology Model (PTM)[24]. Our CNT simulation is based

on zigzag structure with a nominal chirality of metallic nanotubes of (𝑛, 𝑚) = (10, 0) and

a nominal chirality of semiconducting nanotubes of (9, 0).

As a solution to the lack of support for metallic CNTs in the HSPICE model, we simulate

real CNFETs by splitting them into one ideal metallic and one ideal semiconducting

CNFET, as shown in Figure 2.3. The metallic CNFET is modeled by assigning the

appropriate chirality and setting the gate voltage to always-on, independent of the challenge.

Note that this separation is solely for the purpose of experimental evaluation through

simulations; one metallic CNFET and one semiconducting CNFET in the simulation model

represent a single transistor. In this regard, our design does not require ideal or pure-

semiconducting CNFETs, but instead takes advantage of metallic CNTs.

1 HSPICE Version E-2010.12-SP2 32-BIT

Figure 2.3 Simulation model for the metallic CNTs in the CNFETs contained in CNPUF.

14

For this experimental evaluation, we implemented an 8-Bit input/output CNPUF and

analyzed reliability, inter-chip variability, and power consumption. A small design was

chosen, such that a large number of SPICE-accurate simulations can be performed to

provide detailed insight into the reliability under environment variations. As a proof of

concept, we have also evaluated a larger design of 128-bits and observed in a smaller

number of simulations that the behavior is very similar to the 8-bit implementation.

2.5.2 Reliability

Reliability is one of the main criteria for PUF quality and quantifies the capability to

repeatedly and consistently produce the same challenge-response behavior. As explained in

section 2.2, CNTs generally have a high reliability that is further improved by specific

design measures described in section 2.3.4. To experimentally validate the reliability,

CNPUF is evaluated under a standard simulation environment that is used in most literature,

and a simulation environment with more dynamic variations to simulate real circuit

performance.

The standard simulation environment is similar to that employed in several publications

[10], [25] and has the following characteristics:

 Temperature variations: The temperature of the whole circuit is evaluated at

specific temperature points or at random temperature values.

 Supply voltage variations: The supply voltage of the whole circuit is varied. This is

implemented by having a common random voltage variation with 𝜎𝑉,𝑠𝑢𝑝𝑝𝑙𝑦 at every

voltage source (including challenges).

To provide a stronger comparison with implemented PUF circuits, we also propose an

extended simulation environment with the following parameters:

 Dynamic temperature: In addition to the static temperature variation, we model

dynamic temperature variation by adding a different random temperature 𝑇𝑟𝑎𝑛𝑑 to

the static temperature for each simulation. Therefore, we compare challenges that

were acquired at different temperatures.

 Local voltage variation: Simulation of dynamic local voltage variation by

introducing a local variation 𝜎𝑉,𝑙𝑜𝑐𝑎𝑙 at each voltage source and at each gate in

addition to the common voltage variation.

15

This is particularly relevant to real physical devices, as there is additional circuitry on

chip besides the PUF that can influence the power and temperature with different levels of

activity. The experimental data for both simulation environments is shown in Figure 2.4.

The detailed averages for each ratio are provided in Table 2.1. The range for these

parameters is shown in Table 2.3. For the standard environment, we conducted over 3500

HSPICE simulations and evaluated the intra-chip Hamming distance to:

Table 2.1 Experimental results for reliability

Nominal

Metal Ratio

Intra Chip Hamming Distance 𝑯𝑫𝒊𝒏𝒕𝒓𝒂

Basic CNPUF Ex-CNPUF

Std Env Ext Env Std Env Ext Env

10% 0.025 0.040 - -

20% 0.019 0.034 0.045 0.05

30% 0.012 0.030 - -

Total Average 0.019 0.035 0.045 0.05

Figure 2.4 Robustness of CNPUF in a standard simulation environment (top) and in an

extended simulation environment (bottom).

16

𝐻𝐷𝐼𝑛𝑡𝑟𝑎,𝑠𝑡𝑑 = 1.9%

In the extended simulation environment for accurate comparison against actual circuit

implementations, the intra-chip Hamming distance was determined from more than 6000

HSPICE simulations:

𝐻𝐷𝐼𝑛𝑡𝑟𝑎,𝑒𝑥𝑡 = 3.5%

The reported data was gathered for three different ratios of metallic CNTs to

semiconducting CNTs, as the ratio between metallic and semiconducting CNTs can have

different nominal values. This ratio is typically between 10% and 33%; therefore, we

provide evaluations with 10%, 20%, and 30% ratios and show that CNPUF is viable in the

whole range. The graph further shows that a higher metallic ratio actually leads to a slightly

higher reliability. This is an effect of increasing dominance of the metallic CNTs, as their

share becomes larger. To achieve a well-balanced design, we therefore propose the usage

of CNPUF with a nominal metallic ratio of around 20%, which can be achieved without any

breakdown in current technology.

Table 2.2 Power and energy comparison between CNPUF and ultra -low power current-based

PUF [10] at 14nm and 90nm.

Designs CNPUF Current based PUF [10]

Technology 90nm, 1.2V 14nm, 0.8V 90nm 14nm, 0.8V

Power 15.6μW/bit 1.26μW/bit 150μW/bit 24μW/bit

Delay 43ps 26.5ps 250ps ~5ps

Energy 0.67fJ/bit 0.0334fJ/bit 37.5fJ/bit 0.12fJ/bit

Table 2.3 Simulation parameters for CNPUF.

Parameter Range

Temperature 𝑻 −20° 𝑡𝑜 80°𝐶

Dyn. Temp. 𝑻𝒓𝒂𝒏𝒅 0° 𝑡𝑜 20°𝐶

Voltage variation

𝜇 = 0.8𝑉

3𝜎𝑠𝑢𝑝𝑝𝑙𝑦 = 22.5%

3𝜎𝑑𝑦𝑛𝑎𝑚𝑖𝑐 = 7.5%

CNT ratio variation
𝜇𝑟𝑎𝑡𝑖𝑜 = {0.1, 0.2, 0.3}

3𝜎𝑝ℎ𝑦 = 22.5%

Channel length variation
𝜇𝑐ℎ𝑎𝑛𝑛𝑒𝑙 = 14𝑛𝑚

3𝜎𝑐ℎ𝑎𝑛𝑛𝑒𝑙 = 22.5%

17

Due to simulation complexity, ex-CNPUF was only evaluated at a 20% metallic ratio.

As expected, the reliability slightly decreases as the complexity of the design increases.

However, the intra-chip Hamming distance is still well below the 10% typically considered

a limit for error correction [9], and competitive with other PUF designs

2.5.3 Inter-chip Variability

For security applications, different PUF instantiations require sufficiently different

challenge-response behavior, so that the behavior of one PUF instance may not be inferred

through ownership of another. Ideally, all pairs of responses from different instances would

share 50% of their output bits on average. As a metric for this variability between physical

instances, the inter-chip Hamming distance, 𝐻𝐷𝑖𝑛𝑡𝑒𝑟, is used.

For the generation of 𝐻𝐷𝑖𝑛𝑡𝑒𝑟, we created 10 groups of 10 PUF instances. To each group

of PUF, we issued 100 randomly generated challenges. The average 𝐻𝐷𝑖𝑛𝑡𝑒𝑟 of CNPUF is

49.67% and therefore very close to perfect (50%).

2.5.4 Power Consumption

 By using intrinsic CNFET-unique properties, such as the metallic-semiconducting ratio,

CNPUF allows secret-key generation at a very low cost. An area comparison was provided

in section 2.3.3 and showed that CNPUF requires less logic than other PUF designs. These

advantages combine to greatly reduce the power and energy consumption, as shown in Table

2.2. Based on SPICE-accurate simulations, we report that CNPUF achieves the highest

power and energy efficiency to the best of our knowledge and reduces the power

consumption per bit to 1.26μW and energy consumption to 0.0334fJ/bit. We compare

CNPUF with ultra-low power current based PUF [10] at 90nm and at 14nm. According to

data provided by the authors, CNPUF reduces power by 89.6% and energy by 98% when

implemented in 90nm technology. For comparison purposes, we reimplemented [10] into

14nm technology and conducted power and energy measurement under ideal conditions. At

this technology node, CNPUF reduces the power by 94.75% and energy by 72.16%.

18

However, it is very likely that the quality of PUF designs that require sub-threshold

operation, e.g. [10], will degrade at smaller technology nodes, as susceptibility to

environment variations greatly increases.

In Table 2.4, we compare the reliability of CNPUF against other PUF designs with

simulated results and show that CNPUF can outperform them. In Table 2.5, the evaluation

under extended environment conditions of CNPUF is compared against physical

implementations of other PUF designs. Note that the authors only evaluated ScanPUF at a

single temperature, which reduces the comparability, as all other designs were evaluated at

a wide range of temperatures. The numbers show that in addition to a considerable reduction

in area and power consumption that we previously showed, CNPUF can also achieve higher

reliability. The inter-chip distance of all PUF designs, including ours, is very comparable

and close to the desired 50%.

2.6 Conclusion and Outlook

We presented a PUF design based on intrinsic physical variations of CNTs. It takes

advantage of the metallic to semiconducting CNT ratio in CNFETs to increase reliability,

while strongly reducing the average power consumption and energy usage per bit. CNPUF

was experimentally evaluated with SPICE-accurate simulations and showed strong results

for security relevant properties such as reliability and inter-chip distance. Furthermore, we

presented and evaluated an extension of CNPUF that allows a power vs. security tradeoff

for dynamic usage in high security circuits.

Table 2.4 Comparison of 𝐻𝐷𝑖𝑛𝑡𝑟𝑎 in different simulated PUF designs. Lower percentages

mean higher robustness.

CNPUF ScanPUF[24] ROPUF[9] ClockPUF[9] Current PUF[10]

1.9% 5% 9.51% 5.07% ~3%

Table 2.5 Comparison of 𝐻𝐷𝑖𝑛𝑡𝑟𝑎 between real PUF circuits and CNPUF under extended

environment simulation.

CNPUF Butterfly PUF [8] SRAM-PUF [25] ScanPUF [24]

3.5% 6% ~8%-18% 3.2% (*)

19

CNPUF and ex-CNPUF provide the future basis for authentication and secret key

generation by offering security at a very low area and power cost. This can open the field of

PUF for a variety of new applications and is especially relevant for current research areas

such as wireless sensor networks or ubiquitous computing.

20

CHAPTER 3

SYSTEM-OF-PUFS: MULTILEVEL

SECURITY FOR EMBEDDED SYSTEMS

3.1 Introduction

With the emergence of ubiquitous computing, the entire society increasingly relies on

embedded computing devices in every aspect of life. They enable wireless communication

and contactless payments, enhance automobile safety and reliability, and are at the core of

the emerging smart-grid. The critical importance of embedded devices drives the growing

need for computer security. The emergence of ubiquitous computing has brought new

security threats and further increases the importance of security, particularly reliable

authentication. Wearable technology and personal medical devices are employed to monitor

and augment the functionality of human organs, but an adversary that circumvents

authentication protocols can directly impact the physical well-being of users. Moreover,

such authentication failures in wireless sensor networks for border control and defense

purposes can have hazardous consequences at an international scale. Therefore, the need for

continued advances in the domain of computer security is clear.

Software and network security have gained increased attention and are widely perceived

to provide the necessary means for secure communication, authentication, and data storage.

However, researchers and security professionals have shown that algorithms and protocols

that are theoretically proven to be secure are often physically attackable in their

implementation. The primary cause for this vulnerability is that implicit high-level

assumptions to the hardware, such as information containment and resistivity against

physical modifications, are difficult or very costly to achieve. For example, Side-channel

information leakage was used to successfully attack AES implementations [26], and secret

keys can be extracted from volatile memory long after the device is disconnected from its

power source [4]. Moreover, state-of-the-art security and authentication protocols are based

on secure storage and usage of secret keys [27]. Therefore, non-volatile memory (NVM)

and fuses were used to construct a hardware-based secret key [7]. However, NVM is prone

to invasive physical attacks such as focused-ion beam based circuit-edits [28], [29] and non-

21

invasive imaging attacks [30]. To worsen the security options of embedded systems such as

smart-cards and wireless sensors, this new device generation is critically power and resource

constrained, allowing only minimal resource allocation for security purposes. Classic

cryptographic algorithms are of high complexity and are power intensive, rendering them

undesirable for most embedded system applications [30].

Due to the threat of invasive hardware attacks, physically unclonable functions (PUFs)

[4] were introduced as a light-weight building block for hardware security. A PUF is a

disordered physical system that reacts to an external stimulus or challenge 𝐶 with a response

𝑅, which depends on nanometer-scale intrinsic fluctuations [31]. As this nanometer-scale

disorder depends upon unique device-specific properties that originate from random

variations during the manufacturing process, the PUF behavior is device-specific.

Therefore, two PUF devices with identical (layout) design exhibit different behavior, which

defines the unclonability of PUF. Moreover, as the behavior depends upon the exact internal

properties of the disordered system, any physical modification or tampering results in

modified behavior, which is utilized to achieve tamper resistance. Thus, PUFs do not exhibit

the same weaknesses towards non-invasive imaging and invasive attacks. However, PUFs

only provide the basic building block for security and have to be incorporated into a system

that can participate in a security protocol for tasks such as authentication. Whereas PUFs by

themselves have been intensively studied, analyzed, and formalized, there exists no

consistent system-level security model that clearly defines and scrutinizes the security of an

embedded system. This lack of system-level security model shows in current protocols,

which introduce unsecure components into a PUF-based system that can lead to

considerable security obstacles and reduced functionality.

This chapter addresses the security demand of embedded systems and introduces a

security model and PUF-based authentication protocol. Our unique contributions are:

 A system-level security model for embedded systems with emphasis on invasive and

modeling attacks.

 Authentication protocol which operates in multiple levels and alleviates the resource

constraints of embedded systems by moving resource intensive components off-chip.

 A heterogeneous System-of-PUF (SoP) that utilizes the large PUF design-space to

achieve tamper-resistance and resistivity against modeling attacks without costly active

components.

22

 SoP is designed to achieve specific security requirements utilizing the system-level

model. It reduces the gate-equivalent cost by 64% compared to an existing design.

The remainder of this chapter is structured as follows. In section 3.2, we review the

background of PUF and PUF-based authentication. The main contributions of this chapter

begin with section 3.3, where we introduce a system-level security model. In section 3.4,

we analyze existing PUF-based protocols and design-techniques. In section 3.5, we propose

a SoP with multilevel authentication protocol, followed by a detailed security analysis in

section 3.6. An experimental evaluation that shows the feasibility of the protocol is provided

in section 3.7. This chapter concludes with a summary in section 3.8. This chapter is based

on [32].

3.2 Background

PUFs are characterized by their challenge (input) and response (output) behavior.

Typically, a PUF consists of a number of equally designed components that have marginally

disparate physical properties due to manufacturing variations. The challenge to a PUF is

used to select which PUF components are compared for their physical properties and the

response is a bit or bit-string representing the outcome of pairwise comparison of the

selected elements.

3.2.1 PUF Quality Metrics and Designs

In this chapter we use inter-chip and intra-chip distances [33] to establish design criteria

for PUF. Inter-chip Hamming distance 𝐻𝐷𝑖𝑛𝑡𝑒𝑟 is a metric for the difference between

manufactured PUF instances and thus represents randomness, the usability of static

Table 3.1 Comparison of PUF designs in reliability (lower 𝐹𝐻𝐷𝑖𝑛𝑡𝑟𝑎 is better) and randomness

(0.5 for 𝐹𝐻𝐷𝑖𝑛𝑡𝑒𝑟 is ideal).

PUF designs
Quality metrics

𝑭𝑯𝑫𝒊𝒏𝒕𝒆𝒓 𝑭𝑯𝑫𝒊𝒏𝒕𝒓𝒂

ClockPUF [14] 0.503 0.057

SRAM 0.4997 < 0.12

Arbiter PUF 0.51 0.05

4-XOR Arbiter PUF [13] 0.51 0.19

Ring-Oscillator [4] 0.4614 0.0048

23

variations, e.g. process variations. Ideally, this randomness is 50%, as this would imply that

different manufactured instances are uncorrelated. The strict avalanche criterion is another

important property by which a single bit-flip in the input leads to a flip of half of the output

bits. Intra-chip Hamming distance 𝐻𝐷𝑖𝑛𝑡𝑟𝑎 represents the variability of the responses of a

single PUF instance when issued with the same challenge. Unless 𝐻𝐷𝑖𝑛𝑡𝑟𝑎 = 0, the PUF

response contains bit-errors. 𝐻𝐷𝑖𝑛𝑡𝑟𝑎 is a metric for the robustness of the PUF and lower

values indicate higher reliability under environment variations. When averaged over the bit-

length, we refer to the fractional Hamming distances 𝐹𝐻𝐷𝑖𝑛𝑡𝑟𝑎 and 𝐹𝐻𝐷𝑖𝑛𝑡𝑒𝑟.

A wide variety of PUF designs have been introduced. Figure 3.1 visualizes some of the

components that can be employed as a PUF, and the properties of these designs are

summarized in Table 3.1.

SRAM-PUF [34], [35] leverages the device-specific start-up value of a SRAM-cell to

provide a device-specific fingerprint. It is a low-cost PUF as it utilizes existing components,

and it is suitable for ID or key generation. However, the reliability and uniqueness of

SRAM-PUF are typically lower than those of dedicated PUF structures that have been

engineered for these properties.

In the Arbiter PUF [7], an output bit is generated from a delay comparison of two equally

designed paths. The challenge is used to select a specific path by controlling multiplexers

(MUXes) that select between equally designed, but physically different wire segments.

Rührmair et al. presented model-building techniques that successfully predicted the

behavior of an Arbiter PUF with a small training data-set [36]. N Arbiter PUFs can be

combined by exclusive-or (XOR) gate connection of the individual response bits (N-XOR-

Arbiter PUF), for integer N. These XOR-Arbiter PUFs increase the difficulty of creating a

Figure 3.1 Overview of various PUF designs.

24

model for the PUF, but the XOR combination also linearly reduces the reliability of the PUF

[37]. Furthermore, it was shown that a 6-XOR Arbiter PUF is very expensive to model [36].

Ring-oscillator PUFs (RO-PUFs) [7] consist of a number of ring-oscillators that are

designed to be identical. Based on the challenge, two MUXes select one ring-oscillator each

and their frequency is compared using a counter for each of the oscillators. This comparison

determines the output bit of the RO-PUF. RO-PUF has been shown to achieve high

reliability, but is comparably power-intensive and slow as many cycles are needed to

distinguish the respective oscillator frequencies.

Yao et al. [9] introduced a PUF design based on the clock network of the chip that

inherits the stability and inherent reliability of a clock network but introduces enough

variations to show randomness. They choose specific sinks in the clock network and branch

the clock signal from these sinks and generate a bit from comparison similar to the Arbiter

PUF. It should be noted that this PUF design introduces an overhead of approximately 20%

on the clock-tree, which is a considerable expense for current technologies due to the

complexity of clock networks.

3.2.2 PUF Security Models and Formalization

The quality of PUF research is apparent from the number of security formalizations and

models that exist for the PUF as a component. Rührmair et al. [31], [38] have introduced

formal security proofs for Strong and Weak PUF designs. Strong PUF is defined to have a

very large set of possible challenges with accessible but complex challenge-response

interface. Corresponding responses of selected challenges will be paired to identify the

correctness, and numerical prediction of a response is strongly prevented. On the other hand,

Weak PUF has a small challenge-space. Thus, it does not exhibit the same resistance as

Strong PUFs with regard to modeling attacks, but can be utilized to generate a secret key. It

is preferred over NVM, as it is based on physical disorder and thus provides inherent tamper

resistance.

Based on practical attack scenarios, Rührmair and van Dijk [31] introduced three

different PUF models: (1) stand-alone, good PUF model that assumes a single isolated

protocol execution without malicious intervention such as manipulated hardware; (2) PUF

re-use model which allows the adversary multiple access to the PUF, but does not consider

hardware modifications; (3) bad PUF model, which is concerned with scenarios around

physically modified PUFs which can be exploited by an adversary.

25

3.2.3 Helper Circuits

As a basic building block, PUF relies on additional circuitry to enhance or complement

its functionality. Although a wide variety of techniques exist, we will only discuss challenge

expansion, error correction, and hash-based randomization, due to their importance for

authentication protocols.

Most PUF designs only generate one response bit, as the outcome of a random binary

variable is evaluated. A resource-intensive approach of extracting multiple response bits

such that the response has bit-length 𝑙𝑅 is to implement 𝑙𝑅 PUFs that are simultaneously

stimulated by the identical challenge. For lightweight applications, a pseudo-random

number generator (PRNG) can also be used as a challenge expander, e.g. a linear shift

feedback register (LFSR) [30], [39]. Based on an initial challenge as the seed, the PRNG

will generate a consistent challenge sequence, such that the PUF response with 𝑙𝑅 bits is

generated by a single PUF structure in 𝑙𝑅 time-steps. Thus, this provides for a time-space

trade-off, which can be utilized for low-resource embedded systems. It should however be

noted that this approach is preferable with a long challenge, such that the probability of

encountering the same actual challenges from the PRNG in a short time frame is small.

Moreover, the challenge-expander technique is more susceptible to modeling attacks, as it

provides less complexity and every bit is generated from the same PUF-structure.

As PUF elements are designed to be equal, their response is volatile and dynamic

variations such as temperature or supply voltage variations commonly lead to noise in PUF

responses. This noise results in random bit-flips in the response. To maintain correct

functionality in the presence of such bit-flips, PUFs can be complemented with error

correcting codes (ECC) and fuzzy extractors [40]. Ring-oscillator PUF design employing

index-based syndrome encoding (IBS) was shown to have very high reliability

characteristics [40]. Further improvements over this exist, which allow a tradeoff between

design complexity and error correction [41]. Despite continued research and advances in

this domain, these error correcting techniques are very expensive in area and energy

compared to the cost of the actual PUF, suggesting that they are less suitable for lightweight

applications. This cost overhead is even more pronounced, as error correction leads to

certain (predictable) loss of entropy, which in turn requires a larger PUF design.

As described in subsection 3.2.1, randomness is an important property of PUF. When

the PUF challenge-response behavior lacks randomness and is easily predictable, it can be

complemented by a hash-function that randomizes the PUF responses. On-chip hash

26

functions are also used to enable authentication without exposing the direct PUF responses

[42]. However, it should be noted that on-chip hash functions incur considerable cost in both

area and run-time that typically exceed those of the PUF by more than an order of magnitude

[30], [43]. Even hash functions that are designed for light-weight hardware implementations

incur overhead that exceeds the cost of the PUF itself [44].

3.2.4 PUF-based Authentication Protocols

We use the terminology of [30] and refer to the Prover as a device to be authenticated,

and the Verifier as the trusted party authenticator that judged whether the Prover is authentic

or not. The authentication protocol determines the interaction between Prover and Verifier.

A simple authentication protocol based on issuing random challenges with known

responses is presented in [7]. Initially, challenge and response pairs are gathered in an

enrollment phase. The trusted party can validate the PUF responses against the known

responses. To handle man-in-the-middle attacks, it is proposed to only use each challenge

once.

Reverse Fuzzy Extractor [39] is a lightweight authentication scheme that attempts to

move computationally complex or resource intensive components off the PUF-circuit to the

authentication granting authority. It is based on reversing error correction schemes

employed to increase PUF reliability.

Another recent approach is Public PUF (PPUF) [45], where detailed physical

characteristics of each PUF instance are public, allowing anyone to simulate PUF behavior.

A PUF is then verified by not only providing the correct response to a challenge, but doing

so in a much shorter time than possible with simulations. As the true response can be

simulated before issuing the challenge, no previous CRP storage is required. As PPUF has

high latency and power consumption, extensions with the same principle were developed

[46]. Due to the computational requirements and detailed device-specific measurements,

PPUF is most suitable for small-scale applications.

Slender PUF Protocol is another lightweight protocol [30] that can be used for

identification and authentication. The protocol has two main ideas: (i) only substrings of

responses are provided, and (ii) the challenges to the PUF are jointly created by both the

Prover and the Verifier. The Verifier is assumed to have an ideal model of the PUF, so that

a response for any possible challenge can be generated. The substring received from the

Prover is then used to check whether it indeed is a substring of the real PUF response. The

27

second idea is that neither party is allowed to solely generate the challenge; thus the

challenge comes from a pseudo random number generator (PRNG), and the seed to this

PRNG is determined by randomly generated numbers (nonces) from both parties.

Noisy PUF protocol [47], [48] is one of the few works that aim to use multiple PUFs to

achieve increased security. They use the term noisy to characterize the inherent variation in

PUF responses. This protocol aims to reduce the vulnerability against modeling attacks by

modifying the challenge to the main PUF with the aggregated response 𝑋 from a non-noisy

(error corrected) PUF. They assume that the trusted party can create correct models for both

PUFs by observing 𝑋, and therefore authenticate the device. They assume that the trusted

party can then permanently disable access to 𝑋, such that an attacker cannot observe 𝑋 and

therefore cannot create models. This assumption does not hold under consideration of

invasive attacks, and this is identified as a significant issue for PUF security in section 3.4.1.

3.3 System-level Security Model

In this section, we will discuss metrics and security requirements for embedded systems.

Based on these requirements, we present mechanisms to achieve security with respect to

particular vulnerabilities. We then introduce a practical system-level security model for

embedded systems, which defines and classifies components, interactions, and

vulnerabilities. With this model, we aim to breach the chasm between component-level

formalized security models [31], [38], [49], [50] and their system-level implementations.

This system-level security model is important to achieve improved consistency and resource

effectiveness in systems and protocols; the current lack of a system-level security model has

led to a disparity between systems and components that exposes the system to additional

vulnerabilities, as shown in section 3.4.

3.3.1 Threats and Metrics

We discuss several system-level threats that will be considered in the proposed security

model. For each of the threats, we define different degrees of security functionality with

respect to the threat which is used to characterize specific components in subsection 3.3.3.

Definition 1 (Security Functionality): The security features that are provided by a

product or component [51]; A component 𝐶 has a set of security functionalities 𝐹(𝐶). The

degree of a particular functionality 𝑓 ∈ 𝐹(𝐶) is denoted by 𝐹(𝐶)𝑓.

28

3.3.1.1 Invasive Attacks

The threat of invasive attacks, e.g. through circuit edit with de-packaging [28], [29], [52],

was one of the driving forces for research in PUF. With an increasing number of attack

techniques and defense mechanisms, a system-level characterization is important to enable

security based system design. We differentiate between the following three degrees of

resistance against invasive attacks, which we refer to as tampering.

Definition 2 (Tamper Evident): A component which is tamper evident (TE) shows

physical signs of tampering that can be observed and utilized by a trusted party.

Definition 3 (Tamper-Volatile Functionality): Tamper-volatile functionality (TVR)

components change their functional behavior upon invasive modification, which can be

exploited to detect and respond to such attacks. An example of this class is PUF, which

exhibits highly volatile behavior that changes upon tampering.

Definition 4 (Tamper Adverse): A component which is tamper adverse (TA) increases

the difficulty of performing an invasive attack by posing an obstacle to the adversary. TA

components do not take active measures of recognizing invasive attacks. An example of this

class is passive metal mesh, which shields relevant parts of the datapath, and therefore

increases the circuit-editing effort by an adversary who wants to monitor the datapath.

Definition 5 (Tamper Susceptible): A component that does not contain any measures to

detect or oppose invasive attacks and does not exhibit uncontrollable behavioral changes

upon invasive attacks is tamper susceptible (TS).

3.3.1.2 Modeling Attacks

Modeling attacks aim to unveil internal behavioral patterns of a device for prediction and

exploitation. A model can be generated from a vast number of input and output observations

using machine learning (ML) algorithms. They have been shown to be successful against

PUF when both input and output are directly accessible.

Definition 6 (Modeling Resistant): A component is modeling resistant (MR) if it cannot

be modeled, as it does not expose its behavior to the outside.

Definition 7 (Modeling Resistant through Infeasibility): When a component exhibits

highly complex behavior such that the computational cost of generating a model exceeds

the capabilities of an expected adversary, it is modeling resistant through infeasibility

(MRI).

29

Definition 8 (Modeling Susceptible): Exposed input-output (IO) behavior and

reasonable computational cost define a modeling susceptible (MS) component.

3.3.1.3 Side-Channel Attacks

Side-channel attacks exploit side-products of confidential computation, memory-access,

or other functionality, to indirectly infer secret information. This attack is of particular use

when the component that operates on the secret information is not directly accessible.

Examples of side-channel attacks include power analysis [26], thermal imaging [53], and

photon emission analysis [54]. They have been shown to be particularly useful to extract the

secret key from cryptographic processors running secure encryption.

3.3.1.4 Attack Multiplicity

A significant threat to conventional hardware systems is a break one, break all (BOBA)

principle, in which the successful attack against a single system is applicable to many or all

similar systems without major modification. An example of high attack multiplicity is a

system that contains a hardware encoded secret key, such that all manufactured systems

contain identical secret keys. When one of these systems is attacked and the secret key is

extracted, all other systems are exposed as well. A PUF based implementation is an example

of providing low attack multiplicity – even when an attacker extracts the challenge-response

behavior of one PUF instance, it does not expose the behavior of other instances.

3.3.1.5 Malicious Design and Untrusted Foundry

Both design and manufacturing processes are increasingly collaborative but distributed,

and therefore pose multiple threats: (i) modified RTL behavior or additional circuitry can

lead to hardware Trojans horses (HTH), which can expose confidential data or disrupt other

services; (ii) electronic counterfeiting, overproduction, and IP theft due to outsourced

foundry.

3.3.2 Classification

Existing formalized security models as introduced in subsection 3.2.2 are primarily

concerned with threat models, attack vectors, and vulnerabilities. Particularly for system-

level considerations and for applicability in embedded systems, a security model with

component-wise functional characteristics is insufficient. Due to the limited pool of

30

resources in embedded systems, implementations have to carefully optimize security

metrics while minimizing the resource overhead. By enabling characterization and

classification of hardware security components, our system-level model allows resource-

driven security with intuitive component selection.

Definition 9 (Core Component): A core component 𝐶𝐶 is one that provides the

foundation of the security functionality; if a requirement 𝑟 in 𝑅(𝐶𝐶) of system 𝑆 is not met

by a functionality 𝑓 in 𝐹(𝐶𝐶) , the requirements 𝑅(𝐶𝐶) are infringed and therefore the

security requirements of the entire system 𝑆 are not satisfied:

f ≠ r → ¬𝑅(𝑆) for ∃𝑟 ∈ R(CC), 𝑓 ∈ 𝐹(𝐶𝐶)

Definition 10 (Periphery): Components which do not directly interact with, affect, or

enable security functionality are defined as security periphery. It is in the nature of

computing systems to contain such periphery, and this category enables classification of all

elements in this security model, even when they are not concerned with security itself.

Definition 11 (Service Component): Unlike modifier components, a service component

𝐶𝑆 contributes to usability, quality, reliability, or other security-unrelated functionality of a

component 𝐶. Component 𝐶 can be a core component, modifier component, or other service

component. When 𝐶𝑆 is applied to 𝐶, the security functionality of the resulting system is

limited by the functionality 𝐹(𝐶𝑆):

𝐹(𝐶)𝑓 = min(𝐹(𝐶)𝑓 , 𝐹(𝐶𝑆)𝑓) for ∀𝑓 ∈ 𝐹(𝐶𝑆)

Definition 12 (Modifier Component): A modifier component 𝐶𝑀 applies to a compatible

generalized component 𝐶 which can be a core component, periphery, service component, or

other modifier component. The purpose of a modifier component is to change security

characteristics. When 𝐶𝑀 and 𝐶 are compatible, [𝐶𝑀, 𝐶] evaluates to true. Similarly, when

𝐶𝑀 is applied to 𝐶 and modifies it, 𝑚𝑜𝑑(𝐶𝑀, 𝐶) evaluates to true. In this model, the

modifier component directly transfers all of its security characteristics to 𝐶:

[𝐶𝑀 , 𝐶] ∧ 𝑚𝑜𝑑(𝐶𝑀, 𝐶) → 𝐹(𝐶)𝑓 = 𝐹(𝐶𝑀)𝑓 for ∀𝑓 ∈ 𝐹(𝐶𝑀)

3.3.3 Security Components

According to the proposed model, the classification of components depends not only on

the design, but also on the purpose of the component. Herein, we will demonstrate our

classification on a subset of state-of-the-art hardware defense techniques. It will be applied

31

in section 3.5 to provide a resource optimized security solution for unilateral embedded

system authentication.

Core components are those that provide critical security functionality. This classification

includes the PUF, which has applications that include secret key generation, unclonability,

and Trojan detection. Security features of a PUF are: Tamper volatile functionality, as the

physically volatile responses change upon invasive tampering; physical unclonability, as the

security functionality is based on actual physical device parameters; low attack multiplicity,

due to the device-specific security functionality, successful attack (modeling, side-channel)

of a device only breaches the device itself, and not other instances; other core components

can be random number generators (RNGs), which provide design and implementation

dependent security functionality. Additional potential core components can be dedicated

security registers [55], secure RAM implementations, such as oblivious RAM [56], and

security processors [57].

Most embedded systems are not primarily concerned with security; therefore most

components on such systems are categorized as periphery. This includes all components that

do not affect security functionality or components in any way. Examples are arithmetic and

signal processing units, (conventional) test circuitry, and memory in so far as it does not

contain confidential data.

Service components are those that positively affect usability. This classification applies

to many components in PUF protocols, as PUF itself is a fundamental building block that

in itself provides limited security functionality. Service components with the purpose of

increasing PUF reliability are error correcting codes that employ helper data. As a downside,

this component introduces additional resource utilization and information leakage,

mandating a larger or more complex PUF implementation. Another, much simpler, service

component for PUF is the input/output (PUF-IO) circuitry. Although PUF-IO is of low

complexity, bundling it into the PUF itself would not accord with our security model and

can generally provide adverse security implications. For protocols that directly expose the

challenge and response of the PUF, PUF-IO introduces significant susceptibility to

modeling attacks [58].

The purpose of modifier components is to transform the security functionality of other

components, and they are applicable at the entire design stack, ranging from the signal

routing to sensors. Examples of this classification are: signal routing at low metal layers to

shield against semi-invasive and invasive hardware attacks [28]; passive metal meshes to

32

increase the difficulty of semi-invasive attacks and active metal meshes that carry a signal

to prevent invasive attacks [28]; fuses that can be burnt to disable access to certain

components after read / write access by the trusted party [30], [59], [60] and that, in the case

of PUFs, are often applied to remove the vulnerability created by directly accessible PUF-

IO; circuitry that limits the interaction with a component or the number of protocol

executions that involve the aforementioned component.

3.4 PUF Security Issues

In this section, we apply the security model introduced in section 3.3 to discuss the

security of current protocols and expose vulnerabilities. The issues that we describe are

impractical or impossible assumptions in subsection 3.4.1, inconsistent evaluation of

tampering in subsection 3.4.2 and storage complexity in subsection 3.4.3. We propose a

protocol to overcome these issues and specifically discuss the concerns mentioned here in

section 3.6.

3.4.1 Known Model Assumption

Protocols for authentication based on PUFs typically require either a known model of

the PUF [30], which is examined in this subsection, or a large set of CRPs [7], discussed in

subsection 3.4.3. Protocols such as Slender PUF Protocol assume that the trusted party can

compute a true model for the PUF challenge-response behavior, but an adversary cannot.

This is justified by suggesting that the PUF circuitry initially exposes the challenges and

responses of a PUF, such that machine learning algorithms can be used to learn a model.

After model generation, the trusted party will externally disable the direct access and thus

PUF
Tamper Volatile Functionality

PUF–IO
Modeling Susceptible

PUF-System
Tamper Volatile Functionality

Modeling Susceptible

IO-Fuses
Tamper Susceptible

Modeling Resistant

Protected PUF-System
Tamper Susceptible

Modeling Resistance

Protocol

Verify with

Model

Figure 3.2 Modeling susceptibility (MS) due to PUF-IO is removed using IO-Fuses, which are

tamper susceptible (TS) and diminish the tamper volatile functionality (TVF) of PUF.

33

hinder the malicious party from creating a model, which is done using a fuse to disable

access, as described in subsection 3.4.1. As model-building attacks might be possible when

the full PUF response is accessible to the outside [30], [58], the ability to disable the sensing

connection is key to this assumption.

Using our embedded system security model introduced in section 3.3, we will show that

this argument is difficult to uphold and has negative consequences for the security of the

system. The analysis of this application is represented in Figure 3.2, in which rectangles

represent core components, octagons depict modifier components, and ellipses represent

service components. The security functionality introduced by a component is depicted using

cursive typeface; functionality that is inherited by a system is in standard typeface.

Independent of the particular implementation, PUF is considered a core component, and

provides inherent tamper resistance due to its volatility. Additionally, PUFs by themselves

are susceptible to side-channel attacks [61]. As a service component to directly interact with

the PUF, which enables the trusted party to build a model, PUF-IO is inserted. The solid

arrows in Figure 3.2 show how the components constitute a larger component. When PUF-

IO directly exposes the challenges and responses of a PUF, the PUF behavior can be

modeled [58]. Thus, the resulting system is susceptible to modeling attacks. The

conventional response to this is to use fuses that disable the direct PUF access, which can

be modeled as a modifier component. While this initially defends against modeling attacks

as intended, it also introduces a new vulnerability to the PUF system, namely the tamper

susceptibility. This is the case, as invasive circuit editing [28], [29] can render the fuses

useless and re-enable the direct PUF access. Thereby, tamper resistance as one of the main

advantages of PUF is lost. At this point, additional costly techniques that have limited

applicability for embedded systems, such as active metal meshes, can be employed to reduce

the vulnerability against invasive attacks. However, tamper resistance cannot be restored to

the point of inherent volatility that leads to immediate changes upon modification, as is the

case for PUF.

This reasoning was based on the assumption of physical fuses, which are burnt to remove

access. However, it can be applied to similar other concepts that aim to change physical

access to suit the needs of the trusted party. For example, logical disabling of the sensing

capability cannot be considered to be secure, as an adversary could acquire the relevant

knowledge to re-enable it. Maliciously forcing glitches, e.g. by altering the clock frequency,

is also a common approach to overcome logical access restrictions. We identify this as a

34

major deficiency in existing PUF-based security protocols and propose to treat the trusted

and malicious party equally. Thus, we require that modeling capabilities of the trusted party

lead to the same for the adversary.

3.4.2 Achieving Tamper Resistance

In this subsection, we emphasize the importance of carefully analyzing, characterizing,

and utilizing security features with regard to hardware invasive attacks. As outlined in

subsection 3.3.1, functional tamper resistance as provided by a PUF has to be utilized by

the protocol or usage scenario to achieve consistent resistance against invasive attacks.

Components such as a true random number generator (TRNG) or a pseudo random

number generator (PRNG) have to be treated with particular care and cannot be assumed to

work as designed under invasive attacks. A security requirement of correct functionality is

difficult to achieve for these components and requires cost-intensive tamper resistant

techniques. Whereas a PRNG can be verified to work correctly by simulating or

manufacturing a PRNG with same design and seed, this is not possible for a TRNG: by

definition, the TRNG exhibits random and unpredictable behavior. Even an implementation

based on PUF, which inherently provides TVF, is not tamper resistant, as TVF needs to be

fulfilled (verified) by the protocol. The issue is that a PUF-based TRNG will exhibit

changed behavior upon invasive attacks, but this change is not directly noticeable. Potential

solutions to this are to: (i) model the distribution of the TRNG at enrollment and verify this

PUF – IO
Modeling Susceptible

PUF-System

TVF

Modeling Susceptible

Conceal
Challenge and Response

Unfulfilled TVF

Modeling Resistant

PUF
TVF

Concealed

PUF-System
Unfulfilled TVF

Modeling Resistant

PRNG

TVF

TRNG
Unfulfilled TVF

TRNG
Unfulfilled TVF

Conceal Challenge

Generate Nonce

Generate Random Response

Protocol

Verify with

Model

Verify with

identical

PRNG
Randomize Response

Figure 3.3 System-level security model of slender PUF protocol. Tamper volatile functionality

(TVF) of TRNGs is unfulfilled, which introduces susceptibility against invasive attacks.

35

at runtime or protocol execution; (ii) periodically verify the randomness of responses at

runtime. Thus, using TRNGs when invasive attacks are foreseen requires a more complex

protocol with increased resource utilization. This fallacy is demonstrated on the basis of

slender PUF protocol [30] in Figure 3.3. Here, a TRNG is employed to generate a random

nonce on the PUF system, and another TRNG is applied to select a random substring of the

PUF response. The slender PUF protocol applies these as modifier components, meaning

that they change the security behavior of other components, namely concealing the input

and output to the PUF to thwart modeling attacks. The issue is that the security functionality

of these modifier components has to be carefully analyzed in conjunction with the protocol.

When typical PUFs are invasively attacked, their challenge-response behavior changes and

the protocol that utilizes the PUF, e.g. for authentication or key generation, is not functional

anymore, thus enabling tamper resistance. In this protocol, the TRNGs are not core

components but merely modifier components; even when implemented with PUF, they can

be invasively attacked using e.g. circuit editing to change their behavior. This is possible,

as the protocol does not take steps to ensure that these components provide correct

functionality. Therefore, both of the TRNGs are susceptible to invasive attacks. As the

authors themselves note, an attacker that is able to control both the Prover and Verifier

circuitry would be able to generate a model, which is the case using invasive attacks as we

have outlined here. Although this can be mitigated using additional, costly active tamper

detecting circuits, this would not be in line with the motivation of slender PUF protocol.

3.4.3 Exponential Storage Need

When protocols do not rely on the known model assumption explained previously, they

typically operate on a set of initially gathered challenges and responses as part of the PUF

enrollment. As there is a finite number of gathered challenges, such protocols require that

each gathered challenge is issued only once, as in [7]. The purpose of this is to thwart replay

attacks in a scenario where the attacker has eavesdropped into legitimate authentication and

thereby knows all valid responses to previously posed challenges. This approach provides

an effective hindrance against this form of protocol, but it also exposes the protocol to

denial-of-service (DoS) attacks: A malicious third party can query the Verifier until the

stored CRP set is exhausted. This could be mitigated by storing a huge amount of CRPs at

the Verifier side, which ultimately causes a data storage problem. To withstand a DoS attack,

the Verifier would be required to store large numbers of long CRP strings and additional

36

synchronization bits. Whereas the known model assumption poses a security vulnerability

that can lead to a compromised system, using a (limited) number of stored challenge-

response pairs only exposes the protocol to DoS attacks that reduce usability and

applicability. In section 3.5, a system is introduced that does not assume a one-sided model,

but is able to avoid the problems outlined here while operating in multiple levels.

3.5 System of PUFs

A major limitation that can be observed in current protocols is the usage of only one type

of PUF design [7], [30]. However, there exist a wide range of competing PUF designs that

provide complementary features, particularly with regard to reliability and resource

overhead, as outlined in subsection 3.2.1. Only very few authentication protocols employ a

combination of multiple PUFs [47], [48], [62], and these protocols do not take advantage of

the trade-off enabled by the large PUF design-space. Whereas multiple research works

compare and contrast existing PUF designs, we are not aware of any work that attempts to

combine different designs to take advantage of unique characteristics.

To deal with the various issues discussed in section 3.3, we propose a novel SoP that

utilizes the design-space offered by continuous PUF research and uses multiple levels of

challenge-response interrogation for authentication.

3.5.1 Security Requirements

Before introducing System-of-PUF (SoP) and the multilevel authentication protocol, we

state the following security requirements that were considered in the design of SoP and the

protocol. These requirements are typical for light-weight embedded system applications. To

Hidden PUF Guard PUF

Secure PUF

Prover Verifier

Response Database

Cryptographic

Hash Function

CL1

RG

CL2

RS
RH

RH

CL1 Model ML1 RS

Figure 3.4 Components of the lightweight System of PUF.

37

achieve further requirements such as resistance against side-channel attacks, the protocol

can be expanded with existing techniques [53].

Requirement 1: Unilateral authentication between a trusted party (Verifier) and a

hardware device (Prover). This is a typical scenario for embedded system applications, such

as smart-cards [63], sensor networks [64], and RFIDs [65].

Requirement 2: Resistive against invasive attacks, such as de-packaging and circuit-

edits. Invasive attacks should render the Prover device inoperative and at the least change

its behavior such that it cannot successfully participate in the authentication protocol.

Requirement 3: Resistive against modeling attacks; neither adversary nor trusted party

should be unable to generate a model for the internal behavior of the Prover, particularly

PUFs.

3.5.2 Multilevel Authentication

To provide secure unilateral authentication, the proposed protocol operates in multiple

levels with a system that consists of three different PUFs, as shown in Figure 3.4: (i) Hidden

PUF is a reliable PUF with challenge-length 𝑙𝐻 that does not expose its response 𝑅𝐻 to the

outside and thus is hidden. It limits the exposure of Guard PUF and Secure PUF inputs to

the outside, and thereby increases the difficulty of modeling attacks of both level-1 and

level-2 responses. (ii) Together with the Hidden PUF, Guard PUF provides the first level of

authentication with a challenge-length of 𝑙𝐺. The response of the Guard PUF 𝑅𝐺 is exposed,

but the input is not. Although of reasonable complexity, we assume this PUF to be modeled

Prover

Device to be authenticated

Verifier

Trusted party, authenticator

Generate challenge

CL1=random(DBC)
Hidden PUF response
RH=PUFH(CL1[0,lH])

Guard PUF response
RG=PUFG(RH,CL1[lH,lG])

Evaluate level-1 response

HD(RG,ML1(CL1)) < HDmax,L1

Compute Crypto Hash

CL2=Hash(CL1,ML1(CL1))
Secure PUF response
RS=PUFS(RH,CL2)

Evaluate level-2 response

HD(RS,DBL2(CL1)) < HDmax,L2

CL1

RG

RS

CL2

Figure 3.5 Proposed multilevel authentication protocol between the Prover and the Verifier.

38

by the trusted party and thus also any attacking party. It not only acts as a guarding stage

before the Secure PUF, but also indirectly propagates errors of the Hidden PUF to the

Verifier and thus reduces the critical level-2 false-negative rate. (iii) Secure PUF is the

secure backbone of SoP and is impossible to model within reasonable time and

computational complexity, which is denoted as modeling resistivity through infeasibility

(MRI) as defined in subsection 3.3.1.2. This PUF has a challenge-length of 𝑙𝑆, and both the

challenge- and response-space should be large such that MRI is achieved. The specifics of

the authentication protocol are depicted in Figure 3.5. Initially, the Verifier chooses a

challenge 𝐶𝐿1 of bit-length 𝑙𝐺 , equal to the challenge-length of the Guard PUF. This

challenge is chosen randomly and can thus fulfill the role of a nonce to thwart replay attacks.

As this challenge is randomly chosen, it is very unlikely that the same challenge will be

issued twice, thereby eliminating replay attacks. Then, the challenge is issued to the Prover.

Here, the Hidden PUF will generate the response 𝑅𝐻, which is internally connected to the

Guard PUF and Secure PUF inputs. From 𝑅𝐻 and 𝐶𝐿1, the level-1 response 𝑅𝐺 is generated.

The output of the Hidden PUF is directly connected to the Guard PUF and the Secure PUF;

it is not available to the outside. After accepting the level-1 response through a Hamming

distance check against the model 𝑀𝐿1, the Verifier will send the level-2 challenge 𝐶𝑙2. It is

generated from a secure hash function from the initial challenge and 𝑅𝐺, and has a length of

𝑙𝐻𝑎𝑠ℎ = 𝑙𝑆 − 𝑙𝐻. The Prover then generates the level-2 response 𝑅𝑆 from the initial Hidden

PUF response 𝑅ℎ and 𝐶𝐿2 . Finally, the Verifier will verify the level-2 response 𝑅𝑆 by

calculating the Hamming distance against the true response stored in the database 𝐷𝐵(𝐶𝐿1).

At first glance, employing the Guard PUF and Hidden PUF as an outer layer to the

Secure PUF can seem unnecessary, as the Secure PUF itself is already assumed to be of

significant complexity to thwart modeling attacks. Additionally, it may seem counter-

productive to secure the Guard PUF through the Hidden PUF when the trusted party aims

to generate a level-1 model. However, there are three reasons why this approach is taken in

SoP: (i) increasing the difficulty of generating a level-1 model requires prolonged

interrogation by an adversary, thereby eliminating many attack scenarios, e.g. ATM

operation; (ii) as only serious and malicious attacks arrive at the second level, SoP supports

breach recognition that cannot be triggered by accidental misuse or without prolonged

interrogation of the Prover; (iii) although the Secure PUF by itself is resistant against

modeling attacks, we increase this resistivity using the outer layer, and thereby either enable

39

long-term security (in presence of increasing compute capability) or the usage of a smaller

PUF to achieve the same degree of security.

A database of (previously gathered) responses is employed, as we do not make the known

model assumption as discussed in subsection 3.4.1. However, SoP is also not vulnerable to

the exponential storage issue outlined in section 3.4.3, as our multilevel approach allows

storing very few of the lengthy level-2 responses without falling susceptible to DoS attacks.

3.5.3 Breach Recognition and Recovery

As explained in subsection 3.5.2, the Guard PUF may be modeled by an adversary. Note

that although this is possible, it will come with a considerable computational cost and high

runtime, as the PUF is not fully exposed to the outside. We define a security breach as a

situation in which an adversary has gathered significant information on the challenge-

response behavior. In this multilevel scheme, a security breach can be recognized: When a

false Prover 𝑃′ repeatedly replies with the correct level-1 response 𝑅𝐺
′ = 𝑃′(𝐶𝑙1) but with

incorrect level-2 responses, the protocol can directly infer that the adversary has either

generated a model, or gathered a large set of challenge-responses. If an adversary

purposefully responds to a level-1 challenge with an incorrect response, he will not receive

a correct level-2 challenge and therefore will be unable to infer the actual level-2 behavior.

Due to the multilevel nature of SoP, it is still possible to recognize the true PUF: Until all

stored level-2 challenges are exhausted, the true Prover may successfully authenticate, at

which point the Breach recovery may be initiated.

One of the major advantages of the SoP is that it may be used with different PUF designs.

For higher cost applications with a larger resource budget, the Guard PUF can be designed

to be reconfigurable. This can effectively reset the level-1 PUF behavior. As the correct

Table 3.2 PUF design criteria and example implementation

PUF Criteria Examples

Low cost

Hidden PUF
High reliability

RO PUF [4],

Error corrected PUF [17]

High cost

Hidden PUF

High reliability

Reconfigurable
Recyclable PUF [42]

Guard PUF Low cost Arbiter PUF [4]

Secure PUF High security
XOR-Arbiter PUF [7], lightweight-PUF

[20], interleaved Arbiter PUF [14]

40

Prover can be authenticated even after a level-1 breach, the advances of an adversary can

thus be diminished.

3.5.4 Design-space Utilization

In combination with the wide range of existing PUF designs, our proposed SoP and

multilevel authentication protocol enable a variety of design choices adequate for different

application scenarios. In ultra-low cost applications such as RFID and wireless-sensor

networks, secure authentication is an important requirement, but the on-chip resources are

minimal. For such applications, a minimum implementation of SoP that does not implement

breach recovery and thus only requires simple PUFs is possible. Instead of parallelizing

PUFs, output bits can be created with challenge expanders through LFSRs.

In addition to the degree of freedom previously described, each of the three PUFs has to

be chosen with great care to their specific criteria, as shown in Table 3.2. The high reliability

of the Hidden PUF is one of the main requirements, as any bit-error in 𝑅𝐻 will automatically

falsify the Guard PUF and Secure PUF responses due to the avalanche criterion. The high

resilience to modeling attacks of the Secure PUF is also a criterion that is fundamental to

the security of the proposed authentication scheme. This clear distinction simplifies the

design task and reduces the cost, as highly secure designs typically are unreliable and have

to be correct with highly complex fuzzy extractors as described in subsection 3.2.3.

3.6 Security Considerations

In this section, we discuss the security of SoP under the proposed model and with regard

to the previously identified prevalent PUF security issues. As described in section 3.5, the

first level of SoP may be modeled by an adversary. Accordingly, we will show that security

of the authentication protocol is not contingent upon secrecy of the first-level challenge-

response model.

3.6.1 System-level Security Analysis

Our analysis of SoP and the multilevel authentication protocol with regard to the system-

level security model we introduced in section 3.3 is shown in Figure 3.6. The most

pronounced difference between our protocol and prior work is our approach to handling

Requirement 3, resistivity against modeling attacks. The two techniques to thwart modeling

attacks in SoP are: (i) conceal PUF I/O by separating input to the Prover from the output,

41

such that none of the PUFs expose both their input and their output; (ii) employ a secure

PUF with large CRP-space to achieve modeling resistivity through infeasibility (MRI), as

previous research has shown that PUF size can be increased to increase the cost of modeling

to the point of infeasibility.

Resistivity against invasive attacks as per Requirement 2 is achieved through exclusive

use of PUF. Note that the protocol is designed such that the inherent TVF of PUF is fulfilled

by comparing the level-1 and level-2 responses with respective database entries. Tampering

of the Hidden PUF changes the response 𝑅𝐻 and therefore the input challenges to both the

Guard and Secure PUF, thereby changing the level-1 and level-2 responses. Tampering with

the Guard PUF or the Secure PUF changes their behavior, which changes the level-1 or

level-2 responses, respectively.

3.6.2 Attack Scenarios

In the following, we will discuss several possible scenarios, which include those that

would lead to successful masquerading of a malicious party. We will show that in practice,

our proposed protocol is not vulnerable against replay attacks and is resilient against denial-

of-service attacks that would disable other protocols with limited stored CRP sets. We first

consider a random guessing attack, and then the attacks of an eavesdropping attacker.

Protocol

PUF–Input

Hidden PUF

Fulfilled TVF

PUF–Output
Modeling Susceptible

 Secure PUF
MRI

Fulfilled TVF

 Guard PUF
Modeling Susceptible

Fulfilled TVF

Verify with

L1 Model

Verify with

L2 DB

 Level-1 System

Modeling Susceptible

TVF

Level-2 System
MRI

TVF

PUF–Output

Modeling Susceptible

PUF

Expansion

MRI

Figure 3.6 System-level security model of SoP. Due to the size of the Secure PUF, the level-2

behavior is modeling resistant through infeasibility (MRI). The system exhibits tamper-

volatile functionality (TVF).

42

3.6.2.1 Random Guessing Attack

The attacker has to correctly guess the level-1 response with 𝑙𝐺 bits and the level-2

response with 𝑙𝑆 bits. False-positive authentication is the case when an attacker successfully

guesses both of these responses correctly. The probability for a randomly guessed false

positive authentication 𝑃𝑅𝐺𝐹𝑃 is:

𝑃𝑅𝐺𝐹𝑃 = (∑ (
𝑙𝐺

𝑖
) 0.5𝑙𝐺

𝐻𝐷𝑚𝑎𝑥,𝑙1−1

𝑖=0

) (∑ (
𝑙𝑆

𝑖
) 0.5𝑙𝑆

𝐻𝐷𝑚𝑎𝑥,𝑙2−1

𝑖=0

)

For the lightweight system evaluated in section 3.7, this probability evaluates to 𝑃𝑅𝐺𝐹𝑃 =

1.8 ∗ 10−8

3.6.2.2 Strong Knowledge Attack

We consider the attack-scenario that the malicious party was in physical possession of

the true Prover. Although difficult, it is possible that the malicious party generated a model

for the level-1 behavior (from Hidden PUF input to Guard PUF output). When a malicious

Prover tries to authenticate itself to a trusted Verifier, it will therefore correctly respond to

the initial level-1 challenge 𝐶𝑙1, and will receive the corresponding level-2 challenge 𝐶𝑙2.

However, it is numerically impossible that the attacker was able to generate a valid model

for the level-2 behavior due to modeling resistivity through infeasibility (MRI) of the Secure

PUF, as outlined in subsection 3.5.2. Nonetheless, it is possible that the attacker gathered a

large amount of CRPs including 𝐶𝑙2 and level-2 responses 𝑅𝑆 by eavesdropping into valid

protocol executions. Consider the attacker to have obtained 𝑘𝑎𝑡𝑡 CRPs. For each CRP, he

has to store 𝐶𝑙1 of length 𝑙𝐺 , 𝐶𝑙2, and 𝑅𝑆 which both have length 𝑙𝑆 − 𝑙𝐻 , for each CRP.

Considering only this data, this requires the attacker to store 𝐷𝑎𝑡𝑡𝑎𝑐𝑘𝑒𝑟 = (𝑙𝐺 + 2𝑙𝑆 −

𝑙𝐻)
𝑏𝑖𝑡

𝐶𝑅𝑃
 . The trusted party stores only 𝐶𝑙1 and 𝑅𝑆 for each CRP, which results in storage

requirement of only 𝐷𝑡𝑟𝑢𝑠𝑡𝑒𝑑 = (𝑙𝐺 + 𝑙𝑆)
𝑏𝑖𝑡

𝐶𝑅𝑃
 . As 𝑙𝐺 ≪ 𝑙𝑆 − 𝑙𝐻, the trusted party uses only

half as much memory as the malicious party. Furthermore, the malicious party has to store

an exponential number of CRPs to achieve realistic authentication probabilities. The

probability for a successful knowledge attack 𝑃𝐾𝐴 is:

𝑃𝐾𝐴 =
𝑘𝑎𝑡𝑡

2𝑙𝑆
+ (1 −

𝑘𝑎𝑡𝑡

2𝑙𝑆
) 𝑃𝑅𝐺𝐹𝑃

In our scenario, this means that an attacker with a model for the level-1 behavior will

require 𝑘𝑎𝑡𝑡 = 2 ∗ 1017 stored level-2 responses to achieve a false-positive rate of 1%. This

43

will require storage of 𝐷𝑎𝑡𝑡𝑎𝑐𝑘𝑒𝑟 = 2 ∗ 1017 ∗ 144𝑏 ≈ 3.4 ∗ 109𝐺𝐵. Although the attacker

and the trusted party have only a factor of 2 difference for a single CRP, the trusted party is

not required to know a large subset of the challenge-space, as he chooses the challenge.

This demonstrates the efficiency of our multilevel authentication and shows that SoP

acts as a force-multiplier that supports the trusted party in authentication by drastically

reducing off-chip memory requirements and on-chip resources.

3.7 Experimental Evaluation

3.7.1 Overview

In the experimental evaluation, we simulated the lightweight SoP as described in section

3.5. Our simulation environment was a C++ implementation of a synthetic PUF similar to

that employed in previous research [58]. Our implementation considered the differences in

reliability and randomness between different designs due to process variations and

environmental variations. The specific configuration of our evaluated SoP consists of

synthetic implementations for three selected PUF designs according to the criteria in Table

3.2 and the characteristics in Table 3.1:

 Hidden PUF: 16-Bit input RO-PUF

 Guard PUF: 32-Bit Arbiter PUF

 Secure PUF: 64-Bit 4-XOR Arbiter PUF

3.7.2 Gate-level Cost Comparison

To provide an estimate of the area overhead incurred by authentication protocols based

on PUF, we performed a consistent gate-level evaluation. For this comparison, we evaluate

the main security components, as the control logic introduces negligible overhead and

should be comparable for all protocols.

44

In Table 3.3, the cost of our proposed lightweight SoP is given as 1767 gate equivalent

units (GEs). Due to the entropy loss inflicted by the Syndrome generator, the Reverse Fuzzy

Extractor requires longer responses and additionally employs a Hash function, leading to a

total cost of 4946 GEs as shown in Table 3.4. Therefore, our lightweight SoP reduces the

gate count by 64%.

This emphasizes the low-cost characteristic of SoP. The proposed protocol implements

unilateral authentication as part of the requirements introduced in subsection 3.5.1. Reverse

fuzzy extractor additionally provides mutual authentication. We note that unilateral

authentication is sufficient and often required for many light-weight embedded systems,

such as NFC, RFID, and sensor networks.

3.7.3 Reliability despite Error Propagation

As explained in Section 3.5, we chose the Hidden PUF as an implementation of a RO-

PUF, as it is the most reliable design available from the comparison in Table 3.1. The

Hamming distances of each PUF component are shown in Figure 3.7, and the propagated

Table 3.3 Gate equivalent (GE) cost of proposed SoP.

Component Explanation GE units

Hidden PUF 16-Bit RO-PUF 145

Guard PUF 32-Bit Arbiter PUF 130

Secure PUF 64-Bit 4-XOR PUF 1032

Challenge

Expanders
16-Bit + 32-Bit + 64-Bit LFSRs 460

Total 1767

Table 3.4 Gate equivalent (GE) cost of Reverse Fuzzy Extractor.

Component Explanation GE units

PUF 64-bit 4-XOR PUF 1032

Challenge

Expander
255-Bit LFSR 1024

Syndrome

Generator
234-Bit LFSR 940

SPONGE Hash 256-Bit light-weight Hash 1950

Total 4946

45

error from the Hidden PUF can be seen in the Guard PUF and Secure PUF around 𝐻𝐷𝐺 =

16 and 𝐻𝐷𝑆 = 32, respectively. This shows that even a minor error in the Hidden PUF leads

to a large error with 𝐹𝐻𝐷𝑖𝑛𝑡𝑟𝑎 = 0.5 for Guard PUF and Secure PUF. The reason for this

is the strict avalanche criterion, which requires that even a single bit-flip on the input should,

on average, lead to a bit-flip for half of the output bits. Figure 3.7 also shows why we

selected 𝐻𝐷𝑚𝑎𝑥,𝑙1 = 5 and 𝐻𝐷𝑚𝑎𝑥,𝑙2 = 21 as parameters for the protocol: The real

responses of the Guard PUF have a Hamming distance of 5 or less to the ideal response.

Similarly, the correct responses of the Secure PUF have a Hamming distance of 21 or less.

3.7.4 Authentication Error

For authentication, the false-positive and false-negative rates are an important quality

metric, as they represent the amount of authentication attempts that were falsely accepted

or rejected, respectively. In our experiments, 𝑃𝐹𝑁,𝑙1 = 7.8% of the level-1 responses had an

error that exceeded the tolerance of 𝐻𝐷𝑚𝑎𝑥,𝑙1 and were thus falsely rejected. The cause of

this lies in the strict avalanche criterion, and the series connection between the Hidden PUF

and the Guard PUF. Thus, the protocol behaves as intended and rejects bit-errors in the

Hidden PUF already at the first level. With an adequately chosen tolerance 𝐻𝐷𝑚𝑎𝑥,𝑙2 at the

second level and the Hidden PUF errors already filtered at the first level, only 𝑃𝐹𝑁,𝑙2 =

0.257% of the level-2 responses were incorrectly rejected.

Figure 3.7 Intra-Chip Hamming distances of each of PUF component. We observe that an

error in the Hidden PUF (left) will propagate and lead to a large error in the Guard PUF

(center) and the Secure PUF (right) due to the strict avalanche criterion.

46

3.8 Conclusion

This chapter contributes a new system-level security model that bridges the chasm

between application-level security analysis and design of secure hardware, and models for

isolated components. From this model, we analyzed and explained several hardware security

requirements using existing protocols, and showed that they cannot be fulfilled without

extensive cost. We presented a multilevel authentication protocol which is verified using

the system-level security model and which takes advantage of a combination of different

PUF-designs to minimize resource allocation. SoP does not require expensive error-

correction, as high reliability designs are employed where required. Furthermore, the need

for latency and power intensive hash functions on the PUF circuit is replaced by a

combination of strong PUFs and off-chip cryptographic hash. With breach recognition and

recovery, new security features are introduced and shown to increase the attack-difficulty

while enhancing reusability. A low-cost implementation of SoP was shown to reduce the

area by 64% in a gate-level comparison. This low resource allocation and high flexibility

allows SoP to provide a security solution tailored for ubiquitous computing devices.

47

CHAPTER 4

POLYPUF: PHYSICALLY SECURE

SELF-DIVERGENCE

4.1 Introduction

Hardware security is increasingly recognized as an important research area for current

and future devices. Security features are required for all modern communication and

computing devices, particularly for verification of authenticity and data confidentiality.

Diverse hardware-based threats such as hardware Trojan horses (HTHs), reverse

engineering, physical de-packaging and modification, machine-learning, and side-channel

attacks not only lead to billion dollar losses in counterfeits [66], but also challenge the

capabilities of existing security techniques.

Hardware security is of particular value for emerging mobile applications such as

wireless sensor networks, RFID chips, and smart cards. For these devices, conventional

security techniques exceed power and footprint limitations. For instance, even widely used

public-key cryptography techniques have high computational cost that can exceed the

capabilities of such devices or can strain mobility by depleting their battery. Moreover,

conventional defenses against physical attacks such as metal-meshes or tamper sensing

through signal carrying wires require constant power supply and are therefore infeasible

when low cost is a requirement.

PUFs are promising security primitives as they are based on intrinsic nano-scale

manufacturing variations, are lightweight, and provide resistivity against physical attacks.

It is a binary mapping that represents the unique IC fingerprint by accumulating and

reflecting the manufacturing process variations that went into each specific device. The

input and output of this function are referred to as challenge and response respectively. This

function is a {0,1}𝑚 → {0,1}𝑛 mapping with 𝑚 challenge bits and 𝑛 response bits, which

we refer to as an 𝑚×𝑛 PUF in this chapter. A wide range of variation sources are used to

generate this fingerprint, for example the unique constellation of carbon nanotubes [12] in

carbon nanotube transistors. Due to the utilization of manufacturing variations, the exhibited

challenge-response behavior is device unique and is not physically reproducible by

48

remanufacturing. Furthermore, the secret of the PUF is the internal physical structure and

therefore adversaries cannot easily extract it. This dependence of the PUF behavior on the

exact physical parameters provides the PUF with a volatility which implies destruction of

the secret on invasive physical attacks.

Although the PUF behavior is primarily determined by manufacturing variations, it is

also influenced by environment variations including temperature, pressure, EM-waves, and

quantum fluctuations [67] that can deteriorate PUF reliability. This lack of reliability

manifests as noise in the challenge-response behavior and is characterized as the per-bit

error rate in the responses when the same challenge is repeatedly issued. A common

application is authentication, where a trusted party proves its authenticity by demonstrating

ownership of the PUF.

The two primary concerns for the widespread viability of PUF-based security are

reliability and resistivity against machine-learning. As previously stated, the volatility of a

PUF is a benefit against invasive attacks, but it also introduces bit-errors as a disadvantage.

The volatile nature leads to small changes in the PUF response due to environment

variations. With reduced reliability, the obstacles in other areas increase; for instance, costly

error-correction may be required, which in turn requires increased PUF sizes due to entropy

loss. The issue of machine-learning resistance is important to guarantee that adversaries

cannot create a model for the PUF. If an adversary successfully creates a model, it would

fatally defeat any security application of the PUF; for instance, in token-based

authentication, an adversary with an accurate model can impersonate PUF ownership and

thus achieve false acceptance. Reliability and resistance against machine-learning are

particularly difficult to achieve, as the techniques to implement them have contradictory

effects. On the one hand, a common approach to increase the machine-learning resistance

is to combine the responses of multiple PUFs. However, this also has a multiplying effect

on the volatility induced bit-error rate and thus reduces reliability. On the other hand,

reliability can be increased by implementing error-correction, for instance through repetition

codes. However, this introduces information leakage and thus decreases the resistance

against model-building attacks. An additional major disadvantage of the reliability-reducing

Strong PUFs is that the increased error rate forces longer responses, which in turn require

transmission of longer bit strings and can have a significant impact on energy consumption

[68]. As reliability and simultaneous model-building resistance are the primary concerns of

PUF, they are the focus of this chapter.

49

The problem with resistance against machine-learning is fundamentally due to two

issues: complexity and determinism. A highly complex behavioral pattern is very difficult

to learn through machine-learning, as more training data and computational resources are

needed. The difficulty with increasing complexity in a PUF is that it typically has a

detrimental effect on reliability. For machine-learning algorithms, deterministic behavior is

the ideal training target, as the pattern to be learned can be accurately specified. As

determinism is reduced, for instance due to noise, learning algorithms require more

computational resources and training data to identify the underlying pattern. As such,

reducing determinism is a viable approach to counter machine-learning techniques. For

PUF, however, high determinism is required so that the response to any given challenge can

be compared to a known correct response. In this chapter, we present the first PUF

architecture with intentional non-determinism and allow the PUF to change randomly

between multiple behavioral patterns.

The unique contributions made in this chapter are:

 The first PUF architecture to achieve unpredictable non-deterministic polymorphic

challenge-response behavior.

 The first PUF architecture to demonstrate strong and scalable machine-learning

resistance without detrimental effect on reliability and with wide applicability.

 A consistent security solution by evaluating and eliminating other threat vectors such

as an unprotected random number generator.

 Quantitative evaluation of neural network attacks on our proposed PolyPUF

architecture against reference architectures with various PUF configurations and

training sets of up to one million examples.

This chapter is structured as follows. In section 4.2, we introduce relevant background

and discuss related work. In section 4.3, we introduce PolyPUF and describe the

polymorphic behavior it exhibits. In section 4.4, the practicality and possible applications

of PolyPUF are discussed. Section 4.5 discusses various security concerns with existing

work and clarifies the security advantages of PolyPUF. We provide an analysis of possible

attacks in section 4.6. In section 4.7, we present an extensive evaluation of PolyPUF and

existing techniques. We conclude in section 4.8. This chapter is based on [69]

50

4.2 Background

4.2.1 Notation

We denote binary vectors in bold lowercase characters. As such, we refer to a PUF

challenge as 𝒄 and to the response as 𝒓. Multiple binary vectors are differentiated through

use of a subscript, e.g. challenges |𝒄1| and |𝒄𝟐|. We denote random binary vectors as 𝒙. The

length of the vector is indicated through their absolute value, e.g. challenge length |𝒄|. The

individual bits are referenced through round brackets, e.g. 𝒄(𝑖) where 𝑖 ∈ [0, |𝒄|]. Sets are

denoted through uppercase letters, e.g. A. Due to their significance for this chapter, we

denote bit-error rates with 𝜖. The Hamming distance between two bit-vectors 𝒂 and 𝒃 is

denoted by Δ𝒂,𝒃. In larger equations where this subscript notation is not suitable, we also

use Δ𝒂,𝒃 = 𝐻𝐷(𝒂, 𝒃) interchangeably.

4.2.2 Statistical PUF Behavior

In cryptography, confusion and diffusion are important properties of a security primitive.

Confusion describes the complexity of the relation between the secret key and the cipher

text, and diffusion describes the complexity between plain text and cipher text. In the context

of evaluating a PUF, diffusion can be described as the complexity of the relation between

the input (challenge) and output (response) of the PUF.

With low diffusion, knowledge of the response to one challenge 𝒄𝑖 implicitly provides

information on similar other challenges 𝒄𝑗 where the distance Δ𝒄𝑖,𝒄𝑗
 is smaller than a

threshold 𝑑𝑡ℎ . It follows that machine-learning algorithms can extract significant

information on the challenge-response behavior from few CRPs. Moreover, weak diffusion

also enables a modified form of repetition attacks, where an adversary re-uses a previously

observed response 𝒓𝑖 = 𝑃𝑈𝐹(𝒄𝑖) for a new challenge 𝒄𝑗 where 𝒄𝑖 ≠ 𝒄𝑗 and Δ𝒄𝑖,𝒄𝑗
< 𝑑𝑡ℎ

with hopes that it will be accepted instead of 𝒓𝑗 = 𝑃𝑈𝐹(𝒄𝑗). Here, ∆𝒓𝑖,𝒓𝑗
 is small, as the

originating challenges are close to each other. Due to bit-error mandated authentication

thresholds, the response will be accepted when ∆𝒓𝑖,𝒓𝑗
 is small. For the average response in a

large set of CRPs, this generalizes to:

 Δ𝒄𝑖,𝒄0
< Δ𝒄𝑗,𝒄0

→ Δ𝒓𝑖,𝒓0
< Δ𝒓𝑗,𝒓0

 (4.1)

In contrast, high diffusion implies internal complexity and provides high resistance

against machine-learning attacks.

51

The avalanche criterion is another desirable property requiring that a small change in the

input changes the output significantly. The strict avalanche criterion requires that any input

bit flip leads to a flip in each output bit with a probability of 50%, which implies strong

randomization and therefore difficult input prediction.

4.2.3 Strong and Weak PUFs

PUFs are divided into two main categories, Weak PUFs and Strong PUFs. Weak PUFs

allow a small number of challenges; in some cases only a single challenge can be issued.

Their most common application is the generation of secret keys that can be used for

cryptography. An example of this category is the SRAM PUF, which employs the start-up

state of SRAM cells to generate a response. Strong PUFs must have a large CRP space such

that it is unreasonable that an adversary can obtain a large share of all possible CRPs.

Furthermore, its behavior must be unpredictable for an adversary and must provide tamper

resistance [70]. Whereas the requirement of a large challenge response space is easily

accomplished, unpredictability is an ongoing concern as discussed before.

Strong PUFs are subdivided into a variety of different designs that exploit physical

variations through delay, frequency, temperature, and aging. The Arbiter PUF was one of

the first proposed silicon-based PUFs and is shown in Figure 4.1. The challenge determines

the signal path through a chain of multiplexers, and the response is set to logic 1 (0) when

the signal through the upper path is faster (slower) than through the lower path. As the

challenge determines the actual paths that the signals take, the response directly depends on

the challenge and a large CRP-space is possible. The simplicity of the Arbiter PUF is one

of its main weaknesses, and it is considered one of the weakest PUFs under model-building

attacks as shown in section 4.2.5 and can easily be predicted [71].

0
1

0
1

0
1

0
1

0
1

0
1

D Q

C1 C2 C3

R1

Figure 4.1. An Arbiter PUF with three input bits and one output bit, 3x1 Arbiter PUF.

52

To counter the predictability of the simple Arbiter PUF, the XOR Arbiter PUF was

presented by Suh and Devadas [7]. It increases the internal complexity by combining the

response of multiple Arbiter PUFs in an XOR operation. Despite its simplicity, this

approach notably increases the difficulty of model-building attacks. However, two key

factors limit the scalability of this approach: First, a 𝑘-XOR Arbiter PUF uses 𝑘 different

PUFs, and hence requires a linearly increasing number of PUFs. Second, the error rate 𝜖 of

a simple Arbiter PUF increases to 𝜖𝐾−𝑋𝑂𝑅 = 1 − (1 − 𝜖)𝑘. Therefore, the error rate scales

linearly for small 𝐾. In a 28 nm FPGA implementation, an error rate of up to 0.317 was

demonstrated for a 4-XOR Arbiter PUF, drastically limiting its applicability [72].

A high error rate decreases the trusted party’s ability to differentiate a true PUF from a

counterfeit because the authentication protocol has to allow a threshold so that the

probability of false rejection of an authentic response is low. Previous research has shown

that 𝑘-XOR Arbiter PUFs are effective against model-building attacks when 𝑘 ≥ 6 [36],

[71]. However, this number of Arbiter PUFs degrades the error rate; therefore, the effective

defense against model building remains an unsolved problem.

4.2.4 Machine-Learning Techniques

4.2.4.1 Artificial Neural Networks

Artificial neural networks (ANNs) were initially designed after biological neural

networks and are employed for tasks such as natural language processing and computer

vision [73]. Each artificial neuron has inputs with corresponding weights and produces an

output by applying a non-linear activation function to the sum of weighted inputs. The

activation function affects the number of neurons that are needed for complex computations

and the computational cost of simulating a neural network. Typically, a sigmoidal function

is used as it can be normalized to produce stable outputs and is easily derivable which is

useful for updating the input weights [73]. Supervised learning is the process of training the

network with known training labels.

A feed-forward network of neurons consists of an input layer, a problem-specific number

of hidden layers, and an output layer without cycles. The number of layers in the neural

network specifies the depth. The number of neurons in the input layer and output layer are

constrained by the problem, in the case of PUFs to the challenge and response lengths,

respectively. The number of hidden layers and the number of neurons in each hidden layer

53

are derived heuristically. Increasing the number of neurons in the hidden layer allows

modeling of higher complexity patterns, but can lead to overfitting and increases the

computation time.

Backpropagation with gradient descent is a common learning algorithm for ANNs. For

each weight 𝑤𝑖,𝑗, the corresponding impact on the error function 𝐸 is derived from the chain

rule, where 𝑤𝑖,𝑗 is the weight between neuron 𝑖 and neuron 𝑗. With this derivative and a

problem-dependent learning factor 𝜖 , the weight is updated from iteration t to t+1 to

minimize the error function 𝑤𝑖,𝑗(𝑡 + 1) = 𝑤𝑖,𝑗(𝑡) − 𝜖
𝛿𝐸

𝛿𝑤𝑖,𝑗
(𝑡).

The downside of backpropagation learning is that the weight update is dependent on the

gradient, which has a small magnitude due to requirements on the activation function.

Therefore, backpropagation can converge slowly. In resilient backpropagation (RPROP)

[74] training, the change in weights does not directly depend on the gradient. Instead, the

gradient only determines the direction of the weight update, and an individual update value

Δ𝑖,𝑗 determines the magnitude of the weight update. This allows RPROP to converge much

faster than backpropagation. In relevance to the evaluation in section 4.7, an epoch is a

single pass through the entire training set including early evaluation with a verification set.

Therefore, a limitation to epochs is a more sensible termination criterion than pure runtime

for the context of learning under an ANN.

In this chapter, a feed-forward artificial neural network is trained with a hyperbolic

tangent sigmoid activation function. This function achieves the desired stabilizing behavior

of the sigmoid function but is one of the most common activation functions because it ranges

from [-1,1] and therefore allows negative valued outputs.

4.2.4.2 Pattern Complexity and Model-Building Resistivity

The complexity of the pattern to be learned mandates the difficulty that a machine-

learning algorithm faces in creating a model for it. A class of sets C is said to shatter a set 𝐴

when the power set 𝑃(𝐴) = {𝑈 ∩ 𝐴|𝑈 ∈ 𝐶} , meaning that each subset of 𝐴 can be

expressed as an intersection of 𝐴 and a subset of 𝐶 [75]. The Vapnik-Chervonenkis (VC)

dimension is a measure of the capacity of a classification algorithm: it is the cardinality of

the largest subset that the algorithm can shatter. Therefore, the VC dimension provides

insight into the complexity that the learning algorithm can represent. It also follows that a

pattern that requires a learning algorithm with high VC dimension has a high pattern

complexity.

54

For artificial neural networks with sigmoidal activation function and fixed depth, the VC

dimension is contained between the lower bound Ω (𝜔𝑙𝑜𝑔(𝜔)) and upper bound 𝑂(𝜔4),

where 𝜔 is the number of programmable parameters [75]. For a neural network with a single

hidden network, the number of programmable parameters is the sum of input neurons and

hidden neurons. It follows that a neural network with more hidden neurons can characterize

patterns that are more complex. Furthermore, when a pattern requires a larger amount of

hidden neurons to be learned, it follows that this pattern has higher internal complexity. This

is an important consideration for the experimental characterization of model-building

resistivity in section 4.7.

4.2.5 Security Threats

4.2.5.1 Model-Based Token Impersonation

Highly successful modeling attacks on Arbiter PUFs, RO-PUFs, feed-forward Arbiter

PUFs, simple PUFs, and XOR-Arbiter PUFs were demonstrated by Ruhrmair et al. [36] on

synthetic PUFs. These attacks were based on logistic regression using RPROP gradient

descent and evolutionary strategies. More recently, the authors expanded their results to

include FPGA and ASIC implementations and showed results resembling those of their

synthetic implementation [71]. In relevance to this contribution is that they broke a 128-bit

and 64-bit Arbiter PUF in mere seconds, which leads to the assumption that this is indeed

one of the weakest PUFs with regard to modeling attacks.

4.2.5.2 Side-Channel Information Extraction

It is in the nature of reasonably complex physical devices to leak information on the

operation that is being performed, which is indirectly observable as a side-channel leakage

through measurements of power, temperature, and other parameters. Side-channel attacks

passively exploit this to extrapolate confidential information. This is true even for

cryptographic modules such as the Advanced Encryption Standard (AES), which is

approved by the U.S. National Security Agency (NSA) for top-secret documents.

Researchers have demonstrated that a side-channel unaware implementation of 128-bit AES

can be attacked to reveal the entire secret key with only 8,000 measurements [76]. One

technique against side-channel leakage is power randomization to reduce cross-correlation

between power trace and performed operation [53]. Another approach is reducing leaked

55

information by normalizing the consumed power in logic gates and interconnects [76].

Additionally, obfuscation is a technique to increase the difficulty of understanding and

reverse-engineering hardware [53], [77], which limits the applicability of side-channel

attacks as design and internals are hidden.

4.2.5.3 Physical Access and Tampering

Physical security is one of the root causes for the invention of the PUF. Conventionally,

confidential information such as a secret key for encryption/decryption is stored in on-chip

non-volatile memory (NVM), as this information has to be preserved even when the device

is powered down. However, this form of storage is vulnerable, as well-equipped adversaries

can de-package the chip and physically access and read the contents of the NVM [29], [78].

Moreover, adversaries can physically tamper with circuitry, for example utilizing focused

ion beams, to modify or disable components [28]. Conventional hardware security

approaches such as tamper detection, metal meshes, and similar techniques are expensive in

power and area and therefore are not applicable for lightweight devices [79]. Furthermore,

semi-invasive attacks such as optical fault induction [80] allow adversaries to change

individual bits in microcontroller memory by illumination. Therefore, the volatility that PUF

provides is one of its strongest characteristics: when physically tampered with, the behavior

changes and thus the internal secret is destroyed. In section 4.5 we further discuss that PUF

by itself is not a safeguard against invasive attacks for the entire device.

4.2.6 PUF Architectures and Protocols

4.2.6.1 Reliance on Strong PUFs

The promise of a Strong PUF is to provide a large challenge response space that is

infeasible to model with state-of-the-art machine-learning techniques. A number of PUF-

based protocols expose both the challenge and response and hence rely on this intrinsic

modeling resistivity. However, no PUF design for a Strong PUF achieves scalability and

resistivity against model-building attacks without sacrificing reliability. This remains the

most common issue among all protocols studied by Delvaux et al. [79]. For these reasons,

an architecture that enables any PUF design to become a true Strong PUF has significant

merit and benefits a wide range of existing protocols. In section 4.3, we propose PolyPUF

that achieves these goals.

56

4.2.6.2 Reverse Fuzzy Extractor

As previously described, most PUF-based authentication scenarios rely on a Strong PUF

that can resist model-building attacks yet achieves high reliability. The Reverse Fuzzy

Extractor (RFE) [81] attempts to avoid this requirement by hiding the actual PUF response:

During authentication, the verifier issues a challenge 𝒄 with random nonce 𝑥𝑛𝑜𝑛𝑐𝑒, which is

an arbitrary random bit-string for one-time usage. The PUF device then generates the actual

response 𝒓𝑝𝑢𝑓 , which contains perturbations due to environment variations, and the

corresponding helper data 𝑑ℎ . To hide the actual response 𝒓𝑝𝑢𝑓 , the PUF device then

releases a hash ℎ𝑃𝑈𝐹 that contains the response. Using helper data 𝑑ℎ and the true response

𝒓, the verifier can construct 𝒓′ which should match 𝒓𝑝𝑢𝑓 if the PUF is authentic. The trusted

party can then indirectly compare 𝒓′ and 𝒓𝑝𝑢𝑓 by evaluating ℎ𝑎𝑠ℎ(𝒓′) = ℎ𝑃𝑈𝐹 .

Releasing helper data always leads to a loss of entropy [79], [82], and despite the

measures taken the RFE, Delvaux et al. [79] demonstrated that an adversary can selectively

issue challenges to solve a system of linear equations that characterizes the helper data

leakage.

Furthermore, we emphasize that the entropy loss due to helper data leakage requires a

significantly larger PUF challenge and response lengths. This in turn requires a larger

challenge expander and a larger hash function [32].

4.2.6.3 Slender PUF Protocol

The slender PUF protocol attempts to invalidate machine-learning-based attacks by

exposing only a random substring of the response. The challenge to the PUF is determined

by combining cryptographic nonces from the prover and verifier through a linear feedback

shift register (LFSR). These nonces are generated from true random number generators

(TRNGs). This challenge is available to both the prover and verifier, and cannot be fully

controlled by one party. While it was the first protocol to efficiently introduce noise into the

PUF response, it is limited by the requirement that it can only be applied on a true Strong

PUF that meets the avalanche criterion. Such a Strong PUF can be approached with a k-

XOR Arbiter PUF, but this leads to a significant increase in the error rate. In [83], the authors

demonstrate that the substring has to consist of 1250 bits to achieve an acceptable false

rejection rate of 1% with a 4-XOR Arbiter PUF. Additionally, the usage of a random nonce

on the prover side probabilistically enables an adversary to select the nonce such that the

resulting challenge has a small Hamming distance to a known challenge.

57

4.2.6.4 Noise Bifurcation PUF Architecture

Yu et al. [72] described a Noise Bifurcation PUF (NBPUF) architecture for PUFs that

increases the noise for an adversary, reducing their ability to perform machine-learning

attacks, without increasing the noise observed by the trusted party [72]. In their architecture,

out of every 𝑑 bits in the response, 𝑑 − 1 bits are randomly discarded. Therefore, this

architecture requires that the response be pre-expanded by a factor of 𝑑. In authentication,

only those bits that have deterministic behavior are considered, meaning that all 𝑑 bits have

the same value. Due to these discarded bits during authentication, the response has to be

pre-expanded by a factor of 𝑑 ∙ 2𝑑−1 and therefore increases exponentially. The evaluation

is performed on synthetic PUFs and demonstrates that machine-learning does not converge

with a dataset of 1 million CRPs when this architecture is applied to a 5-XOR and 6-XOR

Arbiter PUF.

4.3 PolyPUF Architecture

The PolyPUF challenge-response behavior can take many different shapes, and

randomly changes between them. As the shape changes randomly, an adversary cannot learn

it using model-building attacks. However, a trusted party can use secret knowledge to verify

the authenticity of responses despite the random behavioral changes. The ultimate goal of

PolyPUF is to decouple the observed response 𝒓 from the issued challenge 𝒄 so that model

building becomes impossible, while maintaining reliable challenge-response behavior. For

this purpose, the challenge-response mapping is truly random for each individual output bit,

and therefore goes beyond the complexity achieved in the NBPUF. Therefore, PolyPUF

enables true Strong PUFs that can withstand model-building attacks. The architecture is

shown in Figure 4.2 and is described in detail in the following subsections.

Figure 4.2 PolyPUF with challenge self-divergence (CSD), response self-divergence (RSD), and

internal PUF structure.

58

4.3.1 Random Number Generation

Many PUF architectures and protocols rely on TRNGs as a core component, but do not

provide sufficient measures to safeguard them against physical attacks [30], [79]. Defending

such components for large random numbers is difficult and expensive, as the complexity of

defense measures to achieve physical security increases with the component’s footprint.

The PolyPUF architecture overcomes these concerns by utilizing a very small TRNG

that can be derived directly from the internal PUF and hence introduces minimal resource

overhead and security concerns. During enrollment of the PUF, the trusted party programs

a randomization challenge 𝒄𝑥 into the PUF, which was observed to have low reliability. One

can derive the random bit-vector 𝒙 by XOR-reducing the PUF response 𝒓 = 𝑃𝑈𝐹(𝒄𝑥) such

that

𝒙(𝑖) =

⊕

𝑗 = 0 … |𝒙| − 1
𝒓𝑖(𝑖 mod |𝒙| + 𝑗 ∙ |𝒙|)

(4.2)

This approach is physically secure, as the TRNG cannot be modified without changing

the actual behavior of the internal PUF, which would render it useless. Furthermore, the

XOR gates required for the TRNG can be embedded into most existing PUF designs.

The theoretical basis for this approach of generating small random numbers lies in the

entropy maximizing nature of the 𝑋𝑂𝑅 operation used in equation (4.2). The bit-vector can

be approximated as a series of independent random bits 𝒓(𝑖) with a bias, such that

𝐸[𝒓(𝑖)] = 𝜇. This is a conservative approach for entropy estimation, as the entropy of the

XOR of two random variables is at least the entropy of the individual random variables.

Under these considerations, the bias of each bit of the random seed vector is:

𝐸[𝒙𝑖] =
1

2
+ (−2)

⌊
|𝒓|
|𝒙|

⌋−1
(𝜇 −

1

2
)

⌊
|𝒓|
|𝒙|

⌋

(4.3)

If the randomization challenge 𝒄𝑥 is improperly selected to have an error rate of only

10%, which is worse than an average challenge in the Arbiter PUF [83], the response bias

would be 𝛽 = 1 − 𝜖 = 0.9. Even in this situation, a 64-bit response can generate a 3-bit

random seed vector with an expected value of 𝐸[𝒙𝑖] = 0.505 according to equation (4.3),

which is very close to the ideal 0.5. As discussed, it is critical that the random seed is short,

and the expected value increases to 𝐸[𝒙𝑖] = 0.66 for a random 12-bit seed.

When higher randomness is desired, e.g. because of small |𝒓| or large |𝒙|, this process

can be repeated and the random numbers of each iteration can be XOR-combined.

59

4.3.2 Challenge Self-Divergence

Challenge self-divergence achieves challenge-response diffusion by diverging the

challenge, which is issued to the device from the true challenge, which is processed through

the internal PUF. Therefore, the true challenge is concealed from any outside party and is

only observed and known within the security device itself.

First, the challenge divergence seed 𝒙𝑐 is generated as a short true random number by

the PUF and its components as described in subsection 4.3.1. The apparent reasons for a

short 𝒙𝑐 lie in reduced cost and facilitated PUF-based implementation, but it also has a

profound effect on the verifiability and physical security of the PUF. We will show below

that |𝒙𝑐| can be a very small value.

Second, 𝒙𝑐 is maximally expanded into divergence vector 𝒙𝑐,𝑣 by repetition to match the

challenge length of the PUF, such that |𝒙𝑐,𝑣| = |𝒄|. Finally, the true challenge is derived as

𝒄𝑇 = 𝒄 ⊕ 𝒙𝑐,𝑣. This implies that each issued challenge is transformed into one of 2|𝒙𝑐|

possible true challenges.

The XOR operation is critical, as it combines the original challenge divergence seed and

the original challenge with maximum entropy, as every output bit depends on both input

bits. Moreover, this form of self-divergence performs a uniform action across all original

challenge bits and is based on uniform XOR operations for random number generation.

Therefore, it provides a strong foundation for resistivity against side-channel attacks and

can be optimized for side-channel leakage minimization at the layout level.

For PolyPUF, |𝒙𝑐| = 2 is a viable selection to achieve the desired polymorphic behavior

because it sufficiently diverges the challenge. Further increase of this would allow more

possible challenges, but also requires a larger random seed and more computation on the

server side, which are not desirable.

4.3.3 Response Self-Divergence

Challenge self-divergence only hides the challenge and therefore does not provide true

polymorphic behavior – knowing the true response of the PUF can be a starting point for an

advanced machine-learning exploit. Two problems remain. First, additional decoupling is

needed to achieve sufficient challenge-response diffusion without further increase of |𝒙𝑐|,

which would have the aforementioned detrimental effects. Second, it does not provide any

improvement to the bias that is typically observed in PUF behavior.

60

To overcome both problems, we present a response self-divergence scheme that

complements challenge self-divergence for truly polymorphic behavior. For this purpose,

we have investigated response self-divergence through a shuffling approach as well as an

XOR approach similar to the one described in section 4.3.2. In both cases, the true response

𝒓𝑇 is divided into groups 𝒈𝑖. Based on the same mechanism employed in section 4.3.1, a

small response divergence seed vector 𝒙𝑟 is generated. For the XOR approach, each group

𝒈𝑖 is XORed with a response divergence seed 𝒙𝑟. In the shuffling approach, the bits in the

divergence seed determine whether consecutive groups are exchanged. The investigation

showed that XOR performed much better, and the evaluation can be simplified to the

following example: Consider a case where shuffling is used with |𝒙𝑟| = 1, |𝒓𝑡| = 2, and

|𝑔𝑖| = 1 . The bias of the response in this example is 𝐸[𝑟(𝑖)] = 𝑃(¬𝑥𝑟(𝑖))𝐸[𝑟𝑇(𝑖)] +

𝑃(𝑥𝑟(𝑖))𝐸[𝑟𝑇(𝑖 + 1)]. Therefore, bias is very possible and not drastically reduced. For the

case of XOR, as we outlined in subsection 4.3.1, the entropy of the response is as good as

the entropy of the divergence seed.

Due to response self-divergence and as a side-effect of polymorphism, PolyPUF

achieves the strict avalanche criterion, as an individual challenge bit-flip leads to a bit-flip

in the output with an average probability that can arbitrarily approach 0.5 based on design

requirements and length of the response self-divergence seed.

4.3.4 Polymorphism

Together, the challenge and response divergence grant polymorphic behavior, as the

challenge-response behavior changes randomly. This behavior is illustrated in Figure 4.3

for a very small PolyPUF with |𝒙𝑐| = 2 and |𝒙𝑟| = 1. In this example, a single challenge

PolyPUF Security Device

1100 1000
0101 0111
1011 1001
0010 0111
0011 0111
1010 1000
0100 0110
1101 1000

C816

5716

B916

2716

3716

A816

4616

D816

Response r

Challenge Self-
Divergence

Internal PUF

Response Self-
Divergence

1001 1000 9816

Challenge c

11001000
01010111
10111001
00100111

C816

5716

B916

2716

True Response rT

Challenge Self-Divergence

TRNG

01

Div. Seed xc

0101 0101 5516

Div. Vector xc,v

1001 1000 9816

Challenge c

1100 1101 CD16

True Challenge cT

XOR

Response Self-Divergence

0101 0111 5716

True Response rT TRNG

XOR

1010 1000 A816

Response r

1001 1000
1100 1101
0011 0010
0110 0111

9816

CD16

3216

6716

True Challenge cT

RandomRandom

Observable Input

Observable Output Expansion
1

Div. Vector xr

1111 1111 FF16

Div. Vector xr,v

Figure 4.3 Example of polymorphic behavior of PolyPUF with |𝑥𝑐| = 2 and |𝑥𝑟| = 1. The left

side shows the overall processing steps in PolyPUF. A third party may observe any of the

responses in R, as the actually observed response is non-deterministically generated through

challenge and response self-divergence, which are shown in the center and right boxes,

respectively.

61

has eight possible responses, and PolyPUF will unpredictably issue one of these. Given a

response to challenge 𝒄, it is practically impossible to infer which true challenge 𝒄𝑇 was

actually evaluated by the internal PUF, because a large number of equally probable

combinations of true challenge and true response exist. Even when a large CRP set is

gathered, the true challenges and responses cannot be derived. In fact, this polymorphism is

not restricted to adversaries, and the trusted party faces the same non-determinism in PUF

behavior. However, with the model of the internal PUF, the trusted party can explore the

range of possible responses and thereby decide on the authenticity of the received response,

as will be shown in section 4.4.

We further explore the advantages of PolyPUF by discussing an alternative

implementation where multiple actual PUFs are interchangeably used. The cost of

implementing multiple PUFs is not negligible, but may be bearable in all but ultra-

lightweight applications. However, this alternative approach also has the following

downsides: If multiple internal PUFs were used, either (i) all of them would compute the

response and only one PUF would actually issue the response to the requestor, or (ii) only

one PUF is selected to compute and issue the response while the others remain inactive.

Approach (i) has a considerable power overhead, and potentially reduces reliability due to

cross talk between PUF instances, which requires careful design work. Approach (ii) leaks

significant side-channel information, as each PUF is unique and therefore exhibits a

different power profile. Moreover, actually implementing multiple PUFs, independent of

approaches (i) and (ii), introduces the problem that advanced machine-learning techniques

such as ANN discussed in section 4.2.4 could perform space separation and hence cluster

the PUFs and identify their individual challenge-response behaviors. PolyPUF does not

suffer from any of these weaknesses, as all responses are issued by the identical internal

PUF. Hence, the polymorphism originates in non-deterministic self-divergence instead of

space expansion and provides stronger security.

4.4 PolyPUF Application

Conceptually, PolyPUF was designed to provide a strong foundation against all threat

vectors identified in the introduction. The resistivity against modeling attacks arises from

the polymorphic behavior described in section 4.3.4. The minimization of side-channel

information leakage originates in the design optimizations to achieve said polymorphism.

In the challenge self-divergence, the initially generated random number is small to have a

62

small range of possible challenges that the trusted party has to explore during authentication.

Additionally, the proposed algorithm for performing challenge self-divergence takes

information leakage into account. For instance, consider a scheme to derive the true

challenge by a summation of the original challenge with a random bit-vector 𝒙, which

provides a range of [𝒄, 𝒄 + |𝒙|] consecutive challenges. However, this approach (i) leaks

more side-channel information as summation leaks far more side-channel information than

a simple XOR operation, and (ii) as the possible challenges lie close to one another,

knowledge of one CRP allows inference of other similar challenges due to the weak

diffusion of the internal PUF, as reflected in equation (4.1).

4.4.1 Wide Applicability

As an architecture, PolyPUF has the unique advantage that it can be applied to almost

every PUF design that allows a large challenge-response space and can turn it into a true

Strong PUF with model-building resistivity. Due to challenge and response self-divergence,

PolyPUF does not pose limiting requirements on bias, complexity, or reliability of the

internal PUF. Even when the internal PUF exhibits biased behavior and does not achieve

diffusion or meet the avalanche criterion, PolyPUF will exhibit high diffusion and meet the

avalanche criterion.

The source of this advantage lies in the polymorphic behavior specified in section 4.3.4;

the model-building resistivity is grounded in this polymorphic behavior instead of

characteristics of the internal PUF. We furthermore argue that PolyPUF is even applicable

to the weakest known PUF designs where existing architectures such as the NBPUF do not

provide sufficient improvement. We experimentally show that PolyPUF is indeed capable

of this by evaluating it with a variety of Arbiter PUFs in section 4.7.

4.4.2 Reliability

Two of the major benefits of PolyPUF are the reliability and scalability this architecture

achieves. Existing approaches to achieve a Strong PUF rely on combination of the responses

of multiple PUFs to increase the challenge-response complexity. This, however, decreases

the reliability of the resulting PUF, as an error in any of the individual PUFs leads to an

error in the resulting PUF. For instance, the XOR-Arbiter PUF has an error rate that

increases almost linearly with the number of contributing PUFs. A 4-XOR Arbiter PUF,

which is not sufficient to achieve model-building resistivity, was shown to have an error

63

rate of more than 30% [72]. In contrast to this, PolyPUF does not negatively affect reliability

at all, as no error-magnifying combination of multiple PUFs is implemented. This means

that PolyPUF can achieve the reliability of any single PUF instance that it is applied on.

4.4.3 Authentication Protocol

We consider parametric authentication, the most common scenario for PUF [7], [30],

[72]. Here, the trusted party generates a true model for the internal PUF in an enrollment

phase with access to the internal PUF. Afterward, any outside access to the internal PUF is

physically deleted, e.g. through fuses.

Accurate authentication is possible despite the challenge and response self-divergence

due to several considerations in the PolyPUF specification. The challenge and response self-

divergence seeds 𝒙𝑐 and 𝒙𝑟 were specified as small bit-vectors, which allows the trusted

party to computationally explore all options. By exploring the previously described

operations and querying the secret model, the trusted party can find all |𝑆𝐶𝑅𝑃| = 2|𝒙𝑐|+⌊𝒙𝑟⌋

possible responses. Although this equation is exponential, we emphasize that: (i) the

experimental evaluation shows that |𝒙𝑐| = 2 is sufficient to thwart the strongest known

machine-learning techniques; (ii) |𝒙𝑟| can be specified by the trusted party to balance

computational cost on the server side with machine-learning resistivity in the PUF; (iii)

evaluating a known and established PUF model typically consumes a minimal amount of

time; (iv) whereas size and energy cost of the PUF are critical, the computational

requirements to the server are much more bearable.

Finally, the response of the PUF is authenticated if it is part of the set of possible

responses. When bit-errors are considered, a trusted party can iteratively compute the

candidate response 𝒓𝑐 = arg min
𝒓𝑖𝜖𝑆𝐶𝑅𝑃

|𝒓𝑖 − 𝒓| . In the simplest form, 𝒓 can be accepted if

|𝒓𝑐 − 𝒓| < 𝑡𝜖, where 𝑡𝜖 is a scenario-specific authentication threshold. We emphasize that

a small threshold should be sufficient, as PolyPUF is the only known architecture to increase

modeling resistance without negatively affecting reliability.

64

4.5 Security Considerations

4.5.1 Pitfalls of Challenge Expansion

Challenge expansion is a technique typically employed for lightweight PUFs. Challenge

expansion implies that the application or protocol requires |𝒓| > 1 output bits from the

PUF. For example, in an encryption scenario, a secret key of more than 128 bits is desired

to increase the time consumption of brute-force attacks. Similarly, in authentication where

the PUF response is used for authentication, a large output length is desirable to minimize

the probability of a random guess achieving false acceptance.

However, implementing a large number of PUFs can be expensive in the power and

circuit area. Therefore, a small number of actual PUFs with |𝒓𝑝𝑢𝑓| < |𝒓| output bits is

expanded to a length of |𝒓| by challenge expansion. In a typical implementation, only a

single PUF with |𝒓𝑝𝑢𝑓| = 1 is implemented. The desired number of output bits |𝒓| is

sequentially generated through |𝒓| challenges that are produced by a pseudo-random

number generator (PRNG). As the original challenge can be used as a seed, the responses

remain consistent across multiple queries. Whereas this is highly cost efficient and

maximally reuses each PUF instance, several security and practicality concerns exist.

First, challenge expansion itself is not physically secure. One of the main advantages of

PUF is its volatility that limits the success of invasive physical attacks. However, the

challenge expansion circuitry remains physically attackable and thus requires extensive

conventional defenses. This diminishes some of the cost savings introduced by PUF and

reduces the range of viable applications. Second, implementing a large pseudo-random

number generator or cryptographically secure hash function to perform challenge expansion

is expensive in itself [32]. As some PUFs are very lightweight, the difference between a

challenge-expanded PUF and a PUF that actually consists of multiple parallel elements may

be insignificant compared to the security advantages. Additionally, challenge expansion

decreases the diffusion described in section 4.2, as all response bits originate in the identical

PUF. Furthermore, it is common that a single PUF exhibits only weak diffusion and strong

bias, as the nano-scale intrinsic variations cannot be controlled. Therefore, relying on a

single PUF increases the likelihood of a device that is unusable from a security perspective.

Besides, designs that employ a single PUF with a challenge expander expose 𝑛𝑜𝑢𝑡 responses

65

of the PUF in a single CRP, hence allowing any adversary to gather large per-PUF CRP

sets.

For these reasons, the internal PUF is proposed to be implemented with multiple

individual PUF elements. In the experimental evaluation, the internal PUF is comprised of

individual PUF elements for each configuration without any challenge expansion.

4.5.2 Reliance on True Random Numbers

Multiple PUF designs and architectures involve the utilization of TRNGs without

providing guidelines for a secure design for this element. Particularly in this scenario

involving PUFs, all relevant components have to achieve a certain degree of resistivity

against invasive attacks described in section 4.2.5. Without this consideration, an adversary

may tamper, disable, or guide the generation of random numbers and hence compromise

security.

To illustrate this shortcoming, the adversary could modify the nonce generator in the

NBPUF architecture to a fixed bit-vector if insufficient countermeasures are implemented.

Then, the adversary has full control of the challenge generation and can exploit this by

repeatedly issuing the same challenges.

To utilize true random numbers without exposing a vulnerability or requiring extensive

conventional security measures, PolyPUF requires a very small TRNG. Furthermore, an

implementation that re-uses the internal PUF for inherent security against invasive attacks

was outlined in section 4.3.1.

4.5.3 Entropy Oblivious Design

We challenge the reliance on error-correction or high-acceptance thresholds for PUF-

based authentication. Koeberl et al. have recently performed an extensive entropy and error-

correction analysis and shown that min-entropy is often over-estimated [82]. Additionally,

they demonstrated that correcting an error of 15% and PUF min-entropy of 15% requires a

PUF response length that is more than 15 times the size of the desired entropy. This

enormously increases the cost of PUF and diminishes the lightweight characteristic that is

one of PUF’s strongest features.

Similarly, relying on a higher authentication threshold instead of error correction also

introduces new problems. For one, the length of the PUF has to be increased so that the

probability of random guessing remains small. Furthermore, due to noise in the PUF

66

response, it is very difficult to discern the noisy PUF from an emulated PUF that takes

advantage of PUF bias. Delvaux et al. [79] have made similar conclusions and have shown

that existing PUF authentication protocols have insufficient security and practicality. These

results imply that employing XOR, feedback, and feed-forward-based architectures to

increase modeling resistivity provides insufficient improvements and introduces other

difficulties.

4.6 Attack Analysis

4.6.1 Random Guessing

The simplest and least effective approach to impersonate a PUF is to respond to a

challenge with a random response. In the following, the threshold 𝑡𝜖 refers to the maximum

Hamming distance to the correct response for which the received response can be accepted

as authentic.

For PolyPUF, the probability of a random guessing attack is slightly increased, as

multiple responses are possible for any given challenge. In the following, we consider the

64x64 PolyPUF with |𝒙𝑐| = 2 and |𝒙𝑟| = 3 . Therefore, the probability of a false

acceptance in this ideal scenario without consideration of bit-errors due to environment

variations equals:

𝑃𝐹𝐴,𝑖𝑑𝑒𝑎𝑙 = 2|𝒙𝑐|+|𝒙𝑟|−|𝒓| = 1.73 ∙ 10−18

Under consideration of bit-errors that are typical due to PUF volatility, the probability

for false acceptance increases. The trusted party can compute all possible responses, identify

the most likely correct response 𝑟𝑖𝑑𝑒𝑎𝑙, and accept the provided response if Δ𝒓𝑖𝑑𝑒𝑎𝑙,𝒓 ≤ 𝑡𝜖 .

Recall that PolyPUF can be assumed to be unbiased due to the response self-divergence,

therefore the bias is 𝛽 = 0.5. The false acceptance probability under consideration of bit-

errors equals:

𝑃𝐹𝐴,𝑟𝑒𝑎𝑙 = 2|𝐱c|+|𝐱r| ∑ (
|𝒙𝒓|

𝑖
) 𝛽𝑖(1 − 𝛽)|𝒙𝑟|−𝑖

𝑡𝜖

𝑖=0

Assuming a 10%-bit error rate in the internal Arbiter PUF, one may set the threshold to

𝑡𝜖 = 12 and achieve a false acceptance probability of 𝑃𝐹𝐴,𝑟𝑒𝑎𝑙 = 7.3 ∙ 10−6.

67

Note that this is only a factor of 32 larger than the false acceptance probability when a

simple Arbiter PUF is used, without PolyPUF. Especially given larger PUF sizes as used in

practice, e.g. |𝒙𝑟| = 256, this increase in false acceptance probability is diminishing.

The probability of false rejection for the proposed protocol is almost negligibly larger

than the probability for the case that a simple Arbiter PUF is authenticated. The bit-error

rate is denoted by 𝜖 and is not increased by PolyPUF. The probability for correct acceptance

of the Arbiter PUF is:

𝑃𝐶𝐴,𝐴𝑟𝑏 = ∑ (
|𝒙𝑟|

𝑖
) 𝜖𝑖(1 − 𝜖)|𝒙𝑟|−𝑖

𝑡𝜖

𝑖=0

Similarly, the probability of correct acceptance for PolyPUF can be derived by

considering that a larger number of responses are acceptable:

𝑃𝐶𝐴 = 𝑃𝐶𝐴,𝐴𝑟𝑏 + (2|𝒙𝑐|+|𝒙𝑟| − 1) ∑ (
|𝒙𝒓|

𝑖
) 𝛽𝑖(1 − 𝛽)|𝒙𝑟|−𝑖

𝑡𝜖

𝑖=0

Finally, the probability of false rejection is 𝑃𝐹𝑅 = 1 − 𝑃𝐶𝐴 and can be quantified as

𝑃𝐹𝑅 = 0.01 for this example implementation.

4.6.2 Direct Machine Learning

The direct approach of machine-learning on a large CRP set is bound to fail against

PolyPUF, as these CRPs are virtually guaranteed to be derived from multiple different

PolyPUF instantiations. As the exact nature of the instantiation is unknown, it is impossible

to derive the relation between responses of different challenges across different

instantiations. The experimental results for this are shown in section 4.7.2.

4.6.3 Brute-force Machine Learning

In this subsection, we discuss the cost of performing a brute-force attack on PolyPUF by

gathering all possible responses for a given number of challenges, and then training a model

for each possible combination of responses. Let us assume that the internal PUF is

considered to be accurately learned if the number of known CRP pairs reaches 𝑘𝐶𝑅𝑃. Thus,

the attacker aims to gather 𝑘𝐶𝑅𝑃 challenge response pairs of a single instantiation of

PolyPUF. Given challenge seed vector length |𝒙𝑐| and response seed vector length |𝒙𝑅|, the

number of PolyPUF instantiations is 𝑟𝑙𝑖𝑚𝑖𝑡 = 2|𝒙𝑐|+|𝒙𝑟| . For a given challenge 𝒄𝑖 , the

68

probability that the attacker has observed all 𝑟𝑙𝑖𝑚𝑖𝑡 instantiations after issuing this challenge

𝑛𝑡𝑟𝑖𝑎𝑙 times is:

𝑃𝑖 = ∑ (−1)𝑘 (
𝑟𝑙𝑖𝑚𝑖𝑡

𝑘
) (

𝑟𝑙𝑖𝑚𝑖𝑡 − 𝑘

𝑟𝑙𝑖𝑚𝑖𝑡
)

𝑛𝑡𝑟𝑖𝑎𝑙
𝑟𝑙𝑖𝑚𝑖𝑡−1

𝑘=0

For the example implementation with |𝒙𝑐| = 2 and |𝒙𝑟| = 3 it follows that 𝑟𝑙𝑖𝑚𝑖𝑡 = 32.

To achieve a probability 𝑃𝑖 = 99% of having observed all possible instantiations, the

adversary has to issue the same challenge 𝑁𝐶 = 260 times. Thus, the adversary is required

to perform 260 ∙ 𝐾𝐶𝑅𝑃 authentications with the PUF device to gather a sufficiently large

dataset.

 Once this dataset is established, the adversary has to train one model for each

permutation of CRPs in the dataset. Thus, the number of models to be trained is 𝑛𝑚𝑜𝑑𝑒𝑙𝑠 =

𝑟
𝑙𝑖𝑚𝑖𝑡

𝑘𝑐𝑟𝑝
. This brute-force approach guarantees that one of the models was trained on a pure

CRP set that corresponds to a single instantiation. However, the number of models that need

to be learned increases exponentially, and therefore this is not a feasible attack. Even when

a simple Arbiter PUF is used, 𝐾𝐶𝑅𝑃 = 5000 and 𝑁𝐶𝑅 = 32 require training of

approximately 5.6 ∙ 107525 models.

4.6.4 Cross Inference Attack

There are two possible attack vectors for the adversary: Attempt to learn the internal PUF

by gathering true challenge and true response pairs, or attack one shape of PolyPUF by

gathering a CRP set that corresponds to a single shape.

The adversary cannot identify the actual values for the divergence seeds, but he or she

can characterize several of them relative to an assumed initial value of 𝑥𝑐0 and 𝑥𝑟0 from the

initial CRP, which we denote by 𝐶𝑅𝑃0 = {𝑐0, 𝑥𝑐0, 𝑥𝑟0}. The adversary can enumerate all

𝑆𝑐 = 2|𝑥𝑐| possible true challenges and trivially characterize one response with regard to the

initial seeds: 𝐶𝑅𝑃𝑖 = {𝑐0 ⊕ 𝑘𝑐,𝑖, 𝑥𝑐0 ⊕ 𝑘𝑐,𝑖, 𝑥𝑟0}. This can then be expanded so that all

possible responses for these challenges are well characterized with regard to 𝑥𝑐0 and 𝑥𝑟0 by

enumerating the possible response self-divergence operations: 𝐶𝑅𝑃𝑖𝑗 = {𝑐0 ⊕ 𝑘𝑐,𝑖, 𝑥𝑐0 ⊕

 𝑘𝑐,𝑖, 𝑥𝑟0 ⊕ 𝑘𝑟,𝑗}. Then, the set of understood CRPs is 𝑆𝐶𝑅𝑃 = 2|𝑥𝑐|+|𝑥𝑟|. However, it is

impossible to learn and explicitly characterize a CRP that corresponds to a challenge not

found in 𝑆𝑐. Therefore, the number of CRPs that can deterministically be clustered is limited

69

to |𝑆𝐶𝑅𝑃|. While infinitely many of these clusters can be created, they are all characterized

with regard to a cluster-specific assumed 𝑥𝑐0 and 𝑥𝑟0 as reference point and therefore

cannot contribute to a coherent model. This can be proven by considering the set of possible

challenge self-divergence seeds 𝑆𝑥,𝑐. It is notable that every possible bit-vector with length

|𝑥𝑐| is contained in this set, thus |𝑆𝑥,𝑐| = 2|𝑥𝑐|. If challenge 𝑐𝑖 was derived through seed

𝑥𝑐𝑖
= 𝑥𝑐0𝑋𝑂𝑅 𝑘𝑖 , then any seed of derivable challenge 𝑐𝑖+1 can be reduced to 𝑥𝑐𝑖+1 =

𝑥𝑐𝑖
⊕ 𝑘𝑖+1 = 𝑥𝑐0

⊕ (𝑘𝑖 ⊕ 𝑘𝑖+1). As all possible divergence seeds with length |𝑥𝑐| were

explored, it must be that (𝑘𝑖 ⊕ 𝑘𝑖+1) ∈ 𝑆𝑥,𝑐.

Algorithm 4.1 Targeted Machine-Learning Attack

Input:

𝑐𝑙𝑖𝑚𝑖𝑡– limit for number of total challenges to issue

𝑡𝑙𝑖𝑚𝑖𝑡 – limit for repetitions of a single challenge

𝑟𝑙𝑖𝑚𝑖𝑡 – number of possible PolyPUF instantiations

Output:

𝑆𝐶𝑅𝑃- set of selected challenge-response pairs

Current challenge c=GENERATERANDOMCHALLENGE()

Selected Challenge-Response Pairs 𝑆𝐶𝑅𝑃 = { }

Number of issued challenges 𝑛𝑐 = 0

While(𝑛𝑐 < 𝑐𝑙𝑖𝑚𝑖𝑡)

 Previous challenge 𝑐𝑝𝑟𝑒𝑣 = 𝑐

 RANDOMIZE(𝑐)

 Observed Responses 𝑂𝑟 = { }

 Trial number 𝑛𝑡 = 0

 While(𝑛𝑡 < 𝑡𝑙𝑖𝑚𝑖𝑡 And |𝑂𝑟| < 𝑟𝑙𝑖𝑚𝑖𝑡)

 𝑟=PPUF(𝑐)

 𝑂𝑟 = 𝑂𝑟 ∪ 𝑟

 𝑛𝑡 = 𝑛𝑡 + 1, 𝑛𝑐 = 𝑛𝑐 + 1

 𝑟𝑆 = SELECTRESPONSE(𝑂𝑟 , 𝑆𝐶𝑅𝑃 , 𝑐, 𝑐𝑝𝑟𝑒𝑣)

 𝑆𝐶𝑅𝑃 = 𝑆𝐶𝑅𝑃 ∪ (𝑐, 𝑟𝑠)

Simplified Method: SELECTRESPONSE (𝑅𝑂, 𝑆𝐶𝑅𝑃 , 𝑐, 𝑐𝑝𝑟𝑒𝑣)

Selected response 𝑟 = argmin
𝑟𝑖∈𝑂𝑟

|𝑟𝑖 − 𝑆𝐶𝑅𝑃[𝑐𝑝𝑟𝑒𝑣]|

Expensive Method: SELECTRESPONSE (𝑅𝑂, 𝑆𝐶𝑅𝑃 , 𝑐, 𝑐𝑝𝑟𝑒𝑣)

Cost[𝑟𝑖] = 0 for 𝑟𝑖 ∈ 𝑂𝑟

For 𝑐𝑖 where 𝐻𝐷(𝑐𝑖 − 𝑐) ≤ 1, 𝑐𝑖 ∈ 𝑆𝐶𝑅𝑃,𝑘𝑒𝑦𝑠

 For 𝑟𝑖 ∈ 𝑂𝑟

 Cost[𝑟𝑖] = Cost[𝑟𝑖] + 𝐻𝐷(𝑟𝑖 − 𝑆𝐶𝑅𝑃[𝑐𝑖])

Selected response 𝑟 = argmin
𝑟𝑖∈𝑂𝑟

𝐶𝑜𝑠𝑡[𝑟𝑖]

70

4.6.5 Targeted Model-Building

Considering that the intended application of PolyPUF is to strengthen an internal PUF

with weak machine-learning resistance, an attack may exploit the weak statistical properties

of this internal PUF. These weak statistical properties imply that the avalanche criterion is

not met, and that one CRP reveals information on arithmetically close other challenges as

shown in equation (4.1). An adversary may attempt to exploit this behavior to identify those

CRPs that are of the same PolyPUF instantiation. If the adversary can gather a large set of

CRPs that correspond to the same PolyPUF instantiation, then he or she can perform simple

machine-learning on it and should achieve results similar to those of directly attacking the

internal PUF.

In Algorithm 4.1, we outline an approach to gather a set 𝑆𝐶𝑅𝑃 of challenge-response pairs

that have a better than average probability of belonging to the same PolyPUF instantiation.

The attacker first issues a random challenge and remembers the response it receives. It then

repeatedly selects new challenges that have a Hamming distance of one to the previous

challenge. For this purpose, the function RANDOMIZE performs a random bit-flip and

ensures that the resulting challenge has not been processed yet. For each of these challenges,

the algorithms attempt to perform a full response-space exploration by re-issuing the same

challenge until either (i) the maximum amount of distinct responses 𝑟𝑙𝑖𝑚𝑖𝑡 = 2|𝑥𝑐|+|𝑥𝑟| have

been observed, or (ii) a desired limit of PUF transaction 𝑐𝑙𝑖𝑚𝑖𝑡 has been reached. At that

point, it chooses the most probably response.

The algorithm repeatedly selects new challenges with Hamming distance of one to each

other, so that a larger section of the challenge space can get explored while maintaining a

short distance between consecutive challenges, so that the statistical weakness of the internal

PUF is maximally exploited.

Although this approach appears to be a promising attack as it exploits the weak statistical

nature of the internal PUF, two disadvantages have to be specified: (i) It has to be

emphasized that equation (4.1) only applies to the average of a large set of CRPs, and

certainly does not apply to every CRP. With this attack approach, there will be incorrect

selections, which will lead to propagation errors. (ii) Any PUF without error correction will

experience a certain number of bit errors, which will also propagate through the response

selection and lead to a larger count of incorrect selections.

Even though it is not successful, it should be noted that this attack requires multiple

orders of magnitude more challenge-response interactions with PolyPUF compared to a

71

direct attack against the internal PUF. The experimental results of this attack are presented

in subsection 4.7.4.

4.7 Experimental Evaluation

We evaluated a synthetic implementation of PolyPUF under machine-learning attacks

and compare results to our implementation of the NBPUF architecture, described in section

4.2.6.4. Both architectures are designed to increase the modeling resistivity, hence we

evaluate with the weakest known internal PUF from section 4.2, the simple Arbiter PUF.

For PolyPUF, |𝒙𝑐| = 2 and |𝒙𝑟| = 3. For the NBPUF, we select 𝑑 = 2 as proposed by the

authors. We note that for the evaluation of it, we allow four times the number of output bits

compared to PolyPUF, as the architecture requires omitting three-fourths of output bits.

Table 4.1 Model-building error rates for multiple PUF configurations with varying number of

hidden neurons and one million CRPs training set size. The most effective number of neurons

is bolded and used for the following evaluation steps.

Configuration Size Neurons Error Rate

Simple Arbiter

32x32

10 0.042%

20 0.041%

30 0.042%

64x64

10 0.049%

20 0.049%

30 0.052%

2-XOR Arbiter

32x32

30 0.82%

40 0.78%

50 0.82%

64x64

40 0.78%

50 0.78%

60 0.79%

4-XOR Arbiter

32x32

50 8.99%

60 8.97%

70 8.84%

64x64

60 9.14%

70 8.98%

80 9.02%

72

4.7.1 Machine-Learning Setup and Preparation

The ANN was trained with RPROP as specified in section 4.2.4 using Matlab. The

termination criteria were set to be 1000 epochs, a performance gradient of less than 10−5,

or six iterations with decreasing validation performance.

We challenge the practice of performing machine-learning attacks on a single PUF

output bit and emphasize that the following are based on training of all output bits. This has

two reasons: First, PUF is based on intrinsic physical variations and when observing a single

PUF output bit, the results can be skewed and may not be representative. Second, most

machine-learning algorithms use a random initialization vector; therefore, a single response

bit evaluation increases the evaluation dependence on this initialization.

The capability of ANNs can be controlled through the number of neurons in the hidden

layer. Although there are heuristics, there is no analytical solution to derive the optimal size

of the hidden layer for a practical problem such as building a PUF model. Therefore, we

experimentally evaluated each of the internal PUFs with varying number of neurons in the

hidden layer to find the least error rate configuration. These experiments simultaneously

provided the baseline for the following experiments, and also provided insight into the

current weakness of PUF scalability. The results of this evaluation are shown in Table 4.1.

The optimal number of neurons was experimentally derived for each configuration and size

of the Arbiter PUF, and is highlighted in bold font in the table.

As discussed in section 4.2.4.1, the number of neurons together with the error rate

provides insight into the pattern complexity. These experiments emphasize a key problem

with PUF: the CRP space is easily expanded, but the pattern complexity and resistivity

against model-building attacks do not scale accordingly. Moving from a PUF size of 32x32

to 64x64 has almost negligible impact on the complexity of all three PUF configurations,

which can be observed in the number of neurons in the hidden layer and the error rate.

After deriving the optimal number of neurons for each internal PUF, we performed

experiments on PolyPUF and NBPUF with this optimal ANN configuration.

73

4.7.2 Resistance Against Malicious Model-Building

A comparison of ANN-based model-building against various configurations of a basic

PUF architecture, the NBPUF, and PolyPUF is shown in Table 4.2. For each architecture,

this table evaluates the model-building error against three internal PUFs: An Arbiter PUF

which is expected to have the least model-building resistivity, a 2-XOR Arbiter PUF, and a

4-XOR Arbiter PUF with the highest model-building resistivity. To illustrate the increasing

modeling accuracy with a larger training size, this table provides the error rates for training

set sizes between 5k and 1M CRPs. The table shows that PolyPUF is the only architecture

that can withstand model-building attacks even when 1 million CRPs are trained. Error rates

in italic font are less than 5% and denote attack scenarios under which the PUF is considered

to have been broken.

Table 4.2 Comparison of a basic PUF architecture, NBPUF, and PolyPUF architecture, each

with multiple different internal Arbiter PUFs. For model-building error rate, closer to 50% is

better, as it characterizes modeling resistivity. For random guessing probability 𝑃𝑟𝑎𝑛𝑑 , lower is

better.

Architecture

32x32 Internal PUF

Model-Building Error Rate
𝑷𝑭𝑨,𝒊𝒅𝒆𝒂𝒍 5k CRPs 50k CRPs 500k CRPs 1M CRPs

Basic

0.66% 0.15% 0.053% 0.041%

2−32 6.81% 1.05% 0.77% 0.78%

38.81% 12.68% 8.94% 8.84%

NBPUF

2.44% 0.048% 0.001% 0%

2−8 15.67% 0.92% 0.16% 0.13%

40.78% 14.05% 5.07% 4.57%

PolyPUF

50.1% 49.97% 50% 50%

2−27 50.01% 49.97% 49.99% 50.01%

50.1% 49.96% 49.99% 49.95%

Architecture

64x64 Internal PUF

Model-Building Error Rate 𝑷𝑭𝑨,𝒊𝒅𝒆𝒂𝒍

5k CRPs 50k CRPs 500k CRPs 1M CRPs

Basic

1.08% 0.2% 0.062% 0.049%

2−64 19.35% 1.43% 0.88% 0.78%

45.4% 18.51% 9.54% 8.98%

NBPUF

7.28% 0.2% 0.003% 0%

2−16 27.05% 3.31% 0.23% 0.17%

45.74% 26.92% 5.84% 4.89%

PolyPUF

49.99% 49.98% 50% 50.01%

2−59 50.16% 49.98% 50% 49.97%

51.97% 50% 49.99% 50.01%

74

As the results are consistent and for brevity, we only discuss the results for 5k and 1M

CRPs. For the same reasons, we only discuss the simple Arbiter and 4-XOR Arbiter PUFs.

The probabilities for successful guessing attacks for various PUF configurations are

shown in the last column of Table 4.2. As previously described, the polymorphic nature of

PolyPUF leads to a small increase in the success probability of such an attack, but it remains

clearly lower than that of the NBPUF.

Three clear patterns can be observed from this table: (i) the model-building error rate

and hence resistance increases with a more complex internal PUF; (ii) increasing the training

set size reduces the prediction error rate; (iii) scaling the PUF by increasing the challenge-

length from 32 bits to 64 bits has minimal impact. These results support the motivation that

a new approach to model-building resistance is needed.

For a 32x32 Arbiter PUF as internal PUF, the basic architecture and NBPUF architecture

are learned to error rates of only 0.66% and 2.44% respectively with only 5k CRPs in the

training set. This implies that both of these architectures are considered to have been broken.

As the training set size is increased, the error rate only decreases. In contrast, even with a

significantly larger training set of 1M CRPs, the error rate against PolyPUF is 50%;

therefore, the model-building resistance of PolyPUF exceeds that of the reference

architectures by multiple orders of magnitude.

For the very complex 4-XOR Arbiter PUF as internal PUF, the baseline architectures

perform much better. For the case of 5k CRPs, the 32x32 basic architecture and NBPUF

achieve an error rate of 38.81% and 40.78%. The model-building attack against PolyPUF

had an error rate of 50.1%, which is clearly higher, but all of these architectures are

considered to have resisted this model-building attack. As the intensity of the attack is

increased by increasing the training set size to 1M CRPs, PolyPUF shows its advantages.

Whereas the basic architecture and the NBPUF have error rates of 8.84% and 4.57%

respectively and thus were sufficiently modeled, PolyPUF has an error rate of 49.95% and

thus remained resistant against this attack.

Another observation from Table 4.2 is the weakness of the NBPUF compared to the

basic architecture. Although the error rate is larger for the NBPUF for smaller training sets,

it is half of the error rate of the basic architecture under a training set of one million CRPs.

This suggests that a large training set allows an ANN to train the NBPUF very efficiently.

75

We propose that such a large training set is sufficient to identify the patterns in the PUF

challenge-response behavior to identify those bits that randomly flip, and those that are

consistent. Whereas random bits are impossible to learn, the consistent bits are learned with

a much higher accuracy, as they remain consistent across multiple challenges. As the

NBPUF only utilizes the consistent bits and discards the random bits in the evaluation, a

well-trained ANN can model it to high accuracy.

Overall, the results in this table support our claim that PolyPUF is able to drastically

increase the model-building resistivity of PUFs and that the polymorphic behavior is able

to confuse machine-learning algorithms even when very large training data is employed.

4.7.3 Model-Building Authentication Attack

Figure 4.4 illustrates the per-bit error rate of the learned models for the basic architecture,

NBPUF, and PolyPUF. For each of these architectures, the model for the 64x64 PUF which

was trained with 1M CRPs from Table 4.2 was evaluated for 5k malicious authentication

attempts. For authentication, the Hamming distance between malicious authentication

attempts and noisy responses of a true PUF is significant to determine a viable acceptance

Figure 4.4 Comparison of five thousand malicious ANN authentication attempts. Depicted is

the error rate of malicious authentication attempts, where higher is better. From left to right,

the internal PUF is a simple Arbiter PUF, 2-XOR Arbiter PUF, and 4-XOR Arbiter PUF. Only

PolyPUF has a consistent threshold to the illustrated typical PUF error rate.

Table 4.3 Results of the simple and improved targeted model-building attacks that attempt to

exploit the statistical weakness of the internal PUF.

Metric Simple Improved

ANN error rate 49.44% 51.5%

Mean 𝑯𝑫(𝒙𝒄) 1.04 0.94

Mean 𝑯𝑫(𝒙𝒓) 1.56 1.35

Mean total HD 2.6 2.29

Correct selection 1.68% 5.81%

76

threshold. These figures emphasize that PolyPUF is the only architecture that maintains a

consistent distance to a typical PUF bit-error rate, which is approximated to 10%.

4.7.4 Targeted Model-Building Experiment

The outcome of the targeted model-building attack is summarized in Table 4.3. The

result of the simplified method of targeted model-building is an error rate of 49.44% and

50.1% for 1M and 100M total issued challenges. These total challenges correspond to

10,289 and 1,029,167 gathered challenges, respectively. These results demonstrate that this

targeted model-building attack does not increase the success probability of an adversary, as

PolyPUF behavior remains a virtual blackbox. The underlying reason for this successful

defense is shown in Figure 4.5. The Hamming distances between the seed value for the

initially selected response and subsequently selected responses are shown. Clearly, the

fundamental idea behind the attack holds, and multiple consecutive challenges that

correspond to the same divergence seed values are found. However, these results also

demonstrate that the overall Hamming distance behaves almost like white noise, and

therefore the attacker is learning multiple different instances of PolyPUF and cannot infer a

clear model. Since it is impossible for the adversary to consider only those responses that

have same seed values, the attack is bound to fail. The visualization of the Hamming

distances in the more expensive selection approach is very similar and thus omitted for

brevity.

Figure 4.5 Hamming distances between the original seed value and the seed values in the

selected responses in the simplified targeted model-building attack.

77

4.7.5 Implementation Cost

PolyPUF offers multiple hardware implementation cost improvements. First, PolyPUF

solves the requirement of error correction or cryptographic hashing for authentication and

thereby removes two heavyweight but common components in existing PUF protocols [32],

[79]. Second, due to the self-divergent approach, PolyPUF does not need a dedicated

random number generator and can instead take advantage of the internal PUF itself. This

reduces the number of hardware units as well as requiring less usage of conventional

security techniques to prevent invasive attacks.

With the drastically increased strength against machine-learning, the internal PUF does

not need to be duplicated multiple times. In contrast, existing protocols such as the Slender

PUF protocol [30], [83] and the NBPUF [72] require a Strong PUF that meets the avalanche

criterion. In the following evaluation, we approximate a Strong PUF with a 4-XOR Arbiter

PUF.

The following is a quantitative analysis of the implementation overhead of PolyPUF

compared to other PUF architectures for a Xilinx Virtex XC5VJX58T, which was chosen

for comparability with existing literature [30].

To achieve comparability among multiple architectures, the implementations are driven

by the requirements that (i) the internal PUF generates longer responses through challenge

expansion and that (ii) a full response is generated as part of the PUF structure, rather than

streaming individual bits of the PUF response. Each of these architectures is applied on a

PUF with 64 input bits. As with the previous evaluation, we consider PolyPUF with 64

output bits and a simple Arbiter PUF as the internal PUF. As both the Slender PUF and the

NBPUF require a Strong PUF, they are implemented with 4-XOR Arbiter PUFs, which have

a higher error rate. The results of Rostami et al. [83] suggest an error rate of 13.2% for a

simple Arbiter PUF and 43.2% for a 4-XOR Arbiter PUF.

 The high error rate of the required internal PUF requires that the NBPUF transmits a

very long response. According to the formulas provided by Yu et al. [72], even selecting a

response length of 400 bits and a threshold of 133 bits leads to a false rejection rate and false

acceptance rate of 11.9% and 7.3% respectively, both of which are far inferior to the

statistical properties that PolyPUF achieves. For conservative comparison, we evaluate

against this configuration, although it provides less security than PolyPUF.

78

The false acceptance and false rejection rates for the Slender PUF [30] can be reduced

to the same equations as the NBPUF architecture for the case that 𝐿𝑠𝑢𝑏 = 𝐿 , which is

beneficial for evaluation of these statistical properties.

 Our implementations of Slender PUF and NBPUF use the same approach for combining

the prover and verifier nonce through an XOR operation. As a further energy optimization

in the NBPUF, we assume that the PUF response is not generated for the bit that is discarded.

Similarly, we assume that PUF responses that are skipped during substring selection in the

Slender PUF are not generated to save energy.

The energy cost comparison in Table 4.4 shows the number of operations that each PUF

architecture requires generating a full response. We do not further quantify the energy cost

as it is highly dependent on implementation, platform (e.g. FPGA, ASIC), and means of

data transmission. However, we would like to emphasize the clear trend that PolyPUF

requires the least energy for both generation and transmission of a response. A single PUF

operation is significantly more expensive than an XOR operation, as the signal has to travel

Table 4.4 Energy cost comparison of lightweight PUF architectures based on a comparison of

individual operations. These operations reflect a generation and transmission of one full response.

Operation Slender NBPUF PolyPUF

PUF 4 * 400 4 * 800 3 * 64

LFSR 400 to 800 800 64

TRNG 64 + 5 64 + 800 N/A

2-XOR 64 64 3 * 64

4-XOR 400 800 N/A

Transmit 64b + 400b 128b + 800b 64b

Table 4.5 Implementation cost comparison of the primary security components of lightweight

PUF architectures measured in look-up tables (LUT).

Component Slender NBPUF PolyPUF

PUF 4*128 4*128 128

LFSR 10 10 10

TRNG 128 128 N/A

𝒙𝒄/𝒙𝒓 N/A N/A 14

CSD/RSD N/A N/A 61

Total 650 650 213

79

through 64 stages. Furthermore, we note that most protocols do not consider the cost of data

transmission, although it may require most of the available energy budget. Particularly for

wireless sensor networks and similar mobile applications, data transmission can be the

primary source of energy consumption [68]. In contrast to PolyPUF, both reference

architectures transmit longer responses and exchange nonces. PolyPUF requires 93.1% less

transmission than NBPUF and 82.6% less than the Slender PUF. As Wander et al. [68]

found that transmission of a single bit is equivalent to roughly 2090 clock cycles of

execution on the microcontroller under test, it is clear that the reduction in response length

leads to significant energy savings.

The hardware implementation cost of PolyPUF in comparison to the reference

architectures is shown in Table 4.5. To achieve a conservative comparison, we evaluated

only the security relevant components and disregarded control logic. Similar to PolyPUF,

both reference architectures are highly efficient and do not require error-correction or

cryptographic hash functions. Therefore, the primary cost reduction is achieved because

these reference architectures require usage of a Strong PUF, which is here implemented as

a 4-XOR Arbiter PUF. This PUF is roughly four times as expensive as the simple Arbiter

PUF that PolyPUF employs. Additionally, PolyPUF employs the internal PUF for random

number generation and has a small overhead for generation of 𝑥𝑐 and 𝑥𝑟 in contrast to the

TRNG that the reference architectures require. As they operate in sequence and can

therefore re-use the same hardware, challenge and response self-divergence are lightweight

as well. Note that response generation in PolyPUF will be much faster, as this comparison

assumed sequential generation of response-bits. To achieve a similar throughput to

PolyPUF, the reference architectures would require more parallel PUF components.

4.8 Conclusion

The primary challenges for PUF are their reliability under environmental variations, and

their resistivity against advanced machine-learning-based model-building attacks. Existing

techniques to increase PUF model-building resistivity are not scalable due to their

detrimental effect on PUF reliability.

We proposed PolyPUF, a widely applicable PUF architecture that employs challenge

and response self-divergence to provide polymorphous PUF behavior. This changes the

challenge-response behavior to be non-deterministic and unpredictable, while still being

verifiable in an authentication scenario. In an extensive evaluation, this polymorphic

80

behavior was shown to provide strong resistivity against model-building attacks and was

the only architecture to withstand an ANN model trained with one million CRPs by

increasing the model-building resistance by more than an order of magnitude. Moreover,

PolyPUF achieves model-building resistance without negatively affecting the reliability of

the PUF device, which uniquely qualifies it for practical scenarios.

As part of our experimental evaluation, it was shown that neural networks with large

training size overcome deterministic noise such as that induced by the NBPUF architecture.

Therefore, truly random behavior such as that exhibited by PolyPUF is a necessity.

We have further demonstrated that PolyPUF introduces less hardware overhead than

reference architectures, and reduces the energy cost of generating a PUF response.

Additionally, PolyPUF requires transmission of much smaller responses, which can provide

significant energy savings.

Although existing work has shown that synthetic PUFs behave very closely to silicon or

FPGA implementations, the strength of PolyPUF should be evaluated in a silicon or FPGA

implementation in future work. This will also enable exploration of side-channel leakage

and optimized designs to counter this.

81

CHAPTER 5

HIGH-LEVEL SYNTHESIS FOR

HARDWARE TROJAN HORSE DEFENSE

5.1 Introduction

The Internet of Things (IoT) is the next step towards pervasive and ubiquitous computing

and has the potential to drastically change the society through constant recording,

processing, and communication of data. Due to the need for light-weight, secure, and

reliable communication, new protocols and use cases for the IoT are explored [84]. With

the lightweight requirements of IoT, it is important to provide the flexibility of establishing

where security enhancements are required, and to what extent these enhancements should

be performed. For instance, an encrypted video stream that is transmitted by a smart video

recording system is already protected in its transmission through the encryption. At the

hardware level, the security enhancements can be focused on protecting the cipher key for

encryption and decryption against any form of information leakage, rather than guaranteeing

that the encoding of the video stream is leakage-free. Although the video footage may be

considered confidential, it is easier to detect its leakage due to the size of the corresponding

transmissions.

Security and trust in integrated circuits (ICs) remain an ongoing concern, as a security

breach at the hardware-level exposes even provably secure algorithms and protocols to

vulnerabilities. Among the threats that hardware security faces, hardware Trojans have

emerged as one of the major security concerns due to the economically incentivized

increased outsourcing of IC fabrication to third parties that cannot be fully trusted [85], [86].

Such Trojans are not only found in consumer grade electronics, but can exist in mission-

critical military equipment as well. Recently, a backdoor was discovered in a military grade

FPGA that was implemented in the silicon of the chip itself and could be used to extract

secrets and even reprogram the device [87].

Hardware Trojans can be inserted in different stages of the design and fabrication

process, and are characterized by the trigger, which activates the Trojan operation, and by

the payload, which is the malicious deviation from the intended system behavior. Trojans

82

are triggered by one or more rarely switching nets or a sequential combination of them,

which makes activation during testing highly difficult, especially due to the increasing

density of integration. The payload can have a destructive impact, e.g. modifying signals or

deteriorating the circuit, or can have the purpose of leaking confidential information.

Hardware Trojans which leak confidential information as their sole payload have been

characterized as especially dangerous, as they minimally change the overall system behavior

[88]. For instance, a hardware Trojan was shown to be capable of inferring and leaking the

secret key in an advanced encryption standard (AES) circuit implementation without

directly probing it [89]. Even secure storage of the cipher key, e.g. in a physically unclonable

function (PUF) which is highly volatile against physical modification or probing, would not

prevent this indirect information leakage. An example Trojan which indirectly leaks the

cipher key by tapping into the net containing the round key in the ‘Add Round Key’ phase

of AES is shown in Figure 5.1.a). Ideally, the confidential information, in this case the cipher

key, is dispersed over multiple operations as shown in Figure 5.1.b). As the information

contained in the cipher key and all dependent instructions and values such as the round key

is dispersed through multiple paths, the device does not expose a single point of

vulnerability anymore and, therefore, is much less likely to be successfully infiltrated by a

hardware Trojan. Although Trojans inserted in the design or manufacturing stage should

ideally be detectable in pre- or post-silicon verification and testing respectively, the

Figure 5.1. a) Simplified example of a hardware Trojan for indirect leakage of the cipher key

in AES, b) dispersed cipher key to prevent hardware Trojan insertion.

83

complexity of state-of-the-art ICs make such exhaustive tests infeasible, leaving the need

for alternative detection and prevention solutions.

As hardware Trojans that are inserted by a malicious manufacturer and indirectly leak

security critical information are extremely difficult to detect after insertion, this chapter

focuses on an HLS flow to prevent Trojan insertion and strongly increase detection

probability where full prevention is not possible. This problem is especially significant for

emerging devices in the IoT space, as they have to meet the highest security standards to

gain consumer confidence and defense approval, but have to rely on external foundries due

to their size and economic reasons.

An earlier version of this chapter appeared in [90], where we introduced a high-level

synthesis flow for prevention of hardware Trojan insertion by an untrusted manufacturer. In

this chapter, we extend the contributions of [90] through the following unique contributions:

 A threat-targeted high-level synthesis flow against Trojan insertion that can be

adapted for a range of threat scenarios.

 A flexible metric to model the security against Trojan insertion attacks with the

goal of information extraction.

 A targeted obfuscation scheme to camouflage the effect of information

dispersion and mislead reverse engineering attempts.

 New experimental results that emphasize the proposed synthesis flow’s ability

to target specific threat parameters by achieve security metrics that exceed the

baseline by a factor of at least 8.37 under constant resource constraints.

This chapter is structured as follows. Section 5.2 describes relevant background and

related work. The threat model and goals of the adversary are described in section 5.3.

Section 5.4 describes threat-targeted high-level synthesis, and introduces information

dispersion and obfuscation as inherent parts of the synthesis flow. In section 5.5, we present

an experimental evaluation. The chapter is concluded in section 5.6. This chapter was

partially published in [90].

5.2 Background

5.2.1 Related Work

Design techniques for hardware Trojan defense can be categorized into three areas –

mitigating against destructive Trojans through redundancy [91], improving detection

84

probability of Trojans [92], and increasing the insertion difficulty [93], e.g. by reducing

rarely switching nets that are ideal candidates to trigger a Trojan payload. Synthesis flows

to increase system reliability and avoid destructive Trojans by utilizing multiple different

third party IPs (3PIPs) with the same functionality to detect deviation are studied in [91],

[94]. Ben Hammouda et al. [95] have developed a technique to use ANSI-C assertions in

HLS to automatically generate on-chip monitors (OCM) for verification of hardware

accelerators, which has the primary application of increasing reliability. Trojans inserted in

the manufacturing stage can be detected by analyzing the path-delay fingerprints [96],

issuing targeted test patterns based on likely Trojan insertion points [97], or analyzing the

side-channel emissions of a device-under-test [85], to name several recently proposed

techniques. Although the contribution of detection is significant as it can deter Trojan

insertion, it is not capable of actually preventing it. Multiple works have approached the

problem of filling unused circuit area that could otherwise be exploited for Trojan insertion

by a malicious manufacturer to increase insertion difficulty [98]. Xiao and Tehranipoor [92]

have proposed built-in self-authentication (BISA), which employs functional filler cells that

contribute to a digital signature. A secondary technique to prevent Trojan insertion is the

minimization of the adversary’s ability to identify nets that can be used to trigger the Trojan.

In [99], the authors describe efficient obfuscation through insertion of small obfuscation

cells in conjunction with a PUF generated response to derive chip-dependent licenses.

Chakraborty and Bhunia [100] describe the application of obfuscation against the insertion

of Trojans by forcing the device to operate in a normal and an obfuscated mode, thereby

expanding the reachable state space and hiding signal probabilities.

In contrast to existing work, we propose the first security optimized HLS flow that

increases the difficulty of hardware Trojan insertion by a malicious foundry and therefore

helps to prevent it. The proposed synthesis flow hides security critical information by

dispersing it on the circuit, such that the malicious foundry would be required to insert a

large number of Trojans in different circuit locations. As actual circuits are very large and

contain an ever increasing number of nets, hiding the security critical information is a more

feasible approach than attempting to minimize the adversary’s ability to find suitable trigger

signals by targeting rare switching nets. The proposed work can be combined with existing

research in side-channel resistance and OCMs to achieve complete security through

synthesis.

85

5.2.2 Need for Obfuscation

As described in the previous subsection, there exist a range of sophisticated and diverse

defense mechanisms. However, the potential threat vectors to ICs are similarly diverse, as

further described in section 5.3.3. Thus, it is very possible that the adversary gains precise

understanding of the underlying circuit before attempting to insert Trojans. Moreover, a

malicious party generally requires detailed understanding of the design as well as a detailed

analysis of the control flow graph and state transition function prior to Trojan infiltration.

The adversary needs to understand (i) which nets contain the desired secret information, and

(ii) what the switching probabilities of local nets are, to identify a suitable rarely switching

trigger for the Trojan. Therefore, obfuscation is an important technique to increase the

difficulty of Trojan insertion by hiding the actual circuit behavior and switching

probabilities. Additionally, the information dispersion flow that was previously introduced

in [90] cannot achieve its full strength if the adversary can easily derive the full control-flow

graph, as further described in section 5.4.4. However, conventional obfuscation flows do

not integrate well with the proposed high-level synthesis flow, as the proposed information

dispersion attempts to maximally utilize available resources. Moreover, such flows do not

inherently consider the effects of information dispersion and thus will introduce obfuscation

where it is ineffective and has no practical benefits. To mitigate this risk and further increase

the security of the synthesized design, this chapter introduces obfuscation in co-optimization

with information dispersion and is embedded in the synthesis.

5.2.3 Vulnerability Characteristics

The vulnerability of a circuit-level design to hardware Trojan insertion for information

leakage by a malicious foundry can be characterized with three metrics: (i) the amount of

available circuit area that can be used to insert Trojan payload, which includes area that is

only artificially filled with dummy cells; (ii) the availability of rare-switching nets that can

be used for Trojan activation; (iii) the availability of nets carrying the desired security

critical signal. Whereas (ii) has been studied in the past, we present a fully automated flow

in this chapter to simultaneously minimize (i) and (iii) such that the risk of Trojan insertion

is drastically reduced.

86

5.3 Adversary Objective and Threat Model

The objective of the proposed flow is to defend the synthesized design against Trojans

inserted by a malicious manufacturer. This defense is primarily concerned with Trojan

resistance, i.e. increasing the required effort and resources that an adversary has to invest to

inject a Trojan into the design. A secondary objective is the facilitation of Trojan detection

if prevention was not successful. Therefore, the threat model targeted in this chapter is

different from those commonly studied for hardware security [101]. The majority of

proposed Trojan defenses are geared towards detecting them after insertion, for instance

through comparison with a golden design, performing side-channel analysis, or targeted

functional testing [102]. The prevention of manufacturer inserted Trojans that leak

confidential information is a particularly difficult problem, as such Trojans do not

noticeably change circuit signals. Due to the need to account for manufacturer and

environment variations, runtime detection of such leakage Trojans is rarely possible.

5.3.1 Attack Goal

The adversary intends to insert Trojans into the device with the objectives of: (i)

revealing confidential information which is not externally observable; (ii) revealing this

information based on a deterministic (though not necessarily external) trigger signal; (iii)

hiding this information leakage from detection by the trusted party. The leakage channel for

this intentional information leakage is not further specified, though modulation of a wireless

transmission as demonstrated in [103] is representative of the threat.

5.3.2 Adversary Capabilities

The malicious foundry is capable of inserting a Trojan into the layout provided by the

trusted party, which includes tapping into existing signal routing for both the trigger and the

payload of the Trojan. Due to the engineering difficulty and cost, as well as the increased

probability of detection in testing, the adversary is assumed to be incapable of performing

significant modifications to existing placement and routing in the layout, with the exception

of the removal of transistors that are clearly detected as redundant (e.g. dummy cells). In

line with the attack goal of avoiding detection, the adversary further has only limited routing

capability.

Moreover, in addition to knowledge of the layout, the motivated adversary is assumed

to have gained full access to the high-level design description of the fabricated hardware.

87

As motivated earlier, this is possible through knowledge transfer, IP theft, or reverse

engineering. For high-security applications in the military or for the widely connected IoT,

security may not depend on the secrecy of the design. Thus, further scrambling of the circuit

behavior is necessary to reduce the adversary’s ability to gain deep insight into the device’s

actual functional behavior and control flow.

5.3.3 Diverse Threat Spectrum

Obfuscation solves the problem that all locations for Trojan insertion are apparent if the

control flow can be fully analyzed and understood. Therefore, there are diverse threat

situations. In one case, the primary threat is that an adversary could potentially perform a

deep analysis of the available layout data in the manufacturing process, which leads to

detailed understanding of control flow and security critical nets. In this situation, a high

degree of obfuscation is very desirable to mitigate the adversary’s ability to fully understand

the underlying logic. This threat is referred to as the Analytical Threat in the following. A

different threat situation exists if the secrecy of the exact control flow is less critical, for

example when the manufacturing adversary is also expected to perform a significant share

of the post-manufacturing validation and thus requires intimate understanding of the

underlying device behavior. Similarly, it is also possible that the control flow is already

highly complex or is protected with other countermeasures, such that reverse engineering

and analysis are not primary concerns. Split-manufacturing is another technique where the

analytical threat is reduced as the adversary has limited understanding of the full design. In

such situations, the trusted party would emphasize the physical threat and therefore

information dispersion over the analytical threat or increased obfuscation. To achieve a

Dispersion FlowDispersion Analysis

Security
Annotations

Initial TIP
Derivation

Entropy
Estimation

Entropy Library

Criticality
Determination

Entropy
Table

TIP Table

Critical
Instructions

Obfuscation Flow

Critical-To-
Critical Links

Non-Critical-To-
Critical Links

Keyed Link Library

Resource Analysis and Optimization

Co-
Optimization

Threat Targeted
Configuration

Dispersion
Cost Analysis

Technology
Library

Target
Dispersion

C-code

LLVM
Compilation

Binding

Allocation

Scheduling

RTL
Design

HDL Generation

Path
Selection

Operator Sharing
(in binding)

Target
Obfuscation

Figure 5.2 The threat-targeted high-level synthesis flow extends typical high-level synthesis steps

with a dispersion analysis, resource analysis with optimization of security parameters, and

obfuscation as well as dispersion flows.

88

synthesis flow that is widely applicable, the flow must seamlessly support defenses against

the entire threat spectrum, ranging from an analytical threat to a primarily physical threat.

5.4 Threat-Targeted Synthesis

The proposed security-centric HLS flow is implemented in the LLVM compiler

infrastructure [104]. At the core of LLVM is the intermediate representation (IR), which is

a low-level programming language that can be considered to be a machine-independent

assembly language. The overall flow is presented in Figure 5.2. The typical HLS flow

consists of allocation for determination of available hardware units under consideration of

constraints, scheduling to assign operations into clock cycles and to generate a finite state

machine (FSM), and binding, which assigns operations to hardware units. These HLS steps

are further described in sections 5.4.8 and 5.4.9. The flow extends these common steps by

further steps for security optimization. First, a dispersion analysis derives key characteristics

that allow highly resource efficient defense measures. Then, a resource analysis with co-

optimization of security target parameters for dispersion and obfuscation is performed.

Information dispersion is the key technique to ensure that the difficulty of Trojan insertion

is greatly increased by dispersing security critical values across multiple operands, so that

the adversary’s ability to leak such information is greatly reduced. Information dispersion

is complemented with obfuscation to hide the internal results of the dispersion flow and

scramble the control flow to further reduce the adversary’s ability to understand the design

and derive adequate leakage payload or trigger signals.

First, the security critical instructions are derived by analyzing security annotations

provided by design engineers. Then, the initial Trojan insertion points (TIPs) and instruction

entropy are determined for each critical instruction. From these results, resource driven

information dispersion is performed to introduce artificial dispersion for operators and

registers to increase both the difficulty of Trojan insertion and the probability of Trojan

detection. Through resource-targeted security optimization, the proposed flow inherently

minimizes the available unused circuit area and removes the need for abundant dummy cell

insertion.

5.4.1 Definitions and Notation

The term entropy, in general, is used to refer to the expected amount of information. For

instance, in the case of error correction in PUF [82], this term refers to the amount of security

89

critical information specifically. Entropy of instruction 𝑖 is denoted as 𝑆𝑖 ∈ [0,1] . We

define information decay 𝜅 as the degree to which a value loses entropy when combined

with non-critical values. We denote the initial number of TIPs for instruction 𝑖 to expose the

original secret value (OSV) by 𝜏𝑖. The degree of information dispersion 𝑑 is defined as the

minimum number of circuit signals to be simultaneously observed to guarantee full

observation of the OSVs under consideration of entropy loss. The degree of obfuscation is

denoted by 𝜎. Vectors and mathematical sets are denoted by an uppercase character, e.g. the

set of processed instructions 𝑉. Tables are denoted by an uppercase 𝑇, e.g. the entropy table

for operand types 𝑇𝑆.

5.4.2 Dispersion Analysis

Through dispersion of critical information, the secret information is distributed among

different physical paths and only one of the alternate paths processes the actual value.

Therefore, the adversary is required to insert a Trojan into all locations to guarantee

successful leakage of the critical information. As part of the automated synthesis flow, the

individual critical paths are clock gated such that the overhead in power consumption is

negligible and only the active path operates normally.

5.4.2.1 Identification of Critical Instructions

The starting point of the proposed flow is the high-level description of the functionality

in C-code with (minimal) additional security annotation: (i) those functions or variables 𝑖𝑐

that contain OSVs have to be annotated. (ii) the functions or variables that are explicitly not

security critical 𝑖𝑠𝑎𝑓𝑒, despite possibly having critical inputs. These annotations allow the

synthesis to perform highly targeted operations. Note that the algorithm automatically

determines all dependent instructions, and hence it is sufficient to specify only the initial

occurrence of a critical value, which introduces minimal engineering overhead. To continue

the example in Figure 5.1, specification of the cipher key as critical is sufficient, and the

flow will automatically derive the XOR operations and the round keys are security critical

as well. In addition to this, the designers may optionally specify that the cipher, which is the

result of the encryption, should not be treated as critical and would therefore mark the

outcome of the encryption method as safe. This helps to reduce the cost, but is largely

already contained in the automatic entropy estimation. The proposed security flow iterates

through the IR and resolves direct and indirect dependencies of the critical instructions

90

while terminating the exploration at the safe instructions. The outcome of this exploration

is a complete list of every instruction that directly or indirectly depends on the OSVs, which

includes memory accesses and registers.

5.4.2.2 Determination of Artificial Dispersion

To achieve the target dispersion 𝑑𝑡 , which is derived as part of the dispersion and

optimization co-optimization in section 5.4.5, the security optimization flow determines the

required degree of artificial information dispersion 𝑑𝐴,𝑖 for each critical instruction. It

describes the required information dispersion such that the OSVs achieve an overall target

dispersion 𝑑𝑇 . It specifically describes the number of locations into which the original

information content of instruction 𝑖 has to be dispersed, and is derived from the entropy

content 𝑆𝑖 and the initial TIP count 𝜏𝑖, which are further specified in the following sections.

The artificial dispersion is derived as 𝑑𝐴,𝑖 = ⌈𝑑𝑇𝑆𝑖 − 𝜏𝑖⌉. Consider an example similar to

Figure 5.1 of a highly secure IoT device where the cipher key has to be fully protected

against information leakage, and where sufficient unused circuit area is available. The target

dispersion could be selected to 𝑑𝑡 = 10 such that an adversary would be required to insert

Trojans into at least 10 circuit locations to extract the cipher key. For the XOR operation,

the initial number of TIPs could be 𝜏𝑖 = 1.6 due to exchange with non-critical operands,

and the entropy could be reduced to 𝑆𝑖 = 0.3 due to an upstream logical operator. In this

case, 𝑑𝐴,𝑖 = 2, and the information contained in the XOR instructions has to be dispersed

across two circuit locations. After determination of all artificial dispersion factors, the flow

iterates through all critical instructions to disperse the value contained in each instruction

91

by duplicating it by the 𝑑𝐴,𝑖. In a second sweep, the operands in the instructions are updated

to reference duplicated instructions of the corresponding path.

5.4.2.3 Derivation of Initial Trojan Insertion Points

As stated in section 5.2.3, the minimum number of Trojan insertion points (TIPs) for

critical information leakage is a key characteristic for the prevention of Trojan insertion by

the manufacturer. From the set of critical instructions, the TIPs are computed for each

instruction per method DERIVETIPS in Algorithm 5.1. By default, an instruction has a TIP

count 𝜏 of one, as an adversary can directly leak its output net or register to extract its secret

Algorithm 5.1 Derivation of the initial Trojan insertion points (TIPs) and of the entropy for critical

instructions.

Constants:

𝜅 Criticality decay

𝑇S Entropy channel

capacity for all

operand types

𝑤𝑚 Weight of the

maximum parent

entropy

 Input:

𝑉 Instruction call chain

𝑖 Critical instruction to

be processed

Output:

𝑆𝑖 Entropy of instruction

𝑖
𝜏𝑖 Initial TIPs of

instruction 𝑖

DeriveTIPs

𝑉 = 𝑉 ∪ 𝑖
If SAFE(𝑖)
 𝜏𝑖 = ∞

Else If ISALLOCATION(𝑖)
 𝑉𝑐 = GetStoresInto(𝑖) ∪ GetPointersInto(𝑖)

 𝜏𝑖 = min DERIVETIPS(𝑖𝑐 , 𝑉), 𝑖𝑐 ∈ 𝑉𝑐

Else If NoCriticalParents(𝑖)

 𝜏𝑖 = 1

Else

 𝑉𝑝 = GETPARENTS(𝑖)

 𝜅𝑡𝑜𝑡𝑎𝑙 = 𝜅 ∙ |𝑖𝑛𝑐 ∈ NOTCRITICAL(𝑉𝑝)|

 𝜏𝑚𝑖𝑛 = min DERIVETIPS(𝑖𝑐 , 𝑉), 𝑖𝑐 ∈

CRITICAL(𝑉𝑝)

 𝜏𝑖 = 𝜅𝑡𝑜𝑡𝑎𝑙 + 𝜏𝑚𝑖𝑛

𝑉 = 𝑉\𝑖

DeriveEntropy

𝑉 = 𝑉 ∪ 𝑖
If SAFE(𝑖)
 𝑆𝑖 = 0

Else If

 NoCriticalParents(𝑖)

 𝑆𝑖 = 1
Else

 𝑉𝑝 = GETPARENTS(𝑖)

 If IsAllocation(𝑖)
 𝑉𝑝 = 𝑉𝑝 ∪ GETPOINTERSINTO(𝑖)

 𝑉𝑆,𝑃 = DERIVEENTROPY(𝑖𝑐)𝑇S[OPTYPE(𝑖𝑐)], 𝑖𝑐 ∈

CRITICAL(𝑉𝑝)

 𝑆𝑚𝑎𝑥 = max 𝑉𝑆,𝑃

 𝑆𝑖 =
𝑆𝑚𝑎𝑥𝑤𝑚+(1−𝑤𝑚) ∑(𝑉𝑆,𝑃\𝑆𝑚𝑎𝑥)

(|𝑉𝑆,𝑃|−1)(1−𝑤𝑚)+𝑤𝑚

𝑉 = 𝑉\𝑖

92

information. We introduce a variable criticality decay 𝜅 to characterize the loss of

reproducibility when security critical values are combined with non-critical values.

Consider the division operation in Figure 5.3, which depends on the values from the security

critical modulo operator, and the (non-critical) constant value 𝑁2. The output of the modulo

operation cannot directly be inferred from the output of the divider, unless certain

knowledge about N2 exists, which is captured in the criticality decay 𝜅 . For the

experimental evaluation, we use a constant criticality decay that was empirically set to 𝜅 =

0.3. The algorithm recursively visits instructions and derives their TIPs as the minimum of

the TIP of the instructions’ predecessors and subtracts the total criticality decay. We briefly

discuss the edge cases in this approach. Circular dependencies, e.g. through loops, are

broken by terminating the exploration before completing the circle by maintaining a chain

of instructions that had already been visited.

Figure 5.3 Example of targeted insertion of information dispersion. Due to modulo entropy

loss, only upstream critical instructions are dispersed.

93

5.4.2.4 Consideration of Entropy Loss

For resource-efficient secret information dispersion, we consider not only the decay of

criticality through exchange with non-critical operands, but also the information capacity of

instructions. The high-level implementation is described in method DERIVEENTROPY of

Algorithm 5.1. The underlying principle is the fact that each type of operator transmits

different degrees of information, and therefore a variable amount of entropy is lost. The

Critical Path 2Critical Path 1

X1N1

+

X2

+

Y1

%

Y2

%

N2

%

K3

%

Z1 Z1

(1)

(2)

 (3)

N1

N2

Critical Path 2Critical Path 1

X1N1

+

X2

+

Y1

%

Y2

%

N2

%

K3

%

Z1 Z1

N1

N2

a) b)

Figure 5.4. a) Dispersion leads to clear separation of critical paths that can be exploited by

adversaries. b) Obfuscation introduces links among critical paths (operators (1) and (2)),

and between critical and non-critical paths (operator (3)).

Table 5.1 Information Capacity of operators for entropy estimation.

Operator Information Capacity 𝑻𝑺

Equality Comparator (‘==’) 0.1

Comparator (e.g. ‘<’) 0.15

Modulo (‘%’) 0.3

Logical exc. XOR (‘&’, ‘|’) 0.3

Other (e.g. ‘+’, ‘^’) 1

94

entropy library used in our experiments is in Table 5.1 and shows the information capacity

C of different operators that were empirically determined and can be adjusted in a trade-off

between resource effectiveness and worst-case information loss upon successful Trojan

insertion. To illustrate the need for empirical entropy estimation, consider the modulo

operation: 𝑥 = 𝑐 𝑚𝑜𝑑 𝑁, where 𝑐 is a security critical value. When only the values 𝑥 and

𝑁 are considered, it is not possible to directly determine the original value of 𝑐, though it is

possible to derive an equation that describes all possible values of 𝑐. The outcome of this

modulo operation does not contain as much security critical information as input 𝑐, and this

entropy loss is conservatively modeled as 0.3 for this operand type.

5.4.3 Obfuscation to Defeat Reverse-Engineering Vulnerability

After information dispersion, security critical operations are performed in multiple,

parallel paths such that an adversary is forced to introduce multiple Trojans to guarantee

successful information leakage. However, due to the nature of the critical paths and to ensure

a minimum number of TIPs, functional units are not shared across critical paths. This has

the effect that simple information dispersion is reflected in clearly separated logical and

physical operators for critical instructions. Thus, a motivated adversary can exploit this

understanding to facilitate the identification of security critical instructions.

Therefore, we introduce an obfuscation scheme to (i) hide the actual transition

probabilities, (ii) remove the clear separation of security critical paths, and (iii) more

concisely quantify the threat and corresponding security solution.

An overview of the obfuscating operations is provided in Figure 5.4. It shows that the

initial control flow graph exhibits a clear separation between individual critical paths, as

well as between critical and non-critical paths. This can be exploited to identify security

critical nets and can facilitate the infiltration of all security critical paths. The figure shows

two types of obfuscating operations. We refer to links among critical paths as critical-to-

critical (C2C) links; obfuscating operators (1) and (2) in the figure are such links. A link

between a critical and non-critical (CNC) path is keyed operator (3). These links are inserted

based on a keyed operator. The control flow after obfuscation will only follow the original

flow if the device is operated with the correct key. Otherwise, a large number of random

links between the critical paths is activated, which will lead to non-deterministic functional

behavior as well as incorrect switching profiles. Moreover, adversaries would no longer be

able to exploit clear separation of paths to insert Trojans into all critical paths.

95

5.4.4 Threat-Targeted Security Metric

Information dispersion limits the available free area and requires the adversary to

simultaneously insert multiple Trojans to successfully leak security critical information. In

previous work, the number of Trojan insertion points (TIPs) was the primary metric for the

security of the synthesized design. With the introduction of obfuscation, it is apparent that

TIPs can be complemented with the degree of obfuscation for a resource efficient security

solution.

The metric for obfuscation has to adhere to several principles:

 Different designs should be comparable, such that similar values in the metric

of different designs provide a similar level of obfuscation. This should include

designs of considerable size and resource variations.

 Increasing the count of artificial links increases the difficulty of reverse

engineering the information dispersion and should accordingly increase the

value in the metric.

 Links among critical paths, and between security critical and non-critical paths

have different purposes. Thus, application and threat dependent weighting must

be possible.

From the aforementioned description, the metric for obfuscation is determined to 𝜎 =

2∗(𝛼1𝐿𝐶𝑁𝐶+𝛼2𝐿𝐶𝐶)

𝑁𝑐
, where 𝑁𝑐 is the number of security critical instructions, and 𝐿𝐶𝑁𝐶 and 𝐿𝐶𝐶

are the number of links between critical and non-critical paths and between critical and

critical paths, respectively.

To describe the overall resilience against Trojan insertion by a malicious adversary in

the manufacturing stage, the number of TIPs has to be considered in conjunction with the

degree of obfuscation. This metric has to abide by the following constraints:

 Whereas increasing dispersion will linearly increase the security of the device,

increasing obfuscation should yield diminishing returns based on the cost and

security characteristics of the device.

 The offset of the weighting of obfuscation as well as the velocity of the

diminishing return for obfuscation should be user-specified threat-parameters to

control the targeting of the synthesis.

From these requirements, the combined security metric is quantified as

96

𝜓 =
𝑑𝑡 (𝑘2 + 𝜎)

1 + 𝑘1 𝜎
 (5.1)

where 𝑘1 and 𝑘2 describe constant offsets that allow tuning the security optimization for

specific threat scenarios. The former determines the velocity of diminishing return for

obfuscation, and the latter determines the offset with regard to dispersion.

5.4.5 Resource Analysis and Optimization

The resource oriented co-optimization of information dispersion and obfuscation is

initiated after an automated cost analysis of dispersion. In this cost analysis, the resource

cost is divided among critical instructions and non-critical instructions. Then, the cost of

increasing information dispersion is computed by considering the cost of adding new

multiplexing units for shareable instructions, as well as the cost for new functional units

where sharing is not a possibility. The resource cost of increasing dispersion is denoted with

Δ𝐶𝑑𝑡
.

The cost of increasing the obfuscation metric is similarly computed by first deriving the

cost for inserting the links from a library of known keyed links. The increase in resource

cost due to increase of obfuscation can then be quantified as ΔCσ =
𝐶𝑎𝑣𝑔,𝑙𝑖𝑛𝑘∗𝑁𝐶

2
, where

𝐶𝑎𝑣𝑔,𝑙𝑖𝑛𝑘 is the average cost of inserting a link weighted by the relative insertion probability

of the link, and 𝑁𝐶 is the number of critical instructions. In combination with the metric for

resiliency against Trojan defense in equation (5.1), this results in the equations:

Maximize

𝜓 =
𝑑𝑡 (𝑘2 + 𝜎)

1 + 𝑘1 𝜎
,

𝑑𝑡 ∗ Δ𝐶𝑑𝑡
+ 𝜎 ∗ ΔCσ + 𝑅𝑐𝑜𝑛𝑠𝑡 ≤ 𝑅max

97

This constraint optimization problem in two variables (𝑑𝑡 and 𝜎) can be solved to derive

the following optimal values for the degree of information dispersion and obfuscation,

respectively:

𝑅 = 𝑅𝑚𝑎𝑥 − 𝑅𝑐𝑜𝑛𝑠𝑡

Ω1 = Δ𝐶𝜏
2Δ𝐶𝜎

2

Ω2 = √−Ω1𝑘1𝑘2 + Ω1 − Δ𝐶𝜏
2Δ𝐶𝜎𝑘1

2𝑘2𝑅 + Δ𝐶𝜏
2Δ𝐶𝜎𝑘1𝑅

𝑑𝑡 =
±Ω2 + Δ𝐶𝜏Δ𝐶σ + Δ𝐶𝜏𝑘1𝑅

Δ𝐶𝜏
2𝑘1

 (5.2)

𝜎 =
𝑅 − Δ𝐶𝜏 𝜏

Δ𝐶𝜎

 (5.3)

Algorithm 5.2. Obfuscation flow through manipulation of the LLVM IR

after resource analysis and optimization.

 Input:

𝐵𝐵. 𝑉𝑐 Critical instructions for a given basic

block

𝐵𝐵. 𝑉𝑎 All instructions for a given basic

block

𝑣𝑜𝑏𝑓 Critical instruction to be processed

𝑙𝜎 The link target to achieve the desired

𝜎 value

Obfuscate

Repeatedly until 𝑙𝑐𝑜𝑢𝑛𝑡 = 𝑙𝜎

 For Each BasicBlock 𝐵𝐵

 𝑀𝐶 = DEPENDENCYSORT(𝐵𝐵. 𝑉𝑐)

 𝑀𝑎 = DEPENDENCYSORT(𝐵𝐵. 𝑉𝑎)

 𝑖𝑡 = 𝑀𝑐[RAND()]

 𝑡𝑦𝑝𝑒 = RAND() >
𝛼1

𝛼1+𝛼2

 If 𝑡𝑦𝑝𝑒 = 1

 M𝐶,𝑆 = {𝑐𝑖 ∈ 𝑀𝐶 , Path(𝑐𝑖) ≠ Path(𝑖𝑡)}

 𝑖𝑠 = 𝑀𝑐,𝑆[Rand(0, 𝑖𝑛𝑑𝑒𝑥(𝑀𝑐 , 𝑖𝑡))]
 Else

 𝑖𝑠 = 𝑀𝑎[RAND(0, 𝑖𝑛𝑑𝑒𝑥(𝑀𝑐 , 𝑖𝑡))]

 If COMPATIBLE(𝑖𝑡 , 𝑖𝑠)

 INSERTLINK(𝑖𝑡 , 𝑖𝑠)

 𝑙𝑐𝑜𝑢𝑛𝑡+= 1

InsertLink - Select

i𝑠 = 𝑆𝑒𝑙𝑒𝑐𝑡𝐼𝑛𝑠𝑡(𝑣𝑜𝑏𝑓 , 𝑣𝑡 , 𝑣𝑠)

𝐵𝐵. 𝐼𝑛𝑠𝑒𝑟𝑡(𝑖𝑠)

For Each Parent(𝑖𝑡) 𝑖𝑝

 ReplaceOperand(𝑖𝑝 , 𝑖𝑡 , 𝑖𝑠)

98

These values of 𝑑𝑡 and 𝜎 are dynamically computed as part of the automated synthesis,

and yield in a security-optimized threat-targeted solution.

5.4.6 Obfuscation Flow

The obfuscation flow is shown in Algorithm 5.2. When performing obfuscation in the

control flow, an initialization step has to catalog non-critical and critical instructions to

establish clear dependencies. These dependencies are critical for adequate insertion of links,

as values cannot be arbitrarily consumed before they are initialized to achieve successful

RTL synthesis. To achieve efficient obfuscation, the algorithm makes heavy use of

randomization and therefore does not expose any patterns that could be exploited in a

reverse engineering process.

Based on the weighting of C2C and CNC links that is established as a result of threat

targeting, the respective count of links is statistically determined by employing a random

number generator with corresponding thresholds. Then, the links are introduced into the

LLVM intermediate representation by iterating over the basic blocks and randomly

choosing a critical instruction that serves as a target, 𝑖𝑡. For C2C links, a corresponding

source instruction 𝑖𝑆 is randomly selected in a subset of critical instructions on a different

critical path that appear earlier in the dependency order. For CNC links, the source

instruction 𝑖𝑠 is selected among all instructions in earlier dependency order that are not

critical. The actual insertion of the link depends on the type of link chosen; for this chapter

a keyed-select is employed. The obfuscation flow takes a list of obfuscation operations as

its input, such that these operators match the existing device and so that the obfuscation flow

achieves a high degree of flexibility to be applicable in varying scenarios. For the results

presented in section 5.5, the obfuscation flow only utilized ‘select’ operations as shown in

Algorithm 5.2. Similar to [100], an applied value is compared against a known key which

can be device specific, as in [99]. If the supplied value matches the key, the original operand

is passed through the select instruction – otherwise, an entirely different value is forwarded,

thus scrambling the actual control-flow graph.

5.4.7 Dispersion Flow

Once the dispersion analysis as well as dispersion and obfuscation co-optimization are

completed, the desired target dispersion 𝑑𝑡 is known. From this target dispersion, the

required amount of artificial dispersion is determined for each instruction as specified in

99

section 5.4.2.2. Then, the flow iterates through all critical instructions to disperse the value

contained in each instruction by replicating it 𝑑𝐴,𝑖 times. In a second sweep, the operands in

the instructions are updated to reference duplicated instructions of the corresponding path.

As a result of this action, instructions that previously had a low number of TIPs were

artificially strengthened and achieve a higher number of TIPs to match the target dispersion.

The security optimized flow contains additional modifications. In scheduling, replicated

critical instructions are forced into the same cycle so that the overall system performance is

not degraded. As further described in section 5.4.9, this is inherently required to achieve

security guarantees across critical paths.

We propose two alternate approaches to determine the active path and outline the

differences. The first case is dynamic and truly random path activation; the second case is

static path activation. In dynamic path activation, a true random number generator (TRNG)

is used to determine at runtime which of the possible circuit paths should be taken. As the

path is dynamic and selected at runtime, the adversary is not able to predetermine the net

that will contain the critical information and hence has to tap into multiple nets. The

disadvantage of this approach is that the adversary can statistically leak critical information

in a subset of the operations when Trojans are inserted in only a subset of the required paths.

The preferred approach is static path activation through a keyed physically unclonable

function (PUF) after the device is received from the foundry. The benefits of this approach

are: (i) testing and side-channel analysis can focus on a single path, allowing higher

coverage; (ii) the adversary may not expect statistical information leakage if Trojans are

introduced only into partial paths; (iii) a backdoor or Trojan is detected in one path after

deployment, and recovery by removing the information leakage is possible by

reprogramming the device to use a different path when a PUF type supporting this is

employed [105]. This allows immediate mitigation if leakage is detected after deployment

in critical scenarios. We emphasize that, independent of the method for path activation, only

one security critical path is active for any given operation. Combined with clock-gating, this

ensures that the power overhead of the proposed security optimization is negligible.

5.4.8 Security-Driven Allocation

To achieve security driven synthesis, we have modified the allocation to either target a

given degree of dispersion 𝑑𝑇, or to achieve the highest degree of dispersion possible given

a resource constraint. Both approaches are evaluated in the experimental evaluation, and the

100

latter technique to target a given resource limitation is of particular benefit as it

simultaneously reduces the available unused area which could otherwise be used for Trojan

insertion by a malicious manufacturer. The available unused area after this synthesis flow

is minimal and can be complemented with limited dummy cell insertion. To model resource

consumption, a technology library that maps operators and their bit-width to a normalized

resource cost is loaded during synthesis. In our experiments, this table was derived as the

gate equivalent cost of each module, using optimized modules where available. The

resource computation further considers whether operator types are shareable or not, which

is heavily architecture dependent [106] and is therefore also loaded from a configuration

table. In allocation, the available hardware units are determined based on sharing within a

security critical path and between critical and non-critical instructions. Different critical

paths do not share instructions for security reasons. After deriving the set of critical

instructions, resource constraints are modeled for the entire design by determining the cost

of the non-critical instructions 𝐶𝑁𝐶 and the cost of critical instructions 𝐶𝐶 that

approximately linearly increases with the degree of dispersion.

5.4.9 Security-driven Binding

Binding is concerned with assigning instructions and variables to functional units and

registers. Typically, it is driven by a cost-function to reduce hardware implementation cost

or achieve better timing. To truly achieve dispersion of secure information, operations have

to be bound to functional units with great care, such that the ability of an adversary to leak

information by inserting Trojans that tap into fewer than 𝑑𝑇 signals is not increased. In the

weighted bipartite matching algorithm that is used for binding in the HLS implementation,

the highest positive weight is given to instructions of the same critical path, and negative

weights are given to instructions of different critical paths. Shareable output registers or

operands are secondary characteristics considered in binding. Avoiding mismatches in

functional unit assignment is critical, as the adversary may otherwise extract the secret

values of multiple critical paths by inserting a Trojan that taps into a single signal. The result

is shown in Figure 5.3. From an initial intermediate representation (IR), the critical

instructions are determined, and after derivation of the target dispersion, information is

dispersed among two paths. As the And operations have significant loss of entropy, the

modulo operations and other downstream operations do not undergo any dispersion

optimization. In binding, functional units are shared as much as possible, and a single Adder

101

is used for both critical and non-critical instructions. However, the And operators are not

shared, as they correspond to different critical paths. Sharing between critical instructions

of different critical paths would allow the adversary to simply tap into the output net of the

shared operator and would therefore diminish the security benefits, and is hence forbidden.

5.5 Experimental Evaluation

The security flow presented in this work was implemented as an extension of the LegUp

HLS tool [107], which builds on the modular design of the LLVM compiler framework.

The implementation primarily consists of two passes – security preparation, and security

optimization. In security preparation, the security annotation is understood and applied to

the LLVM IR to identify critical instructions and their downstream users. In security

optimization, the bulk of the security-relevant work is performed, which includes estimating

the initial cost and deriving an achievable target dispersion, deriving the initially required

tap counts and entropies, and introducing the artificial dispersion into the design.

Additionally, existing LegUp code was modified in allocation, binding, and scheduling to

adjust for the needs by the security-driven flow, as described in the last parts of section 5.4.

5.5.1 Benchmarks

We present the evaluation of the proposed flow against a subset of the CHStone

benchmarks [108]. In addition to the common benchmarks that show the HLS characteristics

for specialized modules, we introduce an IoT-specific benchmark. It computes the running

average temperature and determines whether a person is present based on a door sensor.

Additionally, the benchmark performs voice command recognition by cross correlating a

received time series signal with a secret stored signal by performing a fast Fourier transform

(FFT) and the inverse of it.

5.5.2 Analysis of Information Dispersion

For each benchmark, we specify the critical value as shown in Table 5.2. We

quantitatively compare the proposed entropy-based security optimization against two

different baseline approaches. As this is the first work that targets this problem, there is no

previous solution that can serve as a comparison. However, we employ a modular defense

approach that is the natural extension of synthesis efforts against destructive Trojans in [91],

[94] as the first baseline. Here, security information dispersion is achieved by introducing

102

multiple IP modules and distributing the secret information across these modules. The

targeted defense baseline is based on intermediate results of the proposed HLS flow and

utilizes the fine-grained critical instructions to achieve security dispersion without taking

full advantage of the entropy and TIP count analysis.

Table 5.2 shows that the proposed security optimization consumes on average 54.4%

fewer resources compared to the modular baseline when the same degree of security is

targeted. This resource consumption is in gate equivalent units from the technology library.

Table 5.2 Resource utilization in established benchmarks when a given security level is to be

achieved. The proposed security optimized defense reduces the hardware implementation cost on

average by 54.4% (𝛥1) and 26.3% (𝛥2) compared to the modular defense and targeted defense,

respectively. Resource costs are reported in thousands.

Benchmark Critical Values
Disp.

𝒅𝑻

Modular

Defense

Targeted

Defense

Proposed Security

Optimization

Cost Cost 𝚫𝟏 Cost 𝚫𝟏 𝚫𝟐

AES key 5 247.2 182.2 26.3% 104.5 57.7% 42.7%

SHA sha_info_digest 5 76.8 48.0 37.5% 30.4 60.4% 36.7%

Blowfish indata 5 109.2 79.8 27.0% 63.9 41.5% 19.9%

GSM LARc 5 667.2 292.2 56.2% 236.2 64.6% 19.1%

Entropy

Chain
key 5 68.3 68.3 0.0% 43.6 36.1% 36.1%

Smart-

Sensor IoT

secret_voice,

key
5 412.4 144.6 64.9% 139.1 66.3% 3.7%

Table 5.3 Evaluation of the ability to maximize the target security information dispersion 𝑑𝑡 under

resource constraints. The proposed flow achieves on average three times higher information

dispersion than the modular defense baseline (𝛥1) and 41% higher dispersion than the targeted

defense (𝛥2).

Benchmark
Resource

Target

Modular

Defense

Targeted

Defense

Proposed Security

Optimization

Cost 𝒅𝒕 Cost 𝒅𝒕 𝚫𝟏 Cost 𝒅𝒕 𝚫𝟏 𝚫𝟐

AES 125 98.9 2 115.8 3 50.00% 104.5 5 150% 66.67%

SHA 75 61.4 4 72.5 8 100.00% 72.8 14 250% 75.00%

Blowfish 100 87.4 4 94.2 6 50.00% 89.5 7 75% 16.67%

GSM 350 266.9 2 331.8 6 200.00% 346.3 8 300% 33.33%

Entropy

Chain

100 95.6 7 95.6 7 0.00% 96.5 11 57% 57.14%

Smart-

Sensor IoT

200 165 2 191.1 8 300.00% 185.5 8 300% 0.00%

103

Table 5.3 compares the three techniques under identical resource constraints, and the

proposed flow achieved on average 188.69% higher security than the modular baseline. The

effectiveness of the targeted defense, which is a subset of the proposed security

optimization, is most pronounced when a module contains a significant share of instructions

that do not have data dependencies to critical instructions. Here, the targeted approach

allows dispersion of the information in only critical operations and therefore achieves

significant gains, whereas the multiplication of the module, as done in e.g. [94] for higher

reliability, would include multiplying such non-critical instructions. The true benefits of the

fully optimized security flow show when numerous complex operations are performed on

the critical information. The AES benchmark clearly demonstrates that the security

optimized approach reduces the resource utilization by 66.67% compared to the targeted

defense and by 150% compared to the modular defense. The cause for this significant

improvement is in the complex and costly cryptographic operations performed within AES.

Multiple modulo and divider operations are chained such that significant entropy loss is

incurred, which is exploited by the proposed flow.

The ratio of security improvement to area overhead is four on average. We emphasize

that the area overhead does not have a corresponding power overhead, as (i) a single critical

path performs the critical operations and (ii) the other operations can be clock-gated.

Furthermore, the area overhead is reported respective to a very small security component

that is almost entirely security critical. Compared to a full chip, the overhead is minimal.

Our experiments have shown that dedicating at most 10% of the circuit area of a Xilinx

XC2V4000 FPGA to a security improved AES implementation [24] would allow increasing

the dispersion target to 15. The real increase in Trojan defense is significantly higher, as the

security enhancements make it very difficult for the adversary to find unused circuit area to

insert this number of Trojans. Even if the adversary manages to insert and route the trigger

signal to all of them despite these countermeasures, this would significantly increase the

detection probability. The primary threat of hardware Trojans, their small footprint, is

defeated.

5.5.3 Analysis of Threat-Targeted Synthesis

The ability to target a range of threats is very important in the diverse landscape of circuit

design and manufacturing, as further explained in section 5.3.3. A comparison among three

configurations is performed: information dispersion by itself, obfuscation with a primarily

104

physical threat, and obfuscation with a primarily analytical reverse-engineering threat. For

the physical threat, the available levers use default values of 𝑘1 = 1 and 𝑘2 = 0.1 to

construct 𝜓1 . In contrast to this metric configuration, the analytical threat emphasizes

obfuscation stronger with 𝑘1 = 0.01 and 𝑘2 = 0.01 to form 𝜓2 . The first value 𝑘1 is

proportional to the negative effect of increasing obfuscation; reducing this value allows

obfuscation to be applied in larger amounts to increase the overall security metric. Similarly,

𝑘2 controls the offset in obfuscation and determines the importance of obfuscation – a

smaller value of 𝑘2 implies higher importance of obfuscation.

The results for threat-targeted synthesis are shown in Table 5.4 for two different

configurations. The physical threat configuration (𝑘1 = 1,𝑘2 = 0.1) favors both dispersion

and obfuscation, whereas the analytical threat configuration prefers obfuscation (𝑘1 = 0.01,

Table 5.4 Comparison of the threat-targeted synthesis under resource constraints for two

different configurations. Resource costs are reported in thousands.

Benchmark Resource

Target

Information

Dispersion

Obfuscated –

Physical Threat

Obfuscated –

Analytical Threat

Cost 𝒅𝒕 Cost 𝒅𝒕 𝝈 Cost 𝒅𝒕 𝝈

AES 125 104.4 5 123.1 5 9 123.2 3 30

SHA 75 72.8 14 74.2 11 14 74.6 6 41

Blowfish 100 89.4 7 99.7 7 16 99 5 55

GSM 350 346.3 8 344.7 7 3 343.4 4 12

Entropy Chain 100 96.5 11 99.1 10 71 99.8 8 185

Smart Sensor

IoT
200 185.5 8 198.3 8 5 198 5 23

Table 5.5 Continued evaluation of the security metric from data presented in Table 5.4. Δ1 and

Δ2 are the respective factors of improvement over pure information dispersion.

Benchmark Information

Dispersion

Obfuscated – Physical

Threat

Obfuscated – Analytical

Threat

𝝍𝟏 𝝍𝟐 𝝍𝟏 𝝍𝟐 𝚫𝟏 𝝍𝟏 𝝍𝟐 𝚫𝟐

AES 0.5 0.05 4.55 41.33 9.10 2.91 69.25 1385.08

SHA 1.40 0.14 10.34 135.18 7.39 5.87 174.51 1246.50

Blowfish 0.70 0.07 6.63 96.61 9.47 4.92 177.45 2535.02

GSM 0.80 0.08 5.43 20.46 6.78 3.72 42.89 536.16

Entropy Chain 1.10 0.11 9.88 415.26 8.98 7.96 519.33 4721.15

Smart Sensor

IoT
0.8 0.08 6.80 38.17 8.50 4.81 93.54 1169.21

105

𝑘2 = 0.01). The degree of obfuscation 𝜎 is notably higher in the latter configuration, in

exchange for a lower degree of information dispersion 𝑑𝑡. This evaluation is continued in

Table 5.5, where the security metrics for each of the configurations are provided. It is

notable that the two metrics are not exchangeable and only values of the same metric are

comparable. For the physical threat configuration, it is notable that obfuscation increases

the metric score in comparison to information dispersion by a factor 8.37 on average. This

improvement comes at no resource cost, as the same resource limitations were applied for

all configurations. In the analytical threat configuration, the improvement is even more

pronounced, and the average improvement factor is 1932. As the primary target of the

defenses in this configuration is to eliminate the adversary’s ability to reverse engineer the

control flow and determine the dispersed security critical operators, the introduction of

obfuscation carries significant weight.

This improvement also shows when comparing the two obfuscated configurations. For

the first metric, the physical threat configuration achieves an improvement of 46%.

Similarly, the analytical threat configuration achieves a 77% higher value in the second

metric.

5.6 Conclusion

Hardware Trojans are a significant threat for emerging devices that rely on the highest

levels of security, due to the increasingly outsourced manufacturing. This chapter presented

a security optimization flow that utilizes resources with high efficiency to identify and

disperse security critical information through multiple operators and registers. Moreover,

this work introduced an obfuscation flow that is embedded in the high-level synthesis flow

and allows threat-targeted security optimization under resource constraints. Engineers

merely need to define the initial security critical variable, and the downstream

vulnerabilities are automatically detected and defended. The evaluation showed security

enhancements with up to 5-times higher information dispersion and significantly higher

Trojan insertion difficulty under the same resource constraints as a baseline technique. A

threat-targeted evaluation showed that the co-optimization of obfuscation and dispersion

can improve security by a factor between 8.37 and 1932, emphasizing the strength and

flexibility of threat-targeted synthesis.

Due to the strong capabilities of the manufacturer, defending against Trojan insertion at

this stage is very difficult. Circuitry that is inserted with defensive purposes may be removed

106

or manipulated by a well-educated and capable adversary. In addition, the problem of

limiting intentional secret information leakage is of particular difficulty, as information can

be leaked with minimal modifications to a circuit, which may not exhibit notable differences

in power traces to be detectable. Therefore, we propose an entirely different approach to

defend against this type of HTH. Our proposed approach simultaneously increases the

difficulty of HTH insertion and probability of detection by dispersing secret values across a

device such that it can be processed in one of multiple different locations. As the actual

processing occurs in a dynamically and randomly selected path, the adversary is forced to

insert an HTH into each of the possible locations. Thereby, the likelihood of detection is

increased, as the Trojan payload is necessarily larger. Additionally, the link between the

Trojan payload (the leakage) and the trigger will require more engineering work for

customized locations on the device, or will have to travel a longer distance on the device.

Finally, we propose to combine this methodology with resource utilization maximization,

such that this defense security dispersion is employed to minimize the available empty

circuit area. This increases the difficulty of inserting one HTH, let alone many, even further.

To make this attack feasible, we propose to implement it as part of a high-level synthesis

(HLS) framework, such that security critical information can automatically be detected and

dispersed to meet resource utilization targets.

107

CHAPTER 6

HIGH-LEVEL SYNTHESIS FOR

SIDE-CHANNEL DEFENSE

6.1 Introduction

Embedded devices are prevalent in every aspect of human life, a recent development that

is only exasperated by the emergence of the Internet of Things (IoT) and cloud computing.

In IoT, a large number of devices, buildings, vehicles, and sensors are interconnected to

form a network that can gather and process data and respond to it. As part of emerging

cyber-physical systems, these devices cover a wide range of applications from home

automation in residential buildings to the coherent operation and control of the smart-grid.

An array of military applications has also been proposed and tested, for example wireless

sensor-network monitoring of borders and demilitarized zones [109], [110]. The public and

private cloud are employed to control billions of IoT devices and analyze a massive and

perpetual stream of sensor data. However, cloud computing is not limited to its IoT

applications – there is rapid development and adaptation in industrial, marketing, and

financial segments.

Today, security is considered to be one of the most significant obstacles to both IoT and

cloud computing [109]. The security threats to IoT and cyber-physical systems are as

numerous as their applications: There are concerns about privacy in home automation,

resiliency in smart-grids, and confidentiality in defense applications. One of the concerns

for IoT is the need for low cost, rapid development, and the lack of standardization or

control, which dramatically increases the likelihood of security flaws. The security concerns

for cloud computing are different but equally important: while secure data transfer between

the data source and the cloud provider is a largely solved problem, extracting insight through

analytical queries over encrypted data is very limited. This means that data has to be

available in plaintext for meaningful analysis. Although many enterprise customers would

prefer to outsource processing of confidential and sensitive data, this limitation on plaintext

is an important blocker, since they cannot allow cloud providers to operate on plaintext.

FPGAs with customer-supplied programming can be a solution to this.

108

For both cloud and IoT, FPGAs provide excellent solutions with scalability,

maintainability, cost, and efficiency. Various proposals for FPGA-friendly protocols and

security architectures have been made for these emerging fields [111], [112]. High-level

synthesis (HLS) enables developers and designers to synthesize a low-level hardware

description from a high-level system specification in widely known programming languages

such as C. As such, HLS is a primary contributor to wider enablement of FPGA devices.

Although basic security practices such as encryption of network traffic or proper

selection of encryption algorithms are well-known and incorporated in many designs,

hardware security concerns are commonly overlooked. Moreover, countermeasures

typically require low-level understanding and fine-grained cost balancing [113]. The

hardware implementation is a significant source of information leakage which is often not

considered when selecting higher-level algorithms or security techniques. This information

leakage can be exploited through side-channel attacks, which perform statistical analysis to

extract confidential values through the side-channel leakage. For example, when the

execution of operations depends on any confidential value, the presence or absence of

operations in a captured power trace can reveal information about the confidential values

through a simple power analysis (SPA). Moreover, the hardware implementation of even

the simplest logic operations is typically very susceptible to information leakage, as

dynamic power consumption is dependent on the number of switching bits, capacitances,

and a number of other identifying characteristics. Therefore, input and output values can be

retrieved through differential power analysis (DPA). Numerous countermeasures against

side-channel attacks have been proposed at the algorithmic and at the gate- or layout-level.

Most of the lower-level techniques against side-channel attacks are highly resource and

power intensive, as they attempt to achieve a constant, input-independent power drain.

Moreover, these countermeasures cannot be applied efficiently without expert-level

understanding of hardware security as well as deep familiarity with the circuit and

potentially vulnerable operations.

In this chapter, we propose the first fully automated high-level synthesis flow with the

primary target of minimizing side-channel information leakage in defense of DPA. This

contribution enables developers and design engineers to efficiently address side-channel

leakage concerns in a practical manner: specifying confidential variables in addition to the

high-level specification to be synthesized is sufficient for automatic analysis of leakage and

scalable injection of countermeasures. The unique contributions of this chapter are:

109

 High-level side-channel leakage characterization through derivation of per-

operation confidentiality and cycle-accurate simulations.

 First side-channel leakage resistant high-level synthesis flow. Minimal

annotations in addition to high-level C-code are sufficient for automated leakage

analysis and insertion of countermeasures. This flow can target resource-

constraints as well as an allowable leakage threshold.

 Automated detection and mitigation against branch imbalances that otherwise

enable simple power attacks.

 Experimental evaluation with established CHStone benchmarks and a custom

IoT benchmark. The proposed flow achieves up to 81% better leakage reduction

than the baseline under identical resource constraints.

The remainder of this chapter is structured as follows. In section 6.2 we introduce

relevant background. The high-level synthesis flow is presented in 6.3 and experimentally

evaluated in section 6.4. A conclusion with outlook is provided in section 6.5.

6.2 Background

6.2.1 Related Work

Recent research found that HLS can provide unique benefits to the design of secure

systems. Reliability can be increased through automatically generated on-chip monitors

(OCMs) [95]. Reliability in the face of destructive hardware Trojans can be achieved

through selective module selection as part of synthesis [91], [94]. HLS can also be applied

to detect vulnerable operations with granular insertion of hardware Trojan defenses through

information dispersion [90]. However, this is the first work to explore the benefits of HLS

in securing designs against side-channel leakage.

The threat of side-channel leakage has received significant attention with the

introduction of DPA by Kocher et al. [114]. DPA is a side-channel attack that enables the

extraction of secret keys through signal processing over a large number of power traces. It

can reveal the internal secrets of cryptographically secure algorithms such as the advanced

encryption standard (AES) [115]. While introduction of random noise effectively reduces

the signal-to-noise ratio, it has been shown that arbitrary noise does not provide significant

security benefits and cannot efficiently hinder exploitation of side-channel leakage [116].

Masking was proposed to reduce the correlation between captured power traces and the

110

actual underlying data. Masked-AND was an early proposal for generally applicable logic

design to secure AES [117]. Several techniques have been proposed to equalize the dynamic

power consumption of digital circuits to reduce side-channel leakage. In dynamic

differential logic (DDL), the correlation between the power consumption of the circuit and

processed input signals is reduced by adding the complement of a circuit. Wave dynamic

differential logic (WDDL) uses standard building blocks to form secure compound gates

which can be applied in a regular ASIC or FPGA design flow in place of standard cells

[118]. WDDL aims to consistently consume power by combining standard cell gates such

that both the positive and negative outputs are computed. In precharge, all inputs are set to

0 such that outputs evaluate to 0. Therefore, as a result of the evaluation phase, there is one

transition per output bit – either in the positive or in the negative output. This provides for

consistent dynamic power consumption. Leakage may still occur due to timing and load

capacitance variations. Simple dynamic differential logic (SDDL) [118], [119] operates

similar to WDDL and is derived by applying De Morgan’s law and AND-ing the differential

output with the precharge signal. SDDL cannot guarantee only one switching signal per

clock cycle, and therefore is inferior to WDDL. Even though such logic styles reduced

leakage, they did not eliminate it due to routing and load imbalances. To address this

concern, duplication of fully routed circuits with switched positive and negative input

signals was proposed for WDDL as Double WDDL (DWWDL) [120] and other logic styles

[121].

Manual application of DDL on a subset of the circuit has been proposed to achieve

reduced overhead in Partial DDL [122] while maintaining leakage resistance. Resource cost

reductions of 24% were reported for AES.

The previously described techniques and architectures require a specific security-centric

skillset for efficient and effective application. While full application of an advanced logic

style provides meaningful security enhancements, it is extremely costly in terms of resource

consumption. Hence, an automated HLS flow can be very resource effective by introducing

specific countermeasures where they provide the most benefit while also reducing the need

for constant security-engineering guidance.

111

6.2.2 FPGAs in Emerging Applications

6.2.2.1 Cloud Computing

Due to their unique customizability, FPGAs expose a much more defined surface area

for attacks and are therefore a valuable building block in establishing trust in the emerging

cloud computing environment. It is generally undesirable to fully trust the cloud provider

both from a security standpoint from the customer’s perspective, and from a liability

perspective from the cloud provider’s standpoint [111]. However, complex analysis and

computation tasks often require direct processing of plaintext data, hindering full adoption

of the cloud. It was proposed to offload data analysis and processing tasks for highly

sensitive data to dedicated FPGA units which perform custom operations specified by the

cloud customer. Specific applications include operating on personally identifiable

information (PII) in healthcare data [111] and privacy preserving map reduce [123]. These

FPGAs externally consume and produce encrypted data, such that the cloud provider is not

directly exposed to the highly sensitive plaintext data. For this operation, the FPGA is

programmed with encrypted bitstreams containing secret keys, which allow decryption as

well as encryption of data, thereby removing the requirement for full trust of the cloud

provider.

In this application of FPGAs in the cloud, it is important to note that network-level

information assurance regarding confidentiality is achieved. However, the cloud provider

maintains physical access, particularly for maintenance and operation of the FPGA devices.

Therefore, extraction of the secret keys for decryption of the available data, as well as direct

extraction of the plaintext from the physical device, must be considered.

6.2.2.2 Internet of Things

In IoT, many physical devices, sensors, buildings, and vehicles are interconnected to co-

compute and co-operate almost all aspects of modern society. As a mass product which is

often powered exclusively by batteries, power and resource efficiency are crucial

considerations in IoT design. Due to their configurability to perform specific tasks very well

and their cost efficiency compared to ASICs, FPGAs are well suited for many IoT

applications. They have been shown to surpass ASICs in reliability, cost, time-to-market,

and maintenance [124]. Dynamic reconfigurability of FPGAs is a relatively recent

development that has sparked new IoT specific architectures and applications [112].

112

The emergence of IoT has already revealed numerous security problems, from plaintext

network traffic that can easily be intercepted and read, to an IoT-based botnet that

culminated in a massive DDoS attack that lead to widespread network outage on the U.S.

east coast [125].

6.2.3 Leakage through Conditional Operations

One source of information leakage is derived from conditional operations whose

execution depends on variables with confidential content. This type of leakage can be

exploited without extensive computational analysis as part of an SPA attack, as the

difference in operations following such a branching statement potentially reveals

information about the confidential variable.

This vulnerability was very common in early implementations of the RSA algorithm

[116], which used the text-book implementation of the square-and-multiply algorithm. In

this algorithm, an exponentiation of the form 𝑥𝑛 can be restated as 𝑥 ∗ (𝑥2)
𝑛−1

2 when 𝑛 is

an odd number, or (𝑥2)
𝑛

2 when 𝑛 is even. As the operation for an odd exponent requires an

additional multiplication with sufficiently different power signature, an adversary can

determine each bit of the private key in a step-by-step attack. Attacks of this kind can be

defeated by rearchitecting the implementation of algorithms to eliminate the dependency

between executed operations and confidential values.

As the vulnerabilities in RSA implementations show, oversight of side-channel

implication is a common problem. Especially in IoT applications which constantly process

privacy and confidentiality critical information, these countermeasures are of critical

importance, yet practical considerations and the lack of automated defense mechanisms

virtually guarantee that many implementations will suffer from similar vulnerabilities.

6.2.4 High-level Leakage Estimation

The strength of side-channel leakage is measured in the number of measurements to

disclosure (MTD) for well-known and well-studied circuits such as AES, which allows

comparison of results across different studies [126]. As an estimate of dynamic power

consumption and hence side-channel leakage, the Hamming distance is widely employed

[127]. Menichelli et al. [128] describe how the difficulty with high-level power simulation

(and hence, side-channel leakage) is its focus on evaluating average power consumption.

Even where cycle accuracy is possible, such power estimates provide little insight into side-

113

channel leakage, as the absolute value of power consumption is not closely related to the

actual signal-correlated power consumption. For accurate estimation, it was shown that only

the internal logic values that correspond to the signal should be tracked. Hamming distance

as the primary source for leakage estimation has successfully been used to analyze smartcard

software for side-channel leakage [129].

6.2.5 Attack Goal and Involved Parties

The explicit attack goal of the adversary studied in this chapter is to reveal one of the

user-specified secrets through side-channel analysis by evaluating the power trace. For this

purpose, the adversary is assumed to have sufficient physical access to the device to measure

and extract a large number of power traces. The primary focus of this chapter is the defense

against side-channel analysis; therefore, we reference existing work as described in the

background for defense against hardware Trojans or physical tampering.

As the nature of this chapter targets side-channel information leakage in active device

operation, the designer, programmer, and end-user with confidential information are

Figure 6.1 Overview of the side-channel leakage optimized synthesis flow. The flow combines

typical HLS flows (orange) with analysis (blue) and culminates in leakage minimization

operations (green).

114

together considered to be the first party. The goal of the first party is to produce a device

that meets side-channel leakage requirements with highest resource efficiency, such that the

majority of circuitry and computing power can be focused on the primary task of the device,

e.g. cloud computation or IoT application.

The application environment of the device is assumed to be hostile – be it in the open

space for IoT applications, or in the datacenter of an untrusted cloud provider. This

differentiates the security needs from those of typical network security. Due to the hostile

nature, any adversary is assumed to have physical access to the device to extract power

traces in large numbers. However, physical tampering of any type, or malicious

reprogramming of the device, is outside of the scope of this chapter.

The hardware vendor (i.e. FPGA manufacturer) or third party IP providers are an

unrelated third party that is assumed to be neutral, and malicious intervention by this third

party is outside of the scope of this chapter.

6.3 Synthesis Flow

The overall high-level synthesis flow for side-channel leakage minimization is shown in

Figure 6.1. It consists of three primary phases: the initial synthesis, leakage characterization,

and the final security synthesis.

In the initial synthesis, C-code is compiled into an intermediate representation (IR).

User-specified annotations are employed to derive all operations that act on confidential

information. The output values of such operations are also treated as confidential. The initial

synthesis culminates in an RTL synthesis which produces vulnerable RTL-code.

In the leakage characterization phase, the RTL-code is simulated and the leakage of all

operations which act on confidential information is computed from the simulation results in

combination with entropy estimation for each operation.

The final security synthesis selects the appropriate module for each operation based on

available resource and estimated side-channel leakage. Additionally, branch balancing is

performed to reduce the vulnerability due to conditionals which depend on confidential

information.

6.3.1 Initial Synthesis

The initial synthesis flow consumes user-provided C-code and compiles it into LLVM’s

intermediate representation (IR). This is an assembly-like language which is machine-

115

independent. This compilation phase already includes code optimizations provided by the

LLVM compiler framework.

In addition to the code, the proposed synthesis framework consumes high-level

annotations of variables to be treated as confidential. Such variables can include secret keys

or authentication tokens, but can be used more widely in the IoT content to elevate the

security treatment of user data such as the number of active operators and similar

information.

These high-level annotations are utilized to automatically derive all operations which act

on confidential information. Here, all outputs of confidential operations are treated as

Leakage driven FU assignmentDependent Secret ValuesInitial Secret Value

DIV ADD

DIV

DIVDIV

FU1 FU2

FU1

FU3FU3

DIV ADD

DIV

DIVDIV

Figure 6.3 Example of leakage-driven binding. High risk operations are bound against one FU,

while low risk instructions are bound against a different FU.

Key
MOD 2

MULT ADD DIV

MULT

Other Other

Key
MOD 2

MULT ADD DIV

MULT

Other Other

Dummy
ADD

Dummy
DIV

a)

b)

Figure 6.2 Example of branch balancing. One branch of a conditional statement is supplemented

with dummy instructions to minimize information leakage.

116

confidential as well. Therefore, minimal user input is sufficient to determine a graph of

confidential operations. This graph of confidential operations is then employed to create

targeted simulation directions which improve its time and space requirements.

The initial synthesis flow concludes with conventional steps of RTL synthesis, which

are focused on resource utilization and device speed. As a result, the generated RTL-code

is vulnerable to side-channel attacks and does not contain any countermeasures. This is a

valuable starting point for deeper analysis of operations which are prone to leakage.

6.3.2 Leakage Characterization

As the primary metric for side-channel leakage of a given signal, the proposed flow

employs the Hamming distance for switching operations. This is a commonly used metric

[127], as dynamic switching operations are a primary source of power consumption for

modern FPGAs and integrated circuits in general. In addition to the significant leakage

through dynamic power consumption, it has been shown that side-channel leakage can result

from static power consumption as well, which the proposed flow can consider with minor

modifications.

For a high-level security analysis and defense against side-channel information, an

overall metric of similar abstraction level is required. In the leakage characterization phase,

the previously generated RTL-code is simulated to identify switching information for every

operation. For this purpose, the proposed flow automatically generates simulation scripts

that feed into professional simulation tools, and parses the simulation outputs for further

processing. Only those operations that act on confidential information are relevant to the

security optimization, and switching characteristics of other operations are discarded.

The leakage is primarily derived from the Hamming distance of a switching operation.

As an estimate for dynamic power consumption and therefore leakage power, the Hamming

distance of operation 𝑖 is defined as 𝐻𝐷(𝑖) = |𝑖𝑜𝑢𝑡,1 − 𝑖𝑜𝑢𝑡,0|.

In addition to estimating the side-channel leakage through the Hamming distance, the

proposed flow also considers the confidential information content through entropy

estimation. The previous initial synthesis phase determined all operations and variable

values that are recursively dependent on user-specified confidential values. Resource

efficient synthesis requires further consideration of the degree of confidentiality. For

instance, the result 𝑦 of the operation 𝑦 = 𝑥 ≥ 25 by itself has a comparatively smaller

amount of confidential information than the secret key 𝑥. This reduction in confidential

117

information content is reflected in the entropy estimation. Recursively, the entropy of each

instruction 𝑖 is computed by multiplying the entropy factor of the functional type 𝜎 with the

sum of input entropies of each parent operation:

ℎ(𝑖) = 𝜎 ∙ ∑ ℎ(𝑝𝑖)

𝑝𝑖∈𝑃𝑎𝑟𝑒𝑛𝑡(𝑖)

The overall leakage of a given instruction regarding the user specified secrets is thus

specified as γi = ℎ(𝑖) ∙ 𝐻𝐷(𝑖)

6.3.3 Security Synthesis

6.3.3.1 Branch Balancing

Branch balancing is a problem that can be solved through algorithm-level modifications

by the design engineer, as well as through automated mechanisms. A potential downside of

automated solutions is that they can be resource intensive in both power and footprint.

Therefore, the proposed flow generates detailed reports on the detected imbalanced

branches to allow manual mitigation in addition to implementing an automated solution.

In branch balancing, all conditional statements of the entire synthesized device are

searched for security sensitive information content. This encompasses the derived

confidential operations discussed previously. Any such conditional statement triggers a code

path for logging of a potential security breach as well as detailed analysis of the subsequent

instructions. As discussed previously, any deviation between the subsequent paths can cause

considerable side-channel leakage; therefore, the number of deviating operations is

computed. An automated mitigation is attempted by inserting dummy operations with

similar functional types to counterbalance the deviations.

In Figure 6.2, an example of branch balancing is shown. In Figure 6.2.a), the branches

are imbalanced, as the upper branch contains additional ADD and DIV operations. These

are balanced through dummy ADD and DIV operations in the lower branch, which

counteract the initial imbalance.

6.3.3.2 Leakage-Driven Allocation and Binding

For simple and efficient security mechanisms, the synthesis must automatically

determine the security requirements as well as applicable countermeasures for each

instruction and functional unit. In a typical HLS flow, the binding step is responsible for

118

assigning instructions or operations to functional units and variables to registers. Binding

algorithms are primarily guided by cost and timing concerns. When multiple operations bind

against the same functional unit, large multiplexers are introduced to enable sharing. Due to

the high cost of large multiplexers in FPGAs, only the most expensive operations are

suitable for sharing [107], such as dividers or modulo operations.

In the proposed flow, allocation and binding are interweaved to maximize the efficiency

of side-channel leakage reduction. The binding algorithm determines the assignment of IR

instructions to functional units. At this stage, these functional units are the most basic and

resource efficient implementations for a given function. As part of binding, a notable

security enhancement is introduced: high risk operations (HROs) are assigned to the same

FUs, whereas low risk instructions (LROs) are assigned to other FUs. This sharing pattern

is shown in Figure 6.3 and is utilized in the allocation of more expensive side-channel

countermeasures. The binding algorithm is driven by a weighted bipartite matching

algorithm, and the proposed weights between operations are determined from the estimated

leakage level.

After all operations are assigned to FUs, the leakage per FU is computed as a sum of the

individual leakage terms. This is a conservative approximation, as partial correlation

between the underlying signals is common. This estimation enables weighted module

selection for each FU. Using the module assignment vector 𝑀 , the vector of leakage

estimates γ, and the total leakage metric 𝜃 , this problem can be described as a linear

programming problem:

Minimize: 𝜃 = γ×𝑀,

𝑀×𝐶 ≤ 𝑟

Through this formulation, functional units with high leakage potential are upsized in

terms of defense mechanisms, such that the overall leakage for a given resource utilization

is minimized.

119

6.4 Experimental Evaluation

The proposed side-channel information leakage optimized HLS flow was implemented

based on LLVM and the LegUp HLS tool [107]. ModelSim was employed for the

simulations, and Altera Quartus II was utilized for synthesis of generated Verilog into a

Cyclone V FPGA. The proposed flow is evaluated in multiple benchmarks and with regard

to different characteristics. Several benchmarks are adapted from the CHStone benchmarks

[108]: AES, Blowfish, SHA, and GSM. AES [130] and Blowfish [131] are symmetric-key

block ciphers, and SHA is a secure hashing algorithm. The GSM benchmark is an

implementation of linear predictive coding analysis for the global system for mobile

communications. Additionally, we have adapted the reference implementation of SIMON

[132] as a benchmark, as it is a lightweight block cipher publicly proposed by the US

National Security Agency’s (NSA) Research Directorate with focus on efficient hardware

implementation. SIMON is particularly interesting, as it has the expressed purpose of

Table 6.1 Countermeasures employed in the evaluation. Resource overhead and effect on

leakage are component-dependent – general estimates are provided.

Logic Style Resource Overhead Leakage Factor

Base 1 1

SDDL 4 1/7

WDDL 5.3 1/10

DWDDL 10.6 1/20

DAWDDL 13.1 1/25

Table 6.2 Evaluation of the side-channel optimized synthesis. Compared to the baseline,

leakage is reduced between 32% and 72% (%𝐵). Compared to the modular synthesis, leakage

is reduced by up to 38% (%𝑀).

Benchmark
Res.

Target

Balancing

Cost

Baseline Modular Synthesis Proposed SC Synthesis

Cost 𝜽𝑩 Cost 𝜽𝑴 % Cost θ %𝑩 %𝑴

AES 187.0 0.6 187.0 394.7 187.0 323.8 0.18 186.9 202.0 0.49 0.38

Blowfish 88.0 0 87.4 341.3 87.6 239.3 0.30 88.0 231.6 0.32 0.03

SHA 62.0 0 61.4 99.4 60.2 64.6 0.35 61.9 49.3 0.50 0.24

SIMON 25.0 0 24.3 80.4 24.9 77.6 0.03 25.0 54.8 0.32 0.29

GSM 59.0 57.5 591.3 271.8 591.9 81.4 0.70 592.0 79.4 0.71 0.03

IoT 258.0 .5 257.9 305.3 240.3 85.5 0.72 224.8 85.5 0.72 0.00

120

facilitating security for IoT [133]. It is notable that these benchmarks implement a very

specific functionality, which does not necessarily reflect the reality of embedded system

applications in cloud or IoT environments. Therefore, we further created an IoT benchmark

which performs several general-purpose tasks including Fourier transformations for voice

recognition, temperature computation with corresponding light control, and presence

detection with control of a door lock.

6.4.1 Evaluation Baseline

As baseline for the evaluation, the entire device is created using a side-channel resistant

design style. This reflects today’s design flows consisting of largely uniform technology

and IP libraries. A second baseline is presented as the modular baseline. In this scenario, the

proposed side-channel synthesis is applied at a modular level to represent the modular

granularity of design engineering for large ICs in enterprises. Here, each module is selected

to be implemented in one of the logic styles presented in Table 6.1 to achieve highest leakage

resistance. We refer to section 6.2 and references for further background on cost and leakage

evaluation of SDDL [118], [119], WDDL [119], [121], [134], DWDDL [121], DAWDDL

[121].

6.4.2 Resource Targeting

In Table 6.2, the benchmarks were synthesized with a resource target. Costs in bold

italics indicate that the maximum available countermeasures were applied – further

reduction of leakage (𝜃) was not possible despite available resources. The resource target

was selected such that the baseline could be fully implemented in the most resource efficient

Table 6.3 Evaluation of the proposed side-channel optimized synthesis against a modular

baseline under more stringent resource constraints. Leakage is reduced by 20% to 40%.

Bench-

mark

Res.

Target

Modular Synthesis Proposed SC Synthesis

Cost 𝜽𝑴 Cost θ %

AES 75.0 75.0 2052.5 75.0 1221.4 0.40

Blowfish 35.0 34.6 2217.9 35.0 1691.8 0.24

SHA 23.0 18.6 592.0 23.0 361.4 0.39

SIMON 9.5 8.1 505.1 9.4 395.3 0.22

GSM 235.0 235.0 763.0 235.0 536.0 0.30

IoT 75.0 74.7 1611.1 74.8 1079.2 0.33

121

logic style with reduced side-channel leakage, which is SDDL. The strong improvements of

the proposed side-channel synthesis are clear; leakage is reduced by up to 72% compared to

the baseline, and up to 38% compared to the modular baseline.

The synthesis of the GSM benchmark provided interesting results, as both the proposed

synthesis and the modular baseline provide similar results and are significantly better than

the full-device baseline. This can be explained by the complexity of the GSM benchmark:

in comparison to the other CHStone benchmarks, this benchmark circuit performs more

computations, many of which are independent of the user-specified confidential variables.

Therefore, both the modular baseline and the proposed synthesis can be significantly more

resource efficient and therefore achieve higher leakage reduction. Additionally, it can be

observed that many of the confidential values (and their dependencies) are constrained to

specific modules (basic blocks), which explains why the proposed synthesis was not

significantly more efficient than the modular baseline.

In contrast to the GSM benchmark, the experimental results for SIMON show limited

improvements in the modular baseline, but significant improvements in the proposed

synthesis compared to both the full-device and the modular baseline. This can also be

explained by the underlying design: The share of confidential operands is roughly uniform

across the modules in SIMON; therefore, the modular baseline cannot significantly

outperform the baseline. However, the proposed synthesis can perform leakage optimization

down to the instruction or functional unit level, and is therefore able to extract further

leakage reduction.

In addition to the resource-targeted evaluation in Table 6.2, the proposed side-channel

optimized synthesis flow is further evaluated against the modular baseline with a

significantly lower resource limit. For this evaluation, the simple baseline would not yield

a result, as the low resource limit prohibits application of the side-channel reducing logic

styles at the full-device level. The evaluation shown in Table 6.3 demonstrates the strength

of the proposed flow under restrictive resource constraints, yielding between 22% and 40%

reduced leakage as compared to the modular approach. Notably, the proposed flow achieved

only a minor improvement of 3% compared to the modular approach under higher resource

constraints for GSM, but achieves a leakage reduction of 30% for the same benchmark in a

more constrained environment. This signifies the suitability of the proposed flow for

embedded IoT applications.

122

6.4.3 Branch Balancing

The results presented in Tables 6.2-6.5 include branch balancing, but it is only presented

once in Table 6.2 as the results are identical across the experiments. Notably, several

benchmarks did not require any branch balancing – the reason for this is the efficient and

dedicated design. Blowfish, SHA, and SIMON all have a single purpose, namely the

encryption or hashing of an input. As the benchmark only covers this specific functionality,

the risk of accidental branch imbalance was greatly reduced. The results for the GSM

benchmark provide an example of the other spectrum of branch balancing: the log area ratio

(LAR) computed by the benchmark was considered to be the user-specified secret, and the

benchmark code contains a large number of expensive operations that are controlled by

conditionals which (indirectly) depend on the LAR value. Thus, branch balancing requires

extensive resources to mitigate this situation. To illustrate the effectiveness of branch

balancing, consider the case that virtually the full GSM benchmark is considered to be

security critical – this can be achieved by specifying the input signal to be confidential. In

this case, the branch balancing algorithm would require 184960 GE resources, 3.2 times as

much as described in Table 6.2. This illustrates the significance of imbalanced branches, as

well as the convenience of HLS.

6.4.4 Leakage Targeting

In addition to the evaluation of the resource-targeted synthesis flow, the leakage-targeted

flow is extensively evaluated in Table 6.4. This mode synthesizes the provided high-level

specification such that the estimated side-channel leakage is below a specified leakage

Table 6.4 Evaluation of the proposed synthesis under explicit side-channel leakage target.

Compared to the baseline, the leakage target is achieved with 31% to 81% less overhead (%𝐵).

Compared to modular synthesis, overhead is reduced by up to 44% (%𝑀).

Benchmark
𝜽

Target

Baseline Modular Synthesis Proposed Side-Channel Synthesis

O.H. 𝜽𝑩 O.H. 𝜽𝑴 % O.H. θ %𝑩 %𝑴

AES 395 139740 394.7 109144 385.4 0.22 61568 395.0 0.56 0.44

Blowfish 342 65520 341.3 45528 341.7 0.31 43012 341.9 0.34 0.06

SHA 100 46080 99.4 28496 99.9 0.38 22160 99.9 0.52 0.22

SIMON 81 18240 80.4 16320 80.5 0.11 12512 81.0 0.31 0.23

GSM 272 400320 271.8 104624 271.6 0.74 93672 271.9 0.77 0.10

IoT 306 193080 305.3 42930 304.3 0.78 36004 305.6 0.81 0.16

123

target. This flow is interesting in different practical scenarios, for instance when the sub-

module of a larger device is being synthesized. Here, it may be preferable to uniformly

achieve a given leakage target throughout the circuit, rather than fully utilizing arbitrarily

assigned resources. In comparison to the full-device baseline, the proposed synthesis

achieves the leakage target with significantly reduced resource utilization. The reduction

ranges from 31% for the highly efficient SIMON cipher to 81% for the IoT benchmark. The

improvements over the modular baseline are more modest, ranging from 6% for the

Blowfish benchmark up to 44% for AES. In contrast to the presented cost reduction of 56%

over the baseline, note that manual partitioning has only achieved a reduction of 24% for

AES [122]. The presented improvement can be attributed to the fine-grained recognition of

leakage-prone operations. For this benchmark, the resource savings over the baseline is

equivalent to 12,413 adaptive logic modules (ALMs) for the studied Cyclone V FPGA.

An evaluation with more modest leakage targets is presented in Table 6.5. This scenario

can be desirable when the priority for side-channel defense is to function as a deterrent for

weakly motivated adversaries with comparably low resource overhead. The results show

that the proposed synthesis flow achieves fine-grained result tuning and therefore achieves

considerably improved resource utilization. Compared to the modular baseline, the resource

cost is reduced by up to 42% while achieving the same leakage targets. In this experiment,

it is notable that the modular baseline has significantly exceeded the leakage target for the

AES and Blowfish benchmarks, resulting in a leakage that is less than half of the

requirement. The underlying cause for this over-engineered solution is the coarse granularity

of block-based optimization, which emphasizes the strength of the proposed security

synthesis with FU-based leakage optimization.

124

6.5 Conclusion and Outlook

Security is a core requirement for IoT and cloud computing due to the vast amounts of

confidential and privacy sensitive data that is processed. Side-channel leakage is an

important problem as it provides malicious adversaries indirect access to internal state and

data such as secret keys. Defending against side-channel attacks such as DPA that exploit

this leakage is an active research area, and is not easy to apply efficiently in practice without

detailed hardware security and circuit-level understanding. In this chapter, we presented the

first HLS flow that inherently minimizes side-channel leakage by inferring all security

critical operations from a small number of user-specified confidential variables in their C-

code to be synthesized. The HLS flow automatically analyzes the information content for

all relevant operations and performs detailed simulations to perform Hamming distance

based leakage estimation. The flow identifies and corrects any imbalanced branches that

pose easy attack targets, and selectively upgrades functional units based on leakage potential

and available resources. An extensive evaluation showed that side-channel leakage can be

reduced by up to 72% under identical resource constraints when compared against typical

full-device application of countermeasures. The results further show a reduction in resource

consumption by up to 81% compared to the baseline to achieve a given leakage limit.

Further investigation is needed in two directions: i) detailed evaluation and consideration of

power and operation speed during synthesis; ii) incorporation of masking to further

strengthen the resistance against DPA.

Table 6.5 Evaluation of leakage targeted synthesis under less severe leakage targets. Side-

channel leakage is denoted by θ. Target is achieved with up to 30% to 67% reduced overhead.

Bench-

mark

Leakage

Target

Modular Synthesis Proposed SC Synthesis

O.H. 𝜽𝑴 O.H. θ %

AES 1000 90120 480.2 32160 998.2 0.64

Blowfish 1000 39360 504.3 27532 999.9 0.30

SHA 450 8160 398.9 5280 449.7 0.35

SIMON 450 8640 304.2 2880 448.4 0.67

GSM 1000 22800 984.7 15840 999.3 0.31

IoT 1000 21600 802.3 12236 999.4 0.43

125

CHAPTER 7

CONCLUSIONS

In this dissertation, we have studied the security of hardware implementations and have

introduced new defense mechanisms. The security of hardware requires special attention,

as even widely accepted and used algorithms or protocols can be breached with limited

effort unless proper countermeasures are implemented. There exist three primary threat to

hardware implementations: i) physically invasive attacks which include physical

modification of circuit behavior post-manufacturing; ii) the insertion of hardware Trojan

horses by a malicious foundry which can leak secret information with minimal overhead;

iii) side-channel analysis of power traces, which can reveal the values of secrets being

processed due to the correlation between input signals and dynamic power consumption of

the hardware. This dissertation covers all three of these areas.

In Chapter 2, we presented a PUF design based on intrinsic physical variations of CNTs.

It takes advantage of the metallic to semiconducting CNT ratio in CNFETs to increase

reliability, while strongly reducing the average power consumption and energy usage per

bit. CNPUF was experimentally evaluated with SPICE-accurate simulations and showed

strong results for security relevant properties such as reliability and inter-chip distance.

Furthermore, we presented and evaluated an extension of CNPUF that allows a power-

security tradeoff for dynamic usage in high security circuits. CNPUF and ex-CNPUF

provide the future basis for authentication and secret key generation by offering security at

a very low area and power cost. This can open the field of PUF for a variety of new

applications and is especially relevant for current research areas such as wireless sensor

networks or ubiquitous computing.

In Chapter 3, we introduced a new system-level security model that bridges the chasm

between application-level security analysis and design of secure hardware, and models for

isolated components. From this model, we analyzed and explained several hardware security

requirements using existing protocols, and showed that they cannot be fulfilled without

extensive cost. We presented a multilevel authentication protocol which is verified using

the system-level security model and which takes advantage of a combination of different

PUF-designs to minimize resource allocation. SoP does not require expensive error-

correction, as high reliability designs are employed where required. Furthermore, the need

126

for latency and power intensive hash functions on the PUF circuit is replaced by a

combination of strong PUFs and off-chip cryptographic hash. With breach recognition and

recovery, new security features are introduced and shown to increase the attack-difficulty

while enhancing reusability. A low-cost implementation of SoP was shown to reduce the

area by 64% in a gate-level comparison. This low resource allocation and high flexibility

allow SoP to provide a security solution tailored for ubiquitous computing devices.

In Chapter 4, we proposed PolyPUF, a widely applicable PUF architecture that employs

challenge and response self-divergence to provide polymorphous PUF behavior. This

changes the challenge-response behavior to be non-deterministic and unpredictable, while

still being verifiable in an authentication scenario. In an extensive evaluation, this

polymorphic behavior was shown to provide strong resistivity against model-building

attacks while simultaneously providing very low overhead.

In Chapter 5, the focus changed to the threat of hardware Trojan horses. We presented a

security optimization flow that utilizes resources with high efficiency to identify and

disperse security critical information through multiple operators and registers. Moreover,

we introduced an obfuscation flow that is embedded in the high-level synthesis flow and

enables threat-targeted security optimization under resource constraints. Engineers merely

need to define the initial security critical variable, and the downstream vulnerabilities are

automatically detected and defended. The evaluation showed security enhancements with

up to 5-times higher information dispersion and significantly higher Trojan insertion

difficulty under the same resource constraints as a baseline technique. A threat-targeted

evaluation showed that the co-optimization of obfuscation and dispersion can improve

security by a factor between 8.37 and 1932, emphasizing the strength and flexibility of

threat-targeted synthesis.

In Chapter 6, the problem of side-channel information leakage is further studied. We

presented the first HLS flow that inherently minimizes side-channel leakage by inferring all

security critical operations from a small number of user-specified confidential variables in

their C-code to be synthesized. The HLS flow automatically analyzes the information

content for all relevant operations and performs detailed simulations to perform Hamming

distance based leakage estimation. The flow identifies and corrects any imbalanced

branches that pose easy attack targets, and selectively upgrades functional units based on

leakage potential and available resources. An extensive evaluation showed that side-channel

leakage can be reduced by up to 72% under identical resource constraints when compared

127

against typical full-device application of countermeasures. The results further show a

reduction in resource consumption by up to 81% compared to the baseline to achieve a given

leakage limit. Further investigation is needed in two directions: i) detailed evaluation and

consideration of power and operation speed during synthesis; ii) incorporation of masking

to further strengthen the resistance against DPA.

In conclusion, this dissertation contributed to hardware security research by introducing

new PUF designs and systems to improve defenses against physical attacks. Furthermore, it

introduced high-level synthesis flows that utilize existing work to increase the difficulty of

hardware Trojan horse insertion and reduce side-channel information leakage which could

be exploited in side-channel analysis attacks.

128

REFERENCES

[1] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “Wireless

sensor networks: a survey,” Comput. Netw., vol. 38, no. 4, pp. 393–422, 2002.

[2] T. Starner, “The challenges of wearable computing: Part 2,” Micro, vol. 21.4,

no. IEEE, pp. 54–67, 2001.

[3] R. Lee, S. Sethumadhavan, and G. E. Suh, “Hardware enhanced security,”

Proc. 2012 ACM Conf. Comput. Commun. Secur. - CCS 12, p. 1052, 2012.

[4] B. Gassend, D. Clarke, M. van Dijk, and S. Devadas, “Silicon Physical

Random Functions,” Proc. 9th ACM Conf. Comput. Commun. Secur., 2002.

[5] R. Nithyanand and J. Solis, “A Theoretical Analysis: Physical Unclonable

Functions and the Software Protection Problem,” 2012 IEEE Symp. Secur.

Priv. Workshop, pp. 1–11, May 2012.

[6] D. Lim, J. W. Lee, B. Gassend, G. E. Suh, M. Van Dijk, and S. Devadas,

“Extracting Secret Keys From Integrated Circuits,” IEEE Trans. Very Large

Scale Integr. Syst., vol. 13, no. 10, pp. 1200–1205, 2005.

[7] G. E. Suh and S. Devadas, “Physical unclonable functions for device

authentication and secret key generation,” in Proceedings of the 44th annual

Design Automation Conference, 2007.

[8] S. S. Kumar, J. Guajardo, R. Maes, G. Schrijen, and P. Tuyls, “Extended

Abstract : The Butterfly PUF Protecting IP on every FPGA,” Hardware-

Oriented Security and Trust, 2008. HOST 2008. IEEE International Workshop

on. IEEE, 2008.

[9] Y. Yao, M. Kim, J. Li, I. Markov, and F. Koushanfar, “ClockPUF: Physical

Unclonable Functions based on Clock Networks,” in Design, Automation &

Test in Europe, 2013.

[10] M. Majzoobi, G. Ghiaasi, F. Koushanfar, and S. R. Nassif, “Ultra-low power

current-based PUF,” 2011 IEEE Int. Symp. Circuits Syst. ISCAS, pp. 2071–

2074, May 2011.

[11] S. Selvarasah, “Ultrathin and highly flexible parylene-c packaged carbon

nanotube field effect transistors,” PhD dissertation, Northeastern University

Boston, 2010.

[12] S. T. C. Konigsmark, L. K. Hwang, D. Chen, and M. D. Wong, “CNPUF: A

Carbon Nanotube-based Physically Unclonable Function for Secure Low-

Energy Hardware Design,” in Design Automation Conference (ASP-DAC),

2014 19th Asia and South Pacific, 2014, pp. 73–78.

[13] M. Zhang and J. Li, “Carbon nanotube in different shapes,” Mater. Today, vol.

12, no. 6, pp. 12–18, Jun. 2009.

[14] S. J. Tans, A. R. M. Verschueren, and C. Dekker, “Room-temperature

transistor based on a single carbon nanotube,” Nature, vol. 672, no. 1989, pp.

669–672, 1998.

[15] H. Park et al., “High-density integration of carbon nanotubes via chemical self-

assembly.,” Nat. Nanotechnol., vol. 7, no. 12, pp. 787–91, Dec. 2012.

129

[16] M. Shulaker et al., “Sacha : the Stanford Carbon Nanotube Controlled

Handshaking Robot,” in Proceedings of the 50th Annual Design Automation

Conference, 2013, pp. 2–4.

[17] M. M. Shulaker et al., “Carbon nanotube computer,” Nature, vol. 501, no.

7468, pp. 526–30, Sep. 2013.

[18] J. Zhang et al., “Robust Digital VLSI using Carbon Nanotubes,” IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems,

vol. 31, no. 4, pp. 453–471, 2012.

[19] J. Zhang, “Variation-Aware Design of Carbon Nanotube Digital VLSI

Circuits,” PhD dissertation, Stanford University, August, 2011.

[20] H. Wei et al., “Efficient metallic carbon nanotube removal readily scalable to

wafer-level VLSI CNFET circuits,” in VLSI Technology (VLSIT), 2010

Symposium on, 2010, pp. 237–238.

[20] J.W.G. Wilder, L.C. Venema, A.G. Rinzler, R.E. Smalley, and C. Dekker,

“Electronic structure of atomically resolved carbon nanotubes,” Nature, vol.

584, no. 10, pp. 1996–1999, 1998.

[22] J. Deng and H.-S. Wong, “A compact SPICE model for carbon-nanotube field-

effect transistors including nonidealities and its application—Part I: Model of

the intrinsic channel region,” Electron Devices IEEE Trans. On, vol. 54, no.

12, pp. 3186–3194, 2007.

[23] J. Deng and H.-S. Wong, “A compact SPICE model for carbon-nanotube field-

effect transistors including nonidealities and its application—Part II: Full

device model and circuit performance benchmarking,” Electron Devices IEEE

Trans. On, vol. 54, no. 12, pp. 3195–3205, 2007.

[24] S. Sinha, G. Yeric, V. Chandra, B. Cline, and Y. Cao, “Exploring sub-20nm

FinFET design with predictive technology models,” in Proceedings of the 49th

Annual Design Automation Conference, 2012, pp. 283–288.

[25] A. R. Krishna and S. Bhunia, “ScanPUF: Robust ultralow-overhead PUF using

scan chain,” 2013 18th Asia S. Pac. Des. Autom. Conf. ASP-DAC, pp. 626–

631, Jan. 2013.

[25] S. B. Ors, G. Frank, E. Oswald, B. Preneel, and A. Graz, “Power-Analysis

Attack on an ASIC AES implementation,” in Information Technology: Coding

and Computing, 2004. Proceedings. ITCC 2004. International Conference on.

Vol. 2, 2004.

[27] A. Salomaa, Public-key cryptography, vol. 23. Springer-Verlag New York

Incorporated, 1996.

[28] C. Helfmeier, D. Nedospasov, C. Tarnovsky, J. S. Krissler, C. Boit, and J.-P.

Seifert, “Breaking and entering through the silicon,” in Proceedings of the

2013 ACM SIGSAC conference on Computer & communications security,

2013, pp. 733–744.

[29] D. Nedospasov, J.-P. Seifert, C. Helfmeier, and C. Boit, “Invasive PUF

analysis,” in Fault Diagnosis and Tolerance in Cryptography (FDTC), 2013

Workshop on, 2013, pp. 30–38.

[30] M. Majzoobi, M. Rostami, F. Koushanfar, D. S. Wallach, and S. Devadas,

“Slender PUF Protocol: A Lightweight, Robust, and Secure Authentication by

130

Substring Matching,” in Security and Privacy Workshops (SPW), 2012 IEEE

Symposium on, 2012.

[31] U. Ruhrmair and M. van Dijk, “PUFs in Security Protocols: Attack Models and

Security Evaluations,” in Security and Privacy (SP), 2013 IEEE Symposium

on, 2013, pp. 286–300.

[32] S. T. C. Konigsmark, L. K. Hwang, D. Chen, and M. D. F. Wong, “System-of-

PUFs: multilevel security for embedded systems,” in CODES+ISSS, 2014.

[33] R. Maes and I. Verbauwhede, “Physically unclonable functions: A study on

the state of the art and future research directions,” Hardw.-Intrinsic Secur., pp.

3–37, 2010.

[34] C. Bohm, M. Hofer, and W. Pribyl, “A microcontroller SRAM-PUF,” 5th Int.

Conf. Netw. Syst. Secur., Sep. 2011.

[35] D. E. Holcomb, W. P. Burleson, and K. Fu, “Power-Up SRAM State as an

Identifying Fingerprint and Source of True Random Numbers,” Comput. IEEE

Trans. On, vol. 58, no. 9, pp. 1198–1210, 2009.

[36] U. Rührmair, F. Sehnke, J. Sölter, G. Dror, S. Devadas, and J. Schmidhuber,

“Modeling attacks on physical unclonable functions,” in Proceedings of the

17th ACM conference on Computer and communications security, 2010, pp.

237–249.

[37] M. Majzoobi, F. Koushanfar, and M. Potkonjak, “Testing Techniques for

Hardware Security,” IEEE Int. Test Conf., Oct. 2008.

[38] U. Rührmair, H. Busch, and S. Katzenbeisser, “Strong PUFs: Models,

Constructions, and Security Proofs,” in Towards Hardware-Intrinsic Security,

A.-R. Sadeghi and D. Naccache, Eds. Berlin, Heidelberg: Springer Berlin

Heidelberg, 2010, pp. 79–96.

[39] A. Van Herrewege, S. Katzenbeisser, R. Maes, R. Peeters, K. U. Leuven, and

E. Cosic, “Reverse Fuzzy Extractors : Enabling Lightweight Mutual

Authentication for PUF-enabled RFIDs,” Financ. Cryptogr. Data Secur., pp.

374–389, 2012.

[40] M.-D. (Mandel) Yu and S. Devadas, “Secure and Robust Error Correction for

Physical Unclonable Functions,” IEEE Des. Test Comput., vol. 27, no. 1, pp.

48–65, Jan. 2010.

[41] M. Hiller, D. Merli, F. Stumpf, and G. Sigl, “Complementary IBS: Application

specific error correction for PUFs,” in 2012 IEEE International Symposium on

Hardware-Oriented Security and Trust, 2012, no. i.

[42] H. Busch, S. Katzenbeisser, and P. Baecher, “PUF-Based Authentication

Protocols–Revisited,” in Information Security Applications, Springer, 2009,

pp. 296–308.

[43] M. Feldhofer and C. Rechberger, “A case against currently used hash functions

in RFID protocols,” in On the move to meaningful internet systems 2006: OTM

2006 workshops, 2006, pp. 372–381.

[44] A. Bogdanov, M. Knežević, G. Leander, D. Toz, K. Varıcı, and I.

Verbauwhede, “SPONGENT: A lightweight hash function,” in Cryptographic

Hardware and Embedded Systems–CHES 2011, Springer, 2011, pp. 312–325.

[45] N. Beckmann and M. Potkonjak, “Hardware-based public-key cryptography

with public physically unclonable functions,” in Information Hiding, 2009.

131

[46] M. Potkonjak, S. Meguerdichian, A. Nahapetian, and S. Wei, “Differential

public physically unclonable functions: architecture and applications,” 48th

ACMEDACIEEE Des. Autom. Conf., 2011.

[45] E. Öztürk, G. Hammouri, and B. Sunar, “Towards robust low cost

authentication for pervasive devices,” in Pervasive Computing and

Communications, 2008. PerCom 2008. Sixth Annual IEEE International

Conference on, 2008, pp. 170–178.

[48] G. Hammouri, E. Öztürk, and B. Sunar, “A tamper-proof and lightweight

authentication scheme,” Pervasive Mob. Comput., vol. 4, no. 6, pp. 807–818,

Dec. 2008.

[49] R. Plaga and F. Koob, “A formal definition and a new security mechanism of

physical unclonable functions,” in Measurement, Modelling, and Evaluation

of Computing Systems and Dependability and Fault Tolerance, Springer, 2012,

pp. 288–301.

[50] F. Armknecht, R. Maes, A.-R. Sadeghi, F.-X. Standaert, and C. Wachsmann,

“A Formalization of the Security Features of Physical Functions,” in Security

and Privacy (SP), 2011 IEEE Symposium on, 2011, pp. 397–412.

[51] W. Stallings and L. Brown, Computer security: principles and practice.

Boston: Pearson, 2012.

[52] M. G. Kuhn and Oliver Kommerling, “Design Principles for Tamper-Resistant

Smartcard Processors,” USENIX Workshop Smartcard Technol., 1999.

[53] K. Pongaliur, Z. Abraham, A. X. Liu, L. Xiao, and L. Kempel, “Securing

Sensor Nodes Against Side Channel Attacks,” in High Assurance Systems

Engineering Symposium, 2008. HASE 2008. 11th IEEE, 2008, pp. 353–361.

[54] J. Ferrigno and M. Hlaváč, “When AES blinks: introducing optical side

channel,” IET Inf. Secur., vol. 2, no. 3, p. 94, 2008.

[55] N. Vachharajani et al., “RIFLE: An architectural framework for user-centric

information-flow security,” in Microarchitecture, 2004. MICRO-37 2004. 37th

International Symposium on, 2004, pp. 243–254.

[56] O. Goldreich and R. Ostrovsky, “Software Protection and Simulation on

Oblivious RAMs,” J ACM, vol. 43, no. 3, pp. 431–473, May 1996.

[57] M. Maas et al., “PHANTOM: practical oblivious computation in a secure

processor,” 2013, pp. 311–324.

[58] U. Rührmair, F. Sehnke, and J. Sölter, “Modeling attacks on physical

unclonable functions,” Proc. 17th ACM Conf. Comput. Commun. Secur., 2010.

[59] J. Guajardo, S. S. Kumar, G.-J. Schrijen, and P. Tuyls, “FPGA intrinsic PUFs

and their use for IP protection,” in Cryptographic Hardware and Embedded

Systems-CHES 2007, Springer, 2007, pp. 63–80.

[60] E. Simpson and P. Schaumont, “Offline hardware/software authentication for

reconfigurable platforms,” in Cryptographic Hardware and Embedded

Systems-CHES 2006, Springer, 2006, pp. 311–323.

[61] J. Delvaux and I. Verbauwhede, “Side Channel Modeling Attacks on 65nm

Arbiter PUFs Exploiting CMOS Device Noise,” Hardw.-Oriented Secur. Trust

HOST 2013 IEEE Int. Symp. On.

132

[62] C.-E. Yin and G. Qu, “Lisa: Maximizing ro puf’s secret extraction,” in

Hardware-Oriented Security and Trust (HOST), 2010 IEEE International

Symposium on, 2010, pp. 100–105.

[63] H.-M. Sun, “An efficient remote use authentication scheme using smart cards,”

Consum. Electron. IEEE Trans. On, vol. 46, no. 4, pp. 958–961, 2000.

[64] Z. Benenson, N. Gedicke, and O. Raivio, “Realizing robust user authentication

in sensor networks,” Real-World Wirel. Sens. Netw. REALWSN, vol. 14, 2005.

[65] M. Feldhofer, S. Dominikus, and J. Wolkerstorfer, “Strong authentication for

RFID systems using the AES algorithm,” in Cryptographic Hardware and

Embedded Systems-CHES 2004, Springer, 2004, pp. 357–370.

[66] F. Koushanfar et al., “Can EDA combat the rise of electronic counterfeiting?,”

in Proceedings of the 49th Annual Design Automation Conference, 2012, pp.

133–138.

[67] G. Hammouri and B. Sunar, “PUF-HB: A tamper-resilient HB based

authentication protocol,” in Applied Cryptography and Network Security,

2008, pp. 346–365.

[67] A. S. Wander, N. Gura, H. Eberle, V. Gupta, and S. C. Shantz, “Energy

Analysis of Public-Key Cryptography for Wireless Sensor Networks,”

Pervasive Computing and Communications, 2005. PerCom 2005. Third IEEE

International Conference on. 2005.

[69] S. T. C. Konigsmark, D. Chen, and M. D. F. Wong, “PolyPUF: Physically

Secure Self-Divergence,” IEEE Trans. Comput.-Aided Des. Integr. Circuits

Syst., vol. 35, no. 7, pp. 1053–1066, Jul. 2016.

[70] J. Guajardo, S. S. Kumar, G.-J. Schrijen, and P. Tuyls, FPGA intrinsic PUFs

and their use for IP protection. Springer, 2007.

[71] U. Ruhrmair et al., “PUF Modeling Attacks on Simulated and Silicon Data,”

IEEE Trans. Inf. Forensics Secur., vol. 8, no. 11, pp. 1876–1891, Nov. 2013.

[72] M.-D. M. Yu, I. Verbauwhede, S. Devadas, and D. M’Raїhi, “A Noise

Bifurcation Architecture for Linear Additive Physical Functions,” Hardw.-

Oriented Secur. Trust HOST 2014 IEEE Int. Symp. On.

[73] C. M. Bishop, Pattern recognition and machine learning. New York: Springer,

2006.

[74] M. Riedmiller and H. Braun, “A direct adaptive method for faster

backpropagation learning: The RPROP algorithm,” in Neural Networks, 1993.,

IEEE International Conference on, 1993, pp. 586–591.

[75] P. L. Bartlett and W. Maass, “Vapnik Chervonenkis Dimension of Neural

Nets,” Handb. Brain Theory Neural Netw., pp. 1188–1192, 2003.

[76] K. Tiri et al., “A side-channel leakage free coprocessor IC in 0.18μm CMOS

for embedded AES-based cryptographic and biometric processing,” in Design

Automation Conference, 2005. Proceedings. 42nd, 2005, pp. 222–227.

[77] J. Rajendran, M. Sam, O. Sinanoglu, and R. Karri, “Security analysis of

integrated circuit camouflaging,” in Proceedings of the 2013 ACM SIGSAC

conference on Computer & communications security, 2013, pp. 709–720.

[78] P. Kocher, R. Lee, G. McGraw, A. Raghunathan, and R. Srivaths, “Security as

a new dimension in embedded system design,” in Proceedings of the 41st

annual Design Automation Conference, 2004, pp. 753–760.

133

[79] J. Delvaux, D. Gu, D. Schellekens, and I. Verbauwhede, “Secure Lightweight

Entity Authentication with Strong PUFs: Mission Impossible?,” in

Cryptographic Hardware and Embedded Systems–CHES 2014, Springer,

2014, pp. 451–475.

[80] S. P. Skorobogatov and R. J. Anderson, “Optical fault induction attacks,” in

Cryptographic Hardware and Embedded Systems-CHES 2002, 2003.

[81] A. Van Herrewege et al., “Reverse fuzzy extractors: Enabling lightweight

mutual authentication for PUF-enabled RFIDs,” in Financial Cryptography

and Data Security, Springer, 2012, pp. 374–389.

[82] P. Koeberl, J. Li, A. Rajan, and W. Wu, “Entropy loss in PUF-based key

generation schemes: The repetition code pitfall,” in Hardware-Oriented

Security and Trust (HOST), 2014 IEEE International Symposium on, 2014, pp.

44–49.

[83] M. Rostami, M. Majzoobi, F. Koushanfar, D. S. Wallach, and S. Devadas,

“Robust and Reverse-Engineering Resilient PUF Authentication and Key-

Exchange by Substring Matching,” IEEE Trans. Emerg. Top. Comput., vol. 2,

no. 1, pp. 37–49, Mar. 2014.

[84] R. Bonetto, N. Bui, V. Lakkundi, A. Olivereau, A. Serbanati, and M. Rossi,

“Secure communication for smart IoT objects: Protocol stacks, use cases and

practical examples,” in World of Wireless, Mobile and Multimedia Networks

(WoWMoM), 2012 IEEE International Symposium on a, 2012, pp. 1–7.

[85] S. Bhunia et al., “Protection Against Hardware Trojan Attacks: Towards a

Comprehensive Solution,” IEEE Des. Test, vol. 30, no. 3, pp. 6–17, Jun. 2013.

[86] J. Li and J. Lach, “At-speed delay characterization for IC authentication and

Trojan horse detection,” in Hardware-Oriented Security and Trust, 2008.

HOST 2008. IEEE International Workshop on, 2008, pp. 8–14.

[87] S. Skorobogatov and C. Woods, in Breakthrough silicon scanning discovers

backdoor in military chip, 2012.

[88] L. Lin, W. Burleson, and C. Paar, “MOLES: malicious off-chip leakage

enabled by side-channels,” in Proceedings of the 2009 International

Conference on Computer-Aided Design, 2009, pp. 117–122.

[89] M. Yoshimura, A. Ogita, and T. Hosokawa, “A smart Trojan circuit and smart

attack method in AES encryption circuits,” in Defect and Fault Tolerance in

VLSI and Nanotechnology Systems (DFT), 2013 IEEE International

Symposium on, 2013, pp. 278–283.

[90] S. T. C. Konigsmark, D. Chen, and M. D. F. Wong, “Information Dispersion

for Trojan Defense through High-Level Synthesis,” presented at the

Proceedings of the 53rd Annual Design Automation Conference, 2016, pp. 1–

6.

[91] X. Cui, K. Ma, L. Shi, and K. Wu, “High-level synthesis for run-time hardware

Trojan detection and recovery,” in Proceedings of the 51st Annual Design

Automation Conference, 2014, pp. 1–6.

[92] K. Xiao and M. Tehranipoor, “BISA: Built-in self-authentication for

preventing hardware Trojan insertion,” in Hardware-Oriented Security and

Trust (HOST), 2013 IEEE International Symposium on, 2013, pp. 45–50.

134

[93] R. S. Chakraborty and S. Bhunia, “HARPOON: An Obfuscation-Based SoC

Design Methodology for Hardware Protection,” IEEE Trans. Comput.-Aided

Des. Integr. Circuits Syst., vol. 28, no. 10, pp. 1493–1502, Oct. 2009.

[94] J. Rajendran, H. Zhang, O. Sinanoglu, and R. Karri, “High-level synthesis for

security and trust,” in On-Line Testing Symposium (IOLTS), 2013 IEEE 19th

International, 2013, pp. 232–233.

[95] M. Ben Hammouda, P. Coussy, and L. Lagadec, “A design approach to

automatically synthesize ansi-c assertions during high-level synthesis of

hardware accelerators,” in Circuits and Systems (ISCAS), 2014 IEEE

International Symposium on, 2014, pp. 165–168.

[96] Y. Jin and Y. Makris, “Hardware Trojan detection using path delay

fingerprint,” in Hardware-Oriented Security and Trust, 2008. HOST 2008.

IEEE International Workshop on, 2008, pp. 51–57.

[97] F. Wolff, C. Papachristou, S. Bhunia, and R. S. Chakraborty, “Towards Trojan-

free trusted ICs: Problem analysis and detection scheme,” in Proceedings of

the conference on Design, automation and test in Europe, 2008, pp. 1362–

1365.

[98] B. Khaleghi, A. Ahari, H. Asadi, and S. Bayat-Sarmadi, “FPGA-Based

Protection Scheme against Hardware Trojan Horse Insertion Using Dummy

Logic,” IEEE Embed. Syst. Lett., vol. 7, no. 2, pp. 46–50, Jun. 2015.

[99] J. Zhang, “A Practical Logic Obfuscation Technique for Hardware Security,”

IEEE Trans. Very Large Scale Integr. VLSI Syst., vol. 24, no. 3, pp. 1193–

1197, Mar. 2016.

[100] R. S. Chakraborty and S. Bhunia, “Security against hardware Trojan through

a novel application of design obfuscation,” in Proceedings of the 2009

International Conference on Computer-Aided Design, 2009, pp. 113–116.

[101] M. Rostami, F. Koushanfar, J. Rajendran, and R. Karri, “Hardware security:

Threat models and metrics,” in Proceedings of the International Conference

on Computer-Aided Design, 2013, pp. 819–823.

[102] S. Bhasin and F. Regazzoni, “A survey on hardware trojan detection

techniques,” in Circuits and Systems (ISCAS), 2015 IEEE International

Symposium on, 2015, pp. 2021–2024.

[103] Y. Liu, Y. Jin, and Y. Makris, “Hardware Trojans in wireless cryptographic

ICs: Silicon demonstration & detection method evaluation,” in Proceedings of

the International Conference on Computer-Aided Design, 2013, pp. 399–404.

[104] C. Lattner, “LLVM and Clang: Next generation compiler technology,” in

The BSD Conference, 2008, pp. 1–2.

[105] K. Kursawe, A.-R. Sadeghi, D. Schellekens, B. Škorić, and P. Tuyls,

“Reconfigurable physical unclonable functions-enabling technology for

tamper-resistant storage,” in Hardware-Oriented Security and Trust, 2009.

HOST’09. IEEE International Workshop on, 2009, pp. 22–29.

[105] S. Hadjis et al., “Impact of FPGA architecture on resource sharing in high-

level synthesis,” in Proceedings of the ACM/SIGDA International Symposium

on Field Programmable Gate Arrays, 2012, pp. 111–114.

135

[107] A. Canis et al., “LegUp: An open-source high-level synthesis tool for FPGA-

based processor/accelerator systems,” ACM Trans. Embed. Comput. Syst., vol.

13, no. 2, pp. 1–27, Sep. 2013.

[108] Y. Hara, H. Tomiyama, S. Honda, and H. Takada, “Proposal and

Quantitative Analysis of the CHStone Benchmark Program Suite for Practical

C-based High-level Synthesis,” J. Inf. Process., vol. 17, pp. 242–254, 2009.

[109] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet of Things

(IoT): A vision, architectural elements, and future directions,” Future Gener.

Comput. Syst., vol. 29, no. 7, pp. 1645–1660, Sep. 2013.

[110] D. Liu, P. Ning, and W. Du, “Detecting malicious beacon nodes for secure

location discovery in wireless sensor networks,” in Distributed Computing

Systems, 2005. ICDCS 2005. Proceedings. 25th IEEE International

Conference on, 2005, pp. 609–619.

[111] K. Eguro and R. Venkatesan, “FPGAs for trusted cloud computing,” in 22nd

International Conference on Field Programmable Logic and Applications

(FPL), 2012, pp. 63–70.

[112] A. P. Johnson, R. S. Chakraborty, and D. Mukhopadhyay, “A PUF-Enabled

Secure Architecture for FPGA-Based IoT Applications,” IEEE Trans. Multi-

Scale Comput. Syst., vol. 1, no. 2, pp. 110–122, Apr. 2015.

[113] I. M. R. Verbauwhede, Ed., Secure Integrated Circuits and Systems. Boston,

MA: Springer US, 2010.

[114] P. Kocher, J. Jaffe, and B. Jun, “Differential Power Analysis,” in Advances

in Cryptology — CRYPTO’ 99, vol. 1666, Berlin, Heidelberg: Springer Berlin

Heidelberg, 1999, pp. 388–397.

[115] S. B. Ors, F. Gurkaynak, E. Oswald, and B. Preneel, “Power-Analysis Attack

on an ASIC AES implementation,” in Information Technology: Coding and

Computing, 2004. Proceedings. ITCC 2004. International Conference on,

2004, vol. 2, pp. 546–552.

[116] K. Tiri, “Side-channel attack pitfalls,” in Proceedings of the 44th annual

Design Automation Conference, 2007, pp. 15–20.

[116] E. Trichina, “Combinational Logic Design for AES SubByte Transformation

on Masked Data,” IACR Cryptol. EPrint Arch., vol. 2003, p. 236, 2003.

[118] K. Tiri and I. Verbauwhede, “A logic level design methodology for a secure

DPA resistant ASIC or FPGA implementation,” in Proceedings of the

conference on Design, automation and test in Europe-Volume 1, 2004, p.

10246.

[119] R. Velegalati and J.-P. Kaps, “DPA resistance for light-weight

implementations of cryptographic algorithms on FPGAs,” 2009, pp. 385–390.

[120] P. Yu and P. Schaumont, “Secure FPGA circuits using controlled placement

and routing,” in Hardware/Software Codesign and System Synthesis

(CODES+ ISSS), 2007 5th IEEE/ACM/IFIP International Conference on,

2007, pp. 45–50.

[121] A. Wild, A. Moradi, and T. Güneysu, “Evaluating the duplication of dual-

rail precharge logics on FPGAs,” in International Workshop on Constructive

Side-Channel Analysis and Secure Design, 2015, pp. 81–94.

136

[122] J.-P. Kaps and R. Velegalati, “DPA Resistant AES on FPGA Using Partial

DDL,” 2010, pp. 273–280.

[123] L. Xu, W. Shi, and T. Suh, “PFC: Privacy Preserving FPGA Cloud - A Case

Study of MapReduce,” 2014, pp. 280–287.

[124] M. Rao, T. Newe, and I. Grout, “Secure Hash Algorithm-3 (SHA-3)

implementation on Xilinx FPGAs, Suitable for IoT Applications,” in 8th

International Conference on Sensing Technology (ICST 2014), Liverpool John

Moores University, Liverpool, United Kingdom, 2nd-4th September, 2014.

[124] R. Dobbins, “Mirai IoT botnet description and DDoS attack mitigation,”

Arbor Threat Intell., vol. 28, 2016.

[126] K. Tiri and I. Verbauwhede, “Simulation models for side-channel

information leaks,” in Proceedings of the 42nd annual Design Automation

Conference, 2005, pp. 228–233.

[127] X. Fang, P. Luo, Y. Fei, and M. Leeser, “Balance power leakage to fight

against side-channel analysis at gate level in FPGAs,” in 2015 IEEE 26th

International Conference on Application-specific Systems, Architectures and

Processors (ASAP), 2015, pp. 154–155.

[128] F. Menichelli, R. Menicocci, M. Olivieri, and A. Trifiletti, “High-Level

Side-Channel Attack Modeling and Simulation for Security-Critical Systems

on Chips,” IEEE Trans. Dependable Secure Comput., vol. 5, no. 3, pp. 164–

176, Jul. 2008.

[128] J. den Harog and E. de Vink, “Virtual Analysis and Reduction of Side-

Channel Vulnerabilities of Smartcards,” in Formal Aspects in Security and

Trust. Springer US, 2005.

[130] N.-F. Standard, “Announcing the advanced encryption standard (AES),”

Fed. Inf. Process. Stand. Publ., vol. 197, pp. 1–51, 2001.

[131] B. Schneier, “Description of a new variable-length key, 64-bit block cipher

(Blowfish),” in International Workshop on Fast Software Encryption, 1993,

pp. 191–204.

[131] R. Beaulieu, D. Shors, J. Smith, S. Treatman-Clark, B. Weeks, and L.

Wingers, “The SIMON and SPECK Families of Lightweight Block Ciphers,”

in Cryptology ePrint Archive Report 2013/404, 2013

[132] R. Beaulieu, D. Shors, J. Smith, S. Treatman-Clark, B. Weeks, and L.

Wingers, “The SIMON and SPECK lightweight block ciphers,” in Design

Automation Conference (DAC), 2015 52nd ACM/EDAC/IEEE, 2015.

[134] A. Moradi, “Side-channel leakage through static power,” in International

Workshop on Cryptographic Hardware and Embedded Systems, 2014, pp.

562–579.

	Konigsmark Thesis
	List of Tables
	List of Figures
	Chapter 1 Introduction
	1.1 Background and Motivation
	1.2 Overview of this Dissertation

	Chapter 2 Carbon Nanotube PUF
	2.1 Introduction
	2.2 Background
	2.3 Carbon-Nanotube PUF
	2.3.1 Basic Design
	2.3.2 CNPUF Parallel-Element
	2.3.3 Area Comparison
	2.3.4 High Reliability
	2.3.5 Resistance against Modeling Attacks

	2.4 Extended CNPUF
	2.4.1 Extended Design
	2.4.2 Power-Security Tradeoff

	2.5 Experimental Evaluation
	2.5.1 Simulation Setup
	2.5.2 Reliability
	2.5.3 Inter-chip Variability
	2.5.4 Power Consumption

	2.6 Conclusion and Outlook

	Chapter 3 System-of-PUFs: Multilevel Security for Embedded Systems
	3.1 Introduction
	3.2 Background
	3.2.1 PUF Quality Metrics and Designs
	3.2.2 PUF Security Models and Formalization
	3.2.3 Helper Circuits
	3.2.4 PUF-based Authentication Protocols

	3.3 System-level Security Model
	3.3.1 Threats and Metrics
	3.3.1.1 Invasive Attacks
	3.3.1.2 Modeling Attacks
	3.3.1.3 Side-Channel Attacks
	3.3.1.4 Attack Multiplicity
	3.3.1.5 Malicious Design and Untrusted Foundry

	3.3.2 Classification
	3.3.3 Security Components

	3.4 PUF Security Issues
	3.4.1 Known Model Assumption
	3.4.2 Achieving Tamper Resistance
	3.4.3 Exponential Storage Need

	3.5 System of PUFs
	3.5.1 Security Requirements
	3.5.2 Multilevel Authentication
	3.5.3 Breach Recognition and Recovery
	3.5.4 Design-space Utilization

	3.6 Security Considerations
	3.6.1 System-level Security Analysis
	3.6.2 Attack Scenarios
	3.6.2.1 Random Guessing Attack
	3.6.2.2 Strong Knowledge Attack

	3.7 Experimental Evaluation
	3.7.1 Overview
	3.7.2 Gate-level Cost Comparison
	3.7.3 Reliability despite Error Propagation
	3.7.4 Authentication Error

	3.8 Conclusion

	Chapter 4 PolyPuf: Physically Secure Self-Divergence
	4.1 Introduction
	4.2 Background
	4.2.1 Notation
	4.2.2 Statistical PUF Behavior
	4.2.3 Strong and Weak PUFs
	4.2.4 Machine-Learning Techniques
	4.2.4.1 Artificial Neural Networks
	4.2.4.2 Pattern Complexity and Model-Building Resistivity

	4.2.5 Security Threats
	4.2.5.1 Model-Based Token Impersonation
	4.2.5.2 Side-Channel Information Extraction
	4.2.5.3 Physical Access and Tampering

	4.2.6 PUF Architectures and Protocols
	4.2.6.1 Reliance on Strong PUFs
	4.2.6.2 Reverse Fuzzy Extractor
	4.2.6.3 Slender PUF Protocol
	4.2.6.4 Noise Bifurcation PUF Architecture

	4.3 PolyPUF Architecture
	4.3.1 Random Number Generation
	4.3.2 Challenge Self-Divergence
	4.3.3 Response Self-Divergence
	4.3.4 Polymorphism

	4.4 PolyPUF Application
	4.4.1 Wide Applicability
	4.4.2 Reliability
	4.4.3 Authentication Protocol

	4.5 Security Considerations
	4.5.1 Pitfalls of Challenge Expansion
	4.5.2 Reliance on True Random Numbers
	4.5.3 Entropy Oblivious Design

	4.6 Attack Analysis
	4.6.1 Random Guessing
	4.6.2 Direct Machine Learning
	4.6.3 Brute-force Machine Learning
	4.6.4 Cross Inference Attack
	4.6.5 Targeted Model-Building

	4.7 Experimental Evaluation
	4.7.1 Machine-Learning Setup and Preparation
	4.7.2 Resistance Against Malicious Model-Building
	4.7.3 Model-Building Authentication Attack
	4.7.4 Targeted Model-Building Experiment
	4.7.5 Implementation Cost

	4.8 Conclusion

	Chapter 5 High-Level Synthesis for Hardware Trojan Horse Defense
	5.1 Introduction
	5.2 Background
	5.2.1 Related Work
	5.2.2 Need for Obfuscation
	5.2.3 Vulnerability Characteristics

	5.3 Adversary Objective and Threat Model
	5.3.1 Attack Goal
	5.3.2 Adversary Capabilities
	5.3.3 Diverse Threat Spectrum

	5.4 Threat-Targeted Synthesis
	5.4.1 Definitions and Notation
	5.4.2 Dispersion Analysis
	5.4.2.1 Identification of Critical Instructions
	5.4.2.2 Determination of Artificial Dispersion
	5.4.2.3 Derivation of Initial Trojan Insertion Points
	5.4.2.4 Consideration of Entropy Loss

	5.4.3 Obfuscation to Defeat Reverse-Engineering Vulnerability
	5.4.4 Threat-Targeted Security Metric
	5.4.5 Resource Analysis and Optimization
	5.4.6 Obfuscation Flow
	5.4.7 Dispersion Flow
	5.4.8 Security-Driven Allocation
	5.4.9 Security-driven Binding

	5.5 Experimental Evaluation
	5.5.1 Benchmarks
	5.5.2 Analysis of Information Dispersion
	5.5.3 Analysis of Threat-Targeted Synthesis

	5.6 Conclusion

	Chapter 6 High-Level Synthesis for Side-Channel Defense
	6.1 Introduction
	6.2 Background
	6.2.1 Related Work
	6.2.2 FPGAs in Emerging Applications
	6.2.2.1 Cloud Computing
	6.2.2.2 Internet of Things

	6.2.3 Leakage through Conditional Operations
	6.2.4 High-level Leakage Estimation
	6.2.5 Attack Goal and Involved Parties

	6.3 Synthesis Flow
	6.3.1 Initial Synthesis
	6.3.2 Leakage Characterization
	6.3.3 Security Synthesis
	6.3.3.1 Branch Balancing
	6.3.3.2 Leakage-Driven Allocation and Binding

	6.4 Experimental Evaluation
	6.4.1 Evaluation Baseline
	6.4.2 Resource Targeting
	6.4.3 Branch Balancing
	6.4.4 Leakage Targeting

	6.5 Conclusion and Outlook

	Chapter 7 Conclusions
	References

