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Abstract

In this thesis, we investigate the possibility of basing cryptographic primitives on Phys-
ically Uncloneable Functions (PUF). A PUF is a piece of hardware that can be seen as a
source of randomness. When a PUF is evaluated on a physical stimulus, it answers with
a noisy output. PUFs are unpredictable such that even if a chosen stimulus is given, it
should be infeasible to predict the corresponding output without physically evaluating
the PUF. Furthermore, PUFs are uncloneable, which means that even if all components
of the system are known, it is computational infeasible to model their behavior. In the
course of this dissertation, we discuss PUFs in the context of their implementation,
their mathematical description, as well as their usage as a cryptographic primitive and

in cryptographic protocols.

We first give an overview of the most prominent PUF constructions in order to derive
subsequently an appropriate mathematical PUF model. It turns out that this is a non-
trivial task, because it is not certain which common security properties are generally

necessary and achievable due to the numerous PUF implementations.

Next, we consider PUFs in security applications. Due to the properties of PUFs,
these hardware tokens are good to build authentication protocols that rely on chal-
lenge /response pairs. If the number of potential PUF-based challenge/response pairs
is large enough, an adversary cannot measure all PUF responses. Therefore, the at-
tacker will most likely not be able to answer the challenge of the issuing party even if
he had physical access to the PUF for a short time. However, we show that some of
the previously suggested protocols are not fully secure in the attacker model where the
adversary has physical control of the PUF and the corresponding reader during a short

time.

Finally, we analyze PUFs in the universally composable (UC) framework for the first
time. Although hardware tokens have been considered before in the UC framework,
designing PUF-based protocols is fundamentally different from other hardware token
approaches. One reason is that the manufacturer of the PUF creates a physical object
that outputs pseudorandom values, but where no specific code is running. In fact, the
functional behavior of the PUF is unpredictable even for the PUF creator. Thus, only

the party in possession of the PUF has full access to the secrets. After formalizing



PUFs in the UC framework, we derive efficient UC-secure protocols for basic tasks like

oblivious transfer, commitments, and key exchange.



Zusammenfassung

In dieser Arbeit untersuchen wir die Moglichkeit, kryptographische Primitive auf Phy-
sikalisch Unkopierbare Funktionen (PUF) zu griinden. Ein PUF ist ein Stiick Hard-
ware, welches als Zufallsquelle angesehen werden kann. Wird ein PUF durch einen
physikalischen Stimulus angeregt, so antwortet er mit einer verrauschten Ausgabe.
PUPFs sind nicht vorhersehbar, sodass es unmoglich sein sollte, ohne physische Auswer-
tung des PUFs, die entsprechende Ausgabe vorherzusagen, selbst bei einem gewéhlten
und vorgegebenen Stimulus. Auferdem sind PUFs nicht kopierbar, was soviel bedeutet,
dass, selbst wenn alle Komponenten des Systems bekannt sind, es berechnungsmafig un-
moglich ist, ihr Verhalten zu modellieren. Im Zuge dieser Arbeit diskutieren wir PUFs
im Rahmen ihrer Implementierung, ihrer mathematischen Beschreibung, sowie ihrer

Verwendung als kryptographisches Primitiv und in kryptographischen Protokollen.

Zuniéichst geben wir einen Uberblick iiber die prominentesten PUF Konstruktionen,
um anschliefsend ein geeignetes mathematisches PUF Modell abzuleiten. Es stellt sich
heraus, dass dies eine nicht-triviale Aufgabe ist, da nicht sicher ist, welche gemein-
samen Sicherheitseigenschaften aufgrund der zahlreichen PUF Implementierungen im

Allgemeinen notwendig und erreichbar sind.

Als néchstes betrachten wir PUFs in Sicherheitsanwendungen. Aufgrund der PUF
Eigenschaften eignen sich diese Hardwarestiicke gut dazu, Authentifizierungsprotokolle
basierend auf Challenge/Response-Paaren zu bauen. Ist die Anzahl der potenziellen
PUF-basierten Challenge/Response-Paaren grok genug, so kann ein Angreifer nicht alle
PUF Antworten messen. Somit wird ein Angreifer héchstwahrscheinlich nicht in der
Lage sein, die Herausforderung der fragenden Partei zu beantworten, auch wenn er fiir
eine kurze Zeit den physischen Zugriff auf den PUF hatte. Wir zeigen hingegen, dass
bereits vorgeschlagenen Protokolle nicht vollstdndig in dem Angreifermodell sicher sind,
in dem der Gegner genau fiir eine kurze Zeit physische Kontrolle {iber den PUF und

das entsprechende Lesegerit hat.

Zum Abschluf analysieren wir zum ersten Mal PUFs im Universally Composable (UC)
Modell. Obwohl Hardwarestiicke zuvor in dem UC Modell betrachtet worden sind, un-
terscheidet sich das Designen von PUF-basierten Protokollen grundlegend von anderen

Ansétzen, die auf Hardwarestiick basieren. Ein Grund dafiir ist, dass der Hersteller



des PUFs ein physisches Objekt herstellt, welches pseudozufillige Werte ausgibt, je-
doch keinen spezifischen Code ausgefiithrt. Tatsdchlich ist das funktionale Verhalten
des PUF auch fiir den PUF Fabrikanten unvorhersehbar. Somit hat nur die Partei
im Besitz des PUFs vollen Zugang zu den Geheimnissen. Nach der Formalisierung
von PUFs im UC Modell leiten wir effiziente UC-sichere Protokolle fiir grundlegende

Anwendungen wie Oblivious Transfer, Bit Commitment und Schliissel-Austausch ab.
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1 Introduction

Communication technology has changed the world over the last decade. As a matter
of course, we use our credit and debit card to withdraw cash from ATM’s all over the
world, make use of the digital passport for identification, or use RFID ( Radio- Frequency
IDentification) tags in commerce. These examples of modern communication have two
things in common: (1) The devices are computationally bounded and can only compute
simple functions. (2) The devices are used in a highly networked environment. Consider,
for example, the case where a customer wishes to withdraw money from an ATM using
his debit card. The ATM checks the current balance of his bank account and only

returns the money if the daily cash withdrawal limit has not been exceeded.

From a cryptographic point of view, both demands (computationally bounded devices
that are secure in a highly networked environment) are quite contradictory: A system
that interacts with many different protocols and primitives usually requires strong secu-
rity guarantees. But strong security guarantees can usually only be achieved by relying
on strong cryptographic primitives. These primitives, however, are computationally-
intensive to be utilized. Thus, complex computations, such as all kind of public-key

operations, are prohibitively expensive for these computationally weak devices.

Summing up, the above-mentioned demands bring up the question how adequate secu-
rity requirements can be achieved by computational limited devices that are integrated
into the network. If a device is computationally incapable of performing most of the
cryptographic algorithms, how can we guarantee secure and authenticated communica-

tion channels for it?

This dissertation embarks on a new path towards answering these questions by relying
on physical assumptions instead of computational assumptions. In fact, instead of
assuming that some number-theoretic assumptions, such as that the RSA assumption,
hold, we consider the existence of Physically Uncloneable Functions (PUFs). A PUF isa

simple hardware token and we use it to build cryptographic primitives and protocols.
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1.1 Physically Uncloneable Functions

Physically Uncloneable Functions have been introduced by Pappu in [Pappu, 2001]. He
defined a PUF as a physical object which can be seen as a source of randomness. These
devices have the fascinating property that they are hard to clone—they get this property
through an uncontrollable manufacturing process. The PUF can be evaluated by a

physical stimulus (aka. challenge), on which it provides a noisy output (aka. response).

An illustrative example of a PUF is a so-called optical PUF. An optical PUF consists
of a transparent material, to which many light scattering particles are randomly added
during its production. When a laser beam shines on the PUF, a random speckle pattern
will arise. The position and angle of the laser represent the challenge, while the speckle
pattern is recorded, quantized, and encoded to form the PUF’s response.

speckle pattern
p & transparent material with

light scattering particles

Figure 1.1: Configuration of an optical Physically Uncloneable Function. The position and
angle of the laser represent the challenge and the speckle pattern forms the response. The

speckle pattern is taken from [Pappu, 2001].

Following Pappu’s seminal work, researchers have investigated the implementation of
PUFs exploiting physical characteristics other than the optical approach; e.g., silicon
PUFs, which use timing and delay characteristics of silicon circuits or coating PUFs,
which measure the capacitance of a coating layer that masks an integrated circuit.
These and several different implementations are discussed comprehensively later in this

thesis.
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1.1.1 Physically Uncloneable Functions vs. Hardware Tokens

It is well known that strong security demands can be efficiently achieved by making
several types of setup assumptions such as, e.g., a common reference string (CRS).
In the CRS model, a trusted party computes a string according to some distribution
and passes this string to the parties that run an execution of a protocol. The CRS
guarantees the participants that it was generated honestly in a restricted manner. If
the string was computed in a malicious manner, then all private data in the network

could potentially be revealed.

However, setup assumptions are often unrealistic or rather expensive to realize in
practice. A promising approach to obtain cryptographic protocols which are simul-
taneously highly efficient and achieve strong security requirements without relying
on (trusted) setup assumptions, is to use hardware components like signature cards
|[Hofheinz et al., 2005], one-time programs |Goldwasser et al., 2008], standard smart
cards [Hazay and Lindell, 2008]|, or even more complex tokens |[Katz, 2007]. However,
most of these hardware-tokens implement additional cryptographic operations which are
based on number-theoretical assumptions or computational assumptions, such as PRFs
or MACs. Protocols designed with these tokens provide security under the presumption
that certain computational assumptions holds. In contrast, PUFs are a hardware prim-
itive which neither is based on computational nor on number-theoretic assumptions,

but which relies only on a physical assumption.

1.1.2 Physically Uncloneable Functions vs. Mathematical
Functions

Although PUFs include the name function, they do not really fulfill the properties of
a function in a mathematically sense. In fact, their output behavior is noisy, such
that querying the PUF twice on the same challenge may yield different responses. This
phenomena results from the fact that the PUF’s output depends heavily on the physical
characteristics of the hardware the PUF is implemented on. By nature, the hardware
characteristics are sensitive to environment variations such as temperature or supply
voltage. Thus, the PUF will always respond with a slightly different output on the

same input.
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1.2 Security Models

An important approach in modern cryptography is provable security. Thereby, one
defines a mathematical model which represents the security properties needed in the
real world and proves subsequently that schemes are secure in this model. In the
following, we distinguish between two basic security models: the stand-alone model

and the universally composable framework (UC framework).

The stand-alone model analyzes protocol executions that run in isolation without con-
sidering other protocols that may run simultaneously. However, in the previously men-
tioned examples of modern communication (credit/debit card and RFID), the protocol
should remain secure even when (honest) parties are running many other protocols
concurrently. Protocols that are secure in such a model are called universally compos-
able.

PUFs in the Stand-Alone Model In the stand-alone model, a single set of parties
executes a single protocol in isolation. This protocol is usually based on a hard problem.
The security then follows by contradiction versus a game-based approach: The game
takes place between a challenger and an adversary. The challenger not only creates an
instantiation of the protocol (whose security is based on some hard problem) but also
answers all the queries which are requested (and allowed) from the adversary. At some
point, the adversary stops, outputting a putative solution. The proof of security then
derives a contradiction by showing that any successful adversary can be used to break
the underlying hard problem. In other words, since the underlying problem is believed
to be hard, such an adversary cannot exist and the security of the cryptosystem follows.
In the context of PUFs, one of these security properties is unpredictability. Loosely
speaking, this means that the challenger gives the adversary access to a PUF, which
it can query arbitrarily. At the end of the game, the adversary has to predict a valid

challenge /response pair for exactly this PUF which was never asked before.

PUFs in the UC Framework Security games in the stand-alone model have the
advantage that they are often easy to understand and easy to work with. The drawback,
however, is that the security is no longer guaranteed when the protocol may be run

together with many other protocols in unpredictable ways, which occurs thoroughly
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in the real world. To guarantee security in a setting where a secure protocol runs
concurrently with arbitrary other protocols, Canetti introduced the UC framework in
[Canetti, 2001]. It turns out that the UC framework allows us to model the properties

of a PUF such as uncloneability and tamper-resistance in a more natural way.

The basic idea of the UC framework is to specify how the protocol should ideally
behave—this is called the ideal functionality. Subsequently, the framework compares
the real protocol execution with the ideal functionality in order to prove that a cer-
tain protocol implementation running in a given environment securely realizes the
ideal functionality. Unfortunately, shortly after the introduction of the UC frame-
work, it was shown that a number of interesting applications, such as adaptively se-
cure commitments, cannot be realized in the “plain” UC framework by two-party pro-
tocols [Canetti and Fischlin, 2001} [Canetti et al., 2006|, [Lindell, 2009]. Hence, follow-
up works explored various modifications of the UC framework in order to guaran-
tee secure computations, e.g., the assumption of a common reference string (CRS)
[Canetti, 2001} [Canetti and Fischlin, 2001, [Canetti et al., 2002]. While these setup as-
sumptions allow us to realize many interesting tasks, they still can be seen as some kind
of trusted setup assumption. In order to avoid any kind of trusted setup assumption,
Katz [Katz, 2007] suggested to use hardware tokens with the goal to rely on physical
assumptions rather than on an assumption of trust in some external entity. If UC
protocols will ever be used in practice, the underlying setup assumptions will play an

important role.

The advantage of using the UC framework in the context of PUFs is that it supports
an easy modeling of tamper-proof hardware tokens via ideal functionalities. Roughly,
the ideal functionality captures the abstract security properties of the token, and one
considers a hybrid world in which real-world protocols and parties also have access to
this ideal functionality (and thus the token).

1.3 Contribution

Modeling PUFs appropriately is a highly non-trivial task. The major difficulty is that
there are different types of PUFs with different (physical) properties and that there
does not seem to be a general agreement upon the common security properties of PUFs

even for a single type only (e.g., whether a PUF is one-way or not, or if the output is
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pseudo-random). After reviewing implementations and applications of PUFs in Chapter
2, we subsequently propose new game-based definitions and relate them to concurrent
work in Chapter [3]

Contribution 1.3.1. How can we cryptographically formalize Physically Uncloneable
Functions?

Contribution includes the results of my publications [Busch et al., 2010] published
at TRUST’10 and [Brzuska et al., 2011a] published at CRYPTO’11.

The properties of PUFs inspired researchers to build authentication protocols that rely
on challenge /response pairs. In these protocols, one party issues a previously measured
challenge which the other party has to answer by measuring the according PUF'. If this
PUF response matches a pre-recorded response held at the issuing party, the challenging
party is authenticated. If the number of potential challenge/response pairs of a PUF
is large and an adversary cannot measure all PUF responses, he will most likely not
be able to answer the challenge of the issuing party even if he had physical access to
the PUF for a short time. However, Chapter 4| deals with the security of current PUF-
based authentication protocols. We show that some of them are not fully secure in the
above-mentioned attacker model when the attacker has physical control of the PUF

and the corresponding reader during a short time.

Contribution 1.3.2. Are current PUF-based authentication protocols fully secure when
an adversary has physical control of the PUF and the corresponding reader during a
short time?

Contribution includes the results of my publication [Busch et al., 2009], which was
published at WISA’09.

The above-mentioned protocols are only secure in the stand-alone model. However,
schemes with strong security guarantees in the UC framework are a desirable goal. In
Chapter [5] we consider PUFs in the UC framework.

Contribution 1.3.3. How can we formalize PUF's in the UC framework?

Using our proposed UC notion of PUFs, we then derive efficient UC-secure protocols

for basic tasks like oblivious transfer, commitments, and key exchange. It turns out
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that designing PUF-based protocols is fundamentally different from the designing other
hardware tokens. For one part this is because the functional behavior is unpredictable
even for the creator of the PUF. This causes an asymmetric situation in which only the

party in possession of the PUF has full access to the secrets.

Contribution 1.3.4. Can we realize the following protocols that are based on our pro-
posed UC notation of PUFs: Oblivious Transfer, commitment scheme, and key ex-
change?

Contribution|1.3.3|and|1.3.4]include the results of my publication [Brzuska et al., 2011a],
which was published at CRYPTO’11.

1.4 Follow-Up Works

Several follow-up papers have been published recently continuing the line of research
that was introduced by the publications contained in this thesis. Some of the serious

follow-up research is presented below.

1.4.1 Universally Composable Secure Computation with
(Malicious) Physically Uncloneable Functions

Based on our results, [Ostrovsky et al., 2012] extend our model by malicious PUFs
(recall that we assume that all PUFs are trusted). Ostrovsky et al. hold the view
that our assumption is unrealistic since one could create a hardware token which looks
like a PUF but implements an arbitrary function. Thus, the authors broaden our
PUF definition so that an adversary can create and use untrusted PUFs for which the

common PUF security properties are not ensured.

1.4.2 Physical Unclonable Functions in Cryptographic
Protocols: Security Proofs and Impossibility Results.

Rithrmair and van Dijk propose another PUF definition which is weaker one than ours in

[van Dijk and Rithrmair, 2012]. In our definition, the min-entropy condition is required
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to hold for every challenge, while the definition of Riihrmair and van Dijk only holds for
randomly chosen challenges. The authors also build PUF-based oblivious transfer, bit
commitment, and key exchange protocols, however, their constructions are not secure
in the UC framework. Furthermore, Rithrmair and van Dijk analyze our OT protocol
and mention that if an adversary A (on the receiver’s side) is allowed to evaluate the
PUF on 2"/? queries (n is the length of the query), then A gets the two sender’s strings.
Consequently, Riithrmair and van Dijk obtain a quadratic speed-up over the brute force
attack. This attack is applicable if the challenge space of the PUF family is small, such
that an adversary is able to evaluate the PUF on 2™? queries. However, in our work
we assume that the PUF has large input spaces and, thus, this attack is not feasible.
Nevertheless, the attack highlights the interesting gap between foundational works and

their concrete realization in the real world.
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2 Constructions and Applications of
Physically Uncloneable Functions

In 2001, Pappu proposed the idea of a Physically Uncloneable Function: A PUF is a
function that is embedded inseparably into a physical system [Pappu, 2001]. Roughly
speaking, the function can be seen as a source of randomness where the randomness
arises from uncontrollable manufacturing variations during the fabrication process. For
PUF evaluation, the physical system is queried with a stimulus (called challenge) which
results in a physical output (called response). The output of a PUF is the result of
a very complex interaction between the stimulus and the (random) components of the
physical system. Even if all components are known, it should still be computational
infeasible to model this interaction and its behavior. This property is called uncloneabil-
ity. Moreover, if a chosen stimulus is given, it is infeasible to predict the corresponding
output without physically evaluating the PUF. This property is called unpredictability.
Uncloneability and unpredictability are the main security properties of PUFs, but they
can also have uncorrelated output or be one-way and tamper-resistant. In the following
we survey existing PUF implementations, including optical PUFs, silicon PUF s, arbiter
PUFs, ring oscillator PUFs, reconfigurable PUFs, SRAM PUFs, butterfly PUFs, coating
PUFs, and controlled PUFs. Furthermore, we review typical PUF applications, such
as identification, authentication, key extraction, certificates of authenticity, as well as

PUF as cryptographic primitives.

2.1 Constructions of Physically Uncloneable
Functions

In this section, we review existing PUF implementations and discuss their advantages

and disadvantages as well as their security. Pappu suggested as a first PUF imple-
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mentation a construction based on an optical medium. Based on Pappu’s approach,
researchers tried to enhance his idea by applying it to other physical media, such as

silicon or coating technology.

2.1.1 Optical PUFs

As a first way of implementing Physically Uncloneable Functions, Pappu proposed an
optical approach [Pappu, 2001]. An optical PUF consists of a transparent material, to
which many light scattering particles are added randomly during production. Such a
device causes a random speckle pattern when shining a laser beam onto it; here, the
position and angle of the laser (and possibly other parameters such as amplitude and
wave-length) represent the challenge, while the speckle pattern is recorded, quantized
and encoded to form the PUF response (see Figure .

Naturally, a PUF should support a large number of challenge /response pairs (CRPs),
in order to make it unfeasible to learn responses to challenges that were not yet issued.
It is possible to estimate the entropy of an optical PUF (> 4 - 10% per 5cm?) and the
information contained in one CRP [Tuyls et al., 2005]. Based on this data, the authors
calculate the corresponding number of independent CRPs (> 3 - 10* per 5cm?), which
turns out to be much lower than the number of all possible (not necessarily independent)
challenges (~ 10'). As the number of independent CRPs is rather low and they
can all be pre-recorded by an attacker who has unlimited physical access to the PUF
once, optical PUFs do not offer security in the information-theoretic sense. However,
in [Tuyls et al., 2005, the authors claim that interpolation of the PUF’s behavior is
computationally costly and, therefore, a lot more challenges need to be measured in
order for the attacker to successfully predict the response to a fresh challenge. To
prevent the attacker from exhaustively reading out all the CRPs (meaning, not only
the independent ones), a method for decreasing the measurement rate is proposed.
For instance, if 10ms are required to measure one challenge, the attacker can measure
about ﬁ of all challenges (~ 108) in a week of uninterrupted access to the optical PUF
[Tuyls et al., 2005]. As a drawback, developing a reliable measurement apparatus for
optical PUFs is a complex problem, which requires costly high-precision mechanics and

thus limits their usage.
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2.1.2 Silicon PUFs, Arbiter PUFs, and Ring Oscillator PUFs

Gassend et al. |Gassend, 2003| proposed a PUF that uses silicon technology. Based on

the approach of |[Thompson, 1996|, which shows that uncontrollable process variations

during chip production make chips measurably different, Silicon Physically Uncloneable

Functions (SPUF, also known as Silicon Physical Random Functions) exploit inherent

variations in integrated circuits |Gassend et al., 2002b| |Gassend et al., 2004]|. Even for

chips that were produced with identical layout masks, an SPUF supports still an un-
predictable behavior. The SPUF implementation in |Gassend, 2003| is based on the

observation that the timing behavior of chips differs. The silicon PUF consists of a

number of switch delay elements, which are connected in series. Every element has two
inputs and uses a two-to-one multipleerEl to swap its inputs depending on one challenge
bit: If the challenge bit is 0, both signals go straight trough the element. Otherwise,
the top and bottom signals are switched. To operate the PUF for a specific challenge,
a rising signal is input into a sequence of n delay elements (see Figure . At each
element, the signal is either swapped or simply passed on, depending on one challenge
bit. The PUF response is the time required for the signal to travel through all n ele-
ments. Since each delay element doubles the number of paths the signals can possibly
take, a SPUF with n elements can produce 2" delay paths. An important advantage
of silicon PUFs is that their production does not require any special devices on top of

classic chip manufacturing equipment.
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Figure 2.1: Silicon PUF |Gassend, 2003].

LA multiplexer is a device that selects one of many analog or digital input signals and forwards the
selected input into a single line.
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Environmentally induced noise plays a crucial role in the context of silicon PUFs because
circuit delays are, for example, sensitive to temperature. This sensitivity carries over to
the PUF. Lim et al. |[Lim, 2004), Lim et al., 2005| [Lee et al., 2004, Gassend et al., 2003|

enhance the reliability of silicon PUFs against environmental noise by introducing Ar-

biter Physically Uncloneable Functions (APUF). Instead of measuring the absolute de-
lay of a single signal, they use the relative timing behavior of two signals. To compute
the output for a specific challenge, a rising signal is given to the two inputs at the same
time. Both signals race through the device; at the end, an arbiter circuit determines
which signal passed the device faster. Thus, the challenge of the PUF still determines
the path that both signals take through the device, while the response will now be a
single bit r € {0, 1}. Again, due to n delay elements with two possible paths, there ex-
ists 2" delay paths. To obtain an m-bit response, one can either duplicate the circuit m
times or evaluate the device consecutively on m different challenges and paste together

the results.
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Figure 2.2: Arbiter PUF |Lim, 2004].

Concerning the security of PUFs, it was shown that the response of an integrated circuitﬂ
(IC) based PUF circuit can be represented as a linear function of a challenge [Lim, 2004].
If an attacker knows all delays of each element of a path through the circuit, it can
derive (predict) a response for a given challenge by calculating the sum of the delays of
each element. Since measuring the delays at each element is a hard problem, an attacker
can use machine learning techniques to build a software circuit that models the PUF
circuit. With this model, the attacker can simulate the PUF and can predict a response
for a random challenge; e.g., in [Lim, 2004], the authors achieved a prediction error rate
of 3,55% after using 5000 training CRPs on an ASIC implementation by means of a

2 An integrated circuit is an electronic circuit on a semiconductor material (called chip) which consists
of several transistors and other electronic components.
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Support Vector Machine. Note, that using the linear delay model implies that the PUF
response is statistical close to the ideal distribution. In reality, however, this is not the
case due to measurement or environmental variations. Nevertheless, Lim generalized
this model to a probabilistic one to model all the environmental variations. The author
also suggests methods to modify the arbiter PUF such that the above mentioned model
is no longer possible [Lim, 2004, Rithrmair et al., 2010].

All PUF implementations that are based on delay characteristics in ICs are not pro-
tected against environmentally induced noise. Consequently, a PUF produces different
measurements for the same stimulus. Furthermore, if the variations of the PUF mea-
surements are too high and the measurement variations are not adequately improvable,
a PUF may not be uniquely identified. Lim et al. handle the problem of environmentally
induced noise by analyzing the coherence between environmental variations and circuit
delays such as temperature and power supply [Lim, 2004} Lim et al., 2005|. Firstly, the
authors measured an inter-chip variation, which states how many bits (in %) of two
responses measured by two different PUFs for the same challenge are different. The
average inter-chip variation of a PUF should be ideally close to 50%, since an ideal PUF
response consists of uniformly distributed independent random bits. Subsequently, the
authors analyze the environmental variation, which states how many bits of PUF re-
sponses will change if they are measured from the same PUF (the noise of the PUF
response). The average environmental variation of a PUF should be ideally close to
0%, since a PUF should produce the same bits reliably using the same PUF input. For
an arbiter PUFs, the authors obtained the average inter-chip variation of 23% and an
environmental variation of ~ 4, 82%, if the temperature increases more than 40°C' from
27°C and ~ 3, 74%, if the voltage variation increases by £2%, respectively. This shows
that an arbiter-based PUF reduces the environmental variations well enough below the

average inter-chip variation of 23% |Katzenbeisser et al., 2012].

Adapted from arbiter PUFs, Suh and Devadas look for a higher reliability and an eas-
ier way to implement PUFs on Application-Specific Integrated Circuits (ASIC) and
Field-Programmable Gate Arrays (FPGA) [Suh and Devadas, 2007]. For this pur-
pose, the authors introduce so-called Ring Oscillator Physically Uncloneable Functions
(ROPUF)EI. These PUFs are based on delay loops, which are commonly used to gen-

3Note that a first very basic Ring Oscillator PUF was already proposed in [Gassend et al., 2002b].
The ROPUF is based on an arbiter PUF construction whereat the delay circuit is placed in a
self-oscillating circuit. A frequency counter receives the oscillating signal and counts the number
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erate random bit strings. A delay loop, or ring oscillator, is a simple circuit that
oscillates with a frequency influenced by manufacturing variations and thus cannot be
predicted. However, the frequency can easily be determined by a counter. The PUF
construction uses n such circuits and compares the frequency of two selected ones: de-
pending on which oscillator is faster, an output of 1 or 0 is produced. To produce
an output of several bits, one picks randomly a set of such oscillators according to
the challenge; comparing each pair produces one output bit. Analyzing this approach,
one can generate @ pairs out of n oscillators. However, Suh and Devadas state in
[Suh and Devadas, 2007] that in reality the number of independent bits that the circuit
can generate (the entropy of the circuit) is less than @ This is due to the fact that
independent pair-wise comparisons are difficult to obtain since they are correlated. The
authors gave the following example: If oscillator A is faster than oscillator B (which
outputs 1) and if oscillator B is faster than C' (which also outputs 1), then the com-
parison between oscillator A and C' will yield that oscillator A will also be faster than
oscillator C' (which again outputs 1) and thus, these bits are correlated. Subsequently,
Suh and Devadas mentioned that the number of independent comparisons that can be
generated by the circuit is restricted by the number of possible orderings of the oscilla-
tor’s frequencies. There exists n! possible orderings of ring oscillators if the frequencies
are independent and identically distributed. Each of the possible n! orderings is equally
likely and thus we have ©(nlogn) bits of entropy. Furthermore, the authors apply a
technique, called 1-out-of-k£ masking scheme, to enhance the reliability of ring oscillator
frequencies (they are sensitive to environment conditions). In doing so, they analyze
k oscillators, choose the pair with the maximum difference in frequency, and take the
result of this comparison as output. Experimental results show that using 15 FPGAs
with k& = 8 generates PUF outputs with an average inter-chip variation of 46, 15% and
a intra-chip variation of 0.48% even under temperatures like 120°C' and voltage like
+10%. Later on, Suh et al. used their proposed ROPUF in the development of the so-
called AEGIS processor [Suh et al., 2005b| [Suh et al., 2007, [Suh et al., 2005a], which
can resist both software and physical attacks. In particular, they use the PUF to store

secrets in a secure, uncloneable, and cost-effective way.

of oscillating loops for a predefined interval. However, since the ROPUF of Gassend et al. is also
based on delay circuits like APUFs, their construction is not secure against modeling attacks.
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Arbiter PUFs vs. Ring Oscillator PUFs Although ring oscillator PUFs are more
reliable and easier to implement on ASICs and FPGAs than arbiter PUFs, arbiter
PUFs are faster, smaller, and less power-consuming than ROPUFs. Thus, arbiter PUFs
are better suitable for resource constrained platforms such as RFIDs, in which context

they are also commercially available [Verayo, 2010}, ID, 2011].

2.1.3 Reconfigurable PUFs

[Kursawe et al., 2009] picked up the idea of Pappu and suggested a new variant of opti-
cal PUFs, called Reconfigurable Physically Uncloneable Functions (RPUF). The idea of
a reconfigurable PUF is to equip the regular PUF with a mechanism that transforms it
into a new PUF with a different and unpredictable challenge/response behavior. The
mechanism of reconfigurable PUFs allows for using a PUF for security purposes, even
if its original challenge/response behavior has been learned. In this case, it is essen-
tial to protect the PUF update process, as otherwise an adversary may be able to
reconfigure the PUF and cause a denial of service. A first implementation realized the
reconfiguration step by heating the PUF with a laser so that the light-scattering parti-
cles slowly changed position. A second implementation realized the reconfiguration step
by changing the phase memory. For a detailed discussion, see [Kursawe et al., 2009).
As a new approach in this context, Katzenbeisser et al. introduced the concept of a
logically reconfigurable PUF (LR-PUF) [Katzenbeisser et al., 2011]. Using an LR-PUF
does not change the challenge/response behavior of a PUF physically but logically.
An LR-PUF is based on a regular PUF and a control logic circuit. The control logic
consists of a state, that is stored in the non-volatile memory, a querying, and a re-
configuration algorithm. A reconfiguration of the LR-PUF means to update the state
due to an appropriate state-update mechanism, which results in a completely different
challenge /response behavior of the LR-PUF. The authors present several input /output
transformation and state update mechanisms that come up with new security objec-

tives. For a detailed discussion, see [Katzenbeisser et al., 2011].

2.1.4 SRAM PUFs and Butterfly PUFs

Guajardo et al. |[Guajardo et al., 2007, [Guajardo et al., 2008| suggested a PUF which
relies on SRAM (Static Random Access Memory). These PUFs consist of a number
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of memory cells, involving two cross—coupledﬂ inverters, and have two stable states,
commonly denoted by 0 and 1. After power-up, cells will randomly end up in state 0 or
1; the state that a specific memory cell will reach is mainly dependent on the production
process. A challenge is represented by a subset of the memory cells to be read-out after
power-up; the response is their respective power-up state. Currently available ICs can
incorporate ~ 10% to 10" SRAM cells. Yet, without any additional mechanism for
decreasing the read-out rate, SRAM PUFs are vulnerable to an exhaustive read-out
attack.

Since not all FPGAs support uninitialized SRAM memory, [Kumar et al., 2008] en-
hanced the concept of SRAM-based PUFs to Butterfly Physically Uncloneable Func-
tions (BPUF). These PUFs provide a new way of exploiting circuit delays. Butterfly
PUFs use unstable cross-coupled circuits, just like SRAM PUFs. While SRAM cells are
based on cross-coupled inverters, in butterfly cells inverters are replaced by latches or
flip-flops. Latches are circuits which store information and can be cleared (turns out-
put to 0) or preset (turns output to 1). Like SRAM cells, butterfly cells have only two
stable states. To read out the PUF, one of the latches is cleared and simultaneously the
other one is preset. This brings the BPUF into an unstable condition. The butterfly
cell falls back into one of the stable states, depending on the circuit delays, which are

were determined by the manufacturing process.

SRAM PUFs vs. Butterfly PUFs There is no big difference between SRAM PUFs
and BPUFs and they are very similar in their construction and operation. Unlike
SRAM PUFs, BPUFs are suitable for all types of FPGAs. Note that FPGAs of course
can contain SRAM cells. However, these SRAM cells cannot be used as a PUF because

their power-up state is usually not accessible [Maes et al., 2008].

2.1.5 Coating PUFs

Another approach to obtain a PUF is based on an active coating, a covering that is
applied to the surface of an object. Posch [Posch, 1998] suggests to protect a device by
embedding a unique signature into the coating material used in smart cards. Tuyls et
al. apply this idea to PUFs and introduce the concept of Coating Physically Uncloneable

4The output of the first inverter is connected to the input of the second one, and vice versa.
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Functions (COPUF) [Tuyls et al., 2006, Skori¢ et al., 2006a]. A coating PUF employs
a protective coating, covering an integrated circuit. The opaque coating material is
doped with dielectric particles, have random properties concerning their size, shape,
and location. Below the coating layer, a comb structure of metal wire sensors is used to
measure the local capacitance of the coating. The measured values, which are random
due to the randomness present in the coating, form the responses to challenges, each
of them specified by a voltage of a certain frequency and amplitude and applied to a
region of the sensor array. Coating PUFs can be used, e.g., for RFID-tags. As for key
extraction, it is possible to generate on the average 45 uniformly distributed bits by

using 30 sensors [Tuyls et al., 2006].

The advantage of coating PUFs is that their production price is very low. Another
benefit of coating PUFs is that they are suitable for detecting a certain level of physical
tampering. If a device is physically attacked, its response behavior is likely to change;
thus, tampering can be uncovered by measuring the PUF with specific challenges. Due
to tampering, the responses usually change only locally, which could even allow the

determination of specific attack positions on the chip surface.

2.1.6 Controlled PUFs

The security of cryptographic protocols based on PUFs crucially relies on the unpre-
dictability of their responses. Yet, in many implementations, nothing prevents an at-
tacker to query all possible challenges (in particular if there are not too many of them),

store the CRPs, and then successfully simulate the PUF in software.

To overcome this problem, Gassend et al. [Gassend et al., 2002a)] introduced the concept
of Controlled Physically Uncloneable Functions (CPUF). Controlled PUFs can only
be evaluated via a control layer that is physically linked to a PUF in an (assumed)
inseparable way |Gassend et al., 2008, |Gassend et al., 2004]. That is, any interaction
with the PUF requires evaluating an algorithm, specified in this layer. Furthermore,
any attempt to remove the control layer will damage the device, e.g., the control layer is
embedded within the physical system of the PUF. Thus, the PUF protects the control
layer from invasive attacks, while the control layer protects the PUF from protocol

attacks.
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In [Gassend et al., 2002a], the authors present a protocol for establishing a shared secret
between a PUF-device and a remote user, which can then be used as a subroutine in
solving other cryptographic tasks, like certified execution or smart-card authentication.
The security of the protocol relies on computational assumptions, as it employs one-way

functions (for the channel-authentication purposes), but also public-key encryption.

2.2 Applications of Physically Uncloneable
Functions

The properties of a PUF make them usable for many applications. In particular they
are suitable for identification, authentication, or key storage. Pappu [Pappu, 2001],
for example, uses the PUF’s challenge/response pairs to identify specific devices or
to extract cryptographic keys [Pappu, 2001, [Pappu et al., 2002, [Pappu, 2003]. To this
end, the PUF is measured right after production on a few random challenges (this step
is referred to as enrollment) to obtain a database of valid challenge/response pairs for
a particular device. A device can subsequently be identified once it is placed in the
field, by measuring the response for one of the challenges selected during enrollment
(this process is usually called verification). If the response matches the expected, pre-
recorded response, the device is authenticated and the response can be used to derive

keys.

2.2.1 PUFs and Fuzzy Extractors

In [Skorié et al., 2005| the authors point out that the output of a PUF is noisy by
nature. In some application, such as authentication, it is enough to apply a distance
function to deal with noisy measurements. In other application scenarios, however, a
distance function is not enough because a noise-free output with a uniform distribution
(such as cryptographic keys) is required. To deal with this problem, fuzzy extractors
of Dodis et al. [Dodis et al., 2008|] are applied—a secure form of error correction that
enables a reliable extraction of a uniform key from a noisy non-uniform input with

sufficient entropy (see Section (3.5]).
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Some errors can also be avoided by employing a calibration operation, which is driven by
PUF challenge /response pairs, as described in [Skori¢ et al., 2005]: the PUF response
is measured for a small number of publicly known challenges; the differences between
the measured and the publicly available expected responses allows to calibrate the

measurement process.

2.2.2 PUF-based Identification, Authentication, and Key
Extraction

A typical application of PUFs lies in the area of smart-card based identification, where
a low-cost PUF is embedded directly into the card [Pappu, 2001, [Gassend, 2003]. This
would defeat card cloning, where the content of a card (possibly including a crypto-
graphic key) is illicitly read out by a reader and written onto a blank card. PUFs can
counter this attack in two ways: first, they can implicitly “store” a cryptographic key,
which makes read-out of a key more complex. To store means that ideally, the cryp-
tographic key would not be permanently stored in the device but generated only when
required. Second, due to their physical uncloneability, physical presence of a specific

card in a reader can be assured.

In the original work Pappu [Pappu, 2001] achieved this by embedding the PUF into the
card, while the expensive optical equipment, such as the laser or the speckle detector,
only needs to be present in the card reader. The reader is connected via a secure
channel to a server, which possesses several PUF CRPs for each card (measured during
enrollment). Upon a request of the card reader, it obtains a randomly chosen challenge
from the server. With this challenge, the reader measures the PUF and obtains the
corresponding response. After forwarding the response to the server, the server checks
that the received response matches the expected response. Depending on this result,

the card is either accepted or rejected.

An adversary, trying to spoof the device, either has to clone the card, or to predict
the PUF input-output behavior in some other way. Note that this only works if the
challenge /response space is large, else one can evaluate the PUF in software. The first
attack is impossible due to uncloneability of the PUF, while the second one is infeasible

since PUF responses are (assumed) difficult to learn.
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The obvious drawback of this mechanism is the increase in the cost of the card, as an
optical PUF must be included. It would be beneficial to utilize a PUF implementation,
which comes “for free”—this is, which uses the same technology as the card itself. In
the context of smart-cards using conventional integrated circuits, this could be a PUF
based on silicon technology. A second shortcoming lies in the on-line nature of the

protocol.

2.2.3 IP Protection

Protecting software that runs on embedded systems is a problem of growing importance.
Instead of building functionality entirely in hardware, many vendors utilize standard
computing equipment and differentiate through software. Unfortunately, software can
easily be copied and reverse-engineered. A particular problem is professional product
piracy, where software is copied from one legitimate device, and installed on many other
(unauthorized) products. Many vendors thus want to bind software against a specific

hardware platform or even to a specific instance.

The latter can be achieved by PUFs as shown by [Simpson and Schaumont, 2006]. The
basic idea is to include a mutual authentication protocol between the provider’s software
(also called Intellectual Property, IP) and the hardware platform. In this scenario, the
PUF is part of an FPGA and it is used for hardware authentication and key generation.
The FPGA bit-stream is distributed in encrypted form, where the key is derived from a
response to a specific PUF challenge. Thus, the bit-stream cannot be decrypted and run
on a FPGA that it has not been personalized for. Guajardo et al. [Guajardo et al., 2007]
revisited the result of Simpson and Schaumont and suggested improvements—instead of
treating the PUF as a black-box, they propose a FPGA based IP protection mechanism,
which relies on SRAM PUFs [Guajardo et al., 2007, |Guajardo et al., 2008|. Similarly,
Gora et al. [Gora et al., 2009] and Atallah et al. [Atallah et al., 2008| proposed the use

of PUFs in binding software against specific hardware.

2.2.4 Unique Labels

A related concept is that of Certificates of Authenticity (COA). COAs are unique labels

to identify objects and link them with a notion of “authenticity”, and can be viewed
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as PUFs, in the sense that they are uncloneable (despite having only a single chal-
lenge). The work mainly started in the domain of anti-counterfeiting of banknotes and
valuable objects; in this application domain, the labels are used to check the origi-
nality of an object. There has been an increased interest in the use of uncloneable
structures, similar to PUFs, for product anti-counterfeiting. For example, DeJean and
Kirovski [DeJean and Kirovski, 2007] apply COAs in the context of Radio-frequency
identification tags (RFID-tags), called RF-DNA. The RF-DNA concept supports unique
and uncloneable physical fingerprints. When the device is exposed with an electromag-
netic wave the subtleties in the reaction of the device form the fingerprints. The advan-

tage of these unique identifiers is that they can be read wireless using radio waves.

2.2.5 PUFs and Cryptographic Primitives

Increasingly, cryptographers have been drawn to PUFs as an attractive alternative to
traditional cryptographic primitives. Since the output of a PUF is (assumed) unpre-
dictable and random, one can use PUFs as a hardware source of randomness. More-
over, we can see a PUF as an uncloneable storage mechanism for private keys, which
makes them suitable for authentication protocols. PUF-based challenge/response au-
thentication protocols have been proposed in [Tuyls et al., 2007d, [Frikken et al., 2009).
In [Busch et al., 2009] the authors note that current PUF-based authentication only
prevents the impersonation of the client and do not prevent impersonation of the server
in the context of physical attacks. To solve this problem, one needs a mechanism that
allows the client to distinguish between challenges selected by the server in the enroll-
ment step and an attacker. For a detailed discussion see Chapter [df PUFs have also
been considered in the context of RFID authentication to prevent man-in-the-middle

attacks [Hammouri and Sunar, 2008].

Since many applications in cryptography require random numbers (consider for example
the generation of nonces) O’Donnell et al. build a cheap and practical hardware random
number generator from a silicon PUF [O’Donnell et al., 2004]. This hardware generator
does not require any private seed because its random output results from uncontrollable

manufacturing variations.

A major goal in cryptography is the ability to securely generate, store and retrieve keys.
In [Maes et al., 2012| the authors proposed the first PUF-based key generator. Beside
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their theoretical study the authors presented a fully functional implementation, which

can generate a cryptographically secure 128-bit key.

Armknecht et al. propose a first formal PUF model in [Armknecht et al., 2009]. The
authors introduce a block cipher, which is entirely based on PUFSs; to this end, the au-
thors apply the well-known Luby-Rackoff transformation, which turns pseudo-random
functions into pseudo-random permutations. Furthermore, the authors explicitly dis-
tinguish between algorithmic and physical properties of a PUF. Algorithmic properties
mean that the PUF is a kind of a noisy function (noise) for which the distribution
of PUF-outputs is usually non-uniform and two different PUFs show completely in-
dependent behavior (non-uniform output and independence) [Armknecht et al., 2009].
Physical properties mean that a PUF is not physically cloneable and that it is tamper

evident.

Researchers also tried to use PUFs in the context of public-key cryptography. Beck-
mann and Potkonjak proposed a Public Physical Uncloneable Function (PPUF) in
[Beckmann and Potkonjak, 2009]. A PPUF is a PUF that is indeed simulatable but it
takes very large time. The authors apply PPUFs in the context of secret key exchange
protocols and public key protocols. A very similar concept was proposed by Riihrmair
in [Rithrmair, 2009]. The author calls his system SIMPL that stands for SImulation

Possible but Laborious.

In |[Rithrmair, 2010] the author realize for the first time an PUF-based oblivious transfer
(OT) protocol. Subsequently, Brzuska et al. present an oblivious transfer protocol in the
universally composable framework [Brzuska et al., 2011a], which bears some similarity
to the PUF-based OT-protocol of [Rithrmair, 2010]. His protocol, however, has a high
round complexity due to an interactive hashing step. Still, [Riithrmair, 2010|] points out
that, using symmetry of oblivious transfer in the sense that one can change the roles
of sender and receiver, one obtains an oblivious transfer protocol in which the other
party sends the PUF. We confirm that this symmetry also holds in the UC setting.
For a detailed discussion of the PUF-based OT-protocol in the UC setting see Chapter
Bl Later on, Rithrmair and van Dijk analyze the results of [Brzuska et al., 2011a] in
[Rithrmair and van Dijk, 2012]. For more details see Section [1.4]

Ostrovsky et al. extended the results of |[Brzuska et al., 2011a] since their model con-

siders only trusted PUFs. But in real-world adversaries could be able to create mali-
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cious PUFs [Ostrovsky et al., 2012]. Thus, the authors extend the PUF functionality

of Brzuska et al. in that way that adversaries can create arbitrarily malicious PUFs.
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3 Formalizing Physically
Uncloneable Functions

3.1 Preliminaries

3.1.1 Notation

Throughout this thesis, A € N denotes the security parameter. Every algorithm A
is a probabilistic Turing machine that runs in time polynomial in A unless indicated
otherwise. We say that a function is negligible if it vanishes faster than the inverse of

any polynomial. We usually refer to such a function as negl(\).

3.1.2 Distance, Entropy

Let Ay be a probability distribution on {0,1}* and let v = A, denote the event that v
has been sampled according to A,. For simplicity, we use in the following A instead of
Ay. Furthermore, we denote by U, the random variable with the uniform distribution

on {-bit binary strings.

The statistical distance SD of two random variables A and B, drawn from a set V), is
defined as
SD(A, B) = 12 | Prob[ A = v] — Prob[ B = v] |
) - 9 - — .
veY
A set M with a distance function dis : M x M — R* = [0, 00) is called a metric space.
Let w and w’ be two equal-length strings. The number of locations in which they differ

is denoted by dispam(w, w') and is called the Hamming distance.
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The ability that an adversary guesses for example a secret key is an important indi-
cation for security purposes. This ability is captured via the so-called min-entropy.
The min-entropy of a random variable A is a lower-bound on its entropy and it is
often used as a worst-case measure of the unpredictability of a random variable A
[Barker and Kelsey, 2012]. In particular, the min-entropy of a random variable X is
defined by

Ho(X) = —log(max, Prob[ X = z]).

The min-entropy of a random variable X is minus the logarithm of the most likely
event where max, Prob[ X = ] denotes the probability that the random variable X is

guessed correctly in one go.

Similarly, for two random variables X and Y, the average min-entropy of X given Y is
defined as
Hoo(X) = —log (Eyey [27H=E0=1])

Average min-entropy is simply the logarithm of the probability that the adversary, given

the variable of Y, will guess the variable of X in a single attempt.

3.2 Existing Approaches of PUF Modeling

Modeling PUFs appropriately is a highly non-trivial task. Most importantly, there are
different types of PUFs with different (physical) properties. Furthermore, there does
not seem to be a general agreement upon common security properties of PUFs even
for a single type only (e.g., whether a PUF should be one-way or not, or if the output

should be pseudorandom).

There have been several approaches to define PUFs cryptographically. In the following

we give an overview of the most prominent approaches of defining PUFs.

3.2.1 Physical One-way Function

Pappu introduced the concept of physical one-way functions in his seminal work, see
[Pappu, 2001]. The author formalizes a physical one-way function as a deterministic

physical interaction between a physical system, e.g., an epoxy, and a physical probe,
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e.g., a laser beam that can be evaluated in constant time. On the other hand, inverting
the system by a probabilistic-polynomial time adversary with non-negligible probability
is not possible. Moreover, (1) simulating a response, given the physical system and the
physical probe, and (2) constructing a new physical system (aka. clone), which exactly

behaves as another physical system, should be hard.

However, Pappu’s definition of a physical one-way function only fits to PUFs that
are based on an optical medium—note that at that time the optical PUF was the
only known PUF. Most of today’s PUFs, e.g., IC-based PUFs, do not fulfill Pappu’s
formalization since the definition is really restrictive. Consider for example the one-
wayness. An IC-based PUF has a very small output space, possibly only one bit, and
thus, inverting this kind of PUF is very easy. Consequently, most IC-based PUF does

not fulfill Pappu’s formalization.

Moreover, Pappu characterizes a physical one-way function as a deterministic physical
interaction. The terminus deterministic is really critical in the context of physical eval-
uations since all known PUFs imply noisy responses caused by uncontrollable physical

effects (note, that the concept of a PUF exploits exactly this inaccuracy).

3.2.2 Physical Random Function

Gassend et al. introduced the term of physical random function when they proposed the
first IC-based PUF |Gassend, 2003, |Gassend et al., 2002b|. A physical random function
is a function that (1) maps challenges to responses, (2) is embodied by a physical device,
(3) is easy to evaluate, and (4) hard to characterize (i.e., after collecting a polynomial
number of challenges and responses, it is hard for an adversary to predict the response
to a randomly chosen challenge). An IC-based PUF exploits incidents in circuits, which
are rather undesirable for engineers. That results in inherent variations in integrated
circuits. For a detailed discussion see Chapter 2.1.2]

The approach of Gassend et al. is indeed a further step of formalizing PUFs; e.g., the
assumption that a PUF is hard to characterize is a very simplified and first attempt of
formalizing the unpredictability property of PUFs in which the one-wayness property
of physical one-way functions is been eased. But still, it is rather informal and key PUF

properties, such as uncloneability and unpredictability, are still missing.
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3.2.3 Strong and Weak PUFs

Guajardo et al. [Guajardo et al., 2007] introduce the concept of memory-based PUFs
and formalized PUFs as a system, which consists of a physical and an operating part.
The physical part consists of an inherently uncloneable physical system where unclone-
ability comes from uncontrollable process variations during their fabrication. The op-
erating part includes a function that maps challenges to responses. Beside the physical
and operating part of PUFs, the authors also defined PUF properties: (1) the responses
are independent of each other, (2) guessing the response to a challenge without eval-
uating the PUF is difficult, and (3) attacking the PUF changes its challenge /response

behavior completely.

Guajardo et al. defined for the first time explicitly the uncloneability property of PUFs.
Moreover, the authors divided PUFs into strong and weak PUFs. Strong PUFs have
a large number of challenge /response pairs such that an efficient adversary, measuring
only a few challenge /response pairs, cannot predict the response for a random challenge
with high probability. If the number of different challenge /response pairs is rather small,
the authors speak of a weak PUF. Guajardo et al. mentioned also for the first time that
PUF measurements are influenced by noise. That is evaluating the PUF twice on the
same challenge causes in different but related responses. However, for some applications
such as cryptographic purposes it is required to have a completely noisy-free output with
a perfect uniform distribution. Applying Fuzzy Extractors or Helper Data Algorithm
can solve this problem. For a detailed discussion see Chapter

3.2.4 On the Foundation of Physical Unclonable Functions

|[Rithrmair et al., 2009] gave a very detailed overview of existing PUF approaches. In
doing so, the authors objects that (1) the entropy of finite physical systems is always
polynomial bounded; (2) thus, there cannot exist a PUF which fulfills existing PUF
definitions (recall, after collecting a polynomial number of challenges and responses, it
is hard for an adversary to predict the response to a randomly chosen challenge, see
. Rithrmair et al. proposed a new PUF definition where, roughly speaking, it
must be hard for an attacker to predict the PUF. More precisely, the authors based
their approach on |Guajardo et al., 2007], but enhanced their PUF definition by using

security games. In doing so, they renamed weak PUFs as obfuscating PUFs, since the

46



PUF is used as a non-volatile storage of a secret key. Then the authors defined the
corresponding security game as follows: An adversary A has access to the PUF for a
limited period of time. Afterwards it is infeasible for A to learn the key. In the security
game for strong PUFs the adversary has access to both the PUF and a PUF oracle for
a limited period of time. Subsequently, the adversary A has to predict the response to

a randomly chosen challenge.

Although the definition of Rithrmair et al. is a formal approach there are still some
open issues, e.g., the authors do not take into account that responses are noisy mea-

surements.

3.2.5 A Formal Foundation for the Security Features of Physical
Functions

In concurrent and independent work, Brzuska et al. proposed their PUF definition at
CRYPTO’11 |Brzuska et al., 2011a] and Armknecht et al. published also a PUF defini-
tion at the IEEE Symposium on Security and Privacy [Armknecht et al., 2011]. While
the above-mentioned PUF definitions are either rather informal, or follow the more
stringent game-based approach, but stipulate uncloneability and tamper-resistance as
an external property “outside of the game”, Armknecht et al. provide a game-based
definition for uncloneability on a physical level. More precisely, the authors introduce
a physical function (PF), which is a probabilistic procedure. The physical function is a
combination of a device and an evaluation procedure that maps a set of challenges to a
set of responses. In this context, the authors mentioned that the input/output behavior
of the device depends on its physical properties and on uncontrollable random noise.
Beside uncloneability, Armknecht et al. define also robustness and unpredictability of
PUFs. Finally the authors show that their defined security properties can be achieved

by known PUF instantiations.

3.3 Modeling PUFs

In the following we give a new approach of modeling PUFs. After describing the func-
tional properties of PUFs we will define the PUF’s properties such as uncloneability,

unpredictability, uncorrelated output, one-wayness, and tamper-resistance.
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A PUF-family P consists of two algorithms Sample and Eval. The index sampling algo-
rithm Sample, which obtains as input the security parameter and returns as output an
index id of the PUF family corresponds to the PUF fabrication process. The evaluation
algorithm Eval takes as input a challenge ¢, evaluates the PUF on ¢, and generates as

output the corresponding response 7.

Note that the usage of hardware components, especially of PUFs, causes several un-
pleasant side effects, though. At foremost, PUFs are not known to be implementable
by probabilistic polynomial-time (PPT) Turing machines; the manufacturing process
seems to be inherently based on physical properties. Furthermore, we require the chal-
lenge space to be equal to a full set of strings of a certain length. For some classes
of PUFs, this is naturally satisfied, for example arbiter PUFs and SRAM PUFs. For
others types this can be achieved through appropriate encoding, as for angles in optical
PUFs. A PUF is now defined as follows:

Definition 3.3.1 (Physically Uncloneable Functions). Let rq be the dimension of
the range of the PUF responses of the PUF family, and let d,ose be a bound on the
PUF’s noise. A pair P = (Sample, Eval) is a family of (19, dnoise)-PUFs if it satisfies
the following properties:

Index Sampling. Let I, be an index set. The sampling algorithm Sample outputs, on
input the security parameter 1%, an index id € I . We do not require that the
index sampling can be done efficiently. FEach index id € I, corresponds to a set
Diy of distributions. For each challenge ¢ € {0,1}*, Diy contains a distribution
Dig(c) on {0,1}9N . We do not require that Diy has a short description or an
efficient sampling algorithm.

Evaluation. The evaluation algorithm Eval gets as input a tuple (1*,id,c), where ¢ €
{0,1}*. It outputs a response r € {0,1}N according to distribution Dig(c). It is
not required that Eval is a probabilistic polynomial-time algorithm.

Bounded Noise. For all indices id € Iy, for all challenges ¢ € {0,1}*, we have that
when running Eval(1*,id, ¢) twice, then the Hamming distance of any two outputs
r1, ro of the algorithm is smaller than dpeise(N).

Instead of Diy(c), we usually write PUF4(c). Moreover, if misunderstandings are unlikely
to occur, we write D(c) instead of Diy(c) and PUF instead of PUFyy. Finally, we usually
write rg instead of rg(\) and Z instead of Z,.
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3.4 Security Properties of PUFs

Various security properties of PUFs have been introduced in the literature such as un-
cloneability, unpredictability, uncorrelated output, one-wayness, or tamper-resistance.
The main security properties of PUFs are uncloneability and unpredictability. Unpre-
dictability is covered via an entropy condition on the PUF distribution. This condition
also implies mild forms of uncloneability as well as uncorrelated outputs, as shown in
Section [3.4.2] In the following we give a detailed analysis of the PUF’s properties as

well as the relation to existing approaches.

3.4.1 Uncloneability of PUFs

Loosely speaking uncloneability says that a malicious party cannot “copy” a PUF.
This property can be defined in two flavors: hardware-uncloneability and software-
uncloneability [Pappu, 2001} [Tuyls et al., 2007b, [Maes and Verbauwhede, 2010].

Hardware uncloneability, also called physical uncloneability, means that it is difficult
to create a physical clone of a PUF. Recall that a PUF is produced through an un-
controllable manufacturing process. Even if an adversary has control over the com-
plete manufacturing process it is assumed that producing two PUFSs, which implement
the same function is extremely hard or impossible. For some PUF implementation
the authors showed that physical cloning of their implementation is impossible, see
for example [Pappu, 2001, [Lim, 2004, [Suh and Devadas, 2007, [Guajardo et al., 2007,
Tuyls et al., 2006, [Maes and Verbauwhede, 2010].

Physical properties are usually infinite properties, e.g., there exists infinite many config-
urations. However, for cryptographic applications, we are also interested in its discrete
mathematical behavior as a (noisy) function and thus consider cloneability merely with
respect to its input/output behavior, resp. its implemented function. Software un-
cloneability, also called model building, requires that it should be hard to provide an
algorithm that models the function implemented by a PUF (with only collecting a poly-
nomial number of queries because of the unpredictability property of PUFs). Model
building usually considers mere software models, while we additionally allow the soft-

ware to use a second, different PUF to achieve its cloning goal.
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In [Sadeghi et al., 2010] the authors present a first approach of a game-based formaliza-
tion of hardware uncloneability. However, as software uncloneability implies hardware
uncloneability, the below game-based definition is strictly stronger than the one pre-
sented in [Sadeghi et al., 2010]. Cryptographic applications that allow the adversary to
read out arbitrarily many challenge pairs, require software uncloneability. Note that,

however, in a weakened adversarial model, physical uncloneability can be sufficient.

Now, we suggest to the definition of uncloneability. Intuitively, a probabilistic poly-
nomial-time algorithm A intends to clone a PUF; while having access to arbitrarily
many interdependently generated PUFs PUF,,... PUF,. Moreover, A might measure the
challenge PUF; adaptively on challenges ¢y, ..., ¢; of its choice. The algorithm A then
finishes the cloning process. From now on, A is denied access to the device PUF; and
shall simulate its input/output behavior. The challenger now draws a random challenge
c. With high probability (see Section where we define uncorrelated output), the
challenge ¢ is not close to any of its previous challenges. The adversaries’ task is
to output the corresponding response value r. Note that we restrict the observable

parameters of the PUF to be its input/output behavior.
Game UNC(PUF, A, \)

LEARNING PHASE Proceeding adaptively, the adversary has access to an oracle Sample,
which draws a PUF index id from the PUF family according to Sample as well
as to Eval oracles that evaluate PUF,4. The index of the first sampling query is
denoted by idg.

SIMULATION PHASE Eventually, we withdraw the adversary’s possibility to query PUFiq,.
The adversary can now be queried with input challenge values c. We denote this
adversary by A. For a randomly chosen challenge ¢, it is required to output
answers r that are (computationally) indistinguishable from answers given by
PUF.4,. An (efficient) distinguisher D is given two oracles that are either both

equal to PUFq4,, or one oracle equal to A, and one oracle equal to PUFy,.

For each (efficient) distinguisher D, we denote by Unc 4 p()) the difference

| Prob [ DAFYFi = 1] — Prob [ DPVFian-PUfie = 1] |
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Definition 3.4.1 (Cloneability of PUFs). A PUF is cloneable if there exists an ef-
ficient algorithm A such that for all (efficient) distinguisher D, the distinguishing ad-
vantage Unc 4 p(N) is negligible in \.

Definition 3.4.2 (Uncloneability of PUFs). A PUF is uncloneable if it is not clone-
able.

The latter definition is equivalent to the game-based definition of unpredictability pro-
vided in a concurrent and independent work by [Armknecht et al., 2011]. Note that
Armknecht et al. consider a combination of a fuzzy extractor and a PUF, while the

above definition considers a mere PUF.

3.4.2 Unpredictability of PUFs

As considered earlier, unpredictability of PUFs states that it is difficult to compute
the output to a chosen stimulus without evaluating the PUF. This property should
hold even if further CRPs are given (e.g., one party has collected several CRPs before).
The difference to “regular” unpredictable functions is that the attacker may indeed be
able to predict response values for challenges that are closely related to already known
challenges. That is, some PUFs map closely related measurements to closely related

outputs.

Now we turn to the definition of unpredictability. An attacker first collects several
PUF measurements for challenge value of its choice up to a certain moment where it
has no longer access to the device. Subsequently, the attacker has to output a valid
challenge /response pair (¢*,7*) such that the distance between its prediction and all
previously measurements is at least e. If this conditions is fulfilled and if r* < PUF(¢*),
then the attacker wins the game. We define unpredictability of PUFs in the following

game between a challenger and an adversary A:
Game PRE(PUF, A, \)

SETUP The challenger generates a PUF by running the generation procedure Sample
to obtain a PUF index z.
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QUERIES Proceeding adaptively, the adversary A may query the PUF oracle Opyg on
challenges ¢; € {0,1}*. The adversary returns r; < PUF(c;) to the attacker and
adds ¢; to a list Q (list of challenge/response pairs queried by the attacker).

OuTPUT Eventually, the adversary outputs a pair (¢*,r*) with ¢* ¢ Q. The game
evaluates the PUF on r <— PUF(¢*). It outputs 1 if the metric distance dis(c*, ¢) >
€(A) for all c € Q and r = r*.

We define Pre4(\) be the probability that PRE(PUF, A, \) outputs 1.

For simplicity we require that r* < PUF(¢*) since PUFs usually used in combination
with an extractor. This means that r* is either close enough to its defined output range,

or the extractor does not work appropriately.

Definition 3.4.3 (Unpredictability of PUFs). A PUF is e-unpredictable with re-
spect to the game PRE(PUF, A, \) if for all efficient algorithms A the probability
Pre4()) is negligible in A.

Summing up, we defined unpredictability in terms of a game where an efficient ad-
versary, after seeing some challenge/response pairs, tries to predict the response for
another challenge, which is not within close distance to the previous queries; the suc-

cess probability should then be negligible.

In some contexts, such as the UC framework, this approach is not optimal since the
fuzzy extractors, which are necessary to eliminate the noise of a PUF, usually need a
fizxed lower bound on the min-entropy in order to be applicable. Thus, we also give
an entropy-based definition of unpredictability, which is derived from the notation of

unpredictability for random variables.

The behavior of the PUF on input a challenge ¢ should be unpredictable, i.e., have
some significant amount of intrinsic entropy, even if the PUF has been measured before
on several challenge values. Here, (conditional) min-entropy is a main tool. It indicates
the residual min-entropy on a response value for a challenge ¢, when one has already
measured the PUF on (not necessarily different) challenges ¢y, ..., ¢, before. Since the
random responses are not under adversarial control we can look at the residual entropy
of the answer to r by taking the (weighted) average over all possible response values
ri,...,7. Demanding that a PUF has a certain average min-entropy is weaker than

asking for all possible responses 7y, ..., 7y, that the residual entropy remains above a
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certain level [Dodis et al., 2008|. This weaker requirement suffices for our purposes.
However, the challenges ¢ are chosen by the adversary such that we will ask the average
min-entropy to be high for all challenges and defined by the maximal probability of a

possible response 7.

Definition 3.4.4 (Average Min-Entropy of PUFs). The average min-entropy of
PUF(c) conditioned on the measurements of challenges C = (c1,...,co) is defined by

H.(PUF(c)|PUF(C))
:= —log (E,,pur(e) [maz, Prob[PUF(c) = r|r; = PUF(c1),...,re = PUF(c,)]])
= — log (ET%—PUF(C) |:2_H°°(PUF(C)‘T'1:PUF(‘31) ----- TZZPUF(CE))})

where the probability is taken over the choice of id from I and the choice of possible
PUF responses on challenge c. The term PUF(C) denotes a sequence of random variables
PUF(c1), ..., PUF(cp) each corresponding to an evaluation of the PUF on challenge cy.

We also write H..(PUF(c)|C) as an abbreviation for H.,(PUF(¢)|PUF(C)). We now turn
to our definition of unpredictability, which is derived from the notion of unpredictability

for random variables.

Definition 3.4.5 (Unpredictability of PUFs). We call a (rg, dnoise)-PUF family P =
(Sample, Eval) for security parameter 1* (dmin(\), m()\))-unpredictable if for any ¢ €
{0,1}* and any challenge list C = (cy,...,cp), one has that, if for all 1 < k < ( the
Hamming distance satisfies dispam(¢, k) > dmin(N), then the average min-entropy sat-
isfies Hyo(PUF(c)|PUF(C)) > m()\). Such a PUF-family is called a (79, dnoise; dmin, )-
PUF famuly.

Note that one could also define a computational version of unpredictability via com-
putational min-entropy (aka. HILL entropy, named after |[Hastad et al., 1999]) where
the entropy is defined via the entropy of computationally indistinguishable random
variables. All proofs considered in this thesis carry through when replacing statistical
by computational min-entropy; we nonetheless use the statistical variant for sake of

simplicity.

As explained earlier, indistinguishability for defining computational min-entropy then
needs to be considered with respect to distinguisher that have PUF power, and not

with respect to mere probabilistic polynomial-time algorithms.
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3.4.3 Uncorrelated Output of PUFs

If challenges are members of close-by regions, their corresponding responses could be
correlated, for example in the case of optical PUFs [Pappu, 2001, [Tuyls et al., 2005].
However, if two challenges ¢, ¢y are far away from each other, namely more than dn,,
then their responses should not be close to each other. This property is implied by
unpredictability.

If the outputs of two such different challenges were closely correlated, then knowing the
PUF response to challenge ¢; would provide more information about the PUF response
to ¢y than allowed by unpredictability. We now formalize the notion of uncorrelated

outputs in the following game:
Game UNCOR(PUF, dpin, pmax; A, A)

SETUP The challenger generates a PUF by running the generation procedure Sample to
obtain a PUF index id. The adversary adaptively generates challenges ¢;, which
it may query to a PUF several times in arbitrary order. The #'® response to the
challenge ¢; is denoted by r;;. Each time the challenger returns r;; <— PUF(¢;) to
the attacker, it adds ¢;,r;; to a list Q.

OuTPUT Eventually, the adversary outputs (cj,77), (¢}, 75). The game outputs 1 if the

1701

queries output by the adversary are in Q, dis(c},cj) > dmin(A) and the metric

distance between the two responses is at most pmax(A), €.g., dis(r}, 75) < pmax(A).
We define Cor 4(A) as the probability that UNCOR/(PUF, dyin, A, \) returns 1.

Definition 3.4.6 (Uncorrelated Output of PUFs). A PUF satisfies (dmin, Pmax) Un-
correlated output if for all efficient adversaries A the probability Cor4(\) is negligible
m A

3.4.4 One-Wayness of PUFs

One-wayness of PUFs means that evaluating a PUF is easy while inverting it remains
hard. That is, given a response r it should be hard to find a corresponding challenge ¢
such that for ' <— PUF(c), the responses r and 7’ are close. A PUF family is one-way,
if no algorithm A outputs such a challenge ¢ with more than non-negligible probability.

Note that for PUFs with a small input range one-wayness is not achievable as outputting
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a random input already yields a non-negligible probability in inverting the PUF, e.g.,
simple arbiter PUFs. Moreover, measuring the PUF on all input values increases the

probability to 1.

Our notion of unpredictability is incomparable to one-wayness, i.e., a PUF may sat-
isfy unpredictability without being one-way, and conversely, a PUF can be one-way
while not satisfying unpredictability (we give two separation examples at the end of
this section). This shows that one-wayness does not imply that the PUF has any en-
tropy at all which is, however, one of the main stated goals in PUF design. In the
first work, Pappu considered PUFs in the context of entropy [Pappu, 2001]. Later
on, people studied/revisited the notion of entropy of optical PUFs as well as of fur-
ther PUF implementations [Tuyls et al., 2005} [Skori¢ et al., 2006b, [Skori¢ et al., 2006a,
[gnatenko et al., 2006, [Tuyls et al., 2007a]. This shows that one-wayness as a mere as-
sumption is not sufficient. However, one-wayness is a desirable property, which, how-
ever, seems to be hard to realize, as many of the common PUF types are not one-way,
such as arbiter PUFs, ring-oscillator PUFs, SRAM PUFs and coating PUFs. Towards

applicability for many PUF types, we thus discard the assumption of one-wayness.

We first define one-wayness formally and then turn to the bidirectional separation

between unpredictability and one-wayness.
Game INV (PUF, A, \)

SETUP The challenger generates a PUF by running the generation procedure Sample to
obtain a PUF index id. It picks a challenge ¢ at random and evaluates r <— PUF(c).
It hands r to the adversary.

OutpuT The adversary may adaptively query the PUF and finally outputs a challenge
c. The challenger computes 1’ < PUF(c) and outputs 1 if dis(7’,7) < dnoise-

We define Inv 4(A) as the probability that INV (PUF, A, \) returns 1.

Definition 3.4.7. A PUF is one-way with respect to the game INV (PUF, A, \) if for
any efficient algorithm A the probability Inv 4(\) is at most Oy .

The following separations illustrate that unpredictability and one-wayness do not imply

each other.
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Unpredictability does not imply One-Wayness Assume, a PUF-family satisfies our
notion of unpredictability for suitable parameters. Then, we can define a new
PUF-family PUF*, which on input challenge ¢ queries PUF on challenge ¢. The
PUF then returns a response r, and PUF* returns as its response R the pair
R = (e,r). The high-entropy condition of our unpredictability notion is still

satisfied. However, PUF™ is not one-way.

One-Wayness does not imply Unpredictability Let PUF be a family of one-way-
functions f; with an index set Z and with efficient descriptions. We define a
new function family f with an index set Z as follows: On input a value ¢, f out-
puts fi(c) concatenated with a function description of f;. This construction is still
one-way. However, it is not unpredictable. After querying the function on ¢, one
can easily derive the function value on any other input /. However, this example
assumes knowledge of the code of the PUF. Possibly this is not true, but then we
can consider a second example: We define a function f(c) := f(c) || f(¢) || &, for
some fixed value ¢ (that is chosen uniformly at random during the creation phase).
Now, there exists an adversary that easily predicts this value after querying the

PUF once (on a random value). This concludes the separation.

3.4.5 Tamper-Evidence of PUFs

Tamper-resistance means that physical manipulation should be either impossible or easy
to detect, e.g., tampering changes the input/output behavior of the PUF. Our modeling
of PUFs implicitly assumes tamper-evidence, as the attacker is bound on querying the
PUF. There are two ways to approach this topic: One may consider this as a human-
related property, i.e., manipulating is easy to detect for a human. The other approach
would be to assume that the mathematical behavior becomes atypical, or, that the
mathematical behavior becomes very different. In the latter case, when receiving a PUF,
the sender and the receiver needs to exchange a number of challenge /response pairs, i.e.,
the sender sends a couple of challenges, and the receiver returns the PUF’s responses.
If they are close enough to the values the sender has stored in its challenge/response
pair list, the sender will confirm that no tempering has occurred. In our model, this
property is implicit. When desired, one can define a more basic PUF definition which
allows the adversary mathematical tempering. One would then show that this definition

could be composed with the above protocol to emulate our PUF definition.
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3.5 Fuzzy Extractors

The responses of PUFs are noisy by nature and thus, the output of a PUF cannot
directly be used in applications that require noise-free output with a perfectly uniform
distribution (such as cryptographic keys). In particular, measuring the PUF on the
same stimuli results in closely related but different outputs. To deal with this problem
we apply a fuzzy extractor. A fuzzy extractor, introduced by Dodis, Ostrovsky, Reyzin,
and Smith [Dodis et al., 2008], is a secure form of error correction that enables a reliable

extraction of a uniform key from a noisy non-uniform input.

A fuzzy extractor consists of a pair of algorithms (Gen, Rep). The generation algorithm
Gen takes as input a noisy measurement w and generates as output a secret st together
with helper data p. The helper data can be stored publicly, since it does not reveal
information about the secret. It is later used to reproduce the same secret st from
related measurements. That is, the reproduction algorithm Rep takes as input a noisy
measurement w’ and helper data p. If w and w’ are sufficiently close, Rep gives the
same reply st. The value st is distributed almost uniformly and can thus be used for

cryptographic purposes.

Definition 3.5.1 (Fuzzy Extractor). Let dis be a distance function for metric space
M. An (m, L, t,€)-fuzzy extractor consists of two efficient randomized algorithms (Gen,

Rep):

Gen: The algorithm Gen outputs on input w € M a secret string st € {0,1}* and a
helper data string p € {0,1}*.

Rep: The algorithm Rep takes an element w' € M and a helper data string p € {0,1}*
and outputs a string st.

Correctness: If dis(w,w’) < t and (st,p) < Gen(w), then Rep(w’,p) = st.

Security: For any distribution YW on the metric space M of min-entropy m, the first
component of the random variable (st,p), defined by drawing w according to VW
and then applying Gen, is distributed almost uniformly, even if p is observed, i.e.,

SD((St,p% (Ue,p)) S €.
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3.5.1 Applying Fuzzy Extractors to PUFs

We now determine parameters to combine a PUF and the fuzzy extractor in order to
achieve almost uniformly random values. We let the parameters of the fuzzy extractor
depend on the parameters of the PUF. Assume that we have a (rg(\), dnoise(A), dmin(N),
m(A))-PUF family with dn;, being in the order of o(A/logA). We now determine the
corresponding parameters for the fuzzy extractor as follows: Let £(\) := A be the length
parameter for value st. Let €(\) be a negligible function and let t(\) = dyoise(A). For
each A, let (Gen,Rep) be a (m(X), (M), t(N), e(\))-fuzzy extractor. The metric space
M is {0,1}%™ with Hamming distance disy,m. Note that such fuzzy extractors only
exist if rg(A) and m(\) are sufficiently large. In order to achieve this, several PUFs
can be combined. When combining two PUFs of the same family, r¢g gets doubled
and so does m. Thus, if there are PUFs with m(\) being non-negligible they can be
combined to a useful PUF-family—even if a PUF-family has at least polynomial fraction
entropy, it still can be combined to obtain a good PUF-family with outputs, which, has
high entropy of many bits. Thus, we may assume that the PUF has corresponding

parameters.

Definition 3.5.2 (Matching Parameters). If a PUF and a fuzzy extractor (Gen,
Rep) satisfy the above requirements, then they are said to have matching parameters.

If a PUF and a fuzzy extractor have matching parameters, then the properties well-

spread domain, extraction independence and response consistency follow.

Well-Spread Domain: For all polynomials p()) and all sets of challenges cy, ..., ¢y,
the probability of a random challenge to be within distance smaller d,;, of any of

the ¢ is negligible.

Extraction Independence: For all challenges ci, ..., ¢p(y), it holds that the PUF evalu-
ation on a challenge ¢ with dis(cg,¢) > dmi, for all 1 < k < p(A) and subsequent

application of Gen yields an almost uniform value st even for those who observe

p-

Response Consistency: The fuzzy extractor helps to map two evaluations of the same
PUF to the same random string, i.e., if PUF is measured on challenge ¢ twice and

returns r and r/, then for (st, p) - Gen(r), one has st «<— Rep(r’, p).
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We now prove that a PUF and a fuzzy extractor with matching parameters have a well-

spread domain and meet extraction independence as well as response consistency.

Consider the well-spread domain property: the number of challenges in {0, 1}* within
distance smaller d,,;, of at least one of the ¢; can be upper bounded by the number of

elements in a ball of radius d,;, multiplied with the number p()) of challenges, i.e.,

p(A) dmi(f) (/\) < p(A) A

- 7
=1

which is a negligible fraction of 2%, as the term
p(/\))\clmin(k)yA — p<)\>2dmin()‘) log A—A

is negligible if dpnin(A) = o(A/log ).

For extraction independence, we observe that H.,(PUF(c)|C) is greater than m(\).
Thus, evaluating a PUF on challenge ¢ corresponds to drawing a random value r from a
distribution on the metric space {0, 1} which has entropy greater than m()). Hence,
the distribution of the random variable (st,p) defined by drawing a response r from
PUF(c), conditioned on (r1,c1), ..., (Tpn); Cpn)) and applying Gen to it, is statistically
close to uniform, i.e., SD((st,p), (Ux,p)) < € by definition of the fuzzy extractor.

Finally, for response consistency, we notice that dmin(\) = ¢(A\). Thus, the bounded
noise property of the PUF assures that two PUF evaluations yield responses r, " with
distance smaller than ¢(\). Thus, the properties of the fuzzy extractor assure that for
(st,p) « Gen(r), one has that Rep(p,r’) outputs st.
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4 PUF-based Authentication
Protocols in the Stand-Alone
Framework

The properties of a Physically Uncloneable Functions inspired researchers to build
authentication protocols relying on challenge/response pairs ISkorié and Tuyls, 2007,
Batina et al., 2007, |Guajardo et al., 2007]. In these protocols, one party issues a chal-
lenge in form of a stimulus, which the other party has to answer by measuring its PUF.
If this PUF response matches a pre-recorded response held at the issuing party, the
challenging party is authenticated. If the number of CRPs of a PUF is large and an
adversary cannot measure all PUF responses, it will most likely not be able to answer
the challenge of the issuing party even if it had physical access to the PUF for a short

time.

In this chapter, we show that current PUF-based authentication protocols are not
fully secure in the above-mentioned attacker model where the attacker has physi-
cal control of the PUF and the corresponding reader during a short time. In par-
ticular, we revisit the authentication protocol of Tuyls et al. called TAP in the se-
quel [Skori¢ and Tuyls, 2007].

4.1 The TAP Protocol

Tuyls et al. [Skori¢ and Tuyls, 2007] proposed a token-based challenge/response pro-
tocol to authenticate a credit card against a central bank authority (server). For the
sake of simplicity, we describe the details of the protocol in the two party scenario
where a single smart card is authenticated to a central server: A PUF is embedded

in a personalized smart card in a non-separable way. Since the PUF is uncloneable
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and its response is unpredictable, the owner can use it to authenticate itself against a
server. More precisely, the protocol consists of two phases, an enrollment phase and a
verification phase. During the enrollment phase, the PUF is embedded inseparably in
the smart card. Then the server challenges the PUF with several stimuli and stores the
resulting challenge/response pairs in its database. Afterwards the smart card handed
out to the owner to the person. During verification, the holder of the card inserts it into
the ATM (card reader). The server chooses a random PUF challenge and sends it to
the reader. The reader measures the PUF and returns the response back to the server.
If the measured PUF response matches the recorded response in the server’s database,
the server is convinced that the reader has physical access to the PUF. Thus, the holder
of the smart card is authenticated. Furthermore, both parties can derive a session key
from the PUF output, which can subsequently be used to establish an authenticated

communication channel between the server and the card reader.

The main goal of the TAP protocol is to assure that an adversary cannot impersonate
the client. This protocol, however, is insecure once the adversary has physical access
to the card. In fact, an adversary gets enough information to impersonate the server:
Consider an adversary, who has access to the reader as well as to the PUF for a short
time period. In this time it can read the card reader including all secret information.
Moreover, the adversary can challenge the PUF with any stimuli at will in order to
collect a number of challenge /response pairs. This information is enough to impersonate
the server: The adversary engages in the TAP protocol and chooses a valid challenge
of its collected CRPs and sends it to the card reader. The reader measures the output
of the PUF for the given challenge and forwards the corresponding response to the
adversary. The reader will be unaware that it has authenticated to (and established
a key with) the adversary instead of the server, as it cannot distinguish a challenge

chosen by the server from one issued by the attacker.

Recalling the TAP Protocol In the enrollment phase, the server issues a smart card
including a PUF together with a current identifier id. It generates a set of random
challenges C = (c},...,¢,) for the PUF and measures for each ¢, the corresponding
responses ;. Furthermore, for each challenge ¢, a random secret st; and a helper data
p; is computed by solving Gen(r.) = (st;,p}). The rewritable non-volatile memory on
the card stores the identifier id, a usage counter n, indicating how many times the

authentication protocol ran, and the current hash value m = H(rd), where rd is a
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random string generated by the server and H is a one-way hash function. The central
server holds in its database the card identifier id, both values n’ and m’ = rd, as well
as a list of challenges C with the particular corresponding secrets &’ and helper data
values P. Once a card is ready for use, it is initialized with n’ =n = 0, m’ = rd and
m = H(rd).

Server Reader-PUF
id,n’,m' =rd, {C,P,S'} id, n,m = H"(rd)
Check n > n/ 7, id Generate nonce o
Compute M’ = H*™ (m/) ki = H(ml||id)

ki = H(M'||id)

¢, erC

Generate nonce [

Eanl [T| |MACk1 (T)\]

T = allcj|pil18 Check MAC

r; < PUF(c))

St; - Rep(r“p;)

MAC
k= H(k|st) ‘ () k= Hilu|st)
Check MAC
n' —=n+1, m — H(m') ¢ Use k n—n+1,m— H(m)
Remove ¢ from database
Figure 4.1: PUF-based  authentication and key  establishment  protocol

of [Skori¢ and Tuyls, 2007].

The PUF-based authentication and session key establishment protocol, depicted in

Figure 4.1}, consists of the following steps:

Reader4+PUF The user inserts its card into a card reader. The reader sends an initial-
ization message consisting of a nonce «, the usage counter n, and the identifier id

to the server.

Server The server checks if n > n’. If this condition does not hold, then the server

generates an error message and aborts. Otherwise, the server computes M =
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H™ " (m'), where H" denotes the n* composition of H. Furthermore, the server
computes a temporary key k; = H(M||id). It then generates a nonce 3, selects
randomly a challenge ¢, €g C and computes the value T' = al|c}||p||f where p]
is the helper data corresponding to ¢,. The server authenticates the quadruple
(o, &, pl, B) by computing a MAC with key k;. It encrypts T'||MACy, (T') using k;

and sends the result to the reader.

Reader+PUF The reader derives the temporary key by computing k; = H(ml||id),
decrypts Ency, [T||MACk, (T')] using k;, and validates the MAC by using ky. If the
MAC is invalid or if the decrypted nonce a is wrong, then the reader aborts with an
error message. Otherwise, the reader challenges the PUF with ¢, which produces
a corresponding response r;. The reader executes the helper data algorithm Rep
with input r; and helper data p} in order to obtain the secret st;. Now, the reader
computes a session key k = H(k;||st;) based on the temporary key k; and the
secret st;. Finally, the reader generates a MAC based on the nonce  using k and
sends the MAC to the server.

Server The server computes its session key k = H(ky||st;) based on the temporary
key k; as well as the secret st corresponding to ¢, which was generated in the
enrollment phase and is stored in the database. Furthermore, the server verifies
that the MAC is a valid tag on the nonce 8 (with respect to the secret derived
from the response and the helper data). If the MAC is invalid, then the server
aborts with an error message. Otherwise the server is convinced that the reader
has physical access to the PUF and the holder of the smart card is authenticated.

Subsequently, both parties use the symmetric key £ as a session key in order to set up

a secure channel.

4.2 Limitations of the TAP Protocol

In the above protocol, an adversary who has access to the smart card and the PUF for
a short period of time can impersonate the server, unless the communication between
the bank and the reader is authenticated. Observe that even though the adversary gets
access to the smart card, he does not learn the entire secret. The reason is that the
shared secret is the set of challenges C. In fact, Reader+PUF does not know C, and
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thus, the adversary in our attack chooses an arbitrary ¢ ¢ C and the Reader+PUF still

alnswer.

We assume that the initial enrollment phase of the protocol is secure, ranging from
the PUF fabrication up to the point where the user physically receives the smart card

including the PUF. We now turn to the description of the adversary.

Let A be an adversary who has once access to the smart card including the PUF for a
certain time. The algorithm A selects a small number of challenges C* and measures
the corresponding responses R*. Moreover, it reads the identifier id, the usage counter
n and the current hash value m stored on the card memory. With this information, the
adversary can impersonate the server in subsequent runs of the authentication protocol
as follows:

Adversary The adversary computes the value M* = H" " (m), which is possible,
because A obtained the usage counter n and the hash value m = H(M) from
the card memory. Now, A calculates ki = H(M?*||id) and generates a ran-
dom nonce *. The adversary chooses a challenge ¢ € C* and runs the algo-
rithm Gen on input 7; in order to get helper data p; € P* as well as a secret
stf € §*. Furthermore, A produces a MAC on the quadruple («a, ¢}, pf, %) using
the key A7, encrypts the MAC with £} and sends the resulting value Ency:[(c
[e? 171 87) [IMACy; (|7 [[p7]]67)] to the reader.

Reader+PUF The reader subsequently computes ki = H(m|[id), decrypts Ency:[(a
[e;|[pi[|B*)[IMACk: (af|c;||p; || 8*)] and checks whether the MAC is valid. Since
the MAC and the decrypted nonce « are valid, the protocol does not abort with
an error message. Consequently, the reader challenges the PUF with ¢}, which
produces a corresponding response r;. Running the algorithm Rep on input 7} as
well as p?, the reader extracts the secret st} from the output of the PUF. At last,
the reader computes a MAC on the nonce * using the session key k. Afterwards,
it sends the MAC to the adversary A.

Adversary A computes its session key k* = H(k}||st}) by hashing the temporary key
k7 and the secret st;. Thus, the attack succeeded and the adversary is able to
impersonate the server successfully. Moreover, the key k* (respectively k) is a

symmetric key established between the reader and the adversary.
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The main reason why the attack works is that the adversary gets physical access to
the smart card including the PUF at least once for a short period. During this time,
the adversary measures the PUF and uses the obtained challenge/response pairs in
subsequent authentication runs. Due to the symmetric nature of the protocol, the
reader cannot decide whether a given challenge during a run of the protocol was initially

measured by the server or subsequently by the adversary.

4.3 Using Bloom Filters and Hash Trees in
AKE-Protocols

The above-mentioned weakness can be solved—without requiring an authenticated link
between the server and reader—by storing a subset of “valid” challenges V' initially
measured by the server in the read-only memory on the smart card. However, storing
all challenges is too expensive. Moreover, an adversary that reads the memory of the
smart card would learn the subset of legal challenges. Thus, the set V has to be stored on
the card in a compact form, which does not allow a computational bounded adversary
to gain information on legal challenges. In this case impersonation can be prevented, as
the adversary does not know the set of valid challenges and will most likely present an
invalid challenge, which will not be accepted by the reader (this requires a strong PUF
since the number of challenges must be large). We propose two solutions for compactly
storing legal PUF challenges, one relies on Bloom Filters [Bloom, 1970] and the other
one on hash trees [Merkle, 1980].

4.3.1 Bloom Filter

A Bloom Filter B is a probabilistic data structure that encodes a set of elements
X into a ¢ bit array B in order to allow fast set membership tests [Bloom, 1970
Broder and Mitzenmacher, 2002, Mitzenmacher and Upfal, 2005|. The idea is to en-
code the elements by using several hash functions. The Bloom Filter B consists of ¢
bits B[0],..., B[¢ — 1], where all entries are initially set to 0, and a set H of b indepen-
dently chosen hash functions H; : {0,1}* — {0,...,¢ — 1}. In order to encode a set
X ={xy,...,z,} into the Bloom Filter, the elements of X are added sequentially into
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the array B according to the following rule: For each element x € X, we set B[H;(z)]
to one for all 1 < ¢ <.

The algorithm CHECK(z', B, H) verifies if a given element z’ belongs to the Bloom Filter
B and works as follows: CHECK(-) evaluates all b hash functions on 2z’ and outputs 1
iff B[H;(z")] =1 for all 1 <1 <b. If one of the bits is set to 0, the algorithm outputs
0 since x’ is clearly not in B. Note that the length ¢ of the array B has to be chosen
carefully (as well as the number of hash functions b). In case that many bits in B are
set to 1, the probability that an arbitrary element z is recognized as a member of X
increases. We call the event that an element = ¢ X is falsely recognized as member of
X by the Bloom Filter, e.g., CHECK(Z, B, H) = 1, as a false positive. The parameters

of the Bloom Filter have to be chosen in a way that makes this error very unlikely.

4.3.2 Hash Tree

A hash tree (or Merkle tree) T is a complete binary tree used to prove set member-
ship [Merkle, 1980], Micali and Reyzin, 2001]. The hash tree consists of a root node
Uroot, Several internal nodes v;, and leaf nodes vy,;. Each leaf node represents a data
value d;. Furthermore, each internal node stores a hash value of the concatenation of the
values stored in its children. The hash values are computed with an collision-resistant
hash function H : {0,1}* — {0,1}". Thus, if an internal node v;;; has a left child v;
storing the value z;( and a right child v;; storing the value z;;, then v;y; stores the
value z;41 < H(x;o||zi1). It is well known that it is, given a tree T, infeasible to find

another path that yields to the same root node vt .

The algorithm CHECK(z,,d;, (71,..., 7)) verifies if a given element d; belongs to the
hash tree 7. Instead of exposing all leaf nodes, the algorithm is passed an authentication
path, which consists of the hash values (7q,...,7;) of the siblings of all nodes along the
path from the leaf node v, storing d; to the root node wv. Let x; be the hash
value of node v; along the authentication path. We set z; < vjear and compute the
remaining hash values x», ..., z; as follows: Let 71,...,7; be the binary representation
of tree index i. If i; = 0, we set z;41 < H(z,||7;), and otherwise, if i; = 1, we
set z;41 < H(7j||z;). The algorithm outputs 1 iff 2411 = Zy0t, i.€., if the root hash

matches, and 0 otherwise.
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4.4 PUF-based AKE-Protocol based on Bloom
Filters

The modified protocol, based on Bloom Filters, is depicted in Figure 4.2 and contains

the following modifications: During the secure enrollment phase, the server computes

Server Reader+-PUF
id,n’,m' = rd, {V,P,S"} id,n,m = H"(rd), B
Check n > n' ¢ @, 1, id Generate nonce «
Compute M' = H*™™ (m/) ki = H(ml||id)

ki = H(M'||id)

eV

Generate nonce [

E TIIMAC,. (T
T = ol 17118 ne [TIMACK ()] 1 MAC

CHECK(c,, B, H)
r; < PUF(c})
st = Rep(r4, pl)

MAC
k= Hialst) / ) k= H(alst)
Check MAC
, , , Use k
n—=n+1,m — HM) ¢ n—n+1,m— H(m)

Remove ¢ from database

Figure 4.2: PUF-based authentication and key establishment based on Bloom Filters.

a subset of valid challenges V C C by choosing a certain number of challenges ¢, € C
at random. Afterwards, the server stores the challenges ¢, of V with the corresponding
responses in its database. Furthermore, the server computes a Bloom Filter B of size
¢ and stores all x challenges using b hash functions in B. The rewritable non-volatile
memory on the smart card stores the identifier id, the usage counter n, the current hash
value m, and the Bloom Filter B. If the reader receives a challenge ¢}, the reader verifies
that it receives a challenge that was initially chosen by the server by checking whether
¢, € B, e.g., whether all array locations B[H;(c};)] for 1 < j < b are set to 1. If any
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check fails, then clearly ¢ is not a member of V and the reader aborts. Otherwise, the
reader follows the protocol steps as described in Section [4.1 This way, the reader can
be sure that the server initially selected the challenge, unless an adversary succeeded

in guessing a valid challenge.

4.4.1 Security Trade Off between Space and False Positives

In this section we take a closer look at the parameters of the Bloom Filter. Since Bloom
Filters always have a false positive probability, which in our protocol results in the fact
that the card reader accepts invalid challenges, the goal is to find a trade off between
the space required to store the valid challenges on the card, the number of hash func-
tions, and the false positive probability of the Bloom Filter. Recall that a false positive
occurs if an element is accepted to be in the Bloom Filter, although it is not in the
set [Bloom, 1970, Broder and Mitzenmacher, 2002, [Mitzenmacher and Upfal, 2005]. The

probability of a false positive f can be computed as

f= <1— (1— l)bx>b% (1 —eba/tyb
E Y

where x is the number of challenges in V, ¢ is the number of bits in the array of the
Bloom Filter and b is the number of hash functions. We have to choose the parameters
of a Bloom Filter appropriately in order to find a trade off between the computation
time (corresponds to the number b of hash functions), the size (corresponds to the
number ¢ of bits in the Bloom Filter array), and the probability of error (corresponds
to the false positive probability f), which we will discuss in Section m

4.4.2 Analysis of the AKE-Protocol based on Bloom Filters

We analyze in this section the extended PUF-based protocol depicted in Figure [4.2]
The main idea of the extension is to let both parties store a subset of valid challenges
V of the challenge space C. The reader then can check efficiently if a received challenge
¢ is a member of V. If ¢ ¢ V, the reader aborts. Otherwise, if ¢ € V), the reader follows
the further protocol steps. Since only the server and the smart card know the subset

V), we prevent the impersonation of the server by an adversary. As a consequence, we
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have a mutual authentication between the server and the holder of the smart card. Fur-
thermore, the protocol is resistant against replay attacks because each PUF challenge
is used only once. The protocol also retains backwards-security of the original TAP

protocol.

Now, let us consider the subset V of valid challenges in more detail. Since we use a
strong PUF we cannot draw conclusions about the elements of V. Moreover, the subset
V of valid challenges is encoded as a Bloom Filter in the read-only memory on the
card. If an adversary obtains the ¢-bit Bloom Filter and the b hash functions, it cannot
deduce the x elements of V. This follows from the fact that the hash functions are
chosen independently However, there is still the probability that the adversary guesses
a valid challenge, i.e., the adversary manages to find a challenge such that the testing
algorithm of the Bloom Filter outputs 1. The probability that the adversary A guesses
such an element (event win) can be upper bounded by the probability that it guesses a
challenge being in the set V and the probability that an invalid challenge is accepted.

This probability can be computed as follows:

b
. M B _l bx
Prob[A win] < | + (1 1 ;i + a.

Finally, the protocol is very efficient because it only requires symmetric cryptographic

primitives.

4.5 PUF-based AKE-Protocol based on Hash Trees

In this section we propose an alternative solution based on hash tress. The benefit of
this approach is that we only need to store a constant amount of data in the read-only
memory of the smart card regardless of the number of elements of V. Although this

approach reduces storage, it induces an additional communication overhead.

The extended PUF-based authentication and key establishment protocol based on hash
trees is depicted in Figure[d.3] During the secure enrollment phase, the server computes
a subset of valid challenges V C C by choosing uniformly a certain number of challenges
of C. Furthermore, let H be an one-way hash function. The server computes a hash tree

T, based on the elements of V, as follows: Let us assume that the number of challenges
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Figure 4.3: PUF-based authentication and key establishment protocol based on hash trees.

of the subset is a power of |[V| = 2. To authenticate the challenges cy, ..., ¢)y|, the
server places each challenge at the leaf nodes of a binary tree of depth V. Moreover, the
root node and each internal node of the binary tree are computed as hashes of its two
child nodes (see Section [4.3.2). The root hash value z, is stored in the memory of the
smart card, whereas the server stores the hash tree 7. To authenticate a challenge ¢},
the server discloses i, the corresponding path 7, between ¢, and the root node and all
necessary sibling nodes, and sends the additional information to the reader. The reader
now runs the algorithm CHECK(z,,c;, 7) in order to verify the validity of the received
path with its stored root value ... If the function returns 0, then the verification
is not successful and the reader aborts with an error message. Otherwise, the reader
knows that the challenge ¢} is a member of the set V of valid challenges. Subsequently,
the reader follows the protocol steps as described in Section
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4.5.1 Communication Overhead of Hash Trees

The benefit of hash trees is that we only have to store the root value of the hash
tree in the read-only memory of the smart card. Unfortunately, this solution involves
additional communication overhead. The server has to send additional data besides the
quadruple («, ¢, p, §) in order to allow the reader to verify validity of ;. Let us assume
that the hash function H maps its input ¢, to an A-bit output v;. Now the server has
to transmit for each level of the tree the particular sibling node. Thus, the server has
to send v - A = log, |V| - A additional bits to the reader.

4.5.2 Analysis of the PUF-based AKE-Protocol based on Hash
Trees

The security properties follow analogously to Section [4.4.2] except for the assumptions
about the Bloom Filter. Here, the subset of valid challenges V is encoded as a hash
tree. The security of hash trees relies on the one-way property and on the collision-
resistance of the hash function H. Moreover, it is well known, that this data structure
authenticates the elements in the hash tree, i.e., it is computationally infeasible to
find a valid path given only the root node v,,o. Finally, since only hash values are
transmitted, and because the adversary is unable to invert the one-way hash function
H, no information about the other challenges in the set (authenticated through the

same tree) is leaked.

4.6 Bloom Filter vs. Hash Tree

Both of our above-mentioned approaches can be implemented on a smart card. Table
summarizes the storage and communication overhead of Bloom Filters and hash trees.
Recall that V is the set of challenges, ¢ the length of the Bloom Filter, and A the output
length of the hash function.

Our solution based on Bloom Filter has the advantage that we do not need any ad-
ditional communication overhead. However, in order to reduce the false-positives, the

length ¢ has to be chosen appropriately.
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‘ Storage on the Credit Card ‘ Communication Overhead
Bloom Filter | ¢ 0
Hash tree A A - log, |V

Table 4.1: Comparison of the storage and communication overhead of Bloom Filters and hash
trees.

On the other hand, if we want to optimize the storage capacity on the smart card, then
the solution based on hash trees is the better choice because we only have to store the
(-bit hash value of the root node. Although this solution is very storage efficient, we

get an addition communication overhead of A - log, [V| bits.
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5 Physically Uncloneable Functions
in the Universally Composable
Framework

In this section we formalize the notion of PUFs in the UC framework. Subsequently, we
provide a UC secure oblivious transfer protocol, a commitment protocol that is based

on any oblivious transfer protocol, and finally a UC secure key exchange protocol.

5.1 The UC Framework

In the following we briefly review the main concepts of Canetti’s UC framework. A
comprehensive description is out of scope of this dissertation and we refer the reader
to [Canetti, 2001].

5.1.1 Intuition of the UC Framework

Consider a set of parties Py (1), Pao(x2), ..., Py(z,) that wish to compute some function
(Y1, -y Yn) < f(21, ..., x,) running a protocol II, where y; denotes the output of f for
the i — th party. Canetti’s approach for defining security is based on the seminal paper
of Goldreich, Micali, and Wigderson [Goldreich et al., 1987, which states: What does

it mean for a given protocol II to be secure for some task?

Micali and Rogaway answer this question by using the following approach: First one
describes how the protocol II should ideally computes the function f. This is done by

letting the parties send their inputs z1, ..., x,, to some trusted party. This trusted party
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then computes (y1, ..., yn) < f(x1, ..., 2,) and sends y; to the i — th party. This is called
the ideal functionality.

An interactive Turing Machine that interacts via authenticated communication channels
with the other parties of the protocol describes this trusted entity. The second step
is to show that II realizes the ideal functionality. A protocol securely models an ideal
functionality if any protocol attack in the real world (where no trusted party exists)
can be carried out against the ideal functionality in the ideal world with the same
outcomes. Naturally, in the ideal world an ideal adversary performs the attacks on
the protocol. This ideal adversary can interact with the ideal functionality and it can
corrupt honest parties by sending a corrupt command to the ideal functionality. At
that time the adversary has full control over the corrupted party; note, further abilities

of the adversary are explicitly specified by the ideal functionality.

5.1.2 The UC Framework

The UC framework describes two worlds, the ideal and the real world. Towards a third

party, called the environment machine Z, these two worlds should be indistinguishable:

protocol
execution
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B
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2
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Ideal World—with a Trusted Entity The ideal world consists of dummy parties, an
ideal functionality JF, the environment Z, and an ideal adversary, called the simu-
lator S. The parties are called dummy parties since (1) they forward any received
input directly to the corresponding ideal functionality, and (2) they write every
received value from the ideal functionality to their local output tape. The envi-
ronment Z can set the parties’ inputs and it can read their local output tape, but
it cannot see nor tamper the communication with the ideal functionality. The
simulator S can communicate with both the environment Z and the ideal func-
tionality. Moreover, S can corrupt one or more of the parties and thus, it has the
ability to see the party’s input and any communication sent to a corrupted party

and to control the output of the corrupted party.

Real World—Without any Trusted Entity The real world consists of parties, the en-
vironment Z, and a real adversary A. The adversary A can communicate with
the environment Z, and can corrupt one or more of the parties. Note that a
corrupted party is completely controlled by the adversary, while an uncorrupted
party proceeds according to the protocol specification. Similar to the ideal world,
the environment Z can define the party’s inputs and it can see its outputs, but it

cannot see the internal communication (other than what is known to the adver-

sary).

Now, a protocol securely realizes an ideal functionality F in the UC framework, if there
exists an ideal-world adversary S such that for any environment Z and for all adversary
A, it holds that the environment Z cannot distinguish between a run with the ideal
functionality F and S in the ideal world or a run of the protocol with the adversary .4
in the real world.

In its original form the hybrid model supports the decomposition of cryptographic tasks
into basic building blocks and to conclude security of protocols, which are composed
out of such building blocks. Loosely speaking, Canetti’s composition theorem—or,
actually a corollary of a more general statement—says that, if a protocol 7% UC-
securely realizes some functionality G in the hybrid world with efficient functionality
F, and some protocol p UC-securely realizes F, then the composed protocol 7”, which

invokes p whenever m would call F, also UC-securely realizes G.
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5.2 Universally Composable Security and PUFs

Our ideal functionality covers different kinds of PUF technologies and comprises even
PUFs with small input or output size (in which case unpredictability should be under-
stood relative to the small output size). We note that for designing secure protocols,
the intermediate access of the adversary also necessitates that the challenge space of the
PUF is super-polynomial; else the adversary could clone the PUF easily. This domain
requirement may currently not be true for all kinds of PUF technology; we comment

on this later, see Section [6]

Furthermore, we consider a very minimalistic model, which basically says that only
the party in possession of a PUF can evaluate it by sending some stimulus to the
PUF and observing the output, and where learning outputs for some stimuli does not
facilitate the task of predicting the function’s output for other stimuli. Thus, our ideal
functionality for PUFs only allows the party in possession to stimulate it in order to
retrieve a response, thus ensuring restricted access. Uncloneability is enforced through
unpredictability. Parties can hand over the PUF to other parties, but then we allow
the adversary temporary access before the PUF reaches the recipient. This models the
classical example of PUF-augmented cards, sent via postal service, which is read out
before getting delivered. Moreover, one usually requires that tampering with PUFs
can be detected easily, the idea being that a user does not use the PUF anymore after
detecting it has been tampered with. Our UC-functionality will cover this property
implicitly, as we permit the adversary black-box access to the PUF and the choice of
delivering the PUF or not. Tampering with the PUF is treated as not delivering it.
Furthermore, as in other works about hardware based tokens, we assume some kind
of tamper-evidence in the sense that the receiver can later verify the authenticity and
integrity of the PUF. We note that this need not be ensured by the PUF technology
itself. One may also consider reliable delivery (in which case the adversary may have

read-only access during the manufacturing process), see also [Ostrovsky et al., 2012].

Recall that the usage of hardware components in the UC context, especially of PUFs,
causes several unpleasant side effects, though. At foremost, PUFs are not known to be
implementable by probabilistic polynomial-time Turing machines; the manufacturing
process seems to be inherently based on physical properties. Hence, while the claims

in the hybrid model are technically sound, any realization in practice through actual
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PUFs leaves a gap in the security claim of the composed protocol, as, strictly speaking,
the composition theorem only applies to probabilistic polynomial-time computable func-
tionalities F. Fortunately, Canetti [Canetti, 2001] proves the composition theorem to

hold for a broader class of interactive Turing machines, which also holds for PUFs.

The uninstantiability of PUFs through efficient algorithms causes another issue when
it comes to complex cryptographic protocols. For any PUF-based protocol relying on
further cryptographic assumptions like the hardness of computing discrete logarithms,
the assumption would need to hold relative to the additional computational power given
through PUFs. That is, the underlying problem must be hard to solve even for attackers
with “more than probabilistic polynomial-time power”. It is therefore advantageous to
avoid additional cryptographic assumptions in protocols and provide solutions with

statistical security.

5.2.1 Authenticated Communication in UC

The UC functionality F,u, for authenticated message transmission |[Canetti, 2001] is
presented in Figure . The functionality prevents tampering and/or injecting mes-
sages. That is, a party P; will receive a message msg from a party F; only if P; has sent
msg to P;. Each session will be defined by a session identifier sid and each execution

will be accompanied by a unique sub session identifier ssid.

Fauth runs with parties P, ..., P, and adversary S.

e Whenever P, writes (send,uw, sid, ssid, P, Pj, msg) on F,uh’s input tape then
Fauth proceeds with the following actions:
x Store the tuple (sid,ssid, P, Pj,msg) and output (send,un,sid,ssid,
P;, P;, msg) to the adversary S.
e Whenever S writes (sendaun,sid,ssid, P, Pj,msg) on JF,uh's input
tape check if a tuple (sid,ssid, P, P;,msg) is stored. If so, write
(sendayth, sid, ssid, P;, Pj,msg) on P;’s communication input tape. Else,
ignore the input.

Figure 5.1: The ideal functionality for message authentication adapted from [Canetti, 2001].
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5.2.2 Modeling PUFs in UC

In the following we propose an ideal functionality Fpyr that will model PUFs. The
functionality is presented in Figure and handles the following operations:

1. A party P, is allocated a PUF;

2. P; can query the PUF;

3. P gives the PUF to another party P; who can also query the device;
4. An adversary can query the PUF during transition.

The functionality Fpyr maintains a list £ of tuples (sid, P;,id,7) where sid is the
(public) session identifier and id is the (internal) PUF-identifier, essentially describing
the output distribution. Note that the PUF itself does not use sid. The element
7 € {trans(FP;), notrans} denotes whether the PUF is in transition to P;. For trans(F;),
indicating that the PUF is in transition to P;, the adversary is able to query the PUF.
In turn, if it is set to notrans then only the possessing party can query the PUF.

The PUF functionality Fpyr is indexed by the PUF parameters (79, dnoise, dmin, m)-PUF
and gets the security parameter A in unary encoding as additional input, see [3.3] It
is required to satisfy the bounded noise property for dpeise(A) and the unpredictability
property for (dmin(A),m(X)). This enforces that the outputs obey the basic entropic
requirements of PUFs (analogously to the requirement for the random oracle func-
tionality to produce random and independent outputs),see . We write Fpyr and
Fpur(79, dnoises dmin, M) interchangeably.

Also note that our definition requires that a PUF is somehow certified. That is, the
adversary cannot replace a PUF sent to an honest party by a fake token including some
“software emulation”; the adversary can only measure the PUF when in transition. The

receiver can verify the constitution and authenticity of the received hardware.

Note, as explained in Section we envision a non-programmable version of PUFs.
The functionality above, if used in the standard way within the hybrid model, would
be programmable, though, because the environment would not have direct access (even
if the PUF is in possession of the adversary). One way to enforce non-programmability
is to switch to the extended UC (EUC) model [Canetti et al., 2007] where all parties,

including the environment, share the above functionality. The PUF could then also

80



Fpur(79, dnoise;s dmin, M) receives as initial input a security parameter 1* and runs with
parties Py, ..., P, and adversary S.

e Whenever a party P; writes (initpyr, sid, P;) on the input tape of Fpyr then
Fpur checks whether £ already contains a tuple (sid, *, *, *, *):

* If this is the case then turn into the waiting state.
* Else, draw id <— Sample(1*) from the PUF-family. The functionality Fpyr puts
the following tuple in £: (sid,id, P;,*, notrans) and writes (initializedpyf, sid)
on the communication input tape of P;.
e Whenever a party P; writes (evalpyg, sid, P;, ¢) on Fpyg’s input tape then Fpyr
first checks, if there exists a tuple (sid,id, P;, notrans) in L:
* If this is not the case then turn into the waiting state.
x Else, run r < Eval(1%,id, ¢) and write (eval'edpyr, sid, ¢, 7) on P’s communi-
cation input tape.
e Whenever a party P, sends (handoverpyr,sid, P, P;) to Fpyr then Fpyr first
checks, if there exists a tuple (sid, *, P;, notrans) in L:
* If this is not the case then turn into the waiting state.
* Else, modify the tuple (sid,id,P;,notrans) to the updated tuple
(sid,id, L, trans(P;)). Write invokepyr(sid, P;, Pj) on S’s communication input
tape to indicate that a handoverpyr occurs between FP; and P;.
e Whenever the adversary writes (evalpyg, sid, S,¢) on the input tape of Fpyg
then Fpyr first checks, if £ contains a tuple (sid,id, L, trans(x)):
* If this is not the case then turn into the waiting state.
x Else, run r < Eval(1%,id, ¢) and return (eval’edpyf, sid, c,r) to S.
e Whenever the adversary writes (readypyp, sid,S) on Fpyg’s input tape then
Fpur searches for a tuple (sid,id, L, trans(P;)) in L:
* If such a tuple does not exist then turn into the waiting state.
* Else, modify the tuple (sid,id, L, trans(P;)) to the updated tuple
(sid,id, P, notrans). Write the message (handoverpyr,sid, P;) on P;’s commu-
nication input tape and store the tuple (receivedpyg, sid, F;).

e Whenever the adversary sends (receivedpyr, sid, P;) to Fpur, Fpur checks if
a tuple (receivedpyr, sid, P;) has been stored. If so, it writes this tuple to the
communication input tape of P;. Else, Fpyr turns into the waiting state.

Figure 5.2: The ideal functionality Fpyg for PUFs.

be evaluated by the environment in which case the simulator is informed about the

challenge and response.
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To simplify we linger within the basic UC framework and instead allow the environment
to dispatch special PUF queries to the adversary/simulator. This query needs to be
answered faithfully by forwarding it to a genuine PUF instance, and the response is
handed back to the environment. Put differently, we put some restrictions on the how

the simulator behaves, formally giving an UC-security proof, which would transfer to
the EUC model.

5.2.3 Non-Programmability of PUFs

For PUFs, another aspect is the intrinsic non-programmability of these tokens: Even
the manufacturer usually has no control over the functional behavior. Hence, the ability
of the ideal-world simulator to adapt the outcome of a PUF measurement adaptively,
as guaranteed when modeling the PUF through an ideal functionality in the hybrid
world, appears to be exceedingly optimistic. A similar observation has been made
by Nielsen |Nielsen, 2002] about the (non-)programmability of random oracles in the
UC framework. Roughly, Nielsen takes away the ability of the simulator to program
the random oracle by giving the environment direct access to the random oracle. To
support the argument in favor of non-programmable PUFs we also note that for random
oracles it is straightforward to program consistently given a partial view of the function
for other values, namely, by providing independent random values; for PUFs this is
less clear since one would need to take the (not necessarily efficiently computable)

conditional distribution of the specific PUF type into account.

We adopt Nielsen’s approach and augment the environment’s ability by giving it also
access to the concrete PUF instantiation used in a protocol. Unlike in the case of the
publicly available random oracle, though, the environment can only access this PUF
when it is in possession of the adversary, i.e., we assume that a PUF, once in possession
of the user, can only be accessed by this user. This approach corresponds to the case
that the user somewhat prevents further unauthorized access then. In a stronger ver-
sion one could also allow further “uncontrolled” interaction between the environment,
i.e., other protocols, and the PUF even then. This would somehow correspond to a
permanently shared PUF functionality in the GUC model [Canetti et al., 2007]. How-
ever, many advantages of deploying PUFs for designing efficient protocols would then
disappear. With the restriction on temporary access we can still devise efficient solu-

tions, e.g., circumventing impossibility results for UC commitment schemes in the plain

82



model |[Canetti and Fischlin, 2001] and for GUC commitment schemes in the common

reference string model [Canetti et al., 2007).

Note, in this thesis the discussion about non-programmability of PUFs is out of scope
and we refer the reader to the full version of [Brzuska et al., 2011b| for a comprehensive

discussion.

5.3 PUF-based Protocols in the UC Framework

We finally exemplify the usability of our PUF modeling by presenting PUF-based proto-
cols for three classical areas: oblivious transfer (OT), commitments, and key exchange.
Our protocols are UC-secure in the hybrid world (where we grant the environment
access to the PUF instantiation as described above), and typically require only a few
operations besides PUF evaluations. In particular, all protocols require only sending
one party a token in the first step. The protocols do not rely on additional cryptographic

assumptions, except for authenticated channels.

Designing PUF-based protocols is not just a matter of adopting other token-based
solutions. One reason is clearly the non-programmability property, which is usually
not stipulated for other tokens (cf. [Katz, 2007, [Goldwasser et al., 2008]). In fact, most
protocols take advantage of the ability to adapt the token’s outputs on the fly. But
more importantly, the main difference between PUFs and other tokens is that PUFs
are by nature even unpredictable for the manufacturer. It follows that only the party
in possession of the PUF has full access to the secrets; other parties may only draw
from a small set of previously sampled values. In comparison, for the wrapper tokens
[Katz, 2007], for example, the creator still knows the program placed inside the token,
and the token holder can fully access this program in a black-box way. Hence, both
parties somehow share a complete view of the secret. For PUFs the situation is rather

“asymmetric”.

Designing an UC-secure commitment scheme with the help of our PUFs turns out to
be quite challenging. The non-programmability of our PUFs inhibits equivocality, a
property, which allows to adapt committed values appropriately, and which is usu-
ally required for such commitments [Canetti and Fischlin, 2001]. We therefore use our

PUF-based oblivious transfer protocol to derive an UC-secure bit commitment scheme.
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Interestingly, while the standard construction of commitment schemes out of OT, see
[Crépeau, 1987] uses cut-and-choose techniques with a linear number of oblivious trans-
fers, our transformation does not add any significant overhead. It only needs a single
execution of the OT protocol and one extra message. We were not able to trace this
idea back to any previous work. A noteworthy aspect is that, while our OT protocol
only withstands static corruptions, our derived commitment scheme is secure in pres-
ence of adaptive corruptions. The reason is that for commitments, in contrast to OT,
the receiver does not obtain any external input; the values used in the OT sub protocol
are chosen internally. This facilitates the simulation of the receiver’s side. Hence, if
we use our transformation we derive an adaptively secure commitment protocol from a

concrete statically secure OT protocol!

Finally, our key exchange protocol follows the folklore approach of using essentially the
PUF to transport the key, only that our protocol is stated and formalized in the UC
framework. That is, the sender samples some challenge-response pairs, sends the PUF,
and later reveals a challenge to the receiver who recovers the image with the help of the
PUF. Both parties use the images as the key, after applying a fuzzy extractor for error
correction and smoothing the output. It is clear that for a key exchange protocol where
only one party sends a PUF, some additional, one-sided authentication mechanism is
required. Else the adversary with temporary access to the PUF could impersonate the

honest sender.

All our protocols allow re-using the PUF for multiple executions. By the unpredictable
nature of PUFs, however, it is clear that the number of executions must be fixed in
advance and must be known to the parties: The sender, once having sent the PUF,
cannot access the PUF anymore and must thus challenge the PUF before sufficiently
often, unless the PUF is frequently exchanged or further PUF tokens are sent. An
interesting feature of PUFs is that, unlike other hardware tokens (e.g., [Katz, 2007]),
protocols using PUFs are automatically secure against reset attacks because they im-

plement (noisy) functions.

5.4 Oblivious Transfer with PUFs

In a l-out-of-2 oblivious transfer (OT) protocol the sender possesses two secrets s, s

and the receiver holds a selection bit b € {0, 1}, thereby choosing one of the two secrets.
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A T-out-of-2 OT-protocol assures that at the end of the protocol execution, the receiver
learns the secret s,, but nothing about s;_;, and the sender does not learn anything
about the selection bit b.

Oblivious Transfer is a widely used cryptographic primitive for many cryptographic
applications [Kilian, 1988 [Crépeau, 1987, [Goldreich et al., 1987]. However, in many
of those applications a bottleneck of OT is the computational requirements since, for
instance, several public key operations are necessary. We here show how to avoid the
number of public key operations by adopting hardware. In the following, we recall the
oblivious transfer ideal functionality and then provide a PUF-based oblivious transfer

protocol.

As noted in the introduction, we envision a scenario in which the PUF is used multiple
times. In the plain UC model, however, a fresh PUF would need to be sent for each
OT execution. An alternative would be to switch to the joint-state theorem (JUC)
[Canetti and Rabin, 2003] for the UC framework. However, JUC applies a transforma-
tion to the original protocol, and if a single session of a PUF protocol requires to hand
over a PUF once, the JUC transformation would also require a handover per session.
Nothing would be gained. Thus, we define and analyze multi-session protocols instead

of the more common one-session protocols.

5.4.1 The Oblivious Transfer Ideal Functionality

1-out-of-2 oblivious transfer is an interaction between a sender P; and a receiver P;
where the environment Z provides P; with two inputs sy,s; and P; with an input bit
b. As soon as both parties provided their inputs (and the simulator S allows delivery),
the ideal functionality returns the secret s, to the receiver. The ideal functionality for
oblivious transfer Fot is given in Figure 5.3} We stress that this functionality only
supports static corruption and can be used a bounded number of times, and only by
the parties, which have exchanged the PUF.

5.4.2 PUF-based Oblivious Transfer Scheme

Our OT-protocol is based on a fuzzy extractor, a PUF, and an authenticated channel.

The participating parties use the unpredictability of the PUF to ensure that the sender
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Fot is parameterized by an integer N and receives as input a security parameter
1*, and runs with parties P, ..., P, and adversary S. The functionality initially sets
(n,S,R) = (1,1, 1).

In the following, the functionality ignores any input if n > N, or if n > 1 and
(S,R) # (P;, P;) for the parties’ identities (P;, P;) in the input. Else,
e Whenever P, writes (sendor,sid, ssid, P;, P}, (so,s1)) with sg,s; € {0,1}* U
{L} on For’s input tape, For stores (sendoT, sid, ssid, P;, P}, (so,s1)) and writes
(sendoT, sid, ssid, P, P;) to the communication input tape of S. The functionality
increments n to n + 1 and stores (S, R) = (P, ;) if n = 2 now.

e Whenever P; writes (chooseor, sid, ssid, [, P;, b) on the input tape of For, the
functionality Fot stores this tuple and writes (chooseor, sid, ssid, P;, P;) on the
input tape of S.

e When S writes (deliveror,sid,ssid, P;,P;) on For's input communi-
cation tape then For checks if tuples (sendor,sid,ssid, P;, P, (so,s1))
and (choosegr, sid, ssid, P, P;,b) have been stored. If so, write
(deliveror, sid, ssid, P, P}, sp) on the input communication tape of P;.

e When S writes (receiptyr, sid, ssid, P, P;) on Fot’s input communication tape
then For checks if the tuple (chooseor, sid, ssid, P, P;,b) has been stored. If so,
write (receiptyr, sid, ssid, F;, P;) on the input communication tape of P;.

Figure 5.3: The ideal functionality for oblivious transfer adapted from [Canetti, 2001].

remains oblivious about the selection bit b and the receiver only learns the secret s,. In
a setup phase, the receiver issues a PUF, measures the responses for a set of randomly
chosen challenges and stores the challenge/response pairs (¢, 7) in a list £. The PUF is

then given to the sender.

In Figure 5.4 we provide an oblivious transfer protocol. For simplicity of exposition, we
use the following notation. For a possibly empty set C we let dis(c,C) > dmin denote the
check that each element ¢; in C satisfies the bound dis(c, ¢;) > dmin. If not, we assume
that the corresponding party aborts. Also, when interacting with the PUF (functional-
ity), we simply write for example r < (evalpyf, sidy, P;, ¢) to denote the fact that, for a
call (evalpyg, sidy, P}, ¢) the functionality has replied with (eval’'edpyg, sidg, ¢, 7). Here,
sidg is the session identifier for Fpyg, as opposed to sid and ssid for the oblivious

transfer protocol. The OT-protocol now involves the following executions:

First Message In the beginning of each protocol execution, the sender randomly gen-

erates two values zg, z1 and sends the values to the receiver.
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Sender P session sid

Receiver P;

(handoverpyg, sidy, P;, P;)
%

(initpUF,SidOaPh)‘)
k=1,...,N: Ck<—{07 1}>\

i, < (evalpyr, sidy, P, cx)

C:=10 L= (c1,71, 0, CoT0)
C:=10
Repeat at most N times with fresh ssid
Input: Input:
so,s1 € {0,1}*, sid b e {0,1}, sid

send,uth, 8id, ssid, P;, P;, (zg, x
o, T1 <$; {O,l}A ( auth 7 /j ( 0 1))

(sendayth, sid, ssid, P, P;,v)

dis(v ® x9,C) > dmin ?
dis(v ® x1,C) > dmin ?
Add v ® zg, v® 1 to C
ry < (evalpyg, sidg, P, v & o)
ry < (evalpyg, sidg, P, v & 1)
(sto,po) < Gen(ry)

(st1,po) < Gen(r})

So := s P sto,

Sl =51 D Stl

(Sendautha Sj-d7 SSida Pi7 ]Dja (\507p07 Sl7p1)>

Draw (c,r) dr
Vi=CcPDay

d=cHrg®

dis(c,C) > dmin 7
dis(¢/,C) > dpmin ?
Add ¢, d to C
Delete (¢, r) from £

St;) < Rep(T, pb)
sp = Sp B sty

Figure 5.4: Oblivious transfer Scheme with PUFs.

Second Message The receiver takes its secret bit b and picks a challenge/response

pair (¢,r) from L. It sends the value v = ¢ @ x, to the sender—note that the

value x;, is statistically hidden, since c is a random string.

Third Message The sender generates two noisy responses r(, <— PUF(v®z,) = PUF(c®

xp @B xp) and r] < PUF(v @ z1) = PUF(c @ x, © 1) and ensures corresponding

noise-free values by computing (sto, po) < Gen(ry) and (st1,p;) < Gen(r}). Sub-

sequently, the sender masks its two secrets sy, s; by xoring sty, st;, and sends

So :=sp D sto, po, S1 := s1 D sty, p1 to the receiver.
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Fourth Message The receiver runs st, <— Rep(r,py) and simply computes s, as s, =
Sy, @ st,. with st = st,. The receiver cannot derive s;_, as with overwhelming
probability, he did not measure the PUF for challenge v & x1_;, or close challenge
values, due to the well-spread domain property, see Section [3.5.1]

We note that the protocol does not achieve perfect completeness, i.e., executions be-
tween honest parties may fail. The probability for this is negligible, though. This
follows straightforwardly again from the fact that the domain is well-spread: All (at
most polynomial) challenges are independent random values such that one is within
small distance of the others with negligible probability only. If all challenges are suffi-

ciently far apart, the receiver always obtains the correct value.

We now sketch the security arguments for the OT-protocol in Figure [5.4] At the end
of the OT protocol

1. a malicious sender learns nothing about the bit b and
2. a malicious receiver learns only the secret s, and remains oblivious about s;_,.

For case (1), the receiver chooses the challenge ¢ at random. Thus, v = ¢ @ x; hides
xp information-theoretically and thus also b. We now consider case (2). For simplicity,
assume that b = 0. Then, the sender shall remain oblivious about any information about
sy. If st; looks uniform to the sender, then s; is information-theoretically hidden. If the
fuzzy extractor and the PUF have matching parameters (see Definition[3.5.2), then with
overwhelming probability this is the case, as—due to the well-spread domain property
(see Section —the probability that the receiver queried the PUF on values ¢; with
disham (Ck, v @ 1) < dpmin is negligible, and the checks on the sender side about list £

provided that the sender does not reveal PUF responses to critical challenges.

Theorem 5.4.1. Assuming that (Gen, Rep) is a (m, ¢, t,€)-fuzzy generator, and PUF =
(Sample, Eval) is a PUF-family with matching parameters (see Definition , then
protocol PUFOT securely realizes the functionality Fot in the Fpyg-hybrid model.

Security holds in a statistical sense, i.e., the environment’s views in the two worlds are
statistically close. This remains true for unbounded algorithms A, S, and Z, as long as

the number of PUF evaluations is polynomial bounded.

Proof. As only static corruptions are considered, we can distinguish the simulation

depending on the corrupted parties being involved. Our simulator S runs a black-box
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simulation of adversary A, emulating the communication of honest parties with the lim-
ited information provided in the ideal model, and such that S can use the adversary to
reply to the environment. As explained, for non-programmability we consider restricted
simulators, which faithfully initialize a PUF and allow the environment straight access
when the PUF is in possession of the simulator. In the analysis below we analyze only

a single execution; the argument extends straightforwardly to the at most N runs.
Both parties are honest. First, we consider the case when both parties are honest:

e Whenever For writes (sendot, sid, ssid, F;, Pj) to the communication input
tape of § in the ideal world, then this message indicates in the real world
that Z wrote two secrets (sg,s;) to the communication input tape of P;. The
simulator S now draws two random values (sf,, s}) as fake secrets and writes
them to the local input tape of the simulated P; in the ideal world. The sim-
ulator S then chooses two random values xg, z; € {0,1}* as the real P; and
runs the P; algorithm, which will write (send,uh, sid, ssid, P;, P}, (zo, 1))

to the simulated copy of Fauth-

e If at some point, Fot outputs (chooseoT, sid, ssid, P, P;) , then S draws a
random bit b and writes it to the local input tape of the simulated copy of
the user P;.

e All participants, i.e., the simulated parties, Fpyr, and A might write on the
(simulated) input tapes of each other and are activated upon receiving input
to run according to their program. As long as they produce no local output,

S simply relays and activates its respective subroutines.

e If the receiver P; produces the local output s;, then S writes (delivergr, sid,
ssid, P, P;) on the input tape of For. If the sender P; locally outputs
receiptyr, then S writes on (receiptgr, sid, ssid, P;, P;) on the input tape of

Fot and is activated again to continue the simulation of the sender P;.

In the setup phase, A and Z had access to the PUF used in the protocol and may
make polynomially many measurements. We show that with high probability, for
the adversary A, the sequence of strings (zg, x1, ¢ ® s, So ® sto, 51 ® st1) looks like
a random 5-tuple of strings. Towards this goal, we are going to show that with

high probability, the five random variables corresponding to each of the entries are
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almost uniformly and independently distributed. As dependence is a symmetric
property, it suffices to show that no random variable depends on the previous
ones: xg and x; are drawn independently at random; ¢ @® x; is defined by drawing
¢ at random and then xoring it to x;; the distribution of ¢ ® x; is independent
from zg,z; and b. The well-spread domain property (see Section assures
that with overwhelming probability, the adversary did not query the PUF on
challenges closer than dp;, from xq ® ¢ ® xp, or 1 & ¢ P x,. Assume from now
on that this is indeed the case. Then, due to the well-spread domain property
(see Section [3.5.1)), the first outputs of Gen(r() and Gen(r}) are distributed almost
according to Uy. Even when observing the helper data, their statistical distance
from U, is at most €(\) and, thus, their statistical distance from distributions
corresponding other challenges (and other values (xq, z1,c @ x)) is at most 2¢(\)

and thereby negligible, which concludes the analysis.

Receiver is corrupt. We next consider the case where the sender P; is honest and the
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receiver P; is dishonest. The simulator S observes the dishonest receivers’ PUF
queries (made by A and Z) in the setup phase and stores the challenge-response
pairs in a list £. Those will later help the simulator to extract secret bits in the
protocol execution. The simulator also keeps an initially empty list of challenge

values C.

Whenever Fot writes (sendor, sid, ssid, P;, P;) on the input tape of S, then
the simulator S draws a pair of random values (zg, ;) from {0,1}* and sends
(sid, P, P;, (x0,21)) in the simulation. When A instructs the simulated P; to
send v to P; as in the real world, simulator first checks if dis(v @ z,C) > dmin
and dis(v @ x1,C) > dmin. If so, the simulator S checks for each (¢,r) € L,
if either the hamming distance of ¢ and v ® xg is smaller than d;,, or if the
hamming distance of ¢ and v & x; is smaller than dn;,. With overwhelming
probability, for a single challenge ¢, both cases cannot occur simultaneously, as
dis(c, v @B xg) < dmin and dis(c, v B x1) < dmin implies dis(v B xg, v D 1) < 2dmin and
dis(xo, 1) < 2dmin, but due to the well-spread domain property, the latter only
occurs in negligibly many cases. We established that for a single challenge, only
one of the statements can hold. We now show that with high probability, either
there are no challenges in L close to v @ xg, or there are none, which are close to
vxy. Assume, the adversary had non-negligible probability that there are ¢, ¢; in

his list of previously made queries to the PUF, such that dis(co, v ® o) < dmin and



dis(c1,v @ 1) < dmin. It follows that dis(co ® xo @ x1,¢1) < 2dmin, or, equivalently,
that dis(zg @ x1,c0 ® ¢1) < 2dmin- Now, x := xg @ 1 is a random value, which,
since A has at this point already made all queries, independent of any c-values,
which A has evaluated the PUF for. Thus, if A has non-negligible probability
of having chosen such two challenges ¢y and ¢;, then this must hold for a non-
negligible fraction of values x € {0,1}*. Let p()\) the number of challenges, the
adversary queried. Then, the sums of two different challenges ¢; and c; are at
most (p(;)) = 1p(A)(p(X) — 1), which is a negligible fraction of 2*. If we multiply
this number by the number of elements in a ball of radius 2d;,, then the property
still holds, as 2dm;, is still in o(A/log A). Hence, A cannot cover a non-negligible

number of values z.

If there only exist challenges ¢ with dispam(Zo,v @ ¢) < dmin, then set b := 0. If
there only exist challenges ¢ with dispam (21, v @ ¢) < dmin, then set b := 1. If no
such challenge exists, then draw b<—{0, 1} at random. The simulator S now sends
(sendauth, sid, ssid, P, P, v) in the simulation. Since P; is dishonest, S can now
write (chooseoT, sid, ssid, P;, P, b) on the input tape of For, and, upon receiving
the message (chooseoT, sid, ssid, P, P;), S writes (deliverot, sid, ssid, P;, ;) on
the input tape of For, which passes the message (deliveror, sid, ssid, P, P}, s})
to the corrupt user P; and consequently to the simulator S, which uses this
value to compute a simulated output for P;, which is controlled by A. The
simulator S picks a random value s;_,+{0,1}*. In response to the message
(send,uth, sid, ssid, P, P;, v), simulator uses the PUF and Gen to determine st,
po, st; and p;. The simulator S then passes (sendaum,sid,ssid, P, P, (so ®
sto, Po, S1 ® st1,p1)) to the simulated Fayeh.

We now demonstrate that the joint view of Z and A in the protocol execution is
indistinguishable from the joint view of Z and S (with the simulated A) in the
ideal world model. The only difference between the two executions is the final
message (o @ sto, po,s1 @ st1,p1) received by P;. The checks performed assure
that A did not query the PUF on any challenge with distance smaller than dp;,
from v @ x1_p. Thus, by response independence (see Section , st1_p is quasi
uniform even in the presence of p;_;. Thus, from the point of view of A, the value

(s1—p @ Sti_p, p1-p) is identically distributed for all values s;_,.

Sender is corrupt. We finally assume that the sender P; is dishonest and the receiver
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P; is honest. The simulator & will use its permanent PUF access to extract the
secrets (sp,s1) from the dishonest sender. We now describe the simulation in

detail: The simulator § waits for two conditions to be satisfied in arbitrary order:

e A instructs the malicious party P; to send (sid, ssid, P;, P;, (2o, 1)) in the

simulation.

e The ideal functionality Fot writes (choosegr, sid, ssid, P;, P;) on the input
tape of S.

If both conditions are fulfilled, then the simulator & draws a random string
v+{0,1}* and returns it to P;. When A instructs P; to send (sid, ssid, B, P;,
ao, Po, a1,p1) to Pj, then S extracts the secrets sg, s; as follows: The simulator
S evaluates the PUF on v @ z¢p and v @ x; to get responses ry and r1. It then
uses the helper data py, p1 and Rep to obtain sty and st;. If one of the two Rep
evaluation fails, then the corresponding value sy/s; is set to be the empty value
L. Else, they are set to be sy := st @ ag and s := st; @ a;. The S then writes
(sendor, sid, ssid, P, P}, (so,s1)) on the input tape of the ideal functionality For

and also instructs it with the message (deliveror, sid, ssid, B;, P;).

We now show that the simulation for the case that P; is dishonest is indistinguish-
able from the real world execution. This is the case (1) since in both worlds the
message received by P; is a uniformly random string; and (2) since the output of
P; is the same in both worlds’ executions. We elaborate on the latter: If P; has
input bit b = 0 then it would proceed as the simulator S did to compute sy. If P;

has input bit b = 1 then it would compute s; in the same way as the simulator S.
O

5.4.3 Oblivious Transfer with Sender-PUF

Our OT-protocol requires the receiver to send a PUF to the sender. Sometimes it
may be desirable to have the sender prepare the PUF, though. This can be achieved
by switching the roles of the sender and the receiver via the protocol by Wolf and
Waullschleger [Wolf and Wullschleger, 2006|, but at the expense of having to run linear
many OT executions for strings of length A. This is unavoidable since the receiver in an

OT-protocol just enters a bit such that, when acting as a sender, it can only transmit
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a single bit. In this protocol the sender of the outer OT-protocol acts as a receiver in
the inner OT-protocol, thus sending the PUF.

The protocol in [Wolf and Wullschleger, 2006| requires only a single round of additional
communication. It is UC-secure in the Fot-hybrid world and inherits the security prop-
erties (statistical vs. computational security, and adaptive vs. static corruptions). With
a linear overhead [Brassard et al., 1986] and another extra round of communication
one can then get an OT-protocol for strings, which is also UC-secure in the For-hybrid
world for bit-functionality Fot. The final protocol is now an UC-secure OT-protocol
for strings with linear many calls to For, a few extra rounds, and inheriting all security

characteristics from Fot.

5.5 PUF-based Commitment Scheme

A commitment scheme is a two-party protocol between a sender and a receiver where
the sender (also called committer) first sends a disguised version of the value to the
receiver such that, later, only this value can be revealed. More precisely, a commitment
scheme allows the committer to compute to a value msg a pair (com, decom) such that
com reveals nothing about the value msg but using the pair (com, decom) one can open
msg. Moreover it should be infeasible to find a value decom’ such that (com, decom’)

reveals msg’ # msg.

5.5.1 The Commitment Scheme Ideal Functionality

In the UC world, the commitment scheme is realized by the (bounded) functionality
Feom as follows: Feom receives an input (commit, sid, ssid, msg) from some committer
P, where msg is the value committed to. After verifying the validity of the session
identifier sid, F.om records the value msg. Subsequently, the functionality lets both
the receiver P; and the adversary S know that the committer has committed to some
value by computing a public delayed output (receipt, sid, ssid) and sending it to P,

(this phase is called the commitment phase).
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To initiate the decommitment phase, the committer P; sends (open,sid, ssid) to the
functionality Feom. Thereupon, Feom checks if there exists a value msg; if so, the func-
tionality computes a public delayed output (open, sid, ssid, msg) and sends it to F;.
When the adversary corrupts the committer by sending (corrupt — committer, sid, ssid)
to Feom, the functionality reveals the recorded value msg to the adversary S. Further-
more, if the receipt value was not yet delivered to P;, then Fc,n allows the adversary
modifying the committed value. This is in order to deal with adaptive corruptions. The

ideal functionality for commitment schemes F.,, is given in Figure [5.5

Feom is parameterized by an integer NV and runs with parties F;, P;, and adversary
S. It initially sets (n, S, R) = (1, L, 1).

The functionality ignores any commit-input if n > N, orif n > 1 and (S, R) # (P, P))
for the parties’ identities in the input. Else,
e Upon receiving input (commit, sid, ssid, P, P;, msg) from party P;, Feom pPro-
ceeds as follows:

* Records msg, generate a publicly delayed output (receipt, sid, ssid), and send
the output to P;. Increment n to n+ 1 and store (S, R) = (B;, P;) if now n = 2.

e Upon receiving input (open, sid, ssid) from party P;, Feom proceeds as follows:
* If a wvalue msg 1is recorded, generate a publicly delayed output
(open, sid, ssid, msg) and send it to P;.

* Otherwise, do nothing.

e Upon receiving the input (corrupt — committer, sid, ssid) from the adversary S,
Feom proceeds as follows:

* Send the value msg to S.

* If S provides a value msg’ and the receipt output was not yet written on P;’s
tape, then S can change the recorded value to msg'.

Figure 5.5: The ideal functionality for commitment schemes adapted from |[Canetti, 2001].

5.5.2 PUF-based Commitment Scheme

We now provide a universal transformation from OT-protocols to bit commitment
schemes, which—to our knowledge—has not been considered so far. Previous transfor-
mations [Kilian, 1988 [Crépeau, 1987 rely on cut-and-choose and require linear many

executions of the OT-protocol. Our transformation only requires a single additional
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message to be sent after executing the OT-protocol. The main idea of the protocol
in Figure is to inverse the roles of the sender and the receiver. The OT-protocol
transfers two secrets, and the committer only learns one of them, namely the one cor-

responding to its secret bit b. This secret is then used to open the commitment.

As mentioned above the main idea is to inverse the roles of the sender and the receiver.
The commitment protocol uses the OT-protocol as a building block or, more precisely,
since we work in the UC framework, the corresponding ideal OT-functionality. Consider
a commitment scheme with OT-sender P; and OT-receiver P;. Then, P; is the committer
and has a secret bit b, which it submits to the OT-functionality. The receiver P,
draws two sufficiently long random strings sg and s;, which it submits to the OT-
functionality. The OT-functionality then provides P; with the secret s,. This terminates

the commitment phase.

In the opening phase, the committer P; sends the pair (b, s,). The receiver P, then checks
whether s, matches the b-th secret. The protocol is binding, as the OT-functionality
does not allow to modify the secret bit b and the secret s;_; is statistically hidden from
P;. Thus, P; can determine s;_; only with negligible probability. The protocol is hiding,

as the OT-functionality does not reveal information about the bit b to P;.

We now provide a formal description and analysis of the above transformation:

Sender P, session sid Receiver P;
J

Repeat at most IV times with fresh ssid:

(chooseot, b) (receipto, b)
For

Input: b € {0,1} > Output: receipt

(sendoT, (s0,51))

(deliveror,sp)

$
vi=s, Draw sg,s; < {0, 1}*

(sendayth, sid, ssid, b, v)
Input: open v==sp 7

Output: b

Figure 5.6: Commitment scheme with For.

Theorem 5.5.1. The commitment protocol in Figure[5.0 securely UC-realizes the func-
tionality Feom tn the Fot-hybrid model.
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If functionality Fot is replaced by some OT-protocol, then the derived commitment
protocol basically inherits the characteristics of the OT-protocol. That is, it is secure
against adaptive corruptions if OT is, and it is statistically secure if OT is. Remarkably,
we show in the next section that our PUF-based OT-protocol, while being only statically

secure, makes the commitment scheme even adaptively secure.

We merely provide a proof sketch for Theorem here. Note that in the case where
both users are honest, only the modeling of the final message needs to be taken into
consideration. The simulator learns the secret bit b from the commitment functionality
Feom- It then draws a random string v from {0, 1}* and sends (send.h, sid, ssid, b, v).
If the receiver is dishonest, then it provides Fot with two secrets sy, s;. The simulator
lets the sender provide a random bit & to the simulated Fot. It receives back the
secret sp. In the opening phase, S learns the (real) secret bit b from the commitment
functionality and simulates the final protocol message as (sendaun, sid, ssid, b,s;). If
the sender is corrupt then it provides the simulated Fot with a secret bit b. The
simulator creates two random strings syp,s; and passes them to the simulated For,
which passes s, to the receiver. The simulator commits to the sender’s bit b in the ideal
world. If the sender sends a message (sendayh, sid, ssid, b, v) then S checks if s, = v.

If so, it instructs Fom to open the commitment.

All simulations are perfect.

5.5.3 Adaptively Secure Commitments

Consider the concrete commitment protocol where we plug in our OT-protocol from the
previous section into the abstract scheme above (and work in the Fpyg-hybrid model
instead of the Fot-hybrid model then), then we observe the following: In the commit-
ment phase (i.e., the OT-phase), the message sent by the OT-receiver (=commitment
sender) is statistically independent from its secret input: the OT-receiver merely sends

a single uniformly random message.

For the OT-sender, this is not the case: When having access to the PUF, one can extract
both secrets from the mere transcript of the protocol. This enables the simulator S to
derive both secrets from the protocol, as it accesses the PUF. It can thus provide the

simulated committer with open messages for both bit values. As the remaining part
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of the committer’s state merely consists in challenge-response-pairs, the simulator can

thus provide genuine internal state.

5.6 Key Exchange with PUFs

In a key exchange (ke) protocol two parties interact over an insecure network to establish
a common secret key x. This common secret key can then be used to build a secure

channel or to ensure confidentiality of transmitted data.

5.6.1 The Key Exchange Ideal Functionality

The main idea of the key exchange ideal functionality Fi. is the following: if both parties
are honest, the functionality provides them with a common random value, which is
invisible to the adversary. If one of them is corrupted, though, the adversary determines
the session key entirely thus modeling the participation of a corrupted party. The
definition of the key exchange functionality Fy. is depicted in Figure adapted from
[Canetti and Krawczyk, 2002].

5.6.2 Minimal Requirements

We present a key exchange protocol in Section [5.6.3] which sends a PUF in a setup
phase. Afterwards, a single message per protocol execution is sent via a unidirectional
authenticated channel. As mentioned in the introduction, it is desirable to circum-
vent the use of complexity-theoretic assumptions. However, for practical reasons, PUF
transfers should also be minimized. If only a single PUF transfer occurs, then the as-
sumption of a unidirectional authenticated channel cannot be dropped: The sender of
the PUF measured the PUF several times and sent it to the receiver. The adversary
can query the PUF during its transition. If the sender does not have any further secret
information for authentication, then the adversary can carry out the same computa-
tions as the sender. Thus, without an additional authenticated channel, the protocol
cannot be secure against impersonation attacks. In the following, we use the standard
bidirectional F,u, functionality. Deriving corresponding unidirectional definitions is
straightforward.
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Fie is parameterized by an integer N and receives as input a security parameter 1%,
and runs with parties P, ..., P, and adversary S. Fi. obtains a list of corrupt parties.
It initially sets (n,S, R) = (1, L, 1).

Ignore any establish — sessionye-input if n > N, or if n > 1 and (S5, R) # (P, P;) for
the parties’ identities in the input. Else,

o (establish — sessiony, sid, ssid, P, P;) is written on Fi's input tape by a
party FP,. Then F. stores the tuple (establish — session,sid,ssid, P, F;)
(and refuses if there already is a tuple (establish — sessiony, sid, ssid, P;, P;)
or a tuple (establish — session, sid, ssid, P;, P})). Fre outputs
(establish — sessionye, sid, ssid, P, P;) to the adversary S. If both users are
honest then draw a random value x from {0,1}* and store the messages
(deliverye, sid, ssid, k, I;) and (delivere, sid, ssid, , P;). Increment n to n + 1.

e When S writes (choose — valuey, sid, ssid, P, P;, k) on Fi.'s input tape then
check whether there is a message (establish — sessiony, sid, ssid, P;, P;) or a mes-
sage (establish — sessiony., sid, ssid, P;, ;) and whether at least one of the users
P, and P; is corrupt. If so, store the messages (deliver,e,sid, ssid,, P;) and
(deliverye, sid, ssid, k, P}).

e S writes (delivery, sid, ssid, P;) on Fi’s input communication tape. Check if
a tuple (deliver,e, sid, ssid, k, F;) is stored. If so, write (delivery, sid, ssid, k, P;)
to P;’s input tape and delete (deliver,e, sid, ssid, k, P;). Else, do nothing.

Figure 5.7: The key exchange ideal functionality adapted from [Canetti and Krawczyk, 2002].
5.6.3 PUF-based Key Exchange Scheme

Intuitively, our key exchange protocol proceeds as follows. In an enrollment phase, a
server issues a PUF, measures for a set of randomly chosen challenges the correspond-
ing responses, and finally ensures a noisy-free PUF measurement by generating for each
response 1 a fuzzy extractor secret st from a set of random secrets as well as a corre-
sponding helper data p. The server then sends the PUF to the client. Upon finishing
the enrollment phase the server broadcasts a randomly chosen challenge ¢ including
its helper data p to the client and sets k = st to obtain the protocol key. The client
evaluates the PUF on the challenge ¢, computes the corresponding fuzzy secret st due
to the helper data p, and obtains the protocol key by setting x = st. Consequently,

both parties use the fuzzy extractor secret st as their common protocol key k.

Theorem 5.6.1. Protocol PUFKE securely realizes functionality Fie in the Fpyg-hybrid
model.
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Server P; Client P;

(initpUF, sid, P;, /\)
Repeat N times:

T < (evalpUF, sid, B;, C)
(st,p) < Gen(r)

add (c,r, st,p) to L
(handoverpyr, sid, P, P))
T

Repeat at most N times

pick (¢, r, st,p)«L

send,n, 8id, ssid, P;, (c,
remove the entry from £ ( R (c.p)) ' < (evalpyr, sid, P, ¢)

Output: k = st st < Rep(r’, p)
Output: k = st

Figure 5.8: PUF-based key exchange scheme.

Proof. Throughout all simulations, queries to PUFs are genuinely relayed to the &’s
PUF functionality, and the PUF’s answer is honestly delivered to the querying party.

Both parties are honest. Whenever the key exchange functionality F. sends message
(establish — sessiony,, sid, ssid, P;, P;) for the first time, the S initiates a PUF and
queries it on N random challenges ¢y, ..., ¢y to obtain responses rq, ..., 7y. It then
computes (st;, p;) < Gen(r;), and stores all tuples (c¢;, r;, st;, p;) in a list £. The
simulator S then simulates a handoverpyr and lets the adversary query the PUF,
until the adversary terminates the transition phase. S sets the counter n to 1 and
continues with the simulation of the first session. This concludes the simulation

of the setup phase.

On receiving a message (establish — sessiony, sid, ssid, F;, P;), the simulator S
increases the counter n by one and sends (deliver,e, sid, ssid, P;) to Fi. The
party P; then writes the key on its local output tape and § is activated again.
It simulates that P, sends the message (sendaun, sid,ssid, (¢,,p,)). When the
adversary instructs to deliver the latter message to P;, then the simulator S
sends (deliverye, sid, ssid, P;, P;j) t0 Fie.
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Analysis of the simulation: Due to the well-spread domain property, with over-
whelming probability, the adversary did not query the PUF on values closer than
dmin to one of the challenges ¢;. By response independence, the message (¢, py,) is

then statistically independent from the value st. Hence, the simulation is sound.

Receiver is corrupt. The simulation of the setup phase is as in the honest case.

On receiving a message (establish — sessiony, sid, ssid, P;, Pj), the simulator S
increases the counter n by one and writes (choose — valuey, sid, ssid, P;, P}, st,,)
on Fi’s input tape. It is activated again and writes (delivery, sid, ssid, F;) to
Fre- The party P; then writes the key on its local output tape and § is acti-
vated again. It simulates that P; sends (send,uw, sid, ssid, (¢,,p,)). When the
adversary instructs to deliver the latter message to P;, then the simulator S sends

deliver,e, sid, ssid, P;, P;) to Fi. The simulation is perfect.
J

Sender is corrupt. The S allows the malicious user P; to instantiate an arbitrary
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number of PUFs. The receiver only accepts a single handoverpyr. When the
adversary instructs to deliver a message (sendau,sid,ssid,(c,p)) to P;, then
the S evaluates the PUF on ¢ to obtain response r and computes st <— Rep(r, p).
The S lets the corrupt dummy user P; write the message (establish — sessionye,
sid, ssid, P, P;) on the input tape of Fy. and subsequently passes the messages
(choose — valueye, sid, ssid, P, Pj, st) and (delivery, sid, ssid, P;) to Fi. The

simulation is perfect. U



6 Conclusion

In this thesis, we presented different approaches to build cryptographic primitives and
protocols based on Physically Uncloneable Functions. After analyzing existing PUF
implementations and applications, we cryptographically formalized PUFs by proposing

an appropriate PUF model.

Moreover, we investigated the security of PUF-based protocols in the stand-alone set-
ting. Our results showed that known constructions are not fully secure if attackers
have raw access to the PUF for a short period of time. We therefore proposed a new,
stronger, and more realistic attacker model. Subsequently, we suggested two construc-
tions of authentication protocols, which are secure against physical attackers in the new

model and which only need symmetric primitives.

Finally, we analyzed PUFs in the UC framework for the first time. It turns out that
designing PUF-based protocols is fundamentally different from designing protocols for
other hardware tokens: One reason is the non-programmability of PUFs. Another
reason is that the functional behavior a PUF is unpredictable even for its creator,
which causes an asymmetric situation in which only the party in possession of the
PUF has full access to the secrets. Using our UC notion of PUFs, we then devised
efficient UC-secure protocols for basic tasks like oblivious transfer, commitments, and

key exchange.

Future Directions Although the idea of Physically Uncloneable Functions has already
existed for a couple of years (since 2001), it is still a young research field in the context
of physical cryptography and security. This dissertation provides a solid foundation for
future work in the field of PUFs. One open problem in the area is the following:
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Our modeling of PUFs in the UC case is comprehensive enough to cover different PUF
types which are based on different technologies. However, our UC protocols with-
standing temporary adversarial access require that the challenge space of the PUF is
super-polynomial. If this would be not the case the adversary could perform a full read-
out of the PUF. From a technological point of view, currently only optical PUFs satisfy
this property. To broaden the set of admissible PUFs one could develop methods to
enlarge the challenge space for PUFs, either by technological means or algorithmically
via domain extensions. In this case, our ideas can be applied as well, but at the cost of

efficiency, essentially increasing the number of PUF tokens to be used.
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