
A User Centric Security Model for

Tamper-Resistant Devices

Raja Naeem Akram

Thesis submitted to the University of London
for the degree of Doctor of Philosophy

Information Security Group
Department of Mathematics

Royal Holloway, University of London

2012

To my father,

Raja Muhammad Akram

Declaration

These doctoral studies were conducted under the supervision of Dr. Konstantinos Markan-
tonakis.

The work presented in this thesis is the result of original research carried out by myself, in
collaboration with others, whilst enrolled in the Department of Mathematics as a candidate
for the degree of Doctor of Philosophy. This work has not been submitted for any other
degree or award in any other university or educational establishment.

Raja Naeem Akram
January, 2012

3

Publications

A number of papers resulting from this work have been presented in refereed conferences.

R. N. Akram, K. Markantonakis, and K. Mayes, �Application Management Framework in
User Centric Smart Card Ownership Model,� in The 10th International Workshop on
Information Security Applications (WISA09), ser. LNCS, H. Y. Youm and M. Yung,
Eds., vol. 5932/2009. Busan, Korea: Springer, August 2009.

R. N. Akram, K. Markantonakis, and K. Mayes, �Location Based Application Availability,�
in On the Move to Meaningful Internet Systems: OTM 2009 Workshops, ser. LNCS,
R. Meersman, P. Herrero, and T. Dillon, Eds., vol. 5872/2009. Vilamoura, Portugal:
Springer, November 2009.

R. N. Akram, K. Markantonakis, and K. Mayes, �A Paradigm Shift in Smart Card Own-
ership Model,� in Proceedings of the 2010 International Conference on Computational
Science and Its Applications (ICCSA 2010), B. O. Apduhan, O. Gervasi, A. Iglesias, D.
Taniar, and M. Gavrilova, Eds. Fukuoka, Japan: IEEE Computer Society, March 2010.

R. N. Akram, K. Markantonakis, and K. Mayes, �Firewall Mechanism in a User Centric
Smart Card Ownership Model,� in Smart Card Research and Advanced Application, 9th
IFIP WG 8.8/11.2 International Conference, CARDIS 2010, ser. LNCS, D. Gollmann,
J.-L. Lanet, and J. Iguchi-Cartigny, Eds., vol. 6035/2010. Passau, Germany: Springer,
April 2010.

R. N. Akram, K. Markantonakis, and K. Mayes, �A Dynamic and Ubiquitous Smart Card
Security Assurance and Validation Mechanism,� in 25th IFIP International Informa-
tion Security Conference (SEC 2010), ser. IFIP AICT Series, K. Rannenberg and V.
Varadharajan, Eds. Brisbane, Australia: Springer, September 2010.

R. N. Akram, K. Markantonakis, and K. Mayes, �Simulator Problem in User Centric Smart
Card Ownership Model,� in 6th IEEE/IFIP International Symposium on Trusted Com-
puting and Communications (TrustCom-10), H. Y. Tang and X. Fu, Eds. HongKong,
China: IEEE Computer Society, December 2010.

R. N. Akram, K. Markantonakis, and K. Mayes, �Application-Binding Protocol in the
User Centric Smart Card Ownership Model,� in the 16th Australasian Conference on
Information Security and Privacy (ACISP), ser. LNCS, U. Parampalli and P. Hawkes,
Eds. Melbourne, Australia: Springer, July 2011.

R. N. Akram, K. Markantonakis, and K. Mayes, �User Centric Security Model for Tamper-
Resistant Devices,� in 8th IEEE International Conference on e-Business Engineering
(ICEBE 2011), J. Li and J.-Y. Chung, Eds. Beijing, China: IEEE Computer Science,
October 2011.

4

R. N. Akram, K. Markantonakis, and K. Mayes, �Cross-Platform Application Sharing
Mechanism,� in 10th IEEE International Conference on Trust, Security and Privacy in
Computing and Communications (IEEE TrustCom-11), H. Wang, S. R. Tate, and Y.
Xiang, Eds. Changsha, China: IEEE Computer Science, November 2011.

R. N. Akram, K. Markantonakis, and K. Mayes, "Pseudorandom Number Generation
in Smart Cards: An Implementation, Performance and Randomness Analysis", in 5th
International Conference on New Technologies, Mobility and Security (NTMS), Antonio
Mana, and Marek Klonowski, eds., Istanbul, Turkey, IEEE Computer Science, May 2012.

R. N. Akram, K. Markantonakis, and K. Mayes, �A Privacy Preserving Application Acqui-
sition Protocol,� in 11th IEEE International Conference on Trust, Security and Privacy
in Computing and Communications (IEEE TrustCom-12), Geyong Min, Felix Gomez
Marmol, Eds. Liverpool, United Kingdom: IEEE Computer Science, June 2012.

5

Acknowledgements

This thesis would not have been possible without the guidance, support, and encourage-
ment of a number of people.

My initial and foremost thanks go to my supervisors Dr. Konstantinos Markantonakis
and Prof. Keith Mayes. I am especially thankful to Dr. Markantonakis for his support,
interest, patience, and guidance throughout my Masters and Doctoral studies at Royal
Holloway. During my Ph.D studies, in the very �rst meeting with Dr. Markantonakis, he
told me that a Ph.D is a life-changing experience and I should take it as such. This came
true in many ways � not just restricted to academic aspects.

I would like to o�er my gratitude to Sheila Osborn, Hisham Abbasi, and Gerhard Hancke
for excellent reviews of my early draft of the thesis. Any remaining mistakes are due solely
to my negligence and omission.

During my stay at Royal Holloway, I met wonderful people who not only inspired me
academically but also personally. No doubt they have left their mark on my personal-
ity. Among these remarkable people, I thank Alam Hussain, Babur Mahmood, Salman
Bashir, Takreem Anwar, Hassan Sher, Xuefei Leng, Yasir Abbasi, Abdul Qaddoos, Fahad
Mehmood, and Kashif Munir. I would also like to convey my thanks to Kashif Riaz, with-
out whom I may not have developed an interest in computer science and would have lost
my way ages ago.

I would like to thank Min Chen for the support, encouragement, and sense of exploration
she instilled in me. I thank her for reviewing my early drafts that had gigantic proportion
of mistakes, but she still corrected them with a smile. I would also like to thank Qianqian
Tang, Nhung Nguyen, Margaret Ronia, Jie Lie, Sun Beilei, and Olive Cheung.

I want to convey my deepest respect and appreciation for my uncle Raja Muhammad
Azam for his tireless help, teaching, and support. I thank him for developing my interest
in mathematics and engineering along with making me an inquisitive person. I would like
to pay tribute to my late father Raja Muhammad Akram for his encouragement, training,
and guidance. I would also like to thank my late brother Raja Qaiser Mehmood for his
ever-present support and for giving me lot of cherished memories.

Finally, I could not have reached at this place without the support and help of my brother
Raja Nadeem Ashraf and my mom. Without my brother's support I would have completed
my M.Sc at Royal Holloway, and may not have got the opportunity to do a Ph.D with Dr.
Markantonakis. I am thankful to both of you for the opportunities you have created for
me and patience you have shown for my transgressions.

6

Abstract

In this thesis we propose a design for a ubiquitous and interoperable device based on the
smart card architecture to meet the challenges of privacy, trust, and security for traditional
and emerging technologies like personal computers, smart phones and tablets. Such a de-
vice is referred a User Centric Tamper-Resistant Device (UCTD). To support the smart
card architecture for the UCTD initiative, we propose the delegation of smart card owner-
ship from a centralised authority (i.e. the card issuer) to users. This delegation mandated
a review of existing smart card mechanisms and their proposals for modi�cations/improve-
ments to their operation.

Since the inception of smart card technology, the dominant ownership model in the smart
card industry has been refer to as the Issuer Centric Smart Card Ownership Model (ICOM).
The ICOM has no doubt played a pivotal role in the proliferation of the technology into
various segments of modern life. However, it has been a barrier to the convergence of
di�erent services on a smart card. In addition, it might be considered as a hurdle to the
adaption of smart card technology into a general-purpose security device.

To avoid these issues, we propose citizen ownership of smart cards, referred as the User
Centric Smart Card Ownership Model (UCOM). Contrary to the ICOM, it gives the power
of decision to install or delete an application on a smart card to its user. The ownership of
corresponding applications remains with their respective application providers along with
the choice to lease their application to a card or not. In addition, based on the UCOM
framework, we also proposed the Coopetitive Architecture for Smart Cards (CASC) that
merges the centralised control of card issuers with the provision of application choice to
the card user.

In the core of the thesis, we analyse the suitability of the existing smart card architectures
for the UCOM. This leads to the proposal of three major contributions spanning the smart
card architecture, the application management framework, and the execution environment.
Furthermore, we propose protocols for the application installation mechanism and the
application sharing mechanism (i.e. smart card �rewall). In addition to this, we propose
a framework for backing-up, migrating, and restoring the smart card contents.

Finally, we provide the test implementation results of the proposed protocols along with
their performance measures. The protocols are then compared in terms of features and
performance with existing smart cards and internet protocols. In order to provide a more
detailed analysis of proposed protocols and for the sake of completeness, we performed
mechanical formal analysis using the CasperFDR.

7

Contents

1 Introduction 18
1.1 Setting the Scene . 19
1.2 A Brief History of Smart Cards . 19
1.3 Motivation and Challenges . 23
1.4 Contributions . 26
1.5 Structure of the Thesis . 28

2 User Centric Tamper-Resistant Device 31
2.1 Introduction . 32
2.2 Rationale for a User Centric Tamper-Resistant Device 32

2.2.1 Smart Card Environment . 33
2.2.2 Hand-held Devices . 35
2.2.3 Traditional Computing Devices . 36

2.3 Candidates for User Centric Tamper-Resistant Device 36
2.3.1 Trusted Platform Module . 37
2.3.2 AEGIS . 37
2.3.3 ARM TrustZone . 38
2.3.4 M-Shield . 38
2.3.5 GlobalPlatform Trusted Execution Environment (TEE) 39
2.3.6 Trusted Personal Devices . 39
2.3.7 Comparative Analysis . 39

2.4 The User Centric Tamper-Resistant Device 43
2.4.1 Smart Card Management Initiatives 44
2.4.2 User Centricity in the Smart Card Industry 45

2.5 Case Studies . 47
2.5.1 One Card - All Services . 47
2.5.2 Authentication Gateway (Single Sign On) 48
2.5.3 E-Commerce . 48
2.5.4 Online Gaming . 49

2.6 Summary . 50

3 Smart Card Ownership Models 51
3.1 Introduction . 52
3.2 Issuer Centric Smart Card Ownership Model (ICOM) 53

3.2.1 Advantages of the ICOM . 55
3.2.2 Drawbacks of the ICOM . 56

3.3 Frameworks for the ICOM . 57
3.3.1 Multos . 58
3.3.2 Java Card . 59
3.3.3 GlobalPlatform . 61
3.3.4 Other Proposals . 63

3.4 User Centric Smart Card Ownership Model (UCOM) 65

8

CONTENTS

3.4.1 Supplier . 67
3.4.2 Cardholder . 67
3.4.3 User Centric Smart Card (UCSC) 67
3.4.4 Card Application Management Software (CAMS) 68
3.4.5 Host Device . 68
3.4.6 Service Provider (SP) . 68
3.4.7 Service Access Point (SAP) . 70

3.5 Security and Operational Requirements of the UCOM 70
3.5.1 General Requirements . 70
3.5.2 Cardholder's Requirements . 72
3.5.3 User Centric Smart Card's Requirements 73
3.5.4 Service Provider's Requirements . 74

3.6 Coopetitive Architecture . 76
3.7 Summary . 78

4 User Centric Smart Card Architecture 79
4.1 Introduction . 80
4.2 Platform Architecture . 80

4.2.1 Spaces . 81
4.2.2 Card Security Manager . 82
4.2.3 Card Services Manager . 83
4.2.4 Cardholder's Security Manager . 84
4.2.5 Subscription Manager . 84

4.3 Trusted Environment & Execution Manager 85
4.3.1 Interface . 86
4.3.2 Backup Token Handler . 86
4.3.3 Runtime Security Manager . 87
4.3.4 Attestation Handler . 87
4.3.5 Self-test Manager . 88

4.4 Security Assurance and Validation Mechanism 90
4.4.1 Common Criteria . 90
4.4.2 Assurance Phase . 91
4.4.3 Validation Phase . 92

4.5 Attestation Mechanisms . 93
4.5.1 Non-simulatable PUFs . 93
4.5.2 Pseudorandom Number Generator 95
4.5.3 Challenge-Response Pair Generation 98

4.6 Device Ownership . 98
4.6.1 Administrative Ownership . 98
4.6.2 User Ownership . 99
4.6.3 Ownership Acquisition & Delegation 99
4.6.4 Key Generation . 100

4.7 Attestation Protocol . 101
4.7.1 Protocol Prerequisites . 101
4.7.2 Protocol Goals . 102
4.7.3 Intruder's Capabilities . 102
4.7.4 Protocol Notation and Terminology 103
4.7.5 Protocol Description . 104

4.8 Protocol Analysis . 106
4.8.1 Informal Analysis . 106

9

CONTENTS

4.8.2 Protocol Veri�cation by CasperFDR 106
4.8.3 Implementation Results & Performance Measurements 107
4.8.4 Related Work . 108

4.9 Summary . 109

5 Smart Card Management Architecture 110
5.1 Introduction . 111
5.2 GlobalPlatform Card Management Framework 112

5.2.1 Architecture Overview . 112
5.2.2 Support for Trusted Service Manager Architecture 113

5.3 Multos Card Management Framework . 114
5.3.1 Architecture Overview . 114
5.3.2 Support for Trusted Service Manager Architecture 115

5.4 Proposed Smart Card Management Framework 116
5.4.1 Administrative Management Architecture 116
5.4.2 User Management Architecture . 117
5.4.3 Types of Application Leases . 118
5.4.4 Possible Relationships between a Cardholder and an SP 119
5.4.5 Application Installation . 119
5.4.6 Application Deletion . 121

5.5 Card Management-Related Issues . 121
5.5.1 Simulator Problem . 121
5.5.2 User Ownership Issues . 123
5.5.3 Parasite Application Problem . 125

5.6 Summary . 126

6 Secure and Trusted Channel Protocol 127
6.1 Introduction . 128
6.2 Secure Channel Protocols . 129

6.2.1 Rationale . 129
6.2.2 Related Work . 130
6.2.3 Minimum Security and Operational Goals 131
6.2.4 Protocol Notation and Terminology 133
6.2.5 Pre-protocol Process . 135
6.2.6 Protocol Assumptions . 135

6.3 Secure and Trusted Channel Protocol � Service Provider 136
6.3.1 Protocol Prerequisites . 136
6.3.2 Protocol Description . 136

6.4 Secure and Trusted Channel Protocol � Smart Card 139
6.4.1 Protocol Description . 139

6.5 Application Acquisition and Contractual Agreement Protocol 141
6.5.1 Enrolment Phase . 141
6.5.2 Protocol Prerequisites . 142
6.5.3 Protocol Description . 142

6.6 Analysis of the Proposed Protocols . 146
6.6.1 Informal Analysis of the Proposed Protocols 146
6.6.2 CasperFDR Analysis of the Proposed Protocols 151
6.6.3 Revisiting the Requirements and Goals 152
6.6.4 Implementation Results and Performance Measurements 154

6.7 Summary . 155

10

CONTENTS

7 Application Sharing Mechanisms 157
7.1 Introduction . 158
7.2 Application Sharing Mechanism . 159

7.2.1 Firewall Mechanism in Java Card . 159
7.2.2 Firewall Mechanism in Multos . 160
7.2.3 Rationale for User Centric Smart Card Firewall 161

7.3 UCTD Firewall . 165
7.3.1 Firewall Architecture . 165
7.3.2 Application Binding . 166
7.3.3 Using Shareable Resources . 167
7.3.4 Privilege Modi�cation . 168
7.3.5 Application-Platform Communication 168
7.3.6 Cross-Device Application Sharing . 169
7.3.7 Minimum Goals and Requirements for the Proposed Protocols 171
7.3.8 Protocol Notation and Terminology 173
7.3.9 Enrolment Process . 173

7.4 Application Binding Protocol � Local . 174
7.4.1 Protocol Prerequisites . 174
7.4.2 Protocol Description . 175

7.5 Platform Binding Protocol . 176
7.5.1 Protocol Prerequisite . 176
7.5.2 Protocol Description . 176

7.6 Application Binding Protocol � Distributed 178
7.6.1 Protocol Prerequisite . 179
7.6.2 Protocol Description . 179

7.7 Analysis of the Proposed Protocols . 181
7.7.1 Informal Analysis of the Proposed Protocols 181
7.7.2 Revisiting the Requirements and Goals 182
7.7.3 CasperFDR Analysis of the Proposed Protocols 184
7.7.4 Implementation Results and Performance Measurements 184

7.8 Summary . 186

8 Smart Card Runtime Environment 187
8.1 Introduction . 188
8.2 Smart Card Runtime Environment . 189

8.2.1 Java Card Virtual Machine . 189
8.2.2 Related Work . 192

8.3 Runtime Protection Mechanism . 194
8.3.1 Motivation . 194
8.3.2 Attacker's Capability . 196
8.3.3 Overview of the Runtime Protection Mechanism 197
8.3.4 Application Compilation . 198
8.3.5 Execution Environment . 199
8.3.6 Runtime Security Manager . 199
8.3.7 Runtime Security Counter-Measures 200

8.4 Analysis of the Runtime Protection Mechanism 205
8.4.1 Security Analysis . 205
8.4.2 Evaluation Context . 207
8.4.3 Latency Analysis . 207
8.4.4 Performance Analysis . 208

11

CONTENTS

8.5 Summary . 209

9 Backup, Migration, and Decommissioning Mechanisms 211
9.1 Introduction . 212
9.2 Backup and Migration Framework . 213

9.2.1 Backup Mechanism . 213
9.2.2 Migration Mechanism . 215
9.2.3 Analysis of the Backup and Migration Mechanism 216

9.3 Application Deletion . 217
9.3.1 Existing Framework . 217
9.3.2 Application Deletion in the UCOM 219

9.4 Decommissioning Process . 222
9.5 Summary . 223

10 Conclusions and Future Research Directions 224
10.1 Summary and Conclusions . 225
10.2 Recommendations for Future Work . 229

A Description of Protocols Used for Comparison 231
A.1 Protocol Notation and Terminology . 232
A.2 Station-to-Station (STS) Protocol . 232
A.3 Aziz-Di�e (AD) Protocol . 233
A.4 ASPeCT Protocol . 234
A.5 Just-Fast-Keying (JFK) Protocol . 235
A.6 Trusted Transport Layer Protocol (T2LS) Protocol 236
A.7 Secure Channel Protocol - 81 (SCP81) Protocol 236
A.8 Markantonakis-Mayes (MM) Protocol . 237
A.9 Sirett-Mayes-Markantonakis (SM) Protocol 238

B CasperFDR Scripts 240
B.1 Brief Introduction to the CasperFDR . 241

B.1.1 Protocol De�nition . 241
B.1.2 System De�nition . 242

B.2 Attestation Protocol . 242
B.3 Secure and Trusted Channel Protocol � Service Provider 243
B.4 Secure and Trusted Channel Protocol � Smart Card 244
B.5 Application Acquisition and Contractual Agreement Protocol 246
B.6 Application Binding Protocol � Local . 247
B.7 Platform Binding Protocol . 249
B.8 Application Binding Protocol � Distributed 250

C Practical Implementation Source Code 252
C.1 O�ine Attestation Mechanism . 253

C.1.1 O�ine PRNG Algorithm . 253
C.1.2 O�ine PUF Algorithm . 258

C.2 Online Attestation Mechanism . 262
C.2.1 Online PRNG Algorithm . 263
C.2.2 Online PUF Algorithm . 267

C.3 Attestation Protocol . 272
C.3.1 Smart Card Implementation . 272
C.3.2 Card Manufacturer Implementation 282

12

CONTENTS

C.4 Secure and Trusted Channel Protocol � Service Provider 290
C.4.1 Smart Card Implementation . 290
C.4.2 Service Provider Implementation . 304

C.5 Secure and Trusted Channel Protocol � Smart Card 313
C.5.1 Smart Card Implementation . 313
C.5.2 Service Provider Implementation . 325

C.6 Application Acquisition and Contractual Agreement Protocol 333
C.6.1 Smart Card Implementation . 333
C.6.2 Service Provider Implementation . 350
C.6.3 Administrative Authority Implementation 359

C.7 Application Binding Protocol - Local . 364
C.7.1 Client Application . 365
C.7.2 Server Application . 369
C.7.3 TEM Handler . 373

C.8 Application Binding Protocol - Distributed 377
C.8.1 Client Application . 378
C.8.2 Server Application . 392

C.9 Platform Binding Protocol . 404
C.9.1 Initiator Smart Card Implementation 404
C.9.2 Responder Smart Card Implementation 418

C.10 Abstract Virtual Machine . 430
C.11 Implementation Helper Classes . 433

C.11.1 Protocol Cryptographic Support . 433
C.11.2 CAMS Implementation . 439
C.11.3 Di�e-Hellman Group . 443
C.11.4 SHA256 Pseudorandom Number Generator 445

Bibliography 450

13

List of Figures

1.1 Life cycle of UCTDs in relation to a user and an application 27

2.1 Trusted Service Manager (TSM) architecture 33
2.2 Possible interaction between TSMs for scalability 34
2.3 Illustration of UCTD form factors, application areas, and industry sectors . 43
2.4 Location based virtual smart card architecture 46

3.1 Overview of the Issuer Centric Smart Card Ownership Model (ICOM) . . . 53
3.2 Generic representation of the Multos card architecture 59
3.3 Generic representation of the Java Card 3 architecture 60
3.4 Generic representation of the GlobalPlatform card architecture 62
3.5 Overview of the User Centric Smart Card Ownership Model (UCOM) . . . 65
3.6 Illustration of the UCOM components and their interactions 66
3.7 Ecosystem of the Coopetitive Architecture for Smart Cards (CASC) 77

4.1 User Centric Smart Card (UCSC) architecture 81
4.2 Architecture for the Trusted Environment & Execution Manager 86
4.3 Certi�cate hierarchy in the UCOM . 101

5.1 GlobalPlatform card management architecture [1] 112
5.2 Multos card management architecture . 114
5.3 Administrative card management framework (CASC: section 3.6) 116
5.4 User card management framework (UCOM: section 3.4) 117
5.5 Illustration of parasite application problem 125

6.1 Certi�cate Hierarchy in the CASC . 141
6.2 Performance measurements of hash generation on test smart cards 155

7.1 The Java Card �rewall mechanism . 159
7.2 The Multos card �rewall mechanism . 161
7.3 Architecture of the UCTD �rewall mechanism 165
7.4 Application shareable resource access request process 168
7.5 Cross-Device Application Sharing network 169
7.6 Cross-Device Application Sharing message 170
7.7 Application masquerading and relay attack scenario 172
7.8 Application sharing among di�erent user's applications 172
7.9 Hierarchy of a client application's certi�cate 173

8.1 Java Card application development process 190
8.2 Java source �le to bytecode conversion . 190
8.3 Architecture of the Java Card Virtual Machine 191
8.4 Generic Overview of the runtime protection mechanism 197
8.5 Operand and integrity stack push operations 202

14

LIST OF FIGURES

8.6 Control �ow diagram of an example method B 204

9.1 Overview of the credential backup mechanism 213
9.2 Structure of authorisation tokens generated by respective SPs 214
9.3 Application deletion process in the UCOM 220

15

List of Tables

2.1 Comparison of di�erent candidate devices for the UCTD proposal 41

4.1 Comparison of di�erent proposals for self-test mechanism 89
4.2 Protocol notation and terminology . 103
4.3 Test performance measurement (milliseconds) for the attestation protocol . 108

6.1 Protocol notation and terminology . 133
6.2 Protocol comparison based on the stated goals (see section 6.2.3) 153
6.3 Protocol performance measurement (milliseconds) 154
6.4 Breakdown of performance measurement (milliseconds) of the STCPACA . . 155

7.1 Comparison between di�erent �rewall mechanisms 164
7.2 Protocol notation and terminology . 173
7.3 Protocol comparison on the basis of stated goals (see sections 7.3.7 and 6.2.3)183
7.4 Performance measurement (milliseconds) of the ABPL 185
7.5 Performance measurement (milliseconds) of the PBP and ABPD 185

8.1 Latency measurement of individual countermeasure 207
8.2 Performance measurement (percentage increase in computational cost) . . . 209

A.1 Protocol notation and terminology . 232

16

List of Abbreviations

AAC Application Assurance Certi�cate

AAM Application Abstract Machine

ABPD Application Binding Protocol - Dis-
tributed

ABPL Application Binding Protocol - Lo-
cal

AID Application Identi�er

ALP Application Lease Policy

AMS Application Management Server

API Application Programming Interface

ARM Application Resource Manager

ASAS Application Services Authentica-
tion Server

ATP Attestation Protocol

CAMS Card Application Management Sys-
tem

CASC Coopetitive Architecture for Smart
Cards

CC Common Criteria

CDAM Cross-Device Application Sharing
Mechanism

CDAS Cross-Device Application Sharing

CIB Card Issuing Bank

CR Cardholder's Requirement

CRP Challenge-Response Pair

DAP Data Authentication Pattern

DSA Digital Signature Algorithm

GR General Requirement

ICOM Issuer Centric Smart Card Owner-
ship Model

IMA Integrity Measurement Authorisa-
tion

JCRE Java Card Runtime Environment

JCVM Java Card Virtual Machine

JVM Java Virtual Machine

MNO Mobile Network Operator

MPM Mobile Phone Manufacturer

MTM Mobile Trusted Module

NFC Near Field Communication

PAC Platform Assurance Certi�cate

PAN Primary Account Number

PBP Platform Binding Protocol

PRNG Pseudo-Random Number Genera-
tors

PRNG Pseudorandom Number Generator

PUF Physical Unclonable Function

RAS Remote Application Server

SAP Service Access Point

SCM Smart Card Manufacturer

SCOS Smart Card Operating System

SCP Secure Channel Protocol

SCR Smart Card Requirement

SCRT Smart Card Runtime Environment

SCWS Smart Card Web Server

SIO Shareable Interface Object

SOG Security and Operational Goal

SP Service Provider

STCP Secure and Trusted Channel Proto-
col

TEM Trusted Environment & Execution
Manager

TPM Trusted Platform Module

TSM Trusted Service Manager

TSO Transport Service Operator

UCOM User Centric Smart Card Owner-
ship Model

UCSC User Centric Smart Card

UCTD User Centric Tamper-Resistant De-
vice

VSC Virtual Smart Card

17

Chapter 1

Introduction

Contents

1.1 Setting the Scene . 19

1.2 A Brief History of Smart Cards 19

1.3 Motivation and Challenges . 23

1.4 Contributions . 26

1.5 Structure of the Thesis . 28

In this chapter, we discuss the past, present, and possible future of smart card technology

and its operational infrastructures. We explain the motivation behind the thesis and the

contribution it makes to the user centric approach to the management of tamper-resistant

devices. The chapter concludes by outlining the structure of the thesis and brie�y describing

the contents of each of the subsequent chapters.

18

1.1 Setting the Scene

1.1 Setting the Scene

We open the discussion in this chapter by exploring the evolution of the smart card from

its beginnings to the present. This is followed by a discussion of the reasons for having

a user centric approach to the management of a security-critical device like a smart card

and the challenges this approach involves. We then discuss the contributions of the thesis,

and outline its structure.

1.2 A Brief History of Smart Cards

Card-based transactions originated in the USA, starting with a system which came to be

known as metal money. This was a metal card issued by Western Union1 as part of a

deferred payment scheme [2]. In 1946, John Biggins, a banker at Flatbush National Bank

of Brooklyn, issued a banking card to his customers called Charg-It [3]. Customers used

their Charg-It cards to pay for groceries at local shops. In 1951, New York's Franklin

National Bank issued the �rst credit cards [4] to gain a competitive advantage over rival

banks. During the same period, an exclusive club known as the Diners Club issued the �rst

plastic cards [5]. These cards re�ected the high status of the individuals who used them.

Instead of using cash, cardholders would use these cards to pay for services at selected hotels

and restaurants. This was the beginning of plastic money as we know it; however, the rapid

proliferation of plastic cards came when Visa2 and MasterCard3 entered the �eld [5].

These early cards spread from the USA to Europe and within a few years to the rest of

the world. They had a very simple mechanism to store user-speci�c data and secure it

against forgery. These cards carried the name of the cardholder and a unique card number

printed or embossed on the card along with the card issuer's logo and a signature panel.

The signature panel was used as a security mechanism to link the card to its cardholder.

When used at a merchant's premises, the merchant had to verify the printed/embossed

features of the card and ask the cardholder to sign the receipt. To verify the cardholder's

right to use the card, the merchant could then match the signature on the receipt with the

one on the signature panel [5]. The system relied heavily on the competence of the person

at the Point of Sale (POS). This system worked for a while on a limited scale, but as the

use of plastic cards increased, banks soon realised that a machine-readable and automated

system would bene�t all parties including cardholders, merchants, and banks [6].
1Western Union is a US-based �nancial company that provides person-to-person money transfer, busi-

ness and commercial services.
2Visa: Trademark of Visa Inc, San Francisco, California, USA. A global payment technology and

transaction management company that provides �nancial services to banks.
3MasterCard: Trademark of the MasterCard Worldwide that provides technology and architecture to

support the relationship between �nancial institutions, merchants, and consumers for monetary transac-
tions.

19

1.2 A Brief History of Smart Cards

The next big innovation in the plastic card's evolution was the introduction of magnetic

stripe cards. The magnetic stripe was used by banks to store digital information regarding

the card and its cardholder that supplemented the visual features of the card. The storage

of data on the magnetic stripe, along with the introduction of magnetic stripe readers at

each merchant's site, automated the payment process and eliminated the tiresome handling

of paper receipts. A feature of this innovation that outlived the magnetic stripe initiative

and superseded the cardholder's signature is referred as a Personal Identi�cation Number

(PIN), which was used to identify the cardholder [6]. At a POS, a cardholder had to provide

her card along with the PIN. If the card-issuing bank veri�ed the PIN, the transaction

would go ahead [5, 7]. These cards are still used in many places around the world, especially

as student cards, hotel room keys, and rail tickets.

In subsequent years, the use of magnetic stripe cards started to strain the banking infras-

tructure. There were two reasons for this: �rst, a malicious user with suitable equipment

could copy, modify, or write new data values onto the magnetic stripe; second, the early use

of magnetic stripe cards used online connections to connect to the card-issuing bank's com-

puter system (back-o�ce system). This incurred substantial costs for data transmission,

which in most cases were paid by merchants. In addition, requiring an online connection

with the back o�ce system put extra demands on the availability of the payment-by-card

service. Remote areas and international call dialling rates soon decentralised the payment

processing systems managed by two big American �nancial services companies, VISA and

MasterCard. However, even the introduction of local points of clearance for payments did

not make things much easier for merchants, and they still had to bear the burden of calling

the transaction clearance server of the bank that issued the card.

A minor improvement to the magnetic stripe cards came in the shape of optical-storage

(holographic) cards that provided a much larger storage capacity. However, the costs of

manufacturing and writing or reading data from the optical-storage cards were higher and

they still had the same shortcomings as magnetic stripe cards [8], so there was no particular

incentive to change over to them.

The next breakthrough in the card-based services sector came in the 1970s, not from the

USA but from Germany and France. This breakthrough was fuelled mainly by progress in

microelectronics, which led to the ability to build a single silicon chip with di�erent logical

components to store and process logic data, revolutionising the card industry.

Nevertheless, it took a decade before chip-based cards were widely deployed; the French

Postes, télégraphes et téléphones (PTT) �rst used them as telephone cards [5]. German

telephone cards soon followed. These deployments provided a testing ground for the new

technology, which was later exported to other industries, as chip-based cards provided much

greater reliability and security than the magnetic stripe or holographic cards. Initially,

20

1.2 A Brief History of Smart Cards

chip cards known as memory cards were based on �xed logic and limited storage capacity.

However, later in the 1990s microprocessor cards emerged on the scene. These cards

can store and dynamically process information without relying on hard-wired �xed logic,

as was the case in early chip cards. The German Post O�ce conducted initial trials

of chip cards for their analogue mobile telephone network. The success of these trials

resulted in the deployment of the microprocessor cards in the GSM4 networks. At the time,

telecommunication companies all over the world were rapidly adopting microprocessor

cards, mainly to prevent phone cloning. However, the banking networks of the time did

not embrace the new technology as quickly.

The development of smart cards coincided with another revolution in the �eld of system

security. The discipline of cryptography was emerging from government and military se-

crecy. The security provided by sophisticated (cryptographic) mathematical concepts, and

improved designs in hardware and software programming paved the way for the use of

cryptography in new technologies such as smart cards. This gave smart cards an edge

over magnetic stripe cards in the banking sector, and this was soon acknowledged [5].

As in the case of the initial innovation of chip card technology, French banks pioneered

the adoption of the smart cards as payment cards. After long negotiations and develop-

ment, the widespread adoption of smart cards in the banking sector came in 1994, when

Europay, MasterCard and Visa published their payment card speci�cation (i.e. the EMV

speci�cation [9]).

The initial attempts to have multiple functionality on a smart card were made in 1996 in

Austria with the introduction of a smart card, which allowed banking (e.g. POS services),

an electronic purse and optional value-added services [5]. However, this initiative cannot

be considered a true multi-application smart card, because it was a multi-functional smart

card [10] that had a single application with multiple functionality.

At the same time, another concept termed the generic soft mask [5] was taking centre

stage. In �generic soft mask� a card manufacturer implements a Smart Card Operating

System (SCOS) on a non-mutable memory of the smart card. This operating system is

independent of applications like banking or transport. To support these applications, the

card manufacturer implements the Application Programming Interfaces (APIs) to facilitate

individual application. These APIs were stored on the mutable memory rather than on a

non-mutable memory where traditionally the bulk of the SCOS was stored. This innovation

simpli�ed the development of smart card applications: card manufacturers proposed using

generic soft masks for di�erent types of applications. Implementing the concept of the

generic soft mask requires a minimum operating system and some customized Application

Programming Interfaces (APIs) for any particular application. The application developers

utilised these APIs to develop their applications.
4Global System for Mobile Communication (GSM) is a standard for the mobile Telecom industry that

is developed and promoted by the GSM Association (GSMA).

21

1.2 A Brief History of Smart Cards

The introduction of the soft mask also enabled the smart card developers to have a sin-

gle smart card which had multiple application. These were fundamentally di�erent from

multi-functional smart cards because each of the functionalities/services had a separate

application in the smart card. One example of an initial soft mask-based multiple applica-

tion smart card is the French banking card. It had the old B0' application [11], EMV [9]

banking application and a French (electronic) purse called Moneo [12, 13]. When a smart

card user presented his/her smart card at a terminal, the card �rst checked whether or not

the terminal supported EMV. If it did not, then it could opt for the B0' French banking

application. Although these smart cards had separate functional applications, we can-

not term them true multi-application smart cards because of the rigidity of the smart

card architecture. Once these smart cards were issued, not even the card issuers could

update them or install new applications on them. Therefore, how can we de�ne a true

multi-application smart card?

A multi-application smart card is one that supports the features listed below [5, 6, 14, 15]:

1. A separate context for each application on the card (e.g. storage and execution iso-

lation), ensuring a secure and reliable application segregation mechanism.

2. Post-issuance application installation, deletion, and management (update/modi�ca-

tion).

3. The ability for terminals to select an application directly and independently of other

on-card applications.

4. The management, updating, modi�cation, and deletion of each application without

a�ecting other applications.

5. Delegation of the management of an application to an entity, which is not necessarily

the card issuer. If an application is managed by such an entity, then the card issuer

cannot access the application context. The only possible authority a card issuer

might have is to block and/or remove the application without accessing its contents.

6. Secure and reliable inter-application communication.

A large number of smart cards deployed today are single task devices which can only execute

one application at a time, and do not support the simultaneous execution of multiple

applications. However, innovation in the hardware design and in the SCOS/platforms

have begun to explore the concept of multi-threading [16]. These developments will surely

make smart cards into powerful and secure computing devices which can support di�erent

tasks concurrently.

22

1.3 Motivation and Challenges

Over the last ten years, smart card technology has rapidly moved out of its traditional

businesses such as banking and telecommunication. It has spread to transport, health care,

identity cards, travel cards, access control, leisure passes, and other �elds. Smart cards

are becoming synonymous with everyday activities and they are deployed in almost every

aspect of modern life. In the smart card industry the technology has changed its shape

regularly. It has moved from plastic cards to magnetic stripes to chip cards and from single

application to multi-application smart cards. Each innovation has taken approximately ten

years to arrive and become commercially viable. With each new step, the emphasis has

been on greater �exibility, operability, security and reliability, and on the value that smart

cards bring to customers and businesses.

1.3 Motivation and Challenges

A wide range of computing devices are being introduced that can perform the same tasks.

For example, traditionally mobile phones were only for voice communication and later, for

text messaging. However, when it comes to Internet access the advent of smart phones has

blurred the line between a desktop computer and hand-held devices. In addition, comput-

ing devices like tablets are making headway in market; thus general-purpose computers,

mobile phones, and tablets are providing similar services. This multiplies the potential

for customers to become victims of security breaches or privacy violations as their data

is on multiple computing devices with di�erent platforms and varying levels of security

safeguards.

At the same time, the smart card industry, that until the start of the 21st century was

reluctant to adopt the multi-application smart card initiative, is considering a convergence

of di�erent services on to a single device. The idea of multi-application smart cards has been

well known since the late 1990s but after its initial advocacy, it did not gain any momentum.

However, recent innovations such as the Near Field Communication (NFC) [17] technology

and secure elements5 in mobile phones have set o� a renewed interest in multi-application

smart cards. The NFC enables a contactless data exchange between a chip (i.e. a smart

card) and a terminal. It is also extended to enable mobile phones to emulate contactless

smart cards. As a result, an NFC-enabled mobile phone can use the existing infrastructures

of di�erent industries (i.e. banking, transport and access control) that support contactless

smart cards.

The security and privacy concerns are increasing with the increasing number of di�erent

portals (i.e. devices) through which users are accessing associated data/functions. There

5A secure element is an electronic chip which can securely store and execute programs. Examples are
the Universal Integrated Circuit Card (UICC), the Embedded Secure Element, and Secure Memory Cards.
Throughout this thesis, the terms �secure element� and �smart card� are used interchangeably.

23

1.3 Motivation and Challenges

are several proposals to provide a hardware-based security and privacy protection, and

they di�er in operation and capability from one computing device to another. What we

mean by this is that the proposal becomes speci�c to the target computing device for

which the trust, security, or privacy architecture is proposed. For example, the di�erence

between the Trusted Platform Module (TPM) [18] and Mobile Trusted Module (MTM) [19]

is that they target two di�erent computing devices, namely general-purpose computers and

mobile phones respectively. Similarly, to provide protection to mobile devices including

mobile phones and tablets, architectures like AEGIS [20], ARM TrustZone [21], M-Shield

[22], GlobalPlatform Trusted Execution Environment (TEE) [23] are proposed. These

proposals, along with the TPM and MTM, have created a wide range of options that

provide the same services namely trust, security, and privacy.

Having a wide range of choices is encouraging, but it also means that a Service Provider

(SP) that o�ers a service that requires trust, security and privacy support has to implement

or support a wide range of technologies. For example, an internet identity application could

be on a desktop computer and mobile phone. For a desktop computer, the protection

technology might use TPM and for a mobile phone, it might depend on MTM or M-Shield.

This diversity could not only create complexity for the SP to manage and provision its

services but also for the consumer to use di�erent architectures on individual devices.

Furthermore, most of the proposed architectures like TPM or MTM are physically bound

to the computing devices, thus reducing the ubiquity and inter-operability of the same

services on di�erent devices. The same is true if a user has an identity application as part

of her smart card. Therefore, a user that has a computer, a mobile phone, a tablet and

smart cards, will be using the same service on each device in isolation.

A possible solution might be to have a device that can support a uni�ed, ubiquitous, and

interoperable architecture for security and privacy services incorporated across di�erent

computing environments (e.g. desktop computers, embedded devices, tablets, and mobile

phones etc.). We refer to such a device as a User Centric Tamper-Resistant Device (UCTD).

Application developers, whether they are targeting smart cards, hand-held devices and/or

traditional computing devices, can utilise the UCTD architecture that provides a single

uni�ed framework. The reason we focus on having a user centric architecture is to pro-

vide maximum interoperability, �exibility, and integration between di�erent services and

operational architectures.

The UCTD provides hardware level security coupled with a robust software platform that

will enable an SP to design their services for a single platform (i.e. a UCTD) so that

consumers can use the service seamlessly on any of their computing devices. For example,

a banking application on a UCTD can provide a secure online payment scheme for a

computer, mobile phone or tablet along with provision to pay at a POS or withdraw money

at an Automated Teller Machine (ATM). The bank does not need to worry about which

24

1.3 Motivation and Challenges

computing device the consumer is using. The user and the bank get security and privacy

protection from the UCTD regardless of the device (e.g. computer, mobile phone, tablet,

and POS, etc.) from wherever they are connecting to the payment network. Therefore,

feature-rich computing devices can have applications that rely on the services provided by

the UCTD to enable a security- and privacy-preserving framework.

For such a device, we consider that smart cards o�er the most promising architecture.

In our opinion, the rigorous design and analysis constituted in the smart card industry

can bene�t other computing environments by providing security, privacy, and reliability

services. If we port the smart card architecture as a generic tamper-resistant device that

can interface with di�erent computing environments then it can provide a ubiquitous,

interoperable, �exible, dynamic, secure, and reliable architecture that can store and execute

security- and privacy-sensitive applications. In this thesis, we use the term smart card as

inclusive of the technology (both hardware and software architecture) and without any

restriction on form factors. The smart card architecture can only be realised as a UCTD

if the associated ownership issues are resolved.

The most prominent ownership model in the smart card industry is centred on the or-

ganisation, which acquires smart cards from card manufacturers and issues them to the

customers. Such organisations are referred to as card issuers and in this thesis this owner-

ship model is called the Issuer Centric Smart Card Ownership Model (ICOM). This model

provided much needed momentum in the smart card industry, driving the technological and

infrastructural improvements to provide better, more secure and reliable services to cus-

tomers. It also enabled the initial motivation for standardising the smart card technology

(e.g. ISO 7816 [24], ISO 14443 [25]) and its applications for speci�c �elds (e.g. GSM [26],

EMV [9] and ITSO [27], etc.).

The ICOM architecture is restrictive and might not be suitable for smart cards if they are

to be adapted as UCTDs. Therefore, we propose a model that provides a more �exible,

and dynamic platform which also gives control of the smart card to its users. This model is

referred to as the User Centric Smart Card Ownership Model (UCOM). The term ownership

(control) in the proposed model means �freedom of choice� that gives a UCTD owner the

privilege of installing or deleting any application as they desire. However, this does not

mean that they have the ownership of individual applications installed on the device [10].

The application(s) installed on the smart card will always be under the total control of

the application issuers (i.e. the SPs) and the user will be entitled to use these applications

under sanction from their respective SPs. Furthermore, the choice about whether to lease

an application to a card (user) resides solely with the relevant SP. Therefore, we can de�ne

a UCTD as a device whose architecture is based on the smart card technology that supports

the UCOM framework.

25

1.4 Contributions

The challenges presented to the UCOM proposal are rooted in the history of the smart

card technology. Any architecture or framework proposed in the smart card industry was

designed with the underlying requirement of supporting centralised control (i.e. ICOM).

Most notable examples are Java Card [28], Multos [29], and GlobalPlatform [30]. The

design of these technologies is based on the strong assumption that the smart cards will

always be under the control of a trusted centralised authority.

When we move the smart card ownership to its users, the traditional notion of trust does

not hold. Therefore, most of the ICOM-based architectures did not provide the same level

of security and reliability that compelled us to choose smart cards for the UCTD proposal.

However, we do not propose that existing well-established architectures like Java Card and

GlobalPlatform are incapable of supporting a user centric approach. What we propose is

that they require some modi�cations that will enable them to support an architecture that

supports the user ownership of the smart cards. In this way, UCOM not only makes a

smart card into a general-purpose security device (i.e. UCTD) [31] but also resolves the

ownership issues in the smart card industry that are hindering the adoption of having

multiple services from di�erent organisation on a single smart card [32].

Furthermore, for the UCTDs, to support feature rich environments (e.g. desktop comput-

ers) while supporting only a single user might not be su�cient. Some of these environments

might include administrative oversight as part of the corporate administration, or parental

control. Therefore, we extended the UCOM architecture to enable administrative man-

agement while strictly adhering to the user ownership, platform security, and reliability

requirements. This extension is referred as the Coopetitive6 Architecture for Smart Cards

(CASC).

In the rest of the thesis, the terms UCTD, smart card, and secure element will be used

interchangeably unless speci�ed otherwise.

1.4 Contributions

In this thesis, we set out to analyse whether user ownership is technically and operationally

possible for a tamper-resistant device based on the smart card architecture. After showing

that it is possible, we consider what changes must be made to traditional smart card

architecture and service infrastructure. These questions are the focus of this thesis.

The contributions of this thesis are spread over di�erent stages of the UCTD lifecycle, from
6The term coopetitive is borrowed from game theory [33]�[35]; where it stands for arrangements in

which competitors collaborate with each other to share the common cost and compete where they see that
they might have competitive advantage.

26

1.4 Contributions

the UCTD manufacturing, to the application download and execution, to decommissioning

at the end of the UCTD's lifetime. The main contribution of the thesis is the development

of a user centric framework for tamper-resistant security-sensitive devices. To accomplish

this, we propose several changes to existing smart card architecture, including changes to

the application management framework, the application download protocols, the smart

card �rewall mechanism, and �nally the application execution environment.

We propose a new architecture for the smart card platform, including the remote attes-

tation and security assurance mechanism. These changes will enable an SP to ascertain

whether the current state of a platform is trustworthy. Furthermore, we propose a frame-

work to securely backup the contents of a smart card and restore them (when required)

to any other smart card. This latter mechanism allows a rapid recovery if the existing

smart card is stolen or corrupted (i.e. cannot work), and also facilitates migration from

one device to another.

Issuance
(Chapters 3-4)

Application
Acquisition

(Chapters 5-6)

Localisation
(Chapter 7)

Execution
(Chapter 8)

Decommission
(Chapter 9)

Figure 1.1: Life cycle of UCTDs in relation to a user and an application

The life cycle stages of a UCTD in relation to its provision of di�erent functionality or

features to the respective user or SP are shown in �gure 1.1. Each depicted stage of the

UCTD also has a corresponding chapter or chapters in the thesis.

The �rst stage in the life cycle of a UCTD is the issuance phase that includes manufacturing

and issuance of the UCTDs along with the ownership acquisition by the users.

In the second stage referred as �Application Acquisition�, the user requests an SP to lease its

application(s) to the acquired UCTD. This process encompasses the dynamic establishment

of a trust relationship between the SP and the UCTD along with the downloading of the

(requested) application.

27

1.5 Structure of the Thesis

The next stage is the �Localisation� stage, in which the downloaded application registers its

services with the UCTD. In addition, if the downloaded application shares resources with

other (installed) applications then it will also establish an application sharing relationship

with them.

Once an application is localised, it will utilise the runtime environment to execute its

services. This phase of the UCTD in relation to an application is termed as the �Execution�

phase.

Finally, at the end of the life cycle of a UCTD, an application retires from service, which

might be due to damage to the device, loss, theft, or to the user acquiring a more feature-

rich UCTD. This phase is termed as �Decommission� and it requires the inclusion of ar-

chitecture which can take a backup of the existing contents of a UCTD and transfer it to

another UCTD.

During the course of this thesis, the term UCTD is used to indicate a tamper-resistant de-

vice, whereas, UCOM refers to the ownership model that we have proposed for the UCTDs.

Furthermore, when we refer to an honest user we use third-person singular pronoun �she�

and for a malicious user we use �he�.

1.5 Structure of the Thesis

The remainder of this thesis is structured as follows:

In chapter 2, we begin the discussion by emphasising that tamper-resistant devices can

provide a secure, reliable, and trusted execution environment even when the device is in

the possession of an adversary. With the ever-growing use of di�erent computing devices

(i.e. mobile phones, tablets, and embedded devices), the potential for compromising the

security and privacy of an individual is increased. The Trusted Platform Module (TPM)

is restricted to integrity measurement and cryptographic operations, which is crucial in

its own right. On the other hand, smart cards provide a general-purpose execution envi-

ronment, but traditionally they are under centralised control, which if extended to generic

tamper-resistant devices may not be appropriate. Therefore, in this chapter we analyse

the rationale for a general-purpose user centric tamper-resistant device based on the smart

card architecture, and its applications in di�erent computing environments.

Chapter 3, opens the discussion with the ICOM and extends it to include the security and

operational assumptions adopted in this model. Next, we provide a succinct description of

the widely deployed smart card frameworks that support the ICOM. After discussing the

28

1.5 Structure of the Thesis

traditional smart card ownership model and associated architectures, we move on to discuss

the concept of giving control of application selection to cardholders. We then discuss the

major components of the UCOM framework.

To provide a secure and reliable architecture for the UCTD we need to make adequate

modi�cations to the smart card platform. Therefore, in chapter 4, we discuss the security

and operational architecture of the UCOM-supported platform, termed as the User Cen-

tric Smart Card (UCSC). We detail the reasons behind the architectural changes to the

traditional smart card which are needed to accommodate the philosophy of the UCOM.

Subsequently, we discuss the mechanism that provides security assurance of the UCOM

platform to the requesting entity. We also describe the ownership acquisition process

through which a user takes ownership of an UCSC and how she can verify the claims

articulated (e.g. assurances about security and reliability) by the UCSC.

After describing the smart card platform architecture, we move to a description of the

framework that supports the application acquisition and management. Hence, in chapter

5, we discuss the card management architectures that are widely accepted and deployed in

the smart card industry: GlobalPlatform and Multos. We explain why these architectures

are not fully compatible with the user centric architecture. Subsequently, we describe the

card management architecture for the UCOM. Finally, we discuss two new issues raised by

the proposed architecture.

Chapter 6, begins with a discussion on the secure channel protocols that are used for entity

authentication and key establishment. We discuss the security and operational goals that

a secure channel protocol has to accomplish in the UCTD environment. Subsequently, we

discuss di�erent protocols which have been proposed for Internet and smart card environ-

ments, and these protocols are used to provide a comparison to the ones we propose. We

propose two protocols that closely adhere to the UCOM philosophy and a protocol related

to the CASC model. An informal analysis is provided of all proposed protocols. For the

sake of completeness, we subject the proposed protocols to mechanical formal analysis us-

ing CasperFDR. Finally, we discuss the test implementation and performance measures of

the proposed protocols.

After an application is installed on a smart card, it might want to communicate with other

applications or services available on the card. To do so, an application will utilise the

provision of an application sharing mechanism. In chapter 7, we begin the discussion with

a description of the two contrasting frameworks for application sharing deployed by Java

Card and Multos, followed by an explanation for why we need to extend the existing tech-

niques for the UCOM framework. Subsequently, we discuss the architectural framework

of an application sharing mechanism for the UCTD. Later, we extend the proposed ap-

plication sharing mechanism between applications installed on di�erent UCTDs, referring

29

1.5 Structure of the Thesis

to it as Cross-Device Application Sharing (CDAS). The application sharing mechanism

for UCTD requires entity authentication and trust validation, along with key generation

to secure the sharing of resources between applications. To do so, we propose adequate

protocols that accomplish the listed goals of the UCTD application sharing mechanism.

Furthermore, we provide an informal analysis of the protocols along with a comparison with

existing protocols. Subsequently, mechanical formal analysis based on the CasperFDR, and

the test implementation experience, is presented.

Once an application is installed, and has registered itself with di�erent applications and

platform services, it will execute to provide services to the user. Therefore, chapter 8 dis-

cusses the UCTD execution environment in which the downloaded applications will execute.

We articulate the threat model for the execution environment in the ICOM architecture.

We then examine the potential aggravation of the threat model to the proposed UCOM

because of its openness. Subsequently, we look at countermeasures that can be deployed

to provide a secure and reliable execution platform. The discussed countermeasures are

then analysed in terms of their suitability and performance.

In chapter 9, we analyse the content backup and restoration mechanism that allows a user

to securely backup her smart card. This mechanism enables a user to retain the same set

of applications if she loses her smart card or wants to move to a new one. Subsequently, we

detail the application deletion process that ensures that an application is removed without

a�ecting the reliability of the UCTD platform.

Finally, in chapter 10, we conclude the thesis by summarising its contributions and pro-

viding suggestions for future work.

30

Chapter 2

User Centric Tamper-Resistant

Device

Contents

2.1 Introduction . 32

2.2 Rationale for a User Centric Tamper-Resistant Device 32

2.3 Candidates for User Centric Tamper-Resistant Device 36

2.4 The User Centric Tamper-Resistant Device 43

2.5 Case Studies . 47

2.6 Summary . 50

In this chapter, we begin by discussing the notion that tamper-resistant devices can provide

a secure, reliable, and trusted execution environment even when they are in the possession

of an adversary. We survey security and privacy issues in di�erent computing environments

including smart cards, mobile devices, and traditional computers. Subsequently, we analyse

the rationale for a general-purpose user centric tamper-resistant device based on smart card

architecture, and its applications in di�erent computing environments.

31

2.1 Introduction

2.1 Introduction

The adoption of mobile phones and tablet-based computing platforms (e.g. iPads) is in-

creasing. To some extent, the security and privacy issues of personal computers, including

insecure execution environments, also apply to hand-held devices. As reliance on these

devices increases, so will threats to the security and privacy of the platform and its users.

For example, a healthcare mobile application, if it is badly designed and gets compromised,

it may reveal user's sensitive medical information.

A possible solution is to have a tamper-resistant execution environment that executes

a program in a trusted, secure, reliable, and fault-tolerant environment. Among widely

deployed tamper-resistant devices, two are most prominent: Trusted Platform Module

(TPM) [36], and smart cards [5].

The TPM provides a platform's integrity measurement with cryptographic protection in

contrast to smart cards that provide a generic execution environment, in which an ap-

plication can execute and store application code and data. This landscape maps from

smart cards, mobile phones, tablets and general-purpose computers through to Machine-

to-Machine communication and the Internet of Things [37]. It would be bene�cial to have

an interoperable uni�ed architecture that provides a secure and reliable execution and

storage environment for di�erent computing devices.

Structure of the Chapter: In section 2.2, we discuss the rationale for having a secure,

reliable, trusted, dynamic, and ubiquitous architecture for a generic tamper-resistant device

that is under the user's control. Such a device is referred as a User Centric Tamper-

Resistant Device (UCTD). Section 2.3 brie�y surveys the proposals that provide secure

and trusted services to di�erent computing devices. In this section, we also compare the

discussed devices for their suitability as UCTDs. Subsequently, in section 2.4 we discuss the

reasoning behind the choice of smart card architecture for a proposed uni�ed architecture

based on UCTDs. Finally, section 2.5 provides three case studies based on the adoption

of the UCTD in di�erent computing environments.

2.2 Rationale for a User Centric Tamper-Resistant Device

The motivation for having a generic tamper-resistant device that is under the control of

its user rather than a centralised authority comes from three distinct but interrelated

computing �elds, discussed individually in subsequent sections.

32

2.2 Rationale for a User Centric Tamper-Resistant Device

2.2.1 Smart Card Environment

As pointed out by Porter [38], the crucial elements that stimulate competition and inno-

vation in an industry can be: a) the threat of new entrants, b) the threat of substitute

products or devices, and c) consumer power (culture). For the smart card industry, these

elements are present in a multitude of forms. The provision of having applications on a

mobile phone has enabled new entrants to venture into the traditionally monopolised in-

dustries like the payment sector. Companies like PayPal, Google or any other third party

can o�er a mobile payment service. In addition smart phones, with inclusion of Near Field

Communication (NFC) functionality, can provide a substitute for traditional smart card

applications like transport ticketing and access control [39]. Technology savvy consumers

require more features on a device, a need [40], which is successfully ful�lled by high-end

smart phones (e.g. the iPhone). Smart cards are lagging behind in providing such possi-

bilities. Nevertheless, the NFC technology provides an opportunity for the convergence of

di�erent services on a single smart card.

In NFC trials around the world [41], the prominent framework that is deployed is an

extension of the ICOM model and is referred as the Trusted Service Manager (TSM) [42].

It has gained support from the banking and telecom sectors [43, 44].

CIB1MNO1 TSO1

LC1

CIB2

MNO2
TSO2

LC2
TSM-1 TSM-2

CASCA CBSCB CCSCC CDSCD

Figure 2.1: Trusted Service Manager (TSM) architecture

The TSM architecture is illustrated in �gure 2.1 in which we have two TSM networks:

namely TSM-1 and TSM-2. Each network has a Mobile Network Operator (MNO), a Card

Issuing Bank (CIB), a Transport Service Operator (TSO) and a Leisure Centre (LC).

A customer CA receives a smart card (SCA) from the TSM-1. The customer CA would

only be able to have applications on the SCA from the MNO1, CIB1, TSO1, and LC1.

However, if CA does banking with the CIB2 that is associated with TSM-2 then she has to

either acquire a new smart card from TSM-2 or change banks, e�ectively creating market

segmentation.

33

2.2 Rationale for a User Centric Tamper-Resistant Device

CIB1

MNO1
TSO1

LC1

CIB2MNO2 TSO2

LC2
TSM-1 TSM-2

CIB4 MNO4TSO4

LC4

CIB3 MNO3TSO3

LC3

TSM-4TSM-3
CASCA

Figure 2.2: Possible interaction between TSMs for scalability

One possible option to reduce market segmentation is to have all application providers

maintain a relationship with all or most of the TSMs. However, this option might not be

practically feasible. We propose to resolve market segmentation by introducing a syndi-

cated scheme, which can be termed as the Dynamic Contractual Syndicated TSM (DCS-

TSM) in which multiple TSMs participate to provide services to their customers. In this

model, a user (CA) can request to install an application from an application provider (e.g.

MNO, CIB, TSO, and LC) that is a member of any TSM, which participates in the DCS-

TSM. The application installation is still authorised by the scheme manager � for example,

TSM-1 in �gure 2.2 is the scheme manager for the SCA as it has issued the smart card

to the customer CA. It could be argued that this scenario is workable, but the DCS-TSM

framework also su�ers from limited scalability, �exibility, and ubiquitousness.

The limited scalability arises because a) not all application providers can establish or

manage a relationship with every possible TSM and b) not all TSMs will be part of the

same DCS-TSM. In addition, to be part of a collaborative scheme o�ered by a TSM,

application providers might be required to pay a subscription fee. Therefore, small or

medium scale organisations like local libraries, universities, and health centres may not be

able to a�ord to be associated with a TSM. We consider that such a barrier would reduce a

scheme's �exibility. Furthermore, it lacks true ubiquitousness as di�erent countries might

opt for having their own independent TSMs. Therefore, tourists or business travellers

would face di�culties in acquiring applications (i.e. applications from a TSO) in a foreign

country. Other issues include ownership privileges, customer loyalty, customer relationship

management, card surface marketing, and potential revenue generation opportunities that

are discussed in [11, 32, 45, 46].

Innovation and success in a competitive environment is dependent on the core competence

of an organisation [47] in a particular �eld (e.g. business, technology and culture). There

is no universally accepted concession on who should be taking the role of the TSM from

34

2.2 Rationale for a User Centric Tamper-Resistant Device

possible contenders such as smart card manufacturers (SCMs), MNOs, CIBs, mobile phone

manufacturers (MPMs) and independent/trusted third parties (e.g. post o�ce). With

reference to trust and brand awareness, SCMs do not have a market presence, as since

the inception of the smart card technology their brand has seldom been part of the �nal

product. Whereas, the core competence of MNOs or CIBs is not chip manufacturing,

but a strong branding and an existing customer base. The MPMs can extend their core

competence to secure-element designing/manufacturing, and they also have a strong brand

and customer base. Nevertheless, no one has a clear competitive advantage. There is an

underlying fear that this entire process might be the repeat of the multi-application smart

card initiative, which inspired an initial fervour that later died down due to the con�icting

business objectives of di�erent organisations. In this entire process, one stakeholder that is

crucial to the survival of all other entities in the ecosystem is missing: the users (consumers)

of the system, which we consider might be a gross oversight. An amicable solution to all

stakeholders could be the UCOM initiative.

2.2.2 Hand-held Devices

In this thesis, we use the term hand-held devices to refer to mobile phones and tablets.

The reason for grouping them together is the similarity in the application lifecycles of these

devices and a growing convergence between their form-factors and underlying platforms.

The mobile phone platform has come a long way from being just a medium of commu-

nication. It has developed into a social construct that has a�liations and emotional at-

tachments for individual users along with being an entertainment hub, and a medium

to connect with the world through social media sites [48, 49]. With the ever-increasing

trend of convergence of di�erent technologies/services in smart phones, they are becom-

ing attractive targets for adversaries who want to compromise the security and privacy of

users.

The so-called �App Culture� promoted by Apple Inc., which enables users to seamlessly

download any application they desire has opened up the mobile phone application market

to a wide range of companies [40]. New ideas are being tested; for example, Starbucks cus-

tomers can pay for co�ees using a �Starbucks' Card Mobile App� on their iPhones. This

indicates that there can be additional services/organisations which develop mobile applica-

tions that perform sensitive processing like banking or healthcare, which have traditionally

required a strong security and privacy architecture. Predominantly, mobile phone plat-

forms are not extensively evaluated for their security and privacy services, as is normal in

high-end smart cards. In addition, most of the smart phones do not have a tamper-resistant

execution environment [50] (except for the secure element). In addition, lack of Mobile

Trusted Module (MTM) adoption leaves application developers with no choice but to de-

35

2.3 Candidates for User Centric Tamper-Resistant Device

velop the applications that will run on a non-evaluated and possibly insecure/compromised

device.

If we analyse the mobile phone environment, the application download concept resembles

the ICOM model. For example, on an iPhone an application cannot be installed unless it is

in conformance with the Apple's stated regulations1 that are enforced by mandatory review

by the Apple's App Store. However, it has been possible to write malicious applications

that can bypass the Apple's App Store review [51]. Therefore, a conservative view of hand-

held devices will see them as potential military, corporate espionage, and civilian attack

targets. UCTDs will enable an application developer for handheld devices to store and

execute security- and privacy-related code and data on a secure and trusted device.

Likewise, tablet devices are gaining market share and have a similar product lifecycle to

a mobile phone. Therefore, the possibilities and issues we discussed above regarding the

mobile phone platform are also true for the tablet platform.

2.2.3 Traditional Computing Devices

These computing platforms are used in personal and corporate spheres, and they provide

access to a wide range of services. Most of these services require the security and privacy of

the user, and SPs (i.e. banks, and corporate servers, etc.) need to be able to authenticate

the user who is accessing their services. It can be argued that the Trusted Platform

Module (TPM) provides an adequate security and privacy service. We are not contesting

this notion � we are suggesting that by having a tamper-resistant device that can store

applications and execute them within its bounds, can go a step further and provide a secure

execution environment that individual applications can utilise for their security sensitive

code. The problem with this proposal is that most of the tamper-resistant devices capable

of executing applications are under centralised control (as in the smart card industry) [11,

32], or they are stripped down to cryptographic services [18, 20, 21, 52, 53]. A UCTD

avoids such issues while providing an open and dynamic execution environment.

2.3 Candidates for User Centric Tamper-Resistant Device

In hand-held and traditional computer devices, proposals like TPM [36], MTM [19], AEGIS

[20], ARM TrustZone [21] and GlobalPlatform Trusted Execution Environment (TEE)

[54, 55], already exist. Most of these devices: a) are limited to a particular computing

1There are other ways of installing applications on a smart phone (e.g. iPhone) and most of them are
referred as jailbreaking [51]

36

2.3 Candidates for User Centric Tamper-Resistant Device

environment (e.g. TPM [18] and MTM [19]), b) only provide execution protection (e.g.

AEGIS), c) have limited application execution without user control (i.e. TEE), d) have

limited scalability regarding the support for di�erent application and platform scenarios,

e) do not provide dynamic trust validation and assurance [56] and require an implicit

trust, f) do not require third party (security) evaluation, and g) do not provide user

ownership/control (e.g. smart cards [32]). We discuss these technologies individually below

and analyse their suitability for the UCTD architecture in table 2.1.

2.3.1 Trusted Platform Module

The Trusted Computing Group (TCG) [36] started an initiative for providing a tamper-

resistant device referred as the Trusted Platform Module (TPM) [18]. The mission state-

ment of the TCG commits it to providing authentication, data protection, network security,

and disaster recovery services [36]. A Trusted Platform Module (TPM) will measure the

integrity matrixes referred to as Platform Con�guration Registers (PCRs) that are se-

curely sealed with cryptographic keys. If the TPM �nds any discrepancies in the future

integrity-measurements then it will �ag the problem. A TPM does not decide whether this

discrepancy is authorised by the user or whether it is due to a malicious entity.

A TPM is a tamper-resistant device with a low footprint that is utilised as a root of

trust to support the trusted computing platform. The concept of trust as de�ned by the

Trusted Computing Group (TCG) is the evaluation of platform results as expected by the

requesting entity [36]. A TPM is not concerned with whether the evaluated state is secure

or not as long as the evaluation result is trusted by the requesting hall. Therefore, we can

say that a TPM is speci�cally designed (or restricted) to be a trusted component, which

will be physically bound (soldered) to a platform. The fundamental function of a TPM is

to provide secure, trusted, and tamper-resistant root of (trusted) measurements on which

the integrity measurement of the rest of the platform is dependent. A TPM is typically

under the control of the platform user, and it has a secure and reliable software/hardware

platform. However, it is not a general-purpose execution environment in which an arbitrary

code can be executed and neither is it portable, unless a smart card is used to behave like

a TPM [57]�[59]. In this chapter, we treat TPM and MTM together even though there are

subtle di�erences between them.

2.3.2 AEGIS

AEGIS is a single-chip secure processor that is designed to build trusted systems and is

secure against physical and software attacks [20]. Therefore, we can consider AEGIS as

a processor with a limited memory that stores processor identi�cation information along

37

2.3 Candidates for User Centric Tamper-Resistant Device

with possible cryptographic parameters (i.e. private key of the public key pair). AEGIS

has two processing modes: Tamper-Evident Processing (TE) and Private Tamper-Resistant

Processing (PTR). In the TE environment, AEGIS ensures the integrity of an executing

program whereas in PTR it also protects the privacy of the code or data. One fundamental

di�erence between TPM and AEGIS is that TPM relies on static integrity measurements

whereas AEGIS provides a dynamic mechanism that measures an application's integrity

at di�erent stages of execution. It is apparent that TPM has better performance than

AEGIS, and it can be argued that static integrity measurement is good enough for the

job. Another distinguishing feature of the AEGIS is that it uses a Physical Unclonable

Function (PUF) [60] to securely store the cryptographic keys inside the AEGIS processor

chip [61].

2.3.3 ARM TrustZone

Similar to the MTM, the ARM TrustZone also provides an architecture for a trusted

platform speci�cally for mobile devices. The underlying concept is the provision of two

virtual processors with hardware-level segregation and access control [21, 62]. This enables

the ARM TrustZone to de�ne two execution environments termed as Secure world and

Normal world. The Secure world executes the security and privacy sensitive components

of applications and normal execution takes place in the Normal world. The ARM processor

manages the switch between the two worlds. The ARM TrustZone is implemented as a

security extension to the ARM processors (e.g. ARM1176JZ(F)-S, Cortes-A8, and Cortex-

A9 MPCore) [21], which a developer can opt to utilise if required.

2.3.4 M-Shield

Texas Instruments has designed the M-Shield as a secure execution environment for the

mobile phone market [22]. Unlike ARM TrustZone, the M-Shield is a standalone secure

chip, and it provides a secure execution and limited non-volatile memory. Furthermore,

it has internal memory to store runtime execution data [63] and this makes it less sus-

ceptible to attacks on o�-chip memory or communication buses [64]. The memory and

communication buses that we mention here are part of the platform, main memory and

communication buses between a TPM and other components on a motherboard, rather

than the on-chip memory and communication buses.

38

2.3 Candidates for User Centric Tamper-Resistant Device

2.3.5 GlobalPlatform Trusted Execution Environment (TEE)

The TEE is GlobalPlatform's initiative [23, 54, 65] for mobile phones, set-top boxes, utility

meters, and payphones. GlobalPlatform de�nes a speci�cation for interoperable secure

hardware, which is based on the GlobalPlatform's experience in the smart card industry.

It does not de�ne any particular hardware, which can be based on either a typical secure

element or any of the previously discussed tamper-resistant devices. The rationale for

discussing the TEE as part of the candidate devices is to provide a complete picture.

The underlying ownership of the TEE device still predominantly resides with the issuing

authority, which is similar to the GlobalPlatform's speci�cation for the smart card industry

[30].

2.3.6 Trusted Personal Devices

The term Trusted Personal Devices (TPD) was coined by the Integrated secure platform

for the interactive Trusted Personal Devices (InspireD) project [66]. Similar to our pro-

posal, the architecture for the TPD is based on smart card technology. The architecture

of the TPD is similar to that of the smart card, with the exception that is has di�erent

form factors that include SIM cards, Secure Digital (SD) cards, and Universal Serial Bus

(USB) memory sticks [66]. However, the InspireD project recommended that the TPD

to be under the ownership of a centralised authority (i.e. card issuer) and users get the

privilege of choosing whether to use the device or not. Users cannot request installation

or deletion of an application. Therefore, we can say that TPD was in conformance with

the ICOM framework.

2.3.7 Comparative Analysis

In this section, we analyse three questions: i) why use a tamper-resistant device?, ii) why

have a user centric ownership architecture?, and �nally iii) why do we not just opt for the

TPM (or other devices discussed above)?

In most of the scenarios, a tamper-resistant device is assumed to be in the possession of

a malicious user [5, 6]. This assumption is natural for banking, transport, and healthcare

cards. Therefore, a tamper-resistant device has a physical protection layer to avoid any

intrusion attacks. In addition, these devices require an adequate hardware protection and

self-protect mechanism to safeguard them from accidental or intentional damage. There-

fore, a tamper-resistant device provides a secure and reliable platform that can remain

trustworthy even in the possession of a malicious user. However, just focusing on the tam-

39

2.3 Candidates for User Centric Tamper-Resistant Device

per resistance is not the complete picture when we discuss the UCTD and other measures

related to application and platform design are also required to complement the hardware

level protection [67].

The rationale for emphasising the user ownership of the UCTD is: a) to enable an open,

dynamic, and ubiquitous system, b) individual developers (application providers) do not

need to convince the scheme managers (as is required, for example, in the ICOM- or TSM-

based models for smart cards [32, 68]) to gain permission to install their applications onto

a UCTD, c) UCTD users (owners) will get the choice to install or delete an application,

and �nally d) to facilitate the interoperability and scalability of the UCTD framework (i.e.

users can use their UCTDs in conjunction with any of their devices like mobile phones,

tablets, and computers, etc.).

Finally, why not just use TPM? After all it is already in the user's control, the TPM

speci�cations [18] require tamper-resistance and the TPM acts as a root-of-trust in hand-

held and traditional computing devices. The rationale behind not choosing the TPM is:

a) the TPM is designed to support the trusted computing platform initiative [18] that is

focused on the integrity of the platform, rather than on an execution platform on which a

general application code can execute, b) the design of the TPM is speci�c to a particular

platform as there are two di�erent speci�cations for traditional computers and mobile

phones: TPM [18] and MTM [19] respectively, c) the basic functionalities of a TPM are

protected capabilities, integrity measurement and reporting; it does not make decisions but

merely reports the integrity measurements to the requesting entity, and �nally d) TPM is

required to be bound to the relevant platform.

Below is the list of requirements for the UCTD architecture that we use to compare di�erent

candidate technologies in table 2.1.

1. Execution protection: De�ned commands related to security and privacy sensitive

processing are executed in a secure and reliable environment.

2. Storage protection (Volatile): The device has a secure volatile memory on the chip

to store temporary data and code related to the executing application.

3. Storage protection (Non-Volatile): The device provides non-volatile storage on the

chip.

4. Tamper-resistant: The device provides tamper-resistant protection that is based on

hardware techniques.

5. Tamper-evident: The device has the capability to detect potential tampering with

the hardware and respond in a pre-de�ned manner.

40

2.3 Candidates for User Centric Tamper-Resistant Device

T
ab
le
2.
1:

C
om

pa
ri
so
n
of

di
�e
re
nt

ca
nd
id
at
e
de
vi
ce
s
fo
r
th
e
U
C
T
D
pr
op
os
al

C
ri
te
ri
a

T
P
M

A
E
G
IS

A
R
M

T
ru
st
Z
o
n
e

M
-S
h
ie
ld

T
E
E

T
P
D

S
m
a
rt
C
a
rd

1.
E
xe
cu
ti
on

pr
ot
ec
ti
on

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

2.
St
or
ag
e
pr
ot
ec
ti
on

(V
ol
at
ile
)

-Y
es

N
o

Y
es

Y
es

Y
es

Y
es

Y
es

3.
St
or
ag
e
pr
ot
ec
ti
on

(N
on
-V
ol
at
ile
)

-Y
es

-Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

4.
T
am

pe
r-
re
si
st
an
t

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

5.
T
am

pe
r-
ev
id
en
t

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

6.
Sc
al
ab
ili
ty

Y
es

Y
es

Y
es

Y
es

N
o

N
o

Y
es

7.
In
te
ro
pe
ra
bl
e
ar
ch
it
ec
tu
re

N
o

N
A

N
A

N
A

Y
es

Y
es

Y
es

8.
D
yn
am

ic
re
la
ti
on

Y
es

N
A

N
A

N
o

N
o

N
o

Y
es

9.
U
se
r
ow

ne
rs
hi
p

Y
es

N
A

N
A

N
A

N
o

N
o

Y
es

10
.
A
dm

in
is
tr
at
iv
e
ar
ch
it
ec
tu
re

Y
es

N
A

Y
es
*

Y
es
*

N
o

N
o

Y
es

11
.
O
pe
n
de
si
gn

-Y
es

-Y
es

N
o

N
o

-Y
es

-Y
es

Y
es

12
.
Se
cu
re

ex
ec
ut
io
n
pl
at
fo
rm

N
o

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

13
.
In
de
pe
nd
en
t
se
cu
ri
ty

ev
al
ua
ti
on

Y
es

N
o

N
o

N
o

N
o

-Y
es

Y
es

N
o
te
.

In
th
e
a
b
ov
e
ta
b
le
,
�Y
es
�
in
d
ic
a
te
s
th
a
t
th
a
t
th
e
d
ev
ic
e
co
m
p
le
te
ly

su
p
p
o
rt
s
th
e
cr
it
er
io
n
,
�-
Y
es
�
m
ea
n
s
th
a
t
th
e
d
ev
ic
e
g
en
er
a
ll
y
su
p
p
o
rt
s
th
e
cr
it
er
io
n
b
u
t
th
er
e

a
re

in
st
a
n
ce
s
w
h
er
e
it
d
o
es

n
o
t
(e
.g
.
in

th
e
ca
se

o
f
cr
it
er
io
n
1
6
,
(U

)S
IM

a
re

n
o
t
re
q
u
ir
ed

to
b
e
in
d
ep
en
d
en
tl
y
ev
a
lu
a
te
d
w
h
er
ea
s
in

th
e
ca
se

o
f
E
M
V
ca
rd
s
it
is

m
a
n
d
a
to
ry
),
�Y
es
*
�
m
ea
n
s
th
a
t
th
e
d
ev
ic
e
ca
n
su
p
p
o
rt

th
e
cr
it
er
io
n
w
it
h
a
d
eq
u
a
te

d
es
ig
n
.
T
h
e
n
o
ta
ti
o
n
�N
o
�
m
ea
n
s
n
o
t
su
p
p
o
rt
ed
,
a
n
d
�N
A
�
m
ea
n
s
th
a
t
th
e
g
iv
en

cr
it
er
io
n
is
n
o
t
a
p
p
li
ca
b
le
a
s
it
is
n
o
t
th
e
d
es
ig
n
re
q
u
ir
em

en
t
o
f
th
e
d
ev
ic
e.

41

2.3 Candidates for User Centric Tamper-Resistant Device

6. Scalability: The architecture of the device is scalable so that it can provide services

to any application or application provider, and does not require authorisation/au-

thentication from a centralised authority.

7. Interoperable architecture: The architecture deals with the idea that the candidate

device (e.g. TPM, smart card, etc.) can be interoperable with di�erent computing

devices (i.e. mobile phones, tablets, and personal computers).

8. Dynamic relation: A third party can establish a direct relationship based on the se-

curity and reliability of the device. The dynamic relation requires that an application

provider can trust a device without requiring it to be part of a syndicated scheme

(i.e. TSM or one adopted by Apple App Store, etc.) and vice versa.

9. User ownership: The device is in the control of its user and she can install, delete,

and execute any application she desires.

10. Administrative architecture: The device also provides for administrative controls as

might be required in a corporate network or in the case of parental control. This

option is to accommodate di�erent deployment scenarios. For example, an MNO can

subsidise (locked) mobile phones under contract to a user; in this case, the MNO

is an administrative authority that gives the user the privilege of using the mobile

devices. The administrative architecture by no means restricts the user's freedom of

choice; therefore, it is an extension of the UCOM (section 3.6).

11. Open design: The design should not be proprietary; it should be in the public domain.

12. Secure execution platform: The device allows the execution of an application code

(from third parties) in a secure and reliable manner as long as it complies with its

requirements.

13. Independent security evaluation: As part of the design, the device is subjected to a

third party (e.g. the Common Criteria [69]) security and reliability analysis.

In table 2.1, the term smart card refers to one that supports the UCOM. Therefore, based

on the comparisons shown in table 2.1, it is easy to see that the UCOM-based smart card

architecture is suitable for UCTDs. Obviously, smart card technology requires suitable

modi�cation if it is to be used as part of the UCOM framework. Whereas, the TPM as

expected to display support for most of the UCTD requirements listed above except for

requirements twelve and thirteen, which unfortunately are the cornerstones of the UCTD

framework. Likewise, AEGIS supports seven requirements out of thirteen.

The GlobalPlatform TEE, ARM TrustZone, and M-Shield meet an equal number of re-

quirements, as their design focuses on the mobile platform that imposes requirements

similar to those of the UCTD framework. The TPD design base was the traditional smart

42

2.4 The User Centric Tamper-Resistant Device

card that supported the ICOM; therefore, it does not support as many requirements as a

UCOM-based smart card. We can say that table 2.1 also provides a comparison between

UCOM- and ICOM-based smart cards and their suitability for the UCTD initiative.

2.4 The User Centric Tamper-Resistant Device

As is apparent from the comparison in table 2.1, a multi-application smart card architecture

has the potential to serve as the underlying framework for the UCTD. The crucial point

that has to be taken into account is that smart card architecture is traditionally under

a stringent centralised control, whereas the UCTD requires a more diverse architecture

which also accommodates the user's ownership. Therefore, the concept of the User Centric

Smart Card Ownership Model (UCOM) becomes synonymous with the UCTD. In addition

to the UCOM framework for smart cards, for the UCTD initiative the form factor of smart

cards is also diversi�ed as shown in �gure 2.3.

Applications Areas

P
ri

va
cy

P

re
se

rv
in

g
Se

rv
ic

es

O
n

lin
e

B
an

ki
n

g

E-
C

o
m

m
erce

B
io

m
etric

D
ataAccess

Identification
Ticketing Security

Internet
Identity

User Centric Tamper-Resistant Devices

G
o

ve
rn

m
en

ts
B

u
si

n
es

se
s

Retail Transport

H
ea

lth
care

Online Entertainment

U
n

iversitiesBanksHotels

Mobile Network Operator

Industry Sectors

Figure 2.3: Illustration of UCTD form factors, application areas, and industry sectors

Figure 2.3 shows di�erent possible form factors for the UCTD, various applications that

it can host, and di�erent industries that can use the provided functionality. In subse-

quent sections, we brie�y introduce multiple application smart cards along with di�erent

management architectures. This discussion serves as a foundation for the concept of multi-

application smart cards, their management architecture, and potential issues with them.

Before we dive into the UCOM proposal in chapter 3, in subsequent sections we brie�y

survey di�erent management initiatives in the smart card industry and also discuss some

earlier attempts at user centric smart card management.

43

2.4 The User Centric Tamper-Resistant Device

2.4.1 Smart Card Management Initiatives

Since the beginning of the multi-application smart card initiative, there has been a debate

over di�erent possible business models. With each proposed business model, new opportu-

nities and issues have emerged. However, for the most part the business model for smart

card-based services has not changed. Nevertheless, one of the main reasons behind the

failure to welcome the evolution of business models is the primary purpose of a smart card:

to be a security token. However, we postpone this discussion until the next chapter and in

this section, we concentrate on the initial proposals for di�erent business models.

When the multi-application smart card initiative was proposed, the predominant belief was

that continuing the previously successful business model would be the key to its success.

It was envisaged that, like single-application smart cards, multi-application smart cards

would also be entirely under the control of the card issuer [14]. The card issuers would

have supervisory authority over their smart cards and would decide which applications

should be installed or deleted. Other companies (e.g. application providers) wishing to

share the platform with the card issuer would have to negotiate and agree on their terms

and conditions. This might be suitable for certain business models and industries, but the

failure of such architecture to achieve wide-scale deployment suggests that in the past it

did not enjoy overwhelming support from the business community.

An alternative ownership model could be to allow smart card users to purchase a smart

card. They could then contact the di�erent service providers (companies which used smart

card-based applications for the services they o�ered), acquire their applications and install

them on their smart cards. However, some issues [14, 45] were anticipated a decade ago for

this possible ownership model, and to some extent most of them are valid concerns [11].

One such issue is whether the card issuers (application providers) will be willing to give

their applications to a platform for which they had no operational or security assurance.

This proposal can be referred to as the �open card� initiative discussed in section 2.4.2.1.

In addition, Deville et al. [14] suggest the possibility of having a dual scheme in which

users can install non-security critical applications onto their smart cards but the card is

issued/controlled by a centralised authority, the card issuer.

Another scheme proposed by Deville et al. is to have a certi�cation authority, which

evaluates and guarantees the security and reliability of the card platform and the installed

applications. This model is to some extent deployed by the Multos [29] architecture and

it has the potential to be incorporated in the TSM-based architecture discussed in 2.2.1.

Since the multi-application smart card initiative was �rst proposed, the only surviving and

successful model has been the issuer control model, which we term the ICOM. However,

44

2.4 The User Centric Tamper-Resistant Device

recently a substantial number of trials [41] have been made of the ownership model that

includes a certi�cation authority (similar to the model proposed by Deville et al. above),

which is in fact an extension of the ICOM. The certi�cation authority in these trials is

termed the TSM (section 2.2.1). The second proposed model (i.e. open card) was always

considered highly insecure, unreliable, problematic, and not feasible from a commercial

standpoint [11, 14, 45, 46, 70]. Nevertheless, the open card proposal was the �rst concrete

e�ort to introduce user centricity in the smart card industry, later on which we based the

UCOM architecture.

2.4.2 User Centricity in the Smart Card Industry

In this section, we discuss the open card and virtual smart card initiative that (to some

extent) gave control of the smart card to its user.

2.4.2.1 Open Card Initiative

It is di�cult to give an exact de�nition of open cards. In general, however, the term

�open card� is used to refer to blank smart cards that a user can purchase from a supplier.

After purchasing the smart card, the user can perform the role previously performed by

the card issuer and either accept or buy applications from di�erent application providers.

These applications can be installed onto the user's card and used to access any associated

services. The whole card is under the user's control similar to the card issuer in the ICOM.

Therefore, we can say that the open card initiative is an ICOM framework with the user

replacing the card issuer.

Traditional smart card frameworks like Java Card, Multos, and GlobalPlatform were con-

sidered suitable for such a usage scenario. Most of these frameworks were built to support

the ICOM, and by making the user an issuer, they did not require any substantial changes.

However, as implied by Pierre Girard [46], such a mechanism would require an application

provider to issue their application to users to install on their smart card. This would require

the application provider to trust user not to reverse engineer or corrupt the application.

Such a scenario does not ensure the security, protection of intellectual property, and re-

liability of an application, as an application provider does not have any control on the

destination smart card that hosts its application. The main reason for this lack of control

on the part of the application provider was the unavailability of any guarantees regarding

the security and operational behaviour of the smart cards. Similar security issues are raised

by Chaumette and Sauveron in [70] and they make the open card initiative in its current

form unsuitable for the user centric framework.

45

2.4 The User Centric Tamper-Resistant Device

2.4.2.2 Virtual Smart Cards

One of our proposals concerning the smart card ownership architecture proposes a Virtual

Smart Card (VSC). The VSC enables a user to utilise a service by connecting to an

associated remote application, based on her location information [68]. The VSC does not

require the installation of an application onto a secure element, and this removes the need

for implicit trust and ownership of the platform. The remote application is hosted on a

Remote Application Server (RAS) that is in total control of a Service Provider (SP) such as

a bank or transport operator. The secure element supports the VSC model independently

of its owner (cardholder or user). The security of the secure element is ensured by the

manufacturer, making the ownership issues irrelevant in the VSC model.

The secure element only has a secure binding with an RAS that enables the mobile phone

to connect with it and use the associated services. The mobile phone connects through the

internet provided by the mobile operators, as soon as the user enters the associated service

zone. The service zone is identi�ed with the aid of the Global Positing System (GPS) [71],

in conjunction with the published Service Access Points (SAPs).

The customers are only required to carry their mobile phones, and access to services (i.e.

banking, and transport, etc.) would be made available on demand. The location of a user

plays an important role in this model. The secure element decides whether to connect with

an RAS, depending upon the services available in close vicinity. The VSC framework is

illustrated in �gure 2.4 and described as below:

Mobile Phone

Secure Element

SCWS

Behavior Analyzer

GPS Module

NFC Interface

NFC Interface

Handler

Network

Connection

Handler

Servicer Provider

Remote Application

Enrolment Server

(RAES)

Remote Application

Server (RAS)

Application Services

Access Server

(RSAS)

Registration

(Security Parameter)

Request/Response

(Req/Res)

Bindings

Usage Pattern

Req/Res

Secure

Storage

Req/Res

Event

Event Triggering

Software

GPS Data

Application Connection

 Request

Contactless Carrier

Internet

Enrolment

Access

Mobile

Network

Operator

Verification/Services Authorisation

Service Access Point (SAP)

Figure 2.4: Location based virtual smart card architecture

The mobile phone provides an interface that enables a user to enter an SP's registration

credentials. The SP's registration credentials are issued by the relevant SP after the user is

registered with them. From the SP's registration credentials, the secure element will initiate

46

2.5 Case Studies

an enrolment process with the Remote Application Enrolment Server (RAES). The RAES

enables the secure element to establish a secure binding for the Remote Application Server

(RAS). The secure binding will be used in future to establish a connection with the RAS

to access the remote application(s).

As a user enters the vicinity of a SAP, the event-triggering software sends an alert to

the behaviour analyser. The behaviour analyser calculates the probability of the user

accessing the service. If the user is predicted to use the service, the behaviour analyser

requests the Smart Card Web Server (SCWS) to establish a connection over the internet

with the corresponding RAS and act as a bridge between the terminal and the remote

application(s).

When the user waves the mobile phone near the SAP to access service(s), the SAP might

challenge the mobile phone to authenticate the user (application). The challenge is sent to

the remote application by the secure element. Once the remote application has authenti-

cated the user, the terminal will provide the requested service(s).

2.5 Case Studies

In this section, we discuss a non-exhaustive list of case studies where UCTD can provide

�exibility, and ubiquity to the existing security and privacy architectures.

2.5.1 One Card - All Services

User ownership enables a user to establish relationships with SPs ubiquitously, which is

referred as dynamism. Consider a scenario in the proposed TSM model in which a user who

travels extensively around the world (for business or pleasure) acquires a smart card from

a TSM in her country of origin. When she travels, she wants to access services that are

speci�c to the visiting country, but she cannot download them onto her smart card. The

reasons behind this might be that the services in the visiting country are not associated

with (i.e. are not part of) the TSM from which she acquired the smart card. To further

explain the scenario, consider Oyster Card [72], which a user can use in London to access

local transport services but at the time of writing, it cannot be used as an e-purse. In

contrast, the Octopus Card [73], which a user can use in Hong Kong for local transport

services, can also be used at groceries, confectioneries, and restaurants. Our user from

London would still have to queue to get the Octopus Card when she reached Hong Kong.

As we pointed out, she travels extensively around the world and she may not derive a great

deal of bene�t from the TSM architecture [42, 74].

47

2.5 Case Studies

In summary, in the UCTD framework the user does not have to acquire a new smart card

to gain access to new services. The open and dynamic nature of the UCTD allows a user

to install or delete any application to which she is entitled, enabling her to download any

application when she reaches the visiting country and to continue using the same device.

This dynamism is a cornerstone of the UCTD design philosophy, enabling users to match

the product to their requirements rather than adapt their requirements to the product.

2.5.2 Authentication Gateway (Single Sign On)

An authentication gateway provider (e.g. Microsoft Passport, Liberty Alliance) can issue

an application to its registered users. The application is downloaded onto the user's UCTD.

In subsequent sessions, the user can utilise the UCTD to provide an entity authentication

service while accessing the gateway provider's services. In addition to the authentication

data, the installed application on the UCTD can also provide secure storage for the user's

related digital identi�ers (i.e. unique data items to identify the user), privacy, and secu-

rity policies. In such a scenario, the authentication gateway provider does not have to

store user-related sensitive data, as this data can be decentralised and stored on the ap-

propriate UCTD. Furthermore, authentication gateways can be implemented to use the

biometric data of the user. The biometric data can be stored and matching processes

can be performed on the UCTD, thus providing a decentralised architecture for biometric

identi�cation.

2.5.3 E-Commerce

The UCTD can be used to provide a dynamic, robust, secure, and reliable authentication

mechanism for e-commerce transactions. The model currently propagated for e-commerce

by Visa and MasterCard is referred as 3D secure [75], and is a glori�ed single-sign-on

(SSO). In this model, a user registers with a bank that in return issues her a smart card.

The user then opts-in for the 3D secure by setting up her credentials (i.e. password or

pass-phrase). During online shopping, merchants can authenticate the user by opting for

the 3D secure that enables the card issuer to verify the user (i.e. user's consent) for the

concerned transaction.

In place of using passwords or pass-phrases, a bank can issue its e-commerce application

that is designed as a SSO application (similar to the one discussed in the previous section)

and issue it to individual customers. During e-commerce transactions (and for online

banking), the user plugs the UCTD into her intended platform (as discussed before, a

UCTD can be in any form-factor and pluggable to any computing device). The merchant

can then facilitate the communication between the user's UCTD and the bank (that has

48

2.5 Case Studies

issued the application). The bank can opt for certain user credentials (e.g. PIN, password,

or biometric) that the bank's application on the UCTD can ask the user to authenticate

herself. Therefore, authentication details do not need to be communicated over the internet.

The UCTD then provides dynamic authentication and if required can provide a transaction

certi�cate to the merchant as is done in POS transactions [9], e�ectively avoiding poor

technical-security and security-usability along with privacy issues discussed in [76]�[78].

2.5.4 Online Gaming

In April 2011, the security breach of the Sony PlayStation Network and Qriocity services

that revealed private information regarding an estimated 70 million users [79] was in the

news. This breach has shown that big networks that store user's private data are the

prime targets for malicious users. In this section, we are not going to provide a solution to

the problems faced by Sony in this security breach but look at how a UCTD can reduce

the clustering of large data at one point (i.e. on SP's servers) which provides a potential

motivation for attack (i.e. economics of attack2) [80].

Therefore, for this case study, we consider a Company A that o�ers an online gaming

platform, and games store to its customers. The objectives of Company A are: (1) to

ensure that customers can be uniquely identi�ed and their credentials can be validated,

(2) to ensure customers get the services for which they are authorised, and �nally (3) to

ensure that customers can make purchases while being logged onto the games store or

online-gaming platform.

Company A o�ers an application that a user can download onto her UCTD. The down-

load application is personalised to the user. It has the user's name, email address, and

postal address (if necessary). The user identity at Company A's server is identi�ed by a

unique user identity (i.e. it is a pseudo-identity that does not have any obvious link to

the user). The user has her password stored on her UCTD rather than on Company A's

server; therefore, when the user tries to access Company A's resources, she provides her

password to the UCTD. We do not delve into the details of how the user identi�cation and

authentication will be carried out using a UCTD in our case study, but similar mechanisms

are already in operation, for example the EMV Dynamic Data Authentication (DDA) or

Combined DDA (CDA) mechanisms [9] (i.e. card transactions at a POS). This will allow

Company A to identify and authenticate their customer. In addition, the service privileges

associated with the user are also stored in the application. Therefore, Company A does

not have to store any of these details at a centralised location as they are already stored

on a tamper-resistant device as part of the Company A's application.
2Cost-bene�t comparison of a potential attacks and outcome from it is referred as economics of attack.

49

2.6 Summary

Furthermore, to perform online monetary transactions the user does not have to register her

credit card with Company A which would then have to invest a huge amount to safeguard

its security. In our case study, the user also has a banking application (issued by her bank)

installed on the UCTD. When a user makes a purchase online, the UCTD application of

Company A will communicate the purchase request to the banking application that will

then process the transaction (e.g. 3D-Secure [75] but it asks the user to enter her password,

not at the bank's website, but to the UCTD application). This removes any need to register

the card on Company A's website.

In this case study, we have decentralised the data storage that is related to the user's

identi�cation and online payment (i.e. credit card details). It is comparatively easy to

embed a (small) secure application and get it certi�ed by an independent third party

rather than having to implement and secure a large database of user's credit card details.

We do not suggest that in our proposed case study all attacks are eliminated. Adversaries

can perform attacks, but the �nancial rewards of such attacks are limited and in comparison

less attractive than the invasion of a centralised database (in the breach of Sony's Servers

in April 2011, data related to approximately 70 million users was compromised).

2.6 Summary

In this chapter, we discussed the motivation behind the User Centric Tamper-Resistant

Device (UCTD). The motivation came from three distinct but continuously converging

technologies: smart cards, hand-held devices, and general purpose computing platforms.

We brie�y discussed di�erent architectures for tamper-resistant devices that can be con-

sidered as possible candidates for the UCTD architecture. We then compared these archi-

tectures with the smart card technology in di�erent stated aspects of the UCTD. Finally,

we discussed the UCTD and its requirements that compel modi�cation to certain aspects

of smart card technology. We brie�y introduced the concept of multi-application smart

cards, its related management models, and its issues. This was followed by a description of

selected case studies that utilise UCTDs to provide security and privacy services to existing

frameworks.

50

Chapter 3

Smart Card Ownership Models

Contents

3.1 Introduction . 52

3.2 Issuer Centric Smart Card Ownership Model (ICOM) 53

3.3 Frameworks for the ICOM . 57

3.4 User Centric Smart Card Ownership Model (UCOM) 65

3.5 Security and Operational Requirements of the UCOM 70

3.6 Coopetitive Architecture . 76

3.7 Summary . 78

In this chapter, we open the discussion with a description of the ICOM framework and the

security and operational assumptions adopted in the ICOM, along with a short introduction

to the widely deployed smart card frameworks which support the ICOM. We then provide an

overview of the User Centric Smart Card Ownership Model (UCOM) and its major stake-

holders. The discussion then moves to the security and operational requirements of UCOM

stakeholders. We then extend the UCOM model to include an administrative authority that

manages the UCTD while providing the user with freedom of choice. This model is referred

to as the Coopetitive Architecture for Smart Cards (CASC).

51

3.1 Introduction

3.1 Introduction

The ICOM has played a major role in the spread of smart card technology to every aspect

of modern life. Card issuers see smart cards as a conduit for customer loyalty, rather than

as a mere electronic device used to access services. Smart cards have become a market

presence, a means of customer outreach and even in certain circumstances a status symbol

(i.e. privilege cards). Given all the above, it is obvious why surrendering control of smart

cards is a di�cult decision for any organisation to contemplate. In this chapter, we describe

the ICOM architecture along with prominent platforms that support it.

The aim of a UCTD is to provide security, trust, and privacy services while being in-

teroperable with diverse computing devices (e.g. computers, mobile phones, and tablets).

The ownership model for the UCTD has to strike a balance between the user's freedom

of choice and the SP's requirements of security, intellectual property protection, control,

and reliability of their application. For this purpose, we propose the UCOM because it

takes into account the ownership requirements of the UCTD framework. Therefore, in this

chapter we discuss the UCOM architecture, its main stakeholders, and their requirements.

In some cases, there is a need to have an administrative authority that manages a com-

puting platform. Two examples of such an authority can be parents and MNOs. On a

computing platform used by children, the respective parents would like to manage the

overall platform while giving the children the right to install or delete any application

that does not violate the policy de�ned by the parents. Similarly, an MNO might provide

a mobile handset to a customer in return for signing a �xed term contract. During the

contract period, the MNO might be involved with the UCTD that came with the mobile

handset and they might want to have the administrative rights to it. We propose a model

that accommodates the requirement of administrative authority on a UCTD (smart card),

while adhering to the UCOM. Such a model will protect the security and privacy of the

user, while implementing the usage policy de�ned by the administrative authority. We

refer to this model as Coopetitive Architecture for Smart Cards (CASC), which is also

discussed in this chapter.

Structure of the Chapter: Section 3.2 discusses the ICOM and its advantages and disad-

vantages. In section 3.3, we brie�y introduce prominent platforms that support the ICOM

framework. In section 3.4, we describe the ICOM and its major components. The security

and operational requirements of individual UCOM stakeholders are discussed in section

3.5. The extension to the UCOM framework to include provision for an administrative

authority is described in section 3.6. Finally, we conclude the chapter in section 3.7.

Before diving into the chapter, we want to explain that the discussion of di�erent man-

agement models in the previous chapter and in this chapter is necessary to appreciate our

52

3.2 Issuer Centric Smart Card Ownership Model (ICOM)

Smart Card
Manufacturer

Smart Card
Issuer

Service Access Point

Smart Card
User

1. Smart C
ard Orderd

2. Smart C
ard Delivered

6.
 R

es
po

ns
e

5.
 R

eq
ue

st

3. Smart Card Issued

4. Service Request

7. Service Response

Figure 3.1: Overview of the Issuer Centric Smart Card Ownership Model (ICOM)

contribution. Di�erent business, management, and ownership models in the smart card

industry have shaped how the technical mechanisms are implemented. We have to consider

the changes in perceptions about control and ownership of smart cards in the smart card

industry to justify the modi�cations that we propose in this dissertation.

3.2 Issuer Centric Smart Card Ownership Model (ICOM)

In �gure 3.1, smart card issuers are companies (e.g. in the banking, transport and telecom

sectors), which use smart cards to provide services to their customers. The card issuers

order smart cards from a card manufacturer. The card manufacturer delivers them to the

card issuer, which in turn issues them to individual cardholders. A cardholder presents

her smart card at a Service Access Point (SAP) to use the services provided by the card

issuer. A SAP can be an ATM (Automated Teller Machine), a mobile phone or a simple

card reader; it acts as a gateway to a card issuer's services.

In this framework, the control of the issued smart cards lies with the card issuer, who

decides what application(s) will be installed on the cards. If a card issuer has a business

agreement with any other company, then the cardholder may get a smart card with multiple

applications, as in the case of the Barclaycard's OnePulse card [81]. Barclaycard1 is the

card issuer and it has an established business relationship with Transport for London2

(issuer of Oyster cards [72]). Therefore, with its bankcard, Barclays provides the Oyster

card functionality.
1Barclaycard: Barclaycard is a trading name for the banking card sector of Barclays Bank PLC, United

Kingdom. Web address: http://www.barclaycard.co.uk
2Transport for London (TfL) is a publicly owned company that provides transport services to Greater

London, United Kingdom. Web address: http://www.tfl.gov.uk

53

http://www.barclaycard.co.uk
http://www.tfl.gov.uk

3.2 Issuer Centric Smart Card Ownership Model (ICOM)

The ICOM requires a trusted centralised authority to be set up which will have supervisory

authority over smart cards. This centralised authority can be either the card issuer or a

certifying authority. For convenience, we use the term card issuer to refer to any centralised

authority in regard to the ICOM. The role of the authority is to enforce the security policy,

which enables all the applications on a smart card to behave in a prede�ned manner. The

prede�ned manner is negotiated between the application provider concerned and the card

issuer. This agreement de�nes the parameters under which the application provider may

access di�erent services on the card issuer's smart cards. Furthermore, the card issuer will

have the authority to grant or deny access to any particular application provider.

Smart cards in the ICOM are acquired by the card issuer, which is in a position to choose

their operational and security functionality. This gives assurance to the purchasing com-

pany (the card issuer) that the smart cards that carry its applications are secure to their

required standard. If the card issuer required a third party evaluation of the smart card

product, the card manufacturer might provide the Common Criteria [69] evaluation cer-

ti�cate (a paper based certi�cate) as a means of assurance.

To summarise the ICOM framework, the privileges or rights that a card issuer receives as

part of the ICOM are listed below:

1. Privilege to install an application.

2. Privilege to delete an application.

3. Control over card issuance to individual users. This enables the issuers to decide

who receives their smart cards (and e�ectively control their application).

4. Power to de�ne the security and operational requirements for the smart cards.

5. Enforcement of the security policy.

6. Control over who can access their services using the issued smart cards.

The security and operational assumptions discussed above are the cornerstones of the

ICOM. These assumptions have given a strong impetus to the ICOM framework, partic-

ularly in the business community. Later in section 3.4, we discuss what privileges the

UCOM takes from the card issuer and gives to individual users. This will give an indica-

tion of the di�erence between the ICOM and UCOM, and provide the rationale for suitable

modi�cations to the ICOM platforms discussed in section 3.3.

54

3.2 Issuer Centric Smart Card Ownership Model (ICOM)

3.2.1 Advantages of the ICOM

Since the inception of smart card technology, issuers have adopted the ICOM as their

model of preference for smart card based services. The advantages of this approach are

presented below:

Issuance Control. Only a legitimate issuer (organisation) can o�er smart cards to its

customers. The card issuer controls the availability of the cards and the card/application

management lifecycle. The centralised control of applications and the card management

lifecycle stand out as crucial elements in the acceptability of the ICOM. Centralised control

has meant that the card issuer treats smart cards in a way similar to the way business

assets are treated. Therefore, issuers preferred smart cards to be under their control and the

ICOM �tted well with such commercial attitudes. In theory, by ensuring centralised control

an issuer can increase the revenue streams by renting out space in a multi-application smart

card. However, although such ideas are considered workable to some extent, the adoption

of this model is not widespread.

Security Control. A smart card is often deployed as a security token, which provides

secure and reliable access to certain services. Most organisations prefer to retain control of

the security mechanisms for access to their services, which are implemented on a smart card.

This ensures that only the applications installed on their (issued) smart cards can access

sanctioned services, which maintains the provided services. As the installed applications

are designed by the card issuer, it is considered safe to connect with the services provided

by the card issuer. Any compromise of the smart card's security will result in loss for

an organisation whose application is installed on the smart card, both �nancially and in

relation to the brand image. To remain secure and con�dent that the smart cards meet

an organisation's security requirements, the organisation will prefer that the cards remains

under its control as provided by the ICOM.

Modi�cation Control. Once a smart card is issued, only its issuer or trusted partners

may modify the installed applications. Therefore, a malicious user can neither install a new

application nor modify existing applications. As the installation, modi�cation or updating

of an application is under control of either the card issuer or their trusted partners, it

can be assumed with con�dence that no application on the smart cards will be malicious.

This assumption that centralised control guarantees security led to a realistic but simple

approach to numerous smart card security mechanisms; such as the smart card �rewall

[82], application installation mechanism/protocol [83], virtual machine [84] and platform

assurance [56, 85, 86].

55

3.2 Issuer Centric Smart Card Ownership Model (ICOM)

Communication Control. A smart card can communicate on di�erent interfaces (e.g.

contact, contactless) and protocols as web enabling protocols [87], T1, T2 [88], and NFC-

WI [89]. The issuer can regulate the mechanism through which an application on their

smart card can communicate with o�-card entities. For example, the Oyster application

on the Barclaycard OnePulse card will not communicate with any o�-card entity through

a contact based interface. However, it does communicate via a contactless interface.

Marketing and Customer Loyalty. The plastic card surface is considered to be mar-

keting real estate by the card issuers. For most deployments, the card surface is used to

print the company names and logos. In the banking industry for example, a typical smart

card will have the issuer bank's name and logo. It might also have the insignia of the

payment clearing system (i.e. VISA, MasterCard or American Express, etc.). In addition,

the concept that having a smart card with a particular brand translates into the customer

loyalty to the organisation has its roots in the initial smart card deployment (i.e. Dinner's

Club card). Encouraging customer loyalty de�nitely had its bene�ts in some industries like

banking, but it might be less bene�cial in industries like mobile telecom here the smart

card module is hidden inside the mobile phone.

3.2.2 Drawbacks of the ICOM

The ICOM has been successfully deployed over the past decade, but it has minor drawbacks

that are listed below:

Card Handling. Usually, an individual will require a number of smart cards3 [91] for:

train or bus journeys, mobile phones, o�ce building access, internet/o�ce-network access,

banking/shopping and health services, and other purposes. With increasing numbers of

industries relying on smart cards to provide their services to customers, the customer's

wallet is becoming crowded with smart cards. Users of smart card-based services already

have to carry a large number of smart cards and with each new service they enrol for,

they get more. To maintain and manage these cards sometimes becomes troublesome to

cardholders who have to use diverse services.

Stringent Model. The concept of the smart card as a medium for promoting customer

loyalty and as a marketing avenue took centre stage in business strategy; di�erent card

issuers started to consolidate their customer base and this in turn created a situation in
3A Survey [90] conducted in 2008 by Federal Reserve Bank of Boston showed that an average American

consumer has 5.4 banking cards (i.e. prepaid, credit, and debit cards).

56

3.3 Frameworks for the ICOM

which it was di�cult to bring di�erent organisations to share the same smart card platform.

The change from perceiving the smart card as a security token to seeing it as a loyalty and

marketing medium imposed additional restrictions on it. Therefore, users cannot choose

to put an application on their smart cards; the privilege of an installing applications was

zealously and solely retained by the card issuers, leaving users with a restricted use of the

smart card platform.

Service Roll-out. With the ICOM, a card issuer has to acquire smart cards from a

card manufacturer and then either develop application(s) itself or acquire them from the

card manufacture or a third party. Once the cards are acquired and they have the card

issuer's application, they are posted to individual customers. This process is cyclic: the

card issuer may have to reissue new smart cards because of expiry of old ones or it may

want to introduce new services or meet new regulatory/legal requirements. Furthermore,

it takes a long time to o�er new services in the ICOM, since an issuer has to order new

smart cards and install new applications on them and then has to issue these smart cards

to individual customers. Generally, new services are issued gradually at the time when the

issued smart cards are nearing the end of their lifecycle.

Costly. With the ICOM the cost for card issuers is incurred in two ways. The �rst

is acquiring smart cards and getting them certi�ed4 (third party evaluation of security)

to meet any regulatory, standardisation or legal requirements. The second is the loss of

possible revenue in the service roll-out period or in the process of issuing a replacement

smart card. For example, if a cardholder loses a smart card and requests a new card it

usually takes from three days to a week (or sometimes more) in the case of the banking

industry before he/she receives it. In industries like telecom and transport the user might

acquire the card immediately from designated outlets. However, smart cards deployed in

the health sector or national identity cards might have longer re-issue waiting periods.

During this period, the customer cannot use the service(s) of the particular card issuer,

and this might result in loss of revenue and inconvenience for the user.

3.3 Frameworks for the ICOM

In this thesis, we analyse in some detail the di�erent components of the ICOM frameworks

as required, to contrast them with those of the UCOM. For articulation of our arguments,

we are not going to dive into the technical details of each ICOM framework in subse-
4Security Certi�cation: For certain industries like banking, smart cards o�ered by the card manufac-

turers have third party security evaluation as a standard product requirement. However, other industries
like telecom and transport often does not require such evaluations.

57

3.3 Frameworks for the ICOM

quent sections. We leave in-depth analysis to later chapters where they are discussed and

compared alongside the UCOM-based proposals. Therefore, in this section we will brie�y

introduce the best-known ICOM-based smart card architectures.

3.3.1 Multos

In 1997, a consortium of companies (MAOSCO) supported the development of a Smart

Card Operating System (SCOS) called Multos [29], with one aim: to provide a high level

of security and reliability. They required a single operating system which could be imple-

mented on any silicon chip and which had an application written for it that was independent

of the underlying hardware. Their vision anticipated the creation of a multi-application

smart card. From the beginning, Multos was developed as a secure multi-application

SCOS that achieved ITSEC5 Assurance Level E6 [93](comparable to the Common Criteria

EAL7 [69, 94]), which is the highest level attained by any SCOS [6].

The MAOSCO Consortium de�nes the Multos speci�cations, and is the license issuer and

operator of the certi�cation service for Multos. It has made most of its speci�cations avail-

able to the SCOS developers provided they sign an NDA (Non Disclosure Agreement), and

pay licence and royalty fees. A restriction in the Multos speci�cation is its in�exibility with

respect to adding new Application Programming Interfaces (APIs). The license agreement

with Multos restricts smart card manufacturers from enhancing their product by including

new APIs to the speci�cation.

With the advent of the Java Card technology, a Multos card division called StepNexus [95]

has made available the Multos SmartDeck environment free of charge [96]. The Multos

SmartDeck is a complete high-level development environment which enables application

developers to design applications easily for Multos-based cards.

The Multos card architecture is illustrated in �gure 3.2. At the top in �gure 3.2 is the

application layer that contains three applications (namely A, B, and C); each application

has its own space, which is protected by the card's �rewall mechanism. The next layer is

the Application Abstract Machine (AAM), which also includes di�erent APIs. The Multos

operating system presides over the hardware and provides services such as communication,

memory management, the handling of loading and deleting of applications, together with

APDU commands and responses. At the bottom of the �gure is the hardware, which

supports the SCOS. Functions that access this layer are written in native language, but

are accessed by a fully speci�ed virtual machine, which is the same no matter what the

hardware.
5Information Technology Security Evaluation Criteria (ITSEC) is an international security assurance

evaluation criteria [92].

58

3.3 Frameworks for the ICOM

Smart Card Hardware

Multos Operation System

Application Abstract Machine

Multos Firewall

M
u

lt
o

s
 F

ir
e

w
a

ll

M
u

lt
o

s
 F

ir
e

w
a

ll

Application

A

Application

B

Application

C

A
p

p
lic

a
ti
o

n

S
p

a
c
e

P
la

tf
o

rm

S
p

a
c
e

Figure 3.2: Generic representation of the Multos card architecture

The application installation and deletion mechanism proposed by the Multos speci�cation

has stringent centralised architecture [97]. Every time an application is to be installed, an

application provider will request an �Application Load Certi�cate� from the Multos Cer-

ti�cation Authority through the appropriate card issuer. Because it has such a stringent

architecture and a mandatory requirement for a crypto co-processor, this highest security

evaluation level smart card platform is not considered the industry's leading speci�cation.

This title goes to the Java Card technology, which has proliferated in the smart card indus-

try because of its �exibility and robustness, and its readily available pool of experienced

developers.

3.3.2 Java Card

By 1990, Sun Microsystems had started a project to develop a language that generated

a program once that could then be executed on any micro-controller. Their only consid-

eration was the micro-controllers used in electronic appliances (i.e. toasters, washing and

co�ee machines, etc.). However, with the emergence of the internet came an increasing

need to deliver rich contents on the heterogeneous devices connected to the internet. The

Java language that accommodated these changes was invented by Sun Microsystems and

it can be adapted to the ever-growing personal computer market. Soon Java became a de

facto standard language for internet applications.

In 1996, engineers at the IT technology provider Schlumberger at Austin (TX, USA) de-

veloped the Java Card, which is a smart card that supports a subset of Java language [98].

When this idea was made public, the smart card industry immediately became interested.

Later, Sun Microsystems arranged a meeting to gather input and explore the dynamics

of the smart card industry. All the major smart card manufacturers attended this meet-

ing. This was the beginning of the Java Card forum, which is an independent forum for

collaboration between di�erent industrial players. Membership of the Java Card forum

59

3.3 Frameworks for the ICOM

includes smart card manufacturers and application/solution providers. This is another im-

portant aspect of Java Card technology, which di�erentiates it from Multos in its constant

consultation with the industrial players.

Due to these consultations, the Java Card technology has changed considerably. The Java

Card has progressed from the initial release which supported only limited functionality (i.e.

primitive data types such as boolean, byte and short) to the more recently released Java

Card speci�cation 3.0 [16] which includes the TCP/IP stack [99] along with SSL/TLS [100]

and HTTP [101] /HTTPS [16, 87, 102]. The Java Card can behave as an internet device

in either a server or client capacity. The architecture of a Java Card is illustrated in the

following �gure 3.3 and is described below:

Smart Card Hardware

Java Card Runtime Environment (JCRE)

Java Card Firewall

Java Card Virtual Machine

System Classes

Applet Framework API

Package A

Smart Card Operating System (SCOS) Native Code

Servlet APIs

Java Card Classic APIs

Strict Java Card Classic Virtual Machine

Package B

Classic

Applet

A1

Classic

Applet

A2

Classic

Applet B1

Package C Package D

Extended

Applet C1

Extended

Applet C2
Extended

Applet D1

Package E Package F

 Servlet

E1

Servlet

E2
Servlet

F1

Java Card Connected Framework Java Card Classic Framework

Application A Application BApplication C Application DWeb Application E Web Application F

Figure 3.3: Generic representation of the Java Card 3 architecture

In comparison to Multos, Java Card is better termed a platform rather than an operating

system. Due to this distinction, above the smart card hardware layer, Java Card Virtual

Machine (JCVM) and native methods are all available. The native methods section can

also be considered a native operating system developed by each card manufacturer to sup-

port its implementation of the JCVM. Furthermore, as Java will take longer to execute

than the native code, the native method segment is also the crucial point for implementing

the cryptographic algorithms. Above this layer, we have the Java Card Runtime Envi-

ronment (JCRE), which provides di�erent services in the shape of Application Program-

ming Interfaces (APIs) and System Classes to the residing applications. The Java Card

APIs provide a well-structured framework to access the system-level services in a secure

and reliable manner. The segregation on a Java Card between platform-application and

application-application is enforced by the Java Card �rewall.

The Java Card speci�cation leaves decisions regarding the mechanism for installing, delet-

ing, updating, and managing multiple applications on a smart card to the card manufac-

turer. The industry appreciated this move, as it allowed greater �exibility than Multos

60

3.3 Frameworks for the ICOM

which is rigid in comparison. However, it was soon realised that for application manage-

ment tasks it would be bene�cial for all the players in the smart card industry to have a

uni�ed speci�cation. Sun Microsystems did not get involved in de�ning such a speci�cation

but gave space to the industry's players to decide on a speci�cation. The proposed appli-

cation management framework came in the form of the GlobalPlatform card speci�cation,

which is the topic of the next section.

3.3.3 GlobalPlatform

Towards the end of the 1990s, the smart card technology was being adopted on a large scale.

It was soon realised by card manufacturers, card issuers, and application providers that to

manage such a complex and technically complicated infrastructure, it would be bene�cial to

share a uni�ed and universal card management system which freed them from the demands

of the smart card hardware, platform, application service and card issuer's requirements.

Visa gave the impetus to this idea by transferring their Open Platform initiative to a

consortium of card issuers, application providers, and smart card manufacturers, later

known as GlobalPlatform.

GlobalPlatform is a non-pro�t organisation which provides a vendor-neutral speci�cation

of di�erent components of smart card-based business operations. The GlobalPlatform card

speci�cation provides a standardised view of smart cards, card terminals, and smart card-

based infrastructure management systems. The speci�cation which is of most relevance

to this thesis is the GlobalPlatform card architecture. We provide detailed descriptions of

the di�erent components of the GlobalPlatform card speci�cation as required throughout

the thesis to clarify our discussion.

The GlobalPlatform card speci�cation is a card architecture-neutral speci�cation which

does not require/specify any particular Runtime Environment (RTE). However, at present

most smart cards which support the GlobalPlatform speci�cations actually call for a Java

Card Runtime Environment (JCRE). Technically, it is possible to have GlobalPlatform

architecture on a Multos card, but at the time of writing this thesis, the author was not

aware of any such implementation in the public domain. Nevertheless, as the Multos card

already has a well-de�ned application management framework, there is no particular need

to complement a Multos card with the GlobalPlatform implementation.

The architecture illustrated in �gure 3.4 has applications from the card issuer, application

providers (partners of the card issuer) and a global service application, which provides ser-

vices to all the applications installed on the smart card. The applications are managed and

controlled by the mechanism of security domains. A security domain has an association

with one of the application(s) which it manages and enforces the security policies of the

61

3.3 Frameworks for the ICOM

OPEN and GlobalPlatform Trusted Framework

GlobalPlatform API

Card Issuer’s

ApplicationApplication

Provider’s Security

Domain

Card Issuer’s

Security Domain

Smart Card Runtime Environment (SCRT)

Smart Card Hardware

System Classes

Application Provider’s

Application

Global Services

Application
Controlling Authorities

Security Domain

Figure 3.4: Generic representation of the GlobalPlatform card architecture

owner of the domain. The security domain also provides separate cryptographic keys to

the card issuer and the application providers to manage their respective domains/appli-

cations. The security domain also manages key handling, encryption, decryption, digital

signature, and the veri�cation of (hosted) applications (i.e. only at the time of installa-

tion [30, 103]). The card issuer generates the security domain (application domain) on

the card and then gives control of the application domains to the card issuer's partners

(application providers). These application providers can then manage their applications

independently of the card issuer's involvement.

The OPEN framework de�ned in the GlobalPlatform speci�cation handles/controls the

downloading and installation of applications. The Trusted framework enables di�erent

services such as inter-application communications; however, the �GlobalPlatform Card

Security Requirement Speci�cation� [1] states that GlobalPlatform relies on the underlying

platform's (e.g. Java Card, and Multos) implementation of the �rewall mechanism..

The crucial component of the GlobalPlatform card speci�cation is termed the Card Man-

ager. This is a generic term used for such services as OPEN, the issuer security domain and

Cardholder veri�cation method services. The Card Manager actively controls the smart

card environment. Furthermore, the smart card issuer cannot access any of the application

domains because they are protected by the cryptographic keys (access keys) and these keys

are shared only between an application domain and an application provider. However, if

a particular application provider violates the agreement with the card issuer, or they no

longer have a partnership to provide services, then the card issuer can block or delete the

application provider's application.

In this section, we have provided a short description of the GlobalPlatform card speci�ca-

tion which in no way de�nes all the functions of the speci�cation. However, we continue to

refer to the GlobalPlatform card speci�cation in subsequent chapters and give detailed de-

scriptions of its components as required. It is noteworthy that GlobalPlatform has shown

the capacity and willingness to adapt to the industry's trends. It has published �Glob-

alPlatform Card Remote Application Management over HTTP Card Speci�cation v2.2�

in response to Java Card 3 and �GlobalPlatform's Proposition for NFC Mobile: Secure

62

3.3 Frameworks for the ICOM

Element Management and Messaging� [104]; both of these speci�cations accommodate the

current trend towards the NFC mobile phone-based services.

3.3.3.1 Why not GlobalPlatform for UCTD?

This question comes to mind, as the GlobalPlatform card speci�cation provides an accepted

and reliable way to manage applications on smart cards in pre- or post-issuance stages,

so why not just have a GlobalPlatform-based smart card whose ownership is with the

cardholder?

This option is workable in a limited scenario where the applications are less critical. The

cardholder would have the same rights as the card issuer in the ICOM. However, the

security issues raised due to the delegation of the ownership that are discussed in the

rest of this thesis are not adequately addressed in the GlobalPlatform card speci�cation.

The reason for this is the underlying assumption in the card speci�cation � that the card

issuer (or in user centric cards, the cardholder) is a trusted entity and any other application

provider has to trust them. The security mechanisms implemented on smart cards are also

based on the similar assumption that there is a trusted entity which we can term as the

root of trust. In the smart card industry, the root of trust is usually an organisation that

acts as a smart card issuer. If we give the smart card ownership to the user under the

traditional framework, then the root of trust would be the individual user. The assumption

that each user is trustworthy, might not be easy to ascertain. Therefore, GlobalPlatform,

along with other frameworks of the ICOM, are not only useful in the ICOM but also in the

UCOM. However, they require modi�cation so that they can securely support the UCOM's

requirements.

Similarly, there is an argument that having a TSM-based architecture can provide user

control by making the user the TSM. All application providers are connected with the user

who then installs their applications onto her smart card(s). In reality, this idea is similar to

the open card initiative discussed in section 2.4.2.1. The user-based TSM concept su�ers

from the same issues, including trusting the user, application provider inability to control

the destination smart card, assurance of security and reliability of the application.

3.3.4 Other Proposals

In this section, we discuss initiatives that were not taken up as enthusiastically as were

those in the previous sections.

63

3.3 Frameworks for the ICOM

3.3.4.1 Windows for Smart Cards

At the time Java Card was proposed, Microsoft also ventured into the smart card business

[105]. They took the same sort of approach as they took in the PC domain and developed

the whole architecture of the smart card operating system without any consultation with

the smart card industry.

The Windows for Smart Cards (WfSC) was an ISO7816 [24] compliant smart card with a

FAT �le-system [106, 107] and rule-based Access Control [108]. The design of the virtual

machines was rooted in Intel 8048 and the associated APIs were compact versions of the

Windows (Win32) APIs [105]. As noted by Jurgensen and Guthery [105], the WfSC has

one of the best-designed Virtual Machine architectures, similar to the Multos. Applications

for the WfSC can be written in Visual Basic and Visual C++.

Due to Microsoft's design-in-isolation approach, the WfSC was not adopted as quickly as

other frameworks from the beginning and Microsoft soon had to shelve the project [6]. In

contrast the Java Card took the approach of consultation and open speci�cation, which

give it enough of an advantage to outdo powerful initiatives such as Multos and WfSC.

3.3.4.2 Smartcard .Net

Although Microsoft's own attempt to enter the smart card market did not pay o�, Hive-

Minded Inc. (since 2006 owned by StepNexus Inc.) later developed a smart card framework

based on Microsoft's .NET. Its main aim was to allow its developers the freedom to choose

any programming language (i.e. C#, VB.NET, J#, and Jscript.NET, etc.). Like Java

Card, it supported all data types except �oating point and 64-bit integers.

The later acquisition of Hive-Minded by the Multos manufacturer Step-Nexus put an end

to the smart card .Net initiative. However another smart card manufacturer, Gemalto,

has since o�ered .Net products [109] with the caveat that these smart cards are natively

supported by Microsoft Windows Vista and Windows 7. However, it is yet to be seen how

far the smart card .Net framework will spread.

3.3.4.3 Multi-application BasicCard

BasicCards were available even before the Java Card was proposed [110]. Initially they

supported only single applications but since 2004, the BasicCard manufacturer ZeitCon-

trol has started to issue multi-application BasicCards (e.g. MultiApplication BasicCard

64

3.4 User Centric Smart Card Ownership Model (UCOM)

ZC6.5). Like WfSC, they also support the FAT �le system, but unlike any other smart

card framework, they support �oating-point numbers natively [6]. Although these are less

expensive than other options available to customers, they have not seen an exponential

growth such as Java Card.

3.4 User Centric Smart Card Ownership Model (UCOM)

The UCOM provides to di�erent entities the architectural, operational, and security frame-

work needed to support the delegation of smart card ownership to its users. In this section,

a detailed description of the UCOM is provided, de�ning the basic working principles of

the UCOM along with a description of the UCOM components. Figure 3.5 illustrates the

basic architecture of the model.

Smart Card
Based Service

Provider

User Centric
Smart Card

(UCSC)
Supplier

Service Access Point

1. Smart Card Ordered

2. Smart Card Delivered

5.
S

er
vi

ce
R

eq
ue

st

8.
S

er
vi

ce
R

es
po

ns
e

3. Application Lease Request

7. Response

6. Request

Cardholder
4. Application Leased

Figure 3.5: Overview of the User Centric Smart Card Ownership Model (UCOM)

In the UCOM, a card issuer is denoted as a Service Provider (SP). An SP and a card

issuer represent the same entity in di�erent contexts of UCOM and ICOM, respectively.

The main di�erence between an issuer and an SP is that a card issuer provides a smart

card's hardware and application(s) to their customers, whereas an SP only o�ers smart

card application(s) that can be downloaded to a customer's smart card on request.

The aim of the UCOM is not to replace users with card issuers as the open card initia-

tive (see section 2.4.2.1) does. The UCOM ensures that the same level of security and

application control is provided to an SP as in the ICOM, while provisioning the freedom

of choice to individual cardholders. Going back to the list of privileges for ICOM (section

3.2), the UCOM transfers the privileges (rights) one, two and four to the smart card users.

65

3.4 User Centric Smart Card Ownership Model (UCOM)

Service Provider

Service Access Point (SAP)/ Host Platforms

Cell Phone Kiosk Computer

Internet / Service

Provider’s Network /

Third Party Network

Kiosk

Cell Phone

Computer

Host Device

UCSC SupplierCardholder/

User /Customer

Access Panel

Card Application

Management Software

(CAMS)

User Centric Smart Card (UCSC)

Application Management

Server (AMS)

Application Services

Authentication Server

(ASAS)

1

2

1: Application Request/Download Channel

2: Service Request/Delivery Channel

Figure 3.6: Illustration of the UCOM components and their interactions

Therefore, the role of security policy enforcer is taken up by the smart card itself and

cardholders only have the privilege to install and delete applications. The ICOM enables a

card issuer to control the issuance of its smart card to individual users, which is translated

as the privilege to lease its application in the UCOM, whereas installed applications will

always be in total control of the SPs, and users will be entitled to use them under the lease

policy of their respective SPs.

The architecture of a UCOM consists of seven main components, as shown in �gure 3.6:

the User Centric Smart Card (UCSC) supplier, the cardholder, the UCSC, the Card Ap-

plication Management Software (CAMS), the host devices, the Service Provider (SP) and

the Service Access Points (SAPs). A smart card that supports a user's ownership is called

a UCSC and we use this term only in this chapter to di�erentiate between ICOM-based

smart cards and cards that support the UCOM.

A cardholder acquires a UCSC from a UCSC supplier. After acquiring the UCSC, the card-

holder requests an SP to lease their application. The cardholder presents her card to a host

device. The host device then enables the cardholder to use Card Application Management

Software (CAMS) that establishes an interface between UCSC and the SP's Application

Management Server (AMS). After authentication of the cardholder and security validation

of the UCSC, the AMS leases the application(s).

Once the application is installed, the cardholder can present her card to a SAP to access

services. The SAP will establish a connection between UCSC and the SP's Application

Services Authentication Server (ASAS). After being authenticated by ASAS, the user can

use the designated service. The architecture of the application lease and usage is explained

in section 3.4.6.2. In subsequent sections, we discuss the UCOM components shown in

�gure 3.6.

66

3.4 User Centric Smart Card Ownership Model (UCOM)

3.4.1 Supplier

A supplier is an organisation that sells UCSCs. A smart card manufacturer, an SP, or a

third party vendor can be the supplier. The suppliers ensure that the UCSCs supplied

to a user have a reliable and secure platform that supports the UCOM and ful�ls the

requirements of a UCSC, as stipulated in section 3.5.3.

3.4.2 Cardholder

A cardholder is not just a user of the UCSC, but she is also the owner of the card.

Cardholders would have the ability to install and delete any application they require. A

cardholder would also be a registered customer of the respective SPs. The cardholder could

install an application on the UCSC after being authorised by the corresponding SP. After

installation, the cardholder could use the application to access associated services.

From a UCOM's perspective, cardholders do not have to be technically literate (about the

underlying architecture of the platform) and do not have to be trusted users. In subsequent

chapters, it will be shown that we adopt the default assumption that the cardholder may

be malicious.

3.4.3 User Centric Smart Card (UCSC)

The UCSC is the cornerstone of the UCOM proposal. It provides a seamless framework

for application installation, management, and deletion to the cardholder. The ownership

management and delegation (i.e. the transfer of ownership between di�erent users) is also

provided by the UCSC while preserving the integrity and security of the platform, and the

privacy of the cardholder. Furthermore, the UCSC manages secure communication with

the respective SP to request the lease of the application. An SP does not have to trust the

cardholder, but they need to trust the smart cards. The UCSC supports mechanisms that

can provide dynamic and ubiquitous security assurance and validation to the requesting

entity. It ensures that during the lifetime of the smart card, the entire platform along with

the installed applications will be secure and reliable.

Henceforth, we will be using the term UCSC and smart card interchangeably, unless oth-

erwise speci�ed.

67

3.4 User Centric Smart Card Ownership Model (UCOM)

3.4.4 Card Application Management Software (CAMS)

The CAMS acts as an interface between a smart card, an SP's Application Management

Server (AMS), and a cardholder, as illustrated by �gure 3.6. The cardholder uses this

interface to authenticate with the SP's AMS and to perform smart card management

tasks (e.g. application installation, deletion and state change) [10]. In addition, it can

also provide protocol translation services to avoid any incompatibilities between the smart

card capability and the respective SP's AMS (e.g. in a scenario where a smart card does

not support the TCP/IP protocol [111]. Therefore, the CAMS will translate the TCP/IP

protocol to one supported by the smart card). The CAMS communicates directly with a

smart card, but it is hosted on the host devices that are discussed in the next section.

3.4.5 Host Device

Host devices are electronic devices that hold the smart card and facilitate it in establishing

a secure channel to an SP's AMS for application management tasks. These devices can

be categorised into mobile phones, kiosks, and computer-based host devices. There is no

speci�c security requirement on the host device. It is advisable to consider the host device

as insecure while implementing a solution supporting UCOM.

3.4.6 Service Provider (SP)

An SP is an organisation that o�ers smart card-based services. It develops applications that

support di�erent smart card platforms (e.g. Java Card [28], and Multos [29]). A cardholder

can easily download the chosen application, and use it to access the SP's services.

To install an application and access the services provided by an SP, users have to register

with the SP. This registration mechanism is already in place in di�erent industrial sectors

(such as banking, and telecom, etc.). After the successful completion of the registration,

an SP will send the account details to the user. The user will use these account details

to gain access to a server that provides the functionality to maintain the SP's application.

This server is called the Application Management Server (AMS). After an application is

installed, the user can access the services provided by the SP. To access these services, the

application on the smart card has to be authenticated by the SP's Application Services

Authentication Server (ASAS).

68

3.4 User Centric Smart Card Ownership Model (UCOM)

3.4.6.1 Application Management Server (AMS)

An AMS is implemented and maintained by an SP to support the UCOM. The AMS's main

function is to facilitate authorised cardholders to ubiquitously manage the SP's applications

on their cards.

The account details provided by the SP to its customers contain the AMS access credentials.

Using these credentials, the user can access and install the SP's application(s). The exact

mechanism of the user registration and credential issuance, and the usage mechanism which

controls how a user's credential will be veri�ed (authenticated) are speci�c to each SP.

The main function of an AMS is to maintain the SP's application(s) and to ensure that the

application is only leased to a smart card if it satis�es the SP's Application Lease Policy

(ALP).

3.4.6.2 Application Lease Policy (ALP)

An ALP de�nes the minimum requirement of an SP that a smart card has to satisfy before

the SP will lease its application. The ALP is de�ned by an SP, and it could have the

following requirements.

1. Minimum smart card hardware requirement.

2. Minimum Smart Card Operating System (SCOS) or platform (e.g. Java Card) re-

quirements.

3. Minimum application memory requirement.

4. Minimum Common Criteria Security Evaluation Level [69].

5. Maximum number of smart cards that can hold the lease of the application.

6. Cryptographic key generation requirements.

7. Secure communication channel requirements.

8. Application lease limits and restrictions (if applicable).

In addition to the abovementioned points in the ALP, an SP can de�ne some additional

criteria for its application. During the application installation process [10], a smart card

tries to satisfy the SP's requirements, and if it succeeds, the SP will lease the application

to the smart card; otherwise the request will be declined.

69

3.5 Security and Operational Requirements of the UCOM

3.4.6.3 Application Services Authentication Server (ASAS)

An ASAS authenticates the valid lease of an application that the requesting card holds. In

the UCOM, multiple smart cards of a single user may have an SP's application, depending

on the particular SP's ALP. If the ALP allows multiple smart cards to have a valid lease

of its applications, an ASAS is necessary to verify the validity of the lease to the smart

card. Once a smart card is authenticated as holding the valid leased application, it can

access services o�ered by the SP, subject to successful authentication by the user (user's

application).

The ASAS is already implemented in the ICOM, and is referred as a back-o�ce or trans-

action clearance system. Each industry has its unique way of implementing the ASAS and

part of the design philosophy of the UCOM is that we do not require a modi�cation (in

most cases) to the existing architecture of the ASAS in the ICOM.

3.4.7 Service Access Point (SAP)

Any device that a cardholder can use to access services provided by an SP is called a

Service Access Point (SAP). A SAP can be a mobile phone, a kiosk, a computer, or an

access panel. The main function of all these devices is to connect with the SP through a

smart card and provide services to the cardholder. We consider that SAPs do not have

to be secure; therefore, during the course of this thesis SAPs will be treated as insecure

terminals.

3.5 Security and Operational Requirements of the UCOM

The UCOM delegates control of the smart card to its user. This scenario introduces unique

requirements that were not present in the ICOM.

3.5.1 General Requirements

In this section, we discuss the requirements that are not speci�c to a particular entity in

the UCOM but are instead common to the overall architecture.

GR1. Control: The UCOM should provide a mechanism(s) that enables cardholders to

manage applications on their smart cards. It should also ensure that only the autho-

70

3.5 Security and Operational Requirements of the UCOM

rised cardholder can execute any privileged commands. These privileged commands

can change the state of the smart card (e.g. alter the application installation and

deletion commands).

GR2. Security: This requirement stipulates the need to provide protection against at-

tacks that can violate the security requirements of each of the UCOM components.

Therefore, the UCOM should provide an adequate security mechanism to protect all

the components and their communications.

GR3. Privacy: The privacy requirement is essential in the UCOM, since smart cards

are used as a secure token to access some personal information or monetary services.

Therefore, the UCOM should provide privacy services to those components that

require it.

GR4. Interoperability: The UCOM should not prefer any particular platform, SCOS,

or hardware con�guration. The aim is to provide an unrestricted scalability to the

overall UCOM model. A smart card would present the list of supported functional-

ities to the requesting SP and then it would be up to the SP's discretion whether it

leased its application or not. From the point of view of the smart card, the SP and

the UCOM architecture, there should be no preference. If a smart card supports an

SP's requirements and supports the security and operational functionality required

by the SP's ALP, then the SP would lease its application on request, unless there

is some genuine reason not to do so. In the event of a valid reason, the SP should

inform the requesting cardholder of the main reason for not leasing the application.

GR5. Ease of Maintenance: The framework should be simple to use and maintain for

SPs. In addition, it should not require any extensive modi�cation to the existing

infrastructure.

GR6. Impartiality: The smart card supplier could be a smart card manufacturer, an

SP, or a third party vendor. Regardless of the supplier, the smart card should not

favour any particular application or set of applications. This would be possible if

an SP supplies the smart cards, and then they might be tempted to give additional

privileges to its own application. Therefore, the UCOM should provide guarantees

that all applications will have the equivalent privileges to suit their operations.

The major components of the UCOM are cardholders, smart cards, and SPs. In subse-

quent sections, the operational and security requirements of these major components are

discussed.

71

3.5 Security and Operational Requirements of the UCOM

3.5.2 Cardholder's Requirements

A cardholder is an entity that uses a smart card to access authorised services. In the

UCOM, the control of a smart card is with its user. Therefore, cardholders have complete

control over the choice of applications on their smart cards. They will have the �exibility

to change the installed applications on their smart cards. Furthermore, they could install

or delete any applications they are entitled to at their convenience. The framework will

provide the mechanism that ensures the secure control and the ubiquitous management of

applications on smart cards. A cardholder's requirements in UCOM are listed below:

CR1. Security: If a smart card is inherently insecure, or if it becomes vulnerable to new

threats, it can a�ect the security of applications installed on the card. We cannot

expect that each cardholder is technically capable of ensuring and managing the

security of the smart card; therefore, a cardholder would require an assurance that

the card platform will be secure and reliable even if it is in the possession of an

illiterate or malicious user.

CR2. Privacy: Applications installed on a smart card represent the identities of the

cardholder in di�erent contexts. For example a college card, a health card and a

credit card represent a cardholder's identity as a student, a patient, and a consumer

respectively. These identities are in the form of applications that have some unique

characteristics (e.g. student ID, patient ID, and Primary Account Number: PAN)

to identify a particular user. Therefore, applications on a smart card can be treated

as the identities of the cardholder. In the ICOM, these identities may not have any

connections with each other. However, in the UCOM, any or all of these identities

could be on the same card, creating a privacy issue if one application becomes aware

of the existence of others on a smart card. Therefore, the identities on a particular

card should not have any links between them. For example, a college application

should not be able to �nd out about a medical application(s) installed on the same

card.

CR3. Least Interaction (Seamless Framework): Most users do not understand the

technology behind a particular product (i.e. mobile phone applications). Therefore,

the framework should not be based on the assumption that an average user can

perform technically challenging tasks. The UCOM should be seamless and should

perform all necessary tasks by itself, and only involve the user when required.

CR4. Interoperability: The smart card user will not want to buy a separate smart card

for each application. Smart card suppliers should provide cards that support most

of the available functionalities and SPs should o�er applications in many formats to

support as many di�erent execution environments as possible.

72

3.5 Security and Operational Requirements of the UCOM

CR5. Ownership Mechanism: A mechanism is required that securely authenticates the

owner of the smart card and facilitates the exercise of her privileges (i.e. installing

and deleting applications).

3.5.3 User Centric Smart Card's Requirements

The security and operational requirements of smart cards are listed below, and most of

these requirements should be implemented by smart card suppliers:

SCR1. Security Assurance: A smart card should have a mechanism(s) that will provide

assurance to a requesting SP that adequate security and privacy measures have been

implemented to ensure the security and privacy requirements of the application(s).

SCR2. Security Evaluation: A smart card should be able to evaluate the downloaded

applications and verify that they do not pose any threat to the safe execution of the

other application(s) on the card.

SCR3. Interoperability: A smart card should have the capability to support a wide

range of applications and communication interfaces/channels.

SCR4. Runtime Environment Fairness: A smart card should require that no appli-

cation installed on it tries to monopolise the runtime environment.

SCR5. Application Management: A smart card should have mechanisms to securely

manage the applications. The management of the applications includes application

downloading, installation, and deletion.

SCR6. Application Lease Management: A smart card should require adequate mech-

anisms to manage an application lease. The lease of an application may have certain

limits or restrictions that a smart card has to satisfy over the lifetime of the applica-

tion. For instance, the limit could be an expiry date or the number of times used, and

restrictions may be the runtime environment's con�guration. The mechanism should

be able to provide assurance to the SP that their application will be deleted if the

limit is reached, or cease to execute if lease restrictions are violated. The application

leased from the SP is governed by an application lease policy described in section

3.4.6.2.

SCR7. Ownership Validation: A smart card should support a mechanism to authenti-

cate its owner using some security parameters (i.e. Personal Identi�cation Numbers:

PIN, password, pass-phrase, or biometric, etc.). There should be the functionality

to reset these values securely.

73

3.5 Security and Operational Requirements of the UCOM

SCR8. Feature Interaction Problem Avoidance: The smart card needs to have a

mechanism that prevents any possible feature interaction problems. Feature inter-

action problems are caused by dependencies between the software and hardware.

The mechanism will record any dependencies of an application before it is installed.

Therefore, when there is a change that a�ects the dependencies of the application,

it can either be deleted or cease its execution.

SCR9. Malicious Application/User Problem: The smart card should implement ef-

fective security and privacy measures to counter a malicious user or application. The

smart card platform should be able to resist the introduction of malicious appli-

cations or hardware-based intrusions to breach security. To avoid application-level

breaches, the card should have the capability to perform application code veri�ca-

tions on the card. In addition it should have a conservative execution environment

(i.e. a defensive virtual machine [112]) that ceases execution of an application if there

is a violation of the card's security.

SCR10. Application Scanning Attack: Each application on a smart card acts as an

identity of the card owner in some context, as discussed in the previous section.

Each application on a smart card has unique Application Identi�er (AID) [24]. A

malicious user can use the application identi�er to scan the applications installed

on a particular card. It will not only violate the privacy requirement of the user,

but may also enable the attacker to create/modify the attack. A malicious user may

choose the weakest application in the smart card to initiate an attack. The smart

card should have a security mechanism to avoid such an attack.

3.5.4 Service Provider's Requirements

Service providers use smart cards as secure tokens to o�er their services, in a secure manner,

to their customers. If this secure token is compromised, they have to bear both �nancial

and brand losses. Therefore, from a business point of view, SPs have even more at stake

than card issuers, both �nancially and in relation to brand image, and they would be

reluctant to adopt the UCOM, if they had doubts about its security. The requirements of

SPs in the UCOM are listed below:

SPR1. Transmission Security: SPs will lease their applications to a smart card through

the internet or a third party intranet. It is essential that applications are not tam-

pered with during the transmission.

SPR2. Installation Security: After an application is downloaded to a smart card, it

will be decrypted. During this process, no on-card or o�-card entity should be able

to gain access to the application code or data.

74

3.5 Security and Operational Requirements of the UCOM

SPR3. Maintenance Security: SPs require access privileges for their applications to

update application data �les or to update the applications themselves. This access

to the application should be secure, and it should not involve cardholders. However,

if the SP desires, the cardholder's consent can also be requested for application

update/modi�cation processes.

SPR4. Intellectual Property Protection: In the UCOM, SPs lease their applications

to the user's smart card. A malicious user can simulate a smart card on a device

(e.g. computer) and then request the application from an SP. If the SP leases the

application to a simulated environment, the malicious user can reverse engineer the

application. This could reveal the secret information (e.g. cryptographic keys, and

algorithms) contained in the application. Therefore, SPs require that adequate se-

curity protection is implemented to safeguard their con�dentiality and integrity of

their applications.

SPR5. Application Code Con�dentiality: The applications from SPs would need to

comply with certain standards. However, these standards will not prevent them from

using proprietary algorithms. The SPs would require that the code of their appli-

cations and its inner workings should remain con�dential. The smart card provides

adequate security to prevent an adversary from gaining knowledge of the SP's ap-

plication. Application Code Con�dentiality will be jointly provided by mechanisms

that satisfy the abovementioned requirements.

SPR6. Application Control: In the UCOM, although users own the smart cards, the

ownership of the application still resides with the SP. SPs only lease applications to

their customers (UCSCs). The SP has the power to revoke the application lease, or

to block or modify the application. The lease of an application is governed by the

ALP. In addition, the SP controls all operations that a cardholder can request on

its smart card. These operations are application installation, application deletion,

and state change (i.e. application block and unblock operations), and they cannot be

performed unless authorised by the relevant application's SP.

SPR7. Protection Against Monopolies: In the UCOM, multiple applications may be

installed on a smart card from di�erent SPs. They all share and use the same smart

card hardware and card operating system. There is a possibility that a smart card

operating system can favour certain applications. As a result, these applications can

monopolise the card. Therefore, SPs will require assurances that such scenarios will

not be possible.

SPR8. Ease of Implementation: SPs have made substantial investments to their ex-

isting infrastructure that provides services to their customers. Therefore, the UCOM

should not impose unnecessary changes to the existing infrastructure. The basic idea

is to implement the UCOM as another layer on top of the existing infrastructure,

which implements UCOM without extensive modi�cation.

75

3.6 Coopetitive Architecture

SPR9. Feature Interaction Management: The SPs require that any changes to the

smart card platform that can a�ect their application's execution should be avoided.

In the best-case scenario, the smart card platform follows the SP's delegated process

that removes the interdependencies between applications in such situations. However,

if this does not solve the problem, then the card should simply block the application

or possibly delete it (with the card owner's consent).

SPR10. Protection from Malicious Users: The SPs would like to have their appli-

cations protected by the underlying smart card platform. Therefore, even if the

application were issued to the malicious user, he would not be able to obtain any

sensitive information about the application.

3.6 Coopetitive Architecture

A UCTD can be a single-user, and/or a multi-user device, depending upon its deployment

architecture. In a multi-user architecture, a device (e.g. a computer or tablet) might be used

by multiple users. Furthermore, a UCTD might be part of a corporate network, as in the

case of a mobile phone issued to employees by an organisation. The organisation (referred

as an administrative authority) would like to retain the control of the UCTD issued as

part of the mobile phone, while giving freedom to the user to have/manage the UCTD

independently of the organisation. It is necessary to consider these deployment scenarios

in order to achieve true scalability that will enable small to medium-sized organisations

like leisure facilities, local libraries, schools, surgeries and colleges, as well as large-scale

organisations like banks, MNOs and transport operators, to provide their services through

a UCTD to a user without any restrictions from a centralised authority (e.g. card issuer).

To accommodate the role of an administrative authority on a UCTD, we extend the UCOM

architecture and propose the Coopetitive Architecture for Smart Cards (CASC). In the

CASC a cardholder retains the application choice but under the provision of an admin-

istrative authority (e.g. TSM). Nevertheless, the baseline architecture of the UCTD is

based the UCOM, as the CASC is an extension of the UCOM architecture that provides

centralised ownership of the device while preserving the user's freedom of choice.

The CASC combines the TSM architecture with the openness, scalability, and �exibility

of the UCOM architecture. In this architecture, users get their choice of selecting which

application they want on their smart cards, and administrative authorities (or the TSM, the

administrator of the corporate network) have a permanent presence on the cards along with

possibly being part of the revenue loop. The CASC requires all the necessary modi�cations

to the existing smart card architecture (i.e. deployed in the ICOM) to achieve its goals.

So while we focus on the UCOM in this thesis, we are implicitly also catering to the

76

3.6 Coopetitive Architecture

Platform Manager (PM)

C
ard

M

an
u

factu
re

Se
rv

ic
e

P
ro

vi
d

er

Cardholder

Common Criteria

Card Terminal
Manufacturer

Standardisation Bodies and
Industrial Forums

PM

Figure 3.7: Ecosystem of the Coopetitive Architecture for Smart Cards (CASC)

requirements of the CASC.

The ecosystem of the CASC is illustrated in �gure 3.7, and at its centre there are three

main entities: the administrative authority (the card issuer, TSM, and corporate authority

etc.), cardholder, and the smart card. The administrative authority issues the smart cards

to its customers. The cardholder would have the choice to install or delete any application

they would require. The management of the smart card application installation, deletion,

and application/card lifecycle management is handled by the Platform Manager (PM)

(discussed in section 4.2). The PM facilitates both the administrative authority and the

cardholder to perform their sanctioned tasks.

As an example, consider a scenario in which a user enrols into the multi-application smart

card service architecture through a Mobile Network Operator (MNO). In this scenario, the

MNO plays the role of an administrative authority. As the customer of the MNO, the

user can receive an NFC-enabled mobile phone (possibly under a �xed period contract)

and UCTDs. In certain cases, MNOs subsidise the mobile phone in return for a �xed

period contract with their customers. The phone is under MNO lock and it can only

be used on the issuing MNO's network. At the end of the contract, the customer can

request the MNO to unlock the mobile phone. The acquired secure element(s) would have

the MNO's application installed by default. In addition, if the user is a customer of any

other organisations that are associated partners of the MNO in the TSM scheme, then she

may get their applications pre-installed on the secure element. This secure element would

enable the user to request installation or deletion of any application she chooses, except

77

3.7 Summary

for the MNO's application. At the end of the contract, the MNO would not only unlock

the mobile phone but also the TSM. From this point forward, the user can either use the

secure element under UCOM architecture or register their secure element with any other

TSM (or continue with the original MNO).

Similarly, other entities like card issuing banks, transport service operators, smart card

and mobile phone manufacturers, or independent third parties, can participate by o�ering

competitive products that adhere to the CASC. The security and reliability of the coopet-

itive smart cards would be a key issue, which is dealt with separately in the ICOM and

UCOM scenarios.

3.7 Summary

In this chapter, we have discussed the Issuer Centric Smart Card Ownership Model along

with di�erent smart card frameworks that have been proposed to support the ICOM. In

addition, this chapter serves as a basic introduction to the UCOM framework and its

main stakeholders. We have also de�ned the roles of each of these stakeholders along with

their security and operational requirements. Furthermore, we have extended the UCOM

architecture to represent a more viable and dynamic architecture for the UCTD that might

require administrative control.

78

Chapter 4

User Centric Smart Card

Architecture

Contents

4.1 Introduction . 80

4.2 Platform Architecture . 80

4.3 Trusted Environment & Execution Manager 85

4.4 Security Assurance and Validation Mechanism 90

4.5 Attestation Mechanisms . 93

4.6 Device Ownership . 98

4.7 Attestation Protocol . 101

4.8 Protocol Analysis . 106

4.9 Summary . 109

In this chapter, we discuss the security and operational architecture of the UCOM sup-

ported platform, termed the User Centric Smart Card (UCSC). Subsequently, we detail

the inclusion of a trusted computing platform for smart cards that we refer as the Trusted

Environment & Execution Manager (TEM). This is followed by the rationale behind the

changes to the traditional smart card architecture to accommodate the remote security as-

surance and validation mechanism. We propose an attestation protocol that provides an

online security validation of a smart card by its manufacturer. Finally, the attestation pro-

tocol is informally analysed, and its test implementation and performance are presented.

79

4.1 Introduction

4.1 Introduction

The ecosystem of the UCOM is centred around smart cards that have to implement ade-

quate security and operational functionality to support a) enforcement of security policies

stipulated by the card platform and individual SPs for their respective applications, and

b) operational functionality that enables an SP to manage its application(s), and a card-

holder to manage her ownership privileges. The smart card architecture has to represent

this change in ownership architecture. For this purpose, we require a trusted module as

part of the smart card architecture. The module would validate the current state of the

platform to requesting entities in order to establish the trustworthiness of a smart card in

the UCOM architecture.

In the UCOM, the card manufacturers make sure that smart cards have adequate secu-

rity and operational functionality to support user ownership. In addition, the cardholder

manages her relationship with individual SPs. These relationships enable her to request

installation of their applications. Before leasing an application, SPs will require an assur-

ance of the smart card's security and reliability. This assurance will be achieved through

a third party security evaluation of the smart cards before they are issued to individual

users. Furthermore, to provide a dynamic security validation, the evaluated smart cards

implement an attestation mechanism. The attestation mechanism should accommodate

remote validation, as in the UCOM an SP will not always have physical access to the

smart card. In addition, the attestation mechanism will certify that the current state of

the smart card is as evaluated by the independent third party. Therefore, the trust ar-

chitecture in the UCOM is based on the adequacy of the third party evaluation, and the

security and reliability of the remote attestation mechanism.

Structure of the Chapter: Section 4.2, discusses the UCTD architecture and its major

components. To provide security and reliability assurance to remote entities we de�ne the

role of the Trusted Environment & Execution Manager (TEM) in section 4.3. Subsequently,

we extend the discussion to the security evaluation in section 4.4, followed by the remote

attestation mechanism in section 4.5. In section 4.6, we discuss di�erent types of UCTD

ownership and how an o�-card entity can acquire them. In section 4.7 we propose an

attestation protocol; in section 4.8 we detail an informal analysis and test implementation

results of the attestation protocol.

4.2 Platform Architecture

The proposed architecture for a UCTD is depicted in �gure 4.1 and this architecture

satis�es the requirements of the UCOM discussed in section 3.5.3.

80

4.2 Platform Architecture

Smart Card Runtime Environment (SCRT)

Smart Card Firewall

S
m

a
rt

 C
a

rd

F
ir
e

w
a

ll

Smart Card Virtual Machine

System Classes Application Programming Interfaces (APIs)

Cross-Device

Manager

Cardholder’s

Security

Manager Domain

of SPAApplication Installation

& Deletion Manager

Backup &

Restoration Manager

Subscription

Manager

Platform Space Application Space

Domain

of SPB

Domain

of SPB

Trusted Environment & Execution Manager (TEM) Native Code

Smart Card Hardware

Card Security

Manager

Card Services

Manager

Figure 4.1: User Centric Smart Card (UCSC) architecture

Most of the components shown in �gure 4.1 are either an improvement to the existing

framework or an addition to the GlobalPlatform architecture. We use GlobalPlatform as

the base architecture for the components in this section. These components modify the

GlobalPlatform card speci�cation to accommodate the UCOM philosophy. Please note that

in this section, we make repeated references to the security and operational requirements

discussed in section 3.5.

Furthermore, certain components that are shown as part of the UCTD architecture in

�gure 4.1 are discussed in later chapters where they are described in detail. These com-

ponents include the application installation & deletion manager (chapters 5 and 9), the

backup & restoration mechanism (chapter 9), the cross-device manager and smart card

�rewall (chapter 7), and the Smart Card Runtime Environment (chapter 8). We delay

their discussion to later chapters for the sake of argument �ow and logical placement as

we compare them with the existing smart card architectures (e.g. Java Card, Multos and

GlobalPlatform).

4.2.1 Spaces

A �space� is a memory container that holds collections of services or applications (i.e.

domains). As depicted in �gure 4.1 there are two spaces: platform space and application

space. The platform space is owned by the smart card platform itself so that users do not

have any control over the services installed in the platform space. The application space

can be under the control of an o�-card entity that may be a centralised authority (i.e.

TSM or card issuer) or the smart card user. In addition, there can be multiple application

spaces on a smart card accommodating a centralised authority and the respective card

81

4.2 Platform Architecture

user (section 3.6). The owner of an application space has the right to install or delete any

application they choose within their respective space. With the concept of spaces, we can

even extend the smart card's capability to accommodate multiple users. An example is a

home personal computer used by family members where each member of the family has her

or his own pro�le (account) on the computer. In such a scenario, applications on a UCTD

belonging to individual family members should also be securely segregated, and this can

be accomplished by creating an application space for each individual user.

A logical set of memory locations, associated with a single SP, is called a domain and it

is under the complete and independent control of that SP. The domain provides a simple

mechanism in which each application has a secure compartment that is independently man-

aged by the SP. Domain ownership is delegated independently of any o�-card entity (e.g.

card manufacturer) to the SP during the application installation process that is discussed

in chapter 6. A point to note is that the concept of domains is widely deployed by the

GlobalPlatform card speci�cation [30] and we simply adapt it to the UCOM architecture.

The managers shown in the platform space of �gure 4.1 are collectively represented by the

term Platform Manager (PM), illustrated in �gure 3.7.

4.2.2 Card Security Manager

The card security manager is the hub for the di�erent security and operational services

that a smart card provides.

During the application installation process, the card security manager will facilitate the

generation of an SP's domain and oversee the transfer of control of the domain to the

appropriate SP. For each application belonging to an SP, there will be a separate domain

allocated to the SP that will only have one application in it. This is to allow an SP to

manage its individual applications on a smart card individually. Furthermore, this also

simpli�es the deletion, and blocking/disabling of applications. The card security manager

can delete entire domain and any associated privileges to applications installed in the

domain � without a�ecting other applications in the domain. The card security manager

facilitates the transfer of domain control to the appropriate SP. This transfer includes

the generation of cryptographic keys that the SP will use them to authenticate itself to

the domain and perform related management tasks (e.g. application installation, deletion,

blocking, unblocking and update). The card security manager would also ensure that the

keys generated during the application installation process are not revealed to any third

party (e.g. card manufacturer or cardholder).

If an installed application violates the security policy of a smart card, the card security

82

4.2 Platform Architecture

manager can take action and restrict the application by either blocking it so it cannot

execute, or by deleting it. In the GlobalPlatform card speci�cation, such a mechanism

requires the card issuer's permission whereas in the UCOM the card security manager

wants to delete an application it only requires permission from the cardholder.

In addition, when the ownership of a smart card is changed or if the card is decommis-

sioned, the card security manager is responsible for resetting the smart card con�guration.

This process includes the deletion of all installed applications and any data related to

applications/users. The resetting operation will set the smart card to the default factory

setting, as a blank card. Such a mechanism does not exist in the GlobalPlatform card

speci�cation and it is discussed as part of the decommissioning of the UCTD in chapter 9.

The card security manager provides functionality that ensures the platform is in confor-

mance with the requirements CR1, CR2, CR5, SCR5, SCR6, SPR1, SPR2, and SPR6 that

are listed in section 3.5.

4.2.3 Card Services Manager

Services provided by the smart card platform are under the control of the card services

manager. The services include the o�-card interface, the runtime Application Programming

Interface (API), and default applications. The access rights to these services are designated

(requested) by the respective application's SP and the card services manager enforces them.

This functionality enables an SP to manage the behaviour of its application(s) on a smart

card.

Furthermore, a smart card might have multiple applications from di�erent SPs that provide

the same service, like banking applications from distinct banks. In such a situation, the

user would have the option of making one application the default application of the group

to which it belongs. The card services manager deals with a list of default applications

when a smart card is presented at a Services Access Point (SAP). If the SAP only requests

an application that belongs to a particular group (e.g. transport, banking, telecom or access

control) without specifying a particular member of that group, the card services manager

selects the default application for the group. However, if the SAP wants to select a speci�c

application, which may not be the default application of its group the SAP has to request

that application explicitly.

The card services manager ensures that the platform satis�es requirements CR3, CR4,

SCR5, SPR6, and SPR7 (de�ned in section 3.5).

83

4.2 Platform Architecture

4.2.4 Cardholder's Security Manager

The cardholder's security manager maintains services that facilitate an e�ective and secure

management of the smart card contents by its user (cardholder).

At the time a UCTD is delivered to a user, it might be a blank card, which is under

the default ownership of the smart card manufacturer. The cardholder's security manager

facilitates a cardholder to acquire the control of the smart card (section 4.6), which will

enable her to install or delete any application she desires.

Furthermore, when a user requests any privilege services (e.g. application installation,

application deletion, a list of installed applications), she has to authenticate herself to

the cardholder's security manager. On successful authentication, the cardholder's security

manager will proceed with the requested service.

When a user takes the ownership of a smart card, the card contents (e.g. cryptographic keys

and certi�cates) are speci�c to the user. Therefore, when the ownership changes hands,

the cardholder's security manager requests the card security manager (section 4.2.2) to

initiate the clean-up command that deletes all applications and data, returning the smart

card to the default ownership (card manufacturer's ownership). This process is referred to

as decommissioning and is discussed in chapter 9.

The cardholder's security manager provides functionality to satisfy requirements CR1,

CR2, SCR1, and SCR7.

4.2.5 Subscription Manager

The subscription manager handles the registration of a smart card with an administrative

authority. The authority can be a corporate and home-network administrator and/or a

centralised scheme manager like a card issuer or TSM. These entities might be registered

before the card was issued or the user might choose to register her smart card to a particular

authority to get better services.

The subscription manager facilitates the registered administrative authority to manage

their application space on the UCTD. In addition, if a user is allowed to evict the admin-

istrative authority then the subscription manager will proceed with the removal process.

This process will include deleting the associated space and all applications (domains) in

the respective space, along with revoking any privileges delegated to the administrative

authority on the UCTD. In carrying out this process, the subscription manager is similar

84

4.3 Trusted Environment & Execution Manager

to the cardholder's security manager except that the cardholder's security manager caters

to a user's requirements whereas the subscription manager caters to an administrative au-

thority. The subscription manager is an optional manager and is only required if a user

wants to be part of an administrative authority or if the UCOM platform is issued by

an organisation that wants to keep control of its interests for example, a mobile network

operator that subsidises UCTDs to its customers.

4.3 Trusted Environment & Execution Manager

On a typical smart card, several mechanisms are in place to test and verify the state of

the platform (both software and hardware). At the software level, GlobalPlatform card

speci�cation has proposed the controlling authority (termed CA in the GlobalPlatform

card speci�cation) [74] and the Mandated Data Authentication Pattern (Mandated DAP)

mechanism [30, 74]. In the DAP mechanism, an o�-card entity (controlling authority) signs

applications that are being loaded onto a smart card, and this approval of the applications

is veri�ed by an oncard entity referred to as the GlobalPlatform card manager [30]. At

the hardware level, the Known Answer Test (KAT) for cryptographic modules mandated

by FIPS [113] and similar mechanism are deployed by the smart card manufacturer (i.e.

RAM test, and checking checksum of non-volatile memory, etc.) [5].

At the time of writing (September 2011), the Trusted Computing Group (TCG) was ini-

tiating a working group to devise speci�cations for a trusted module for embedded de-

vices [114]. The working group has not released any speci�cations regarding the trusted

module for embedded devices. We propose the Trusted Environment & Execution Manager

(TEM) as a trusted module for embedded devices like smart cards. The TEM is fundamen-

tally di�erent from the Trusted Platform Module (TPM) [18] and Mobile Trusted Module

(MTM) [19] in two respects. Firstly, the TEM implements a self-test mechanism that in-

cludes hardware parameters to provide remote attestation and a dynamically con�gurable

integrity measurement mechanism that is based on a challenge-response framework. Sec-

ondly, the TEM is not based on a static architecture; in fact, it enforces platform security

policies during the application execution rather than just generating the hash (once) at

the start of the application execution. The architecture of the TEM is illustrated in �gure

4.2.

The concept of TEM is to group/provide similar and enhanced functionality that provides

assurance and validation of the platform to requesting on-card or o�-card entities. The

TEM is independent of the platform con�guration that is mainly concerned with the smart

card runtime environment, which can be based on a technology such as Java Card or

Multos. A TEM does not have to be implemented in hardware; it can be software-based

85

4.3 Trusted Environment & Execution Manager

Trusted Environment & Execution Manager (TEM)

Smart Card Hardware

Native Code

Random Number

Generator

Crypto-coprocessor

· Asymmetric Encryption/Decryption

· Symmetric Encryption/Decryption

· Digital Signature

Self-test Manager

Runtime Security

Manager

Interface

· Protocol Encoding/Decoding

· Enforces Access Policy

Hash Generator

Backup Token

Handler
Attestation Handler

Figure 4.2: Architecture for the Trusted Environment & Execution Manager

and utilise the smart card's cryptographic hardware (the crypto co-processor). The TEM

requires access to the crypto co-processor for encryption/decryption, signature generation

and veri�cation, and random number generation.

4.3.1 Interface

The TEM interface manages the communication between the TEM and on-card entities

(e.g. platform services and applications) or o�-card entities (e.g. SPs). The TEM interface

does not replace the o�-card interface discussed in section 4.2.3, it only implements the

communication service that a TEM uses to communicate with on-card applications and

(o�-card) SPs.

The TEM interface implements the attestation protocol discussed in section 4.7. Further-

more, it also provides a state validation service (section 4.4.3) to installed applications

during the application sharing process. The state validation of an application can only be

performed by the TEM if it is explicitly requested to do so by that application. Therefore,

for state validation, the TEM establishes a shared secret with an application (at the time

of application installation). When the installed application (refer to it as AppA) needs to

provide state validation to another application (refer to it as AppB), for example during

the application sharing process, the TEM will only provide the state valuation of AppA
to AppB if AppA explicitly requests the TEM with AppB identity using the shared secret

(for a more detailed discussion, please see section 7.3.2).

4.3.2 Backup Token Handler

The backup token handler acts as a repository that stores the restoration tokens of in-

dividual applications (if sanctioned by their respective SPs) on a smart card. When a

user registers with a backup server or wants to transfer the installed applications from

86

4.3 Trusted Environment & Execution Manager

one smart card to another, the backup & restoration manager retrieves these tokens from

the backup token handler, encrypts them, and communicates to the intended entity (e.g.

backup server or new smart card). The details of this mechanism are further elaborated

in chapter 9.

4.3.3 Runtime Security Manager

The runtime security manager deals with the enforcement of the platform policies regard-

ing the smart card runtime environment. These policies may deal with the security and

reliability of an application execution, and they ensure that an application executes in a

trustworthy manner. The runtime security manager is discussed in detail in chapter 8

where we examine the threats to the smart card runtime environment and related coun-

termeasures.

4.3.4 Attestation Handler

The attestation handler and the self-test manager are part of the security assurance and

validation mechanism discussed in section 4.4. The di�erence between these two modules

(i.e. the attestation handler and the self-test manager) of the TEM is that one focuses

on the software and the other on the hardware. However, in the proposed attestation

mechanism (section 4.5) they complement each other to provide proof that a smart card

is secure, reliable and trustworthy.

During the application installation process, the attestation handler will verify the current

state of the platform runtime environment (e.g. security and operationally sensitive parts of

the SCOS) and a�rm to the appropriate SP that the platform is as secure and reliable as it

is claimed to be the evaluation certi�cate discussed in section 4.4. Once the application is

installed the relevant SP can ask the TEM to generate the state validation of an application

(e.g. signed hash of the application), ensuring that the application is downloaded without

any errors onto the platform. This function of the TEM is similar to the DAP [30, 74].

Furthermore, SPs can request the state validation of their applications at any time during

the lifetime of the applications on a smart card. In addition, as part of the application

sharing mechanism the TEM also provides application state validation to the applications

that share each other's resources (discussed in chapter 7).

87

4.3 Trusted Environment & Execution Manager

4.3.5 Self-test Manager

The self-test mechanism checks whether the smart card is tamper-resistant as certi�ed by

a trusted third party evaluation. The aim of the self-test mechanism is to provide a remote

hardware validation framework in a way that enables a requesting entity (e.g. an SP) to

independently verify it. As our focus and expertise is not the hardware end of the smart

card, we do not propose any hardware-based mechanism in this thesis, which is one of the

possible directions for future research.

A self-test mechanism in the UCTD should provide the properties that are listed below:

1. Robustness: On input of certain data, it should always produce associated output.

2. Independence: When the same data is input to a self-test mechanism implemented

on two di�erent devices, they should output di�erent (random) values.

3. Pseudo-randomness: The generated output should be computationally di�cult to

distinguish from a pseudo-random function.

4. Tamper-evidence: Any attack aiming to access the function should cause irreversible

changes which render the device dead.

5. Unforgeable: It should be computationally di�cult to simulate the self-test mecha-

nism and mimic the actual deployed function on a device.

6. Assurance: the function should provide assurance (either implicitly or explicitly) to

independent veri�ers. It should not require an active connection with the device

manufacturer to provide the assurance.

There are several possibilities for a self-test mechanism in a UCTD including using active

(intelligent) shield/mesh [115], the Known Answer Test (KAT) [113], and the Physical

Unclonable Function (PUF) [116].

To provide protection against invasive attacks, smart card manufacturers implement an

active shield/mesh around the chip. If a malicious user removes the active shield then the

chip will be disabled. The self-test mechanism can be associated with this shield to provide

a limited assurance that the protective measures of the chip are still in place and active.

Furthermore, Hash-based Message Authentication Code (HMAC) can be deployed with a

hard-wired key that would be used to generate a checksum of randomly selected memory

addresses that have non-mutable code related to the SCOS. This mechanism requires the

involvement of the device manufacturer, as the knowledge of the correct HMAC key would

be a secret known only to the manufacturer and its smart cards.

88

4.3 Trusted Environment & Execution Manager

Another potential protection strategy is to utilise Physical Unclonable Functions (PUFs)

[116] to provide hardware validation. It is di�cult to �nd a single and consistent de�-

nition of PUF in the literature [117]. However, a property description de�nition of the

PUF is provided by Gassend et al. in [116]. Usual applications of the PUF described

in the literature are in anti-counterfeiting [118], Intellectual Property protection [119]�

[121], tamper-evident hardware [122], hardware based cryptography [60, 123]�[125] and

secure/trusted processors [126].

Based on the above listed features, table 4.1 shows the comparison between di�erent pos-

sible functions that can act as the self-test mechanism. Although the debate regarding the

viability, security, and reliability of the PUFs is still open in both academic circles and

industry [127]; for completeness, we use them as a self-test mechanism in our proposals

because they meet most of the requirements listed in table 4.1.

Table 4.1: Comparison of di�erent proposals for self-test mechanism
Features Active-Shield Keyed-HMAC PRNG PUF

Robustness Yes Yes Yes Yes
Independence No No Yes Yes
Pseudo-randomness No Yes Yes Yes
Tamper-evidence Yes � Yes* Yes
Unforgeable No Yes Yes* Yes
Assurance Yes No Yes Yes*

Note. �Yes� means that the mechanism supports the feature. �No� indicates that the mechanism does
not support the required feature. The entry �Yes*� means that it can supports this feature if adequately

catered for during the design.

If a manufacturer maintains separate keys for individual smart cards that support the

HMAC then it can provide the independence feature. However the HMAC key is hard-

wired and this makes it di�cult for it to be di�erent on individual smart cards of the same

batch. Furthermore, it requires other features to provide tamper evidence, like active-

shield. On the other hand, PUFs and adequately designed Pseudo-Random Number Gen-

erators (PRNGs) can provide assurance that the platform state and the tamper-resistant

protections of a UCTD are still active.

Before we discuss how a self-test manager and an attestation handler can be implemented

based on PUF and/or PRNG, we �rst discuss the overall framework that is responsible for

providing security assurance and validation of a smart card.

89

4.4 Security Assurance and Validation Mechanism

4.4 Security Assurance and Validation Mechanism

The UCOM requires a mechanism that supports a dynamic and remote security assurance

and validation process which is based on the TEM coupled with a third party evaluation.

The third party evaluation certi�cate provides a security assurance and TEM provides the

validation that the assurance is correct at the time of request. However, in the UCOM

environment, applications are not required to be evaluated by third parties, and so evalua-

tions can be costly, and may discourage small and medium-scale organisations from opting

for the UCTD-based architecture. To verify the security and reliability of an application,

a smart card can employ on-card veri�cation mechanisms like bytecode veri�cation [128].

In this thesis, we refer to the Common Criteria (CC) evaluators for third party evaluation

as it is one of the most accepted and deployed evaluation mechanisms in the smart card

industry.

4.4.1 Common Criteria

In late 1990s, the Common Criteria (CC) was released, and they were later adopted as

a multi-part ISO/IEC standard (ISO/IEC 15408 [129]), that is internationally accepted

under the Common Criteria Recognition Agreement (CCRA) [69].

The CC scheme de�nes the methodology for expressing the security requirements, confor-

mance claims, evaluations process, and �nally, certi�cation of the product. The security

requirements for a product at an abstract level are stipulated by Protection Pro�les (PPs).

A Security Target (ST) details these security requirements and makes the conformance

claims for a product or its sub-component(s), generally referred to as Target of Evaluation

(TOE).

The Evaluation Assurance Levels (EALs) are prede�ned assurance packages that have a set

of security requirements. There are seven packages de�ned in the Common Methodology

for Information Technology Security Evaluation (CEM) [130] that are referred as EAL

1 to EAL 7 with level seven being the most comprehensive security evaluation. The CC

proposes an evaluation methodology, which de�nes the procedures that an evaluator should

follow when processing conformance claims regarding a TOE under a particular ST, PP

and desired EAL. This evaluation methodology is published in the CEM [130].

In the literature, some reservations are expressed regarding the validity and the process ef-

�ciency of the CC [67, 86, 131]. However, the CC has taken a strong hold in the smart card

industry, especially in high-security areas like banking and IDS/passports, as the security

90

4.4 Security Assurance and Validation Mechanism

evaluation-standard of choice. CC evaluation has a well-established security requirement

speci�cation [69] and evaluation methodology [130]. Furthermore, card issuers, applica-

tion providers, and most smart card manufacturers have extensive experience of the CC

evaluation scheme.

In subsequent sections, we discuss how CC plays the role of trusted third party (evaluator)

in the UCOM security assurance and validation process.

4.4.2 Assurance Phase

This section describes the pre-issuance security evaluation. It is divided into two subsec-

tions: smart card evaluation and application evaluation.

4.4.2.1 Smart Card Evaluation

In this phase, the card manufacturer would get their smart cards evaluated to the de�ned

EAL. If the evaluation of the smart card is successful, the CC Certi�cation Body (CB)

would issue a cryptographic certi�cate [132], referred to as the Platform Assurance Cer-

ti�cate (PAC). The main components of the certi�cate include a PAC identi�er, a unique

reference to the product's ST, PP, and list of hardware security mechanisms and a hash of

the immutable (security and reliability critical) part of the SCOS.

Smart cards could be subjected to extensive evaluation by the manufacturer, evaluation

labs, or the academic community even after the issuance of the card's PAC; therefore, if

such evaluations discover vulnerabilities in a particular product, SPs can disable their ap-

plication leases to them, preventing the smart cards from accessing the sanctioned services.

Furthermore, the CB may downgrade their PAC assurance level or include the card on a

certi�cation revocation list, prohibiting such smart cards from downloading applications

in the future.

In addition, a PAC can also have the manufacturer's ID, the evaluator's (Commercial

Licensed Evaluation Facility: CLEF) ID, the manufacturer's signature veri�cation key

[132], and the validity period. The validity period is determined by the CC evaluators

and it represents an estimated period that a given product is expected to remain secure.

The manufacturer's ID uniquely identi�es the smart card manufacturer, and similarly the

CLEF ID identi�es the evaluation body that has carried out the evaluation. Finally, the

certi�cate would also certify the manufacturer's signature key pair.

The manufacturer would use the signature key certi�ed by the PAC to issue certi�cates to

91

4.4 Security Assurance and Validation Mechanism

the individual smart cards that have the same validity as the associated PAC.

4.4.2.2 Application Evaluation Phase.

An SP would create an ST according to its security requirements and get it evaluated

by the CLEF. If the SP's application is approved, the CB would issue a cryptographically

signed Application Assurance Certi�cate (AAC) that would contain the EAL level achieved

by the SP's application and the hash of its immutable application code.

The structure of the AAC is similar to the PAC, except for few changes. Details of data

�elds included in the AAC are: the SP's ID, the evaluator's (CLEF) ID, reference to the

evaluation target documents (PPs and ST), a digest of immutable application code, the

SP's signature key, and the certi�cate's validity period.

The certi�cate chain traversal and veri�cation of the individual certi�cates in the chain

are comparatively easy for the SPs as they have more computational power than a smart

card and independent access to an external network (i.e. the internet). To perform such

tasks would no doubt be challenging for a smart card; therefore, it would request the SP

to provide the certi�cate hierarchy that leads back either to the smart card manufacturer

or the third party evaluator of the smart card (i.e. to an entity that is considered trusted

by the smart card). In this way, the smart card can easily verify the certi�cate as the root

of the certi�cate chain provided the SP's certi�cate chain has entities (certi�cate issuers)

that the smart card trusts.

4.4.3 Validation Phase

This phase deals with the process that provides a dynamic and remote attestation of the

current state of the smart card or applications. The attestation mechanism combines the

self-test manager and attestation handler of the TEM to provide the state validation of

the UCTD. For validation of applications the TEM attestation handler only generates the

hash of the application in question, but the attestation mechanism for UCTD validation

has two modes of operation: o�ine and online. In the o�ine mode, the validation process

is independent of the card manufacturer and the smart card provides a security validation

message to the requesting entity. In the online mode the card manufacturer provides the

security validation message (i.e. a signed message from the card manufacturer) to the

requesting entity.

92

4.5 Attestation Mechanisms

4.5 Attestation Mechanisms

In this section, we discuss the two attestation mechanisms based on non-simulatable PUFs

and pseudorandom number generators that combine the functionality attestation handler

and self-test manager discussed in section 4.3.

4.5.1 Non-simulatable PUFs

A non-simulatable PUF is a PUF that is computationally di�cult to simulate by either the

device manufacturer or a malicious entity. This property has made non-simulatable PUFs

a candidate for true/pseudo random number and secret key generators [123, 133, 134].

Based on non-simulatable PUFs, we describe two algorithms 4.1 and 4.2 that take into

account the o�ine and online modes of the attestation mechanism.

Algorithm 4.1: Self-test algorithm for o�ine attestation based on a PUF
Input : l; list (array) of selected memory addresses.
Output : S; signature key of the smart card.
Data: seed; temporary seed value for the PRNG set to zero.
n; number of memory addresses in the list l.
i; counter set to zero.
a; memory address.
k; secret key used to encrypt the signature key of the smart card.
Se; encrypted signature key using a symmetric algorithm with key k.
Notation:
x ←− y+z: �rst the operation on the right of the arrow will be performed and the
result will be stored in x. This notation is common for all algorithms in this thesis.

1 SelfTestOffline (l) begin
2 while i < n do
3 a←− ReadAddressList (l,i)
4 seed ←− Hash (ReadMemoryContents (a), seed)
5 i ←− i+1

6 if seed 6= ∅ then
7 k ←− nmPUF (seed)

8 else
9 return testfailed

10 S ←− DecryptionFunction (k, Se)
11 return S

The o�ine algorithm is based on the function SelfTestOffline that takes a list of selected

memory addresses (l) stored on the card by the card manufacturer. This list has memory

addresses of security and reliability critical components of the smart card platform. The

93

4.5 Attestation Mechanisms

function SelfTestOffline iterates through the l and generates a hash of the contents of

the given memory location. The generated hash value is then stored as a seed. After

traversing through the l, the SelfTestOffline checks the value of the seed. If the value

is zero then throw test fail exception; otherwise, proceed. The generated seed value is

then input to the PUF that produces a sequence referred as k in algorithm 4.1. Using the

generated k, the SelfTestOffline will decrypt the signature key for the given device, then

return the signature key to the attestation handler. The handler will generate a signature

and send it to the requesting entity (e.g. the SP) along with the relevant cryptographic

certi�cate. If the signature veri�es then the smart card state is in conformance to the

evaluation state.

Algorithm 4.2: Self-test algorithm for online attestation based on a PUF

Input :
c; challenge sent by the card manufacturer.
n; random number send by the card manufacturer.
Output :
r; hash value generated on selected memory addresses, set at zero.
p; response part of the CRP for the implemented PUF.
Data:
seedfile; seed �le that has a list of non-zero values.
seed; temporary seed value for the PRNG set to zero.
ns; number of entries in a seedfile.
s; unique reference to an entry in the seedfile.
nc; number of bytes in the n.
i; counter set to zero.
l; upper limit of memory address de�ned by the card manufacturer.
m; memory address.
mK; shared secret between a smart card and respective card manufacturer.
Notation:
x % y: represents x modulo y. This notation is common for all algorithms in this
thesis.

1 SelfTestOnline (c, n) begin
2 mK ←− nmPUF(c)
3 while i < nc do
4 s←− ReadSingleByte(n, i) % ns
5 seed←− ReadSeedFile(seedfile, s)
6 m←− GenPRNG(seed) % l
7 r ←− Hash(ReadMemoryContents(m), r,mK)
8 if (nc− i) = 1 then
9 p←− nmPUF(r)

10 i ←− i+1

11 return r, p

For online attestation, the card manufacturers will have to generate (limited) Challenge-

Response Pairs (CRPs) discussed in section 4.5.3, which will be unique to a device. The

94

4.5 Attestation Mechanisms

rationale behind this is based on the design of a non-simulatable PUF in which the designer

tries make the CRP space su�ciently large to make it di�cult for an adversary to simulate

the PUF [123, 135]. This design decision even makes it di�cult for the card manufacturer to

simulate the PUF. The limited set of generated CRPs will lead to a limited number of device

validations (before they start to repeat), which is not a desirable situation. Therefore, we

use a rolling update mechanism in which at the end of each successful device validation

(section 4.7) a new CRP will be generated for future use. A valid CRP response can also

help the card manufacturer ascertain that the device is not counterfeit as only the issued

device's CRPs are registered in its CRP database.

The PUF-based online attestation mechanism represented in algorithm 4.2 implements a

function SelfTestOnline that takes two parameters: a challenge `c' and random number

`n' from the respective card manufacturer. The challenge `c' is input to the PUF at line

two and a response is generated, which is the response to the challenge `c' and we treat it

as a shared secret (mK). The function SelfTestOnline then treats the random number

`n' as a collection of bytes, reading one byte at a time and taking modulus of the byte with

the length of the seedfile. By doing so, we generate an index to the seedfile and in the

next step we read a seed value from that index. The seed value is used to generate a new

random number, whose modulus with upper memory limit (l) de�ned by the manufacturer

gives us a memory location. In the next step (line seven), we read and hash the memory

contents from the memory location, and the result is stored in �r�. This process is repeated

for the number of bytes the random number `n' has, which is represented by the nc. At

nc− 1 iteration, the �r� is input to the PUF again to generate a new CRP.

In function SelfTestOnline, the generated `r' and `p' are then securely communicated

back to the smart card manufacturer, which can verify the generated `r' and stores the

CRP. The card manufacturer can verify the `r' by executing instructions from lines three

to seven of the algorithm 4.2. Similarly, the function SelfTestOnline does not send the

challenge which was used to generate the response `p' because the card manufacturer can

also generate the value of `r' at iteration ns− 1.

4.5.2 Pseudorandom Number Generator

In the second option, we propose the use of a Pseudorandom Number Generator (PRNG)

to provide the device authentication, validation, and implicit anti-counterfeit functional-

ity. Unlike non-simulatable PUFs, PRNGs are emulatable and their security relies on the

protection of their internal state (e.g. input seed values, and/or secret keys, etc.).

Unlike PUFs, the PRNGs implemented in one device will be the same as they are in

other devices and given the same input, they will produce the same output. Therefore, the

95

4.5 Attestation Mechanisms

manufacturer will populate the PRNG seed �le with unique values in each smart card. The

seed �le is a collection of inputs that is fed to the PRNG to produce a random number,

and it is updated constantly by the PRNG [136]. This will enable a card manufacturer to

emulate the PRNG and generate valid CRPs for a particular device. The PRNGmechanism

is not tamper-evident and it relies on the tamper-resistant mechanisms of the smart card

to provide physical security.

Based on the PRNG, algorithms 4.3 and 4.4 show the o�ine and online attestation mech-

anism, respectively.

Algorithm 4.3: Self-test algorithm for o�ine attestation based on a PRNG
Input : l; list of selected memory addresses.
Output: S; signature key of the smart card.
Data:
seed; temporary seed value for the PRNG set to zero.
n; number of memory addresses in the list l.
i; counter set to zero.
a; memory address.
k; secret key used to encrypt the signature key of the smart card.
Se; encrypted signature key using a symmetric algorithm with key k.

1 SelfTestOffline (l) begin
2 while i < n do
3 a←− ReadAddressList (l,i)
4 seed ←− Hash (ReadMemoryContents (a), seed)
5 i ←− i+1

6 if seed 6= ∅ then
7 k ←− GenPRNG (seed)

8 else
9 return testfailed

10 S ←− DecryptionFunction (k, Se)
11 return S

The SelfTestOffline takes a list of selected memory addresses l that is illustrated in

algorithm 4.1. The function iterates through the l reading one memory address at a time,

and then generating a hash of the contents stored at the given memory address. In the

next step at line six, the function SelfTestOffline checks the value of seed and if it is

not zero it will proceed; otherwise, it will throw a test fail exception. If the seed value is

not zero then the seed is input to the PRNG and a sequence k is generated. The k is used

to encrypt the smart card signature key, and if the input to the PRNG at line seven is as

expected the signature key will be correctly decrypted.

The algorithm returns the signature key, which is used by the attestation handler to sign

a message. The requesting entity will verify the signed message and if the state of the

platform is in conformance with the evaluated state then the signature will be veri�ed;

96

4.5 Attestation Mechanisms

otherwise, it will fail. The signature veri�cation will fail because the decrypted signature

key will be di�erent as the input to the PRNG at line seven of the algorithm was di�erent.

Therefore, we can assume that if the state is changed, signature key will change, and the

generated signature will not verify.

Algorithm 4.4: Self-test algorithm for online attestation based on a PRNG
Input : c; randomly generated challenge sent by the card manufacturer.
Output: r; hash value generated on selected memory addresses.
Data:
seedfile; seed �le that has a list of non-zero values.
seed; temporary seed value for the PRNG set to zero.
ns; number of entries in a seed �le.
s; unique reference to an entry in the seedfile.
nc; number of bytes in the c.
i; counter set to zero.
l; upper limit of memory address de�ned by the card manufacturer.
m; memory address.
mK; HMAC key shared between a smart card and respective card manufacturer

1 SelfTestOnline (c) begin
2 while i < nc do
3 s←− ReadChallenge(c, i) % ns
4 seed←− ReadSeedFile(seedfile, s)
5 m←− GenPRNG(seed) % l
6 r ←− r ⊕ Hash(ReadMemoryContents(m),mK)
7 i←− i+ 1

8 return r

The PRNG-based online attestation mechanism is illustrated in algorithm 4.4. The func-

tion SelfTestOnline takes the challenge c from the card manufacturer as input. The

received challenge is treated as a collection of bytes and individual bytes of the challenge c

are used to generate indexes to seedfile; values stored on these indexes are used to generate

memory addresses (within the range speci�ed by the card manufacturer). The contents of

generated memory addresses are then HMACed and the result is securely sent to the card

manufacturer. The SP can use the same process described in algorithm 4.4 to generate

the HMAC result and if the result matches with the one sent by the smart card, then the

card manufacturer can ascertain that the current state of the card is trustworthy. At line

six of the algorithm 4.4, we update the seedfile with the value stored in `m'. This update

is necessary to avoid generation of the same `r' if the card manufacturer sends the same

challenge `c'.

In the implementation of the attestation protocol (section 4.7), we only use the PRNGs

as we have neither the technical expertise to design a PUF nor adequate means to do so.

However, in section 4.8.3, we emulate a PUF to provide the test performance measurements.

97

4.6 Device Ownership

4.5.3 Challenge-Response Pair Generation

In the case of the mechanism based exclusively on the PRNG as depicted in algorithm 4.4,

the card manufacturer will provide a set of seed values that is referred as the seed �le. The

seed �le has a limited set of seeds and with the PRNG designed to update, the seed �le

will keep the internal state of the PRNG di�cult to emulate by an adversary.

On the other hand, if the online attestation mechanism is based on PUFs then the card

manufacturer requests the smart card to generate a limited set of CRPs. A new CRP is

generated on every successful online attestation; therefore, the card manufacturer does not

need to maintain an exhaustive set of CRPs for individual smart cards.

4.6 Device Ownership

An o�-card entity can have one of two types of ownerships on a UCTD. These are discussed

in subsequent sections.

4.6.1 Administrative Ownership

This ownership privilege is enabled in the UCTD to accommodate the requirements of an

IT infrastructure in a corporate, government or public institution (i.e. schools, library, etc.)

to manage hand-held and traditional computing platforms. In addition, the administrative

ownership enables the scheme in which an organisation that is referred as administrative

authority (i.e. MNOs, CIBs, TSOs, SCMs, and MPMs, etc.) can issue smart cards to its

customers and may charge either the application provider or the user on each application

download (section 3.6).

An entity with administrative privileges can install an application in the administrator

space on a UCTD. The administrator space is an �application space� (section 4.2.1) on a

UCTD that is under the control of the administrative authority. The user of the UCTD

will not have any privilege to install or delete an application from the administrator space;

the user only has the right to use these applications to acquire sanctioned services. The

administrator space can enable the administrative authority to install certain protection

applications (i.e. applications related to network/system user policy, �rewall and antivirus

de�nitions, and content �lters, etc.). Furthermore, administrative ownership does not give

the administrative authority the privilege to install, delete or use/access any application

that is installed by a user in her �application space�.

98

4.6 Device Ownership

4.6.2 User Ownership

User ownership is associated with individual users that acquire a smart card either from

a supplier or an administrative authority. This ownership gives the privilege to a user

to install, delete, and use applications installed in her �application space�. There are two

scenarios in user ownership: 1) the UCTD is subscribed with an administrative authority

(discussed in the previous section), and 2) there is no administrative authority on the

UCTD, as in UCOM initiative [32].

In the �rst case, the user has to abide by the terms and conditions of the administrative

authority. However, in the second case, there is no administrative authority and the user

has complete freedom on the UCTD. Therefore, in the second case we can say that the

user is the administrator and user at the same time.

4.6.3 Ownership Acquisition & Delegation

A UCTD in its pre-issuance state is under the default ownership of the UCTD manufac-

turer. When an entity, whether an administrative authority or a user takes control of the

smart card, it will initiate an ownership acquisition process. The �rst step of the acquisi-

tion is to select whether the UCTD will be under administrative control or not. If it will

be, then the administrative authority takes the administrative ownership and then issues

the smart cards to individual users. Whether the UCTD is under administrative control or

not, the user will then acquire the ownership privileges. The ownership acquisition process

is same whether it is initiated by an administrator or a normal user; therefore, we will use

the term user to indicate administrator and normal user during this section. The process

is described below:

1. The user initiates the ownership acquisition process through the Card Application

Management Software (CAMS). At this stage, the user will indicate the type of own-

ership (e.g. administrative or user) and CAMS will select the appropriate manager of

the UCTD. For administrative ownership, it will select subscription manager (section

4.2.5) and for user ownership, it will select cardholder's security manager (section

4.2.4). In case, the UCTD will only have one owner then the smart card will dis-

able the administrative ownership, Unless explicitly instructed not to do so by the

cardholder.

2. The UCTD requests the default ownership credentials, which are communicated to

the user by the card manufacturer. In response the user will provide the relevant

default credentials.

99

4.6 Device Ownership

3. On veri�cation of the credentials, the UCTD checks the mode of platform assurance

and validation selected by the user. The supported modes are o�ine and online

attestation (section 4.3.5). Depending upon the user's choice the UCTD proceeds

with the security attestation process.

4. Once the assurance validation is communicated to the CAMS, the user can compare

the smart card features with those stated by the card manufacturer at the time

of purchase. If satis�ed, the user will provide her credentials and they are used

to authenticate the user to the UCTD for management operations (e.g. application

installation, deletion, and registration with an administrative authority) discussed in

chapter 5. The credentials can be based on a Personal Identi�cation Number (PIN),

a password, a pass-phrase, or biometric data [137]�[139] depending upon the card

manufacturer, and user's requirements.

The ownership delegation process is used when a user relinquished control of a UCTD to

re-sell or scrap the device. The process is similar to ownership acquisition but this time the

user requests ownership delegation that will delete the user's space and any applications

she has installed in it.

4.6.4 Key Generation

Individual smart cards have a unique set of cryptographic keys that the card uses for

di�erent protocols/mechanisms during its lifetime. Therefore, after the hardware fabrica-

tion and masking of the SCOS is completed [5] the card manufacturer initiates the key

generation process.

Each smart card will generate a signature key pair that does not change for the lifetime of

the smart card. The smart card signature key pair is certi�ed by the card manufacturer,

and it is used to provide o�ine attestation (section 4.5). Furthermore, in the certi�cate

hierarchy shown in �gure 4.3, the smart card signature key pair is linked with the PAC via

the card manufacturer's certi�cate. The reason for this is that a malicious user might copy

a PAC that belongs to a genuine device and put it on his tampered device and when an SP

requests security assurance from the tampered device, it provides the (copied) PAC of a

(trusted) genuine device. By ensuring the PAC is tied to genuine devices by the certi�cate

hierarchy shown in �gure 4.3 we can avert such scenarios.

As discussed in section 4.4.2.1, the evaluation authority issues a certi�cate (e.g. a PAC)

which certi�es that the signature key of the card manufacturer is valid only for the evaluated

product. If an adversary can get hold of the manufacturer's signature key pairs then he

100

4.7 Attestation Protocol

can successfully masquerade as the smart card; either as a dumb device or by simulating

the smart card on a powerful device like a computer.

Common Criteria

Certification Authority

Card Manufacturer

PAC

Smart Card Signature

Key Pair Certificate

Smart Card Encryption

Key Pair Certificate

Smart Card User Signature

Key Pair Certificate

Figure 4.3: Certi�cate hierarchy in the UCOM

The smart card will also generate a public encryption key pair that is certi�ed by the smart

card signature key. The smart card user signature key pair is used to identify the owner

of the device and to provide proof of ownership (see chapter 6). This signature key is

unique to the individual user and it is generated on the successful completion of ownership

acquisition process (section 4.6.3).

Finally, the smart card and card manufacturer share an encryption key for symmetric

algorithms (e.g. TDES, AES) and a MAC key. These keys will be used to encrypt and for

MAC communication messages between the smart card and the card manufacturer.

4.7 Attestation Protocol

The attestation protocol, referred as Attestation Protocol (ATP), involves the card manu-

facturer in the security assurance and validation framework by using the online attestation

mechanisms. The aim of the protocol is to provide an assurance to a remote SP that the

current state of the smart card is not only secure but also dynamically attested by the card

manufacturer. The card manufacturer generates a security validation message that testi-

�es to the requesting SP that its product is safe and still in compliance with the security

evaluation indicated by the associated PAC.

4.7.1 Protocol Prerequisites

Before the execution of the attestation protocol, the prerequisites for the proposed protocol

are listed below:

PPR-1 Third Party Evaluation: The smart card is independently evaluated by a third

101

4.7 Attestation Protocol

party that certi�es the security and reliability features of the device.

PPR-2 Attestation Mechanism: An attestation mechanism is implemented that provides

an e�ective assurance of the tamper-evidence and conformance with the evaluated

state of the smart card.

PPR-3 Authenticated & Valid CRP: To provide online device authentication and vali-

dation, the card manufacturer maintains a valid CRP database corresponding to

individual smart cards.

PPR-4 Unique Identi�er: Each smart card has a unique identi�er that it can use to au-

thenticate itself to the card manufacturer.

PPR-5 Pseudo Public Identi�er: Each smart card has a dynamic pseudo public identi�er

that it uses to connect with the card manufacturer. Before issuing the smart cards

to individual users, the card manufacturer will generate a unique pseudo identity

for each card that will be updated on each successful execution of the attestation

protocol.

PPR-6 Smart Card Signature Key Pair: Each smart card will have a unique signature key

pair that is bound to the attestation mechanism.

PPR-7 Encryption &MACKeys: The smart card manufacturer shares a unique encryption

and MAC key with each of their individual smart cards. These keys are used to

encrypt and MAC the communication messages between the smart card and its

manufacturer.

4.7.2 Protocol Goals

The goals for the attestation protocol are listed as below:

PG-1 Secrecy: During the attestation protocol, the communication messages are ade-

quately protected.

PG-2 Privacy: In the attestation protocol, the identity smart card owner (user) should

not be revealed to any eavesdropper or the card manufacturer.

4.7.3 Intruder's Capabilities

The aim of an adversary A could be to retrieve enough information to enable him to

successfully masquerade as a card manufacturer or as a smart card. Therefore, we assume

102

4.7 Attestation Protocol

an adversary A is able to intercept all messages communicated between a smart card and

its manufacturer. In addition, A can modify, change, replay, and delay the intercepted

messages.

If A is able to masquerade as a card manufacturer then A can issue fake attestation

certi�cates to individual smart cards, which might compromise the security and privacy of

the user and related SPs. On the other hand, if A is able to compromise the smart card

then he can e�ectively simulate the smart card environment (discussed in detail in section

5.5.1). This will enable him to reverse engineer the downloaded applications and retrieve

sensitive data related to the user and application (e.g. intellectual property of the SP).

4.7.4 Protocol Notation and Terminology

Table 4.2 summarises the notation used in the proposed attestation protocol.

Table 4.2: Protocol notation and terminology

Notation Description

SC Denotes a smart card.

SP Denotes a Service Provider.

CM Denotes the respective card manufacturer of the SC .
CC Denotes the respective Common Criteria evaluation laboratory that eval-

uates the SC.
SID Session identi�er that is used as an authentication credential and to avoid

Denial of Service (DoS) attacks. The SID generated during the protocol

run 'n' is used in the subsequent protocol run (i.e. n+1).

Xi Indicates the identity of an entity X.

NX Random number generated by entity X.

h(Z) The result of applying a hash algorithm (e.g. SHA-256) on data Z.

KX−Y Long term encryption key shared between entities X and Y.

mKX−Y Long term MAC key shared between entities X and Y.

BX Private decryption key associated with an entity X.

VX Public encryption key associated with an entity X.

eK(Z) Result of encipherment of data Z with symmetric key K.

fK(Z) Result of applying MAC algorithm on data Z with key K.

SignX(Z) Is the signature on data Z with the signature key belonging to an entity

X using a signature algorithm like DSA or based on the RSA function. In

this thesis the message SignX(Z) can be interpreted as either �signature

with appendix� [140] or �signature with message recovery� [141]. The

choice of a particular scheme is left to the discretion of communicating

entities.

103

4.7 Attestation Protocol

Notation Description

CertSX←Y Is the certi�cate for the signature key belonging to an entity X, issued

by an entity Y.

CertEX←Y Certi�cate for the public encryption key belonging to an entity X, issued

by an entity Y.

VM The Validation Message (VM) issued by the respective CM to a SC
representing that the current state of the SC is as secure as at the time of
third party evaluation, which is evidenced by the PAC (section 4.4.2.1).

X → Y : C Entity X sends a message to entity Y with contents C.

X||Y Represents the concatenation of data items X and Y.

4.7.5 Protocol Description

In this section, we describe the attestation protocol, and each message is represented by

ATP-n, where n represents the message number. We use the same representation to

describe each message of proposed protocols in this thesis. The structure of this represen-

tation would be the protocol acronym (i.e. ATP for attestation protocol) followed by the

message number.

ATP-1. SC : mE = ekSC−CM
(SCi||N ′SC ||CMi||ReqV al)

SC → CM : SCi′ ||mE||fmkSC−CM
(mE)||SID

Before issuing the smart card to the user, the SC and CM will establish two long term

secret keys; encryption key KSC−CM and MAC key mKSC−CM . The SC and CM can use

these long-term shared keys to generate the session encryption key kSC−CM and the MAC

key mkSC−CM . The method deployed to generate session keys is left to the sole discretion

of the card manufacturer. Each SC has a unique identi�er SCi that is the identity of the

smart card. To provide privacy to each smart card (and its user) the identity of the SC is
not communicated in plaintext. Therefore, the pseudo-identi�er SCi′ is used in the ATP-1,

which is generated by the SC and corresponding CM on the successful completion of the

previous run of the attestation protocol. We will discuss the generation of SCi′ and SID

in subsequent messages, as the generated SCi′ and SID during this message will be used

in the next execution of the attestation protocol. A point to note is that for the very �rst

execution of the attestation protocol, the smart card uses the pseudo-identi�er (SCi′) that

was generated by the card manufacturer and stored on the smart card before the card

was issued to the user. The SID is used for two purposes: �rstly to authenticate the SC
and secondly, to prevent a Denial of Service (DoS) attack on the attestation server. The

ReqV al is the request for attestation process.

On receipt of the �rst message, the CM will check whether it has the correct values of

104

4.7 Attestation Protocol

SCi′ and SID. If these values are correct, it will then proceed with verifying the MAC. If

satis�ed, it will then decrypt the encrypted part of the message.

ATP-2. CM : mE = ekSC−CM
(CMi||N ′SC ||NCM ||Challenge)

CM→ SC : mE||fmkSC−CM
(mE)||SID

The CM generates a random number NCM and a Challenge. In case of the PRNG-based

attestation mechanism, the Challenge would also be a random number; however, in case

of PUF-based attestation mechanism it would be the pre-calculated challenge part of the

CRP.

ATP-3. SC : mE = ekSC−CM
(N ′SC ||NCM ||NSP ||NSC ||Response||Optional)

SC → CM : mE||fmkSC−CM
(mE)||SID

After generating the Response using the PRNG- or PUF-based algorithms discussed in

section 4.5, the SC will proceed with message three. It will concatenate the random num-

bers generated by the SC, CM, and SP, with the Response. The rationale for including

the random number from the SP in message three is to request CM to generate a val-

idation message that can be independently checked by the SP to ensure it is fresh and

valid. The function of the Optional element is to accommodate the CRP updates if the

CM implements a PUF-based attestation process.

While the SC was generating the Response based on the Challenge, the CM also calculates

the correct attestation response. When the CM receives message three, it will check the

values and if they match then it will issue the validation message. Otherwise the attestation

process has failed and CM does not issue any validation message (VM).

ATP-4. CM : VM = SignCM (CMi||SCi||NSP ||NSC ||PAC)

CM : mE = ekSC−CM
(N ′SC ||VM ||SC

+
i′ ||SID

+||CertSCM)

CM→ SC : mE||fmkSC−CM
(mE)||SID

If the attestation response is successful then the CM will take the random numbers gener-

ated by the SP and the SC (e.g. NSP and NSP) during the Secure and Trusted Channel

Protocols (STCPs) discussed in chapter 6 and include the identities of the SC and CM.

All of these items are then concatenated with the SC's evaluation certi�cate PAC and then

signed by the CM. The signed message is then communicated to the SC.

In the ATP-4, the CM will also generate a SID and SCi′ that will used in the subsequent

execution of the attestation protocol between the SC and CM. The SID and SCi′ for the

subsequent run of the attestation protocol is represented as SID+ and SC+
i′ . The SID

+ is

basically a (new) random number that is associated with the pseudo-identi�er of the smart

card that it will use to authenticate in the subsequent attestation protocol. Furthermore,

105

4.8 Protocol Analysis

the SC+
i′ is generated as SC+

i′ = fmKCM
(CMi||NSC ||NCM ||SID), where mKCM is the

MAC key that the CM does not share

4.8 Protocol Analysis

In this section, we analyse the proposed attestation protocol for given goals and provide

details of the test performance results.

4.8.1 Informal Analysis

In order to meet the goals PG-1 and PG-2, all messages communicated between the SC
and CM are encrypted and MACed using long term secret encryption and MAC keys;

KSC−CM and mKSC−CM , respectively. The A has to compromise these keys in order

to violate the PG-1. If we consider that the symmetric algorithm used (e.g. AES) is

su�ciently strong to avert any exhaustive key search and robust enough to thwart any

cryptanalysis then it is di�cult for the A to break the protocol by attacking the used

symmetric algorithms. A possibility can be to perform side-channel analysis of the smart

card and attempt to retrieve the cryptographic keys; however, most modern smart cards

have adequate security to prevent this attack, and third party evaluation will endorse and

evaluate these mechanisms. Nevertheless, these assurances can only be against the state-of-

the-art attack methodologies at the time of manufacturing/evaluation. Any attacks which

surface after manufacture and evaluation will render both the assurance and validation

mechanisms useless.

The smart card identity is not used as plaintext during the communication between the SC
and the CM. Instead of using the SCi, the SC uses a pseudo-identity SCi′ which changes

on every successful completion of communication with the respective CM. Therefore, a

particular SC will only use SCi′ once during its lifetime.

4.8.2 Protocol Veri�cation by CasperFDR

The CasperFDR approach is adopted to test the soundness of the proposed protocol un-

der the de�ned security properties. In this approach, the Casper compiler [142] takes

a high-level description of the protocol, together with its security requirements. It then

translates the description into the process algebra of Communicating Sequential Processes

(CSP) [143]. The CSP description of the protocol can be machine veri�ed using the

Failures-Divergence Re�nement (FDR) model checker [144]. A short introduction to the

106

4.8 Protocol Analysis

CasperFDR approach to mechanical formal analysis is provided in appendix B.1. The in-

truder's capability modelled in the Casper script (appendix B.2) for the proposed protocol

is as below:

1. An intruder can masquerade as any entity in the network.

2. It can read the messages transmitted by each entity in the network.

3. An intruder cannot in�uence the internal process of an agent in the network.

The security speci�cations for which the CasperFDR evaluates the network are as shown

below. The listed speci�cations are de�ned in the # Speci�cation section of appendix B.2:

1. The protocol run is fresh and both applications are alive.

2. The key generated by a smart card is known only to the card manufacturer.

3. Entities mutually authenticate each other and have mutual key assurance at the

conclusion of the protocol.

4. Long term keys of communicating entities are not compromised.

The CasperFDR tool evaluated the protocol and did not �nd any attack(s). A point to

note is that in this thesis, we provide mechanical formal analysis using CasperFDR for the

sake of completeness and we do not claim expertise in the mathematical base of the formal

analysis.

4.8.3 Implementation Results & Performance Measurements

The test protocol implementation and performance measurement environment in this thesis

consists of a laptop with a 1.83 GHz processor, 2 GB of RAM running on Windows XP.

The o�-card entities execute on the laptop and for on-card entities, we have selected two

distinct 16bit Java Cards referred as C1 and C2. Each implemented protocol is executed

for 1000 iterations to adequately take into account the standard deviation between di�erent

protocol runs, and the time taken to complete an iteration of protocol was recorded. The

test Java Cards (e.g. C1 and C2) were tested with di�erent numbers of iterations to �nd out

a range, which we could use as a common denominator for performance measurements in

this thesis. As a result, the �gure of 1000 iterations was used because after 1000 iterations,

the standard deviation becomes approximately uniform.

107

4.8 Protocol Analysis

Regarding the choice of cryptographic algorithms we have selected Advance Encryption

Standard (AES) [145] 128-bit key symmetric encryption with Cipher Block Chaining (CBC)

[146] without padding for both encryption and MAC operations. The signature algorithm

is based on the Rivest-Shamir-Aldeman (RSA) [146] 512-bit key. We use SHA-256 [147]

for hash generation. For Di�e-Hellman key generation we used a 2058-bit group with a

256-bit prime order subgroup speci�ed in the RFC-5114 [148]. The average performance

measurements in this thesis is rounded up to the nearest natural number.

The attestation mechanism implemented for emulating the practical performance is based

on the PRNG design. The PRNG for our experiments was based on the HMAC-SHA256

[149] and it has been implemented such that it allows us to input the seed �le. For com-

pleteness, we have taken the measurement of PUF-based algorithms in which all other

instructions were executed on a Java Card and PUF execution time from [135] was added

later. The performance measures taken from two di�erent 16-bit Java Cards are listed in

table 4.3. The o�ine attestation mechanism based on PRNG and PUF take in total (ex-

cluding PRNG seed �le) 2084 and 2292 bytes respectively. Similarly, the online attestation

mechanism and associated attestation protocol based on PRNG and PUF take in total

(excluding PRNG seed �le) 5922 and 6392 bytes respectively.

Table 4.3: Test performance measurement (milliseconds) for the attestation protocol

Measures
O�ine Attestation Attestation Protocol
PRNG PUF PRNG PUF

Card Speci�cation C1 C2 C1 C2 C1 C2 C1 C2
Average 408.63 484.55 532 584 1008 1284 1128 1284
Best time 367 395 506 495 930 1075 992 1075
Worse time 532 638 749 838 1493 1638 1312 1638
Standard Deviation 41.82 59.43 53.22 83.31 87.68 92.29 103.62 112.72

4.8.4 Related Work

The basic concept of remote attestation and ownership acquisition came from the TCG's

speci�cations [36]. The user takes the ownership of the TPM and in return, the TPM

generates a unique set of keys that are associated with the respective user. The remote

attestation mechanism described in the TPM speci�cation [18] provides a remote system

attestation (only software). The attestation mechanism is designed so that if the software

state is modi�ed, the TPM cannot generate a valid report.

The TPM does not provide an attestation that includes the hardware state. Furthermore,

the attestation de�ned in the TPM speci�cation is more like the o�ine attestation. How-

ever, the o�ine attestation mechanism (algorithm 4.3) is di�erent to the one used by TPM,

108

4.9 Summary

whereas the online attestation is not part of the TPM speci�cations.

Similarly, other proposals concentrate on the software attestation without binding it to

a particular hardware. Such proposals include SCUBA [150], SBAP [151], and SWATT

[152]. These protocols utilise execution time as a parameter in the attestation process.

This is di�cult to guarantee remotely, even with the delegation of time measurement to

neighbouring trustworthy nodes [150]. Other mechanisms that use trusted hardware are

proposed by Schellekens et al. [153] and PUF-based protocols [123, 135, 154].

There is no such proposal for remote attestation in smart card frameworks like Java Card,

Multos, or GlobalPlatform. The nearest thing is the Data Authentication Pattern (DAP)

in the GlobalPlatform card speci�cation that checks the signature on the downloaded

application (if the application provider chooses this option). Furthermore, we have opted

out of having execution measurement as part of the attestation process as it is di�cult to

ascertain the trustworthiness of the remote device that measures it. However, unlike other

proposed protocols we have an explicit requirement that third party evaluation is used to

provide an implicit trust in the attestation process. Furthermore, our proposal binds the

software attestation with the hardware protection (tamper-evident) mechanism to provide

added assurance.

4.9 Summary

In this chapter, we discussed the overall architecture of the UCTD and its components and

the ways in which the UCTD is di�erent from mainstream smart card proposals. We also

extended the discussion to the security assurance and validation framework that requires

a third party evaluation and an attestation process. The attestation process includes

hardware validation with the traditional software attestation. We proposed two modes

for the attestation process: o�ine and online attestation. In designing the attestation

processes, we based our proposal on two di�erent architectures. First proposal is based on

the PRNG and the second approach includes the PUFs in the device attestation process. To

have an online attestation, we proposed the attestation protocol that communicates with

the card manufacturer to get a dynamic certi�cate of assurance (a signed message from

the card manufacturer) that the smart card is still secure and reliable. We implemented

o�ine and online attestation mechanisms, along with an attestation protocol on 16-bit Java

Cards. We also detailed the performance measurements of the implemented mechanisms

and protocols.

109

Chapter 5

Smart Card Management

Architecture

Contents

5.1 Introduction . 111

5.2 GlobalPlatform Card Management Framework 112

5.3 Multos Card Management Framework 114

5.4 Proposed Smart Card Management Framework 116

5.5 Card Management-Related Issues 121

5.6 Summary . 126

In this chapter, we discuss two of the most widely accepted and deployed smart card man-

agement architectures in the smart card industry, namely GlobalPlatform and Multos. We

explain how these architectures do not fully comply with the UCOM. We then describe our

novel card management architecture designed for the UCTD framework. Finally, we discuss

three new security issues raised by the proposed architecture.

110

5.1 Introduction

5.1 Introduction

Existing multi-application smart card platforms (e.g. Java [7], Multos [8]) support the in-

stallation of applications remotely (after issuance of the card). Standardisation e�orts to

manage an application remotely like GlobalPlatform [9] have been e�ective in the ICOM.

The advent of NFC technology and the growing convergence of di�erent services to mobile

phones has prompted GlobalPlatform and the GSMA1 to propose new management archi-

tectures (e.g. TSM) [43, 50, 155, 156]. Similarly, Multos has a strong card and application

management architecture that is heavily issuer centric and it can be argued that it can

easily be adapted to the TSM architecture.

The GlobalPlatform and Multos card and application management architectures provide

two contrasting views of the smart card industry. We limit our discussion of traditional

card management architectures with these two examples. As for the Java Card, it does

not have any associated management architecture and in most commercial deployments it

is coupled with the GlobalPlatform management architecture.

The device management architecture in the UCTD framework has to consider the contrast-

ing needs of the administrative authority and cardholder. It must determine the ownership

requirements of each of these entities and then articulate how a UCTD framework will man-

age them. In addition, the management architecture proposed in this chapter deals with

application issuance (lease), application domain provision on the smart card, installation,

deletion, and application/domain management. This chapter serves as the framework to

the proposed protocols in the subsequent chapter.

As the UCTD management architecture brings di�erent views on smart card manage-

ment, it also brings new security issues. These issues concern the device and its owner.

They include the simulator problem, the user ownership issue, and the parasite application

problem.

Structure of the Chapter: The GlobalPlatform card management framework is dis-

cussed in section 5.2 followed by the Multos card management framework in section 5.3.

The proposed framework of UCTD management is described in section 5.4, along with

various types of relationships a user and an SP can have in the UCOM. In section 5.5, we

discuss the issues that are raised due to the proposed UCTD management framework and

related countermeasures.
1The GSM Association (GSMA) is an association that represents the interest of mobile operators

worldwide along with developing and prompting the Global System for Mobile Communication (GSM)
speci�cation.

111

5.2 GlobalPlatform Card Management Framework

5.2 GlobalPlatform Card Management Framework

In this section we discuss the GlobalPlatform card management framework along with how

it supports TSM-based card management.

5.2.1 Architecture Overview

The GlobalPlatform card security requirement speci�cation [1], speci�es nine entities that

perform various tasks in the overall card management architecture. The overall architecture

is depicted in �gure 5.1, which is a simplistic representation of the architecture described

in [1]. The �gure is then explained.

Card Issuer

SCOS Developer

Request

Platform

Code Platform Code

Cardholder

Card Issued

Card

Administrator

Application

Provider

Card Enabler

Application

Loader

Controlling

Authority

Verification

Authority

Application Installation

Deletion Authority

Request Offcard

Application Code Verification

Code Verification Report

Provide Cards,

Platform data and keys

Provide Security

Domain Keys and data

Request Application

Load

Application

Load Permission

Application, Keys, and

Personalisation Data

Application Load/Delete

Confirmation

Application

Load/Delete

Confirmation

Set Policies

Smart Card

Provide Enabled Cards

Figure 5.1: GlobalPlatform card management architecture [1]

The shaded entities in �gure 5.1 have di�erent titles and roles, but together they form

the card issuer as de�ned in this thesis. The term �card issuer� as de�ned by GlobalPlat-

form in [1] is restrictive, so that they only have the responsibility to acquire the smart

cards, set security policy, and issue them to individual cardholders. The card administra-

tor then manages the cards once they are issued to individual customers. If application

providers want to issue their applications, they �rst have to get the applications veri�ed

by the veri�cation authority. The veri�cation authority performs an o�-card application

code veri�cation to ascertain whether the given code conforms to the security policy set by

the card issuer. Once the veri�cation is performed, the application provider requests the

controlling authority to give permission to load the application. The controlling authority

checks the veri�cation authority's veri�cation and issues the permission to load the appli-

cation. Now, if the application is going to be loaded at the pre-issuance stage then the

domain keys and data will be sent to the card issuer [157] through the card enabler. Oth-

erwise, the domain keys and data will be sent to the application loader. In �gure 5.1, we

112

5.2 GlobalPlatform Card Management Framework

opt for the pre-issuance model. Finally, the application provider will send its application

to the application loader, which will load it onto the smart cards of individual customers.

In �gure 5.1 the security domain keys that are used by the application provider to manage

its domain are loaded onto the smart card through the card enabler (i.e. card issuer) [30].

However, a later addendum to the GlobalPlatform card speci�cation [30] permitted the

generation and loading of keys without the active involvement of a card issuer [158]. This

extends the role of the Controlling Authority (GP-CA)2 by giving it an on-card controlling

entity (i.e. Controlling Authority Security Domain: CASD) that will be responsible for

generating and/or loading the application provider's cryptographic keys. The GlobalPlat-

form speci�cation supports two models: the push model in which the cryptographic keys

are sent to the CASD by the application provider, and the pull model that generates the

cryptographic keys on the card and then sends them to the application provider. The Glob-

alPlatform card speci�cation [30] and its amendment [158] provides a secure and reliable

way to load the application provider's keys onto a smart card in a con�dential way. In all

fairness, the proposal of CASD did not make any di�erence to the original GlobalPlatform

card speci�cation where the card enabler was loading the keys (pre-issuance loading) or in

the GlobalPlatform card speci�cation amendment A [158]. It is the CASD (post-issuance

loading) that is under the control of the GP-CA. Both roles, card enabler and GP-CA, are

predominantly played by the card issuer. Nevertheless, the amendment provides a base to

accommodate the TSM architecture.

5.2.2 Support for Trusted Service Manager Architecture

To provide a standardised architecture and facilitate the adoption of NFC-enabled mobile

phones for various services, GlobalPlatform proposed a framework for the management of

secure elements in NFC mobile phones [155].

The role de�ned for the TSM by GlobalPlatform [50, 155] is to manage relationships

between various actors in the ecosystem. It does not handle any key management or

provide any trusted services [155]. GlobalPlatform proposes a new entity termed as the

Con�dential Key Loading Authority (CKLA) that will provide the initial key set in the

smart cards in a con�dential way. It does not specify who will take the role of the CKLA.

Additionally, it breaks down the role of GP-CA so it can be performed by two di�erent

(independent) actors. This role includes managing the CKLA and enabling the Mandated

Data Authentication Pattern (Mandated DAP) Authority. The CKLA will facilitate the

generation and loading of keys through Over-the-Air (OTA) architecture. The DAP allows

2A Controlling Authority is an o�-card entity (e.g. card issuer) that has a security domain on the
GlobalPlatform smart card. Its role as de�ned in the GlobalPlatform card speci�cation [30] is to enforce
the card issuer's security policy. In the GlobalPlatform card speci�cation, the GP-CA has the power to
sanction or evict any application from a smart card.

113

5.3 Multos Card Management Framework

the application provider to sign their applications before they are loaded onto the smart

card. The Mandated DAP Authority will verify the signature and notify the application

provider.

One thing to note is that in any framework, whether it is pre-issuance or post-issuance

application loading in the GlobalPlatform card speci�cation [30] or application loading

via OTA in the NFC mobile phone [155], the loading of cryptographic keys is dependent

on an entity (e.g. GP-CA or CKLA). The application provider has to trust these entities

and their aim is to provide the key material for application loading and management to

the respective application provider without revealing it to any malicious entity. Therefore,

such entities (e.g. GP-CA or CKLA) which in most cases belongs to an o�-card actor (i.e.

card issuer), cannot be entertained in the UCOM proposal.

5.3 Multos Card Management Framework

In this section, we discuss Multos architecture for card management operations along with

the possibility that the architecture can be accommodated into the TSM-based framework

for NFC mobile phones.

5.3.1 Architecture Overview

The card management architecture for Multos is more straightforward than GlobalPlatform

(section 5.2.1). An overview of the Multos card management architecture is illustrated in

�gure 5.2 and discussed below:

Card Issuer

Application Load

Unit Generator

Multos Certification

Authority

Application Load

Facility

Application

Provider

Public Key &

Application Header
Signature

Verification Key &

Application Header

Signature Key &

Application

User Personalisation Data

Application Load Unit

Application Load

Certificate

Application Load

Certificate

CardholderSmart Card

Card Issued

Application

Figure 5.2: Multos card management architecture

The shaded entities in �gure 5.2 represent various roles, but traditionally they reside with

a single entity, for example the card issuer [97, 159]. An application provider will generate

114

5.3 Multos Card Management Framework

a signature key pair and application code; the private key of the application provider along

with the application code is securely communicated to the application load unit generator.

The signature key is used to generate a cryptographically protected application load unit

(i.e. downloadable application). The application provider will also send its signature veri�-

cation key and application to the card issuer, which forwards it to the Multos Certi�cation

Authority (M-CA). The application header is a data structure that contains information

regarding the respective application, which includes the application identity, hash of the

application code, and code and data size [159]. The M-CA can be either the card manu-

facturer, or an authorised entity of the Multos consortium [29]. The role of the M-CA is to

issue an application load or delete certi�cate to the card issuer for the application. In ad-

dition, the M-CA also provides the list of public keys for individual Multos cards that the

card issuer has issued to its customers. This list of public keys is stored by the application

load unit generator as the keys are used to encrypt individual applications. This transfer

of public keys is marked as user personalisation data in �gure 5.2. The application load

unit generator will create individual application load units for individual smart cards, if

the load unit has to be encrypted. Finally the load unit will have a signed digest of the

application, using the application provider's signature key and if required the application

encrypted by the respective smart card's public key. The application load facility now

has the application load units and associated M-CA's issued certi�cates that it will use to

download the application to individual smart cards.

As it is apparent from �gure 5.2 that application providers have to communicate their

application (in plaintext) and private key to the application load unit generator (i.e. card

issuer). Furthermore, the application management tasks (i.e. installation, deletion, and

updating etc.) have to be performed through the card issuer and/or M-CA. Unlike the

GlobalPlatform, Multos speci�cations do not provide independent application management

architecture. To delete an application, the process is similar to the Multos application

installation except there is no need to generate the application load unit � only an appli-

cation delete certi�cate that is similar to application load certi�cate is required from the

M-CA.

5.3.2 Support for Trusted Service Manager Architecture

To date we have not seen any o�cial proposal on how to incorporate Multos into the

proposed TSM architecture for NFC mobile phones. However, in a centralised environment

a TSM can take the role of the M-CA and application load unit generator.

115

5.4 Proposed Smart Card Management Framework

5.4 Proposed Smart Card Management Framework

In the UCTD proposal, the management framework is divided into two categories based on

whether the device is under administrative control or not. Therefore, these two categories

are referred as administrative and user management, where administrative management

corresponds to the CASC architecture and user management corresponds to the UCOM

architecture.

5.4.1 Administrative Management Architecture

In the administrative management architecture, a smart card is under the shared ownership

of an administrative authority and the respective cardholder (section 3.6). The framework

is shown in �gure 5.3 and the dotted lines in this �gure represent optional messages.

Smart Card
Product

Evaluation
Evaluation

Certificate

Card

Manufacturer

Cardholder

Administrative

Authority

Smart Cards Card

Issued Register Customer

Customer

Credentials

Service Provider

Request Application &

Provide Credentials Request Application

Security Assurance

Request

Evaluation

Certificate

Product Evaluation

Certificate

Application ID

Syndicate Member

Use

Charge

Administrative Authority ID

Installation Authorisation

Installation

Authorised

Application & optional Authorisation

from Administrative Authority

Third Party

Evaluation

List of

Syndicate

Members

Installation

Authorisation

Application Download Certificate

Figure 5.3: Administrative card management framework (CASC: section 3.6)

The card manufacturer gets its product evaluated by a third party that issues an evaluation

certi�cate. The smart cards are then acquired by the administrative authority that takes

administrative control and issues the cards to individual cardholders. The cardholder then

has ownership, which is delegated to the cardholder under certain terms and conditions.

The cardholder has to register with the relevant SP to gain access to their application. The

registration process generates customer credentials that are issued by the SP and used by

cardholders to download the application(s) onto their smart cards. The cardholder then

provides these credentials to the smart card along with the details of the SP's application

server (section 3.4.6.1). Before the SP leases its application, it requests the smart card to

provide a security assurance, which is furnished by providing the evaluation certi�cate and

a validation proof (section 4.4.3). The SP then sends the application identity to the smart

card, which will check whether the application belongs to the administrative authority's

116

5.4 Proposed Smart Card Management Framework

partner: partners are referred to as syndicated members. The smart card has the list of

syndicated members that is provided by the administrative authority. If the SP is registered

as a syndicated member of the administrative authority, then it will reveal the identity of

the administrative authority. Under the scenario in which the SP is a syndicated member,

the SP will then contact the administrative authority to authorise the installation. On

successful authorisation, the application is leased to the smart card and installed in the

administrative authority's space (section 4.2.1). If the SP is not a syndicated member,

then the application is installed under the authorisation of the cardholder and she might

be charged for it, which is represented by a �use charge� message sent from the smart card

to the administrative authority. Subsequently, the administrative authority processes the

request and issues an application �installation authorisation� message to the smart card.

On receipt of this message, the smart card will allow the application to execute. It will

generate an �application download certi�cate� that acts as a contract between the smart

card and the SP. The contract signi�es that the application was downloaded properly onto

the smart card and it is activated to communicate with the SP.

The administrative management architecture can easily be adapted into the TSM archi-

tecture by replacing the administrative authority with the TSM. However, the shared

ownership principle has to be accommodated by the TSM architecture to comply with the

CASC.

In chapter 6, the Application Acquisition and Contractual Agreement Protocol is based on

the administrative management architecture.

5.4.2 User Management Architecture

In the user management architecture there is no administrative authority. The user man-

agement architecture is shown in �gure 5.4 and is described subsequently.

Smart Card
Product

Evaluation
Evaluation

Certificate

Card

Manufacturer

Cardholder

Card Acquired

by Cardholder
Register Customer

Customer

Credentials

Service Provider

Request Application &

Provide Credentials Request Application

Security Assurance

Request

Evaluation

Certificate

Product Evaluation

Certificate

ApplicationThird Party

Evaluation
Application Download Certificate

Figure 5.4: User card management framework (UCOM: section 3.4)

The smart card establishes a connection with the SP and this is a secure communication

117

5.4 Proposed Smart Card Management Framework

channel, to provide smart card security and reliability assurance to the SP, facilitate in

generating domain management credentials, and download the application.

In the UCTD, whether it is in administrative or user management, each SP gets its own

domain. The SP's domain management credentials are mutually generated by the SP and

smart card without involving any o�-card entity (e.g. including the card manufacturer).

Applications are directly downloaded to the SP's domain using the cryptographic keys

mutually generated by the smart card and the SP, in contrast to GlobalPlatform that uses

either a push or pull model for key sharing (section 5.2.1), or Multos that requires an

application provider to reveal its application code and signature key (section 5.3.1).

In chapter 6, the two variants of the Secure and Trusted Channel Protocol (STCP) referred

as STCPSP and STCPSC are based on the user management architecture.

5.4.3 Types of Application Leases

An application lease refers to issuance of an application to the requesting smart card under

some terms and conditions that are stipulated by the Application Lease Policy (section

3.4.6.2). In this section, we discuss the various types of application leases that an SP can

issue.

1. Card Bound Application Lease: In this lease, an SP issues its application to a speci�c

smart card and that instance of lease is bound to it. Therefore, an SP will only issue

one lease per user, which she can have on any of her smart cards; examples of such

a lease may be credit card and (U)SIM card applications.

2. User Bound Application Lease: This lease is bound to the user, not to her smart card.

She can install the given application on any number of her smart cards. Examples

of such a lease may be Internet Identity applications [77, 160].

3. Open Application Lease: The open application lease does not bind the lease to either

a user or a smart card. Any smart card, and any user can download this application.

Examples of such applications may be pre-paid mobile telephone usage, pre-paid

calling cards, hotel room access cards, and transport cards. One thing to note is that

the examples are only valid if they do not require any registration of the user before

and after issuance of the application.

118

5.4 Proposed Smart Card Management Framework

5.4.4 Possible Relationships between a Cardholder and an SP

The lease issued to a cardholder discussed in the previous section would be based on

a relationship that an SP has with a particular cardholder. In this section, we discuss

various possible relationships that can exist between an SP and a cardholder.

1. Pre-Registration: This scenario deals with applications that are only issued to reg-

istered and pre-authorised customers. Such applications can be for banking, health

centre, identity, travel documents, and telecom (e.g. post-pay accounts) that require

proof that the requesting user is actually the current owner of the smart card. This

relationship is valid for the card- and user-bound application leases discussed in the

previous section.

2. Post-Registration: The post-registration relationship allows a cardholder to down-

load an application without being a registered customer. However, the application

does not go into service unless the user registers herself with the application (or

its respective SP). This type of relationship can be valid for all three types of the

application leases.

There are two possible cases: a) the SP is only concerned with the security assurance

and validation of the smart card platform and does not require user registration (any-

body can download and use their application) or b) at least during the application

lease process, the SP is not concerned with the user registration. However, once the

application is downloaded the SP can initiate the user registration process. Option

`b' is like a user registering for a service for the �rst time. Examples of applica-

tions that can be downloaded in this scenario include pre-paid telecom applications,

transport, and hotel room access applications.

3. No-Registration: This option does not require any registration, before or after the

application is issued. It is suitable for the open application lease category. Examples

include hotel room access cards, �xed pre-paid calling cards, and pre-paid gift cards.

5.4.5 Application Installation

In this section, the processes that support the secure transmission and installation of

an application are discussed. The installation process discussed in this section builds

additional checks around the application installation protocols (discussed in chapter 6).

The installation request will initiate the process of acquiring an application from an SP's

application server (AMS discussed in section 3.4.6) and installing it on a smart card. The

119

5.4 Proposed Smart Card Management Framework

entire process can be divided into three sub-processes: 1) Downloading, 2) Localisation,

and 3) Application Registration. These sub-processes are explained as below.

1. Downloading: The downloading of an application is initiated by the smart card,

through a secure channel protocol (chapter 6). At the conclusion of the secure channel

protocol, both entities generate a set of keys for application download and domain

management. The smart card then generates an SP's domain, provided it has enough

space to accommodate it. The SP and smart card will then start the application

downloading process. The SP will �rst generate a signature on the application, then

encrypt and MAC it before sending it to the smart card.

The smart card checks the generated MAC, decrypts the application, and veri�es

the signature. A decrypted application is not a fully installed application � it is the

equivalent of copying an application to a memory location.

The next step is to verify whether the application complies with the smart card's

operational and security policy. For this purpose an on-card byte code veri�cation

is performed [161], which is already mandated by the Java Card 3 [16]; this can be

based on the well-de�ned on-card byte code veri�cation proposals [128, 161]�[163].

Furthermore, additional runtime checks are performed that are discussed in chapter

8.

The UCTD does not mandate the security evaluation of an application. However,

certain applications require evaluation due to government or industry regulations

(e.g. EMV applications). In these cases, an SP's application(s) provides an evaluation

certi�cate (e.g. AAC). To verify the certi�cate the smart card would have to calculate

the hash of the downloaded application and compare it with the AAC.

2. Localisation: First, the application will be personalised by the SP. Depending upon

the relationship between the cardholder and the SP, with the SP's discretion the per-

sonalisation can include acquiring user details (in post and no-registration scenarios),

and cryptographic key generation. Furthermore, if the SP is issuing a card-bound

lease then it will make sense to generate the on-card cryptographic keys as they

will automatically become device identi�ers because each lease of the application

will have a various set of keys. After personalisation, the downloaded application

establishes connection with various on-card services (i.e. shareable resources) that

are provided by partner applications. To access a partner's application services,

the downloaded application will establish an application sharing relationship that is

discussed in detail in chapter 7.

3. Application Registration: The �nal stage of an application installation is the appli-

cation registration by the SP. The registration will allow the particular instance of

the application to access sanctioned services. Once the SP registers (sanctions) the

downloaded application, the smart card will also make it selectable to an o�-card

120

5.5 Card Management-Related Issues

entity. By making an application selectable, the smart card allows the application

to execute, access on-card services and communicate with o�-card entities.

5.4.6 Application Deletion

The application deletion process has similar steps to the application installation but they

are taken in the opposite direction. The installed application will �rst establish a connec-

tion with the SP and signal the deletion. It will initiate the de-registration process that will

restrict the leased application's access to the SP's services. The smart card will also make

it un-selectable for o�-card entities; in addition, any interdependencies will be resolved.

As most of the interdependencies that the deleted application might have are the result

of the application sharing mechanism, the smart card �rewall mechanism will cascade the

deletion event to the related (partner) applications (chapter 7). The interdependencies

that might exist between various applications on a smart card may end up creating the

feature interaction problem that is discussed later in section 9.3. Finally, the SP's domain

key material, and registration with various card services are deleted by the Card Security

Manager (section 4.2.2).

5.5 Card Management-Related Issues

In this section, we discuss the potential issues related to card management architecture

introduced by the UCTD framework.

5.5.1 Simulator Problem

In the context of the UCTD framework, the simulator problem refers to a possible scenario

in which a malicious user could remotely install an application onto a smart card simulator.

One thing to note is that the simulator problem is only related to remote installation and

not to on-site installation. In remote installation, a smart card is not present at an SP's

site, and the application is downloaded over the internet. Therefore, an SP needs a way of

making sure that its application is not installed on a simulated device.

It can be asserted that simulators are used in a number of di�erent environments, espe-

cially mobile application development, and do not present a substantial security issue in

the mobile application environment. Nevertheless, the nature of an application installed

on a smart card is di�erent to an application on a mobile phone. The smart card appli-

cation might represent the identity of the user, along with serving as a security token to

121

5.5 Card Management-Related Issues

access some services (including �nancial services). Furthermore, the service or business

environment that a smart card application deals with is substantially di�erent from that

of a mobile phone application.

In the ICOM, the simulator problem is not relevant, as applications are predominantly in-

stalled by the card issuer before the smart cards are issued to individual users. This stage

in the smart card lifecycle is also referred as the pre-issuance stage. The GlobalPlatform

card speci�cation provides the framework for application installation under the applica-

tion provider's control, after the smart cards are issued to customers. GlobalPlatform

de�nes a secure entity on the smart card referred to as the Card Manager, along with

associated domains [30]. The SP requires symmetric keys in order to gain access to the

domains (application domains) and install applications. The assumption in the ICOM is

that malicious users cannot access or retrieve these keys. The basis of this assumption

is the tamper-resistance properties of the smart card hardware � that is, the assump-

tion is based on trust in the card manufacturer or a third party evaluator (e.g. Common

Criteria [69] evaluation laboratory).

In the UCOM, the problem is not only verifying the existence of a smart card, but also

validating that it is in a secure and reliable state. In a simulator attack, a malicious user

has a stand-alone simulator that enables him to simulate the UCTD environment. To

do so, the adversary has to have knowledge of the cryptographic keys (section 4.6.4) and

any related attestation mechanism (regardless of whether it is based on PRNGs or PUFs:

section 4.5). If the attestation mechanism is based on PUFs then the adversary should be

able to emulate the PUF for a genuine smart card. He can then try to acquire an application

from an SP, install on the simulator, and attack it; that may include reverse engineering

the application, retrieving the sensitive user and application data (e.g. cryptographic keys).

5.5.1.1 Countermeasure to the Simulator Problem

The countermeasure to the simulator problem has to deal with physical and side-channel

attacks along with the risk of compromising the communication protocol(s). The counter-

measure is based on three aspects of the UCTD architecture that are listed as below:

1. Security evaluation of the smart card platform, which certi�es that the smart card

is tamper-resistant, and e�ective against state-of-the-art attacks (section 4.4.2).

2. Self and remote attestation mechanism (section 4.4.3).

3. A secure and reliable entity authentication and key sharing protocol (chapter 6).

122

5.5 Card Management-Related Issues

The evaluation and validation of the smart card provides (time limited) assurance against

simulator attack. If during the lifetime of the smart card, an attack vector is discovered that

can compromise the card's security and make the simulator attack feasible, the evaluation

authority (and the card manufacturer) can revoke the certi�cates, and the SP can blacklist

the a�ected smart cards. Because of such attacks, smart cards can be rendered useless.

Therefore, card manufacturers, even today, are compelled to build a strong product or

otherwise security issues would damage the reputation of their brand and the same would

be true in the case of the UCTDs. Finally, the secure channel protocol should be designed

in a way that would make it impossible for an adversary to retrieve the shared keys between

a smart card and an SP.

To provide protection against simulator attacks, SPs can request for device attestation as

described in section 4.7. The device attestation is based on a protocol, which involves

the card manufacturer at the time of application lease attesting that its smart card is

secure and reliable as stated by the evaluation certi�cate (section 4.4). Therefore, an

evaluation certi�cate from an independent third party will con�rm that the smart card

is secure against complete and partial simulations. The online attestation mechanism

provides a validation that the smart card is still in conformance with the state in which it

was evaluated. Finally, by integrating the smart card assurance and validation mechanism

into the secure channel protocols, the UCTD can avoid simulator problems.

5.5.2 User Ownership Issues

In this section, we discuss an issue that is related to the identity of the smart card owner

and the authorised user that can download an application from an SP.

This issue arises in the pre-registration relationship (section 5.4.4) between an SP and a

cardholder. During an application installation, a cardholder will provide her credentials to

the SP that leases the application. In this situation, the SP requires that the application

can only be downloaded to a smart card that is under the ownership of the authorised

user.

The aim of an adversary may be to acquire the credentials of an authorised user for a

particular SP to use them to download the application onto his smart card. If the SP

does not issue card-bound leases (section 5.4.3), both entities (the authorised user and the

adversary) can download the application.

To avoid this situation, the SP could require proof of ownership to be produced by the

smart card for the given user during the application download process. The proof of

ownership can be based on a signature key pair belonging to the user, which is certi�ed by

123

5.5 Card Management-Related Issues

the smart card itself or by its card manufacturer. The issue is that a similar certi�cate can

also be requested by an adversary for the given authorised user if he knows enough personal

information relating to the genuine user. Having the smart card sign the certi�cate is easy,

and it also allows the user independence to sell/give her smart card to other users. On

the other hand, including the card manufacturer in the user identi�cation and issuance of

certi�cates to individual users provides similar protection as the previous proposal, without

e�ectively increasing the overall security. Therefore, we prefer the smart card to sign the

certi�cate rather than the card manufacturer, and this approach is adopted in this thesis.

Another possibility is that the smart card user can register her smart card physically

(o�ine) with the SP. The smart card can later access the SP server through the internet to

download the application. If there are no adequate checks during the o�ine registration,

an adversary could perform the same process and then use the credentials associated with

the user and request the application lease. Furthermore, this solution also complicates the

relationship between the user and the SP as there may not always be a possibility to have

physical access to the SP's o�ce (e.g. online gaming website).

An optimum solution can be based on one-time credentials issued by SPs. We assume that

an SP issues a one-time credential (e.g. password) to a user to download its application to

her smart card. Therefore, even if an adversary was to gain access to the credentials, he

cannot use them to download the application. Furthermore, if an application is already

leased to a user, an SP can reject any subsequent requests for an application lease unless

the user either deletes the previous lease or loses the smart card. Therefore, in the case

that the application is deleted and the user wants to install the application on her new

smart card. The SP will issue a new one-time credential to the user, to download the

respective application.

A malicious user cannot fake the deletion of the application, as in the UCOM deletion

process (section 9.3) an application communicates with the SP in order to notify it of

the deletion and also to perform any required housekeeping tasks. Therefore, the SP

knows beforehand that the application is deleted so for a malicious user it is di�cult to

fake application deletion. Furthermore, if a user loses her smart card then she can use

the authorisation token (issued by the SP and discussed in section 9.2) to acquire the

application. An authorisation token is a short encrypted structure issued by an SP and

it acts as a authorisation credential to download an application. If she does not have the

authorisation token, then the user can contact the SP and request the issuance of new

credentials. This is similar to the process after a user loses her smart card in the ICOM,

where she has to contact the card issuer to get a new smart card.

124

5.5 Card Management-Related Issues

5.5.3 Parasite Application Problem

In the parasite application problem, an installed application masquerades as the UCTD

on which it is installed. This is possible because a UCTD allows an installed application

to request the platform/application state validation from the TEM (section 4.3).

User Centric Tamper-Resistant Device

Smart Card Runtime Environment

Trusted Environment & Execution Manager (TEM)

AppMalicious

Service Provider

Smart Card

Manufacturer

1) Request

Application

2) Request

Validation

3) Request

Validation

3a) Request Online

Validation

3b) Online

Validation4) Validation

5) Validation

Proof

6) Application

Download

Malicious User

7) Transfer

Application Off-card

Figure 5.5: Illustration of parasite application problem

In this attack as shown in �gure 5.5, an adversary (A) installs his malicious application
(AppMalicious) on a UCTD. The AppMalicious implements the application download proto-

cols that are discussed in chapter 6. The A then requests the installation of an application

from its SP through the AppMalicious, represented by message one in the �gure 5.5. In

response, the SP asks the UCTD of security validation to avoid a simulator attack and this

request is sent to the AppMalicious. The AppMalicious then asks the TEM for the security

validation (section 4.4.3). At the successful conclusion of the security validation process,

the card manufacturer produces a certi�cate that for privacy reasons does not include

the identity of the requesting SP as described in the online attestation protocol (section

4.7). Therefore, the AppMalicious can communicate this certi�cate to the requesting SP

as validation in message �ve (�gure 5.5) and may be able to start the application down-

load process. The A might have designed the application as if it will communicate the

downloaded application o�-card, which will enable A to retrieve the application code and

data.

To avoid this problem, there are four possible solutions: 1) restrict the security assurance

validation request to o�-card entities and any installed applications should not be allowed

to request it, 2) include the identity of the requesting SP in the security assurance val-

idation certi�cate during the application installation process, 3) include the identity of

the application requesting the security assurance validation during the application instal-

lation, the request is initiated by the card security manager discussed in section 4.2.2, or

4) avoid generating the signature as part of the security validation if it is requested by an

application, but use the shared keys between the TEM and the application.

125

5.6 Summary

From the above listed options, we consider that option four is appropriate for the UCTD

environment to prevent the parasite application problem. In option four, the TEM will

only sign the security validation proof if it is requested by the card security manager and

not by an application. Therefore, an application installed on a UCTD cannot request a

signed security validation proof that would have enabled the application to masquerade as

the respective UCTD.

5.6 Summary

In this chapter, we discussed the card management architectures for two contrasting frame-

works: GlobalPlatform and Multos. GlobalPlatform is more open to independent applica-

tion management by application providers, whereas Multos is a hardcore ICOM architec-

ture that requires an authorisation from a centralised authority (i.e. Multos Certi�cation

Authority) before an application can be installed or deleted. Furthermore, Multos also

requires that application providers should reveal their application codes to the Multos

application load unit generator.

We then described the card management architecture for the UCTD followed by the appli-

cation lease types, and the various kinds of relationships a user can have with an SP. Next,

we discussed the application installation and deletion approach. Finally, we discussed new

security issues including simulator, user ownership, and parasite application problems.

126

Chapter 6

Secure and Trusted Channel Protocol

Contents

6.1 Introduction . 128

6.2 Secure Channel Protocols . 129

6.3 Secure and Trusted Channel Protocol � Service Provider . . 136

6.4 Secure and Trusted Channel Protocol � Smart Card 139

6.5 Application Acquisition and Contractual Agreement Protocol 141

6.6 Analysis of the Proposed Protocols 146

6.7 Summary . 155

In this chapter, we begin with a discussion of secure channel protocols that are used for

entity authentication and key establishment for internet services. We discuss the security

and operational goals that a secure channel protocol has to accomplish in the UCTD en-

vironment. We propose two protocols that closely adhere to the UCOM philosophy and

a protocol related to the CASC that involves an administrative authority (e.g. TSM). An

informal analysis is provided for the proposed protocols followed by a mechanical formal

analysis using CasperFDR. Finally, we describe a prototype implementation of the pro-

posed protocols, and give performance measurements obtained from this implementation.

127

6.1 Introduction

6.1 Introduction

Secure Channel Protocols (SCPs) are designed to provide a secure communications chan-

nel. They typically start by providing entity authentication and authenticated key es-

tablishment. There are many di�erent protocols proposed for internet and smart card

environments that satisfy di�erent (pre-de�ned) design goals. Not all protocols can be

used for every possible scenario; if this was possible, we would not have the diversity of

SCPs that we have today.

The UCTD architecture has its own set of security and operational goals for an SCP has

to satisfy. These goals range from traditional SCP ones like entity authentication and

mutual key generation, to UCOM-speci�c requirements like smart card state validation.

In this chapter, we examine a non-exhaustive list of security and operational goals for the

UCTD environment. The de�ned list is considered adequate to gauge the basic security

requirements of the UCTD and related stakeholders (section 3.5).

An SCP in the UCTD can take many di�erent forms, and we discuss three possible variants.

The �rst two variants are based on the UCOM architecture and the di�erences between

them is determined by who initiates the protocol, and whether it is a smart card or an

SP. The third protocol caters to the CASC environment and involves an administrative

authority during the protocol execution.

The proposed protocols are informally analysed, based on the pre-de�ned security and

operational requirements. We also provide a comparison between the proposed protocols

and a set of protocols ranging from the internet and smart card environments. We also

provide a formal-mechanical proof for the proposed protocols using the CasperFDR tool,

along with test implementation and performance measurements.

Structure of the Chapter: The chapter begins with a discussion of the rationale behind

the SCPs in section 6.2. In this section we also discuss minimum security and operational

requirements stipulated for the UCTD environment. Section 6.3, discusses the proposed

SCP that is initiated by an SP, and section 6.4 details the SCP initiated by a smart

card. The SCP that focuses on the administrative management architecture of the UCTD

(section 5.4.1) is described in section 6.5. Section 6.6 provides the informal analysis,

mechanical formal analysis and test implementations of the proposed protocols.

128

6.2 Secure Channel Protocols

6.2 Secure Channel Protocols

In this section we explore the rationale behind SCPs for the UCTD, and then discuss the

relevant work in the �eld of SCPs. This discussion forms the basis for work later in this

thesis.

6.2.1 Rationale

By de�nition, an SCP provides either (or both) entity authentication or key exchange be-

tween communicating parties, referred to as end points. The SCP preserves the con�den-

tiality and integrity of the messages communicated on the channel but does not necessarily

assure the same security at the end points after the messages are received. Despite this,

there can be implicit con�dence in the integrity and security of the end points in the ICOM

as articulated by ETSI TS 102 412 [164, section 4.5.2]. This states that the smart cards

are a secure end point under the assumption that it is a tamper-resistant device.

This implicit assumption is valid for the traditional smart card environment because smart

cards are issued by a �trusted� card issuer. This became the fundamental assumption in

most of the smart card-based SCPs. For the ICOM, this assumption makes sense as the

strict control of application installation on a smart card will e�ectively restrict the SCP to

only execute with an entity that: a) has prior authorisation from the card issuer, or b) is

initiated by an on-card authorised entity (e.g. installed application).

In the ICOM, there is a centralised authority that controls issued smart cards and their

application management, enabling an implicit assurance attainable for the smart card

security and reliability. However, in the UCOM, there is no such authority, hence the

assumption of implicit assurance is no longer valid. The UCTD is required to provide an

explicit assurance of its integrity and security to the requesting SP to satisfy requirements

GR2, CR1, SCR1, SCR6, and SPR1�5 (section 3.5).

A trusted channel is a secure channel that is cryptographically bound to the current state

of the communicating parties [165]. This state can be a hardware and/or software con�g-

uration, and ideally, it will require a trustworthy component to validate that it is the same

as claimed. Such a component is in most instances a Trusted Platform Module (TPM) [18]

as demonstrated by Zhou and Zhang [166], and Armknecht et al. [167].

The SP will probably not have any prior trust relationship with a smart card in the UCTD

environment (an exception might exist in the CASC framework when the SP is a syndicated

member of the administrative authority). Therefore, the traditional smart card SCPs will

129

6.2 Secure Channel Protocols

fail to provide: a) assurance that an SP is communicating with a genuine smart card

platform and not a simulator, b) assurance that the smart card security and operational

environment is certi�ed by a reputed third party evaluation, c) assurance that the security

and operational environment state is still valid, as it was at the time of evaluation, and

d) assurance that the smart card is owned by the user who is requesting the application

download (user/card-platform binding authentication).

We de�ne the Secure and Trusted Channel Protocol (STCP) in the context of the UCTD

environment as a protocol providing a secure and reliable communication channel between

a smart card and an SP, coupled with an assurance of security and integrity concerning

the communicating smart card. The STCP can be used during: a) application installa-

tion/deletion processes, and b) when the application communicates with its respective SP,

and vice versa.

6.2.2 Related Work

In this section, we restrict ourselves to a discussion of the protocols that are speci�cally

proposed for the smart card environment and/or are being used as points of comparison in

later discussions. Detailed descriptions of the discussed protocols is provided in appendix

A, and this section will introduce these protocols.

Ever since the possibility arose that two computing devices could communicate with each

other, there has been research work on SCPs. An early discussion on various proposed

protocols can be found in [146]. A detailed comparison of authentication protocols for the

mobile network environment is presented in [168].

Early smart card protocols were based on the symmetric key crypto-system like SCP01 of

the GlobalPlatform speci�cation [30] (this protocol is deprecated in the GlobalPlatform

card speci�cation version 2.2). Other protocols speci�ed by the GlobalPlatform speci-

�cation are: SCP02 (based on Triple-DES), SCP10 (based on asymmetric key crypto-

system) [30], SCP81 (based on SSL/TLS) [169], SCP03 (based on AES) [170], and SCP80

for the mobile telecom industry (based on symmetric key crypto-system) [171]. In addition

to this, entity authentication, key exchange, and application download protocols for the

smart card environment are proposed by [83, 172, 173].

The concept of trusted channel protocols was put forward by Gasmi et al. [165] along

with the adaptation of the TLS protocol [100] to meet the trusted channel requirements.

Armknecht et al. [167] propose another adaptation of OpenSSL to accommodate the con-

cept of the trusted channel, as do Zhou and Zhang [166]. However, at the time of writing

we were unable to �nd any work that relates to the concept of the trusted channels for the

130

6.2 Secure Channel Protocols

smart card environment.

In section 6.6, we compare the proposed STCP with the existing protocols. These protocols

include the Station-to-Station (STS) protocol [174], the Aziz-Di�e (AD) protocol [175],

the ASPeCT protocol [176, 177], Just-Fast-Keying (JFK) [178], trusted TLS (T2LS) [165],

SCP81 [169], Markantonakis-Mayes (MM) protocol [83], and the Sirett-Mayes (SM) pro-

tocol [173].

For brevity and clarity, details of these protocols are provided in appendix A except for

the GlobalPlatform SCP10. A point to note is that GlobalPlatform SCP10 provides the

guidelines on how to implement a public key-based SCP for smart cards and not the

actual protocol. The guidelines stipulated by the GlobalPlatform SCP10 are the core

design requirement of the MM protocol and for this reason we have chosen this protocol.

The selection of the listed protocols is intentionally kept broad to include well-established

protocols like STS, Aziz-Di�e (AD) and JFK. Also included is the ASPeCT protocol,

which is designed speci�cally for the mobile network's value-added services. The T2LS

is based on the concept of trusted channels, whereas SCP81, SM, and MM protocols are

speci�c to smart cards. As a common criterion, we have only selected protocols whose

design is rooted in asymmetric crypto-systems.

6.2.3 Minimum Security and Operational Goals

For a protocol to support the UCTD framework, it should meet at minimum the security

and operational requirements listed below:

SOG-1. Mutual Entity Authentication: A smart card and an SP authenticate to each other

to avoid masquerading by a malicious entity.

SOG-2. Exchange of certi�ed public keys between the entities to facilitate the key gener-

ation and entity authentication process.

SOG-3. Mutual Key Agreement: Communicating parties will agree on the generation of a

key during the protocol run.

SOG-4. Joint Key Control: Communicating parties will mutually control the generation

of new keys to avoid one party choosing weak keys or predetermining any portion

of the session key.

SOG-5. Key Freshness: The generated key will be fresh to the protocol session to protect

replay attacks.

131

6.2 Secure Channel Protocols

SOG-6. Mutual Key Con�rmation: Communicating parties will provide implicit or explicit

con�rmation that they have generated the same keys during a protocol run.

SOG-7. Known-Key Security: If a malicious user is able to obtain the session key of a

particular protocol run, it should not enable him to retrieve long-term secrets

(private keys) or session keys (future and past).

SOG-8. Unknown Key Share Resilience: In the event of an unknown key share attack, an

entity X believes that it has shared a key with Y, where the entity Y mistakenly

believes that it has shared the key with entity Z 6= X . Proposed protocols should

adequately protect against this attack.

SOG-9. Key Compromise Impersonation (KCI) Resilience: If a malicious user retrieves the

long-term key of an entity Y, it will enable him to impersonate Y. Nevertheless,
key compromise should not enable him to impersonate other entities to Y [179].

SOG-10. Perfect Forward Secrecy: If the long-term keys of communicating entities are

compromised, this will not enable a malicious user to compromise previously gen-

erated session keys.

SOG-11. Mutual Non-Repudiation: Communicating entities will not be able to deny that

they have executed a protocol run with each other.

SOG-12. Partial Chosen Key (PCK) Attack Resilience: Protocols that claim to provide

joint key control are susceptible to this type of attack [180]. In this type of attack,

if two entities provide separate values to the key generation function then one

entity has to communicate its contribution value to the other. The second entity

can then compute the value of its contribution in such a way that it can dictate

its strength (i.e. it is able to generate a partially weak key). However, this attack

depends upon the computational capabilities of the second entity. Therefore,

proposed protocols should adequately prevent PCK attack.

SOG-13. Trust Assurance (Trustworthiness): The communicating parties not only provide

security and operation assurance but also validation proofs that are dynamically

generated during the protocol execution [56].

SOG-14. Denial-of-Service (DoS) Prevention: The protocol should not require the server

(in our case the SP's application server) to allocate the resources before authenti-

cating and validating the state of the requesting entity (a smart card) or verifying

the credentials of the authorised user.

SOG-15. Privacy: A third party should not be able to know the identities of the user or her

smart card, over either the internet or Over-the-Air (OTA). In addition, during

the trust validation and assurance process, the requesting SP should not be able

to gain any additional information about the platform (e.g. applications installed

on a smart card).

132

6.2 Secure Channel Protocols

SOG-16. Simulator Attack Resilience: This attack discussed in [85] allows a malicious user

to masquerade as a smart card platform on a computer (as a simulation). Such

a possibility would enable the malicious user to download an application onto

a simulated platform and then perform reverse engineering on the downloaded

application, revealing proprietary and sensitive data of the application. Therefore,

the proposed protocols should take into account the simulator attack and support

countermeasures.

SOG-17. Platform & Application User Separation (PAU) Attack Resilience: This attack is

discussed in [85]. A malicious user provides the access credentials of a genuine user

to an SP and downloads an application onto his or her smart card. Any protocol

should tie a platform with its card-owner (user) to avoid platform & application

user separation attack.

SOG-18. Contractual Agreement: On the successful execution of the protocol, the com-

municating entities will mutually sign a contractual agreement. This will act as

proof that a particular application was installed on a smart card.

SOG-19. Proof of Transaction: The smart card will notify the TSM about the application

installation. Depending upon the TSM's policy, it will charge the user's account

and notify the smart card to activate the application so it can execute.

For a formal de�nition of the terms (italicised) used in the above list, readers are advised

to refer to [146]. The requirements listed above are later used as a point of reference to

compare the proposed protocols in table 6.2 (section 6.6.3). From an operational point

of view, an STCP for the user management architecture (section 5.4.2) for the UCTD

environment has two variants: STCPSP and STCPSC discussed in sections 6.3 and 6.4,

respectively. On the other hand, in an STCP for the CASC, the administrative manage-

ment architecture (section 5.4.1) requires the inclusion of an administrative authority and

to accommodate this, we propose an Application Acquisition and Contractual Agreement

STCP (STCPACA) in section 6.5.

6.2.4 Protocol Notation and Terminology

The notation used in the protocol description is listed in table 6.1 below. This notation is

an extension of the notation described in table 4.2.

Table 6.1: Protocol notation and terminology

Notation Description

U Denotes a smart card owner (user).

AD Denotes the administrative authority (section 5.4.1).

133

6.2 Secure Channel Protocols

Notation Description

grX Denotes the Di�e-Hellman exponential generated by the entity X with

random number rX . We use this notation to represent the grX mod p,

where g and p are system parameters that are represented by the Di�e-

Hellman group selected by the entity X. For further discussion please

refer to [132, 146, 181]

K Denotes the shared secret generated by the communicating entities using

the Di�e-Hellman scheme. Keys for application download and session

keys are generated from this shared secret.

ekX−Y Denotes the session encryption key shared between entities X and Y to

be used with a symmetric algorithm.

mkX−Y Denotes the session MAC key shared between entities X and Y.

h(Z) Represents the result of generating a hash of data Z by a hash function

(e.g. SHA256 [147]).

UCre User authentication credential (e.g. login and password) associated with

a particular SP.

XSup Denotes the supported features of entity X that include Di�e-Hellman

groups [148], user authentication mechanisms (i.e. login/password), sym-

metric and signature algorithms.

AUX A signed message from an entity X that authenticates it to other entities.

SI Session cookie generated by the respective SP. It indicates the session

information and facilitates protection against DoS attacks, possibly along

with providing the facility of protocol session resumption.

V R Validation request sent by an SP to a smart card. In response, the smart

card provides the security and reliability assurance to the SP.

ADP The Application Download Protocol (ADP) will include appropriate pa-

rameters for the application download protocol, which in the context of

this thesis is the GlobalPlatform application download process based on

the symmetric key cryptosystem (e.g. SCP03) [170].

ALP The Application Lease Policy (ALP) speci�es the minimum security, re-

liability and operational requirements imposed by the SP on a smart

card. The ALP also includes the relevant application's details that in-

clude application size and functionality support requirements.

hs & hp hs is a hash message generated by the SC on data including its identity,

generated Di�e-Hellman exponentials and random numbers. Similarly,

hp is generated by the SP . Both these messages aim to avoid a man-in-

the-middle attack on the proposed protocols.

134

6.2 Secure Channel Protocols

Notation Description

OP Optional message.

OC Optional certi�cate.

6.2.5 Pre-protocol Process

A smart card user can initiate a protocol in two ways depending upon how an SP makes

its applications available to users. As depicted in �gure 3.6, an SP can o�er its application

through di�erent computing devices including dedicated kiosk machines. For example, a

transport application can be acquired through kiosk machines installed on train stations

or bus stops. The user can connect directly to an SP's Application Management Server

(AMS: discussed in section 3.4.6) through the kiosk and request the application download.

Another option is that an SP o�ers the application download through the internet and for

this, the SP will provide the AMS details (e.g. Universal Resource Locator: URL).

On another note, it is di�cult to protect the user's credentials if the host device is com-

promised. The aim of the STCPs is to provide security assurance to the smart card, not

to the host device (e.g. mobile phone, desktop computer). From an SP's point of view,

it can choose di�erent ways to protect the credentials that it has issued to its customers

� for example, by using one-time passwords for application download. Once a user has

downloaded the application, the password expires. A new one-time password will only be

issued to the user once she deletes the previously leased application. In addition, certain

measures can be taken to protect the host device but that will require additional hardware

and software support from the host device, which is beyond the scope of the STCPs.

6.2.6 Protocol Assumptions

The assumptions which apply during the execution of the proposed protocols between

entity SC and SP that generates a session key KSC−SP are listed below.

PrA-1 Attestation Mechanism: The SC provides a valid and trusted attestation mecha-

nism, both o�ine and online depending upon the requirement of the SP (section

4.4).

PrA-2 Pseudorandomness: Random numbers generated by SC and SP are indistinguish-

able from truly random numbers to all parties (except for the SC and SP) and the

malicious entity that has compromised either the session between SC and SP or

one of the communicating entities (e.g. SC and SP).

135

6.3 Secure and Trusted Channel Protocol � Service Provider

PrA-3 Secure Cryptographic Algorithms: The cryptographic algorithms used in the proto-

col that include symmetric, asymmetric, and signature algorithms are secure against

a computationally bound adversary.

6.3 Secure and Trusted Channel Protocol � Service Provider

In this section, we begin the discussion with a description of the proposed STCPSP along

with the rejection messages.

6.3.1 Protocol Prerequisites

The prerequisites to the STCPSP are listed below. This is an extension to the prerequisite

list in section 4.7.1.

PPR-8 User Signature Key Pair: When a user has taken ownership of a smart card and on

the successful conclusion of this process, the smart card generates a user signature

key pair. This key pair is used to provide proof of ownership during the STCPSP.

PPR-9 Authorised Customer: The user is a registered customer of the SP, which means

that the SP has sanctioned the user to download (lease) their application.

PPR-10 Established Connection: The user has the knowledge of the respective SP's appli-

cation server (AMS: �gure 3.6) that the SP has provided to the smart card. The

smart card in return connects with the SP. Furthermore, the SP has knowledge of

the smart card's Internet Protocol (IP) address.

6.3.2 Protocol Description

In this protocol, the SP takes the role of the protocol initiator. The design of this STCP

variant is inspired by the requirements of user authentication as discussed in section 5.4.4.

STCPSP-1. SP : SI = fkSP
(grSP ||NSP ||SCIP)

SP → SC : SPi||V R||NSP ||grSP ||SPSup||SPSel||SI
SC : K = (grSP)rSC mod p

SC : ekSC−SP = HK(NSP ||NSC ||′1′)
SC : mkSC−SP = HK(NSP ||NSC ||′2′)

136

6.3 Secure and Trusted Channel Protocol � Service Provider

The SP generates a random number NSP and computes the Di�e-Hellman exponential

grSP . The SPSup deals with the capabilities of the SP along with the details of how it

will authenticate the user (e.g. password, biometric, or token based authentication, etc.).

These details communicate to the smart card the way the SP would like to perform the user

authentication. The MAC fkSP
(grSP ||NSP ||SCIP) serves as a session cookie (SI), and it

is appended with each subsequent message sent by the smart card. It indicates the session

information and facilitates protection against DoS attacks. Finally, the SP will request the

smart card to provide an assurance that its current state is the same as it was at the time

of third party evaluation by sending the V R. The V R indicates whether the SP requires

an o�ine or online attestation (section 4.5) to be performed by the smart card.

If the smart card does not support the Di�e-Hellman group selected by the SP (SPSel),

then it will send a rejection message, including a list of groups supported by the smart card

(SCSup). If the smart card supports the selected group (i.e. SPSel), then it will proceed

with the second message. The SC generates a random number, and a Di�e-Hellman

exponential grSC . It can then calculate the K which is the shared secret from which the

rest of session keys (kSC−SP and mkSC−SP) will be generated. Furthermore, in a similar

manner, we can generate more session keys for the application download protocol [170].

STCPSP-2. SC : hs = h(SCi||SPi||grSC ||grSP ||NSP ||NSC)

SC : AUSC = SignSC(SCi||SPi||VM ||hs)
SC : mE = ekSC−SP (AUSC ||CertSC)

SC → SP : grSC ||NSC ||SCConfig||mE||fmkSC−SP
(mE)||SI

The type of validation mechanism the TEM executes will depend upon the choice of the

SP , which will generate a (valid) signed message if the attestation is successful. In the case

of online attestation, the SC receives a validation message (VM) from the respective CM ,

and it will include VM in the AUSC message. If the SP selects o�ine attestation, then

the VM will not be included. Beside VM, the signed message also includes the identities

of the smart card and the SP, along with the hs. The hs includes the identities of the

communicating entities, the generated Di�e-Hellman exponentials and random numbers.

The hs veri�es to the SP that SC has used the same values (e.g. Di�e-Hellman expo-

nentials and random numbers) as the SP , thereby avoiding potential man-in-the-middle

attacks. The signed message AUSC will be di�erent if the state of the platform is modi�ed;

therefore, by verifying the signature the SP can ascertain the current state of the platform

(in o�ine attestation mode). In the case of online attestation, the CM will not issue VM

to the SC and the SC will not be able to proceed with the protocol. In the message, the

SC includes SCconfig that provides the SP with the con�guration of the SC including

supported cryptographic algorithms and APIs.

On receipt of message two, the SP will check the hs to avoid main-in-the-middle and replay

attacks, and it will then check whether the SCConfig satis�es SP 's ALP. Subsequently, it

137

6.3 Secure and Trusted Channel Protocol � Service Provider

will generate the session keys, verify the MAC and decrypt the message, and then verify

the smart card certi�cate. The smart card certi�cate gives the required assurance that

the smart card platform has had a third party evaluation, and the SP will then proceed

with verifying the signature. The assumption here is that if the third party evaluation

has concluded that the smart card is a tamper-resistant device with an e�ective validation

mechanism, then it will be di�cult for a malicious user to obtain the TEM keys. Hence,

in the presence of a tamper-evidence mechanism only a genuine TEM can generate the

correct signature. However, if the SP cannot verify the signature, then the current state

of the SC has been modi�ed and it is di�erent to the one for which it was evaluated.

As a next step, the SP ascertains whether it has already issued an application lease to the

stated smart card. If there is an application lease to the SC for the requested application,

the protocol will terminate. Otherwise, the SP will proceed to the next step.

STCPSP-3. SP : hp = h(SPi||SCi||grSP ||grSC ||NSP ||NSC)

SP : AUSP = SignSP (SPi||SCi||hp||ALP)

SP : mE = ekSC−SP (AUSP ||ADP ||CertSSP)

SP → SC : mE||fmkSC−SP
(mE)||SI

The SP will then sign the identities of both the SC and SP along with the ALP and

hp. The hp is similar to the hs but it is generated by the SP and provides the necessary

evidence to the SC that the message is not a replay or mirror message while at the same

time avoiding man-in-the-middle attack. The signed message is appended to the ADP and

SP 's certi�cate.

On receipt, the SC will verify whether it can support the listed requirements in the ALP.

The most important requirement is whether the SC has enough memory space to ac-

commodate the SP's application. Furthermore, the SC will also check the hp to prevent

man-in-the-middle and replay attacks.

STCPSP-4. SC : AUU = SignU (SCi||SPi||Ui||hp||hs)
SC : mE = ekSC−SP (UCre||AUU ||CertSU)

SC → SP : mE||fmkSC−SP
(mE)||SI

The SC requests the cardholder to provide the SP 's authentication credentials as requested

by the SP in the SPSup. After the user provides those credentials they are packaged as

UCre and are concatenated with a signed message (AUU) containing the identities of the

SC, SP and user along with the hp and hs. The reason behind including the hp and

hs in the signature is to provide a proof, signed by the user's signature key pair, that

she initiated the protocol session. The signed message along with the certi�cate and the

user's credentials are then encrypted and MACed. The MAC is generated on the encrypted

message.

138

6.4 Secure and Trusted Channel Protocol � Smart Card

The SP veri�es the UCre and if the user is authenticated then the SP will proceed with the

protocol. Otherwise, it terminates after a limited number of user authentication retries.

Subsequently, it will verify whether the user (owner) identity referred in the CertSU is

the identity of an authorised and authenticated user. If so, then the SP will verify the

signature. Furthermore, the UCre will provide the SP with an assurance that the user is

cryptographically bound with the smart card (i.e. has the ownership of the smart card).

6.4 Secure and Trusted Channel Protocol � Smart Card

In this section, STCPSC is described along with the rejection messages. Before we provide

a description of the STCPSC, a point to consider is that we adopt the protocol prerequisites

discussed in section 6.3.1 and 4.7.1 with the exception of PPR-8, and PPR-9. The STCPSC

does not require PPR-9. However, if an SP needs to authenticate a user, the SP can

implement the user authentication into their application and execute once the application

is installed and active on the smart card. Based on this user authentication, the SP

can then personalise the application with respective user's data. Furthermore, as the SC

initiates the protocol a connection is not necessary between the SC and SP before the SC

sends the �rst message as required by the PPR-10.

6.4.1 Protocol Description

In this protocol, an SC takes the initiator's role, with the respective SP as a responder.

The protocol details and a description of the messages involved are presented below:

STCPSC-1. SC : cm = fNSC
(grSC ||NSC)

SC → SP : cm||SCSup

An SC generates a Di�e-Hellman exponential (grSC) and a random number (NSC). Sub-

sequently, it generates the MAC of the grSC ||NSC using the generated random number as

the MAC key. The reason for generating the MAC and sending it instead of the random

number and Di�e-Hellman exponential is to avoid a partial chosen key attack by only pro-

viding a commitment to the SP . The SCSup lists the Di�e-Hellman groups, cryptographic

algorithms and attestation mechanism supported by the SC.

On receipt of the �rst message, the SP will verify the features listed in the SCSup. If they

satisfy the SP 's requirements then it will proceed with the protocol.

139

6.4 Secure and Trusted Channel Protocol � Smart Card

STCPSC-2. SP : SI = fkSP
(grSP ||NSP ||cm||SCIP)

SP → SC : V R||grSP ||SPi||NSP ||ALP ||SPSel||SI
SC : K = (grSP)rSC mod p

SC : ekSC−SP = HK(NSP ||NSC ||′1′)
SC : mkSC−SP = HK(NSP ||NSC ||′2′)

The SP will also generate a Di�e-Hellman exponential and a random number. Finally, it

will calculate the SI which includes similar elements to those discussed in STCPSP except

for the inclusion of the commitment cm from the SC. The entire message is then appended

with the V R.

On receipt of this message, the SC veri�es the ALP. If the SC can accommodate the

requirements then it will proceed with the protocol. The SC can now generate the shared

secret �K�, which is used to generate the session encryption and MAC keys. Furthermore,

depending upon the decision of the SP as to whether it requests for an o�ine or online

attestation, the SC will proceed with the appropriate attestation mechanism.

STCPSC-3. SC : hs = (SCi||SPi||grSC ||grSP ||NSC ||NSP)

SC : AUSC = SignSC(SCi||SPi||hs||VM)

SC : mE = ekSC−SP (AUSC ||CertSSC)

SC → SP : grSC ||NSC ||SCConfig||mE||fmkSC−SP
(mE)||SI

SP : cmc = fNSC
(grSC ||NSC)

The SC will reveal the grSC andNSC , which is appended by a message that is encrypted and

MACed using the session keys. The encrypted and MACed message contains a signature

generated on the identities of SC and SP , hs, along with VM . If the SP requests the online

attestation then the AUSC will contain VM generated by the respective card manufacturer;

whereas, in case of o�ine attestation the AUSC will not include VM .

On receipt of the STCPSC-3, the SP will generate a commitment similar to the SC in

message one, which we term as cmc. If the cmc is equal to the cm, then the SP will

generate the shared secret, along with session encryption and MAC keys. The SP veri�es

the MAC and decrypts the message. It validates the CertSSC , and then veri�es the

signature. If the SP accepts the current state of the smart card as secure then it will

proceed with the next message.

STCPSC-4. SP : hp = (SPi||SCi||grSP ||grSC ||NSP ||NSC)

SP : AUSP = SignSP (SPi||SCi||hp||ADP)

SP : mE = ekSC−SP (AUSP ||CertSSP)

SP → SC : mE||fmkSC−SP
(mE)||SI

The SP will generate an authentication message AUSP that contains the identities of the

140

6.5 Application Acquisition and Contractual Agreement Protocol

SP and SC, hp, and the ADP. On receipt of this message the SC �rst veri�es the signature

and ADP. Subsequently, the SC will initiate the application download process using the

application download protocols (e.g. SCP03 [170]).

6.5 Application Acquisition and Contractual Agreement Pro-

tocol

In this section, we detail the STCP that, unlike the two protocols discussed above, includes

the administrative authority (section 5.4.1). We begin the discussion with the enrolment

phase that enables an administrative authority to be part of the architecture. Later we

describe the STCPACA and discuss rejection messages.

6.5.1 Enrolment Phase

The enrolment phase deals with the inclusion (registration) of an administrative authority

with the respective smart card. The registration can be either pre-acquisition or post-

acquisition of the smart card by its user. In both cases, the process will generate a crypto-

graphic certi�cate issued by the respective administrative authority to the registered smart

cards. This will change the certi�cate hierarchy discussed in section 4.6.4, which is shown

in �gure 6.1.

Common Criteria

Certification Body

Card Manufacturer

PAC

Smart Card Signature

Key Pair Certificate

Smart Card Encryption

Key Pair Certificate

Smart Card User Signature

Key Pair Certificate

Administrative Authority

Chain1

Chain 2

Figure 6.1: Certi�cate Hierarchy in the CASC

There are two roots in this hierarchy as illustrated by chain one and chain two in �gure

6.1: the CC certi�cate authority, and the administrative authority. The reasons for having

two separate roots are: a) to provide privacy protection to users who do not want to

reveal the identity of their administrative authorities, and b) some smart cards may not

be permanently bound with a particular administrative authority. If the administrative

authority was the only root, then it would be di�cult to satisfy the second and fourth

141

6.5 Application Acquisition and Contractual Agreement Protocol

requirements listed in section 3.6 as they require a mechanism that is independent of the

administrative authority.

During the STCPACA, depending upon the relationship between an SP and the administra-

tive authority of a smart card, the appropriate chain of certi�cate will be used. Therefore,

if the SP is not an associate of the administrative authority then the certi�cate chain (chain

1 in �gure 6.1) with the CC certi�cation body as a root will be used; otherwise, chain 2 of

the �gure 6.1 will be used.

6.5.2 Protocol Prerequisites

In this section, we extend the protocol prerequisites for the STCPACA from the ones

discussed in section 6.3.1 and 4.7.1.

PPR-11 Administrative Authority Registration: The smart card is registered with an ad-

ministrative authority.

PPR-12 Long Term Keys: Both the smart card and the associated administrative authority

share long-term encryption and MAC keys. These keys are generated at the time

of the smart card's registration with an administrative authority.

PPR-13 List of Syndicated Members: When a card registers with an administrative au-

thority, the authority may provide the smart card two lists: a list of subscription

charges and a list of associated SPs. The �rst list contains details on how the

user will be charged on installation of the individual applications. For example,

charging mechanisms can either be based on �xed charges per installation or ac-

cording to the size of the application. The associated SPs list includes the details

of individual SPs that are associated with the administrative authority. If a user

requests installation of any of these applications, the installation goes through the

administrative authority and user may not be charged.

6.5.3 Protocol Description

In the STCPACA, an SP takes the initiator's role so it can be considered as an extension

of the STCPSP. The protocol details and message description are as follows:

142

6.5 Application Acquisition and Contractual Agreement Protocol

STCPACA-1. SP : SI = fkSP
(grSP ||NSP ||SCIP)

SP → SC : SPi||NSP ||grSP ||SPSup||V R||ALP ||SI
SC : K = (grSP)rSC mod p

SC : kSC−SP = HK(NSP ||NSC ||′1′)
SC : mkSC−SP = HK(NSP ||NSC ||′2′)

The SP will initiate the STCPACA by generating a random number (NSP) and Di�e-

Hellman exponential (grSP). It appends the generated values with the SPSup and associated

ALP.

When the SC receives the message, it check whether it can meet the SP 's ALP and support

features from the SPSup list. The SC will then generate the shared secret and required

session encryption and MAC keys.

STCPACA-2. SC : hs = h(SCi||SPi||grSC ||grSP ||NSC ||NSP)

SC : AUSC = SignSC(VM ||SCi||SPi||hs)
SC : mE = ekSC−SP (AUSC ||OP ||CertSSC)

SC → SP : NSC ||grSC ||SCConfig||mE||fmkSC−SP
(mE)||SI

The SC will generate a random number (NSC) and Di�e-Hellman exponential (grSC).

Subsequently, the SC will proceed with generating the AUSC and may include VM de-

pending upon the SP 's requirement (e.g. online or o�ine attestation) pointed out in the

SPSup. If the SP is a member of the AD syndicate, the SC will include an OP containing

the certi�cate issued to the SC by the AD. Each SC has a list of members associated

with the respective AD, which can be regularly updated by the AD.

On receipt of the STCPACA-2, the SP will �rst verify the session cookie and the SC's

capabilities listed in SCConfig. The SP will then generate the shared secret and session

keys similar to the SC. Subsequently, it will verify the MAC and decrypt the message.

The SP then veri�es the generated signature and VM (if required); if successful the SP

will proceed with the protocol.

STCPACA-3. SP : hp = h(SPi||SCi||grSC ||grSP ||NSC ||NSP)

SP : AUSP = SignSP (SPi||SCi||Appi||hp)
SP : mE = ekSC−SP (AUSP ||CertSSP ||OC)

SP → SC : mE||fmkSC−SP
(mE)||SI

The SP will generate an encrypted and MACed message that contains AUSP , SP 's certi�-

cate, and an optional certi�cate OC. The optional certi�cate �eld is used by the SP if its

application also has a third party evaluation certi�cate (AAC: section 4.4.2). The AUSP

includes the identities of the SP and the respective application along with hp.

143

6.5 Application Acquisition and Contractual Agreement Protocol

On receipt of the STCPACA-3, the SC will check whether the SP 's identity is included

in the associated SP's list (section 6.5.1). If the SP 's identity is in the list then the

response message the SC will include the administrative authority's identity as an optional

parameter (OP).

STCPACA-4. SC : AUU = SignU (SCi||SPi||Ui||hs)
SC : mE = ekSC−SP (UCre||AUU ||CertSU ||OP ||ADP)

SC → SP : mE||fmkSC−SP
(mE)||SI

The SC will generate a user authentication message AUU , which contains the identities of

the SC, SP and user along with hs . The AUU is appended with the user's certi�cate and

then encrypted and MACed using the generated session keys.

After receiving message four, the SP will check whether the UCre belongs to an authorised

user or not. If it does, then it will verify the signature, which will act as proof of ownership

from the user. If user is authenticated then the SP will initiate the application download.

Once the application download is completed, the STCPACA will proceed with the next

message.

STCPACA-5. SC : sca = SignU (h(App)||SPi||Appi||ALP ||SCi||Ui||hp)
SC : mE = ekSC−SP (sca)

SC → SP : mE||fmkSC−SP
(mE)||SI

Once the application download is completed, the SC will generate a message that acts as

an SC to SP contract. This message contains the hash of the downloaded application,

identities of the SP , SC, user, and the application along with the ALP under which the

application was leased.

The SP will verify the signature and generated digest on its leased application. This will

ensure that the application is downloaded properly on to the SC.

STCPACA-6. SP : amE = ekSP−AD(SPi||SCi||Ui||Appi||hs||hp)
SP → AD : amE||fmkSP−AD

(amE)

AD : ActApp = ekSC−AD(ADi||SCi||Ui||SPi||Appi||hs)
AD → SP : OP = SignAD(ADi||SPi||ActApp||hp)||CertSAD

SP : spc = SignSP (SCi||Ui||SPi||hs||hp||OP)

SP : mE = ekSC−SP (spc||CertSSP)

SP → SC : mE||fmkSC−SP
(mE)||SI

To activate an application, the SC requires the AD's authorisation. If the SP is associated

with the AD then it will send the identities of the SC, the user, and the hs and the

downloaded application to the respective AD. The AD in reply will generate the ActApp.

144

6.5 Application Acquisition and Contractual Agreement Protocol

The ActApp acts as an application activation message and it will be included in message six

as an optional parameter (OP). In this scenario, the last two messages will be redundant

and will not be executed. The session keys kSP−AD and mkSP−AD are generated from

long terms keys shared between the SP and AD. Similarly, the session key kSC−AD is also

generated from the long term key shared between the SC and AD

The SP will generate the contract message (spc) that certi�es to the SC that the SP is

satis�ed with the current state of the SC and the downloaded application.

The SC will verify the spc. Subsequently, if the SP is a member of the AD syndicate,

then it will verify the OP . If the SP is not a member of the AD syndicate then the SC

will proceed with the following messages.

STCPACA-7. SC : mE = ekSC−AD(ADi||SCi||Ui||AppDoD||N ′SC)

SC → AD : SCi′ ||mE||fmkSC−AD
(mE)||SIDAD−SC

When the SP is not a member of the AD, the user requires the AD to issue the ActApp.

The SC will request the AD to issue ActApp by sending message seven. The SC will use a

one-time pseudo card identity (SCi) so that an eavesdropper would not be able to retrieve

the SCi. The SC will encrypt the message containing the identities of AD, SC, and user.

It then appends the application details (AppDoD) and a new random number generated

by the SC. The AppDoD will not have any details of the application that can help the AD

to uniquely identify either the SP or the application. It will include the memory occupied

by the application along with a pseudo identity, and if the AD charges the user according

to the space usage then this data will be used to calculate the charge. Finally, the SC

uses the one-time SIDAD−SC that is generated in previous protocol runs with the AD,

to provide authentication credentials and possibly avoid a DoS attack on the AD's server.

The SID is an abbreviation for session identi�er and we have discussed it in section 4.7.5.

On receipt, the AD veri�es the SCi′ and associated SIDAD−SC . After veri�cation, it will

retrieve the long-term shared keys, verify the MAC, and decrypt the message. Depending

upon the AD's policy, it will proceed with the charge that might include billing the user's

account or credit/debit card.

STCPACA-8. AD : ActApp = AppDoD||ADi||SCi||Ui||NAD||N ′SC
AD : pd = chm||chv||pm
AD : tc = SignAD(pd||ActApp)
AD : SCi′ = h(ADi||SCi||N ′SC ||NAD)

AD : SID′SC−AD = fkAD
(SCi′ ||ADi||SCi)

AD : mE = ekSC−AD(tc||CertSAD||SCi′ ||SID′AD−SC)

AD → SC : mE||fmkSC−AD
(mE)||SIDAD−SC

145

6.6 Analysis of the Proposed Protocols

The AD will sign the message that includes the transaction certi�cate of the charge applied

by the AD. The payment details (pd) includes the charge method (chm), charge value (chv)

and payment method (pm). Finally, the AD also generate the SID (SID′AD−SC) and SCi′

to be used in the subsequent session.

After the SC receives the ActApp, it will activate the application and notify the cardholder

about the successful outcome of the application installation, and any charge that was

incurred by the AD. The charging mechanism for the individual transactions is at the sole

discretion of the AD. This message also acts as proof of the transaction.

6.6 Analysis of the Proposed Protocols

In this section, we discuss the proposed protocols in terms of informal, and formal mechan-

ical analysis using CasperFDR. Later, we detail the test implementations and experimental

results.

6.6.1 Informal Analysis of the Proposed Protocols

In this section, we informally discuss the requirements for the STCPs namely STCPSP,

STCPSC and STCPACA.

6.6.1.1 One to Twelve

In this section, we consistently refer to the protocol requirements and goals in section 6.2.3

with their respective numbers as listed in the same section. Therefore, from here onward,

any reference to a goal or requirement number refers to the listed item in section 6.2.3.

During the STCP protocols, the message AUX where X = SC, SP and U , authenticates

communicating entities satisfying the SOG-1. To satisfy the SOG-2, all communicating

entities exchange cryptographic certi�cates that also facilitate in entity authentication pro-

cess.

The proposed STCPs satisfy requirements SOG3�5 and SOG12 by �rst requiring the SP to

generate the Di�e-Hellman exponentials as it is computationally more powerful than the

smart card. If the smart card generates the exponential before the SP then it can choose

a weak key; however, as smart cards are computationally restricted devices they cannot

perform such tasks. After generation of session keys, communicating entities use them to

146

6.6 Analysis of the Proposed Protocols

securely communicate with each other. One exception to this is the STCPSC. The SC gen-

erates the Di�e-Hellman exponential before the SP but it does not reveal the values until

it receives the Di�e-Hellman exponential from the SP. In this way, they satisfy require-

ments SOG-3 to SOG-5 and SOG-12 like the other two STCPs; because generating the

Di�e-Hellman exponential before SP is not a problem as long as it is not revealed to the SP.

All communicating parties in the STCPs use the generated session keys to securely com-

municate with each other, which gives an implicit mutual key con�rmation, satisfying the

SOG-6.

In the STCPs, session keys generated in one session have no link with the session keys

generated in other sessions, even when a session is established between the same entities.

This enables the protocol to provide resilience against the known-key security (SOG-7).

This unlinkability of session keys is because each entity not only generates a new Di�e-

Hellman exponential but also a random number, both of which are used during the STCP

to generate new session keys. Therefore, even if an adversary �A� �nds out about the

exponentials and random numbers of a session, it would not enable him to generate past

or future session keys.

Furthermore, to provide unknown key share resilience (SOG8) the STCPs include the

Di�e-Hellman exponentials and random numbers along with identities of individual entities

in a message (e.g. hs and hp) that is then signed by all communicating entities. Therefore,

the receiving entity can then ascertain the identity of the entity with which it has shared

the key by verifying the signature and parameters used to generate the session keys (e.g.

Di�e-Hellman exponentials and random numbers).

The STCPs can be considered KCI-resilient (SOG9) protocols, as the protection against

the KCI is based on the digital signatures. In addition, the cryptographic certi�cates of

each signature key include its association with a particular SP or smart card. Therefore, if

A has the knowledge of the signature key of a smart card (or an SP) then it can masquerade

the smart card to other entities but not other entities to the smart card. Another point to

note is that during the STCPs, all signed messages and certi�cates are encrypted using the

session key. This facilitates the STCPs in meeting the requirements SOG-8 and SOG-9,

as an adversary cannot substitute the certi�cate or signature.

The STCPs also meet the perfect forward secrecy (SOG10) by making the key generation

process independent of any long-term keys. The session keys are generated using fresh

values of Di�e-Hellman exponentials and random numbers, regardless of the long-term

keys like the smart card, user, and SP signature keys. Therefore, even if A �nds out the

signature key of any entity, this knowledge will not enable him to �nd out past session

keys.

147

6.6 Analysis of the Proposed Protocols

Communicating entities in the STCPs share signed messages with each other that include

the session information, thus providing mutual non-repudiation (SOG-11).

6.6.1.2 Trust Assurance (Trustworthiness)

One of the requirements was to establish a trusted channel between a smart card and

an SP. It is apparent that the required and proposed trusted channel is unidirectional in

relation to the trust assurance and validation. Only smart cards provide the assurance that

their current state is secure and trustworthy to SPs, not the other way around. The reason

behind this is the deployment environment of the UCTD where smart cards are considered

inherently untrustworthy, SPs are not. In the UCOM, a UCTD assumes that an SP can

be malicious but it will result in the lease of a malicious application(s). Therefore, security

and reliability analysis (e.g. bytecode veri�cation [128, 161]) of the downloaded application

and not of the SP which supplied it is adequate to protect the UCTD. Furthermore, an

adequate protection mechanism implemented by the UCTD runtime environment avoids

malicious runtime activities (discussed in chapter 8)

Establishing a trusted channel between a smart card and an SP is based on the security

and trustworthiness of the SC (section 4.4). The trust in the established protocol session

comes from the assurance that the smart card complies with the evaluated state, which is

certi�ed to be secure and trustworthy by a third party evaluation. The respective SP has

implicit or explicit trust in the third party evaluation.

6.6.1.3 Denial-of-Service Protection

The aim of DoS protection is to provide a level of assurance that the proposed protocols

cannot be used to mount a DoS attack against an SP. This is achieved by a) adding a

session cookie to the protocol messages that serve as the session identi�er, which includes

the smart card's IP address, and b) by not requiring the SP to perform any public key

operations unless it receives user or platform authentication.

The session cookie is generated by the SP and it is the smart card's responsibility to include

the cookie in every message. On receiving a message from a smart card, the SP veri�es the

session cookie and if it belongs to an active session, then it can ascertain that the message

came from a genuine host and not from an entity that is trying to mount a DoS attack.

The second feature requires that the smart card has to provide a signed message (with

either the user- or platform-key) before the SP has to perform any heavy computations.

148

6.6 Analysis of the Proposed Protocols

This is necessary to avoid the SP committing memory and computational resources, unless

the communicating smart card is authenticated to the SP.

6.6.1.4 Privacy

The privacy preservation goal (SOG-15) requires that the privacy of the user is protected.

This requirement does not include privacy for the SP as part of their business model is to

advertise their presence and identity (i.e. web servers). Therefore, the privacy requirement

is restricted to the preservation of the user's identity and her smart card's identity. The

smart card's identity is protected to avoid traceability. By traceability, we mean that if a

user acquires an application from a malicious SP then the malicious SP knows the identity

of the smart card and the user. In the future, if the user tries to acquire an application

from another SP using the same smart card, the malicious SP can trace ownership of the

card back to the user. In the proposed protocol, we do not send any information that can

be uniquely attached to a particular user or a smart card in plaintext. All communications

that include the identities and cryptographic certi�cates are encrypted.

However, if a user always gets online through a permanent connection (i.e. a �xed Internet

Protocol address) then a malicious user can trace the communication to a user, but only

if the malicious user has previously recorded the association of the IP address with the

respective user. In such a scenario, privacy preservation is di�cult to maintain in the

restricted framework of the secure channel protocol; therefore, the proposed STCP does

not provide protection against traceability under �xed, uniquely associated IP addresses

to users.

6.6.1.5 Simulator Attack Resilience

The proposed protocols provide protection in relation to the simulator attack by relying

on the smart card attestation (section 4.4.3), trustworthiness, and e�ectiveness of the eval-

uation laboratory. The certi�cation ensures that the smart card is tamper-resistant, and

it is highly unlikely that a malicious user can retrieve the smart card signature key pair.

Therefore, the validation proof cannot be generated by a simulated environment, and so

if an SP receives a genuine validation proof then it can be certain that it is generated by

a genuine smart card. Furthermore, in the online attestation mechanism the card manu-

facturer dynamically veri�es the current state of the smart card and issues a compliance

certi�cate that the smart card sends to the respective SP.

This will in theory give the assurance to the SP that the smart card with which it is

communicating is not a simulator, and that the current state of the smart card is as it

149

6.6 Analysis of the Proposed Protocols

was at the time of evaluation. This does not mean that it will always be secure or that a

malicious user is not able to simulate the environment with a genuine signature key pair.

It only gives the assurance that the smart card is secure against attacks as evaluated by

the third party and stated in the issued certi�cate [56], and that it is a state-of-the-art

tamper-resistant device at the time of evaluation. Therefore, if the evaluation certi�cate

does not meet the SPs requirements or it out-dates the current attacker capability then the

SP should decline the application lease. As stated earlier, granting an application lease is

at the sole discretion of the SP, so if they are not satis�ed with a smart card, they should

not lease the application to it.

6.6.1.6 Platform & Application User Separation Attack

In this attack, as discussed in section 6.2.3 and 5.5.2, a malicious user tries to install an

application that belongs to some other user on his smart card. Therefore, the identity of

the card owner and the leaseholder of the application are di�erent.

Among the proposed protocols in this chapter, only the STCPSP and STCPACA provide as-

surances against this attack as they include the smart card owner's identity and ownership

proof (i.e. Ui and signed message with a certi�cate) in the message. The ownership proof

comes from the signature generated using the smart card owner's signature key pair. This

signature and the certi�cate are associated with the smart card, providing a cryptographic

binding between the smart card and its current owner.

In the STCPSC, we intentionally omitted the inclusion of the user speci�c details in the

protocol. The rationale behind it is that in this protocol, the respective SP does not require

the user identi�cation and the user wants to keep his or her privacy. This is necessary when

a user downloads applications that normally do not require user details.

6.6.1.7 Contractual Agreement

In the STCPACA, the smart card generates and sends a contractual agreement to the SP.

Therefore, the smart card commits to the SP that it has downloaded the application but

this does not mean that the application is in the active state. The smart card will wait for

the SP to verify the contract message sent by the smart card and to check the hash value

of the downloaded application to correctly corresponds to the SP's application. Once the

SP veri�es these parameters, it generates the contractual agreement message to the smart

card that includes the validation message (VM) of the smart card (if online attestation

was requested by the SP) and/or hash of the downloaded application. The SP will proceed

150

6.6 Analysis of the Proposed Protocols

with the activation of the downloaded application only after this message is received by

the smart card.

The SP will only register the leased application to access the SP's services once it is

activated by the smart card. On activation, the application dials back to the SP's server.

On receipt of the con�rmation that the application is active, the SP will sanction the

application to access the provided services. The contractual agreement messages provide

the assurance that a smart card and an SP have communicated with each other through

the STCPACA. During this protocol, the smart card assures the SP about its security

and reliability mechanisms, and they are accepted by the SP. The SP has then leased its

application, which was downloaded onto the smart card without any error.

6.6.2 CasperFDR Analysis of the Proposed Protocols

The intruder's capability modelled in the Casper scripts (appendices B3, B4, and B5) for

the proposed protocol is as below:

1. An intruder can masquerade as any application's identity in the network.

2. An intruder is not allowed to masquerade as an SP or TEM.

3. An intruder application has a trust relationship with the TEM.

4. An intruder can read the messages transmitted by each entity in the network.

5. An intruder cannot in�uence the internal processes of a communicating entity (agent)

in the network.

The security speci�cation for which the CasperFDR evaluates the network is as shown

below. The listed speci�cations are de�ned in the #Speci�cation section of appendices B3,

B4, and B5:

1. The protocol run is fresh and both applications were alive.

2. The key generated by the SP and SC is not known to the intruder.

3. Entities undergo mutual authentication and key assurance at the conclusion of the

protocol.

4. The long term keys of communicating entities are not compromised.

5. The user's identity is not revealed to the intruder.

151

6.6 Analysis of the Proposed Protocols

The CasperFDR tool evaluated the protocols and did not �nd any feasible attack(s).

6.6.3 Revisiting the Requirements and Goals

In this section, we take the security goals and requirements stipulated in section 6.2.3 and

provide a comparison of the proposed protocols with the selected protocols 6.2.2.

As shown in the table 6.2, the STS protocol meets the �rst 11 goals along with goal 15.

The remaining goals are not met by the STS because of the design architecture and the

deployment environment, which did not require these goals. Similarly, the AD protocol

does not meet goals 6, 10 and 13�19. In the AD protocol, the user reveals her identity by

sending the user certi�cate as plaintext along with the no mutual key con�rmation.

The most promising results were from the ASPeCT and JFK protocols that meet a large

set of goals. Both of these protocols can be easily modi�ed to provide the trust assurance

(requiring additional signature). However, both of these protocols are vulnerable to partial

chosen key attacks, but in the table 7.3 we opt for the possibility that the JFK can be

modi�ed to overcome this problem. The reason behind this is based on the entity that

takes the initiator's role. Therefore, if in the JFK we opt for the assumption that an SP

will always take the initiator's role then this goal is met by the JKF.

The T2LS protocol meets the trust assurance goal by default. However, because it is based

on the TLS protocol, which does not meet most of the requirements of the STCP, the T2LS

also does not meet them. A note in favour of the SCP81, MM, and SM protocols is that

they were designed with the assumption that an application provider has a prior trusted

relationship with the smart card issuer; thus, they implicitly trust the respective smart

card. This assumption, which is fundamentally incompatible with the UCOM, is why

these protocols fail to support a large number of the listed goals. Most of these protocols

to some extent have an architecture similar to the one with which a server generates the key

and then communicates that key to the client (i.e. read smart card). They do not provide

non-repudiation because they do not use signatures in the protocol run. Nevertheless, the

proposed STCPACA protocol meets all the listed goals. Table 6.2 provides a comparison

between the listed protocols in section 6.2.2 with the proposed protocols under the required

goals (see section 6.2.3).

In table 6.2, we show that STCPSC does not meet the goal 17 beside the fact that SPs

in STCPSC does not require user identi�cation. Therefore, a malicious user can install

an application that does not belong to him. On the other hand, if the SP does require

the user's identi�cation during the application personalisation (after the application is

installed) then the personalisation process [10] should take into account the platform &

152

6.6 Analysis of the Proposed Protocols

T
ab
le
6.
2:

P
ro
to
co
l
co
m
pa
ri
so
n
ba
se
d
on

th
e
st
at
ed

go
al
s
(s
ee

se
ct
io
n
6.
2.
3)

S
O
G

P
ro
to
c
o
ls

ST
S

A
D

A
SP

eC
T

JF
K

T
2L

S
SC

P
81

M
M

SM
ST

C
P
S
P

ST
C
P
S
C

ST
C
P
A
C
A

1.
M
ut
ua
l
E
nt
it
y
A
ut
he
nt
ic
at
io
n

∗
∗

∗
∗

∗
∗

−
∗
−
∗

∗
∗

∗
2.

E
xc
ha
ng
e
C
er
ti
�c
at
es

∗
∗

∗
∗

∗
∗

∗
−
∗

∗
∗

∗
3.

M
ut
ua
l
K
ey

A
gr
ee
m
en
t

∗
∗

∗
∗

∗
∗

∗
−
∗

∗
∗

∗
4.

Jo
in
t
K
ey

C
on
tr
ol

∗
∗

∗
∗

∗
∗

∗
∗

∗
5.

K
ey

Fr
es
hn
es
s

∗
∗

∗
∗

∗
∗

∗
−
∗

∗
∗

∗
6.

M
ut
ua
l
K
ey

C
on
�r
m
at
io
n

∗
∗

∗
∗

−
∗

∗
∗

∗
7.

K
no
w
n-
K
ey

Se
cu
ri
ty

∗
∗

∗
∗

∗
∗

∗
∗

∗
∗

8.
U
nk
no
w
n
K
ey

Sh
ar
e
R
es
ili
en
ce

∗
∗

∗
∗

∗
∗

∗
−
∗

∗
∗

∗
9.

K
C
I
R
es
ili
en
ce

∗
∗

∗
∗

∗
∗

∗
∗

∗
∗

∗
10
.
P
er
fe
ct

Fo
rw
ar
d
Se
cr
ec
y

∗
∗

∗
∗

∗
∗

∗
∗

11
.
M
ut
ua
l
N
on
-R
ep
ud
ia
ti
on

∗
(∗

)
+
∗

∗
∗

∗
+
∗

+
∗

∗
∗

∗
12
.
P
C
K
A
tt
ac
k
R
es
ili
en
ce

(∗
)

(∗
)

(∗
)

(∗
)

(∗
)

∗
∗

∗
13
.
T
ru
st
A
ss
ur
an
ce

∗
−
∗

∗
∗

∗
14
.
D
oS

P
re
ve
nt
io
n

∗
∗

∗
∗

15
.
P
ri
va
cy

(∗
)

∗
∗

∗
∗

∗
16
.
Si
m
ul
at
or

A
tt
ac
k
R
es
ili
en
ce

−
∗

∗
∗

∗
17
.
PA

U
A
tt
ac
k
R
es
ili
en
ce

∗
∗

18
.
C
on
tr
ac
tu
al
A
gr
ee
m
en
t

+
∗

+
∗

∗
19
.
P
ro
of

of
T
ra
ns
ac
ti
on

∗
+
∗

+
∗

+
∗

+
∗

+
∗

+
∗

∗∗

N
o
te
:
∗
m
ea
n
s
th
a
t
th
e
p
ro
to
co
l
m
ee
ts

th
e
st
a
te
d
g
o
a
l,
∗∗

in
d
ic
a
te
s
th
a
t
th
e
p
ro
to
co
l
m
ee
ts

th
e
S
O
G

if
re
q
u
ir
ed

b
y
th
e
co
m
m
u
n
ic
a
ti
n
g
en
ti
ti
es
,
(∗
)
sh
ow

s
th
a
t
th
e

p
ro
to
co
l
ca
n
b
e
m
o
d
i�
ed

to
sa
ti
sf
y
th
e
re
q
u
ir
em

en
t,

+
∗
sh
ow

s
th
a
t
p
ro
to
co
l
ca
n
m
ee
t
th
e
st
a
te
d
g
o
a
l
b
u
t
re
q
u
ir
es

a
n
a
d
d
it
io
n
a
l
p
a
ss

o
r
ex
tr
a
si
g
n
a
tu
re

g
en
er
a
ti
o
n
,
a
n
d

−
∗
m
ea
n
s
th
a
t
th
e
p
ro
to
co
l
(i
m
p
li
ci
tl
y
)
m
ee
ts

th
e
re
q
u
ir
em

en
t
n
o
t
b
ec
a
u
se

o
f
th
e
p
ro
to
co
l
m
es
sa
g
es

b
u
t
b
ec
a
u
se

o
f
th
e
p
ri
o
r
re
la
ti
o
n
sh
ip

b
et
w
ee
n
th
e
co
m
m
u
n
ic
a
ti
n
g

en
ti
ti
es
.

153

6.6 Analysis of the Proposed Protocols

application user separation attack.

As is apparent from the table 6.2, the proposed STCPs satis�es all goals that were de-

scribed in section 6.2.3. The protocols that are proposed speci�cally for the smart card

environment (i.e. ICOM) only meet half of the stated goals because the security require-

ments for the UCOM are more stringent than for the ICOM [32]. Nevertheless, we still

consider that the proposed STCP should be deployed even in the ICOM and especially

with any future ownership model that supports multi-applications on a smart card under

the Trusted Service Manager (TSM) architecture.

6.6.4 Implementation Results and Performance Measurements

For comparison, we have selected the performance of SSL [182], TLS [183], and public

key-based Kerberos [184] implemented on 32-bit smart cards. We selected the SSL and

TLS because they form the bases of the GlobalPlatform SCP81. Kerberos closely relates

to the card management architecture of Multos (section 5.3). The Multos Certi�cation

Authority acts as a Trusted Third Party (TTP), and the public key-based Kerberos can

be implemented to accommodate the Multos card management framework. The Kerberos

discussed in the performance measures is also implemented on 32bit smart cards [184].

Table 6.3: Protocol performance measurement (milliseconds)

Measures SSL TLS Kerberos
STCPSC STCPSP STCPACA
C1 C2 C1 C2 C1 C2

Average 4200 4300 4240 2998 3091 3395 3532 5843 6098
Best Run NA NA NA 2906 3031 3343 3359 5485 5688
Worse Run NA NA NA 3922 4344 3875 6797 9734 7329
Std Deviation NA NA NA 117.54 96.28 69.82 134.91 191.62 171.13

Note: the above mentioned measurement values for SSL are taken from [182], TLS [183] and

Kerberos [184]. C1 and C2 are 16bit Java Cards. We have rounded up the values to the nearest natural
number except for the standard deviation.

t

For performance measurements, we use the same test bed con�guration described in section

4.8.3. For the STCPSC and STCPSP we implement two entities: a smart card and an SP.

For the STCPACA we implement an additional entity of administrative authority. Both an

SP and an administrative authority are implemented on a laptop with 1.83 GHz, and 2GB

RAM running on Windows XP. The Java Card implementation of the STCPSP, STCPSC,

and STCPACA took 11102, 10382, and 13364 bytes, respectively. The performance mea-

sures listed in the table 6.3 do not include the attestation process, which is listed in table

4.3.

154

6.7 Summary

For the STCPACA, we need to provide the digest of the downloaded application. To do this

we emulated the performance measure by monitoring the time it took to generate hash on

a 256 bytes array. The hash generation on the 256 bytes took 31 milliseconds on the test

smart cards. The performance measures of hash generation on the test smart cards with

di�erent sizes of the download application are shown in �gure 6.2

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000
11000

1 17 33 49 65 81 97 113 129 145 161 177 193 209 225 241

Ti
m

e
(M

ili
se

co
nd

s)

Input Data (Kilobytes)

Figure 6.2: Performance measurements of hash generation on test smart cards

The STCPACA can be divided in to three distinct phases that are listed in the table 6.4

along with the breakdown of the performance measure. The breakdown provides a rough

guide how much extra time these protocols will take if the protocols STCPSC and STCPSP

are extended to provide SOG-18 and SOG-19.

Table 6.4: Breakdown of performance measurement (milliseconds) of the STCPACA

Phases Measures
STCPACA
C1 C2

AKA Phase (STCPACA-1 � 4) Average 3182 3334
Contract Phase (STCPACA-5 � 6) Average 1253 1294
Charge Phase (STCPACA-7 � 8) Average 1407 1470
Total (STCPACA-1 �8) Average 5843 6098

The performance measures are only for the reference of our implementation, as the actual

performance will vary depending the attestation process, the application size, and the

communication speed (i.e. Internet bandwidth).

6.7 Summary

In this chapter, we discussed Secure Channel Protocols (SCPs) and their role in the UCTD.

In addition, we provided the rationale behind proposing new SCPs. This was followed by

an account of the related work in the �eld. We discussed security and operational goals

for the proposed protocols. We then proposed three protocols that satisfy varying levels

of security and operational goals, along with the user's and SP's requirements. These

protocols were then analysed informally for a limited set of security goals and compared

with a set of selected protocols. We subjected the proposed protocols to mechanical formal

155

6.7 Summary

analysis using the CasperFDR, which they passed without any evidence of feasible attack.

Finally, we discussed the test implementation and their performance measures, comparing

them with a set of selected protocols.

156

Chapter 7

Application Sharing Mechanisms

Contents

7.1 Introduction . 158

7.2 Application Sharing Mechanism 159

7.3 UCTD Firewall . 165

7.4 Application Binding Protocol � Local 174

7.5 Platform Binding Protocol . 176

7.6 Application Binding Protocol � Distributed 178

7.7 Analysis of the Proposed Protocols 181

7.8 Summary . 186

In this chapter, we describe two contrasting frameworks for application sharing, namely

those deployed by Java Card and Multos; followed by an explanation of our reasoning for

deciding that we need to extend the existing techniques for UCTDs. We then discuss the

rationale behind our proposal for the application sharing mechanism in the UCTD envi-

ronment. This sharing mechanism requires entity authentication, trust validation, and key

generation to securely share resources between applications. To do so, we propose protocols

that achieve the listed goals of the UCTD application sharing mechanism. Furthermore, we

provide an informal analysis of the protocol along with a comparison with existing protocols.

Subsequently, we present a mechanical formal analysis the based on the CasperFDR, and

we report on our experience from developing and experimenting with a prototype implemen-

tation.

157

7.1 Introduction

7.1 Introduction

Multi-application smart cards enable the co-existence of interrelated and cooperative ap-

plications that augment each other's functionality. This enables applications to share their

data as well as their functionality with other applications, achieving optimised memory

usage, and data and service sharing between applications [14].

A major concern arising from application sharing mechanisms is the possibility of unautho-

rised inter-application communication. A framework that ensures that application sharing

is secure and reliable even in adverse conditions (i.e. malicious applications, developer's

mistakes, or design oversight, etc.) is referred as a smart card �rewall [185]. In this chapter,

the terms �rewall and smart card �rewall are used interchangeably.

The dynamic and decentralised nature of the UCOM may lead to unauthorised application

communication and the associated privacy concerns. Existing techniques deployed by the

smart card industry are not adequate to provide security and reliability to the application

sharing mechanism on a user centric device. The issues involved are: a) an inability to

dynamically authenticate an application on a smart card, b) di�culty in ascertaining the

security and reliability of the current state of an application, c) an inability to verify and

restrict application sharing (privilege-based access), d) no provision for privacy preservation

for cardholders, and e) no cryptographic binding between applications. Therefore, in this

chapter, we discuss the proposed �rewall mechanism [186] that provides an extension to

the traditional mechanisms deployed in Multos and Java Card, in order to deal with the

listed issues.

There may also be a requirement to allow applications executing on di�erent UCTDs to

intercommunicate. Thereby, we further extend the architecture of the proposed �rewall

[186] to accommodate application sharing among applications that are installed on di�erent

UCTDs. This extension is referred as the Cross-Device Application Sharing Mechanism

(CDAM).

To meet the requirements for a UCOM �rewall mechanism, we propose three protocols,

analyse them against a prede�ned set of stated goals, validate them using mechanical

formal analysis using CasperFDR, and �nally describe a prototype implementation and

performance measurements.

Structure of the Chapter: Section 7.2 discusses the application sharing mechanisms

deployed by Java Card and Multos, along with the rationale behind the proposal for a

UCOM �rewall mechanism. In section 7.3, we describe the architecture of the proposed

�rewall mechanism. To provide entity authentication, application state assurance, and

secure application binding we propose an Application Binding Protocol (ABP) in section

158

7.2 Application Sharing Mechanism

7.4. We then propose two protocols for the CDAM framework in section 7.5 and 7.6. In

section 7.7, the proposed protocols are analysed for their security and performance.

7.2 Application Sharing Mechanism

In this section, we describe the application sharing mechanism implemented in Java Card

and Multos. The reason for choosing Java Card and Multos is twofold: a) they represent

two contrasting architectures to implement the �rewall mechanism, and b) they are the two

most deployed smart card platforms. Furthermore, the �rewall mechanisms deployed in

the ICOM are mature [28, 29, 185, 187, 188] and have been extensively studied [189]�[192],

which cannot be claimed for the UCOM.

7.2.1 Firewall Mechanism in Java Card

The generic architecture of a Java Card is shown in �gure 7.1. The Java Card Runtime

Environment (JCRE) sits on top of the smart card hardware and manages the on-card

resources, applet execution, and applet security [28]. The JCRE has APIs (e.g. APDU, Util

and Shareable) that an application can use to access JCRE services. The JCRE also

has system classes that are integral to its functions and these classes are not visible to

applets. The �rewall mechanism separates individual applications from each other and

from the JCRE. In Java Card, an application is a collection of applets grouped together

as a package � for example, packages A and B in �gure 7.1;

Smart Card Hardware

Java Card Runtime Environment

Java Card Virtual Machine (JCVM) Native Methods

System Classes

Application Programming Interface (APIs)

Java Card Firewall
JCRE Entry Point

Objects

Package A Package B

Applet A1

Applet A2

Applet B1

Applet B2

SIO

S
y
s
te

m
 C

o
n

te
x
t

Context BContext A

Figure 7.1: The Java Card �rewall mechanism

Each instance of an applet has a unique Application Identi�er (AID) [28]. An instantiated

representation of an applet is termed an object. Each object is associated with a context,

159

7.2 Application Sharing Mechanism

including the JCRE objects (System Context). The Java Card Virtual Machine (JCVM)

only allows an object to execute if the current �Active� context is the one to which it

belongs. In �gure 7.1 an object of AppletB1 will only execute if the �Active� context is

context B. The �rewall restricts all cross context communication except for object shar-

ing mechanisms that include JCRE Entry Point Objects and Shareable Interface Objects

(SIOs). All applets in a package have the same context so there is no �rewall between

them.

The JCRE Entry Point Objects are instances of the Java Card APIs that can be used by

applications to access platform services. These objects are accessible to all applets, and

they enable non-privileged (applets) applications to execute privileged commands. The

JCRE Entry Point Objects are implemented by the Java Card manufacturer, which is

responsible for their security and reliability.

An SIO enables an application to share its resources with other authorised application(s).

To utilise an SIO functionality, an application should implement the shareable interface

(javacard.framework.Shareable) � the implemented functionality as part of the class

that implements the shareable interface will be shareable with other applets.

When an object requests either an SIO or JCRE Entry Point Object, the JCVM saves

the current �Active� context and invokes the requested object along with the associated

context. Therefore, a shareable object always executes in its own context, enabling it to

access any applet from the package it belongs to. By taking into account �gure 7.1 when

AppletA1 calls an SIO of AppletB1, the JCVM saves context A and invokes context B and

also initiates the execution of an SIO. An SIO can then call any method in package B.

Furthermore, it can also call any JCRE Entry Point Objects. When an SIO completes its

execution, the JCVM restores the previous context (context A).

7.2.2 Firewall Mechanism in Multos

Multos [29] takes a di�erent approach to Java Card in implementing a smart card �rewall.

The Multos Card Operating System (COS) resides over the smart card hardware as illus-

trated in �gure 3.2. The Multos COS administers communication, resource management,

and the virtual machine [29]. Applications do not have direct access to the Multos COS

services; instead they utilise the Application Abstract Machine that is a set of standard

APIs consisting of instructions and built-in functions. These APIs are used by applica-

tions to communicate with the COS and request privileged services. The top layer is the

application space, and similar to Java Card the application segregation is implemented by

the Multos �rewall.

160

7.2 Application Sharing Mechanism

In Multos, application delegation is implemented to enable application resource sharing.

The application that initiates the process is called the delegator and the application that

is initiated is called the delegate. The process of delegation works as described below and

shown in �gure 7.2:

Multos Firewall

Application A

(Delegator)

Application B

(Delegate)

C
o

m
m

a
n

d
 A

P
D

U

R
e

s
p

o
n

s
e

A
P

D
U

INS

CLA

P1

P2

Lc

Le

Data

SW1

SW2

Data

1

2

34

P
u

b
lic

 M
e

m
o

ry
 (

R
A

M
)

Figure 7.2: The Multos card �rewall mechanism

1. Application A (delegator) creates an APDU in the public memory and invokes the

delegate command. The APDU consists of application B's AID, requested data or

function and the delegator's AID.

2. The Multos COS initiates the execution of B that looks for the APDU in the public

memory. It reads the APDU and processes it.

3. On completion, B creates a response APDU within the public memory.

4. The Multos COS switches back to A that then retrieves B's APDU.

7.2.3 Rationale for User Centric Smart Card Firewall

Traditional smart card �rewall mechanisms are �t-for-purpose in the ICOM environment

but they do not provide adequate security to the UCTD environment. The operational

and security requirements a UCOM �rewall has to satisfy are:

FiR-1 No O�-card Security Assumption: The �rewall mechanisms discussed in previous

sections are designed with the implicit assumption that the smart card will be under

the card issuer's control. The security of the platform is ensured not only by the on-

card mechanisms but most importantly by the o�-card agreements, which prevent

installation of a malicious application and prevent unauthorised application access.

161

7.2 Application Sharing Mechanism

FiR-2 Application Authentication: In both Java Card and Multos, applications rely on

the AID to locate, request and access shareable resources/data. The AID is a 5�16

byte identi�er that consists of two components: a Registered Identi�er (RID) and

a Proprietary Application Identi�er Extension (PIX). The RID is 5 bytes long and

compulsory; on the other hand the PIX can be 0�9 bytes long and it is optional. If

you are developing an application that will be used either nationally or internation-

ally, you need to get a RID from designated authorities (i.e. national standardisation

authorities). AIDs are issued by a designated authority but there is no enforcement

mechanism that prevents an adversary from masquerading as an application on a

smart card. In the ICOM, this situation does not arise because application instal-

lation is only authorised by the card issuer and even this is to a restricted group of

trusted application providers. However, in the UCTD environment such a measure

is di�cult.

FiR-3 Application State Validation: An application �AppA� might be modi�ed either in-

tentionally or accidentally. This might have a malign a�ect on applications that

share resources with, or use the resources of AppA. Therefore, before establishing

sharing it would be bene�cial to ascertain the current state of AppA. In addition,

the �rewall should also notify the server application if the client application is mod-

i�ed (i.e. if there have been application updates), so if the client application wants,

it can revoke the sharing, and vice versa.

FiR-4 Access Control: The �rewall should facilitate a �exible mechanism that enables a

server application to implement a hierarchical access-level �rewall. In such a �rewall,

a server application assigns shareable resources according to di�erent access levels.

In addition, it can also revoke, upgrade, or demote the existing privileges of a client

application.

FiR-5 Application Binding: Two applications that share each other's resources should

be able to bind the sharing instance (cryptographic binding) in order to provide

authentication, con�dentiality and reliability to all future communication.

FiR-6 Application-Platform Communication. This requirement deals with bi-directional

communication between an application and a smart card platform and it is sub-

divided into two sections as listed below.

(a) Application to Platform Communication: Platforms make their services avail-

able to applications either through Entry Point Objects [28] or standard APIs

[29]. In both cases, applications may have access to more platform services

than required. That would not be desirable in the UCTD [10]. In the UCTD,

applications are only given access to those platform services that are autho-

rised by their SPs. The �rewall ensures that an application cannot have access

to any other services from the platform for which it is not authorised. This

162

7.2 Application Sharing Mechanism

allows the SPs to control their applications' behaviours, especially in terms of

on-card and o�-card communication.

(b) Platform to Application Communication: Java Card (like other multi-application

smart cards) provides global access rights to the platform. The global access

rights mean that an object of the JCRE System Context can access any method

(object) in any of the application contexts. However, the Java Card speci�-

cation explicitly notes that the platform should only access certain methods

(select, process, deselect, or getShareableInterfaceObject) from an ap-

plet context [28]. In the UCOM, the �rewall should ensure that a platform

cannot have access to methods that are not sanctioned by the application SPs.

Furthermore, it should enable an object or method to verify the requesting

source. For example if the source is the platform, and it is trying to access

an object or method not sanctioned by the corresponding SP, then it should

throw a security exception.

FiR-7 Sharing Revocation: A server (or client) application can revoke a privilege, even

after the server and the client have established a sharing relationship with each

other. In Multos and Java Card, the only way to revoke privileges is to modify the

server and/or client-application code. If a server application does not want to share

resource with the client application, then the server application has to implement

adequate checks to throw an error or exception when the client application accesses

the resources. From the client application's point of view, the SP has to modify the

client application so that it cannot use the shareable resources.

FiR-8 User's Privacy: The �rewall mechanism should not allow an application to discover

the existence of other applications, because such a privilege could be used to pro�le

a user, perhaps for marketing or fraudulent purposes. In Java Card, public static

AID lookupAID can be used to list the installed applications. It is not an issue in

the ICOM as there is a central authority (card issuer) that has prior knowledge

of installed applications and (to some extent)their functionality. However, it is a

potential privacy threat in the UCTD environment.

The comparison between Java Card, Multos and the proposed �rewall mechanism is illus-

trated in table 7.1.

7.2.3.1 Why Cross-Device Application Sharing?

With increasing interconnectivity between di�erent computing environments, applications

installed on di�erent UCTDs can enable new service models by having a secure and reliable

resource sharing mechanism. These are referred to as Cross-Device Application Sharing

Mechanism (CDAM). Some of the possible applications of CDAM are listed below:

163

7.2 Application Sharing Mechanism

Table 7.1: Comparison between di�erent �rewall mechanisms
FiR Multos Java Card UCTD

1. No O�-card Security Assumption No No Yes
2. Application Authentication Yes* Yes* Yes
3. Application State Validation No No Yes
4. Access Control No No Yes
5. Application Binding No No Yes
6. Application-Platform Communication No No Yes
7. Sharing Revocation Yes* Yes* Yes
8. User's Privacy No No Yes

Note. �Yes� means that it totally supports the given requirement, �Yes*� stands for limited support, and
�No� means that it does not support the given requirement.

1. A mobile handset may have multiple UCTDs, which under the CDAM architecture

behave as a single virtual device. Removing the need for a user to install applications

that share each other's resources on the same UCTD makes the management of the

multiple UCTDs �exible and user-friendly.

2. The CDAM can facilitate the installation of an internet identity application [193] on

a UCTD that can be accessible to other UCTDs and the host platform. For example,

if a user installs an internet identity application (i.e. which may act as a single sign

on) on a UCTD then it may be used to authenticate the user when visiting online

services (e.g. online gaming, social and network sites, etc.) or by applications (e.g.

network access, online banking, and online ticketing, etc.) on (other) UCTDs.

3. An accounting application on a UCTD may opt for automated receipt collections and

updates to the user's accounting software. For example, a user might have a �nan-

cial system on her Personal Computer (PC) that she uses to track her expenditure.

To enhance the mobile payment scheme, the mobile payment SP may collaborate

with an accounting software developer in a way that means the payment application

might record the transaction details that are later synchronised with the accounting

software. The user would have the accounting software installed on her PC, with an

associated application installed on the UCTD. Afterwards, the user synchronises the

transaction details to her �nancial software. The synchronisation would be carried

out by means of the UCTD of the mobile phone and the UCTD of the PC. Thereby,

the CDAM provides security, reliability, and privacy to this system.

4. Internet of Things [37, 160] is an internet-like structure comprising a set of smart

physical devices (e.g. toys, healthcare products, thermostats, and environment sen-

sors, etc.) that communicate with each other. As an individual device may not have

enough computational and storage resources, they would not have a complex or large

set of services. However, the CDAM can enable comparatively complex and rich fea-

tured systems in an Internet of Things. Individual devices may either have a unique

service in the set or even a subset of a particular service. Each connected device then

164

7.3 UCTD Firewall

utilises CDAM to create a single virtual device comprising heterogeneous devices and

a UCTD-based architecture will enable the e�cient replacement of a service if the

host device goes out of the network, by requesting installation of the service on an

alternative available device.

7.3 UCTD Firewall

In this section, we discuss the architecture of the proposed �rewall mechanism for UCTDs.

7.3.1 Firewall Architecture

The proposed �rewall mechanism is based on the Java Card �rewall mechanism as illus-

trated in �gure 7.3 that is discussed subsequently.

ACL: Access Control List. SIO: Shareable Interface Object. ARM: Application Resource Manager

Smart Card Hardware

Runtime Environment

Java Card Virtual Machine (JCVM) Native Methods

System Classes

Application Programming Interface (APIs)

Java Card Firewall

Entry Point Objects

Package A Package B

Applet A1

Applet A2

Applet B1

Applet B2

SIO

S
y
s
te

m
 C

o
n

te
x
t

Context BContext A

ACL

Application Resource Manager (ARM)

A
p

p
lic

a
tio

n

R
e

s
o

u
rc

e
 M

a
n

a
g

e
r ACL

Runtime Resource Manager

Figure 7.3: Architecture of the UCTD �rewall mechanism

The request for an application's shareable resource is handled by the application's Appli-

cation Resource Manager (ARM) and the Runtime Resource Manager (RRM) handles the

access to the platform's resources (APIs): see �gure 7.3.

The RRM controls the access to the entry point objects that are used to access platform

services. The resource manager will enforce the security policy for applications as de�ned

by the respective SPs, limiting access to the platform resources as stipulated by the policy.

For each application (package), an Application Resource Manager (ARM) is introduced.

This component will act as the authentication and resource allocation point. A client

165

7.3 UCTD Firewall

application will request a server application's ARM to enable the sharing of resources.

The ARM will decide whether to grant the request based upon the client's credentials

(associated privileges). At the time of application installation, the ARM also establishes

a shareable interface connection with the platform, enabling the application to access

methods that are essential for the application execution. The platform can access any

method in the application context only after authorisation from the application's SP. The

ARM also receives information regarding the requesting application. If the request is from

the system context for a method that is not allowed to be accessed by the platform, then

the ARM will throw a security exception.

An Access Control List (ACL) is a private list and it is used to facilitate the implementa-

tion of a hierarchical access mechanism and privilege revocation. An ACL can be updated

remotely by its corresponding SP (when the application connects with the SP's servers, the

SP can update the ACL), changing the behaviour of its application's sharing mechanism.

The ACL holds lists of granted permissions, received permissions (permissions to access

other application's resources) and a cryptographic certi�cate revocation list of client ap-

plications. The structure of an ACL is under the sole discretion of its SP and it is stored

as part of the ARM.

The operations of the �rewall can be sub-divided into two distinctive phases. In phase

one, a binding is established between the client and the server applications. This pro-

cess includes authentication of the client's credentials and access privileges by the server's

ARM. In the second phase, the client application requests resources in line with the priv-

ileges sanctioned by the ARM. In both these phases, the �rewall mechanism facilitates

individual authorised applications to accomplish the application sharing, while prohibiting

unauthorised applications from accessing the resources of an application.

7.3.2 Application Binding

In the UCTD-based �rewall mechanism, a client application (AppC) establishes a secure

connection with the relevant server application (AppS) to authenticate and verify the

current state of the AppS, and to establish a secure binding with the AppS for future

communications. Similarly, AppS can also authenticate and verify the current state of the

AppC. Therefore, an application binding indicates that a client and server application have

authenticated each other and trust each other's state to be secure (and trustworthy).

When a client application requests shareable resources, the �rewall invokes the ARM of the

server application. The ARM then veri�es and validates the client application's credentials,

and current state as secure for sanctioning the application sharing (as part of the ABP).

If the request is successful, the ARM issues the shareable resources to the requesting

166

7.3 UCTD Firewall

application. There are two ways the current state of individual applications might be

veri�ed: both of the SPs can opt for a third party evaluation of their respective applications,

or they can issue a certi�cate to each other's application that contains the hash of the

application. In both of these cases, the certi�ed state of the application is treated as a

trusted state by the other entity.

The state validation of individual applications is carried out by the Trusted Environ-

ment & Execution Manager (TEM), requesting the application and issued certi�cates.

Consider the scenario of application sharing between AppC and AppS. When AppC is

installed onto a smart card, the relevant TEM establishes a secure relationship (shared

key: KAppC−TEM) with the installed application. The TEM does not calculate the ap-

plication state validation message (i.e. hash of the application), unless it is authorised

to do so by the application itself, or by the application's SP. When an application au-

thorises the TEM to generate its hash value, it generates a message encrypted with the

shared symmetric key. The authorisation message generated by an application is referred

to as an Integrity Measurement Authorisation (IMA) message. The IMA sent by the

client application will be EAppC−TEM (AppC ||AppS ||RandomNumberAppS). The contents

of the messages are the identity of the client and server application, along with a ran-

dom number generated by the server application. The state validation message would be

EAppS−TEM (AppC ||AppS ||RandomNumberAppS ||hash(AppC)) that is encrypted with the

TEM and the server application's shared key as this message is intended for the server

application. The server application can match the hash calculated by the TEM with the

one in the client application's certi�cate that is issued either by a third party evaluator or

by the server application's SP. If they match, the server application can securely ascertain

that the state of the client application is secure. A similar process can be performed in the

opposite direction where a client application veri�es the state of the server application.

After applications authenticate and validate their states to each other, they generate a

cryptographic key that is referred to as the application binding key. This key is used in all

future communications between the applications.

7.3.3 Using Shareable Resources

A client application can request to use the server application's shareable resources if re-

quired (subject to valid access permissions) as illustrated by �gure 7.4.

The request message sent to the corresponding ARM consists of a ClientAID, an au-

thenticator (message encrypted with the application binding key), access permission, the

required resource and a random number to provide freshness [132]. By verifying the au-

thenticator, the ARM ascertains the origin of the message � that is, the client application.

167

7.3 UCTD Firewall

Firewall

Application B (Server)

A
R

M

Shareable Resources

ACLApplication A (Client)

ACL

Requesting
Component

Req(ClientAID, EBindingKey(),Access Permission,
Resource Required, Random Number)

Permision

Permision
Permision ResAllocation(ResourceObjectRef, Lifetime)

RequestService

Figure 7.4: Application shareable resource access request process

Subsequently it checks the access permission for the client application (from the server ap-

plication's ACL). If the client application is authorised to access the requested resource,

the ARM will return the resource's object reference along with the sharing lifetime.

There are two lifetime modes, permanent grant of access to an object or temporary. In

permanent mode, the server application grants the ownership of the object to the client

application as proposed by the Java Card 3.1 connected edition �rewall [16]. In temporary

mode access is limited to individual sessions and ownership of the object is retained by the

server application.

7.3.4 Privilege Modi�cation

The SP of a server application can modify the privileges of a client application by updating

the ACLs. The ARM of the server application veri�es the initiator's (SP's) identity and

credentials, before allowing the update of the ACL(s). The implementation of the privilege

modi�cation is at the sole discretion of the SP. Such an update could be similar to ap-

plication update mechanisms already deployed, notably Over-The-Air updates in (U)SIM

application [6].

7.3.5 Application-Platform Communication

At the time of installation, an application establishes bidirectional resource sharing with the

platform. The application can access those platform APIs that are stipulated in the SP's

Application Lease Policy (ALP) discussed in section 3.4.6, and the platform obtains the

shared resources of the applications that are necessary to initiate the application execution.

The platform security context does not have global access in the UCTDs. This is to avoid

any possible exploitation of the platform that could lead to information leakage (data or

code) from an application. The resource-sharing delegation is disabled in the platform-

application communication and the �rewall will deny such requests to avoid any illegal

access to the APIs by an application through resource sharing delegation.

168

7.3 UCTD Firewall

7.3.6 Cross-Device Application Sharing

In the Cross-Device Application Sharing (CDAS) architecture, a smart card acts like a

node that is registered with a centralised system. The centralised system in our proposal

is software running on a computer, mobile phone, or tablet, which is referred as Card

Application Management Software (CAMS) [32]. For a simplistic illustration, �gure 7.5

shows two possibilities for the CDAS network.

In �gure 7.5a, a mobile phone has three UCTDs and all of them are connected to a CAMS

hosted on the mobile phone. The CAMS can be hosted on an insecure platform and

it provides discoverability and interconnectivity to an individual UCTD connected to the

CAMS. By discoverability, we mean that a platform registers itself with the CAMS and thus

it becomes discoverable to all other platforms in the network. The interconnectivity deals

with the communication channel established between two (or more) UCTDs. Therefore,

�gure 7.5a depicts a scenario in which multiple UCTDs are connected to a mobile phone,

and their interconnectivity and discoverability is handled by the CAMS installed on it.

(a)

U
C

T
D

s

Cell Phone with Multiple UCTDs

Tablet

Computer

CAMSCAMS

(b) UCTDs attached to different Platforms

Cell Phone

Cell Phone

Figure 7.5: Cross-Device Application Sharing network

On the other hand, �gure 7.5b shows a situation in which di�erent computing devices

(e.g. computers, mobile phones, and tablets) are connected with each other through their

CAMS. Each individual device may have multiple UCTDs that are registered to their

respective CAMS. Although �gure 7.5b depicts the situation as if there is a single cen-

tralised CAMS, this is incorrect, as each host device has its own CAMS and there are no

centralised CAMS. Therefore, if a particular device is not available, other devices can still

communicate with each other. In this scenario, a host device will discover and register

other computing devices. There are two possible situations. In the �rst, each individual

host device advertises the connected smart cards to the entire network. In second case,

each host device only provides the details of its CAMS and not the smart cards registered

with it. For our proposed CDAM, we prefer the second arrangement as it provides better

privacy for individual smart cards.

169

7.3 UCTD Firewall

Encrypted and MACed using PBP Keys

Encrypted and MACed using ABP Keys

Sharing Request (Payload)Client SC-ID Client AIDServer AIDServer SC-ID

Figure 7.6: Cross-Device Application Sharing message

The provision of whether an application supports cross-device application sharing is at

the sole discretion of the respective SP. The UCTD architecture will provide two levels

of application sharing: a) localised sharing, and b) cross-device sharing. The �rst option

restricts the application sharing to the smart card on which the application is installed.

Any client application that is not installed on it will not be able to access the shareable

resources of the server application. This scenario is implemented in traditional smart card

�rewalls and supported by the UCTD. The second option allows application sharing with

a client application, whether or not it is installed on the same platform.

In a succinct manner, we can divide the CDAM process into four steps listed as below:

1. Registration: The �rst step involves registration of individual applications with their

respective smart cards, and individual smart cards with their respective CAMS.

2. Platform Binding: A new smart card that is recently registered with the CAMS will

ask the CAMS to provide a list of available (registered) smart cards. The CAMS

provides the pseudo identities of other associated smart cards. Each smart card

then initiates a dialogue referred as �platform binding� with other smart cards in the

network and establishes a secure relationship (e.g. by means of a shared cryptographic

key) that is termed as platform binding key. The platform binding is similar to the

application binding discussed in section 7.3.2 but is between smart cards, rather than

applications. After the acknowledgement of the platform binding, each smart card

will register the other in its list of bound platforms.

3. Application Binding in CDAM: In the third step, client and server applications pro-

ceed with the application binding process that on its successful conclusion binds them

in a way that enables them to share resources in a secure and reliable manner.

4. Application Sharing in CDAM: The client application requests its host smart card

regarding the status of the server application's host smart card. If the server ap-

plication is in the network then it will proceed with the application sharing. The

application binding key is used to generate the session key to communicate with the

server application. The structure of the message is illustrated in �gure 7.6.

The resource access can be based on two mechanisms: Java Card [28] or Multos [29] inter-

application communication architecture. These two mechanisms represent the synchronous

170

7.3 UCTD Firewall

and asynchronous application sharing respectively. Synchronous application sharing en-

ables two applications to communicate in real-time, and they can be considered as real-time

distributed systems. In case of the asynchronous application sharing the communication

between applications can occur when both are available (live in the network). Both schemes

have bene�ts and drawbacks; therefore, it is at the sole discretion of the individual set of

client-server applications to decide which mode they will employ. For further explanation

and to provide a contrast between these two mechanisms consider the following examples.

Consider two applications, one of them provides access to certain internet services, and

the second application is an internet identity [193] that acts like a Single-Sign-On (SSO).

Every time a user logs on to the Internet services through the �rst application, a connection

has to be established with the second application to provide the internet identity for user

authentication and authorisation. This access to the SSO application has to take place

when the �rst application connects with the internet services. Such an access is termed as

synchronous access in the UCTD and is based on the Java Card architecture [186]. Such

an access can be based on the Java Card Remote Method Invocation (RMI) [28].

For asynchronous access, we also take an example of two applications. One application

provides electronic wallet functionality, and the second is a loyalty application. Every time

the electronic wallet application is used, the cardholder earns loyalty points. The loyalty

application does not have to be live. The electronic wallet application batches the loyalty

point update task and when the loyalty application becomes live, it can proceed with

updating it. For this purpose, a simple mechanism deployed by the Multos application

sharing would su�ce. The electronic wallet application batches the APDUs to update the

loyalty application. When the loyalty application comes online, all batched APDUs can

be communicated to it.

In the next section, we describe the goals and requirements of the proposed protocols to

establish application and platform binding, before we look into the details of Application

Binding Protocol � Local (ABPL) that focuses on the application binding between two

applications on the same UCTD. Later, we discuss the Platform Binding Protocol (PBP),

and Application Binding Protocol � Distributed (ABPD) that are proposed to support

the CDAM.

7.3.7 Minimum Goals and Requirements for the Proposed Protocols

The goals and requirements for the proposed protocols that facilitate the establishment of

application and platform binding are listed below. This list is an extension to the list in

section 6.2.3, with the exception of requirements SOG-17 to SOG-19. Later, we will revisit

these goals for the protocol comparison in section 7.7.2.

171

7.3 UCTD Firewall

Smart Card A

Smart Card Runtime Environment

Server
Application

Fake Client
Application

Smart Card B

Smart Card Runtime Environment

Fake Server
Application

Client
Application

Sharing
Request

Sharing
Request

Message transfer
by the malicious user

Figure 7.7: Application masquerading and relay attack scenario

SOG-20 Application Masquerading. In this scenario, a malicious application can mas-

querade as a server or client application. For example, in Java Card when a client

application sends a request for application sharing it generates the request that con-

tains the server application's AID. Now if a malicious application is masquerading

as a server application, it only has to inform the �rewall that it accepts the appli-

cation sharing request without validating that it has the knowledge of the shared

secret. Thus the client application thinks that it is accessing the shared resource

of the server application, whereas in fact it is communicating with a malicious

application. Now the fake server application can resend the application sharing

request message to a genuine server application on another smart card and gain

access to shared resources; this scenario is illustrated in �gure 7.7.

SOG-21 Di�erent User's Applications. Consider a scenario in which we have two users

and two applications. One is a malicious user Mu while the other is an authorised

user Au. The two applications are AppA (server application) and AppB (client

application) that have a client-server relationship. Both users are authorised to

download application AppA, however Mu is not authorised to download application

AppB. Now at some point, the Mu obtains the AppB's credentials for the Au and

manages to download AppB onto his or her smart card. The application sharing

between the Mu's AppA and the Au's AppB can be established. This can lead to

some �nancial bene�ts for the Mu to which he or she is not entitled.

Smart ard of Mu

Smart Card Runtime Environment

Server
Application
(AppA-Mu)

Client
Application
(AppB-Au)

Sharing

Mu

SP of AppA SP of AppB

Request for AppA
Credentials (Mu)

AppA
Credentials (Mu)

Request for AppB
Credentials (Au)

AppB
Credentials (Au)

C

Figure 7.8: Application sharing among di�erent user's applications

172

7.3 UCTD Firewall

Table 7.2: Protocol notation and terminology
Notation Description

SE Represents the server application.
CL Represents the client application.
TEM Represents the TEM on a smart card.
F Represents the UCTD �rewall on a smart card.
KA−B Long term symmetric key shared between entity A and B.
Kt

S−C Session key generated by the TEM.
EK(Z) Represents symmetric encryption of the data �Z� with the key �K�
NX + num Random number of entity X is incremented by the value of num, where

num = 0, 1, 2, 3,
X|Y Represents the XOR binary operation on the data items X, Y.
IMAX Integrity Measurement Authorisation message generated by entity X.
V REX Application assurance validation response generated by the TEM for

entity X.
AP Represents the authentication process a server application requires from

the respective client application, when requesting the shareable re-
sources.

OR Represents the object reference to the server application's resource man-
ager (i.e. ARM).

7.3.8 Protocol Notation and Terminology

In this section, we list the notation used to describe the protocols in this chapter. The

notation listed in table 7.2 is an extension to the notation described in tables 4.2 and 6.1.

7.3.9 Enrolment Process

During the enrolment process, the SPs of a client and server application agree on the

business and technical terms for sharing their application resources on a UCTD.

Application Certificate

(Includes User details)

Client Application’s

Service Provider’s

Certificate

Server Application’s

Service Provider’s

certificate

Common Criteria

Certification Body

Application Assurance

Certificate (AAC)

Figure 7.9: Hierarchy of a client application's certi�cate

In this process, an SP of a client application provides assurance and validation from a

173

7.4 Application Binding Protocol � Local

third party evaluation [69] to an SP of a server application, and vice versa. If third party

evaluation is not available then both client and server application's SPs can decide on any

other adequate way of establishing trust in each other's application and its functionality.

During this process, they decide the details of the ABP, such as how to perform an on-card

veri�cation and validation of applications. One possible way could be that the SP of a

server application issues a certi�cate to a client application, and vice versa.

The certi�cate hierarchy in the ABP is illustrated in �gure 7.9. In the absence of CC

evaluation, the certi�cate hierarchy shown in �gure 7.9 will not include �Common Criteria

Certi�cation Authority�. The client application certi�cate has the hash value of the ap-

plication. Similar contents will also be included in the server application's certi�cate that

is issued by the SP of the client application. Basically, the enrolment process de�nes the

restrictions and mechanisms (i.e. certi�cates, and cryptographic algorithms, etc.) that a

client/server application's SPs agree on for the ABP.

7.4 Application Binding Protocol � Local

In this section, we begin the discussion by explaining the protocol prerequisite followed by

the protocol description.

7.4.1 Protocol Prerequisites

The prerequisites for the ABPL are listed below, and are an extension to the prerequisites

listed in sections 4.7.1, 6.3.1 and 6.5.2 with exception of prerequisites PPR-8 to PPR-13.

PPR-14 O�-Card Relationship: The SPs of individual applications trust each other. The

roles of the server and client are prede�ned along with the privilege each client

application is allocated.

PPR-15 Certi�cated Application State: A client application either has a certi�cate that is

issued by a third party evaluation authority or by the server application's SP. This

certi�cate has the hash value of the secure (trusted) state of the client application

as considered by the third party evaluation authority or the server application's

SP. A similar situation applies for the server application's certi�cate that is issued

by the client application's SP or third party evaluators.

PPR-16 Trustworthy TEM: Applications trust the TEM and they have established a long-

term shared secret key with it at the time of application installation (section 7.3.2).

174

7.4 Application Binding Protocol � Local

7.4.2 Protocol Description

The aim of the Application-Binding Protocol � Local (ABPL) is to facilitate both the

client and server applications on the same device to authenticate each other and verify their

current states to be secure. The ABPL also enables applications to establish the application

binding for future communications. The ABPL message description is as below:

ABPL-1. CL : IMACL = eKCL−TEM
(CLi||SEi||NCL)

CL→ F : CLi||SEi||SignCL(CLi||SEi||NCL||IMACL)||CertSCL

The request message contains the identities of the client and server applications together

with a random number generated by the CL. In addition, the client application creates an

IMA message (section 7.3.2) for the TEM . The client application signs the message and

appends its certi�cate.

ABPL-2. F → SE : CLi||SEi||SignCL(CLi||SEi||NCL||IMACL)||CertSCL

The �rewall F receives the application-binding request and it will query the SE. If the

server application wants to proceed with the ABPL, it forwards the message; otherwise, it

registers an exception.

ABPL-3. SE : IMASE = eKSE−TEM
(SEi||CLi||NSE)

SE → TEM : CLi||SEi||IMACL||IMASE

The SE veri�es the client's signature. If successful, it generates an IMA message for the

CL. The SE then sends the message to the TEM that contains the identities and IMA

messages of both the CL and SE.

ABPL-4. TEM → SL : V RECL = eKCL−TEM
(h(SE)||Kt

SE−CL||NCL + 1)

TEM → SE : V RESE = eKSE−TEM
(h(CL)||Kt

SE−CL||NSE + 1)

The TEM veri�es the IMA messages from both the CL and SE. Then it will calculate

the hash value of the SE, encrypt it with the shared key KCL−TEM and send it to the CL.

Similarly, the TEM will calculate the hash value of the CL, encrypt it with the shared

key KSE−TEM and send it to the SE. The encrypted messages also contain a session key

generated by the TEM ; this key is valid only during the ABPL run.

ABPL-5. SE : skm = eKt
SE−CL

(eSE−CL||NCL + 2||NSE)

SE : au = eKSE−CL
(AP ||OR||NCL||NSE)

SE : tc = SignSE(SEi||CLi||NSE ||au)

SE → CL : SEi||CLi||IMACL||skm||tc||CertSSE

175

7.5 Platform Binding Protocol

Following message four (ABPL-4); the SE veri�es the hash value of the CL to be the same

as the value listed either by the SE's SP or by a CC evaluation authority. It then generates

an application-binding key and encrypts it with the session key. In addition, the message

contains the object reference to the SE's shared resources and access permissions. The

CL directly calls the SE's shared resource in all subsequent requests, using the binding

key for authentication and authorisation.

ABPL-6. CL→ SE : CLi||SEi||eKSE−CL
(AP ||(NCL|NSE) + 1)

This message gives the assurance to the SE that the CL also has the same key, thus

achieving mutual key con�rmation (SOG-6: section 6.2.3).

7.5 Platform Binding Protocol

The Platform Binding Protocol (PBP) is executed between two smart cards that are listed

as SCA and SCB. Both smart cards can be part of the same CAMS or they may be

associated with two di�erent CAMS and this is accommodated by the protocol described

in section 7.5.2.

7.5.1 Protocol Prerequisite

The protocol prerequisite for the PBP is fundamentally di�erent from the ones discussed

before, as most of them focused on the smart card applications whereas the PBP is focused

on the smart card itself. The prerequisite for the PBP is listed below:

PPR-17 Syndicated Members: Both smart cards are registered with a CDAM network,

either directly to the same CAMS or two di�erent CAMS on separate devices (e.g.

mobile phones, personal computers).

7.5.2 Protocol Description

The protocol can be initiated by any smart card; however, in this section we take SCA as

the initiator of the PBP.

PBP-1. SCA : SCAcm = h(NSCA||grSCA ||SCB′i)
SCA→ SCB : SCA′i||SCB′i||NSCA||SCAcm||SCASup

176

7.5 Platform Binding Protocol

The �rst message (PBP-1) contains the pseudo identities of individual smart cards (e.g.

SCA and SCB), along with a random number generated by the SCA (NSCA). In addition,

the SCA will generate a Di�e-Hellman exponential grSCA but to prevent a possible partial

key chosen attack (see section 6.2.3) it does not send the grSCA . Instead, it sends a

commitment that is basically a hash generated on the grSCA , random number and the

recipient's pseudo identity.

PBP-2. SCB : SCBcm = h(NSCB||grSCB ||SCA′i)
SCB → SCA : SCB′i||SCA′i||NSCB||SCBcm||SCBSup

In response, the SCB will select a Di�e-Hellman group that it can support and include

the selection as SCBSup. The SCB will also generate its commitment (SCBcm) similar

to the SCA in the �rst message, and sends it to the SCA including the SCBSup. The

commitments are made by both communicating entities and now in subsequent messages

they can send the generated Di�e-Hellman exponential.

PBP-3. SCA→ SCB : grSCA ||SCA′i||SCB′i||NSCA||NSCB

SCB : KDH = (grSCA)rSCB mod n

SCB : KSCA−SCB = fKDH
(NSCA||NSCB||0)

SCB : mKSCA−SCB = fKDH
(NSCB||NSCA||0)

The SCA will send the Di�e-Hellman exponential to the SCB along with pseudo-identities

and random numbers generated in previous messages.

On receipt, the SCB will generate the Di�e-Hellman secret (KDH). The SCB generates

the PBP master keys (eKSCA−SCB and mKSCA−SCB) that are used to generate session

keys for the current (e.g. kSCA−SCB and mkSCA−SCB) and all future sessions.

PBP-4. SCB : cfb = h(NSCA||grSCB ||grSCA)

SCB : mE = ekSCA−SCB
(V R||SCA′i||SCBi||cfb||CertSSCB)

SCB → SCA : grSCB ||NSCB||mE||fmkSCA−SCB
(mE)

In response, the SCB will ask the platform for assurance and validation proof (i.e. V R)

from the SCB. Furthermore, the pseudo identity of the SCA is appended with the true

identity of the SCB along with the commitment hash generated (cfb) by the SCA, Di�e-

Hellman exponential and cryptographic certi�cate of the SCB. The entire message, except

for the Di�e-Hellman Exponential and the generated random number, is encrypted and

MACed using the generated session keys.

On receipt of the message four (PBP-4), the SCA will also generate the Di�e-Hellman

secret along with session keys similar to the SCB. It will then verify the SCB's crypto-

graphic certi�cate. If both smart cards are being evaluated by the same laboratory then

177

7.6 Application Binding Protocol � Distributed

this process will be simple as SCA already trusts that particular evaluation laboratory.

Otherwise, it will request the CAMS to traverse the certi�cate chain to �nd out whether

the SCA's evaluation laboratory is part of that certi�cate chain. Even if this fails, the SCA

can request its card manufacturer to decide whether it should proceed with the binding

or not depending upon the provided certi�cate. Therefore, only if SCA can successfully

ascertain the validity of the certi�cate provider of the SCB's certi�cate will it proceed

with the protocol.

PBP-5. SCA : cfa = h(grSCB ||grSCA ||NSCB||NSCA)

SCA : V alSCA = SignSCA(cfa||SCAi||SCBi||Ui)

SCA : mE = ekSCA−SCB
(V R||V alSCA||CertSSCA)

SCA→ SCB : mE||fmkSCA−SCB
(mE)

In response, the SCA will proceed with a platform assurance and validation mechanism

(section 4.4). On successful completion, the SCA will generate a message V alSCA. In the

message V alSCA, the SCA appends identities of both smart cards and user along with cfa.

The signed message (V alSCA) is appended by the certi�cate and encrypted and MACed

by the session keys.

The SCB veri�es the SCA's signature and then validates the CertSSCA. To verify the

certi�cate chain, the SCB will iteratively employ a similar procedure to SCA discussed

as part of the message four. The SCB will also verify the identity of the user of the SCA.

The SCB will record whether the user's identity is the same for both smart cards or not.

This information will be used by applications to decide whether they would like to establish

a communication link with an application installed on a di�erent user's smart card.

PBP-6. SCB : V alSCB = SignSCB(cfb||SCA||SCB||Ui)

SCB : mE = ekSCA−SCB
(V alSCB)

SCB → SCA : mE||fmkSCA−SCB
(mE)

The SCB will initiate the platform assurance and validation mechanism which generates

the hash value of the critical components of the SCB. It will append the Di�e-Hellman

exponentials, random numbers and identities of communicating smart cards and the current

owner of the SCB. The entire message is signed by the SCB then encrypted and MACed

by the session keys.

7.6 Application Binding Protocol � Distributed

The Application Binding Protocol � Distributed (ABPD) is similar the ABP that we

discussed in section 7.4. The subtle di�erence between these two protocols is that the

178

7.6 Application Binding Protocol � Distributed

ABPL uses symmetric cryptography to establish the keying material whereas the ABPD

uses asymmetric cryptography.

7.6.1 Protocol Prerequisite

The protocol prerequisite for the ABPD is an extension to the prerequisites of the ABPL

that are PPR-14 to PPR-16. The extension of the protocol prerequisite is listed below:

PPR-18 Platform Binding: A platform binding is established between the smart cards,

whose applications want to establish an application binding. This means that

both smart cards have executed the PBP, described in the previous section.

7.6.2 Protocol Description

The ABPD is executed between two applications that have an application sharing engage-

ment. The protocol listed in this section accommodates the ABP when the two applications

are installed on two distinct devices. In the protocol discussed below, the CL resides on

the SCA and SE on SCB.

ABPD-1. CL : au = fKSE→CL
(CLi||SEi||SPCL

i ||SPSE
i ||grCL ||NCL)

CL→ SE : grCL ||NCL||au||DHGroup

SE : KDH = (grCL)rSE mod n

SE : KSE−CL = fKDH
(NSCa ||NSCb ||1)

SE : mKSE−CL = fKDH
(NSCa ||NSCb ||2)

The protocol is initiated by the CL, which generates a Di�e-Hellman exponential (grCL)

and a random number. In addition, the application CL also generates a keyed hash of

identities of the participating applications, and their respective SPs along with grCL and

NCL. The rationale behind the generation of the keyed hash value is to avoid a man-in-

the-middle attack on the �rst message. To mount this attack, a malicious user has to gain

knowledge of identities of individual applications and associated SPs, and the secret key

(KSE→CL). This message cannot prevent replay attacks, which we deal with in subsequent

messages. The message is then appended with the DHGroup, which details the supported

Di�e-Hellman group used to generate the grCL .

On receipt of message one, the SE will verify the authentication credentials (i.e. keyed

hash) and on a successful outcome, it will continue with the protocol. The application

SE will generate a Di�e-Hellman exponential and a random number. The application SE

179

7.6 Application Binding Protocol � Distributed

will then generate the session keys and long-term encryption and MAC keys in a similar

manner to that used in message three of PBP (see section 7.5.2).

ABPD-2. SE : hSE = h(SEi||CLi||SPCL
i ||SPSE

i ||grSE ||grCL ||NCL||NSE)

SE : cfs = SignSE(CLi||SEi||hSE)

SE : mE = eKSE−CL
(V R||ReqUserID||cfs||CertSSE)

SE → CL : grSE ||NSE ||mE||fmKSE−CL
(mE)||DHGroupSel

The SE will generate a signature on the message containing the Di�e-Hellman exponential

generated by both the SE and CL, and their identities along with those of the respective

SP's concatenated with generated random numbers. The signed message is appended to the

SE's certi�cate along with a request for the CL's state validation and user authentication.

The user authentication is an optional parameter in the ABPD, which depends upon

whether a server application allows application sharing with client applications that are

issued to di�erent users. If the SE allows application sharing with di�erent user's CL then

the parameter can be omitted. Otherwise, ReqUserID will request the CL to provide the

details of the registered owner of the SCA. The message is then encrypted and MACed

using the session keys.

On receipt of message two (ABPD-2), the application CL will generate the session and

long-term encryption and MAC keys. After this, it will proceed with verifying the MAC

and decrypt message two. Subsequently, it will validate the certi�cate CertSSE and then

verify the signature.

ABPD-3. SCB : aub = SignSCA(h(CL)||SCAi||Ui||NCL||NSE)

CL : hCL = h(CLi||SEi||grCL ||grSE ||NCL||NSE)

CL : auc = SignCL(CLi||SEi||hCL)

CL : mE = eKSE−CL
(V R||aub||auc||CertSCL||CertSSCB)

CL→ SE : mE||fmKSE−CL
(mE)

The CL will then ask the host smart card (SCA) to provide a validation proof. The

SCA will generate the hash of the application and then sign it. The signed message

also includes the identities of the smart card and its owner (if requested by the SE in

message two), and random numbers generated by both applications. In addition, the CL

generates a signature on the message containing Di�e-Hellman exponentials generated by

communicating applications along with the identities of their respective SPs and generated

random numbers. The signing of the message by the smart card provides security assurance

and validation of the client application, and the signing of the message by the client

application provides entity authentication to the server application.

After the server application SE receives message three, it will �rst verify whether the

generated hash of the application is the same as that certi�ed by either the SP of the SE

180

7.7 Analysis of the Proposed Protocols

or by a third party evaluator. If successful, it will verify the signature generated by the

CL. In cases where the SE asks for the user's identity in message two it will also check

whether the user identity provided by the message three is as required.

ABPD-4. SCB : aua = SignSCB(h(SE)||SCAi||SCBi||Ui||NCL||NSC)

SE : mE = eKSE−CL
(aua||CertSSCB||RL)

SE → CL : mE||fmKSE−CL
(mE)

In the �nal message of ABPD, the SE will ask the host smart card SCB to generate the

hash. The hash is appended with the identities of the smart cards and user (if required)

along with generated random numbers. The resource locator referred as RL provides a

handle to the shareable resources provided by the SE. The RL uniquely identi�es the

smart card on which the server application is installed, and the name of the resources that

are being shared (e.g. SIO or RMI object).

On receipt of the �nal message, the CL will verify the state of the application SE and if

required it will verify the identity of the current owner of the SCB.

7.7 Analysis of the Proposed Protocols

In this section, we give details of an informal analysis, followed by mechanical formal

analysis based on the CasperFDR. Finally, we describe the test implementation experience

with performance measures.

7.7.1 Informal Analysis of the Proposed Protocols

In this section, we consider the proposed protocol and analyse it with respect to the protocol

requirements listed in section 7.3.7

• SOG-13: Although an application may have genuine credentials its current state might

be modi�ed since it was last evaluated by SP(s) or the CC evaluation laboratory. To verify

whether the state of an application is secure enough to initiate application sharing, the

ABP requires the TEM to generate a hash of both applications and encrypt them with

the corresponding keys. The applications have no in�uence on the outcome of the hash

generation; so they cannot fake their current state. If the current state is considered to

have deviated from the stated secure state in the application certi�cate [56], the recipient

can then decide whether to continue the protocol or not.

181

7.7 Analysis of the Proposed Protocols

• SOG-20: A malicious application can be installed with either a server or a client ap-

plication's AID. However, the ABP does not allow a malicious application to masquerade

as a server or client application because to prove the identity of an application, the ABP

does not rely on the AIDs. It has a dynamic mechanism with bi-directional exchanges

of messages that ascertain the entity and check its credentials (based on cryptographic

certi�cate and signature generation/veri�cation). Therefore, it might be di�cult for a

masquerading application to match the cryptographic hash (generated by the TEM) and

have the signature key of the genuine application.

A malicious user can relay the binding request messages, but when these messages are

forwarded to the TEM to generate the hash of the client and server application, a malicious

application's hash will not match the certi�ed hash of the client and server application.

This is equivalent to violating the 2nd pre-image property of the hash functions [146].

In addition, IMA messages include random numbers that e�ectively prevent any replay

attacks.

The server and client applications authenticate one another. The authentication is achieved

through signing the messages along with communicating the application's certi�cate. The

authentication gives an assurance to each of the participant applications that the other

application is genuine (e�ectively avoiding masquerading).

• SOG-21: The application certi�cate contains details of the user to whom the application

was issued. Therefore, if a client application tries to establish an application sharing with

a server application, but their customer credential does not match, the request is denied.

This avoids application sharing between two applications from di�erent users.

7.7.2 Revisiting the Requirements and Goals

In this section, we only discuss SOG-20 and SOG-21. For SOG-1 to SOG19 refer to sections

6.6.1 and 6.6.3.

All selected protocols for comparison can be adapted to support SOG-20 in the way dis-

cussed in section 7.7.1. Furthermore, the PBP does not support both SOG-19 and SOG-20

as it is a protocol designed for establishing a binding relationship between UCTDs, not

their applications, whereas, SOG-19 and SOG-20 focus on application binding rather than

platform binding. A point to note is that ABPL does not support a number of the SOGs,

for the reason that ABPL key generation is based on a symmetric cryptosystem. The

ABPL do uses signature algorithms for entity authentication, and they do not play any

role in key generation. Furthermore, the key generation in the ABPL is performed mainly

by the TEM and server application, without any input from other communicating entities.

182

7.7 Analysis of the Proposed Protocols

T
ab
le
7.
3:

P
ro
to
co
l
co
m
pa
ri
so
n
on

th
e
ba
si
s
of

st
at
ed

go
al
s
(s
ee

se
ct
io
ns

7.
3.
7
an
d
6.
2.
3)

S
O
G

P
ro
to
c
o
ls

S
T
S

A
D

A
S
P
e
C
T

J
F
K

T
2
L
S

S
C
P
8
1

M
M

S
M

P
B
P

A
B
P
D

A
B
P
L

1.
M
ut
ua
l
E
nt
it
y
A
ut
he
nt
ic
at
io
n

∗
∗

∗
∗

∗
∗

−
∗

−
∗

∗
∗

∗
2.

E
xc
ha
ng
e
C
er
ti
�c
at
e

∗
∗

∗
∗

∗
∗

∗
−
∗

∗
∗

∗
3.

M
ut
ua
l
K
ey

A
gr
ee
m
en
t

∗
∗

∗
∗

∗
∗

∗
−
∗

∗
∗

∗
4.

Jo
in
t
K
ey

C
on
tr
ol

∗
∗

∗
∗

∗
∗

∗
∗

5.
K
ey

Fr
es
hn
es
s

∗
∗

∗
∗

∗
∗

∗
−
∗

∗
∗

6.
M
ut
ua
l
K
ey

C
on
�r
m
at
io
n

∗
∗

∗
∗

−
∗

∗
∗

∗
7.

K
no
w
n-
K
ey

Se
cu
ri
ty

∗
∗

∗
∗

∗
∗

∗
∗

∗
8.

U
nk
no
w
n
K
ey

Sh
ar
e
R
es
ili
en
ce

∗
∗

∗
∗

∗
∗

∗
−
∗

∗
∗

∗
9.

K
C
I
R
es
ili
en
ce

∗
∗

∗
∗

∗
∗

∗
∗

∗
∗

∗
10
.
P
er
fe
ct

Fo
rw
ar
d
Se
cr
ec
y

∗
∗

∗
∗

∗
∗

∗
11
.
M
ut
ua
l
N
on
-R
ep
ud
ia
ti
on

∗
(∗
)

+
∗

∗
∗

∗
+
∗

+
∗

∗
∗

∗
12
.
P
C
K
A
tt
ac
k
R
es
ili
en
ce

(∗
)

(∗
)

(∗
)

(∗
)

(∗
)

∗
∗

13
.
T
ru
st
A
ss
ur
an
ce

∗
−
∗

∗
−
∗

−
∗

14
.
D
oS

P
re
ve
nt
io
n

∗
∗

∗
∗

15
.
P
ri
va
cy

(∗
)

∗
∗

∗
∗

16
.
Si
m
ul
at
or

A
tt
ac
k
R
es
ili
en
ce

−
∗

∗
∗

∗
20
.
A
pp
lic
at
io
n
M
as
qu
er
ad
in
g

(∗
)

(∗
)

(∗
)

(∗
)

(∗
)

(∗
)

(∗
)

(∗
)

∗
∗

21
.
D
i�
er
en
t
U
se
r'
s
A
pp
lic
at
io
n

∗
∗

N
o
te
:
∗
m
ea
n
s
th
a
t
th
e
p
ro
to
co
l
m
ee
ts

th
e
st
a
te
d
g
o
a
l,
∗∗

in
d
ic
a
te
s
th
a
t
th
e
p
ro
to
co
l
m
ee
ts

th
e
S
O
G

if
re
q
u
ir
ed

b
y
th
e
co
m
m
u
n
ic
a
ti
n
g
en
ti
ti
es
,
(∗
)
sh
ow

s
th
a
t
th
e

p
ro
to
co
l
ca
n
b
e
m
o
d
i�
ed

to
sa
ti
sf
y
th
e
re
q
u
ir
em

en
t,

+
∗
sh
ow

s
th
a
t
p
ro
to
co
l
ca
n
m
ee
t
th
e
st
a
te
d
g
o
a
l
b
u
t
re
q
u
ir
es

a
n
a
d
d
it
io
n
a
l
p
a
ss

o
r
ex
tr
a
si
g
n
a
tu
re

g
en
er
a
ti
o
n
,
a
n
d

−
∗
m
ea
n
s
th
a
t
th
e
p
ro
to
co
l
(i
m
p
li
ci
tl
y
)
m
ee
ts

th
e
re
q
u
ir
em

en
t
n
o
t
b
ec
a
u
se

o
f
th
e
p
ro
to
co
l
m
es
sa
g
es

b
u
t
b
ec
a
u
se

o
f
th
e
p
ri
o
r
re
la
ti
o
n
sh
ip

b
et
w
ee
n
th
e
co
m
m
u
n
ic
a
ti
n
g

en
ti
ti
es
.

183

7.7 Analysis of the Proposed Protocols

7.7.3 CasperFDR Analysis of the Proposed Protocols

The intruder's capability modelled in the Casper scripts (appendices B.6, B.7, and B.8)

for the proposed protocol is shown below:

1. An intruder can masquerade as any entity in the network.

2. An intruder can read the messages transmitted by each entity in the network.

3. An intruder cannot in�uence the internal process of an agent in the network.

The security speci�cation for which the CasperFDR evaluates the network is shown below.

The listed speci�cations are de�ned in the #Speci�cation section of appendices B.6, B.7,

and B.8:

1. The protocol run is fresh and both applications/smart cards are alive.

2. The keys generated during the protocol run are known only to the authenticated

participants of the protocol and an adversary cannot retrieve the session keys.

3. Entities mutually authenticate each other and have mutual key assurance at the

conclusion of the protocol.

4. Long-term keys of communicating entities are not compromised.

The protocol description de�ned in the Casper scripts is a simpli�ed representation of the

proposed protocols. The o�-card agents like the SPs of client and server applications are

not modelled in the Casper script as they do not play an active role in the protocol run.

The CasperFDR tool evaluated the protocol and did not �nd any attack(s).

7.7.4 Implementation Results and Performance Measurements

The overall architecture of the test-bed is the same as the architecture discussed in section

4.8.3, consisting of a laptop and two Java Cards (e.g. C1 and C2). We executed individual

protocol for 1000 iterations to get the performance measurements.

Our implementation model for the ABPL is based on three applets taking the roles of

the TEM, client, and server application on a Java Card (16bit smart card) that take

in total 8938 bytes. At the time of testing, we did not have access to an SCOS that

184

7.7 Analysis of the Proposed Protocols

Table 7.4: Performance measurement (milliseconds) of the ABPL

Measures SSL TLS Kerberos
ABPL

C1 C2
Average Time 4200 4300 4240 2484 2726
Best Time NA NA NA 2243 2634
Worse Time NA NA NA 2554 2945
Standard Deviation NA NA NA 64.53 76.28

would have enabled us to implement the TEM at the underlying operating system level.

We implemented the TEM at the application level and considered that similar or better

performance can be attained if the TEM is implemented as part of the platform. Because

the application-level implementation of the TEM cannot have memory access to measure

the hash values of the client and server applications, we generated the hash of a �xed array

of size 556 bytes to represent an application state. The performance of the hash algorithm

is based on the size of the input data and in real deployment of the protocol scenario it

will depend on the size of the applications. The performance measurements for the ABPL

are listed in table 7.4.

The protocols (PBP and ABP) were executed on 16-bit Java Cards, and the implementa-

tion took 9799 bytes for the PBP and 8374 bytes for the ABP. The performance measure-

ments were taken from two di�erent sets of 16-bit Java Cards, and an average of recorded

measurements for each sets is listed in table 7.5.

Table 7.5: Performance measurement (milliseconds) of the PBP and ABPD

Measures
PBP ABPD

Set One (C1) Set Two (C2) Set One (C1) Set Two (C2)
Average Time 4436.23 4628.35 2998.71 3091.38
Best Time 4078 4235 2906 3031
Worse Time 5469 5875 3922 4344
Standard Deviation 127.89 133.48 96.32 117.71

Note: Set One (C1) means two Java Cards that are similar to the card C1 speci�cation. Similarly, Set
Two (C2) refers to the set of C2 Java Cards.

The performance measurements in this section are only for reference our implementation,

as the actual performance will vary depending upon the size of the client and server ap-

plications (i.e. hash generation), and the performance of public key operation, symmetric

encryption, and random number generation on a given smart card.

185

7.8 Summary

7.8 Summary

In this chapter, we discussed popular smart card-based �rewall mechanisms and how they

work. Then we described the unique requirements of the UCTD and presented a �rewall

mechanism extended from the Java Card �rewall. Based on the proposed �rewall architec-

ture, we proposed a protocol that establishes the binding between two applications residing

on the same smart card. Furthermore, we extended this �rewall mechanism to accommo-

date cross-device application sharing in which two applications residing on di�erent UCTDs

can still share their resources. To support cross-device application sharing, we proposed two

protocols, one for platform binding and the second for application binding: PBP and ABPD

respectively. We then informally analysed the proposed protocols and this analysis was

subsequently extended to mechanical formal analysis by the CasperFDR. Finally, we dis-

cussed the test implementation and performance measurements of the proposed protocols.

186

Chapter 8

Smart Card Runtime Environment

Contents

8.1 Introduction . 188

8.2 Smart Card Runtime Environment 189

8.3 Runtime Protection Mechanism 194

8.4 Analysis of the Runtime Protection Mechanism 205

8.5 Summary . 209

In this chapter we discuss the User Centric Tamper-Resistant Device (UCTD) execution

environment in which the downloaded applications will execute. We begin by describing the

Java Card runtime environment associated operations. Later on, we articulate the threat

model for the UCTD execution environment, along with how it is aggravated by the openness

of the UCTD. Subsequently, we look at counter-measures that can be deployed to provide a

secure and reliable execution platform. The discussed counter-measures are then compared

in terms of their e�ectiveness and performance.

187

8.1 Introduction

8.1 Introduction

After an application is installed on to a smart card, it relies on the Smart Card Runtime

Environment (SCRT) for secure and reliable execution. An SCRT provides the platform

that facilitates the application execution and it contains a library of Application Program-

ming Interfaces (APIs). These APIs provide a secure and reliable interface between the

installed applications and on-card services. An SCRT's responsibility is to: 1) handle

communication between applications and external entities, 2) provide a secure and reli-

able program execution, 3) enforce execution isolation and access to memory locations,

and 4) provide an interface to access cryptographic algorithms.

Although they are clearly not the same, the distinction between a smart card operating

system and a runtime environment is often blurred. For example, Java Card is considered

as a platform that provides a runtime environment (i.e. JCRE, see �gure 3.3); whereas,

Multos is a smart card operating system that also has a runtime environment (i.e. AAM,

see �gure 3.2). In this chapter, we will refer to an SCRT that semantically encapsulates

both the JCRE and AAM. However, we will focus primarily on the JCRE.

An SCRT has to protect the platform and installed applications from malicious or ill-

formed applications. In the ICOM, such issues have limited impact because of the strict

controls on application installation [190, 194, 195]. This means that compatibility, security,

and reliability of an application with respect to an SCRT are evaluated before installing it.

Even if a smart card allows post-issuance installation of applications, centralised control

means that it is di�cult to introduce a malicious application into a smart card, as the card

issuer will vet individual applications along with the associated application providers.

In the early days of smart card technology, an adversary could remove the smart card hard-

ware protection layer and access its various components [196]. However, the smart card

industry responded to this attack vector and implemented adequate protection, which

simply make such attacks more di�cult to mount. On the other hand, it led to the mate-

rialisation of the side-channel analysis that provided an avenue to attack the smart card

platform, especially the cryptographic algorithms [197]. Nevertheless, most of the modern

smart cards employ both hardware and software mechanisms to counter side-channel anal-

ysis. During early 2000, fault attacks became the modus operandi of adversaries to subvert

the implemented security measures in the smart card industry. Since then the technology

has evolved to counter these threats to some extent. There has been a growing interest in

combining the software and fault injection [194, 198, 199] attacks to subvert the protection

mechanisms on a smart card, and such an attack vector is referred as combined attacks.

These attacks have signi�cance in the ICOM; nevertheless, the openness of the UCOM

exacerbates their e�ects. In this chapter, we analyse the attacks that target the SCRT and

provide counter-measures. During this chapter, we will constantly refer to the JCRE as

188

8.2 Smart Card Runtime Environment

compared to the Multos AAM. The rationale is that the JCRE has an open speci�cation,

and new attacks mostly target Java Cards. Furthermore, we consider that Java Card is

more closely related to the UCTD proposal.

Structure of the Chapter: We begin the discussion with a brief introduction of the

SCRT and the combined attacks (i.e. software and fault attacks). In section 8.3, we provide

the motivation behind the runtime protection mechanism, which is a collective term used

to refer to the proposed counter-measures. Subsequently, we discuss attacker's capability,

and detail the runtime protection mechanism. In section 8.4, we analyse the proposed

counter-measures for their security, and performance.

8.2 Smart Card Runtime Environment

In this section, we open the discussion with a brief description of the Java Card Virtual

Machine (JCVM) with emphasis on those components that we will refer to in the rest of the

chapter. Subsequently, we discuss the threat landscape that targets the SCRTs followed

by a brief discussion on related work, and �nally, we �nish the section with the description

of fault attacks.

8.2.1 Java Card Virtual Machine

The concepts regarding the Java Card application development and runtime environment

are not exhaustively covered in this section. Nevertheless, the rationale for a brief intro-

duction is to make it easy to follow the subsequent discussion regarding the SCRTs.

The JCRE illustrated in �gure 3.3 consists of APIs, system classes, Java Card Virtual

Machine (JCVM), and native methods. The architecture of the JCVM is more or less sim-

ilar between various version of Java Cards including the latest Java Card 3.0.1 Connected

Edition [16]. The main di�erence is the support for various system classes and APIs. As

far as the core processes are concerned, JCVM for both Java Card 2.X or 3.0.1 Classic

Edition and Java Card 3.0.1 Connected Edition are similar, which is in adherence to the

Java virtual machine speci�cation [200] (i.e. JCVM is a subset of the Java virtual machine

speci�cation [16, 28]).

Before we delve into the details of the JCVM, we �rst look at the development process of

a Java Card application, as illustrated in �gure 8.1. An application is coded in a subset

of Java language that is supported by the JCVM, which is represented as a Java �le in

�gure 8.1. The application is then compiled into a class �le, and it is packaged along with

189

8.2 Smart Card Runtime Environment

Java File Compile Packager
Off-Card

Installer

Class File

Resource

File

Supporting

Libraries

Installation

Package

Smart Card

On-Card Bytecode

Verifier

Installed

Application

Figure 8.1: Java Card application development process

any resource �les and supporting libraries into an installation package (e.g. CAP, or JAR

�le [16, 28]) that can be downloaded to a Java Card. On the Java Card, the on-card

bytecode veri�er will analyse the downloaded application and validate that it conforms to

the stated Java language semantics.

The class �le contains the bytecode representation of the program code, an example is

illustrated in �gure 8.2. The statement if_scmplt 22, at line 08, of bytecode represen-

tation is the opcode for if-else statement. The opcode represents that if the statement is

true then proceed with next line otherwise jump to line 22. The JCVM for Java Card

3.0.1 has listed approximately 185 opcodes and each opcode (e.g. if_scmplt) has an as-

sociated byte value. For example, opcode �if_scmplt� is represented as byte values 0x6C

(in hexadecimal format). The SCRT interprets individual instructions (opcodes) during

the application execution.

00: if (a < b){

01: c = a;

02: }else{

03: c = a;

04: }

00: aload_0

01: getfield #14 <Check/CheckTww/a S>

04: aload_0

05: getfield #16 <Check/CheckTww/b S>

08: if_scmplt 22 (+14)

11: aload_0

12: aload_0

13: getfield #14 <Check/CheckTww/a S>

16: putfield #23 <Check/CheckTww/c S>

19: goto 30 (+11)

22: aload_0

23: aload_0

24: getfield #14 <Check/CheckTww/a S>

27: putfield #23 <Check/CheckTww/c S>

30: return

Compile

Java File Class File (Bytecode Representation)

Figure 8.2: Java source �le to bytecode conversion

Figure 8.3 illustrates the architecture of a typical JCVM except for the modules in a dotted

circle (i.e. runtime security manager) which is part of our proposal discussed in section 8.3.

Various components and their functions are described subsequently with emphasis on how

they interact during the execution of an application.

The JCVM mainly deals with an abstract storage unit called word that is the smallest

storage unit that it can process. The actual size of a word is left to the JCVM implementers

and it depends upon the underlying hardware. However, the JCVM speci�cation [16]

states that a word should be large enough to hold a value of byte, short, reference, or

returnAddress.

When an application is initiated, the bytecode representation of an application is loaded

to the JCVM memory by a �class loader subsystem�. The class loader is responsible for

190

8.2 Smart Card Runtime Environment

text

Class Loader Subsystem

Runtime Data Areas

Heap

Method Area

Java Stacks

PC Registers

Execution Engine
Native Method

Interface
Native Methods

Class Files (bytecode)

Frames

Runtime Constant Pool

Field and Method Data

Code for Methods and Constructors

Numeric Literals

Method and Field

References

Local Variables

Operand Stack

References to Constant Pool

Runtime Security

Manager

textIntegrity Matrix

Figure 8.3: Architecture of the Java Card Virtual Machine

locating and loading the class onto the memory areas used by the JCVM. This memory

is divided into sub-areas, where each of them contains speci�c information regarding the

application. The JCVM memory area is termed as heap and all data/code related to an

application is loaded onto it. The three main storage structures de�ned on the heap that

we are going to discuss here are Program Counter (PC) registers, method area, and Java

stacks. These storage structures are brie�y discussed here as they are referred to in the

remaining chapter, when we discuss our proposed counter-measures.

The PC registers store the memory address of the bytecode instruction currently executing.

If the JCVM supports threading then each thread will have its own PC register.

The method area is a shared memory space among executing threads (if the JCVM supports

multiple threads) and it consists of structures that include runtime constant pool, �eld and

method data, and code related to methods and constructors. The runtime constant pool

stores the constant �eld values (e.g. numeric literals) and references to the memory address

related to methods and �elds. The other two structures (e.g. �eld and method data, and

code related to methods and constructors) store the data and code related to �elds and

methods, etc.

A frame is created by the JCVM each time a method is invoked during the execution of

an application. A frame in a JCVM is a construct that stores data, partial results, return

191

8.2 Smart Card Runtime Environment

values, and dynamically resolved links, associated with a single method - not the related

class. These frames are stored on a last-in �rst-out (LIFO) stack referred to as Java Stack.

For each thread, there will be a di�erent Java Stack. For security reasons, Java Stacks are

not directly manipulated by individual applications. The JCVM can only issue the push

and pop instructions to Java Stacks. The data structures that reside on a frame include

an array of local variables, operand stack, and references to constant pool. The operand

stack is a LIFO stack and it is empty when a frame is created. During the execution of a

method, JCVM will load data values (of either constant or non-constant variables/�elds)

onto the operand stack. The JCVM will operate on the values at the top of the operand

stack and push the results back on it.

JCVMs provide well-de�ned interfaces to access native methods; however, contrary to tra-

ditional Java virtual machines it does not allow user-de�ned native methods. Each JCVM

has an execution engine that is responsible for execution of the individual instructions

(opcodes) in an application code. The design of the execution engine is dependent on

the underlying hardware platform and in a simple way, it can be considered as a software

interface to the platform's processor.

8.2.2 Related Work

Earlier work on Java Cards was mainly related to the semantic and formal modelling of

the JCVM [?, 84, 201, 202], Java Card �rewall mechanism [191, 203], and applets [204]�

[206]. The assurance for the JCRE reliability against ill-formed applications was based on

bytecode veri�cation [128, 161]�[163], which became a compulsory part of the Java Card

speci�cation version 3 [16].

In the early 2000s, side channel analysis and fault attacks on smart card platforms were

mainly focussed on the cryptographic algorithms [197, 207]�[211]. However, in the second

half of the 2000s, logical and fault attacks were combined to target the JCRE [212]�[214].

The discussed attacks in this paragraph are purely logical attacks that use the bugs and

ine�cient implementation of the JCVM. In 2008, Mostowski and Poll [190] loaded an ill-

typed bytecode on various smart cards to test their security and reliability mechanisms.

In this work, they showed that on certain smart cards they were able to execute code

that should not be possible in the �rst place (i.e. accessing byte array as short). However,

they also noted that smart cards that had an e�ective on-card bytecode veri�er were less

susceptible than others.

In 2009, Hogenboom and Mostowski [215] managed to read arbitrary contents of the mem-

ory. They performed this attack even in the presence of the Java Card �rewall mechanism.

192

8.2 Smart Card Runtime Environment

As noted, the reason for the success was the buggy JCVM. Their results were based on

eight di�erent smart cards and they only managed to attack one of them, as the other

smart cards had e�ective runtime protection mechanisms. Similar results were also shown

by Lanet and Iguchi-Cartigny [195]. Sere et al. [216] use the similar attack of modifying the

bytecodes to gain unauthorised access or skip security mechanism on a platform. However,

Sere et al. relied on fault attacks to modify the bytecodes rather than modifying them

o�-card as done by [190, 195, 215]. This way, Sere et al. managed to bypass the on-card

bytecode veri�cation. A countermeasure to this attack provided by Sere et al. relied on

tagging the bytecode instructions with integrity values (i.e. integrity bits) and during the

execution, the JCVM checks these bits and if it fails, the execution terminates.

In 2010, Barbu et al. [194] along with Vétillard and Ferrari [198] used a similar attack

methodology to Sere et al. [216] that later came to be known as combined attacks. Later,

the combined attack technique was extended to target various components of JCVM in

[217]�[220]. These attacks are signi�cant; nevertheless, they require the loading of an

application designed speci�cally to accomplish the attack goals. Therefore, such attacks

are not practical to some extent in the ICOM; however, due to the open nature of the

UCOM such attacks become a real concern.

In this section we glanced over the attack techniques proposed in the literature that specif-

ically target the SCRT. The discussion is by no means exhaustive but it introduces the

challenges faced by the UCTD runtime environment. Before we move to discuss the pro-

tection mechanism, we �rst discuss the fault attacks in some detail in next section.

8.2.2.1 Fault Attacks

The aim of an adversary during a fault attack is to disrupt the correct execution of an

application by introducing errors. These errors are usually introduced by physical pertur-

bation of the hardware platform on which the application is executing. By introducing

errors at a precise instruction, an adversary can circumvent the security measures imple-

mented by the runtime environment. Possible types of faults an adversary can produce are

described as below:

1. Precise bit error: In this scenario, an adversary has total control over the timing and

locations of bits that he wants to change.

2. Precise byte error: This scenario is similar to the previous one; however, an adversary

only has the ability to change the value of a byte rather than a bit.

3. Unknown byte error: An adversary has no control on the timing and byte that it

modi�es during the execution of an instruction.

193

8.3 Runtime Protection Mechanism

4. Unknown error: In this scenario, an adversary generates a fault but has no location

and timing control.

From the above list of fault models, the �rst model adversary can be considered the most

powerful. However, for a smart card environment the second scenario (i.e. precise byte

error) is the most realistic one. Due to the advances in the smart card hardware and

counter-measures against fault attacks (i.e. especially for cryptographic algorithms) it is

di�cult to have total control of timing and locations of bits to �ip [216]. Furthermore, fault

attacks require knowledge of the underlying platform and application execution pattern

[191]. This is possible to achieve by side-channel analysis [197].

8.3 Runtime Protection Mechanism

In this section, we provide the motivation behind the runtime protection mechanism, which

is followed by the description of the attacker's capability. Subsequently, we discuss the

runtime protection mechanism, how it provides a secure and reliable framework for the

UCTD runtime environment.

8.3.1 Motivation

During an application's lifetime, it mostly interacts with the runtime environment and

the application's security is dependent on the security of the runtime environment. This

means that an insecure runtime environment can in fact make a well-designed application

insecure. Although, as discussed in section 4.4, a UCTD is required to be certi�ed by a

third party evaluation (e.g. CC evaluation); however, we still consider that the runtime en-

vironment should not rely only on static security mechanisms including security evaluation

and bytecode veri�cations (both o�- and on-card).

As discussed in section 8.2.2, a smart card runtime environment is increasingly facing

the convergence of various attack techniques (e.g. fault and logical attacks). Physical

protection mechanisms regarding fault attacks are proposed [221]; however, we consider

that the necessary software protection for the runtime environment cannot be understated.

The software protection can augment the hardware mechanism to protect against the

combined attacks, as a similar approach has yielded successful results in the secure design

of cryptographic algorithms for smart cards [222]�[224]. In this chapter, we will only focus

on the software protection mechanism, without detailing the hardware-based protection.

194

8.3 Runtime Protection Mechanism

In literature, several methods are described for software protection mechanism, including

application slicing in which an application is partitioned for performance [225, 226] or to

protect the intellectual property [227] of an application. Such partitioning can be used

to tag individual segments of an application with adequate security requirements. The

runtime environment can then take into account the security requirements, tagged with

individual segments during the execution; thus providing con�gurable runtime security

architecture. A similar approach is proposed by Java Card 3 [16] and as part of counter-

measures to combined attacks proposed by Sere et al. [220] and Bou�ard et al. [228].

These proposals are based on using Java annotations to tag segments of an application

with required security or reliability levels.

Developers can use Java annotations to provide information regarding an application (or

its segment), which is used by either the compiler, or runtime environment (i.e. JCVM).

Based on Java annotations, Bou�ard et al. [228] and Sere et al. [220] proposed mechanisms

to prevent control �ow attacks. In addition, Loining et al. [229] used the Java annotations

to ensure a secure and reliable development of applications for embedded devices (e.g.

smart cards). Furthermore, Java Card 3 Connected Edition also makes provision for Java

annotations [16]. The de�ned annotations by Java Card 3 are integrity, con�dentiality, and

full (which mean apply both integrity and con�dentiality). In addition, the speci�cation

also allows proprietary annotations that can be used to invoke speci�c protection mech-

anisms implemented by the respective card manufacturer. The Java Card 3 speci�cation

does not detail what operations a JCVM should perform when encountering a particular

annotation, which are left to the discretion of the card manufacturers.

These proposals are useful, in a closed environment like the ICOM. However, in the UCOM

it is di�cult to ascertain whether an application has proper (Java) annotations as it is

challenging to evaluate their correctness on a smart card. A malicious user can use the

annotations to his advantage in order to accomplish his malicious goals. However, if we have

an on-card analyser that checks the security and reliability requirements of an application,

validate the associated Java annotations (tags) with each segment of the application, and

modify the security annotations where adequate. In such a scenario, we may assume

that tagging segments of an application with security annotations might be useful in the

UCOM. Nevertheless, such an on-card analyser is not available on the smart cards and in

this chapter we will not explore its details. In this chapter, we solely focus on adequately

hardening of the runtime environment.

In our proposed framework, we tackle the problem from three aspects: application compi-

lation, runtime protection, and trusted component. The Java annotations are used to tag

properties of individual segments of an application. Runtime commands (opcodes) that

might be subverted to gain unauthorised access are hardened with additional protection

(security checks), and �nally a trusted component is included to complement the runtime

195

8.3 Runtime Protection Mechanism

environment.

8.3.2 Attacker's Capability

Before we delve into the discussion of the proposed runtime protection mechanism, we �rst

de�ne the capabilities of an attacker in the context of a UCOM environment. Due to the

advancement in the chip technology and hardware protection mechanisms [230], we have

taken a realistic approach in de�ning the attacker's capability, taking into consideration the

current state-of-the-art in attack methodologies for smart cards. The attacker's capabilities

taken into consideration for the proposed runtime protection mechanism are listed as below:

1. Has the knowledge of the underlying (hardware and software) architecture.

2. Has the ability to load a customised application onto a given UCTD.

3. Has the capability to induce a fault attack at a precise clock cycle.

4. Has the limited capability of changing a byte value to either 0x00 or 0xFF, or a

random value in between.

5. Can change values stored in a non-volatile memory permanently within the limits of

the capability four.

6. Has the ability to inject multiple faults; however, only in serial fashion (i.e. after in-

jecting a fault, he waits for the results before injecting the next fault). The adversary

cannot inject multiple faults in parallel � injecting two faults simultaneously.

Capability four restricts an adversary to induce a precise byte error rather than the precise

bit error (section 8.2.2.1). This restriction is based on the underlying smart card hardware

architecture. This is not to say that precise bit errors are not possible in smart cards. On

the contrary, they are technically possible but increasing density of packaging (i.e. chip

fabrication) makes it challenging to change a value of bit in comparison to changing the

value of a byte.

The rationale behind the choice of multiple fault attacks in serial fashion than parallel is

to give precise control and reproducibility of the attack. In fault attacks where a malicious

user injects multiple faults simultaneously (parallel), it is di�cult to assess whether the �rst

fault injection was successful; therefore, injecting the second fault may be less productive.

As it may not achieve the desired e�ect if the �rst fault did not work.

In our proposed framework, we intend to protect the underlying runtime environment and

applications hosted on it. However, if an application is designed with an intention that

196

8.3 Runtime Protection Mechanism

it releases sensitive information associated with it or its users, such applications that are

designed to self-harm are di�cult to protect. For example, if an application is designed in

a way that it reveals its user's private key (speci�c to the application - not related to the

platform or other applications); there is a limit to what a protection mechanism can do to

prevent such leakages.

8.3.3 Overview of the Runtime Protection Mechanism

The proposed architecture of the runtime protection mechanism is involved at various

stages of the application lifecycle - including the application compilation, on-card bytecode

veri�cation, and execution as shown in �gure 8.4.

On-Card ProcessesOff-Card Processes

Design
Compilation /

Packaging

Off-Card Bytecode

Verifier

On-Card Bytecode

Verifier

Execution

Environment

Trusted ComponentVerification

EnforcementProperty

File

Figure 8.4: Generic Overview of the runtime protection mechanism

During compilation/packaging process additional information regarding individual meth-

ods, classes, and objects of an application is generated as part of the property �le, discussed

in section 8.3.4. The property �le assists the runtime environment to provide a security and

reliability service during the execution of the application. The o�-card bytecode veri�cation

checks whether the downloaded application conforms to the (given) language's semantics.

The on-card bytecode veri�er can also request the TEM to validate the property �le. Dur-

ing the application execution, the TEM will actively enforce the security and reliability

policy of the platform - taking into account the information included in the property �le.

The proposed framework does not require that application developers perform security

assessment of their application(s) to adequately tag application segments. The framework

only requires that developers compile their applications in a way that it has a property �le

that stores information related to the respective application. The second requirement of

the proposed framework is to adequately harden the UCTD runtime environment discussed

in section 8.3.5 along with introducing a trusted component (part of the TEM) that will

enforce the platform security policy (section 8.3.6).

In subsequent sections, we will extend the generic architecture discussed in this section

and explain how these di�erent components come together to provide a robust and secure

runtime environment for UCTD.

197

8.3 Runtime Protection Mechanism

8.3.4 Application Compilation

It might be considered adequate to modify the Java virtual machine speci�cation for the

smart card environment to provide an e�ective runtime protection mechanism; for example,

reducing the number of opcodes and removing opcode zero from opcode list. However, we

avoid it for the sake of simplicity. Instead we use the property �les that include meta-data

about the respective application. The property �le is downloaded to the smart card as part

of the application and veri�ed by the respective TEM during the bytecode veri�cation as

shown in �gure 8.1.

A Java compiler will take a Java �le and convert it to a (bytecode) class �le. The class

�le not only has opcodes, but it also includes information about various segments (e.g.

methods, and classes) of an application that is necessary for the JCVM to execute the ap-

plication. However, for our proposal we introduce a property �le that includes additional

information about an application. If a JCVM knows how to process property �les then it

will proceed with them; otherwise, it will silently ignore them. In our proposal a property

�le is stored and used by the TEM during the execution of the associated application. In

order to integrate the TEM into the runtime environment, the JCVM is required to be mod-

i�ed so it can communicate with the TEM in order to safeguard the execution environment.

1 App l i c a t i on In f o {

2 App l i c a t i on_Iden t i f i e r App l i c a t i o n I d e n t i f i e r ;

3 Class In fo rmat ion C la s s In f o [c lass_count] ; }

4 Cla s s In f o {

5 Cla s s_ Id en t i f i e r C l a s s I d e n t i f i e r ;

6 MethodInformation MethodInfo [method_count] ; }

7 MethodInfo{

8 Method_Ident i f i er MethodIdent i f i e r ;

9 MethodIntegr i ty HashValue ;

10 ControlFlowGraph Graph [jumps_count] }

Listing 8.1: Structure of the property �le of a Java Card application.

The property �le contains security and reliability information concerning an application

that the runtime environment can utilise to execute an application. The structure of the

property �le is illustrated in listing 8.1, which includes information regarding the control-

�ow graph, and integrity matrix (hash values of the non-mutable part of the individual

methods in a class).

The ApplicationInfo data structure includes the application identi�er (e.g. AID) and an

array of classes that are part of the respective application. For each class in the appli-

cation, we have a ClassInfo structure that contains the MethodInformation array that

contains information regarding all methods associated with the given class. Each method

is represented by MethodInfo structure that includes the control-�ow graphs that are gen-

198

8.3 Runtime Protection Mechanism

erated for each method. In the control-�ow graphs, child nodes represent jumps to other

methods whether they are from the same application or from a di�erent application. In a

way, combining the method graphs of all classes can give the complete control-�ow graph

of the respective application. In addition to the control-�ow graph, a MethodInfo also

contains the hash value (of non-mutable code) of the respective method. This hash value

can be generated at the compile time and added to the property �le, or at the time of the

application installation: the TEM calculates the hash value and stores it in the property

�le.

8.3.5 Execution Environment

The runtime environment of a UCTD platform is adequately modi�ed to support the

inclusion of the TEM (i.e. runtime security manager) that is shown in �gure 8.3. At the

time of application installation, the application bytecode is stored in the respective SP's

domain along with the associated property �le. The property �le is sealed1 by the TEM

so that neither the application nor an o�-card entity (e.g. an SP or/and adversary) can

modify it. At the time of execution, the TEM will retrieve the �le, verify the integrity of

the �le, and then decrypt it. If an SP wants to update its application on a UCTD then

it will proceed with the update command2 that will notify the TEM of the update. At

the completion of the update, the TEM will verify the application security certi�cate (if

available), and update the property �le.

8.3.6 Runtime Security Manager

The purpose of the runtime security manager is to enforce the security counter-measures

(section 8.3.7) de�ned by the respective platform. To enforce the security counter-measures,

the runtime security manager has the access to the heap area (e.g. method area, Java stacks)

and it can be implemented as either a serial or a parallel mode.

A serial runtime security manager will rely on the execution engine of the JCVM (�gure

8.3) to perform the required tasks. This means that when an execution engine encounters

instructions that require an enforcement of the security policy, it will invoke the runtime

security manager that will then perform the checks. If successful the execution engine

continues with execution, otherwise, it will terminate. A parallel runtime security manager

will have its own dedicated hardware (i.e. processor) support that enables it to perform

1Sealed: The data is encrypted by the TEM storage key. The storage key is a symmetric key to encrypt
the sensitive data like property �le so applications cannot change them

2Update Command: We do not propose any update command in this thesis but similar commands are
de�ned as part of the GlobalPlatform card speci�cation. The update command enables an authorise entity
(e.g. SP) to modify an application.

199

8.3 Runtime Protection Mechanism

checks simultaneously while the execution engine is executing an application. Having

multiple processors on a smart card is technically possible [5]. The main question regarding

the choice is not the hardware, but the balance between the performance and latency.

Performance, as the name suggests is concerned with the computational speed. Whereas,

latency deals with the number of instructions executed between an injected-error to the

point it is detected. For example, if during the execution of an application `A', at in-

struction A4 a malicious user injects an error, which is detected by the platform security

mechanism at instruction A7 of the application, the latency is three (i.e. 4-7=3). A point

to note is that the lower the latency value the better the protection mechanism, as it will

catch the error quickly. Therefore, theoretically we can assume that a serial runtime secu-

rity manager will have the low performance but also low latency value, where for a parallel

runtime security manager it will have good performance measure but higher latency value.

We will return to this discussion later in section 8.4 where we provide test (simulated)

implementation results.

It is obvious that implementation of additional components like runtime security manager

will also incur additional economic costs (i.e. increase in the price of a UCTD); however,

in this thesis we are not concerned with the economic cost of UCTDs.

8.3.7 Runtime Security Counter-Measures

The runtime security manager along with the runtime environment would apply the re-

quired security counter-measures (as part of the runtime protection mechanism) that are

discussed in subsequent sections.

8.3.7.1 Operand Stack Integrity

As discussed in section 8.2.1, an operand stack is part of the Java stacks and they are

associated with individual Java frames (methods). During the execution of an application,

the runtime environment pushes and pops local variables, constant �elds, and object refer-

ences to the operand stack. The instructions speci�ed in an application can then process

the values at the top of the stack. Barbu et el. [217] showed that a fault injection that

changes the values stored on the operand stack could have adverse e�ect on an applica-

tion's security. Furthermore, they also provided three di�erent counter-measures to the

proposed attack and their second-re�ned method (countermeasure) is closely related to our

protection mechanism.

The proposed countermeasure (second-re�ned method) of Barbu et al. [217] is based on the

200

8.3 Runtime Protection Mechanism

idea of operand stack integrity. They de�ne a variable α, and all values that are pushed on

or popped from the operand stack are XORed with the α. Therefore, α is the summation

of all the values that are on the operand stack at any point of an application execution. For

example, if values o1, o2, o3, and o4 are on a stack then the α will be α = o1⊕ o2⊕ o3⊕ o4,
which can be written as α = Σn

i=1oi where n=4.

According to Barbu et al. [217] on every jump instruction beyond the scope of the current

frame (method), the runtime environment XORs all the values stored on the operand and

compares the result with α. If they match then the integrity of the operand stack is veri�ed.

Their proposal does not measure the integrity of the operand stack on instructions like if-

else or loops, which could be the target of the malicious user. In fact, Barbu et al. [217]

detail an attack that targets the conditional statement (e.g. if-else) and showed how a

malicious user can circumvent the PIN veri�cation in their example application. However,

the second-re�ned method do not protect against such attacks. In their proposed counter-

measures they sacri�ced security and (to some extent) performance for the sake of memory

use, whereas our proposal focuses on security rather than saving the memory. A point to

note is that in a traditional smart card (in ICOM) memory is crucial as to keep the cost

of the smart card in a reasonable range; however, in the UCOM we focus on the security

- sacri�cing the (crucial) cost of the �nal product (e.g. UCTD).

1 // Executed by runtime s e c u r i t y manager when a va lue i s pushed onto an

i n t e g r i t y s t a c k .

2 On_Stack_Push(pushedValue) {

3 push (InS [top] XOR pushedValue) ;

4 }

5 // Executed by runtime s e c u r i t y manager when a va lue i s popped from an

operand s t a c k .

6 On_Stack_Pop(poppedValue) {

7 i f (pop (InS) XOR poppedValue := InS [top]) {

8 } else {

9 terminateExecut ion () ;

10 }

11 }

Listing 8.2: Operand stack integrity operations.

In our proposal, we use a Last In First Out (LIFO) stack referred as integrity stack that

can store values of a �word� size, which is the most elementary data structure de�ned in a

JCVM. As already mentioned, the actual size of the word is platform dependent and it is left

to the discretion of platform implementers. One thing to note is that JCVM knows the size

of the operand stack when it loads a frame (section 8.2.1); therefore, the runtime security

manager just creates an integrity stack of the size n where n is the size of the respective

operand stack (created by the JCVM). We refer to the integrity stack as �InS� in listing 8.2.

When a frame is loaded, the JCVM and runtime security manager will create an operand

201

8.3 Runtime Protection Mechanism

and integrity stack, respectively. Furthermore, the runtime security manager will also

generate a random number and stores it as Sr. The rationale for using the random number

will become apparent in the subsequent discussion.

V7

V6

V5

V4

V3

V2

V1

VIns-7

VIns-6

VIns-5

VIns-4

VIns-3

VIns-2

VIns-1

Operand Stack Integrity Stack

V1

V2

Push(V1)

Push(V2)

V3

V4

V5

V6

V7

Push(V3)

Push(V4)

Push(V5)

Push(V7)

Push(V6)

Push(VIns-1 = Sr⊕V1)

Push(VIns-2 = VIns-1⊕V2)

Push(VIns-3 = VIns-2⊕V3)

Push(VIns-4 = VIns-3⊕V4)

Push(VIns-5 = VIns-4⊕V5)

Push(VIns-6 = VIns-5⊕V6)

Push(VIns-7 = VIns-6⊕V7)

Figure 8.5: Operand and integrity stack push operations

Consider there are seven values (V1, V2, V3 , ... , V7) that are going to be pushed onto an

operand stack. The operations performed at each push operation for these seven values are

shown in �gure 8.5. When V1 is pushed onto the operand stack, the integrity stack does not

have any value. Therefore, at the beginning integrity stack will XOR V1 with the generated

random value Sr: it is the starting point of the integrity calculation. When an item is

pushed on to the operand stack, we XOR the pushed value with the value on the top of the

integrity stack. The result is pushed back on to the integrity stack. The push operation

can be represented as VIns-n=VIns-(n-1)⊕Vn, where n is index to the integrity stack, VIns-n

is the value stored on the integrity stack. Furthermore, the value on the top of an integrity

stack is VIns-n=Sr⊕Σn
i=1Vi. Therefore, if a card manufacturer wants to implement the α

as proposed by the Barbu et al. [217] then it can simply do it by α = Sr⊕VIns-n.

The rationale for using a random number is to avoid parallel fault injections that try to

change the values on both operand and integrity stack simultaneously. Such a parallel

fault injection will become di�cult if an adversary cannot predict the values stored on the

integrity stack, as each value on the integrity stack will be chained with the generated

random number. One point to note is that, although the attacker's capability de�ned in

section 8.3.2 prohibits parallel fault injection but we still try to accommodate it in our

proposals; as such attacks might become realistic in future.

When a value is popped out of the operand stack, we also pop the integrity value from the

integrity stack, XOR it with the popped value from the operand stack and compare it with

the new top value on the integrity stack. If the values match then integrity of the popped

value from the operand stack is veri�ed; otherwise, it has been corrupted and the runtime

security manager requests the JCVM to terminate the execution as shown in listing 8.2.

To explain it further, consider that we pop V7 from the operand stack in �gure 8.5. The

runtime security manager will also pop VIns-7 from the integrity stack, calculate InsValue

= VIns-7⊕VIns-6 and compare the InsValue with the V7. If InsValue and V7 match, then

the JCVM will proceed with the execution; otherwise, it will abort the execution.

202

8.3 Runtime Protection Mechanism

The runtime security manager will continuously monitor the integrity of the operand stack,

in comparison to the Barbu's proposal. Furthermore, in this proposal the validation does

not require the calculation of integrity value over the entire operand stack. If we take the

Barbu's proposal then for an operand stack of length `n', we have to perform �n-1� XOR

operations every time we need to verify the state of the operand stack. However, in our

proposal we only need to perform one XOR operation. We sacri�ce the memory for the

sake of performance in our proposal. We consider that operand stacks are not large data

structures so even if we double the memory used by them, it will not have an adverse e�ect

on the overall memory usage.

8.3.7.2 Control Flow Analysis

Control �ow analysis, monitors whether the jumps performed in a method are legal or

not. In our proposal, we are concerned with jumps that refer to external resources. The

term external resources in the context of control �ow analysis means any jump that goes

beyond the scope of the current Java frame (i.e. method) while it is still on the Java stack.

Once a method completes its execution, the JCVM will remove the associated Java frame

from the Java stacks (�gure 8.3). Examples of such jumps de�ned in Java virtual machine

speci�cation [200] are invokeinterface, invokestatic, invokevirtual, areturn, etc.

1 byte B(byte inputValue) {

2 byte a = 1 ;

3 i f (inputValue != a) {

4 C(inputValue) ;

5 } else {

6 D(inputValue)

7 }

8 return SG(inputValue) ;

9 }

Listing 8.3: Code for an example method B.

To explain the control �ow analysis further, we consider an example method B that has

three jumps before it reaches the return statement that completes the execution of the

method. The control �ow diagram of method B is shown in �gure 8.6 and associated code

in listing 8.3. Each invocation of a method (e.g. C, D, and SG) shown in the control �ow di-

agram in �gure 8.6 is represented by a symbolic method name (i.e. alphanumeric form that

is easily readable/recognisable by humans) that has an associated unique byte sequence

referred as method identi�er in section 8.3.4. For example, unique method identi�er of

methods B, C, D, and SG are 0xF122, 0xF123, 0xF124, and 0xF125, respectively. For expla-

nation we have used method identi�ers that consist of two bytes. Along with the method

identi�er the property �le also includes ControlFlowGraph, which is a set of legal control

�ows sanctioned for the given method.

203

8.3 Runtime Protection Mechanism

B

C

D

SG Return

1

1
2

2

3B 2

Figure 8.6: Control �ow diagram of an example method B

The ControlFlowGraph in the property �le (listing 8.1) is simply constructed by taking into

account every possible (legal) execution �ow of a method. Taking the example method B, as

shown in �gure 8.6 the �rst jump can either be to method C or D depending upon the input

to method B (inputValue in listing 8.3). The �rst two possible jumps shown in �gure 8.6

are B→C and B→D, where �→� represents the direction of the jump. The construction of the

ControlFlowGraph (set of legal jumps) is constructed by XORing the method identi�ers

of individual jumps (B→C and B→D). The �rst legal jump in the ControlFlowGraph would

be either Jump1 = 0xF122 ⊕ 0xF123 (i.e. B→C) and Jump1 = 0xF122 ⊕ 0xF124 (i.e.

B→D). The next possible jumps in the method B can be either C→SG or D→SG that are

represented in the ControlFlowGraph as Jump3 = Jump1⊕ 0xF125 and Jump4 = Jump2⊕
0xF125, respectively. Finally, for the third jump illustrated in �gure 8.6 is SG→Return

that returns the execution back to the method that initiated the method B. Therefore, the

ControlFlowGraph of method B would be Bcfa-Set = (Jump1, Jump2, Jump3, Jump4).

The control �ow analysis requires that the runtime security manager have a control �ow

analysis variable �cfa� that stores the path taken by an application as cfa = Σn
j=1Cj .

Where Cj represents the jumps taken during execution of an application. During the

execution of a method, when the JCVM encounters a jump to another method the runtime

security manager XORs the method identi�er with the current value of �cfa� and lookup

the ControlFlowGraph of the given method in the associated property �le. If it �nds a

matching value, the JCVM will proceed with the execution; if not it will terminate the

execution. Taking our example of the method B, when the JCVM encounters the �rst jump

B→C the runtime security manager will calculate the cfa = 0xF122 ⊕ 0xF123 and compare

it with the values in the respective ControlFlowGraph. As the cfa matches with the value

Jump1, the runtime execution manager assumes the jump B→C is legal (permitted).

A potential problem with this scheme might be loop instructions that contain jumps to

multiple methods depending upon the loop condition. For example, for an odd value of `i'

jump to method B and for even values jump to method C. The loop iterates through

the values of `i' until it meets the condition that might be based on runtime values

(i.e. unpredictable at the time of the compilation of the application). However, we con-

sider that this problem is intrinsically managed by the scheme. Consider a control �ow

graph of four methods: A, B, C, and D. Methods B and C are part of a loop as dis-

204

8.4 Analysis of the Runtime Protection Mechanism

cussed before and illustrated in listing 8.4. The ControlFlowGraph set will be Acfa-Set =

{A⊕B, A⊕C, A⊕D, A⊕B⊕D, A⊕C⊕D, A⊕B⊕C⊕D}. Therefore, a potential execution

path might be A→B→C→B→C→B→C→D. Therefore, if we compute the �cfa� it would

be A⊕B⊕C⊕B⊕C⊕B⊕C⊕D that is e�ectively A⊕B⊕C⊕D, which is a member of the

ControlFlowGraph set Acfa-Set.

1 byte A(byte inputValue) {

2 for (byte i =0; i<inputValue ; i++){

3 i f (i % 2 == 0) {

4 C(inputValue) ;

5 } else {

6 B(inputValue) ;

7 }

8 }

9 return D(inputValue) ;

10 }

Listing 8.4: Handling loop statements in the control �ow analysis.

8.3.7.3 Bytecode Integrity

The property �le associated with an application stores the hash values of individual meth-

ods. When the runtime environment fetches an application, the runtime security manager

will measure the integrity value of individual methods of the application and compare them

with the hash values in the property �le. Therefore, any method that is loaded to the heap

goes through the integrity validation. This validation protects against the fault attacks on

an application stored while it is stored on a non-volatile memory.

8.4 Analysis of the Runtime Protection Mechanism

In this section, we evaluate the proposed counter-measures for their suitability against

the attacks discussed in section 8.2.2 under the adversary's capability detailed in section

8.3.2. Furthermore, we provide the latency analysis and performance measurements for

both serial and parallel runtime security managers.

8.4.1 Security Analysis

In this section, we discuss how the proposed counter-measures protect against the combined

attacks under the attacker's capability detailed in section 8.3.2.

205

8.4 Analysis of the Runtime Protection Mechanism

8.4.1.1 Operand Stack Integrity

Barbu et al. [217] proposed an attack in which values stored on the operand stacks were

manipulated by fault injections. They also proposed a countermeasure to this attack that

was based on calculating the integrity measurement of the whole of the operand stack,

every time the state of the stack was required to be veri�ed. We re�ned their approach

and removed the need to perform integrity measurement of the entire operand stack on

each validation. In addition, we made the validation process continuous thus checking

the integrity of the operand stack on each pop and push operation. If a malicious user

changes values on the operand stack, the runtime security manager can not only detect the

modi�cation but can also provide error correction service by providing the correct value

that was stored on the operand stand. This is possible because the integrity stack stores

values pushed on to the operand stack as individual components of the integrity chain (i.e.

VIns-n=Sr⊕Σn
i=1Vi). Furthermore, our proposal also protects against parallel fault injection

attacks that could target both operand and integrity stack simultaneously. The reasoning

behind this is based on the use of Sr (random number) that makes the values stored on

the integrity stack unpredictable over di�erent execution sessions of the same application.

Thus making it di�cult for an adversary to know the values stored on the integrity stack,

even if he has the knowledge of all values on the operand stack.

8.4.1.2 Control Flow Analysis

The control �ow analysis performed by the runtime security manager during the execution

of an application e�ectively prevents control �ow attacks. If an attacker has the capability

of multiple fault injections simultaneously, (which is beyond the stated capability of our at-

tacker in section 8.3.2) then he can in theory a�ect the runtime security manager execution.

Nevertheless, even with simultaneous injection the attacker may be able to skip a node in

the execution tree but the runtime security manager calculation on the subsequent nodes

will reveal an illegal path of execution. Therefore, even in the parallel injection model the

runtime security manager will detect the erroneous execution path, unless the attacker will

constantly keep on introducing injections for the whole execution of an application.

8.4.1.3 Bytecode Integrity

This countermeasure is proposed to prevent an adversary to change an application while

it is stored on a non-volatile memory (capability four of an adversary discussed in sec-

tion 8.3.2). To avoid such modi�cations, the runtime security manager generates a hash

of individual methods that are requested by the JCVM. If the hash matches the value

206

8.4 Analysis of the Runtime Protection Mechanism

stored (MethodIntegrity in listing 8.1) in the respective property �le, the JCVM will

proceed with execution of the method; otherwise, the runtime security manager will signal

the termination of the application (and possibly mark it malicious and up for deletion).

Furthermore, this protection mechanism can also safeguard the dynamic loading of appli-

cations/classes/routines as part of the web server or other applications, which are stored

on o�-card storage.

8.4.2 Evaluation Context

For evaluation of proposed counter-measures, we have selected four sample applications.

Two of the applications selected are part of the Java Card development kit distribution:

Wallet and Java Purse. The other two applications are the implementation of our pro-

posed mechanisms that include the o�ine attestation algorithm (section 4.5) and STCPSP

protocol (section 6.3).

8.4.3 Latency Analysis

As discussed before, latency is the number of instructions executed after an adversary

mounts an attack and the system becomes aware of it. Therefore, in this section we

analyse the latency of proposed counter-measures under the concept of serial and parallel

runtime security managers that are listed in table 8.1 and discussed subsequently.

Table 8.1: Latency measurement of individual countermeasure
counter-measures Serial runtime

security manager
Parallel runtime
security manager

Operand Stack Integrity 0 + i 3 + i
Control Flow Analysis 0 3(Cn)
Bytecode Integrity 0 0

In case of the operand stack integrity, the serial runtime security manager �nds the oc-

currence of an error (e.g. fault injection) with latency �0+i�, where `i' is the number of

instructions executed before the manipulated value reaches the top of the operand stack.

For example, consider an operand stack with values V1, V2, V3, V4, and V5, where V5 is

the value on the top. If an adversary changes the value of V3 by physical perturbation, then

the runtime security manager will not �nd out about his change until the value is popped

out of the stack. Therefore, the value of `i' depends upon the number of instructions that

will execute until the V3 reaches the top of the operand stack and JCVM pops it out.

Similarly, the latency value in case of the operand stack integrity for the parallel runtime

security manager is �3+i�, where `3' is the number of instructions required to perform a

207

8.4 Analysis of the Runtime Protection Mechanism

comparison on pop operation (On_Stack_Pop(poppedValue) in listing 8.2). The latency

value of the parallel runtime security manager is higher than the serial. This has to do

with the fact that while parallel runtime security manager is applying the security checks

the JCVM does not need to stop the execution of subsequent instructions.

Regarding the control �ow analysis, the serial runtime security manager has a latency of

zero where the parallel runtime security manager has latency value of �3(Cn)�, where the

value Cn represents the number of legal jumps in the respective ControlFlowGraph set. To

explain this further, consider the example shown in �gure 8.6. The ControlFlowGraph of

method B has four possible values (Bcfa-Set in section 8.3.7.2). Thereby, the latency value

for a jump in the method B in the worse case is �3(4) = 12�. The value `3' represents the

number of instructions required to execute individual comparison.

A notable point to mention here is that all latency measurements listed in the table 8.2 are

based on the worst-case conditions. Furthermore, it is apparent that it might be di�cult

to implement a complete parallel runtime security manager. To explain our point, consider

two consecutive jump instructions in which the parallel runtime security manager has to

perform control �ow analysis. In such situation, there might be a possibility that while

the runtime security manager is still evaluating the �rst jump, the JCVM might initiate

the second jump instruction. Therefore, this might create a deadlock between the JCVM

and parallel runtime security manager - we consider that either JCVM should wait for the

runtime security manager to complete the veri�cation, or for the sake of performance the

runtime security manager might skip certain veri�cations. We opt for the parallel runtime

security manager that will switch to the serial runtime security manager mode - restricting

the JCVM to proceed with next instruction until the runtime security manager can apply

the security checks. This situation will be further explained during the discussion on the

performance measurements in the next section.

8.4.4 Performance Analysis

To evaluate the performance impact of the proposed counter-measures we developed an

abstract virtual machine that takes the bytecode of each Java Card applet and then com-

putes the computational overhead for individual countermeasure. When a Java application

is compiled the java compiler (javac) produces a class �le as discussed in section 8.2.1.

The class �le is Java bytecode representation, and there are two possible ways to read class

�les. We can either use a hex editor (an editor that shows a �le in hexadecimal format)

to read the Java bytecodes or better utilise the javap tool that comes with Java Develop-

ment Kit (JDK). In our practical implementation, we opted for the javap as it produces

the bytecode representation of a class �le in human-readable mnemonics as represented

in the JVM speci�cation [200]. We used the javap to produce the mnenomic bytecode

208

8.5 Summary

representation; the abstract virtual machine takes the mnenomic bytecode representation

of an application and searches for push, pop, and jump (e.g. method invokes) opcodes.

Subsequently, we calculated the number of extra instructions required to be executed in

order to implement the counter-measures discussed in previous sections.

Table 8.2: Performance measurement (percentage increase in computational cost)
Selected Applications Serial runtime

security manager
Parallel runtime
security manager

Wallet 29.43% 22.67%
Java Purse 30.30% 25.82%
O�ine Attestation 17.64% 12.93%
STCPSP 38.48% 33.23%

To compute the performance overhead, we counted the number of instructions an applica-

tion has and how long the application takes to execute on our test Java Cards (e.g. C1 and

C3). After this measurement, we have associated costs based on additional instructions

executed for each JCVM instruction and calculated as an (approximate) increase in the

percentage of computational overhead and listed in table 8.2. Furthermore, to measure the

cost of the hash generation � we used the hash generation performance measurements for

the test Java Cards illustrated in �gure 6.2.

For each application, the counter-measures have di�erent computational overhead value

because they depend upon how many times certain instructions that invoke the counter-

measures are executed. Therefore, the computational overhead measurements in table 8.2

can only give us a measure of how the performance is a�ected in individual cases - without

generalising for other applications.

8.5 Summary

In this chapter we discussed the smart card runtime environment by taking the Java

Card as a running example. The JCRE was described with its di�erent data structures

that it uses during the execution of an application. Subsequently, we discussed various

attacks that target the smart card runtime environment and most of these attacks based

on perturbation of the values stored by the runtime environment. These perturbations

are called fault injection, which was de�ned and mapped to an adversary's capability in

this chapter. Based on these recent attacks on the smart card runtime environment, we

proposed an architecture that includes the provision of a runtime security manager. We also

proposed various counter-measures and provided the computational cost imposed by these

counter-measures. No doubt, counter-measures that do not change the core architecture

the Java virtual machine, will almost always incur extra computational cost. Therefore, we

209

8.5 Summary

concluded in this chapter that a better way forward would be to change the architecture

of the Java virtual machine. However, in the context of this thesis we showed that current

architecture can be hardened at the cost of a computational penalty.

210

Chapter 9

Backup, Migration, and

Decommissioning Mechanisms

Contents

9.1 Introduction . 212

9.2 Backup and Migration Framework 213

9.3 Application Deletion . 217

9.4 Decommissioning Process . 222

9.5 Summary . 223

In this chapter we analyse the backup and migration mechanisms that allow a user to se-

curely backup, migrate, and restore her smart card contents. These mechanisms enable a

user to retain the same set of applications if she loses her smart card or wants to move

to a new smart card. We conclude the chapter with a discussion of the application dele-

tion mechanism that is the �nal stage in the lifecycle of an application and a UCTD (i.e.

decommissioning).

211

9.1 Introduction

9.1 Introduction

One of the main features of the UCOM is dynamic (wherever, whenever) acquisition of

applications by users. Therefore, the UCOM framework enables a user to have most if not

all of her applications on a single device. However, this also increases the potential damage

if the device is lost. To expedite the recovery process after theft or loss, customers should

be able to have their applications restored as quickly as possible to a new devices.

A backup mechanism enables a user to backup her smart card contents. In adverse circum-

stances, such as losing her smart card, she could retrieve and restore the contents onto a

new smart card. Furthermore, a similar mechanism referred to as a migration mechanism

can also be used if a user decides to upgrade to a new feature-rich UCTD.

There are some subtle challenges to backup and migration mechanisms in the UCOM, espe-

cially in the case of card-bound application leases (section 5.4.3) that restrict applications

to their host smart cards. Furthermore, there is a possibility that the remote location (e.g.

backup server) might not be tamper-proof and a malicious user could take advantage of it.

Therefore, it would be safe to assume that instead of transferring whole applications (i.e.

code and data), we should only transfer application download credentials. These creden-

tials can be considered as authorisation tokens that are issued by the respective SPs, so a

user could use them to acquire the application in future.

Finally, we discuss the last lifecycle stage of an application � application deletion. As the

UCOM allows a user to install and delete any application they desire, this privilege might

lead to feature interaction problems discussed as SCR8 and SPR9 in section 3.5. Feature

interaction problems arise from environments where two applications share resources and

later at some point one of the applications is deleted. The second application's depen-

dencies on the �rst application might not be resolved, which leads to a situation where

the second application tries to access the �rst application, which no longer exists on the

platform. Such scenarios may lead to possible security breaches in the UCTD environment.

We analyse the application deletion process in prominent smart card frameworks: Java

Card, GlobalPlatform, and Multos, focusing on how they resolve deadlock conditions. A

deadlock condition arises when a user tries to delete an application `A' which is sharing re-

sources with an application `B'. Deleting the application `A' might a�ect the operations of

the application `B', eventually leading to a feature interaction problem. To avoid such sce-

narios, we propose a framework that tries to resolve such deadlocks during the application

deletion process.

Structure of the Chapter: Section 9.2 begins with a discussion on smart card contents

backup and migration mechanisms, followed by the application deletion process in section

212

9.2 Backup and Migration Framework

9.3. Finally, we conclude the chapter with a discussion on the decommissioning process in

section 9.4.

9.2 Backup and Migration Framework

In this section, we describe two mechanisms: backup and migration. In the contents backup

process, a user archives her smart card's contents to a backup server and then restores it

to the destination smart card. In the migration process, there is no backup server and the

smart card contents are transferred between a source and a destination smart card.

9.2.1 Backup Mechanism

In this proposal, instead of backing up the applications (i.e. data and source code) as we

traditionally do in desktop computing environments. We only backup the authorisation

tokens issued by SPs. The backup package that consists of authorisation tokens should be

stored at a secure location, preferably accessible ubiquitously on demand. When a user

wants to restore the contents of her old smart card, she has to import the backup package;

then the individual applications will be requested from their respective SPs automatically

by the smart card using the authorisation tokens.

In our proposal, a secure o�-site backup facility is provided by a secure third party referred

to as a backup server. We do not consider that a backup server has to be an SP and the

only requirement is that users trust the backup server. A backup framework overview is

illustrated in the �gure 9.1 and described below.

Secure Backup

Server (SBS)

Service Provider

(SP)

Smart Card

1) Request Registration

Verify the Request and

Generate the Token

1a) BRM Registration

Backup & Restoration ManagerSP’s App

3b) Response Token
4) Backup Package

2) Request Application Download Token

3) Response Application Download Token

Figure 9.1: Overview of the credential backup mechanism

1. A smart card user registers herself to a backup server using the Secure and Trusted

Channel Protocols (STCPs) proposed in chapter 6. After the registration, the backup

& restoration manager (�gure 4.1) has the user's credentials and details of how to

connect with the respective backup server. The backup & restoration manager and

backup server will generate a shared secret that they will use in future sessions.

213

9.2 Backup and Migration Framework

As this shared secret is bound to the speci�c smart card, it is only used for secure

communication and not sealing (encrypting) the backup tokens.

2. After an application is installed on a smart card, the application can initiate the

request for an authorisation token only if it is sanctioned by the appropriate SP. We

opted for two possible scenarios: restorable and non-restorable applications. These

types are inspired by the security policy related to key migration in the TPM spec-

i�cation [18]. For restorable applications, an SP will issue its application with an

authorisation token, and the (host) smart card would only migrate this token to the

destination smart card or a backup server: for non-restorable, the respective SP will

not issue any authorisation token.

3. An SP sends its installed application the authorisation token (if it opts for it) that

consists of two sections as shown in �gure 9.2. The �rst section is a public section

that is not encrypted and it contains the SP's URL (Universal Resource Locator),

authorisation token identi�er, and optional section. The URL would instruct a smart

card where to establish the connection to download the application. The authorisa-

tion token identi�er uniquely identi�es the token and associated cryptographic keys.

The optional segment is made available for the SP/backup-server to include any

housekeeping information if necessary. The second section consists of an encrypted

message that may contain proprietary information that would ensure that the token

is genuine and is generated by the SP. The second section is encrypted by the SP with

its token authorisation key and the selection of this key is at the sole discretion of the

SP. The contents of this section include an application identi�er, a user identi�er and

a lease identi�er. The application identi�er refers to the application that was issued

to the user indicated by the user identi�er. The lease identi�er uniquely identi�es

the smart card to which the application was leased, along with any associated data,

including cryptographic keys (if each instance of the application lease has di�erent

cryptographic keys). The application will then give the authorisation token to the

on-card backup & restoration manager.

Application Management Server (AMS) URL

Authorisation Token Identifier Optional

Application Identifier User Identifier Lease Identifier

Optional

P
u

b
lic

E
n

c
ry

p
te

d

Figure 9.2: Structure of authorisation tokens generated by respective SPs

4. The backup & restoration manager will encrypt the set of authorisation tokens with

a package sealing key that is based on some secret that is known to the user. It

could be a password, a passphrase or a biometric � something that the user could

provide at the time of restoration to prove that she is the genuine user that created

the backup package. This key would be generated once, unless the user decided to

214

9.2 Backup and Migration Framework

change her password or passphrase. The simplest way to generate the package-sealing

key is to base it on the user's input. The size of the key and password length is based

on the backup server choice; however, we consider that an adequate selection should

be made by the backup server to provide a secure service.

At the time of restoration, the user will provide the backup & restoration manager of the

new smart card with the credentials for the backup server. The backup & restoration

manager and backup server will establish a secure relationship using the proposed STCPs.

Subsequently, the backup & restoration manager will download the authorisation tokens

from the backup server. These authorisation tokens are sealed by an encryption key based

on the user's input. The backup & restoration manager will request the user for the

relevant input and decrypt the backup package. After decryption of the package, the

backup & restoration manager will retrieve one authorisation token at a time and use its

public section to connect with the SP. To establish a secure channel and authenticate the

user to the given SP, we modify the STCPSP (discussed in section 6.3). In the fourth

message of the STCPSP, we replace the UCre with the authorisation token issued by the

SP.

Before an SP issues a new lease to the user, it terminates the existing lease. This means

that although the lost smart card is still usable, a user cannot utilise the downloaded

application to access sanctioned services because of the Personal Identi�cation Number

(PIN) veri�cation (if implemented) and the SP's back o�ce systems. If an application

requires PIN veri�cation before it executes, the usual protection mechanism that disables

a smart card (or application) if the user enters the wrong PIN multiple times will su�ce.

Furthermore, the SP can simply blacklist the application, e�ectively prohibiting it from

accessing the sanctioned services. If the application tries to access these services, the SP

can instruct the application to block itself and if possible delete all data related to the

particular lease and user. One point to note is that in the UCOM, an SP can only block

its application, not the whole of the smart card. Nevertheless, an adversary can still use

an application only if it does not require a PIN veri�cation and connection with its SP

when it executes.

9.2.2 Migration Mechanism

In the previous section, we discussed the structure of an authorisation token and framework

for backup to a remote server (e.g. backup server). In this section, we use the same

authorisation tokens but this time for migrating contents from one smart card to another.

Similar to the key migration in the TPM speci�cation [18], two smart cards establish a

secure connection with each other and then transfer authorisation tokens. When a user

215

9.2 Backup and Migration Framework

initiates an application migration process, the TEM of the source smart card establishes a

secure channel with the destination smart card using the Platform Binding Protocol dis-

cussed in section 7.5. The destination smart card then requests the transfer of the authori-

sation tokens from the source smart card. The migration process �rst deletes applications

from the source smart card, then transfers the authorisation token to the destination smart

card. The applications will be downloaded on the destination smart card in a manner sim-

ilar to that discussed in the previous section (e.g. application restoration). This process is

similar to the TPM key migration, except we use a di�erent protocol to the one speci�ed

by the TPM speci�cation [18].

9.2.3 Analysis of the Backup and Migration Mechanism

In the smart card industry, there are not many examples of contents backup or migration

mechanisms that we can compare with ours. An example is the backup mechanism for

phone-book contacts, but even this mechanism is not like the one discussed in this chapter.

The closest we can relate to our proposal to is the TPM key migration architecture [18]. The

application migration process is similar to the TPM key migration and the only di�erence

is that instead of migrating keys, we migrate the authorisation tokens to the destination

smart cards. In the smart card industry such mechanisms are not required due to the

ICOM architecture.

The contents backup mechanism e�ectively prevents smart card cloning and intellectual

property theft. In smart card cloning, a malicious user tries to copy applications from

a smart card to another card, without the permission of the respective SPs. To prevent

cloning of an application, the relevant SP is given the ability to make its application either

restorable or non-restorable. Therefore, the choice of moving the application to a new

smart card is not with the user but with the SP. Furthermore, the backup or migration

mechanism does not move the application data or/and code. In fact, even when the SP

sanctions its application to be restorable, the mechanism still relies on the SP to issue an

authorisation token. Without this authorisation token, the application can not be part of

the backup or the migration mechanism.

Intellectual property theft refers to the scenario where a malicious user tries to obtain

the application code (along with data). To do so, the malicious user has to access the

application on a non tamper-resistant device with minimal protection. Such a scenario

can arise if we move the entire application (code and data) o�-card during the backup or

migration mechanisms. Therefore, by using authorisation tokens the backup and migration

mechanism e�ectively prevent intellectual property theft.

In addition, the lease of the application to the destination smart card is at the sole discre-

216

9.3 Application Deletion

tion of the SP. Therefore, after evaluating the operational and security capabilities of the

destination smart card, the SP can continue and lease its application. Furthermore, the

SP could �rst block the lease of the previous application before leasing to the new smart

card. Nevertheless, there are certain concerns in the contents backup mechanism that are

related to the key that encrypts/decrypts the backup packages. The framework requires

the user to input a secret value that could be a long PIN, password, or passphrase that

can be exploited by an adversary. To avoid the use of weak user passwords it is recom-

mended the backup servers should take adequate measures by requiring users to choose

strong passwords. Furthermore, before a user can download authorisation tokens from

the backup server there should be some o�ine authorisation (e.g. activation of restoration

process on a backup server over the internet or telephone).

The migration mechanism is similar to the backup mechanism, except for one detail. It does

not require a backup server, so it avoids the need for user password-based cryptographic

keys. We consider that the backup & restoration manager of a given smart card should

support both the backup and migration mechanisms.

9.3 Application Deletion

In this section, we discuss the last stage in the lifecycle of an application: deletion of an

application.

9.3.1 Existing Framework

In the ICOM, post-issuance application installation or deletion is rare. Nevertheless, appli-

cation deletion is detailed in all of the major smart card platforms and operating systems.

In Multos, the application deletion process is the same as application loading depicted in

�gure 5.2. The only di�erences are that in the deletion process, there is no application

load unit generator, and an application provider or a card issuer requests the Multos

Certi�cation Authority for the application deletion certi�cate instead of the application

load certi�cate [97]. The on-card deletion process simply deletes the application data and

code. As applications on a Multos card do not have interdependencies, the deletion process

does not need to be concerned about the feature interaction problem (section 3.5.3). In

the application sharing mechanism of the Multos cards (section 7.2.2), a client application

may still make a delegation request. However, because it is just an APDU message, the

delegation mechanism can return an error that should be handled by the client application.

217

9.3 Application Deletion

The application deletion process in the GlobalPlatform card speci�cation can be initiated

by any entity that has the privilege to execute a delete command. An application provider

or a card issuer (TSM) can issue a delete command that is accompanied by mandatory

authorisation parameters to authenticate to the respective smart card(s). The deletion

process is handled by the OPEN framework of the GlobalPlatform speci�cation and it

performs several checks before proceeding with the deletion of an application. The checks

include verifying the deletion request (e.g. delete token [30]), con�rming whether the ap-

plication requested for deletion is referenced by another application, and other optional

housekeeping checks. If these veri�cations fail, the GlobalPlatform speci�cation states that

the deletion process should be terminated. We have two concerns with the GlobalPlatform

deletion process. Firstly, how it can determine that an application is referenced, which is

generally part of the application sharing mechanism. As stated in the GlobalPlatform card

speci�cation [30], the speci�cation relies on the underlying platform implementation for the

application sharing mechanism. Therefore, this test the deletion process requires the sup-

port of the underlying platform's application sharing mechanism (section 7.2). Secondly, if

an application is referenced, then why terminate the deletion process? Instead, one could

resolve the interdependencies and then proceed with the deletion process. Unfortunately,

the GlobalPlatform card speci�cation does not detail the resolution of interdependencies

among di�erent applications on a smart card.

The Java Card 2.x and 3.x classic editions have similar schemes, as detailed in the Glob-

alPlatform card speci�cation. The Java Card speci�cation [28] stipulates that the Java

Card Runtime Environment (JCRE) should not attempt to delete an application if it is

being referenced from another application. However, the Java Card 3.x connected edition

extends the deletion framework and attempts to resolve the interdependencies among dif-

ferent applications. The Java Card 3.x connected edition's application deletion mechanism

is based on events and associated listeners. The events mechanism enables an application to

register/un-register itself for events generated by other applications, and also enables it to

generate similar events. The connected edition de�nes an event for application deletion as

an �application instance deletion request� event (event:///standard/app/deleted) [16].

By doing so, a client application can register itself to the deletion events of a server appli-

cation. Therefore, when the server application is requested to be deleted by an authorised

entity, the card manager of a Java Card will instruct the server application regarding the

deletion request that in return can signal the deletion event. The client application, on

receipt of such event, can perform the tasks needed to remove the dependencies on the

server application. The card manager will then proceed with checking whether there are

any applications that still have dependencies on the server application. If the dependencies

of such applications cannot be removed, the card manager will terminate the deletion pro-

cess. One thing to note is that it is optional for server and client applications to register,

signal and manage any events.

218

9.3 Application Deletion

The deletion mechanism for the Java Card 3.x connected edition is a positive step towards

provisioning an architecture where application installation and deletion will be more com-

mon than before. The deletion mechanism for the UCOM architecture is based on the Java

Card 3.x connected edition with compulsory components and includes the provision for a

cascade deletion process.

9.3.2 Application Deletion in the UCOM

The deletion process in the UCOM is based on the Java Card 3.x connected edition speci-

�cation, which is extended by the cascade deletion mechanism. Cascade deletion enables a

smart card to proceed with the deletion of any dependent applications if their dependencies

cannot be resolved in a satisfactory manner. A smart card can only proceed with cascade

deletion if the cardholder explicitly sanctions it. The deletion process for the UCOM is

illustrated in �gure 9.3 and described below:

In �gure 9.3, the hard-bordered rectangles represent operations, the rhombus shapes rep-

resent the if-then-else conditional statement that is part of the operation that precedes it.

The quadrilaterals with curved vertical sides represent the data structures (e.g. �les). The

dotted lines represent data read or write operations: if the arrowhead points to the data

structure then it is a write operation; otherwise, it is a read operation. During the descrip-

tion of the deletion process, we italicise individual operations (e.g. operation) and refer to

a data structure with double quotes (e.g. �data structure�). Most of the processes repre-

sented in the �gure 9.3 are part of application installation & deletion manager illustrated

in �gure 4.1.

On receipt of the application deletion request from either the user or the SP, the applica-

tion deletion will �rst check whether the application is installed on the smart card. For

illustration, we call the application that is requested to be deleted AppD. If AppD is

present on the card, then it will be registered as an installed application in the �registry�

maintained by the application installation & deletion manager. In this case, when AppD
is present, the request is forwarded to the application deletion handler, which will retrieve

the �application sharing record� maintained by the smart card �rewall and check whether

AppD has any dependent applications.

If the application does not have any dependent applications, the mark application gathers

the application-related information and records it in the �le �applications for deletion�.

Next, it checks that the application is not part of any application-sharing tree � meaning

there are no application dependencies to resolve. In this scenario, it might seem a redundant

check but this step will become necessary when AppD has dependences. In the next step,

the user is noti�ed that the smart card is ready to delete the application AppD. If the user

219

9.3 Application Deletion

D
e

le
ti
o

n
 R

e
q

u
e

s
t
fo

r
A
p
p
D

R
e

g
is

tr
y

A
p

p
lic

a
ti
o

n

D
e

le
ti
o

n
 H

a
n

d
le

r

L
is

te
n

e
rs

N
o

ti
fy

 S
P

D
e

p
e

n
d

e
n

c
y

R
e

m
o

v
a

b
le

 A
p

p
lic

a
ti
o

n
s

 l
e

ft

Y
e

s

N
o

N
o

C
a

s
c
a

d
e

 D
e

le
ti
o

n

H
a

n
d

le
r

N
o

ti
fy

 U
s
e

r

A
p

p
lic

a
ti
o

n

D
e

le
ti
o

n

R
e

m
o

v
e

D
e

p
e

n
d

e
n

c
ie

s

H
o

u
s
e

k
e

e
p

in
g

b
)

A
u

th
o

ri
s
e

 H
o

u
s
e

k
e

e
p

in
g

C
a

rd
 S

e
c
u

ri
ty

M
a

n
a

g
e

r

U
n

re
s
o

lv
e

d

D
e

p
e

n
d

e
n

c
ie

s

A
p

p
lic

a
ti
o

n
s

L
e

ft
 t
o

 D
e

le
te

Y
e

s

D
e

le
ti
o

n
 C

o
m

p
le

te
d

A
p

p
lic

a
ti
o

n

S
h

a
ri
n

g
 R

e
c
o

rd

D
e

p
e

n
d

e
n

t

A
p

p
lic

a
ti
o

n
s
 L

is
t

D
e

p
e

n
d

e
n

c
y
 R

e
s
o

lv
e

r

Y
e

s

Y
e

s

R
e

s
o

lv
a

b
le

D
e

p
e

n
d

e
n

c
ie

s

A
p

p
lic

a
ti
o

n
s
 f
o

r

D
e

le
ti
o

n
M

a
rk

 A
p

p
lic

a
ti
o

n

R
e

c
o

rd

Ir
re

s
o

lv
a

b
le

D
e

p
e

n
d

e
n

c
ie

s

R
e

c
o

rd

R
e

s
o

lv
a

b
le

D
e

p
e

n
d

e
n

c
ie

s

A
p

p
lic

a
ti
o

n

R
e

m
o

v
a

l

P
a

re
n

t
N

o
d

e

Y
e

s

L
a

s
t
N

o
d

e
Y

e
s

a
)

N
o

ti
fy

A
u

th
o

ri
s
e

D
e

le
ti
o

n

Y
e

s

D
e

le
ti
o

n
 T

e
rm

in
a

te
d

N
o

N
o

C
h

e
c
k

D
e

p
e

n
d

e
n

c
ie

s
N

o

N
o

c
)

H
o

u
s
e

k
e

e
p

in
g

C
o

m
p

le
te

d

d
)

R
e

m
o

v
e

 D
o

m
a

in

e
)

D
o

m
a

in
 R

e
m

o
v
e

d

U
n

re
s
o

lv
e

d

D
e

p
e

n
d

e
n

c
ie

s

Y
e

s
N

o

N
o

C
h

e
c
k

A
p

p
lic

a
ti
o

n

P
re

s
e

n
c
e

Y
e

s

N
o

F
ig
ur
e
9.
3:

A
pp
lic
at
io
n
de
le
ti
on

pr
oc
es
s
in

th
e
U
C
O
M

220

9.3 Application Deletion

authorises it, �rst the remove dependencies removes any dependencies, which is followed

by the application removal. The application removal will �rst notify the SP (notify SP),

which might perform some housekeeping tasks like depersonalisation of the application

or/and transfer of any log �les. Depersonalisation of the application involves removal

of all user-related data along with any cryptographic material. Furthermore, transfer of

the application log �les [231] to the SP that might contain the usage information of the

application, which might be necessary for fraud prevention or detection along with evidence

of certain activities. After the housekeeping is completed, the application removal requests

the card security manager (section 4.2.2) to delete the domain credentials and reclaim the

memory. After a successful outcome, the application removal checks whether there are any

more applications to delete. If not, then the deletion process will terminate.

In second case, if the application deletion handler �nds dependencies, then it will generate

the �dependent application list�. The dependency resolver will take the list of applications

that are dependent and also ones that registered themselves as listeners to the deletion

request for AppD. The dependency resolver generates the deletion event for the AppD and

noti�es all applications that are registered to this event. If the applications can gracefully

resolve the dependency then it will record them in the �resolvable dependency�. For this

step, we rely on the dependent application's response, which might be malicious. If a

dependent application AppC might signals that it can remove the dependency, but does

not take any action regarding this, its aim might be to use the reference to the AppD for

some malicious purpose. However, we protect the platform from such eventualities: the

�rewall mechanism will also remove the record that the AppC is authorised to access the

AppD reference (a memory reference to AppD's application resource manager: �gure 7.3).

The �rewall mechanism can e�ectively prevent the memory access; however, the main aim

of dependency resolution is to avoid any eventualities in which a dependent application

might not be able to execute reliably in the future.

The dependency resolver will keep on iterating through the �dependent applications list�

until it reaches the end of it. It will then check whether there are any unresolved de-

pendencies. If yes, then it moves to the cascade deletion handler; otherwise, it will check

whether it is at the last application in the �applications for deletion�. The cascade deletion

handler takes the list of unresolved dependencies list and iterates through it, signalling the

deletion of the respective applications. For each application, the dependency analysis is

performed. This process is iterated until the list of all applications required to be deleted

is compiled: �applications for deletion�. At this stage, the user is noti�ed by the notify

user and the �applications for deletion� is communicated. If the user authorises the card to

go ahead with the deletion of the applications, the remove dependencies will �rst remove

any dependencies. A point to note is that we leave the dependence removal process to the

end: if the respective user does not authorise the deletion, at least we will not delete any

application sharing instances. Therefore, before the user authorises the deletion, the entire

221

9.4 Decommissioning Process

process only tries to �nd dependent applications and point out to the user the list of appli-

cations that cannot resolve their dependencies on AppD. The application removal process

will then iterate through the �applications for deletion� and delete them one at a time.

In cases where the deletion request was initiated by the SP of the AppD, and it requires

deletion of other applications that do not belong to the SP, the user will still be noti�ed. If

the user opts for not deleting it, the SP can then proceed with blocking the AppD. In the

block state, an application is not accessible to the user; however, dependent applications

can still access it through the application sharing mechanism.

As discussed before, the UCOM deletion process only provides dependent applications

with an opportunity to gracefully resolve their dependencies. If an application does not

have such a mechanism, the UCOM deletion process marks that application for deletion.

Furthermore, during the deletion process the AppD's resource manager that maintains the

access to the application via the smart card �rewall is removed. Thus, if a dependent

application tries to access AppD resources, the �rewall mechanism will reject that request.

If the application does not gracefully proceed after the �rewall rejects its request, the card

security manager can either block the application or mark it for deletion. Therefore, any

application that a�ects the reliability of the smart card platform will be removed or at

least blocked by the card security manager.

9.4 Decommissioning Process

The decommissioning process in the UCOM involves deletion of all applications from a

UCTD and removal of any user-speci�c data stored by the respective TEM or UCTD

platform managers (section 4.2). The decommissioning process is initiated by the user

in a manner similar to the ownership acquisition process (section 4.6.3). However, in the

decommissioning process the user requests a UCTD to delete all applications in a manner

similar to the one discussed in the previous section but this time the UCTD does not check

for dependencies. Once all applications are deleted, the card security manager will delete

the user-speci�c cryptographic keys (e.g. user signature key) and associated certi�cates.

It will then request the deletion of ownership credentials that the user has set during the

ownership acquisition process. After the decommissioning process is completed, the UCTD

reverts to the state it was in when the user acquired it from the card manufacturer (or

UCTD suppliers). In other words, it is a blank UCTD.

222

9.5 Summary

9.5 Summary

In this chapter, we began by describing the smart card contents backup and migration

mechanisms. Both of these mechanisms aim to provide a dynamic architecture to recover

from the loss of a UCTD or migration to a new UCTD. These mechanisms are in line with

the original statement of purpose for the UCOM environment. In subsequent sections,

we discussed the application deletion process in the existing smart card platforms, and

how they relate to the proposed deletion mechanism for the UCTD. Discussion on the

application deletion and decommissioning completes the lifecycle of both an application

and a UCTD.

223

Chapter 10

Conclusions and Future Research

Directions

Contents

10.1 Summary and Conclusions . 225

10.2 Recommendations for Future Work 229

In this chapter we conclude the thesis by summarising our contributions and discussing

some of the future challenges that need to be addressed.

224

10.1 Summary and Conclusions

10.1 Summary and Conclusions

The main goal of this thesis was to explore the viability of user ownership for a security

sensitive device whose architecture is based on smart card technology. The introduction

of this user ownership a�ects all stages of the smart card and application lifecycle, which

we analysed during the course of this thesis.

We began the discussion by mapping the security and privacy landscape from three di�erent

computing �elds: smart cards, mobiles and traditional computing environments. These

computing devices are used by individual users with an ever growing reliance on them, so

there needs to be a uni�ed security and privacy-preserving architecture that can be easily

integrated to any of these computing devices. We consider that the User Centric Tamper-

Resistant Device (UCTD) has the potential to deliver such a uni�ed (services) architecture.

We provided the rationale for the UCTD framework. To explain how we selected an

appropriate base architecture for the UCTDs, we provided a comparison between di�erent

proposals that included TPM, AEGIS, ARM TrustZone, M-Shield, and GlobalPlatform's

TEE and the smart card architecture. This comparison gave us a clear indication that

the smart card architecture is the one most suited to be a UCTD that supports uni�ed

security, trust, and privacy architecture for di�erent computing devices. However, the

issue with smart card technology is its ownership architecture that is stringently under

a centralised authority. A possible solution is to delegate smart card ownership from a

centralised authority to its users.

Before we delved into the core of the thesis, we provided a detailed coverage of di�erent own-

ership models that exist in the smart card ecosystem. We began with the centralised control

of smart cards provided by the Issuer Centric Smart Card Ownership Model (ICOM), and

discussed its advantages and drawbacks. We then brie�y examined di�erent proposals

that support the ICOM framework, including Java Card, Multos and GlobalPlatform. We

referred to these prominent ICOM frameworks throughout the thesis, comparing and con-

trasting our proposal with them. This short introduction to the ICOM frameworks was

provided to set the scenery and to help the reader understand the present characteristics

of di�erent frameworks that support the ICOM.

Subsequently, we discussed the frameworks in the smart card industry that come close to

providing the user ownership. Unfortunately, the concept of ownership as described in our

proposal of the User Centric Smart Card Ownership Model (UCOM) is not close to any

of the existing proposals. The concept of ownership in UCOM has to do with freedom

of choice and not complete control of the smart card device as the card issuers have in

the ICOM. Therefore, the concept of freedom of choice can be considered a novel idea in

the context of the smart card technology. We identi�ed di�erent stakeholders and their

security and operational requirements. This discussion served as an introduction to the

225

10.1 Summary and Conclusions

concept of the UCOM that enables a smart card to become a UCTD. The structure of the

rest of the thesis was closely aligned with the lifecycle stages of a smart card, including

manufacture, downloading applications, application execution, and �nally the deletion of

the applications and decommissioning of the smart card.

As previous frameworks including GlobalPlatform, Java Card, and Multos mainly support

the ICOM initiative; therefore, we �rst analysed whether these can support the user owner-

ship proposal. During the design of the UCOM-based smart card architecture, the strategy

that we opted for was to adopt, modify, and introduce new components where required to

existing ICOM-based smart card architectures in a way that supports the proposed user

ownership. This idea became the root of all of our proposals in this thesis.

We de�ned a short list of services, based on the GlobalPlatform architecture, which support

the user ownership, smart card, and application management operations. A major issue

introduced by the UCOM was decentralisation of the trust architecture that has been

deployed in the smart card industry. Traditionally, in the ICOM framework, the trust

resided in the card issuer and an application provider was only required to trust the card

issuer, and vice versa. Whereas, by giving the ownership of the smart cards to their

users we removed the card issuers altogether, leaving a vacuum in the traditional trust

architecture. We replaced the traditional trust architecture that relied on the card issuer,

and moved it to the smart card itself.

We proposed a security assurance and validation mechanism based on third party indepen-

dent security evaluation and a platform-independent trustworthy component on a smart

card. Both of these proposals enable a remote application provider (that we refer to as

Service Provider (SP) in the UCOM) to ascertain the security assurance of a smart card.

The platform-independent trustworthy component on a smart card is referred to as the

Trusted Environment & Execution Manager (TEM), which is similar to the TPM. The

TEM provides an attestation mechanism that certi�es that the state of the smart card is

as it was at the time of evaluation (i.e. in a trustworthy state). To do so, we proposed two

attestation mechanisms termed as online and o�ine attestation mechanisms. To support

each type of the attestation mechanism we also proposed two self-test mechanisms based

on the Pseudorandom Number Generators (PRNGs) and Physical Unclonable functions

(PUFs). Furthermore, as the name suggests the online attestation mechanism requires

an entity to vouch for the trustworthiness of a smart card. In our proposal, it is the

card's manufacturer. Therefore, to support the online attestation mechanism we proposed

a protocol that we referred to as the attestation protocol.

Once a smart card is manufactured, evaluated, and acquired by a user, the framework that

comes next is the smart card management architecture. The management architecture

is responsible for establishing a relationship with SPs and acquiring their applications by

226

10.1 Summary and Conclusions

giving the user authentication credentials for these SPs. We discuss the card manage-

ment architectures proposed by GlobalPlatform, and Multos. The rationale behind not

discussing the Java Card was to do with its support for the GlobalPlatform. We brie�y de-

scribed the shortfalls of both GlobalPlatform and Multos card management architectures.

Subsequently, we modi�ed the architecture speci�ed by GlobalPlatform in a way that sup-

ported the application installation mechanism of the UCOM. Later, we also proposed the

possible attacks that are unique to the UCOM proposal along with how a smart card can

adequately implement protection against them.

Based on the card management architecture, we proceeded with the application installation

process. The installation process �rst requires a secure channel to be established between

a smart card and an SP. It also requires that an SP is able to ascertain the trustworthiness

of the smart card � to enable the SP to verify whether the given smart card supports the

SP's security policy for the application lease. For this purpose, we de�ned the security and

operational requirements for a Secure and Trusted Channel Protocol (STCP) for UCOM-

based smart cards. We proposed three protocols that satisfy the UCOM requirements and

these protocols were subjected to the CasperFDR tool for a mechanical formal analysis. We

performed the mechanical formal analysis on the STCPs for the sake of completeness. In

addition to this, we provided performance results of test implementations and compared

them with existing protocols. Our proposed STCPs not only satis�ed the security and

operational requirements of the UCOM but also provided an e�cient performance. After

establishing a secure and trusted channel protocol, an SP may proceed with the application

download to the requesting smart card.

A downloaded application on a smart card may establish data and resource sharing with

other applications. Both Java Card and Multos support the application sharing mechanism;

however, their proposals take two opposite approaches. We discussed both approaches and

detailed the reasons why they fail the UCOM's requirements. Subsequently, we proposed a

smart card �rewall mechanism based on the Java Card application sharing mechanism that

supports the UCOM's requirements. To support this proposal, a dynamic mechanism is

needed that not only authenticates the applications but also ascertains whether the current

states of the applications are secure. For this purpose, we proposed a symmetric key-based

protocol that a client and server application can use to authenticate and validate each

other's state. Later, we extended the application sharing mechanism that traditionally

only supports sharing between the applications on a single smart card, to one that allows

applications installed on di�erent smart cards to share their data and resources. We

termed this extension as Cross-Device Application Sharing and to support this proposal

we detailed two protocols that establish relationships between individual smart cards and

applications. All proposed protocols were subjected to mechanical formal analysis by

CasperFDR and their test performance measures were provided along with comparisons

with other protocols. Once an application is installed and it has established any sharing

227

10.1 Summary and Conclusions

with other applications (if required), the next lifecycle stage is the application execution.

The smart card runtime environment provides a secure and reliable platform for the exe-

cuting applications. From an adversary's point of view, attacking an application while it

is executing might yield desirable results, such as skipping any security checks (e.g. PIN

veri�cation). To achieve this, the runtime environment is subjected to di�erent types of

attacks, including fault injections. Most of the attacks proposed in the literature target an

open smart card on which an adversary can install his application, which is di�cult in the

traditional ICOM framework. However, the open and dynamic nature of the UCOM allows

such a facility. This opens up the UCOM proposal to attacks that are speci�cally designed

to target the reliable and safe execution of an application. We described the architecture

of the Java Card runtime environment, which was followed by a discussion on how an

adversary can a�ect the execution of an application. To harden the runtime environment

from adversarial perturbations, we proposed protection mechanisms. We proposed that the

TEM should take a vital role in providing dynamic protection by getting involved during

the execution of an application. These mechanisms were then analysed for their latency

and performance measurements. This discussion can be considered as a survey of the vul-

nerabilities of the smart card runtime environment that will have an adverse e�ect on the

UCOM proposal, along with the limitations of the proposed protection mechanisms. We

articulated that any protection mechanism built on top of the runtime environment would

inadvertently introduce a performance penalty. We concluded from this survey that at the

time when the Java Card virtual machine was designed, the focus was on reliability and

performance. Their design did not take into account the fault injection and combined at-

tacks. We recommend that a bottom-up approach should be taken � rather than putting

extra layers on top of the runtime environment, redesigning it might be a better option.

Finally, we discussed the last lifecycle state of a smart card and an application in the

UCOM framework. A user might lose and want to recover contents onto her new smart

card, or want to upgrade to a feature-rich smart card. We proposed contents backup

and migration mechanisms that support both of these scenarios without compromising the

SP's security requirements. Furthermore, we detailed the application deletion mechanism

deployed in both Java Card and Multos, illustrating that they may both be unsuitable

for the UCOM architecture. The main issue was that if application dependencies are not

resolvable, the application will not be deleted. To mitigate this, we proposed a cascade

deletion process that supports the deletion of dependent application, if authorised by the

user. This discussion completed the lifecycle for both a smart card and an application,

supporting a dynamic and open framework that allows a user to have the choice to install

or delete applications from their smart cards.

228

10.2 Recommendations for Future Work

10.2 Recommendations for Future Work

Our intention in this work was to analyse the feasibility of giving the ownership of a

security- and reliability-critical device like a smart card to its user. We aimed to explore

the possibilities that it would bring, and new application scenarios that might open up

for the smart card-based services deployment. We have achieved our goals by providing a

pathway for UCTDs and user centric smart cards, which not only provides security and

reliability assurance to SPs but also give users �freedom of choice�. However, we consider

that there is a long journey ahead for the user centric smart card proposal and there are

many suggestions for possible improvements and directions for future research.

There can be possible improvements in the hardware protection and remote attestation

mechanism for the UCOM framework. An attestation mechanism that not only provides

the assurance that the current state of the smart card is secure as stated by the appropriate

evaluation authority, but also the uses hardware that will simplify the remote assurance

mechanism. Furthermore, we need to provide security and reliability characterisation,

classi�cation, and formalisation of smart card / application services. We might employ

mechanisms similar to those implemented in service-oriented computing architecture, tak-

ing smart cards and applications as two services that need to ascertain whether they can

support each other's requirements. This work may lead to devising a language (semantics)

to describe the above mentioned features as is done in Web Service Description Language

(WSDL). Such a language can be used to create third party evaluation certi�cates, which

in our proposal is the CC authority.

An application tagging mechanism tags segments of an application with security and/or

reliability levels, which instruct the runtime environment to apply adequate checks during

the execution of the application. To support the application tagging mechanism in the

UCOM, we need to have an on-card mechanism that can verify the security and reliability

tags. Therefore, an adversary cannot take advantage of such a framework to subvert

a smart card's runtime protection. We refer to on-card analysis as on-card application

behavioural analysis, which is similar to bytecode analysis but is focused on the nature of

an application segment and its associated tag.

One of the major future research directions is the smart card runtime environment, and

its security and reliability in the presence of malicious applications, fault, and combined

attacks. As discussed above, we need to look into the design of the virtual machine and

build the protection from there, rather than implementing them in a piecemeal manner.

This requires the study of existing virtual machines and language architectures, to �nd

out a balance between performance, and runtime-protection. This work may reduce the

number of opcodes assigned in the Java virtual machine, and/or rede�ning the execution

structure.

229

10.2 Recommendations for Future Work

Finally, we should be able to gain assurance of feature independence, during the application

deletion process. A framework should be designed such that dependency resolutions should

be made independent of an application rather than as a voluntary feature of the dependent

application.

230

Appendix A

Description of Protocols Used for

Comparison

Contents

A.1 Protocol Notation and Terminology 232

A.2 Station-to-Station (STS) Protocol 232

A.3 Aziz-Di�e (AD) Protocol . 233

A.4 ASPeCT Protocol . 234

A.5 Just-Fast-Keying (JFK) Protocol 235

A.6 Trusted Transport Layer Protocol (T2LS) Protocol 236

A.7 Secure Channel Protocol - 81 (SCP81) Protocol 236

A.8 Markantonakis-Mayes (MM) Protocol 237

A.9 Sirett-Mayes-Markantonakis (SM) Protocol 238

In this appendix, we discuss the selected protocols that are used for comparison with the our

proposed protocols in this thesis. The protocols are compared on the basis of a pre-de�ned set

of security and operation goals for the UCTD environment. The selection of the protocols

was intentionally kept broad to include well-known (studied) Internet protocols, along with

protocols designed for mobile and smart card environments. This selection provides a well-

balanced comparison with the proposed protocols in terms of pre-de�ned goals.

231

A.1 Protocol Notation and Terminology

A.1 Protocol Notation and Terminology

The notation used to describe protocols in this appendix is as below.

Table A.1: Protocol notation and terminology

Notation Description

SC Denotes a smart card (in context of this thesis).
T T P Denotes the trusted third party.
SP Denotes an SP (in context of this thesis).
Xi Indicates the identity of an entity X.
NX a random number generated by entity X.
gX Di�e-Hellman exponential generated by an entity X.
h(Z) The result of applying a hash algorithm (e.g. SHA-256) on data Z.
kX−Y Encryption key shared between entities X and Y.
mkX−Y MAC key for symmetric algorithms shared between entities X and Y.
BX Private decryption key associated with an entity X.
VX Public encryption key associated with an entity X.
fK(Z) Result of applying MAC algorithm on data Z with key K.
zKX(Z) Result of encrypting data Z using public key algorithm (e.g. RSA) with

key KX .
eK(Z) Result of encrypting data Z using symmetric key algorithm (e.g. AES)

with key K.
SignX(Z) Is the signature on data Z with the signature key belonging to the entity

X using a signature algorithm like DSA or based on the RSA function.
CertSX Is the certi�cate for the signature key belonging to the entity X.
CertEX Certi�cate for the public key belonging to the entity X.
X → Y : C Entity X sends a message to entity Y with contents C.
X||Y Represents the concatenation of data items X and Y.

A.2 Station-to-Station (STS) Protocol

The STS protocol provides a three-pass mutual entity authentication and mutual explicit

key authentication to two communicating parties [174]. The protocol described in this

section is from the Meneze et al. [146], which includes an encrypted certi�cate from the

smart card to provide privacy preservation.

STS-1. SC → SP : gSC

SP : kSC−SP = (gSC)SP

The smart card (SC) initiates the STS protocol by generating a Di�e-Hellman exponential
and communicating it to the server (SP). The SP will generate a shared secret by kSC−SP
from the shared public key of the SC (i.e. gSC) with the private key of the SP (i.e. NSP).

STS-2. SP → SC : gSP ||ekSC−SP
(SignSP (gSP ||gSC))||CertSSP

SC : kSC−SP = (gSP)SC

In response, the SP generates a public key (e.g. gSP) along with encrypting the signature

232

A.3 Aziz-Di�e (AD) Protocol

on the public keys generated by both communicating entities. The public key, encrypted

signature and the certi�cate for the SP is sent to the SC. The certi�cate is sent in

plaintext; therefore, in this protocol there is no privacy protection for the SP (i.e. which

is not necessary to have as most of the servers have public addresses: Internet addresses).

The SC will generate the shared secret key similar to the SP (in previous message). The

SC will decrypt the signature and then verify the signature on the public keys generated

by the both SP and SC. This is to avoid man-in-the-middle attack.

STS-3. SC → SP : ekSC−SP
(SignSC(gSP ||gSC)||CertSSC)

The SC will sign the public keys generated by the SC and SP then append the certi�cate.

The entire message is then encrypted by the shared secret key kSC−SP . This message

provides mutual entity authentication, and mutual explicit key authentication along with

preventing the man-in-the-middle attack.

A.3 Aziz-Di�e (AD) Protocol

The AD protocol was proposed for the wireless local area networks [175] and unlike STS

it does not rely on the Di�e-Hellman exponentials to generate the shared secretes.

AD-1. SC → SP : CertESC ||CertSSC ||NSC

The AD protocol is started by the SC that generates a random number NSC , append it

with the SC encryption key pair certi�cate.

AD-2. SP → SC : zVSC(NSP)||CertESP ||CertSSP ||SignSP (zVSC(NSP)||NSC)

On receiving the �rst message, the SP will generate a random number NSP and encrypt

it with the SC's public key. It then appends the signature key pair certi�cate along with

a signed message that includes the encrypted random number of the SP along with the

random number sent by the SC.

AD-3. SC → SP : zVSP (r′SC)||SignSC(zVSP (r′SC)||zVSC(NSP))

SC, SP : kSC−SP = r′SC +NSP

The SC, on receiving the second message will �rst decrypt the SP's random number and

then veri�es the signature. Subsequently, the SC generates another random number r′SC .

Now the SC can now generate the shared key kSC−SP by adding the r′SC with the SP's
random number.

The SC will encrypt the r′SC with the public key of the SP and generate a signature on

the encrypted random numbers from SC and SP. On receipt, the SP can also generate

the shared secret kSC−SP as the SC has generated it.

233

A.4 ASPeCT Protocol

A.4 ASPeCT Protocol

The ASPeCT protocol is designed as part of the European Commission ACTS project

ASPeCT [232], which focuses on the mobile network environment for value-added trans-

actions. Earlier versions of the ASPeCT protocol is proposed in Martin et al. [176], and

Horn and Preneel [177]. However, in this section we describe the protocol as it is detailed

in the Horn et al. [168]. Additional notations required for the description of the ASPeCT

are as below:

IDT identi�er of the smart card's certi�cation authority.

CertSt certi�ed (static) public key agreement key (gSP) of the SP.
h1, h2, h3 one-way hash functions, that are detailed in Horn and Preneel [177].

cd details of the charging data.

TS time stamp.

py payment con�rmation.

ASPeCT-1. SC → SP : gSC ||IDT

SP : kSC−SP = h1(NSP ||(gSC)SP)

The SC generates a Di�e-Hellman exponential gSC and append it with the identity of the

smart card's certi�cation authority (IDT). On receipt of this message, the SP generates

the shared secret key by using the gSC , public key agreement key gSP along with a random

number generated by the SP .

ASPeCT-2. SP → SC : NSP ||h2(kSC−SP ||NSP ||Si)||CertSt
SC : kSC−SP = h1(NSP ||(gSP)SC)

SC : H = h3(gSC ||gSP ||NSP ||IDSP ||cd||TS||py)

In response, the SP adds the random number NSP appended with the hash generated by

the function h2 on the generated key (for key authentication), NSP , and identity of the

SP. Finally, appending the certi�cate of the public key agreement key (e.g. gSP).

On reception of the second message, the SC retrieves the public key agreement key (gSP)

and then follow the similar steps like SP to generate the shared secret key. After generating

the kSC−SP , the SC will authenticate the shared key by generating the hash with function

h2 and match with the one received in the message 2. If it matches then SC got the key
authentication from the SP.

The SC will then generate the transaction that includes the several elements from the

�rst two message along with the charging details associated with the particular SC, which
contains the time stamp and payment details (py). All these elements are then hashed

using the function h3 and the output is referred as H.

ASPeCT-3. SC → SP : ekSC−SP
(SignSC(H)||CertSSC , py)

In response, the SC will sign the H (that is used as non-repudiation of the transaction).

It then appends the signature key certi�cate for the SC and payment details. The entire

message is then encrypted by the shared secret key.

234

A.5 Just-Fast-Keying (JFK) Protocol

The SP will decrypt the message and a successful decryption provides the key authenti-

cation. It then veri�es the signature and process the transaction.

A.5 Just-Fast-Keying (JFK) Protocol

Aiello et al. [178] proposed two variants of JFK protocol, with di�erence based on who

initiate the protocol. In this thesis, we refer to JFKi that provides identity protection

for initiator (e.g. smart card) even against active attacks. In the JFKi, the smart card

initiates the session that is described below:

JFKi-1. SC → SP : h(NSC)||gSC ||IDS′

The initiator (SC) generates a random number (NSC) and sends its hash along with Di�e-

Hellman exponential (gSC) appended with requirement of the SC about authentication

information that the SP should use in subsequently messages. The requirement of the SC
is indicated by IDS′

JFKi-2. SP : SSP = SignSP (gSP ||grpinfoR)

SP : SID = fmkSP
(gSP ||NSP ||h(NSC)||IPSC)

SP → SC : h(NSC)||NSP ||gSP ||grpinfoR||IDSP ||SSP ||SID
In response, the SP also generates a random number and Di�e-Hellman exponentials. The

SP then sends the h(NSC) along with the grpinfoR and IDSP . The grpinfoR indicates

to the SC the set of Di�e-Hellman groups supported by the SP. The IDSP provides the

authentication information of SP that was request by the SC in message one. Furthermore,
the SP generates a signature on the generated gSP and grpinfoR, and �nally append the

session identi�er (SID) to safeguard against possible DoS attacks.

JFKi-3. SC : K = (gSP)SC

SC : kUS
= fK(h(NSC)||NSP ||′′1′′)

SC : mkUS
= fK(h(NSC)||NSP ||′′2′′)

SC : mE = ekUS
(Ui||SignSC(h(NSC)||NR||gSC ||gSP ||Si))

SC → SP : NSC ||NSP ||gSC ||gSP ||mE||fmkSC−SP
(mE)||SID

The SC generates the session encryption and MAC keys from the shared secret (K). The SC
then generates a message including identities of communicating entities, random numbers

generated during the session, and Di�e-Hellman exponentials. The SC then signs this

message and later encrypts it. The encrypted message is then MACed and sent to the SP.

JFKi-4. SP : mE = ekUS
(SignSP (h(NSC)||NR||gSC ||gSP ||Ui))

SP → SC : mE||fmkSC−SP
(mE)

In response the SP generates a signature that includes random numbers, Di�e-Hellman

exponentials and identity of the SC. The signed message is then encrypted and MACed

before sending it to the SC.

235

A.6 Trusted Transport Layer Protocol (T2LS) Protocol

A.6 Trusted Transport Layer Protocol (T2LS) Protocol

In this thesis, the T2LS protocol described by Gasmi et al. [165] is used that is described

in this section. The messages listed below are on top of the existing TLS protocol that we

do not detail in this section.

T2LS-1. SC → SP : NSC ||CertSSCbind
||CertSSCAIK

The SC initiates the protocol by sending a random number (NSC) along with associated

TPM's certi�cates (e.g. CertSSCbind
and CertSSCAIK

). The TPM is part of the computing

platform that the SC is using to connect to the SP. This message initiates the TLS

protocol, the SC appends the ClientHello[ciphersuites,hell_ext_list,nonce]

In response, the SP sends the ServerHello[ciphersuites,hell_ext_list,nonce], fol-

lowed by key exchange message and completion of security parameter negotiations between

the SP and SC.

T2LS-2. SC → SP : zVSP (SessionKeySC ||CDSSC ||NSP)

The SC will verify the SP's TPM certi�cates (e.g. CertSSP bind
and CertSSPAIK

). The

SC encrypts its generated session key along with con�guration of TPM and TLS protocol

in CDSSC . The public encryption key of the SP is used to encrypt the message.

The SP decrypts the message and validates the CDSSC and the received random number

T2LS-3. SP → SC : zVSC(SessionKeySP ||CDSSP ||NSC)

The SP generates an attestation blob similar to the one generated by the SC in previous

message. On receipt of message three, the SC will verify the CDSSP and NSC .

The trust in the T2LS comes from the values of CDS and veri�cation of the CDS values

by the communicating entities. If the CDS value of a client is satisfactory to the server,

then it can trust the state of the client, and vice versa.

Key Generation.

SC & SP : ms = PRF (NSC ||NSP ||SessionKeySC ||SessionKeySP)

SC & SP : kSC−SP = PRF (ms||CDSSC ||SDSSP)
On receipt of message three, both the SC and SP will proceed with generating the ses-

sion key kSC−SP . The notation of PRF listed above refers to the pseudorandom number

generator used by the SC and SP to generate the keys.

A.7 Secure Channel Protocol - 81 (SCP81) Protocol

The GlobalPlatform speci�cation for the SCP81 [169] do not change the message structure

of the TLS protocol [100]. They provide a structure of how a smart card and a remote

administrator authority can use the TLS protocol for remote management of the smart

card contents. In this section, we su�ce by describing the TLS protocol, which is also

useful to the T2LS protocol as the messages discussed in section A.6 are ones that modify

236

A.8 Markantonakis-Mayes (MM) Protocol

the traditional TLS protocol.

SCP81-1. SP → SC : SPi||NSP ||SID||PSP ||CertESP←TTP

The �rst two messages are referred as the protocol handshake. The SP initiates the

protocol and generates a random number (NSP), append it with the SP identity. The SP
also includes the session identi�er (SID) and preferred parameters for the TLS in PSP .

The SID is an arbitrary byte sequence chosen by the SP.

SCP81-2. SC → SP : NSC ||SID||PSC ||CertESC←TTP

In response, the SC sends a random number and PSC . On receipt of this message, the SP
generates a premaster-secret that can be Di�e-Hellman exponentials. For the description

of the TLS in this thesis, we use the Di�e-Hellman scheme as the session key generation

in the TLS.

SCP81-3. SP : SSP = SignSP (SPi||gSP ||N ′SP ||NSC)

SP : ESP = zVSP (gSP ||N ′SP)

SP → SC : ESP ||SSP ||CertSSP
The SP generates a Di�e-Hellman exponential, a new random number and append it with

a signed message (SSP). The SSP is used to authenticate the SP to the SC. The SP also

includes the signature key and encryption key certi�cates, which are veri�ed by the SC on
receipt of message three.

SCP81-4. SC : SSC = SignSC(gSC ||N ′SC ||N ′SP)

SC : ESC = zVSC(gSC ||N ′SC)

SC → SP : ESC ||SSC ||CertSSC
The SC will perform same operations as the SP has performed in message three. The

signed message from the SC authenticates it to the SP. After message four, both SC
and SP can generate the master-secret (KSC−SP) from the generated random numbers

and premaster-secrets by using a pseudorandom number generator (PRF). Subsequently,

session keys and MAC key are generated from the master-secret. Both SC and SP use

separate keys of encrypting data between them; meaning SC uses one key to send a message
to SP, where in response SP uses a di�erent key.

Before proceeding with communications between the SC and SP for the purpose the TLS

session was establish, both entities will �rst send ��nished� message. The ��nished� message

con�rms all the details of agreed during the handshake and verify whether they are being

changed.

A.8 Markantonakis-Mayes (MM) Protocol

The MM protocol is based on the GlobalPlatform SCP10 [30]. Before we describe the

protocol, we introduces few new notations

237

A.9 Sirett-Mayes-Markantonakis (SM) Protocol

CertS certi�ed (static) public key agreement key (gSP) of the SP.
CertU certi�ed (static) public key agreement key (gSC) of the SC.
{x, y, z} implies that items in the curly brackets represents an optional message.

MM-1. SP → SC : CertS||NSP ||{SPi||ReqtDC(SC)||ReqtPC(SC)||CertESP←TTP }

The SP will send a certi�ed Di�e-Hellman public key agreement key (gSP) along with

a random number. As optional part of the message, the SP can send SP's identity,

and cryptographic certi�cate for SP's public encryption key. Furthermore, the optional

message also contains requests for smart card's Di�e-Hellman certi�cate (ReqtDC(U)) and

public encryption key (ReqtPC(U)).

On receipt of the message one, the SP will verify the certi�cate and proceed with generating

a session key.

MM-2. SC : KSC−SP = h((gSP)SC)

SC → SP : EKSC−SP
(NSP ||NSC)||zVSP

(CertU ||CSN ||NSP)

The SC generates a session key and encrypts the generated random numbers by both

SC and SP. Subsequently, the SC encrypts its Di�e-Hellman certi�cate with card serial

number (CSN) and SP's random number, using SP's public encryption key.

On receipt of message two, the SP decrypts the Di�e-Hellman certi�cate and proceed

with generating the session key similar to the SC.

MM-3. SP → SC : EKSC−SP
(NSC , SK,NSP)

In response the SP encrypts random numbers generated by the SP and SC along with an

optional symmetric key (SK). If the SP sends the SK that this indicates to the SC that
SP will use SK for to encrypt any future messages.

MM-4. SC → SP : ESK(NSP , optionalparameters)

In response the SC encrypts the SP's random number using the SK and if required add

any optional parameters. This message provide con�rmation to the SP that the SC has

the same SK.

A.9 Sirett-Mayes-Markantonakis (SM) Protocol

The Sirett-Mayes-Markantonakis (SM) protocol is designed to install an applet on a SIM

card that is issued by a card issuer and currently deployed in the �eld. The SM protocol

�rst installs a MIDlet on a mobile phone and then proceeds with installing the application

on the smart card. Before we describe the SM protocol, we introduce new notations listed

below:

M represents a mobile phone.

A→ B → C A message send by entity A to entity B, which it relays to the entity C.

SM-1. SP →M : CertDPRC

238

A.9 Sirett-Mayes-Markantonakis (SM) Protocol

The SP sends the root certi�cate of the mobile phone's J2ME Operator domain. This

enables the SP to install its own MIDlet on the mobile phone that will assist it in the

applet installation on the SIM card (SC).

SM-2. SC →M→ SP : SCi||NSC

The SC will send its identity and a random number back to the SP via theM using the

Short Message Server (SMS). The SM protocol relies on the SMS to provide security to

certain messages.

On receipt, the SP use the SC identity to locate the long-term shared secret between the

SC and SP.

SM-3. SP →M : MIDletSP ||SignSP (MIDletSP)

The SP then encrypt and MAC the applet that it wants to install on the SC. The encrypted
and MACed applet is then embedded in the MIDletSP that the SP sends to theM that

installs it in the operator domain of the mobile phone. TheMIDletSP is signed by the SP
signature key that is certi�ed by the root entity to the operator domain (i.e. CertDRPC).

SM-4. M→ SC : eKSC−SP
(Applet)||fKSC−SP

(Applet)

Once the MIDletSP is installed on theM it communicates with the SC and initiate the

applet download process which is described by the message 4.

239

Appendix B

CasperFDR Scripts

Contents

B.1 Brief Introduction to the CasperFDR 241

B.2 Attestation Protocol . 242

B.3 Secure and Trusted Channel Protocol � Service Provider . . 243

B.4 Secure and Trusted Channel Protocol � Smart Card 244

B.5 Application Acquisition and Contractual Agreement Protocol 246

B.6 Application Binding Protocol � Local 247

B.7 Platform Binding Protocol . 249

B.8 Application Binding Protocol � Distributed 250

This appendix opens the discussion with a short introduction to the CasperFDR framework.

Subsequently, we present the Casper scripts for the protocols that we proposed in this thesis.

240

B.1 Brief Introduction to the CasperFDR

B.1 Brief Introduction to the CasperFDR

For the sake of completeness, we subjected the proposed protocols in this thesis to for-

mal mechanical analysis based on the CasperFDR tool. The CasperFDR approach uses

the Communicating Sequential Processes (CSP) [143]; a mathematical framework for the

description and analysis of systems that consist of processes (sub-systems). The state of

a process in the CSP changes by engaging with (pre-de�ned) events. The CSP language

de�nes how di�erent sub-processes can be constructed along with how to de�ne their in-

teractions. The Failures-Divergence Re�nement (FDR) [233] is a model-checking tool for

state machines that is rooted in the CSP framework. The FDR model-checking tool de�nes

and analyse a systems as described below:

1. All (honest) agents (entities) taking part in a system are modelled as the CSP (sub)

processes, along with the intruder that can interact with other agents in the protocol.

2. The resulting system is tested against the de�ned (desired) security properties. The

FDR searches the state space to investigate whether any insecure traces can be found.

3. If FDR �nds an insecure trace, then the system does not satisfy the desired security

property and the protocol is considered to be insecure in relation to the given security

property.

Using the CSP to de�ne a system is tedious and painstaking, which is remarkably simpli�ed

by the Casper framework. In Casper, a user speci�es a protocol using abstract notations,

similar to the one that are used to describe protocols in academic literature. The Casper

takes these notations, convert them to CSP code, which is suitable to be analysed by the

FDR model checking tool. Therefore, CasperFDR represents an approach where a protocol

is de�ned in the Casper notations and then FDR tool is used to verify its suitability under

given security properties.

A Casper script can be divided into two main sections: protocol and system de�nition,

which are discussed as follow:

B.1.1 Protocol De�nition

The protocol de�nition section of a Casper script de�nes the generic operations of a pro-

tocol. The protocol de�nition can be sub-divided into four components that are discussed

below:

Protocol Description: This section represented by #Protocol description in a Casper

script de�nes the message sequence of the protocol. The notations used in this section are

similar to the standard method of describing a protocol [142].

Free variables: The variables and functions that are used by the protocol de�nition are

de�ned in a section that is represented as #Free variables. The variables and functions

241

B.2 Attestation Protocol

de�ned in this section are not instantiated with actual value. The instantiation is done in

the system de�nition of a Casper script.

Processes: Each agent in the system is represented by a CSP process, which is de�ned

in the #Processes of a Casper script.

Speci�cations: The security requirements against which the protocol is analysed by the

FDR tool are de�ned in the #Specification section of a Casper script.

B.1.2 System De�nition

The system de�nition describes the actual system that is required to be analysed as part of

the protocol analysis by the FDR tool. The system de�nition contains four sub-components

that are discussed below:

Type De�nition: The variable types that are going to be used in the actual systems are

instantiated in the #Actual variables section of a Casper script. The variables de�ned

in the #Free variables are instantiated in this section, and the FDR tool will use these

variables during the analysis.

Functions: Any functions de�ned in the #Free variables have to be de�ned under the

#Functions heading in a Casper script.

System De�nition: The agents that would be present during the execution of the pro-

tocol as part of the FDR analysis are de�ned under the heading System in a Casper script.

The de�nition of the agents in this section corresponds to the de�nition of agents under

the heading Processes of a Casper script.

Intruder: Finally, in the #Intruder Information section of a Casper script we de�ne the

identity and capability of an intruder in the system againist which the security requirements

stipulated in #Specification are evaluated by the FDR tool.

B.2 Attestation Protocol

The Casper script in this section corresponds to the attestation protocol described in

section 4.7.

#Free variables

SC, CM : Agent

ns, nsp, nt, challenge, response : Nonce

SID1, SID2 : Num

VKey: Agent -> PublicKey

SKey: Agent -> SecretKey

InverseKeys = (sKey, sKey), (VKey, SKey)

#Protocol description

0. -> SC : CM

1. SC -> CM : SID1,{SC, ns, CM,}{sKey}

2. CM -> SC : {CM, ns, nm, challenge, SID2}{sKey}

242

B.3 Secure and Trusted Channel Protocol � Service Provider

3. SC -> CM : {ns,nm,nsp,response}{sKey}

4. CM -> SC : {ns,{CM,SC,ns,nsp}{Skey{CM}}}{sKey}

#Actual variables

SmartCard, CardManufacturer, MAppl : Agent

Ns, Nsp, Nt, Nm, Challenge, Response : Nonce

SIDOne, SIDTwo : Num

#Processes

INITIATOR(SC, CM, ns, nsp, response) knows sKey, VKey

RESPONDER(CM, SC, nm, challenge) knows sKey, SKey(CM), VKey

#System

INITIATOR(SmartCard, CardManufacturer, Ns, Nsp, Response)

RESPONDER(CardManufacturer, SmartCard, Nm, Challenge)

#Functions

symbolic VKey, SKey

#Intruder Information

Intruder = MAppl

IntruderKnowledge = {SmartCard, CardManufacturer, MAppl, MAppl, Nm, Nsp, SKey(MAppl),

VKey}

#Specification

StrongSecret(SC, sKey, [CM])

StrongSecret(SC, response, [CM])

Aliveness(SC, CM)

Aliveness(CM, SC)

B.3 Secure and Trusted Channel Protocol � Service Provider

The Casper script in this section corresponds to the Secure and Trusted Channel Protocol

� Service Provider (STCPSP) described in section 6.3.

#Free variables

datatype Field = Gen | Exp(Field, Num) unwinding 2

halfkeySP, halfkeyTPM, sessionKey : Field

SP, TPM : Agent

ns, nt, nm, scos, app : Nonce

s, t : Num

VKey: Agent -> PublicKey

SKey: Agent -> SecretKey

EKey: Agent -> PublicKey

DKey: Agent -> SecretKey

InverseKeys = (sessionKey, sessionKey),(VKey, SKey),(EKey, DKey),(Exp, Exp),(Gen, Gen)

#Protocol description

0. -> SP : TPM

1. SP -> TPM : SP, VKey(SP)

2. TPM -> SP : {TPM, SP, nt}{VKey(SP)}

2a. TPM -> SP : {Exp(Gen, t) % halfkeyTPM}{VKey(SP)}

<sessionKey := Exp(halfkeyTPM, s)>

243

B.4 Secure and Trusted Channel Protocol � Smart Card

3. SP -> TPM : {SP, TPM, ns}{EKey(TPM)}

3a. SP -> TPM : {Exp(Gen, s) % halfkeySP}{EKey(TPM)}

<sessionKey := Exp(halfkeySP, t)>

4. TPM -> SP : {TPM, SP, {scos (+) ns}{SKey(TPM)}}{sessionKey}

5. SP -> TPM : {SP, TPM, nt}{sessionKey}

6. TPM -> SP : {TPM, SP, {app (+) ns}{SKey(TPM)}}{sessionKey}

#Actual variables

SerPro, TruPlaMan, MAppl : Agent

Nsp, Ntpm, Nm : Nonce

SCOS, APP : Nonce

S, T, M : Num

SCOperatingSys, SApplication : Nonce

#Processes

INITIATOR(SP, TPM, ns, s, app, scos) knows SKey(SP), DKey(SP), VKey, EKey

RESPONDER(TPM, SP, nt, t, scos, app) knows SKey(TPM), DKey(TPM), VKey, EKey

#System

INITIATOR(SerPro, TruPlaMan, Nsp, S, APP, SCOS)

RESPONDER(TruPlaMan, SerPro, Ntpm, T, SCOS, APP)

#Functions

symbolic VKey, SKey, EKey, DKey

#Intruder Information

Intruder = MAppl

IntruderKnowledge = {SerPro, TruPlaMan, MAppl, MAppl, Nm, DKey(MAppl), SKey(MAppl),

VKey, EKey, M}

#Specification

StrongSecret(SP, sessionKey, [TPM])

Aliveness(SP, TPM)

Aliveness(TPM, SP)

Agreement(SP, TPM, [sessionKey])

Agreement(TPM, SP, [sessionKey])

#Equivalences

forall x, y : Num . Exp(Exp(Gen, x), y) = Exp(Exp (Gen, y), x)

B.4 Secure and Trusted Channel Protocol � Smart Card

The Casper script in this section corresponds to the Secure and Trusted Channel Protocol

� Smart Card (STCPSC) described in section6.4.

#Free variables

datatype Field = Gen | Exp(Field, Num) unwinding 2

halfkeySP, halfkeyTPM, sessionKey : Field

SP, TPM : Agent

ns, nt, nm, scos, app : Nonce

s, t : Num

VKey: Agent -> PublicKey

SKey: Agent -> SecretKey

244

B.4 Secure and Trusted Channel Protocol � Smart Card

EKey: Agent -> PublicKey

DKey: Agent -> SecretKey

InverseKeys = (sessionKey, sessionKey),(VKey, SKey),(EKey, DKey),(Exp, Exp),\

(Gen, Gen)

#Protocol description

0. -> SP : TPM

1. SP -> TPM : SP, VKey(SP)

2. TPM -> SP : {TPM, SP, nt}{VKey(SP)}

2a. TPM -> SP : {Exp(Gen, t) % halfkeyTPM} {VKey(SP)}

<sessionKey := Exp(halfkeyTPM, s)>

3. SP -> TPM : {SP, TPM, ns}{EKey(TPM)}

3a. SP -> TPM : {Exp(Gen, s) % halfkeySP} {EKey(TPM)}

<sessionKey := Exp(halfkeySP, t)>

4. TPM -> SP : {TPM, SP, {scos (+) ns}{SKey(TPM)}}{sessionKey}

5. SP -> TPM : {SP, TPM, nt}{sessionKey}

6. TPM -> SP : {TPM, SP, {app (+) ns}{SKey(TPM)}}{sessionKey}

#Actual variables

SerPro, TruPlaMan, MAppl : Agent

Nsp, Ntpm, Nm : Nonce

SCOS, APP : Nonce

S, T, M : Num

SCOperatingSys, SApplication : Nonce

#Processes

INITIATOR(SP, TPM, ns, s, app, scos) knows SKey(SP), DKey(SP), VKey, EKey

RESPONDER(TPM, SP, nt, t, scos, app) knows SKey(TPM), DKey(TPM), VKey, EKey

#System

INITIATOR(SerPro, TruPlaMan, Nsp, S, APP, SCOS)

RESPONDER(TruPlaMan, SerPro, Ntpm, T, SCOS, APP)

#Functions

symbolic VKey, SKey, EKey, DKey

#Intruder Information

Intruder = MAppl

IntruderKnowledge = {SerPro, TruPlaMan, MAppl, MAppl, Nm, DKey(MAppl),\

SKey(MAppl), VKey, EKey, M}

#Specification

StrongSecret(SP, sessionKey, [TPM])

Aliveness(SP, TPM)

Aliveness(TPM, SP)

Agreement(SP, TPM, [sessionKey])

Agreement(TPM, SP, [sessionKey])

#Equivalences

forall x, y : Num . Exp(Exp(Gen, x), y) = Exp(Exp (Gen, y), x)

245

B.5 Application Acquisition and Contractual Agreement Protocol

B.5 Application Acquisition and Contractual Agreement Pro-

tocol

The Casper script in this section corresponds to the Application Acquisition and Contrac-

tual Agreement Protocol (STCPACA) described in section 6.5.

#Free variables

datatype Field = Gen | Exp(Field, Num) unwinding 2

halfkeySP, halfkeySC, DHKey : Field

datatype ACAPKeys = MAC(Field, Num, Num) unwinding 2

EnKey, MaKey : ACAPKeys

SC, SP, User, TSM: Agent

User: tIdentities

Appi: ApplicationIdentity

CardID, SeudoAppi: SeudoIdentities

gSC, gSP: Num

nSC, nSP, nTSM: Nonce

SCOS: SmartCardOS

App: SPApplication

f: HashFunction

VKey: Agent->PublicKey

SKey: Agent->SecretKey

TEKey, TAKey : SessionKey

InverseKeys = (VKey, SKey), (EnKey, EnKey), (MaKey, MaKey), (TEKey, TEKey),\

(TAKey, TAKey)

#Protocol description

0. -> SP : SC

[SC!=SP]

1. SP -> SC : nSP, Exp(Gen,gSP)%halfkeySP

[SC!=SP]

<DHKey:=Exp(halfkeySP,gSC);EnKey:=MAC(DHKey,nSP,nSC);MaKey:=MAC(DHKey, nSP, nSC)>

2. SC -> SP : nSC, Exp(Gen,gSC)%halfkeySC

[SP != SC]

<DHKey:=Exp(halfkeySC,gSP);EnKey:=MAC(DHKey,nSP,nSC);MaKey:=MAC(DHKey,nSP,nSC)>

3. SP -> SC: nSP, nSC

4. SC -> SP: {{{SCi, Useri, nSP, nSC}{SKey(User)}}{EnKey}}{MaKey}

5. SP -> SC : {{{SPi, Appi, nSC, nSP}{SKey(SP)}}{EnKey}}{MaKey}

6. SC -> SP : {{{f(SCOS)%saveHash, SCi, Useri, SPi, nSC, nSP}{SKey(SC)}}\

{EnKey}}{MaKey}

7. SP -> SC : {{App}{EnKey}}{MaKey}

8. SC -> SP : {{{f(App), SPi, Appi, SCi, Useri, nSP, nSC}{SKey(SC)}}\

{EnKey}}{MaKey}

9. SP -> SC : {{{saveHash%f(SCOS), f(App), SCi, Useri, SPi, nSP, nSC}\

{SKey(SP)}}{EnKey}}{MaKey}

10. SC -> TSM : CardID, {{TSMi, SCi, Useri, nSC, SeudoAppi}{TEKey}}{TAKey}

11. TSM -> SC : {{{TSMi, SCi, Useri, SeudoAppi, nTSM, nSC}{SKey(TSM)}}\

{TEKey}}{TAKey}

#Actual variables

SCard, SProvider, USER, TrustedSM, MaliciousEntity: Agent

ISCard, ISProvider, IUSER, ITrustedSM, IMaliciousEntity: AgentIdentities

GSC, GSP, GMalicious: Num

NSC, NSP, NTSM, NMalicious: Nonce

246

B.6 Application Binding Protocol � Local

AppI: ApplicationIdentity

CARDID, SeudoAPPi: SeudoIdentities

SmartCOS: SmartCardOS

APP: SPApplication

TEKEY, TAKEY : SessionKey

InverseKeys = (TEKEY,TEKEY), (TAKEY,TAKEY)

#Processes

INITIATOR(SP, SPi, SC, User, gSP, nSP, App, Appi)knows SKey(SP), VKey

RESPONDER(SC, SCi, SP, User, Useri, TSM, TSMi, SeudoAppi, CardID, SCOS, gSC, nSC,\

TEKey, TAKey) knows SKey(User), SKey(SC), VKey

SERVER(TSM,TSMi, SC, SCi, User, CardID, nTSM, TEKey, TAKey)knows SKey(TSM), VKey

#System

INITIATOR(SProvider, ISProvider, SCard, USER, GSP, NSP, APP, AppI)

RESPONDER(SCard, ISCard, SProvider, USER, IUSER, TrustedSM, ITrustedSM, SeudoAPPi,

CARDID, SmartCOS, GSC, NSC, TEKEY, TAKEY)

SERVER(TrustedSM,ITrustedSM, SCard, ISCard, USER, CARDID, NTSM, TEKEY, TAKEY)

#Functions

symbolic VKey, SKey

#Intruder Information

Intruder = MaliciousEntity

IntruderKnowledge = {SProvider, SCard, MaliciousEntity, IMaliciousEntity, \

GMalicious, NMalicious, SKey(MaliciousEntity), VKey}

#Specification

Aliveness(SP, SC)

Aliveness(SC, SP)

Aliveness(SC, TSM)

Aliveness(TSM, SC)

Agreement(SP, SC, [DHKey, EnKey, MaKey])

StrongSecret(SP, Appi, [SC])

StrongSecret(SC, Appi, [SP])

StrongSecret(SP, Useri, [SC])

StrongSecret(SC, Useri, [SP])

#Equivalences

forall x, y : Num . Exp(Exp(Gen, x), y) = Exp(Exp(Gen, y), x)

B.6 Application Binding Protocol � Local

The Casper script in this section corresponds to the Application Binding Protocol � Local

(ABPL) described in section 7.4.

#Free variables

S, C, spS, spC : Agent

TPM : Server

nc, ns, nm : Nonce

ksc, abKsc : SessionKey

f : HashFunction

ServerKey : Agent -> ServerKeys

VKey : Agent -> Publickey

247

B.6 Application Binding Protocol � Local

SKey : Agent -> SecretKey

realAgent : Server -> Bool

{math}InverseKeys = (ksc, ksc), (abKsc, abKsc), (ServerKey, ServerKey),(VKey, SKey)

emph{}

#Actual variables

CApp, SApp, MAppl : Agent

TM : Server

Nc, Ns, Nm : Nonce

Ksc, ABKsc : SessionKey

InverseKeys = (Ksc, Ksc), (ABKsc, ABKsc)

emph{}

#Processes

INITIATOR(C, TPM, S, nc) knows f(S), ServerKey(C), SKey(C), VKey

RESPONDER(S, TPM, C, ns, abKsc) knows f(C), ServerKey(S), SKey(S), VKey

SERVER(TPM, ksc) knows ServerKey

emph{}

#System

INITIATOR(CApp,TM, SApp, Nc)

RESPONDER(SApp,TM, CApp, Ns, ABKsc)

SERVER(TM, Ksc)

emph{}

#Protocol description

0. -> C : S

1. C -> S : C, S, {C, S, nc, {C, S, nc}{ServerKey(C)} % mTPM}{SKey(C)}

2. S -> TPM : S, TPM, C, {S, C, ns}{ServerKey(S)}, mTPM % {C,S,nc}{ServerKey(C)}

[realAgent(TPM)]

3. TPM -> S : TPM, S, {f(S), ksc, nc}{ServerKey(C)} % tpmC

[realAgent(TPM)]

3a. TPM -> S : TPM, {f(C), ksc, ns}{ServerKey(S)}

4. S -> C : S, C, tpmC % {f(S), ksc, nc}{ServerKey(C)}

4a. S -> C : {abKsc, nc, ns}{ksc},{S, C, nc(+)ns}{abKsc}

5. C -> S : C, S, {nc(+)ns}{abKsc}

emph{}

#Specification

StrongSecret(TPM, ksc, [S,C])

Aliveness(S, C)

Aliveness(C, S)

StrongSecret(S, abKsc, [C])

Agreement(S, C, [abKsc])

Agreement(C, S, [abKsc])

emph{}

#Inline functions

symbolic ServerKey

symbolic VKey, SKey

realAgent(TM)=true

realAgent(_)=false

emph{}

#Intruder Information

Intruder = MAppl

IntruderKnowledge = {CApp, SApp, MAppl, Nm, ServerKey(MAppl), SKey(MAppl),VKey}

248

B.7 Platform Binding Protocol

B.7 Platform Binding Protocol

The Casper script in this section corresponds to the Platform Binding Protocol (PBP)

described in section 7.5.

#Free variables

datatype Field = Gen | Exp(Field, Num) unwinding 2

halfkeySP, halfkeyTPM, sessionKey : Field

SP, TPM : Agent

ns, nt, nm, scos, app : Nonce

s, t : Num

VKey: Agent -> PublicKey

SKey: Agent -> SecretKey

EKey: Agent -> PublicKey

DKey: Agent -> SecretKey

InverseKeys = (sessionKey, sessionKey), (VKey, SKey),(EKey, DKey), (Exp, Exp), (Gen,

Gen)

#Protocol description

0. -> SP : TPM

1. SP -> TPM : SP, VKey(SP)

2. TPM -> SP : {TPM, SP, nt}{VKey(SP)}

2a. TPM -> SP : {Exp(Gen, t) % halfkeyTPM}{VKey(SP)}

<sessionKey := Exp(halfkeyTPM, s)>

3. SP -> TPM : {SP, TPM, ns}{EKey(TPM)}

3a. SP -> TPM : {Exp(Gen, s) % halfkeySP}{EKey(TPM)}

<sessionKey := Exp(halfkeySP, t)>

4. TPM -> SP : {TPM, SP, {scos (+) ns}{SKey(TPM)}}{sessionKey}

5. SP -> TPM : {SP, TPM, nt}{sessionKey}

6. TPM -> SP : {TPM, SP, {app (+) ns}{SKey(TPM)}}{sessionKey}

#Actual variables

SerPro, TruPlaMan, MAppl : Agent

Nsp, Ntpm, Nm : Nonce

SCOS, APP : Nonce

S, T, M : Num

SCOperatingSys, SApplication : Nonce

#Processes

INITIATOR(SP, TPM, ns, s, app, scos) knows SKey(SP), DKey(SP), VKey, EKey

RESPONDER(TPM, SP, nt, t, scos, app) knows SKey(TPM), DKey(TPM), VKey, EKey

#System

INITIATOR(SerPro, TruPlaMan, Nsp, S, APP, SCOS)

RESPONDER(TruPlaMan, SerPro, Ntpm, T, SCOS, APP)

#Functions

symbolic VKey, SKey, EKey, DKey

#Intruder Information

Intruder = MAppl

IntruderKnowledge = {SerPro, TruPlaMan, MAppl, MAppl, Nm, DKey(MAppl),SKey(MAppl),

VKey, EKey, M}

#Specification

StrongSecret(SP, sessionKey, [TPM])

249

B.8 Application Binding Protocol � Distributed

Aliveness(SP, TPM)

Aliveness(TPM, SP)

Agreement(SP, TPM, [sessionKey])

Agreement(TPM, SP, [sessionKey])

#Equivalences

forall x, y : Num . Exp(Exp(Gen, x), y) = Exp(Exp (Gen, y), x)

B.8 Application Binding Protocol � Distributed

The Casper script in this section corresponds to the Application Binding Protocol �

Distributed (ABPD) described in section 7.6.

#Free variables

datatype Field = Gen | Exp(Field, Num) unwinding 2

halfkeySP, halfkeyTPM, sessionKey : Field

SP, TPM : Agent

ns, nt, nm, scos, app : Nonce

s, t : Num

VKey: Agent -> PublicKey

SKey: Agent -> SecretKey

EKey: Agent -> PublicKey

DKey: Agent -> SecretKey

InverseKeys = (sessionKey, sessionKey), (VKey, SKey),(EKey, DKey), (Exp, Exp), (Gen,

Gen)

#Protocol description

0. -> SP : TPM

1. SP -> TPM : SP, VKey(SP)

2. TPM -> SP : {TPM, SP, nt}{VKey(SP)}

2a. TPM -> SP : {Exp(Gen, t) % halfkeyTPM}{VKey(SP)}

<sessionKey := Exp(halfkeyTPM, s)>

3. SP -> TPM : {SP, TPM, ns}{EKey(TPM)}

3a. SP -> TPM : {Exp(Gen, s) % halfkeySP}{EKey(TPM)}

<sessionKey := Exp(halfkeySP, t)>

4. TPM -> SP : {TPM, SP, {scos (+) ns}{SKey(TPM)}}{sessionKey}

5. SP -> TPM : {SP, TPM, nt}{sessionKey}

6. TPM -> SP : {TPM, SP, {app (+) ns}{SKey(TPM)}}{sessionKey}

#Actual variables

SerPro, TruPlaMan, MAppl : Agent

Nsp, Ntpm, Nm : Nonce

SCOS, APP : Nonce

S, T, M : Num

SCOperatingSys, SApplication : Nonce

#Processes

INITIATOR(SP, TPM, ns, s, app, scos) knows SKey(SP), DKey(SP), VKey, EKey

RESPONDER(TPM, SP, nt, t, scos, app) knows SKey(TPM), DKey(TPM), VKey, EKey

#System

INITIATOR(SerPro, TruPlaMan, Nsp, S, APP, SCOS)

RESPONDER(TruPlaMan, SerPro, Ntpm, T, SCOS, APP)

250

B.8 Application Binding Protocol � Distributed

#Functions

symbolic VKey, SKey, EKey, DKey

#Intruder Information

Intruder = MAppl

IntruderKnowledge = {SerPro, TruPlaMan, MAppl, MAppl, Nm, DKey(MAppl) ,SKey(MAppl),

VKey, EKey, M}

#Specification

StrongSecret(SP, sessionKey, [TPM])

Aliveness(SP, TPM)

Aliveness(TPM, SP)

Agreement(SP, TPM, [sessionKey])

Agreement(TPM, SP, [sessionKey])

#Equivalences

forall x, y : Num . Exp(Exp(Gen, x), y) = Exp(Exp (Gen, y), x)

251

Appendix C

Practical Implementation Source

Code

Contents

C.1 O�ine Attestation Mechanism 253

C.2 Online Attestation Mechanism 262

C.3 Attestation Protocol . 272

C.4 Secure and Trusted Channel Protocol � Service Provider . . 290

C.5 Secure and Trusted Channel Protocol � Smart Card 313

C.6 Application Acquisition and Contractual Agreement Protocol 333

C.7 Application Binding Protocol - Local 364

C.8 Application Binding Protocol - Distributed 377

C.9 Platform Binding Protocol . 404

C.10 Abstract Virtual Machine . 430

C.11 Implementation Helper Classes 433

In this appendix, we detail the test implementation of the proposed protocols and frameworks

discussed in this thesis.

252

C.1 O�ine Attestation Mechanism

C.1 O�ine Attestation Mechanism

In this section, we detail the Java Card implementation of the o�ine attestation mechanism

based on PRNG and PUF algorithms discussed in section 4.5.2 and 4.5.1, respectively.

C.1.1 O�ine PRNG Algorithm

The Java Card implementation of the o�ine PRNG algorithm discussed in section 4.5.2.

1 package se l f t e s tOf f l inePRNG ;

2

3 import javacard . framework .APDU;

4 import javacard . framework . Applet ;

5 import javacard . framework . ISO7816 ;

6 import javacard . framework . ISOException ;

7 import javacard . framework . JCSystem ;

8 import javacard . framework . Ut i l ;

9 import javacard . s e c u r i t y .AESKey ;

10 import javacard . s e c u r i t y . Key ;

11 import javacard . s e c u r i t y . KeyBuilder ;

12 import javacard . s e c u r i t y . KeyPair ;

13 import javacard . s e c u r i t y . MessageDigest ;

14 import javacard . s e c u r i t y . RSAPrivateKey ;

15 import javacard . s e c u r i t y . RSAPublicKey ;

16 import javacard . s e c u r i t y . RandomData ;

17 import javacard . s e c u r i t y . S ignature ;

18 import javacardx . apdu . ExtendedLength ;

19 import javacardx . crypto . Cipher ;

20 import javacard . s e c u r i t y . MessageDigest ;

21

22 public class S e l f t e s t O f f l i n e extends Applet implements ExtendedLength {

23 private stat ic byte [] MemoryContents = {

24 (byte) 0x37 , (byte) 0x7a , (byte) 0xbc , (byte) 0xc0 , (byte) 0xea , (byte)

25 0x07 , (byte) 0x94 , (byte) 0x59 , (byte) 0xd6 , (byte) 0x37 , (byte) 0x6b ,

26 (byte) 0x4c , (byte) 0x82 , (byte) 0xdb , (byte) 0x54 , (byte) 0xb2 ,

27 (byte) 0xe8 , (byte) 0xea , (byte) 0x71 , (byte) 0xe1 , (byte) 0xa4 ,

28 (byte) 0x41 , (byte) 0x06 , (byte) 0x44 , (byte) 0 xfe , (byte) 0x86 ,

29 (byte) 0x8e , (byte) 0x4f , (byte) 0x39 , (byte) 0xf5 , (byte) 0xdb ,

30 (byte) 0xd1 , (byte) 0xf1 , (byte) 0xc5 , (byte) 0xd8 , (byte) 0xac ,

31 (byte) 0xbb , (byte) 0x73 , (byte) 0x51 , (byte) 0xa1 , (byte) 0xa3 ,

32 (byte) 0x8a , (byte) 0x26 , (byte) 0x5d , (byte) 0xf3 , (byte) 0x61 ,

33 (byte) 0x55 , (byte) 0x56 , (byte) 0x39 , (byte) 0x3f , (byte) 0x4c ,

34 (byte) 0x2a , (byte) 0x43 , (byte) 0xc4 , (byte) 0xd7 , (byte) 0xa1 ,

35 (byte) 0xaa , (byte) 0xc1 , (byte) 0xf2 , (byte) 0xd6 , (byte) 0x07 ,

36 (byte) 0xa8 , (byte) 0x58 , (byte) 0x9a , (byte) 0x70 , (byte) 0x84 ,

37 (byte) 0x15 , (byte) 0x19 , (byte) 0x56 , (byte) 0x61 , (byte) 0x3d ,

38 (byte) 0x88 , (byte) 0x2a , (byte) 0x44 , (byte) 0x54 , (byte) 0x29 ,

39 (byte) 0x29 , (byte) 0x26 , (byte) 0x36 , (byte) 0x06 , (byte) 0 xfe ,

40 (byte) 0xad , (byte) 0x27 , (byte) 0x13 , (byte) 0x86 , (byte) 0x0e ,

41 (byte) 0x85 , (byte) 0x3c , (byte) 0x32 , (byte) 0xe2 , (byte) 0x38 ,

253

C.1 O�ine Attestation Mechanism

42 (byte) 0xd2 , (byte) 0x91 , (byte) 0x82 , (byte) 0x89 , (byte) 0xce ,

43 (byte) 0x79 , (byte) 0x02 , (byte) 0x43 , (byte) 0xfd , (byte) 0xaf ,

44 (byte) 0x18 , (byte) 0xe8 , (byte) 0x5b , (byte) 0xd4 , (byte) 0x72 ,

45 (byte) 0x03 , (byte) 0x63 , (byte) 0x2b , (byte) 0x29 , (byte) 0x72 ,

46 (byte) 0xe0 , (byte) 0x92 , (byte) 0x54 , (byte) 0x06 , (byte) 0x1c ,

47 (byte) 0x7f , (byte) 0xc7 , (byte) 0x37 , (byte) 0x93 , (byte) 0x2f ,

48 (byte) 0x7a , (byte) 0x84 , (byte) 0x95 , (byte) 0xec , (byte) 0x5e ,

49 (byte) 0xa5 , (byte) 0xf6 , (byte) 0x4e , (byte) 0x7e , (byte) 0x1f ,

50 (byte) 0xe6 , (byte) 0xe2 , (byte) 0x04 , (byte) 0x2e , (byte) 0x25 ,

51 (byte) 0x7f , (byte) 0x2f , (byte) 0x3c , (byte) 0 xfe , (byte) 0x57 ,

52 (byte) 0x9e , (byte) 0x7f , (byte) 0xce , (byte) 0x72 , (byte) 0xc0 ,

53 (byte) 0xe9 , (byte) 0x79 , (byte) 0x05 , (byte) 0xc5 , (byte) 0xfd ,

54 (byte) 0x6a , (byte) 0x46 , (byte) 0 xfe , (byte) 0x33 , (byte) 0x84 ,

55 (byte) 0x3f , (byte) 0x09 , (byte) 0xae , (byte) 0x01 , (byte) 0x18 ,

56 (byte) 0x5a , (byte) 0xf6 , (byte) 0xc6 , (byte) 0xd3 , (byte) 0xa1 ,

57 (byte) 0xe2 , (byte) 0x90 , (byte) 0x83 , (byte) 0x79 , (byte) 0xee ,

58 (byte) 0xa6 , (byte) 0xd4 , (byte) 0xf6 , (byte) 0xd1 , (byte) 0x86 ,

59 (byte) 0x91 , (byte) 0x34 , (byte) 0x00 , (byte) 0xd3 , (byte) 0xe4 ,

60 (byte) 0x8a , (byte) 0xfb , (byte) 0xaa , (byte) 0x6c , (byte) 0xe5 ,

61 (byte) 0x46 , (byte) 0xa7 , (byte) 0x00 , (byte) 0x9e , (byte) 0xd8 ,

62 (byte) 0x81 , (byte) 0xbc , (byte) 0xd1 , (byte) 0xb5 , (byte) 0x60 ,

63 (byte) 0xd5 , (byte) 0x91 , (byte) 0x13 , (byte) 0x06 , (byte) 0x68 ,

64 (byte) 0x21 , (byte) 0x8f , (byte) 0x7d , (byte) 0xc2 , (byte) 0x3e ,

65 (byte) 0xd2 , (byte) 0x75 , (byte) 0x0f , (byte) 0x97 , (byte) 0x64 ,

66 (byte) 0xb1 , (byte) 0xdb , (byte) 0x74 , (byte) 0x6e , (byte) 0x91 ,

67 (byte) 0x6b , (byte) 0xa7 , (byte) 0x7d , (byte) 0 xef , (byte) 0x8b ,

68 (byte) 0x37 , (byte) 0xb7 , (byte) 0x84 , (byte) 0x1e , (byte) 0xa7 ,

69 (byte) 0x26 , (byte) 0x26 , (byte) 0xea , (byte) 0xe9 , (byte) 0xb7 ,

70 (byte) 0x5e , (byte) 0x3f , (byte) 0xdf , (byte) 0xa4 , (byte) 0xc5 ,

71 (byte) 0x45 , (byte) 0x4e , (byte) 0x34 , (byte) 0x33 , (byte) 0xe5 ,

72 (byte) 0x43 , (byte) 0x46 , (byte) 0xc0 , (byte) 0x2b , (byte) 0xbd ,

73 (byte) 0x85 , (byte) 0x2f , (byte) 0xca , (byte) 0xf8 , (byte) 0x9d ,

74 (byte) 0xb4 , (byte) 0xbc , (byte) 0x67 , (byte) 0x92 , (byte) 0xd4 ,

75 (byte) 0x33 , (byte) 0xfd , (byte) 0xbd , (byte) 0x82 , (byte) 0x9d ,

76 (byte) 0x62 , (byte) 0 xfc , (byte) 0xbb , (byte) 0xd2 , (byte) 0xad ,

77 (byte) 0x05 , (byte) 0xa2 , (byte) 0 xfc , (byte) 0x2d , (byte) 0xe3 ,

78 (byte) 0x02 , (byte) 0xe2 , (byte) 0x41 , (byte) 0x9b , (byte) 0x1f ,

79 (byte) 0xf8 , (byte) 0x87 , (byte) 0x15 , (byte) 0x89 , (byte) 0xfb ,

80 (byte) 0x53 , (byte) 0x99 , (byte) 0xb3 , (byte) 0xeb , (byte) 0xdb ,

81 (byte) 0x01 , (byte) 0xaf , (byte) 0x71 , (byte) 0xd2 , (byte) 0xf2 ,

82 (byte) 0x73 , (byte) 0xb7 , (byte) 0x82 , (byte) 0x30 , (byte) 0x25 ,

83 (byte) 0x04 , (byte) 0x29 , (byte) 0x2b , (byte) 0xb9 , (byte) 0x92 ,

84 (byte) 0x92 , (byte) 0x35 , (byte) 0x97 , (byte) 0x0e , (byte) 0xb8 ,

85 (byte) 0xf2 , (byte) 0xc6 , (byte) 0x2e , (byte) 0xa7 , (byte) 0x2d ,

86 (byte) 0x0c , (byte) 0x09 , (byte) 0x5e , (byte) 0x07 , (byte) 0x06 ,

87 (byte) 0x67 , (byte) 0xa0 , (byte) 0xdf , (byte) 0x55 , (byte) 0x09 ,

88 (byte) 0 xfc , (byte) 0xee , (byte) 0x2b , (byte) 0x13 , (byte) 0x1a ,

89 (byte) 0x2e , (byte) 0x5d , (byte) 0x0a , (byte) 0xbb , (byte) 0x45 ,

90 (byte) 0x75 , (byte) 0xf4 , (byte) 0xd8 , (byte) 0xdc , (byte) 0x2e ,

91 (byte) 0x99 , (byte) 0x2a , (byte) 0x13 , (byte) 0xa1 , (byte) 0x1e ,

92 (byte) 0x99 , (byte) 0xfd , (byte) 0xdc , (byte) 0 xcf , (byte) 0xcc ,

254

C.1 O�ine Attestation Mechanism

93 (byte) 0x3f , (byte) 0x42 , (byte) 0xf7 , (byte) 0x3d , (byte) 0x73 ,

94 (byte) 0xee , (byte) 0xca , (byte) 0x76 , (byte) 0xe4 , (byte) 0x75 ,

95 (byte) 0xc4 , (byte) 0x21 , (byte) 0xd4 , (byte) 0x14 , (byte) 0x2e ,

96 (byte) 0x22 , (byte) 0x9c , (byte) 0xce , (byte) 0x10 , (byte) 0xaf ,

97 (byte) 0xa6 , (byte) 0x25 , (byte) 0xa0 , (byte) 0x01 , (byte) 0xb1 ,

98 (byte) 0x82 , (byte) 0xba , (byte) 0x4c , (byte) 0xb2 , (byte) 0x66 ,

99 (byte) 0x89 , (byte) 0x89 , (byte) 0x6b , (byte) 0x06 , (byte) 0x15 ,

100 (byte) 0xba , (byte) 0x64 , (byte) 0xa3 , (byte) 0x73 , (byte) 0x88 ,

101 (byte) 0x34 , (byte) 0x99 , (byte) 0x3e , (byte) 0x75 , (byte) 0x24 ,

102 (byte) 0xf4 , (byte) 0xba , (byte) 0xb0 , (byte) 0x22 , (byte) 0x8f ,

103 (byte) 0xc3 , (byte) 0x44 , (byte) 0x74 , (byte) 0x0b , (byte) 0x52 ,

104 (byte) 0x96 , (byte) 0xc6 , (byte) 0x97 , (byte) 0x8b , (byte) 0xf2 ,

105 (byte) 0xe3 , (byte) 0xc1 , (byte) 0xaf , (byte) 0x53 , (byte) 0x03 ,

106 (byte) 0x51 , (byte) 0xa7 , (byte) 0x0d , (byte) 0x42 , (byte) 0x6a ,

107 (byte) 0x20 , (byte) 0x03 , (byte) 0x31 , (byte) 0xb4 , (byte) 0xc9 ,

108 (byte) 0xaa , (byte) 0x9e , (byte) 0xda , (byte) 0x6f , (byte) 0x7b ,

109 (byte) 0xb8 , (byte) 0x6d , (byte) 0x54 , (byte) 0x57 , (byte) 0xa8 ,

110 (byte) 0xed , (byte) 0x51 , (byte) 0xa4 , (byte) 0x23 , (byte) 0x05 ,

111 (byte) 0x0b , (byte) 0xb3 , (byte) 0x90 , (byte) 0x42 , (byte) 0x38 ,

112 (byte) 0xa8 , (byte) 0xbc , (byte) 0xd5 , (byte) 0x2f , (byte) 0x87 ,

113 (byte) 0x82 , (byte) 0x5b , (byte) 0 x f f , (byte) 0xdb , (byte) 0xba ,

114 (byte) 0x41 , (byte) 0x18 , (byte) 0xe0 , (byte) 0x4a , (byte) 0x07 ,

115 (byte) 0x04 , (byte) 0xe1 , (byte) 0x3c , (byte) 0xd5 , (byte) 0xbf , } ;

116 byte [] tempSeed = {

117 (byte) 0x00 , (byte) 0x00 , (byte) 0x00 , (byte) 0x00 , (byte) 0x00 ,

118 (byte) 0x00 , (byte) 0x00 , (byte) 0x00 , (byte) 0x00 , (byte) 0x00 ,

119 (byte) 0x00 , (byte) 0x00 , (byte) 0x00 , (byte) 0x00 , (byte) 0x00 ,

120 (byte) 0x00 } ;

121 private byte [] SignedDataTag = {

122 (byte) 0x1F , (byte) 0x5F , (byte) 0x5D , (byte) 0x02 } ;

123 short copyPointer = (short) 0 ;

124 f ina l stat ic byte CLA = (byte) 0xB0 ;

125 f ina l stat ic byte Sta r tPro toco l = (byte) 0x40 ;

126 f ina l stat ic byte s e l f t e s t = (byte) 0 x f f ;

127 f ina l stat ic short SW_CLASSNOTSUPPORTED = 0x6320 ;

128 f ina l stat ic short SW_ERROR_INS = 0x6300 ;

129 RandomData randomDataGen ;

130 Cipher pkCipher ;

131 byte [] r e c e i v i n gBu f f e r = null ;

132 short byte sLe f t = 0 ;

133 short readCount = 0 ;

134 short rCount = 0 ;

135 short s i gn l eng th = 0 ;

136 MessageDigest SHA256 ;

137 AESKey cipherKey ;

138 Cipher syCipher ;

139 byte [] I n i t i a l i s a t i o nV e c t o r = {

140 (byte) 0x6C , (byte) 0xDE, (byte) 0xBE, (byte) 0x7B , (byte) 0x89 ,

(byte) 0x99 ,

141 (byte) 0x8C , (byte) 0xAF, (byte) 0xC5 , (byte) 0x7D , (byte) 0xB1 , (byte)

142 0x7C , (byte) 0x62 , (byte) 0x0A , (byte) 0x86 , (byte) 0x52 } ;

255

C.1 O�ine Attestation Mechanism

143 Signature phSign ;

144 PrngSHA256 myPrngHMAC;

145

146 private S e l f t e s t O f f l i n e () {

147 phSign = Signature . g e t In s tance (S ignature .ALG_RSA_SHA_PKCS1, fa l se) ;

148 phSCKeyPair = new KeyPair (KeyPair .ALG_RSA, KeyBuilder .LENGTH_RSA_512) ;

149 cipherKey = (AESKey) KeyBuilder . buildKey

150 (KeyBuilder .TYPE_AES_TRANSIENT_DESELECT,

151 KeyBuilder .LENGTH_AES_128, fa l se) ;

152 syCipher = Cipher . g e t In s tance (Cipher .ALG_AES_BLOCK_128_CBC_NOPAD,

153 fa l se) ;

154 myPrngHmac = new PrngSHA256 () ;

155 pkCipher = Cipher . g e t In s tance (Cipher .ALG_RSA_NOPAD, fa l se) ;

156 phSCKeyPair . genKeyPair () ;

157 SHA256 = MessageDigest . g e t In s tance (MessageDigest .ALG_SHA_256,

158 fa l se) ;

159 }

160 public stat ic void i n s t a l l (byte bArray [] , short bOffset , byte bLength)

161 throws ISOException {

162 new S e l f t e s t O f f l i n e () . r e g i s t e r () ;

163 }

164

165 public void proce s s (APDU apdu)throws ISOException {

166 byte [] apduBuffer = apdu . ge tBu f f e r () ;

167 i f (s e l e c t i n gApp l e t ()) {

168 this . i n i t i a l i s e () ;

169 return ;

170 }

171 i f (apduBuffer [ISO7816 .OFFSET_CLA] != CLA) {

172 ISOException . throwIt (SW_CLASSNOTSUPPORTED) ;

173 }

174 i f (apduBuffer [ISO7816 .OFFSET_INS] == s e l f t e s t) {

175 r e c e i v i n gBu f f e r = JCSystem . makeTransientByteArray ((short) 84 ,

176 JCSystem .MEMORY_TYPE_TRANSIENT_DESELECT) ;

177 generateResponse ((short) 1) ;

178 apdu . setOutgoing () ;

179 apdu . setOutgoingLength ((short) copyPointer) ;

180 apdu . sendBytesLong (r e c e i v i ngBu f f e r , (short) 0 , (short) copyPointer) ;

181 return ;

182 }

183 JCSystem . r eques tObjec tDe l e t i on () ;

184 }

185

186 void s e l f t e s t P r o c e s s () {

187 byte [] memoryWordRead = new byte [4] ;

188 byte rcount = (byte) 0x00 ;

189 while (rcount < MemoryContents . l ength) {

190 Ut i l . arrayCopyNonAtomic (MemoryContents ,

191 rcount , memoryWordRead , (short) 0 , memoryWordRead . l ength) ;

192 generateSeed (memoryWordRead , tempSeed) ;

193 rcount += (byte) (rcount+(short) 4) ;

256

C.1 O�ine Attestation Mechanism

194 }

195 i f (seedZero ()) {

196 generateMACPrng (tempSeed , cipherKey) ;

197 } else {

198 ISOException . throwIt ((short) 0xFA17) ;

199 }

200 }

201

202 private void generateResponse () {

203 copyPointer = 0 ;

204 s e l f t e s t P r o c e s s () ;

205 phDecryption () ;

206 getSignatureKey () ;

207 }

208

209 void phDecryption () {

210 syCipher . i n i t (phCipherKey , Cipher .MODE_DECRYPT, I n i t i a l i s a t i o nV e c t o r ,

211 (short) 0 , (short) I n i t i a l i s a t i o nV e c t o r . l ength) ;

212 syCipher . doFinal (s ignatureKey , i nbu f fO f f s e t , inbuf fLength ,

s ignatureKey ,

213 i n bu f fO f f s e t) ;

214 }

215 void getSignatureKey () {

216 RSAPrivateKey myPrivate = (RSAPrivateKey) this . phSCKeyPair . g e tPr iva t e () ;

217 short kLen = myPrivate . getExponent (r e c e i v i ngBu f f e r , (short)

218 (copyPointer + (short) 2)) ;

219 this . shortToBytes (r e c e i v i ngBu f f e r , copyPointer , kLen) ;

220 copyPointer += (short) (kLen + (short) 2) ;

221 r e c e i v i n gBu f f e r [6]++;

222 copyPointer = Ut i l . arrayCopyNonAtomic (this . ModulusTag , (short) 0 ,

223 r e c e i v i ngBu f f e r , (short) (copyPointer) , (short)

224 this . ModulusTag . l ength) ;

225 kLen = myPrivate . getModulus (r e c e i v i ngBu f f e r , (short)

226 (copyPointer + (short) 2)) ;

227 this . shortToBytes (r e c e i v i ngBu f f e r , copyPointer , kLen) ;

228 }

229

230 boolean seedZero () {

231 for (short i =0; i<tempSeed . l ength ; i++){

232 i f (tempSeed [i] !=(byte) 0x00) {

233 return true ;

234 }

235 }

236 return fa l se ;

237 }

238

239 }

257

C.1 O�ine Attestation Mechanism

C.1.2 O�ine PUF Algorithm

The Java Card implementation that emulates the o�ine PUF algorithm discussed in section

4.5.1.

1 package s e l f t e s tO f f l i n ePUF ;

2

3 import javacard . framework .APDU;

4 import javacard . framework . Applet ;

5 import javacard . framework . ISO7816 ;

6 import javacard . framework . ISOException ;

7 import javacard . framework . JCSystem ;

8 import javacard . framework . Ut i l ;

9 import javacard . s e c u r i t y .AESKey ;

10 import javacard . s e c u r i t y . Key ;

11 import javacard . s e c u r i t y . KeyBuilder ;

12 import javacard . s e c u r i t y . KeyPair ;

13 import javacard . s e c u r i t y . MessageDigest ;

14 import javacard . s e c u r i t y . RSAPrivateKey ;

15 import javacard . s e c u r i t y . RSAPublicKey ;

16 import javacard . s e c u r i t y . RandomData ;

17 import javacard . s e c u r i t y . S ignature ;

18 import javacardx . apdu . ExtendedLength ;

19 import javacardx . crypto . Cipher ;

20 import javacard . s e c u r i t y . MessageDigest ;

21

22 public class S e l f t e s t O f f l i n e extends Applet implements ExtendedLength {

23 private stat ic byte [] MemoryContents = {

24 (byte) 0x37 , (byte) 0x7a , (byte) 0xbc , (byte) 0xc0 , (byte) 0xea , (byte)

25 0x07 , (byte) 0x94 , (byte) 0x59 , (byte) 0xd6 , (byte) 0x37 , (byte) 0x6b ,

26 (byte) 0x4c , (byte) 0x82 , (byte) 0xdb , (byte) 0x54 , (byte) 0xb2 ,

27 (byte) 0xe8 , (byte) 0xea , (byte) 0x71 , (byte) 0xe1 , (byte) 0xa4 ,

28 (byte) 0x41 , (byte) 0x06 , (byte) 0x44 , (byte) 0 xfe , (byte) 0x86 ,

29 (byte) 0x8e , (byte) 0x4f , (byte) 0x39 , (byte) 0xf5 , (byte) 0xdb ,

30 (byte) 0xd1 , (byte) 0xf1 , (byte) 0xc5 , (byte) 0xd8 , (byte) 0xac ,

31 (byte) 0xbb , (byte) 0x73 , (byte) 0x51 , (byte) 0xa1 , (byte) 0xa3 ,

32 (byte) 0x8a , (byte) 0x26 , (byte) 0x5d , (byte) 0xf3 , (byte) 0x61 ,

33 (byte) 0x55 , (byte) 0x56 , (byte) 0x39 , (byte) 0x3f , (byte) 0x4c ,

34 (byte) 0x2a , (byte) 0x43 , (byte) 0xc4 , (byte) 0xd7 , (byte) 0xa1 ,

35 (byte) 0xaa , (byte) 0xc1 , (byte) 0xf2 , (byte) 0xd6 , (byte) 0x07 ,

36 (byte) 0xa8 , (byte) 0x58 , (byte) 0x9a , (byte) 0x70 , (byte) 0x84 ,

37 (byte) 0x15 , (byte) 0x19 , (byte) 0x56 , (byte) 0x61 , (byte) 0x3d ,

38 (byte) 0x88 , (byte) 0x2a , (byte) 0x44 , (byte) 0x54 , (byte) 0x29 ,

39 (byte) 0x29 , (byte) 0x26 , (byte) 0x36 , (byte) 0x06 , (byte) 0 xfe ,

40 (byte) 0xad , (byte) 0x27 , (byte) 0x13 , (byte) 0x86 , (byte) 0x0e ,

41 (byte) 0x85 , (byte) 0x3c , (byte) 0x32 , (byte) 0xe2 , (byte) 0x38 ,

42 (byte) 0xd2 , (byte) 0x91 , (byte) 0x82 , (byte) 0x89 , (byte) 0xce ,

43 (byte) 0x79 , (byte) 0x02 , (byte) 0x43 , (byte) 0xfd , (byte) 0xaf ,

44 (byte) 0x18 , (byte) 0xe8 , (byte) 0x5b , (byte) 0xd4 , (byte) 0x72 ,

45 (byte) 0x03 , (byte) 0x63 , (byte) 0x2b , (byte) 0x29 , (byte) 0x72 ,

46 (byte) 0xe0 , (byte) 0x92 , (byte) 0x54 , (byte) 0x06 , (byte) 0x1c ,

258

C.1 O�ine Attestation Mechanism

47 (byte) 0x7f , (byte) 0xc7 , (byte) 0x37 , (byte) 0x93 , (byte) 0x2f ,

48 (byte) 0x7a , (byte) 0x84 , (byte) 0x95 , (byte) 0xec , (byte) 0x5e ,

49 (byte) 0xa5 , (byte) 0xf6 , (byte) 0x4e , (byte) 0x7e , (byte) 0x1f ,

50 (byte) 0xe6 , (byte) 0xe2 , (byte) 0x04 , (byte) 0x2e , (byte) 0x25 ,

51 (byte) 0x7f , (byte) 0x2f , (byte) 0x3c , (byte) 0 xfe , (byte) 0x57 ,

52 (byte) 0x9e , (byte) 0x7f , (byte) 0xce , (byte) 0x72 , (byte) 0xc0 ,

53 (byte) 0xe9 , (byte) 0x79 , (byte) 0x05 , (byte) 0xc5 , (byte) 0xfd ,

54 (byte) 0x6a , (byte) 0x46 , (byte) 0 xfe , (byte) 0x33 , (byte) 0x84 ,

55 (byte) 0x3f , (byte) 0x09 , (byte) 0xae , (byte) 0x01 , (byte) 0x18 ,

56 (byte) 0x5a , (byte) 0xf6 , (byte) 0xc6 , (byte) 0xd3 , (byte) 0xa1 ,

57 (byte) 0xe2 , (byte) 0x90 , (byte) 0x83 , (byte) 0x79 , (byte) 0xee ,

58 (byte) 0xa6 , (byte) 0xd4 , (byte) 0xf6 , (byte) 0xd1 , (byte) 0x86 ,

59 (byte) 0x91 , (byte) 0x34 , (byte) 0x00 , (byte) 0xd3 , (byte) 0xe4 ,

60 (byte) 0x8a , (byte) 0xfb , (byte) 0xaa , (byte) 0x6c , (byte) 0xe5 ,

61 (byte) 0x46 , (byte) 0xa7 , (byte) 0x00 , (byte) 0x9e , (byte) 0xd8 ,

62 (byte) 0x81 , (byte) 0xbc , (byte) 0xd1 , (byte) 0xb5 , (byte) 0x60 ,

63 (byte) 0xd5 , (byte) 0x91 , (byte) 0x13 , (byte) 0x06 , (byte) 0x68 ,

64 (byte) 0x21 , (byte) 0x8f , (byte) 0x7d , (byte) 0xc2 , (byte) 0x3e ,

65 (byte) 0xd2 , (byte) 0x75 , (byte) 0x0f , (byte) 0x97 , (byte) 0x64 ,

66 (byte) 0xb1 , (byte) 0xdb , (byte) 0x74 , (byte) 0x6e , (byte) 0x91 ,

67 (byte) 0x6b , (byte) 0xa7 , (byte) 0x7d , (byte) 0 xef , (byte) 0x8b ,

68 (byte) 0x37 , (byte) 0xb7 , (byte) 0x84 , (byte) 0x1e , (byte) 0xa7 ,

69 (byte) 0x26 , (byte) 0x26 , (byte) 0xea , (byte) 0xe9 , (byte) 0xb7 ,

70 (byte) 0x5e , (byte) 0x3f , (byte) 0xdf , (byte) 0xa4 , (byte) 0xc5 ,

71 (byte) 0x45 , (byte) 0x4e , (byte) 0x34 , (byte) 0x33 , (byte) 0xe5 ,

72 (byte) 0x43 , (byte) 0x46 , (byte) 0xc0 , (byte) 0x2b , (byte) 0xbd ,

73 (byte) 0x85 , (byte) 0x2f , (byte) 0xca , (byte) 0xf8 , (byte) 0x9d ,

74 (byte) 0xb4 , (byte) 0xbc , (byte) 0x67 , (byte) 0x92 , (byte) 0xd4 ,

75 (byte) 0x33 , (byte) 0xfd , (byte) 0xbd , (byte) 0x82 , (byte) 0x9d ,

76 (byte) 0x62 , (byte) 0 xfc , (byte) 0xbb , (byte) 0xd2 , (byte) 0xad ,

77 (byte) 0x05 , (byte) 0xa2 , (byte) 0 xfc , (byte) 0x2d , (byte) 0xe3 ,

78 (byte) 0x02 , (byte) 0xe2 , (byte) 0x41 , (byte) 0x9b , (byte) 0x1f ,

79 (byte) 0xf8 , (byte) 0x87 , (byte) 0x15 , (byte) 0x89 , (byte) 0xfb ,

80 (byte) 0x53 , (byte) 0x99 , (byte) 0xb3 , (byte) 0xeb , (byte) 0xdb ,

81 (byte) 0x01 , (byte) 0xaf , (byte) 0x71 , (byte) 0xd2 , (byte) 0xf2 ,

82 (byte) 0x73 , (byte) 0xb7 , (byte) 0x82 , (byte) 0x30 , (byte) 0x25 ,

83 (byte) 0x04 , (byte) 0x29 , (byte) 0x2b , (byte) 0xb9 , (byte) 0x92 ,

84 (byte) 0x92 , (byte) 0x35 , (byte) 0x97 , (byte) 0x0e , (byte) 0xb8 ,

85 (byte) 0xf2 , (byte) 0xc6 , (byte) 0x2e , (byte) 0xa7 , (byte) 0x2d ,

86 (byte) 0x0c , (byte) 0x09 , (byte) 0x5e , (byte) 0x07 , (byte) 0x06 ,

87 (byte) 0x67 , (byte) 0xa0 , (byte) 0xdf , (byte) 0x55 , (byte) 0x09 ,

88 (byte) 0 xfc , (byte) 0xee , (byte) 0x2b , (byte) 0x13 , (byte) 0x1a ,

89 (byte) 0x2e , (byte) 0x5d , (byte) 0x0a , (byte) 0xbb , (byte) 0x45 ,

90 (byte) 0x75 , (byte) 0xf4 , (byte) 0xd8 , (byte) 0xdc , (byte) 0x2e ,

91 (byte) 0x99 , (byte) 0x2a , (byte) 0x13 , (byte) 0xa1 , (byte) 0x1e ,

92 (byte) 0x99 , (byte) 0xfd , (byte) 0xdc , (byte) 0 xcf , (byte) 0xcc ,

93 (byte) 0x3f , (byte) 0x42 , (byte) 0xf7 , (byte) 0x3d , (byte) 0x73 ,

94 (byte) 0xee , (byte) 0xca , (byte) 0x76 , (byte) 0xe4 , (byte) 0x75 ,

95 (byte) 0xc4 , (byte) 0x21 , (byte) 0xd4 , (byte) 0x14 , (byte) 0x2e ,

96 (byte) 0x22 , (byte) 0x9c , (byte) 0xce , (byte) 0x10 , (byte) 0xaf ,

97 (byte) 0xa6 , (byte) 0x25 , (byte) 0xa0 , (byte) 0x01 , (byte) 0xb1 ,

259

C.1 O�ine Attestation Mechanism

98 (byte) 0x82 , (byte) 0xba , (byte) 0x4c , (byte) 0xb2 , (byte) 0x66 ,

99 (byte) 0x89 , (byte) 0x89 , (byte) 0x6b , (byte) 0x06 , (byte) 0x15 ,

100 (byte) 0xba , (byte) 0x64 , (byte) 0xa3 , (byte) 0x73 , (byte) 0x88 ,

101 (byte) 0x34 , (byte) 0x99 , (byte) 0x3e , (byte) 0x75 , (byte) 0x24 ,

102 (byte) 0xf4 , (byte) 0xba , (byte) 0xb0 , (byte) 0x22 , (byte) 0x8f ,

103 (byte) 0xc3 , (byte) 0x44 , (byte) 0x74 , (byte) 0x0b , (byte) 0x52 ,

104 (byte) 0x96 , (byte) 0xc6 , (byte) 0x97 , (byte) 0x8b , (byte) 0xf2 ,

105 (byte) 0xe3 , (byte) 0xc1 , (byte) 0xaf , (byte) 0x53 , (byte) 0x03 ,

106 (byte) 0x51 , (byte) 0xa7 , (byte) 0x0d , (byte) 0x42 , (byte) 0x6a ,

107 (byte) 0x20 , (byte) 0x03 , (byte) 0x31 , (byte) 0xb4 , (byte) 0xc9 ,

108 (byte) 0xaa , (byte) 0x9e , (byte) 0xda , (byte) 0x6f , (byte) 0x7b ,

109 (byte) 0xb8 , (byte) 0x6d , (byte) 0x54 , (byte) 0x57 , (byte) 0xa8 ,

110 (byte) 0xed , (byte) 0x51 , (byte) 0xa4 , (byte) 0x23 , (byte) 0x05 ,

111 (byte) 0x0b , (byte) 0xb3 , (byte) 0x90 , (byte) 0x42 , (byte) 0x38 ,

112 (byte) 0xa8 , (byte) 0xbc , (byte) 0xd5 , (byte) 0x2f , (byte) 0x87 ,

113 (byte) 0x82 , (byte) 0x5b , (byte) 0 x f f , (byte) 0xdb , (byte) 0xba ,

114 (byte) 0x41 , (byte) 0x18 , (byte) 0xe0 , (byte) 0x4a , (byte) 0x07 ,

115 (byte) 0x04 , (byte) 0xe1 , (byte) 0x3c , (byte) 0xd5 , (byte) 0xbf , } ;

116 byte [] tempSeed = {

117 (byte) 0x00 , (byte) 0x00 , (byte) 0x00 , (byte) 0x00 , (byte) 0x00 ,

118 (byte) 0x00 , (byte) 0x00 , (byte) 0x00 , (byte) 0x00 , (byte) 0x00 ,

119 (byte) 0x00 , (byte) 0x00 , (byte) 0x00 , (byte) 0x00 , (byte) 0x00 ,

120 (byte) 0x00 } ;

121 private byte [] SignedDataTag = {

122 (byte) 0x1F , (byte) 0x5F , (byte) 0x5D , (byte) 0x02 } ;

123 short copyPointer = (short) 0 ;

124 f ina l stat ic byte CLA = (byte) 0xB0 ;

125 f ina l stat ic byte Sta r tPro toco l = (byte) 0x40 ;

126 f ina l stat ic byte s e l f t e s t = (byte) 0 x f f ;

127 f ina l stat ic short SW_CLASSNOTSUPPORTED = 0x6320 ;

128 f ina l stat ic short SW_ERROR_INS = 0x6300 ;

129 RandomData randomDataGen ;

130 Cipher pkCipher ;

131 byte [] r e c e i v i n gBu f f e r = null ;

132 short byte sLe f t = 0 ;

133 short readCount = 0 ;

134 short rCount = 0 ;

135 short s i gn l eng th = 0 ;

136 MessageDigest SHA256 ;

137 AESKey cipherKey ;

138 Cipher syCipher ;

139 byte [] I n i t i a l i s a t i o nV e c t o r = {

140 (byte) 0x6C , (byte) 0xDE, (byte) 0xBE, (byte) 0x7B , (byte) 0x89 ,

(byte) 0x99 ,

141 (byte) 0x8C , (byte) 0xAF, (byte) 0xC5 , (byte) 0x7D , (byte) 0xB1 , (byte)

142 0x7C , (byte) 0x62 , (byte) 0x0A , (byte) 0x86 , (byte) 0x52 } ;

143 Signature phSign ;

144 PrngSHA256 myPrngHMAC;

145

146 private S e l f t e s t O f f l i n e () {

147 phSign = Signature . g e t In s tance (S ignature .ALG_RSA_SHA_PKCS1, fa l se) ;

260

C.1 O�ine Attestation Mechanism

148 phSCKeyPair = new KeyPair (KeyPair .ALG_RSA, KeyBuilder .LENGTH_RSA_512) ;

149 cipherKey = (AESKey) KeyBuilder . buildKey

150 (KeyBuilder .TYPE_AES_TRANSIENT_DESELECT,

151 KeyBuilder .LENGTH_AES_128, fa l se) ;

152 syCipher = Cipher . g e t In s tance (Cipher .ALG_AES_BLOCK_128_CBC_NOPAD,

153 fa l se) ;

154 myPrngHmac = new PrngSHA256 () ;

155 pkCipher = Cipher . g e t In s tance (Cipher .ALG_RSA_NOPAD, fa l se) ;

156 phSCKeyPair . genKeyPair () ;

157 SHA256 = MessageDigest . g e t In s tance (MessageDigest .ALG_SHA_256,

158 fa l se) ;

159 }

160 public stat ic void i n s t a l l (byte bArray [] , short bOffset , byte bLength)

161 throws ISOException {

162 new S e l f t e s t O f f l i n e () . r e g i s t e r () ;

163 }

164

165 public void proce s s (APDU apdu)throws ISOException {

166 byte [] apduBuffer = apdu . ge tBu f f e r () ;

167 i f (s e l e c t i n gApp l e t ()) {

168 this . i n i t i a l i s e () ;

169 return ;

170 }

171 i f (apduBuffer [ISO7816 .OFFSET_CLA] != CLA) {

172 ISOException . throwIt (SW_CLASSNOTSUPPORTED) ;

173 }

174 i f (apduBuffer [ISO7816 .OFFSET_INS] == s e l f t e s t) {

175 r e c e i v i n gBu f f e r = JCSystem . makeTransientByteArray ((short) 84 ,

176 JCSystem .MEMORY_TYPE_TRANSIENT_DESELECT) ;

177 generateResponse ((short) 1) ;

178 apdu . setOutgoing () ;

179 apdu . setOutgoingLength ((short) copyPointer) ;

180 apdu . sendBytesLong (r e c e i v i ngBu f f e r , (short) 0 , (short) copyPointer) ;

181 return ;

182 }

183 JCSystem . r eques tObjec tDe l e t i on () ;

184 }

185

186 void s e l f t e s t P r o c e s s () {

187 byte [] memoryWordRead = new byte [4] ;

188 byte rcount = (byte) 0x00 ;

189 while (rcount < MemoryContents . l ength) {

190 Ut i l . arrayCopyNonAtomic (MemoryContents ,

191 rcount , memoryWordRead , (short) 0 , memoryWordRead . l ength) ;

192 generateSeed (memoryWordRead , tempSeed) ;

193 rcount += (byte) (rcount+(short) 4) ;

194 }

195 i f (seedZero ()) {

196 // PUF(tempSeed) ; // This i s emulat ions

197 } else {

198 ISOException . throwIt ((short) 0xFA17) ;

261

C.2 Online Attestation Mechanism

199 }

200 }

201

202 boolean seedZero () {

203 for (short i =0; i<tempSeed . l ength ; i++){

204 i f (tempSeed [i] !=(byte) 0x00) {

205 return true ;

206 }

207 }

208 return fa l se ;

209 }

210

211 private void generateResponse () {

212 copyPointer = 0 ;

213 s e l f t e s t P r o c e s s () ;

214 phDecryption () ;

215 getSignatureKey () ;

216 }

217

218 void phDecryption () {

219 syCipher . i n i t (phCipherKey , Cipher .MODE_DECRYPT, I n i t i a l i s a t i o nV e c t o r ,

220 (short) 0 , (short) I n i t i a l i s a t i o nV e c t o r . l ength) ;

221 syCipher . doFinal (s ignatureKey , i nbu f fO f f s e t , inbuf fLength ,

s ignatureKey ,

222 i n bu f fO f f s e t) ;

223 }

224 void getSignatureKey () {

225 RSAPrivateKey myPrivate = (RSAPrivateKey) this . phSCKeyPair . g e tPr iva t e () ;

226 short kLen = myPrivate . getExponent (r e c e i v i ngBu f f e r , (short)

227 (copyPointer + (short) 2)) ;

228 this . shortToBytes (r e c e i v i ngBu f f e r , copyPointer , kLen) ;

229 copyPointer += (short) (kLen + (short) 2) ;

230 r e c e i v i n gBu f f e r [6]++;

231 copyPointer = Ut i l . arrayCopyNonAtomic (this . ModulusTag , (short) 0 ,

232 r e c e i v i ngBu f f e r , (short) (copyPointer) , (short)

233 this . ModulusTag . l ength) ;

234 kLen = myPrivate . getModulus (r e c e i v i ngBu f f e r , (short)

235 (copyPointer + (short) 2)) ;

236 this . shortToBytes (r e c e i v i ngBu f f e r , copyPointer , kLen) ;

237 }

238 }

C.2 Online Attestation Mechanism

In this section, we detail the Java Card implementation of the online attestation mechanism

based on PRNG and PUF algorithms discussed in section 4.5.2 and 4.5.1, respectively.

262

C.2 Online Attestation Mechanism

C.2.1 Online PRNG Algorithm

The Java Card implementation of the o�ine PRNG algorithm discussed in section 4.5.2.

1 package sel ftestOnlinePRNG ;

2

3 import javacard . framework .APDU;

4 import javacard . framework . Applet ;

5 import javacard . framework . ISO7816 ;

6 import javacard . framework . ISOException ;

7 import javacard . framework . JCSystem ;

8 import javacard . framework . Ut i l ;

9 import javacard . s e c u r i t y .AESKey ;

10 import javacard . s e c u r i t y . Key ;

11 import javacard . s e c u r i t y . KeyBuilder ;

12 import javacard . s e c u r i t y . KeyPair ;

13 import javacard . s e c u r i t y . MessageDigest ;

14 import javacard . s e c u r i t y . RSAPrivateKey ;

15 import javacard . s e c u r i t y . RSAPublicKey ;

16 import javacard . s e c u r i t y . RandomData ;

17 import javacard . s e c u r i t y . S ignature ;

18 import javacardx . apdu . ExtendedLength ;

19 import javacardx . crypto . Cipher ;

20 import javacard . s e c u r i t y . MessageDigest ;

21

22 public class S e l f t e s t O f f l i n e extends Applet implements ExtendedLength {

23 private stat ic byte [] MemoryContents = {

24 (byte) 0x37 , (byte) 0x7a , (byte) 0xbc , (byte) 0xc0 , (byte) 0xea , (byte)

25 0x07 , (byte) 0x94 , (byte) 0x59 , (byte) 0xd6 , (byte) 0x37 , (byte) 0x6b ,

26 (byte) 0x4c , (byte) 0x82 , (byte) 0xdb , (byte) 0x54 , (byte) 0xb2 ,

27 (byte) 0xe8 , (byte) 0xea , (byte) 0x71 , (byte) 0xe1 , (byte) 0xa4 ,

28 (byte) 0x41 , (byte) 0x06 , (byte) 0x44 , (byte) 0 xfe , (byte) 0x86 ,

29 (byte) 0x8e , (byte) 0x4f , (byte) 0x39 , (byte) 0xf5 , (byte) 0xdb ,

30 (byte) 0xd1 , (byte) 0xf1 , (byte) 0xc5 , (byte) 0xd8 , (byte) 0xac ,

31 (byte) 0xbb , (byte) 0x73 , (byte) 0x51 , (byte) 0xa1 , (byte) 0xa3 ,

32 (byte) 0x8a , (byte) 0x26 , (byte) 0x5d , (byte) 0xf3 , (byte) 0x61 ,

33 (byte) 0x55 , (byte) 0x56 , (byte) 0x39 , (byte) 0x3f , (byte) 0x4c ,

34 (byte) 0x2a , (byte) 0x43 , (byte) 0xc4 , (byte) 0xd7 , (byte) 0xa1 ,

35 (byte) 0xaa , (byte) 0xc1 , (byte) 0xf2 , (byte) 0xd6 , (byte) 0x07 ,

36 (byte) 0xa8 , (byte) 0x58 , (byte) 0x9a , (byte) 0x70 , (byte) 0x84 ,

37 (byte) 0x15 , (byte) 0x19 , (byte) 0x56 , (byte) 0x61 , (byte) 0x3d ,

38 (byte) 0x88 , (byte) 0x2a , (byte) 0x44 , (byte) 0x54 , (byte) 0x29 ,

39 (byte) 0x29 , (byte) 0x26 , (byte) 0x36 , (byte) 0x06 , (byte) 0 xfe ,

40 (byte) 0xad , (byte) 0x27 , (byte) 0x13 , (byte) 0x86 , (byte) 0x0e ,

41 (byte) 0x85 , (byte) 0x3c , (byte) 0x32 , (byte) 0xe2 , (byte) 0x38 ,

42 (byte) 0xd2 , (byte) 0x91 , (byte) 0x82 , (byte) 0x89 , (byte) 0xce ,

43 (byte) 0x79 , (byte) 0x02 , (byte) 0x43 , (byte) 0xfd , (byte) 0xaf ,

44 (byte) 0x18 , (byte) 0xe8 , (byte) 0x5b , (byte) 0xd4 , (byte) 0x72 ,

45 (byte) 0x03 , (byte) 0x63 , (byte) 0x2b , (byte) 0x29 , (byte) 0x72 ,

46 (byte) 0xe0 , (byte) 0x92 , (byte) 0x54 , (byte) 0x06 , (byte) 0x1c ,

47 (byte) 0x7f , (byte) 0xc7 , (byte) 0x37 , (byte) 0x93 , (byte) 0x2f ,

48 (byte) 0x7a , (byte) 0x84 , (byte) 0x95 , (byte) 0xec , (byte) 0x5e ,

263

C.2 Online Attestation Mechanism

49 (byte) 0xa5 , (byte) 0xf6 , (byte) 0x4e , (byte) 0x7e , (byte) 0x1f ,

50 (byte) 0xe6 , (byte) 0xe2 , (byte) 0x04 , (byte) 0x2e , (byte) 0x25 ,

51 (byte) 0x7f , (byte) 0x2f , (byte) 0x3c , (byte) 0 xfe , (byte) 0x57 ,

52 (byte) 0x9e , (byte) 0x7f , (byte) 0xce , (byte) 0x72 , (byte) 0xc0 ,

53 (byte) 0xe9 , (byte) 0x79 , (byte) 0x05 , (byte) 0xc5 , (byte) 0xfd ,

54 (byte) 0x6a , (byte) 0x46 , (byte) 0 xfe , (byte) 0x33 , (byte) 0x84 ,

55 (byte) 0x3f , (byte) 0x09 , (byte) 0xae , (byte) 0x01 , (byte) 0x18 ,

56 (byte) 0x5a , (byte) 0xf6 , (byte) 0xc6 , (byte) 0xd3 , (byte) 0xa1 ,

57 (byte) 0xe2 , (byte) 0x90 , (byte) 0x83 , (byte) 0x79 , (byte) 0xee ,

58 (byte) 0xa6 , (byte) 0xd4 , (byte) 0xf6 , (byte) 0xd1 , (byte) 0x86 ,

59 (byte) 0x91 , (byte) 0x34 , (byte) 0x00 , (byte) 0xd3 , (byte) 0xe4 ,

60 (byte) 0x8a , (byte) 0xfb , (byte) 0xaa , (byte) 0x6c , (byte) 0xe5 ,

61 (byte) 0x46 , (byte) 0xa7 , (byte) 0x00 , (byte) 0x9e , (byte) 0xd8 ,

62 (byte) 0x81 , (byte) 0xbc , (byte) 0xd1 , (byte) 0xb5 , (byte) 0x60 ,

63 (byte) 0xd5 , (byte) 0x91 , (byte) 0x13 , (byte) 0x06 , (byte) 0x68 ,

64 (byte) 0x21 , (byte) 0x8f , (byte) 0x7d , (byte) 0xc2 , (byte) 0x3e ,

65 (byte) 0xd2 , (byte) 0x75 , (byte) 0x0f , (byte) 0x97 , (byte) 0x64 ,

66 (byte) 0xb1 , (byte) 0xdb , (byte) 0x74 , (byte) 0x6e , (byte) 0x91 ,

67 (byte) 0x6b , (byte) 0xa7 , (byte) 0x7d , (byte) 0 xef , (byte) 0x8b ,

68 (byte) 0x37 , (byte) 0xb7 , (byte) 0x84 , (byte) 0x1e , (byte) 0xa7 ,

69 (byte) 0x26 , (byte) 0x26 , (byte) 0xea , (byte) 0xe9 , (byte) 0xb7 ,

70 (byte) 0x5e , (byte) 0x3f , (byte) 0xdf , (byte) 0xa4 , (byte) 0xc5 ,

71 (byte) 0x45 , (byte) 0x4e , (byte) 0x34 , (byte) 0x33 , (byte) 0xe5 ,

72 (byte) 0x43 , (byte) 0x46 , (byte) 0xc0 , (byte) 0x2b , (byte) 0xbd ,

73 (byte) 0x85 , (byte) 0x2f , (byte) 0xca , (byte) 0xf8 , (byte) 0x9d ,

74 (byte) 0xb4 , (byte) 0xbc , (byte) 0x67 , (byte) 0x92 , (byte) 0xd4 ,

75 (byte) 0x33 , (byte) 0xfd , (byte) 0xbd , (byte) 0x82 , (byte) 0x9d ,

76 (byte) 0x62 , (byte) 0 xfc , (byte) 0xbb , (byte) 0xd2 , (byte) 0xad ,

77 (byte) 0x05 , (byte) 0xa2 , (byte) 0 xfc , (byte) 0x2d , (byte) 0xe3 ,

78 (byte) 0x02 , (byte) 0xe2 , (byte) 0x41 , (byte) 0x9b , (byte) 0x1f ,

79 (byte) 0xf8 , (byte) 0x87 , (byte) 0x15 , (byte) 0x89 , (byte) 0xfb ,

80 (byte) 0x53 , (byte) 0x99 , (byte) 0xb3 , (byte) 0xeb , (byte) 0xdb ,

81 (byte) 0x01 , (byte) 0xaf , (byte) 0x71 , (byte) 0xd2 , (byte) 0xf2 ,

82 (byte) 0x73 , (byte) 0xb7 , (byte) 0x82 , (byte) 0x30 , (byte) 0x25 ,

83 (byte) 0x04 , (byte) 0x29 , (byte) 0x2b , (byte) 0xb9 , (byte) 0x92 ,

84 (byte) 0x92 , (byte) 0x35 , (byte) 0x97 , (byte) 0x0e , (byte) 0xb8 ,

85 (byte) 0xf2 , (byte) 0xc6 , (byte) 0x2e , (byte) 0xa7 , (byte) 0x2d ,

86 (byte) 0x0c , (byte) 0x09 , (byte) 0x5e , (byte) 0x07 , (byte) 0x06 ,

87 (byte) 0x67 , (byte) 0xa0 , (byte) 0xdf , (byte) 0x55 , (byte) 0x09 ,

88 (byte) 0 xfc , (byte) 0xee , (byte) 0x2b , (byte) 0x13 , (byte) 0x1a ,

89 (byte) 0x2e , (byte) 0x5d , (byte) 0x0a , (byte) 0xbb , (byte) 0x45 ,

90 (byte) 0x75 , (byte) 0xf4 , (byte) 0xd8 , (byte) 0xdc , (byte) 0x2e ,

91 (byte) 0x99 , (byte) 0x2a , (byte) 0x13 , (byte) 0xa1 , (byte) 0x1e ,

92 (byte) 0x99 , (byte) 0xfd , (byte) 0xdc , (byte) 0 xcf , (byte) 0xcc ,

93 (byte) 0x3f , (byte) 0x42 , (byte) 0xf7 , (byte) 0x3d , (byte) 0x73 ,

94 (byte) 0xee , (byte) 0xca , (byte) 0x76 , (byte) 0xe4 , (byte) 0x75 ,

95 (byte) 0xc4 , (byte) 0x21 , (byte) 0xd4 , (byte) 0x14 , (byte) 0x2e ,

96 (byte) 0x22 , (byte) 0x9c , (byte) 0xce , (byte) 0x10 , (byte) 0xaf ,

97 (byte) 0xa6 , (byte) 0x25 , (byte) 0xa0 , (byte) 0x01 , (byte) 0xb1 ,

98 (byte) 0x82 , (byte) 0xba , (byte) 0x4c , (byte) 0xb2 , (byte) 0x66 ,

99 (byte) 0x89 , (byte) 0x89 , (byte) 0x6b , (byte) 0x06 , (byte) 0x15 ,

264

C.2 Online Attestation Mechanism

100 (byte) 0xba , (byte) 0x64 , (byte) 0xa3 , (byte) 0x73 , (byte) 0x88 ,

101 (byte) 0x34 , (byte) 0x99 , (byte) 0x3e , (byte) 0x75 , (byte) 0x24 ,

102 (byte) 0xf4 , (byte) 0xba , (byte) 0xb0 , (byte) 0x22 , (byte) 0x8f ,

103 (byte) 0xc3 , (byte) 0x44 , (byte) 0x74 , (byte) 0x0b , (byte) 0x52 ,

104 (byte) 0x96 , (byte) 0xc6 , (byte) 0x97 , (byte) 0x8b , (byte) 0xf2 ,

105 (byte) 0xe3 , (byte) 0xc1 , (byte) 0xaf , (byte) 0x53 , (byte) 0x03 ,

106 (byte) 0x51 , (byte) 0xa7 , (byte) 0x0d , (byte) 0x42 , (byte) 0x6a ,

107 (byte) 0x20 , (byte) 0x03 , (byte) 0x31 , (byte) 0xb4 , (byte) 0xc9 ,

108 (byte) 0xaa , (byte) 0x9e , (byte) 0xda , (byte) 0x6f , (byte) 0x7b ,

109 (byte) 0xb8 , (byte) 0x6d , (byte) 0x54 , (byte) 0x57 , (byte) 0xa8 ,

110 (byte) 0xed , (byte) 0x51 , (byte) 0xa4 , (byte) 0x23 , (byte) 0x05 ,

111 (byte) 0x0b , (byte) 0xb3 , (byte) 0x90 , (byte) 0x42 , (byte) 0x38 ,

112 (byte) 0xa8 , (byte) 0xbc , (byte) 0xd5 , (byte) 0x2f , (byte) 0x87 ,

113 (byte) 0x82 , (byte) 0x5b , (byte) 0 x f f , (byte) 0xdb , (byte) 0xba ,

114 (byte) 0x41 , (byte) 0x18 , (byte) 0xe0 , (byte) 0x4a , (byte) 0x07 ,

115 (byte) 0x04 , (byte) 0xe1 , (byte) 0x3c , (byte) 0xd5 , (byte) 0xbf , } ;

116 byte [] tempSeed = {

117 (byte) 0x00 , (byte) 0x00 , (byte) 0x00 , (byte) 0x00 , (byte) 0x00 ,

118 (byte) 0x00 , (byte) 0x00 , (byte) 0x00 , (byte) 0x00 , (byte) 0x00 ,

119 (byte) 0x00 , (byte) 0x00 , (byte) 0x00 , (byte) 0x00 , (byte) 0x00 ,

120 (byte) 0x00 } ;

121 private byte [] SignedDataTag = {

122 (byte) 0x1F , (byte) 0x5F , (byte) 0x5D , (byte) 0x02 } ;

123 short copyPointer = (short) 0 ;

124 f ina l stat ic byte CLA = (byte) 0xB0 ;

125 f ina l stat ic byte Sta r tPro toco l = (byte) 0x40 ;

126 f ina l stat ic byte s e l f t e s t = (byte) 0 x f f ;

127 f ina l stat ic short SW_CLASSNOTSUPPORTED = 0x6320 ;

128 f ina l stat ic short SW_ERROR_INS = 0x6300 ;

129 RandomData randomDataGen ;

130 Cipher pkCipher ;

131 byte [] r e c e i v i n gBu f f e r = null ;

132 short byte sLe f t = 0 ;

133 short readCount = 0 ;

134 short rCount = 0 ;

135 short s i gn l eng th = 0 ;

136 MessageDigest SHA128 ;

137 AESKey cipherKey ;

138 Cipher syCipher ;

139 byte [] I n i t i a l i s a t i o nV e c t o r = {

140 (byte) 0x6C , (byte) 0xDE, (byte) 0xBE, (byte) 0x7B , (byte) 0x89 ,

(byte) 0x99 ,

141 (byte) 0x8C , (byte) 0xAF, (byte) 0xC5 , (byte) 0x7D , (byte) 0xB1 , (byte)

142 0x7C , (byte) 0x62 , (byte) 0x0A , (byte) 0x86 , (byte) 0x52 } ;

143 Signature phSign ;

144 PrngSHA256 myPrngHMAC;

145

146 private S e l f t e s t O f f l i n e () {

147 phSign = Signature . g e t In s tance (S ignature .ALG_RSA_SHA_PKCS1, fa l se) ;

148 phSCKeyPair = new KeyPair (KeyPair .ALG_RSA, KeyBuilder .LENGTH_RSA_512) ;

149 cipherKey = (AESKey) KeyBuilder . buildKey

265

C.2 Online Attestation Mechanism

150 (KeyBuilder .TYPE_AES_TRANSIENT_DESELECT,

151 KeyBuilder .LENGTH_AES_128, fa l se) ;

152 syCipher = Cipher . g e t In s tance (Cipher .ALG_AES_BLOCK_128_CBC_NOPAD,

153 fa l se) ;

154 myPrngHmac = new PrngSHA256 () ;

155 pkCipher = Cipher . g e t In s tance (Cipher .ALG_RSA_NOPAD, fa l se) ;

156 phSCKeyPair . genKeyPair () ;

157 SHA128 = MessageDigest . g e t In s tance (MessageDigest .ALG_SHA_128,

158 fa l se) ;

159 byte [] r e sponseBu f f e r = null ;

160 }

161 public stat ic void i n s t a l l (byte bArray [] , short bOffset , byte bLength)

162 throws ISOException {

163 new S e l f t e s t O f f l i n e () . r e g i s t e r () ;

164 }

165

166 public void proce s s (APDU apdu)throws ISOException {

167 byte [] apduBuffer = apdu . ge tBu f f e r () ;

168 i f (s e l e c t i n gApp l e t ()) {

169 this . i n i t i a l i s e () ;

170 return ;

171 }

172 i f (apduBuffer [ISO7816 .OFFSET_CLA] != CLA) {

173 ISOException . throwIt (SW_CLASSNOTSUPPORTED) ;

174 }

175 r e c e i v i n gBu f f e r = null ;

176 byte sLe f t = 0 ;

177 byte sLe f t = apdu . getIncomingLength () ;

178 r e c e i v i n gBu f f e r = JCSystem . makeTransientByteArray (bytesLe f t ,

179 JCSystem .MEMORY_TYPE_TRANSIENT_DESELECT) ;

180 readCount = (short) ((short) apdu . setIncomingAndReceive ()) ;

181 rCount = 0 ;

182 i f (byte sLe f t > 0) {

183 rCount = Ut i l . arrayCopyNonAtomic (apduBuffer ,

184 ISO7816 .OFFSET_EXT_CDATA, r e c e i v i ngBu f f e r , rCount , readCount) ;

185 byte sLe f t −= readCount ;

186 }

187 while (byte sLe f t > 0) {

188 try {

189 readCount = apdu . r e c e i v eByte s ((short) 0) ;

190 rCount = Ut i l . arrayCopyNonAtomic (apduBuffer , (short) 0 ,

191 r e c e i v i ngBu f f e r , rCount , readCount) ;

192 byte sLe f t −= readCount ;

193 } catch (Exception aE) {

194 ISOException . throwIt ((short) 0x7AAA) ;

195 }

196 }

197 r e sponseBu f f e r = JCSystem . makeTransientByteArray ((short) 256 ,

198 JCSystem .MEMORY_TYPE_TRANSIENT_DESELECT) ;

199 s e l f t e s t P r o c e s s () ;

200 JCSystem . r eques tObjec tDe l e t i on () ;

266

C.2 Online Attestation Mechanism

201 apdu . setOutgoing () ;

202 apdu . setOutgoingLength ((short) r e sponseBu f f e r . l ength) ;

203 apdu . sendBytesLong (re sponseBuf f e r , (short) 0 ,

204 (short) r e sponseBu f f e r . l ength) ;

205 JCSystem . r eques tObjec tDe l e t i on () ;

206 }

207

208 void s e l f t e s t P r o c e s s () {

209 byte [] memoryWordRead = new byte [4] ;

210 byte [] hashValue = new byte [3 2]

211 byte rcount = (byte) 0x00 ;

212 byte seedRef = (byte) 0x00 ;

213 while (rcount < r e c e i v i n gBu f f e r . l ength) {

214 seedRef=(short) (r e c e i v i n gBu f f e r [rcount] %

215 (short) (MemoryContents . length −1)) ;

216 seedRef = (byte) (myPrngHMAC. generateRandom (seedRef) . [0]

217 % (MemoryContents . length −16))

218 Ut i l . arrayCopyNonAtomic (MemoryContents ,

219 seedRef , hashValue , (short) 0 , (short) 16) ;

220 Ut i l . arrayCopyNonAtomic (mK,

221 (short) 0 , hashValue , (short) 16 , (short) 16) ;

222 SHA128 . doFinal (hashValue , (short) 0 , (short) hashValue . length ,

223 hashValue , (short) 0) ;

224 for (short i =0; i<re sponseBu f f e r . l ength ; i++){

225 r e sponseBu f f e r [i] = re sponseBu f f e r [i] ^ hashValue [i] ;

226 }

227 rcount++;

228 }

229 }

230 }

C.2.2 Online PUF Algorithm

The Java Card implementation that emulates the o�ine PUF algorithm discussed in section

4.5.1.

1 package se l f t e s tOnl inePUF ;

2

3 import javacard . framework .APDU;

4 import javacard . framework . Applet ;

5 import javacard . framework . ISO7816 ;

6 import javacard . framework . ISOException ;

7 import javacard . framework . JCSystem ;

8 import javacard . framework . Ut i l ;

9 import javacard . s e c u r i t y .AESKey ;

10 import javacard . s e c u r i t y . Key ;

11 import javacard . s e c u r i t y . KeyBuilder ;

12 import javacard . s e c u r i t y . KeyPair ;

13 import javacard . s e c u r i t y . MessageDigest ;

14 import javacard . s e c u r i t y . RSAPrivateKey ;

15 import javacard . s e c u r i t y . RSAPublicKey ;

267

C.2 Online Attestation Mechanism

16 import javacard . s e c u r i t y . RandomData ;

17 import javacard . s e c u r i t y . S ignature ;

18 import javacardx . apdu . ExtendedLength ;

19 import javacardx . crypto . Cipher ;

20 import javacard . s e c u r i t y . MessageDigest ;

21

22 public class S e l f t e s t O f f l i n e extends Applet implements ExtendedLength {

23 private stat ic byte [] MemoryContents = {

24 (byte) 0x37 , (byte) 0x7a , (byte) 0xbc , (byte) 0xc0 , (byte) 0xea , (byte)

25 0x07 , (byte) 0x94 , (byte) 0x59 , (byte) 0xd6 , (byte) 0x37 , (byte) 0x6b ,

26 (byte) 0x4c , (byte) 0x82 , (byte) 0xdb , (byte) 0x54 , (byte) 0xb2 ,

27 (byte) 0xe8 , (byte) 0xea , (byte) 0x71 , (byte) 0xe1 , (byte) 0xa4 ,

28 (byte) 0x41 , (byte) 0x06 , (byte) 0x44 , (byte) 0 xfe , (byte) 0x86 ,

29 (byte) 0x8e , (byte) 0x4f , (byte) 0x39 , (byte) 0xf5 , (byte) 0xdb ,

30 (byte) 0xd1 , (byte) 0xf1 , (byte) 0xc5 , (byte) 0xd8 , (byte) 0xac ,

31 (byte) 0xbb , (byte) 0x73 , (byte) 0x51 , (byte) 0xa1 , (byte) 0xa3 ,

32 (byte) 0x8a , (byte) 0x26 , (byte) 0x5d , (byte) 0xf3 , (byte) 0x61 ,

33 (byte) 0x55 , (byte) 0x56 , (byte) 0x39 , (byte) 0x3f , (byte) 0x4c ,

34 (byte) 0x2a , (byte) 0x43 , (byte) 0xc4 , (byte) 0xd7 , (byte) 0xa1 ,

35 (byte) 0xaa , (byte) 0xc1 , (byte) 0xf2 , (byte) 0xd6 , (byte) 0x07 ,

36 (byte) 0xa8 , (byte) 0x58 , (byte) 0x9a , (byte) 0x70 , (byte) 0x84 ,

37 (byte) 0x15 , (byte) 0x19 , (byte) 0x56 , (byte) 0x61 , (byte) 0x3d ,

38 (byte) 0x88 , (byte) 0x2a , (byte) 0x44 , (byte) 0x54 , (byte) 0x29 ,

39 (byte) 0x29 , (byte) 0x26 , (byte) 0x36 , (byte) 0x06 , (byte) 0 xfe ,

40 (byte) 0xad , (byte) 0x27 , (byte) 0x13 , (byte) 0x86 , (byte) 0x0e ,

41 (byte) 0x85 , (byte) 0x3c , (byte) 0x32 , (byte) 0xe2 , (byte) 0x38 ,

42 (byte) 0xd2 , (byte) 0x91 , (byte) 0x82 , (byte) 0x89 , (byte) 0xce ,

43 (byte) 0x79 , (byte) 0x02 , (byte) 0x43 , (byte) 0xfd , (byte) 0xaf ,

44 (byte) 0x18 , (byte) 0xe8 , (byte) 0x5b , (byte) 0xd4 , (byte) 0x72 ,

45 (byte) 0x03 , (byte) 0x63 , (byte) 0x2b , (byte) 0x29 , (byte) 0x72 ,

46 (byte) 0xe0 , (byte) 0x92 , (byte) 0x54 , (byte) 0x06 , (byte) 0x1c ,

47 (byte) 0x7f , (byte) 0xc7 , (byte) 0x37 , (byte) 0x93 , (byte) 0x2f ,

48 (byte) 0x7a , (byte) 0x84 , (byte) 0x95 , (byte) 0xec , (byte) 0x5e ,

49 (byte) 0xa5 , (byte) 0xf6 , (byte) 0x4e , (byte) 0x7e , (byte) 0x1f ,

50 (byte) 0xe6 , (byte) 0xe2 , (byte) 0x04 , (byte) 0x2e , (byte) 0x25 ,

51 (byte) 0x7f , (byte) 0x2f , (byte) 0x3c , (byte) 0 xfe , (byte) 0x57 ,

52 (byte) 0x9e , (byte) 0x7f , (byte) 0xce , (byte) 0x72 , (byte) 0xc0 ,

53 (byte) 0xe9 , (byte) 0x79 , (byte) 0x05 , (byte) 0xc5 , (byte) 0xfd ,

54 (byte) 0x6a , (byte) 0x46 , (byte) 0 xfe , (byte) 0x33 , (byte) 0x84 ,

55 (byte) 0x3f , (byte) 0x09 , (byte) 0xae , (byte) 0x01 , (byte) 0x18 ,

56 (byte) 0x5a , (byte) 0xf6 , (byte) 0xc6 , (byte) 0xd3 , (byte) 0xa1 ,

57 (byte) 0xe2 , (byte) 0x90 , (byte) 0x83 , (byte) 0x79 , (byte) 0xee ,

58 (byte) 0xa6 , (byte) 0xd4 , (byte) 0xf6 , (byte) 0xd1 , (byte) 0x86 ,

59 (byte) 0x91 , (byte) 0x34 , (byte) 0x00 , (byte) 0xd3 , (byte) 0xe4 ,

60 (byte) 0x8a , (byte) 0xfb , (byte) 0xaa , (byte) 0x6c , (byte) 0xe5 ,

61 (byte) 0x46 , (byte) 0xa7 , (byte) 0x00 , (byte) 0x9e , (byte) 0xd8 ,

62 (byte) 0x81 , (byte) 0xbc , (byte) 0xd1 , (byte) 0xb5 , (byte) 0x60 ,

63 (byte) 0xd5 , (byte) 0x91 , (byte) 0x13 , (byte) 0x06 , (byte) 0x68 ,

64 (byte) 0x21 , (byte) 0x8f , (byte) 0x7d , (byte) 0xc2 , (byte) 0x3e ,

65 (byte) 0xd2 , (byte) 0x75 , (byte) 0x0f , (byte) 0x97 , (byte) 0x64 ,

66 (byte) 0xb1 , (byte) 0xdb , (byte) 0x74 , (byte) 0x6e , (byte) 0x91 ,

268

C.2 Online Attestation Mechanism

67 (byte) 0x6b , (byte) 0xa7 , (byte) 0x7d , (byte) 0 xef , (byte) 0x8b ,

68 (byte) 0x37 , (byte) 0xb7 , (byte) 0x84 , (byte) 0x1e , (byte) 0xa7 ,

69 (byte) 0x26 , (byte) 0x26 , (byte) 0xea , (byte) 0xe9 , (byte) 0xb7 ,

70 (byte) 0x5e , (byte) 0x3f , (byte) 0xdf , (byte) 0xa4 , (byte) 0xc5 ,

71 (byte) 0x45 , (byte) 0x4e , (byte) 0x34 , (byte) 0x33 , (byte) 0xe5 ,

72 (byte) 0x43 , (byte) 0x46 , (byte) 0xc0 , (byte) 0x2b , (byte) 0xbd ,

73 (byte) 0x85 , (byte) 0x2f , (byte) 0xca , (byte) 0xf8 , (byte) 0x9d ,

74 (byte) 0xb4 , (byte) 0xbc , (byte) 0x67 , (byte) 0x92 , (byte) 0xd4 ,

75 (byte) 0x33 , (byte) 0xfd , (byte) 0xbd , (byte) 0x82 , (byte) 0x9d ,

76 (byte) 0x62 , (byte) 0 xfc , (byte) 0xbb , (byte) 0xd2 , (byte) 0xad ,

77 (byte) 0x05 , (byte) 0xa2 , (byte) 0 xfc , (byte) 0x2d , (byte) 0xe3 ,

78 (byte) 0x02 , (byte) 0xe2 , (byte) 0x41 , (byte) 0x9b , (byte) 0x1f ,

79 (byte) 0xf8 , (byte) 0x87 , (byte) 0x15 , (byte) 0x89 , (byte) 0xfb ,

80 (byte) 0x53 , (byte) 0x99 , (byte) 0xb3 , (byte) 0xeb , (byte) 0xdb ,

81 (byte) 0x01 , (byte) 0xaf , (byte) 0x71 , (byte) 0xd2 , (byte) 0xf2 ,

82 (byte) 0x73 , (byte) 0xb7 , (byte) 0x82 , (byte) 0x30 , (byte) 0x25 ,

83 (byte) 0x04 , (byte) 0x29 , (byte) 0x2b , (byte) 0xb9 , (byte) 0x92 ,

84 (byte) 0x92 , (byte) 0x35 , (byte) 0x97 , (byte) 0x0e , (byte) 0xb8 ,

85 (byte) 0xf2 , (byte) 0xc6 , (byte) 0x2e , (byte) 0xa7 , (byte) 0x2d ,

86 (byte) 0x0c , (byte) 0x09 , (byte) 0x5e , (byte) 0x07 , (byte) 0x06 ,

87 (byte) 0x67 , (byte) 0xa0 , (byte) 0xdf , (byte) 0x55 , (byte) 0x09 ,

88 (byte) 0 xfc , (byte) 0xee , (byte) 0x2b , (byte) 0x13 , (byte) 0x1a ,

89 (byte) 0x2e , (byte) 0x5d , (byte) 0x0a , (byte) 0xbb , (byte) 0x45 ,

90 (byte) 0x75 , (byte) 0xf4 , (byte) 0xd8 , (byte) 0xdc , (byte) 0x2e ,

91 (byte) 0x99 , (byte) 0x2a , (byte) 0x13 , (byte) 0xa1 , (byte) 0x1e ,

92 (byte) 0x99 , (byte) 0xfd , (byte) 0xdc , (byte) 0 xcf , (byte) 0xcc ,

93 (byte) 0x3f , (byte) 0x42 , (byte) 0xf7 , (byte) 0x3d , (byte) 0x73 ,

94 (byte) 0xee , (byte) 0xca , (byte) 0x76 , (byte) 0xe4 , (byte) 0x75 ,

95 (byte) 0xc4 , (byte) 0x21 , (byte) 0xd4 , (byte) 0x14 , (byte) 0x2e ,

96 (byte) 0x22 , (byte) 0x9c , (byte) 0xce , (byte) 0x10 , (byte) 0xaf ,

97 (byte) 0xa6 , (byte) 0x25 , (byte) 0xa0 , (byte) 0x01 , (byte) 0xb1 ,

98 (byte) 0x82 , (byte) 0xba , (byte) 0x4c , (byte) 0xb2 , (byte) 0x66 ,

99 (byte) 0x89 , (byte) 0x89 , (byte) 0x6b , (byte) 0x06 , (byte) 0x15 ,

100 (byte) 0xba , (byte) 0x64 , (byte) 0xa3 , (byte) 0x73 , (byte) 0x88 ,

101 (byte) 0x34 , (byte) 0x99 , (byte) 0x3e , (byte) 0x75 , (byte) 0x24 ,

102 (byte) 0xf4 , (byte) 0xba , (byte) 0xb0 , (byte) 0x22 , (byte) 0x8f ,

103 (byte) 0xc3 , (byte) 0x44 , (byte) 0x74 , (byte) 0x0b , (byte) 0x52 ,

104 (byte) 0x96 , (byte) 0xc6 , (byte) 0x97 , (byte) 0x8b , (byte) 0xf2 ,

105 (byte) 0xe3 , (byte) 0xc1 , (byte) 0xaf , (byte) 0x53 , (byte) 0x03 ,

106 (byte) 0x51 , (byte) 0xa7 , (byte) 0x0d , (byte) 0x42 , (byte) 0x6a ,

107 (byte) 0x20 , (byte) 0x03 , (byte) 0x31 , (byte) 0xb4 , (byte) 0xc9 ,

108 (byte) 0xaa , (byte) 0x9e , (byte) 0xda , (byte) 0x6f , (byte) 0x7b ,

109 (byte) 0xb8 , (byte) 0x6d , (byte) 0x54 , (byte) 0x57 , (byte) 0xa8 ,

110 (byte) 0xed , (byte) 0x51 , (byte) 0xa4 , (byte) 0x23 , (byte) 0x05 ,

111 (byte) 0x0b , (byte) 0xb3 , (byte) 0x90 , (byte) 0x42 , (byte) 0x38 ,

112 (byte) 0xa8 , (byte) 0xbc , (byte) 0xd5 , (byte) 0x2f , (byte) 0x87 ,

113 (byte) 0x82 , (byte) 0x5b , (byte) 0 x f f , (byte) 0xdb , (byte) 0xba ,

114 (byte) 0x41 , (byte) 0x18 , (byte) 0xe0 , (byte) 0x4a , (byte) 0x07 ,

115 (byte) 0x04 , (byte) 0xe1 , (byte) 0x3c , (byte) 0xd5 , (byte) 0xbf , } ;

116 byte [] tempSeed = {

117 (byte) 0x00 , (byte) 0x00 , (byte) 0x00 , (byte) 0x00 , (byte) 0x00 ,

269

C.2 Online Attestation Mechanism

118 (byte) 0x00 , (byte) 0x00 , (byte) 0x00 , (byte) 0x00 , (byte) 0x00 ,

119 (byte) 0x00 , (byte) 0x00 , (byte) 0x00 , (byte) 0x00 , (byte) 0x00 ,

120 (byte) 0x00 } ;

121 private byte [] SignedDataTag = {

122 (byte) 0x1F , (byte) 0x5F , (byte) 0x5D , (byte) 0x02 } ;

123 short copyPointer = (short) 0 ;

124 f ina l stat ic byte CLA = (byte) 0xB0 ;

125 f ina l stat ic byte Sta r tPro toco l = (byte) 0x40 ;

126 f ina l stat ic byte s e l f t e s t = (byte) 0 x f f ;

127 f ina l stat ic short SW_CLASSNOTSUPPORTED = 0x6320 ;

128 f ina l stat ic short SW_ERROR_INS = 0x6300 ;

129 RandomData randomDataGen ;

130 Cipher pkCipher ;

131 byte [] r e c e i v i n gBu f f e r = null ;

132 byte [] c ha l l eng e = null ;

133 byte [] randomNumber = null ;

134 short byte sLe f t = 0 ;

135 short readCount = 0 ;

136 short rCount = 0 ;

137 short s i gn l eng th = 0 ;

138 MessageDigest SHA128 ;

139 AESKey cipherKey ;

140 Cipher syCipher ;

141 byte [] I n i t i a l i s a t i o nV e c t o r = {

142 (byte) 0x6C , (byte) 0xDE, (byte) 0xBE, (byte) 0x7B , (byte) 0x89 ,

(byte) 0x99 ,

143 (byte) 0x8C , (byte) 0xAF, (byte) 0xC5 , (byte) 0x7D , (byte) 0xB1 , (byte)

144 0x7C , (byte) 0x62 , (byte) 0x0A , (byte) 0x86 , (byte) 0x52 } ;

145 Signature phSign ;

146 PrngSHA256 myPrngHMAC;

147

148 private S e l f t e s t O f f l i n e () {

149 phSign = Signature . g e t In s tance (S ignature .ALG_RSA_SHA_PKCS1, fa l se) ;

150 phSCKeyPair = new KeyPair (KeyPair .ALG_RSA, KeyBuilder .LENGTH_RSA_512) ;

151 cipherKey = (AESKey) KeyBuilder . buildKey

152 (KeyBuilder .TYPE_AES_TRANSIENT_DESELECT,

153 KeyBuilder .LENGTH_AES_128, fa l se) ;

154 syCipher = Cipher . g e t In s tance (Cipher .ALG_AES_BLOCK_128_CBC_NOPAD,

155 fa l se) ;

156 myPrngHmac = new PrngSHA256 () ;

157 pkCipher = Cipher . g e t In s tance (Cipher .ALG_RSA_NOPAD, fa l se) ;

158 phSCKeyPair . genKeyPair () ;

159 SHA128 = MessageDigest . g e t In s tance (MessageDigest .ALG_SHA_128,

160 fa l se) ;

161 byte [] r e sponseBu f f e r = null ;

162 }

163 public stat ic void i n s t a l l (byte bArray [] , short bOffset , byte bLength)

164 throws ISOException {

165 new S e l f t e s t O f f l i n e () . r e g i s t e r () ;

166 }

167

270

C.2 Online Attestation Mechanism

168 public void proce s s (APDU apdu)throws ISOException {

169 byte [] apduBuffer = apdu . ge tBu f f e r () ;

170 i f (s e l e c t i n gApp l e t ()) {

171 this . i n i t i a l i s e () ;

172 return ;

173 }

174 i f (apduBuffer [ISO7816 .OFFSET_CLA] != CLA) {

175 ISOException . throwIt (SW_CLASSNOTSUPPORTED) ;

176 }

177 r e c e i v i n gBu f f e r = null ;

178 byte sLe f t = 0 ;

179 byte sLe f t = apdu . getIncomingLength () ;

180 r e c e i v i n gBu f f e r = JCSystem . makeTransientByteArray (bytesLe f t ,

181 JCSystem .MEMORY_TYPE_TRANSIENT_DESELECT) ;

182 readCount = (short) ((short) apdu . setIncomingAndReceive ()) ;

183 rCount = 0 ;

184 i f (byte sLe f t > 0) {

185 rCount = Ut i l . arrayCopyNonAtomic (apduBuffer ,

186 ISO7816 .OFFSET_EXT_CDATA, r e c e i v i ngBu f f e r , rCount , readCount) ;

187 byte sLe f t −= readCount ;

188 }

189 while (byte sLe f t > 0) {

190 try {

191 readCount = apdu . r e c e i v eByte s ((short) 0) ;

192 rCount = Ut i l . arrayCopyNonAtomic (apduBuffer , (short) 0 ,

193 r e c e i v i ngBu f f e r , rCount , readCount) ;

194 byte sLe f t −= readCount ;

195 } catch (Exception aE) {

196 ISOException . throwIt ((short) 0x7AAA) ;

197 }

198 }

199 byte [] c ha l l eng e = JCSystem . makeTransientByteArray ((short) 128 ,

200 JCSystem .MEMORY_TYPE_TRANSIENT_DESELECT) ;

201 byte [] randomnumber = JCSystem . makeTransientByteArray ((short) 128 ,

202 JCSystem .MEMORY_TYPE_TRANSIENT_DESELECT) ;

203 Ut i l . arrayCopyNonAtomic (r e c e i v i ngBu f f e r ,

204 (short) 0 , cha l l enge , (short) 0 , (short) 16) ;

205 Ut i l . arrayCopyNonAtomic (r e c e i v i ngBu f f e r ,

206 (short) 16 , randomNumber , (short) 0 , (short) 16) ;

207 r e sponseBu f f e r = JCSystem . makeTransientByteArray ((short) 128 ,

208 JCSystem .MEMORY_TYPE_TRANSIENT_DESELECT) ;

209 s e l f t e s t P r o c e s s () ;

210 JCSystem . r eques tObjec tDe l e t i on () ;

211 apdu . setOutgoing () ;

212 apdu . setOutgoingLength ((short) r e sponseBu f f e r . l ength) ;

213 apdu . sendBytesLong (re sponseBuf f e r , (short) 0 ,

214 (short) r e sponseBu f f e r . l ength) ;

215 JCSystem . r eques tObjec tDe l e t i on () ;

216 }

217

218 void s e l f t e s t P r o c e s s () {

271

C.3 Attestation Protocol

219 byte [] memoryWordRead = new byte [4] ;

220 byte [] hashValue = new byte [3 2]

221 byte rcount = (byte) 0x00 ;

222 byte seedRef = (byte) 0x00 ;

223 //mK = runPUF(cha l l e n g e) ;

224 while (rcount < randomNumber . l ength) {

225 seedRef=(short) (randomNumber [rcount] %

226 (short) (MemoryContents . length −1)) ;

227 seedRef = (byte) (myPrngHMAC. generateRandom (seedRef) . [0]

228 % (MemoryContents . length −16))

229 Ut i l . arrayCopyNonAtomic (MemoryContents ,

230 seedRef , hashValue , (short) 0 , (short) 16) ;

231 Ut i l . arrayCopyNonAtomic (re sponseBuf f e r ,

232 (short) 0 , hashValue , (short) 16 , (short) 16) ;

233 Ut i l . arrayCopyNonAtomic (mK,

234 (short) 0 , hashValue , (short) 32 , (short) 16) ;

235 SHA128 . doFinal (hashValue , (short) 0 , (short) hashValue . length ,

236 r e sponseBuf f e r , (short) 0) ;

237 i f ((short) (randomNumber . length−rcount)==1){
238 // mK = runPUF(responseBuf f e r) ;

239 }

240 rcount++;

241 }

242 }

243 }

C.3 Attestation Protocol

The Java Card implementation of the attestation protocol discussed in section 4.7 is listed

in subsequent sections.

C.3.1 Smart Card Implementation

Following is the smart card implementation of the attestation protocol and this implemen-

tation uses the helper function discussed in appendix C.11.3.

1 package protoco lAtte s ta t ionSC ;

2

3 import javacard . framework .APDU;

4 import javacard . framework . Applet ;

5 import javacard . framework . ISO7816 ;

6 import javacard . framework . ISOException ;

7 import javacard . framework . JCSystem ;

8 import javacard . framework . Ut i l ;

9 import javacard . s e c u r i t y .AESKey ;

10 import javacard . s e c u r i t y . Key ;

11 import javacard . s e c u r i t y . KeyBuilder ;

12 import javacard . s e c u r i t y . KeyPair ;

13 import javacard . s e c u r i t y . MessageDigest ;

14 import javacard . s e c u r i t y . RSAPrivateKey ;

272

C.3 Attestation Protocol

15 import javacard . s e c u r i t y . RSAPublicKey ;

16 import javacard . s e c u r i t y . RandomData ;

17 import javacard . s e c u r i t y . S ignature ;

18 import javacardx . apdu . ExtendedLength ;

19 import javacardx . crypto . Cipher ;

20 public class Protoco lHandler extends Applet implements ExtendedLength {

21 private byte [] CMRandomNumberArray ;

22 private byte [] CMCookieArray ;

23 private byte [] SCRandomNumberArray ;

24 private byte [] SCCer t i f i c a t e ;

25 private byte [] SCCMDHGeneratedValue= {

26 (byte) 0x98 , (byte) 0xD1 , (byte) 0x19 , (byte) 0x52 , (byte) 0x9A ,

27 (byte) 0x45 , (byte) 0xD6 , (byte) 0xF8 , (byte) 0x34 , (byte) 0x56 ,

28 (byte) 0x6E , (byte) 0x30 , (byte) 0x25 , (byte) 0xE3 , (byte) 0x16 ,

29 (byte) 0xA3 , (byte) 0x30 , (byte) 0xEF , (byte) 0xBB, (byte) 0x77 ,

30 (byte) 0xA8 , (byte) 0x6F , (byte) 0x0C , (byte) 0x1A , (byte) 0xB1 ,

31 (byte) 0x5B , (byte) 0x05 , (byte) 0x1A , (byte) 0xE3 , (byte) 0xD4 ,

32 (byte) 0x28 , (byte) 0xC8 , (byte) 0xF8 , (byte) 0xAC, (byte) 0xB7 ,

33 (byte) 0x0A , (byte) 0x81 , (byte) 0x37 , (byte) 0x15 , (byte) 0x0B ,

34 (byte) 0x8E , (byte) 0xEB, (byte) 0x10 , (byte) 0xE1 , (byte) 0x83 ,

35 (byte) 0xED, (byte) 0xD1 , (byte) 0x99 , (byte) 0x63 , (byte) 0xDD,

36 (byte) 0xD9 , (byte) 0xE2 , (byte) 0x63 , (byte) 0xE4 , (byte) 0x77 ,

37 (byte) 0x05 , (byte) 0x89 , (byte) 0xEF , (byte) 0x6A , (byte) 0xA2 ,

38 (byte) 0x1E , (byte) 0x7F , (byte) 0x5F , (byte) 0x2F , (byte) 0xF3 ,

39 (byte) 0x81 , (byte) 0xB5 , (byte) 0x39 , (byte) 0xCC, (byte) 0xE3 ,

40 (byte) 0x40 , (byte) 0x9D , (byte) 0x13 , (byte) 0xCD, (byte) 0x56 ,

41 (byte) 0x6A , (byte) 0xFB, (byte) 0xB4

42 } ;

43 private byte [] MessageHandlerTagOne = {

44 (byte) 0x1F , (byte) 0xC0 , (byte) 0xAA, (byte) 0xAA, (byte) 0x00 ,

(byte) 0x00 ,

45 (byte) 0x00 } ;

46 private byte [] MessageHandlerTagTwo = {

47 (byte) 0x1F , (byte) 0xC0 , (byte) 0xBB, (byte) 0xBB, (byte) 0x00 ,

(byte) 0x00 ,

48 (byte) 0x00 } ;

49 private byte [] CMRandomNumberTag = {

50 (byte) 0x1F , (byte) 0x5F , (byte) 0x5A , (byte) 0x01 } ;

51 private byte [] CMCookieTag = {

52 (byte) 0x1F , (byte) 0x5F , (byte) 0x5B , (byte) 0x01 } ;

53 private byte [] EncryptedDataTag = {

54 (byte) 0x1F , (byte) 0xC0 , (byte) 0xFE , (byte) 0x01 } ;

55 private byte [] SignedDataTag = {

56 (byte) 0x1F , (byte) 0x5F , (byte) 0x5D , (byte) 0x02 } ;

57 private byte [] MACedDataTag = {

58 (byte) 0x1F , (byte) 0x5F , (byte) 0x5D , (byte) 0x01 } ;

59 private byte [] SCIdentityTag = {

60 (byte) 0x1F , (byte) 0x5F , (byte) 0x5F , (byte) 0x02 , (byte) 0x00 ,

(byte) 0x0C ,

61 (byte) 0x7A , (byte) 0xD5 , (byte) 0xB7 , (byte) 0xD0 , (byte) 0xB6 , (byte)

62 0xC1 , (byte) 0x22 , (byte) 0x07 , (byte) 0xC9 , (byte) 0xF9 , (byte) 0x8D ,

273

C.3 Attestation Protocol

63 (byte) 0x11 } ;

64 private byte [] SCRandomNumberTag = {

65 (byte) 0x1F , (byte) 0x5F , (byte) 0x5A , (byte) 0x02 } ;

66 private byte [] CMCertif icateTag = {

67 (byte) 0x1F , (byte) 0xC0 , (byte) 0xF0 , (byte) 0x01 } ;

68 private byte [] SCCert i f i cateTag = {

69 (byte) 0x1F , (byte) 0xC0 , (byte) 0xF0 , (byte) 0x02 } ;

70 private byte [] SCProtoco l In i t i a torTag = {

71 (byte) 0x1F , (byte) 0x5F , (byte) 0xA1 , (byte) 0xB2} ;

72 short PTLVDataOffset = (short) 6 ;

73 short CTLVDataOffset = (short) 7 ;

74 short TLVLengthOffset = (short) 4 ;

75 short copyPointer = (short) 0 ;

76 f ina l stat ic byte CLA = (byte) 0xB0 ;

77 f ina l stat ic byte Sta r tPro toco l = (byte) 0x40 ;

78 f ina l stat ic byte I n i t i a t i o nP r o t o c o l = (byte) 0 x f f ;

79 f ina l stat ic short SW_CLASSNOTSUPPORTED = 0x6320 ;

80 f ina l stat ic short SW_ERROR_INS = 0x6300 ;

81 RandomData randomDataGen ;

82 Cipher pkCipher ;

83 short messageNumber = 0 ;

84 byte [] r e c e i v i n gBu f f e r = null ;

85 short byte sLe f t = 0 ;

86 short readCount = 0 ;

87 short rCount = 0 ;

88 short s i gn l eng th = 0 ;

89 private RSAPublicKey dhKey = (RSAPublicKey) KeyBuilder . buildKey

90 (KeyBuilder .TYPE_RSA_PUBLIC,

91 KeyBuilder .LENGTH_RSA_2048, fa l se) ;

92 private byte [] randomExponent ;

93 f ina l stat ic byte GEN_KEYCONTRIBUTION = 0x01 ;

94 f ina l stat ic byte GEN_DHKEY = 0x02 ;

95 AESKey phCipherKey ;

96 Cipher syCipher ;

97 byte [] I n i t i a l i s a t i o nV e c t o r = {

98 (byte) 0x6C , (byte) 0xDE, (byte) 0xBE, (byte) 0x7B , (byte) 0x89 ,

(byte) 0x99 ,

99 (byte) 0x8C , (byte) 0xAF, (byte) 0xC5 , (byte) 0x7D , (byte) 0xB1 , (byte)

100 0x7C , (byte) 0x62 , (byte) 0x0A , (byte) 0x86 , (byte) 0x52 } ;

101 AESKey phMacGeneratorKey ;

102 Signature phMacGenerator ;

103 Signature phSign ;

104 KeyPair phSCKeyPair ;

105 KeyPair phUserKeyPair ;

106 RSAPublicKey CMVerif icationKey = null ;

107 private Protoco lHandler () {

108 phMacGeneratorKey = (AESKey) KeyBuilder . buildKey

109 (KeyBuilder .TYPE_AES_TRANSIENT_DESELECT,

110 KeyBuilder .LENGTH_AES_128, fa l se) ;

111 phMacGenerator =

Signature . g e t In s tance (S ignature .ALG_AES_MAC_128_NOPAD,

274

C.3 Attestation Protocol

112 fa l se) ;

113 phSign = Signature . g e t In s tance (S ignature .ALG_RSA_SHA_PKCS1, fa l se) ;

114 phCipherKey = (AESKey) KeyBuilder . buildKey

115 (KeyBuilder .TYPE_AES_TRANSIENT_DESELECT,

116 KeyBuilder .LENGTH_AES_128, fa l se) ;

117 syCipher = Cipher . g e t In s tance (Cipher .ALG_AES_BLOCK_128_CBC_NOPAD,

118 fa l se) ;

119 randomDataGen = RandomData . g e t In s tance (RandomData .ALG_SECURE_RANDOM) ;

120 pkCipher = Cipher . g e t In s tance (Cipher .ALG_RSA_NOPAD, fa l se) ;

121 d h I n i t i a l i s a t i o n () ;

122 }

123 public stat ic void i n s t a l l (byte bArray [] , short bOffset , byte bLength)

124 throws ISOException {

125 new Protoco lHandler () . r e g i s t e r () ;

126 }

127 public void i n i t i a l i s e P r o t o c o l () {

128 short i n i t i a l P o i n t e r = 0 ;

129 CMRandomNumberArray = JCSystem . makeTransientByteArray ((short) 22 ,

130 JCSystem .MEMORY_TYPE_TRANSIENT_DESELECT) ;

131 CMCookieArray = JCSystem . makeTransientByteArray ((short) 22 ,

132 JCSystem .MEMORY_TYPE_TRANSIENT_DESELECT) ;

133 SCRandomNumberArray = JCSystem . makeTransientByteArray ((short) 22 ,

134 JCSystem .MEMORY_TYPE_TRANSIENT_DESELECT) ;

135 Ut i l . arrayCopyNonAtomic (this . SCRandomNumberTag , (short) i n i t i a l P o i n t e r ,

136 this . SCRandomNumberArray , (short)

137 i n i t i a l P o i n t e r , (short)

138 this . SCRandomNumberTag . l ength) ;

139 this . shortToBytes (this . SCRandomNumberArray , (short) 4 , (short) ((short)

140 this . SCRandomNumberArray . l ength − (short)

141 PTLVDataOffset)) ;

142 try {

143 CMVerif icationKey = (RSAPublicKey) KeyBuilder . buildKey

144 (KeyBuilder .TYPE_RSA_PUBLIC,

145 KeyBuilder .LENGTH_RSA_512, fa l se) ;

146 } catch (Exception cE) {

147 ISOException . throwIt ((short) 0x6666) ;

148 }

149 }

150 public void proce s s (APDU apdu)throws ISOException {

151 byte [] apduBuffer = apdu . ge tBu f f e r () ;

152 i f (s e l e c t i n gApp l e t ()) {

153 this . i n i t i a l i s e P r o t o c o l () ;

154 return ;

155 }

156 i f (apduBuffer [ISO7816 .OFFSET_CLA] != CLA) {

157 ISOException . throwIt (SW_CLASSNOTSUPPORTED) ;

158 }

159 i f (apduBuffer [ISO7816 .OFFSET_INS] == In i t i a t i o nP r o t o c o l) {

160 r e c e i v i n gBu f f e r = JCSystem . makeTransientByteArray ((short) 64 ,

161 JCSystem .MEMORY_TYPE_TRANSIENT_DESELECT) ;

162 generateResponse ((short) 1) ;

275

C.3 Attestation Protocol

163 apdu . setOutgoing () ;

164 apdu . setOutgoingLength ((short) copyPointer) ;

165 apdu . sendBytesLong (r e c e i v i ngBu f f e r , (short) 0 , (short) copyPointer) ;

166 return ;

167 }

168 r e c e i v i n gBu f f e r = null ;

169 byte sLe f t = 0 ;

170 byte sLe f t = apdu . getIncomingLength () ;

171 r e c e i v i n gBu f f e r = JCSystem . makeTransientByteArray (bytesLe f t ,

172 JCSystem .MEMORY_TYPE_TRANSIENT_DESELECT) ;

173 readCount = (short) ((short) apdu . setIncomingAndReceive ()) ;

174 rCount = 0 ;

175 i f (byte sLe f t > 0) {

176 rCount = Ut i l . arrayCopyNonAtomic (apduBuffer ,

177 ISO7816 .OFFSET_EXT_CDATA, r e c e i v i ngBu f f e r , rCount , readCount) ;

178 byte sLe f t −= readCount ;

179 }

180 while (byte sLe f t > 0) {

181 try {

182 readCount = apdu . r e c e i v eByte s ((short) 0) ;

183 rCount = Ut i l . arrayCopyNonAtomic (apduBuffer , (short) 0 ,

184 r e c e i v i ngBu f f e r , rCount , readCount) ;

185 byte sLe f t −= readCount ;

186 } catch (Exception aE) {

187 ISOException . throwIt ((short) 0x7AAA) ;

188 }

189 }

190 i f (this . r e c e i v i n gBu f f e r [3] == this . MessageHandlerTagOne [3]) {

191 try {

192 parseMessage (r e c e i v i n gBu f f e r) ;

193 } catch (Exception cE) {

194 ISOException . throwIt ((short) 0xA112) ;

195 }

196 r e c e i v i n gBu f f e r = JCSystem . makeTransientByteArray ((short) 600 ,

197 JCSystem .MEMORY_TYPE_TRANSIENT_DESELECT) ;

198 generateResponse ((short) 2) ;

199 JCSystem . r eques tObjec tDe l e t i on () ;

200 apdu . setOutgoing () ;

201 apdu . setOutgoingLength ((short) copyPointer) ;

202 apdu . sendBytesLong (r e c e i v i ngBu f f e r , (short) 0 , (short) copyPointer) ;

203 } else i f (this . r e c e i v i n gBu f f e r [3] == this . MessageHandlerTagTwo [3]) {

204 i f (processSecondMsg (r e c e i v i n gBu f f e r)) {

205 return ;

206 } else {

207 ISOException . throwIt ((short) 0xFA17) ;

208 }

209 return ;

210 } else {

211 ISOException . throwIt (Protoco lHandler .SW_ERROR_INS) ;

212 }

213 JCSystem . r eques tObjec tDe l e t i on () ;

276

C.3 Attestation Protocol

214 }

215 private void generateResponse (short msgNumber) {

216 short childPM1 = 0 ;

217 short childPM2 = 0 ;

218 copyPointer = 0 ;

219 i f (msgNumber == 1) {

220 copyPointer = Ut i l . arrayCopy (this . SCProtoco l In i t iatorTag , (short) 0 ,

221 this . r e c e i v i ngBu f f e r , copyPointer ,

222 (short)

223 this . SCProtoco l In i t i a torTag . l ength) ;

224 randomDataGen . generateData (this . SCRandomNumberArray ,

225 this . PTLVDataOffset , (short) 16) ;

226 childPM1 = copyPointer ;

227 copyPointer += 2 ;

228 phMacGeneratorKey . setKey (this . SCRandomNumberArray ,

229 this . PTLVDataOffset) ;

230 phMacGenerator . i n i t (phMacGeneratorKey , S ignature .MODE_SIGN,

231 I n i t i a l i s a t i o nV e c t o r , (short) 0 , (short)

232 I n i t i a l i s a t i o nV e c t o r . l ength) ;

233 return ;

234 } else i f (msgNumber == 2) {

235 keygenerator () ;

236 childPM1 = (short) 6 ;

237 copyPointer = Ut i l . arrayCopyNonAtomic (this . MessageHandlerTagTwo ,

238 (short) 0 , this . r e c e i v i ngBu f f e r , copyPointer , (short)

239 this . MessageHandlerTagTwo . l ength) ;

240 copyPointer = Ut i l . arrayCopyNonAtomic (this . SCRandomNumberArray ,

241 (short) 0 , this . r e c e i v i ngBu f f e r , copyPointer , (short)

242 this . SCRandomNumberArray . l ength) ;

243 this . r e c e i v i n gBu f f e r [childPM1]++;

244 copyPointer = Ut i l . arrayCopyNonAtomic (this . EncryptedDataTag , (short)

245 0 , this . r e c e i v i ngBu f f e r , copyPointer , (short)

246 this . EncryptedDataTag . l ength) ;

247 copyPointer += 3 ;

248 childPM2 = (short) (copyPointer − (short) 1) ;

249 this . r e c e i v i n gBu f f e r [childPM1]++;

250 MessageDigest myHashGen = MessageDigest . g e t In s tance

251 (MessageDigest .ALG_SHA_256, fa l se) ;

252 short tempLength = (short)myHashGen . doFinal (this . ClassDH . dhModulus ,

(short) 0 ,

253 (short) this . ClassDH . dhModulus . length ,

r e c e i v i ngBu f f e r ,

254 copyPointer) ;

255 this . r e c e i v i n gBu f f e r [childPM2]++;

256 this . shortToBytes (this . r e c e i v i ngBu f f e r , (short) (copyPointer −
(short)

257 2) , tempLength) ;

258 copyPointer += tempLength ;

259 copyPointer = Ut i l . arrayCopyNonAtomic (this . SCIdentityTag , (short) 0 ,

260 this . r e c e i v i ngBu f f e r , copyPointer , (short)

261 this . SCIdentityTag . l ength) ;

277

C.3 Attestation Protocol

262 this . r e c e i v i n gBu f f e r [childPM2]++;

263 copyPointer = Ut i l . arrayCopyNonAtomic (this . SCRandomNumberArray ,

264 (short) 0 , this . r e c e i v i ngBu f f e r , copyPointer , (short)

265 this . SCRandomNumberArray . l ength) ;

266 this . r e c e i v i n gBu f f e r [childPM2]++;

267 copyPointer = Ut i l . arrayCopyNonAtomic (this . CMRandomNumberArray ,

268 (short) 0 , this . r e c e i v i ngBu f f e r , copyPointer , (short)

269 this . CMRandomNumberArray . l ength) ;

270 this . r e c e i v i n gBu f f e r [childPM2]++;

271 try {

272 this . s ignGenerate (this . r e c e i v i ngBu f f e r , (short) (childPM2 + (short)

273 1) , (short) (copyPointer − (short) (childPM2 +

274 (short) 1)) , this . phSCKeyPair . g e tPr iva t e () ,

275 Signature .MODE_SIGN) ;

276 } catch (Exception cE) {

277 ISOException . throwIt ((short) 0x3141) ;

278 }

279 this . r e c e i v i n gBu f f e r [childPM2]++;

280 copyPointer = Ut i l . arrayCopyNonAtomic (this . SCCert i f i ca t e , (short) 0 ,

281 this . r e c e i v i ngBu f f e r , copyPointer , (short)

282 this . SCCer t i f i c a t e . l ength) ;

283 this . r e c e i v i n gBu f f e r [childPM2]++;

284 try {

285 this . messageEncryption (this . r e c e i v i ngBu f f e r , (short) (childPM2 +

286 (short) 1) , (short) (copyPointer − (short)

287 (childPM2 + (short) 1))) ;

288 } catch (Exception ce) {

289 ISOException . throwIt ((short) (copyPointer − (short) (childPM2 +

290 (short) 1))) ;

291 }

292 this . macGenerate (this . r e c e i v i ngBu f f e r , (short) (childPM2 + (short) 1) ,

293 (short) (copyPointer − (short) (childPM2 +

(short) 1)) ,

294 Signature .MODE_SIGN) ;

295 this . r e c e i v i n gBu f f e r [childPM1]++;

296 copyPointer = Ut i l . arrayCopyNonAtomic (this . CMCookieArray , (short) 0 ,

297 this . r e c e i v i ngBu f f e r , (short) copyPointer , (short)

298 this . CMCookieArray . l ength) ;

299 this . r e c e i v i n gBu f f e r [childPM1]++;

300 }

301 }

302 boolean processSecondMsg (byte [] inArray) {

303 short i nO f f s e t = (short) (this . CTLVDataOffset + this . CTLVDataOffset) ;

304 short inLength = (short) (Protoco lHandler . bytesToShort (inArray , (short)

305 (i nO f f s e t − (short) 3))) ;

306 i f (this . macGenerate (inArray , i nOf f s e t , inLength ,

307 Signature .MODE_VERIFY)) {

308 try {

309 this . phDecryption (inArray , i nOf f s e t , inLength) ;

310 i nO f f s e t = (short) (this . CTLVDataOffset + this . PTLVDataOffset +

311 (short) 168) ;

278

C.3 Attestation Protocol

312 inLength = 3 ;

313 CMVerif icationKey . setExponent (inArray , i nOf f s e t , inLength) ;

314 i nO f f s e t += (short) (inLength + this . PTLVDataOffset) ;

315 inLength = (short) 64 ;

316 CMVerif icationKey . setModulus (inArray , i nOf f s e t , inLength) ;

317 i nO f f s e t = (short) (this . CTLVDataOffset + this . CTLVDataOffset) ;

318 inLength = (short) 84 ;

319 i f (this . s ignGenerate (inArray , i nOf f s e t , inLength ,

320 CMVerificationKey , S ignature .MODE_VERIFY)) {

321 return true ;

322 } else {

323 ISOException . throwIt ((short) 0x6666) ;

324 }

325 } catch (Exception ce) {

326 ISOException . throwIt ((short) 0xAB23) ;

327 }

328 return true ;

329 } else {

330 ISOException . throwIt ((short) 0xFA18) ;

331 }

332 return fa l se ;

333 }

334 void parseMessage (byte [] i nBu f f e r) {

335 byte c h i l dL e f t = inBu f f e r [(short) (this . CTLVDataOffset − (short) 1)] ;

336 short po in t e r = (short) this . CTLVDataOffset ;

337 try {

338 while (c h i l dL e f t > 0) {

339 i f (Ut i l . arrayCompare (CMDHChallengeTag , (short) 0 , inBuf f e r ,

340 pointer , (short) 4) == 0) {

341 Ut i l . arrayCopy (inBuf f e r , po inter , this . CMDHChanllengerArray ,

342 (short) 0 ,

(short) this . CMDHChanllengerArray . l ength)

343 ;

344 po in t e r += (short) this . CMDHChanllengerArray . l ength ;

345 } else i f (Ut i l . arrayCompare (this .CMRandomNumberTag , (short) 0 ,

346 i nBuf f e r , po inter , (short) 4) == 0) {

347 Ut i l . arrayCopyNonAtomic (inBuf f e r , po inter ,

348 this . CMRandomNumberArray , (short) 0 ,

349 (short) (this . CMRandomNumberArray . l ength))

350 ;

351 po in t e r += (short) (this . CMRandomNumberArray . l ength) ;

352 } else i f (Ut i l . arrayCompare (this . CMCookieTag , (short) 0 , inBuf f e r ,

353 pointer , (short) 4) == 0) {

354 Ut i l . arrayCopyNonAtomic (inBuf f e r , po inter , this . CMCookieArray ,

355 (short) 0 , (short)

356 (this . CMCookieArray . l ength)) ;

357 po in t e r += (short) (this . CMCookieArray . l ength) ;

358 }

359 c h i l dL e f t −= (short) 1 ;

360 }

361 } catch (Exception cE) {

279

C.3 Attestation Protocol

362 ISOException . throwIt ((short) c h i l dL e f t) ;

363 }

364 }

365 void protoco l Implementat ion () {}

366 void d h I n i t i a l i s a t i o n () {

367 dhKey . setModulus (ClassDH . dhModulus , (short) 0 ,

(short)ClassDH . dhModulus . l ength) ;

368 }

369 void keygenerator () {

370 AESKey sessionGenKey = (AESKey) KeyBuilder . buildKey

371 (KeyBuilder .TYPE_AES_TRANSIENT_DESELECT,

372 KeyBuilder .LENGTH_AES_128, fa l se) ;

373 sessionGenKey . setKey (SCCMDHGeneratedValue , (short) 0) ;

374 phMacGenerator . i n i t (sessionGenKey , S ignature .MODE_SIGN,

375 I n i t i a l i s a t i o nV e c t o r , (short) 0 , (short)

376 I n i t i a l i s a t i o nV e c t o r . l ength) ;

377 byte [] keyGenMacData = JCSystem . makeTransientByteArray ((short) 64 ,

378 JCSystem .MEMORY_TYPE_TRANSIENT_DESELECT) ;

379 short po in t e r = 0 ;

380 po in t e r = Ut i l . arrayCopyNonAtomic (this . CMRandomNumberArray ,

381 this . PTLVDataOffset , keyGenMacData , (short) po inter , (short) 16) ;

382 po in t e r = Ut i l . arrayCopyNonAtomic (this . SCRandomNumberArray ,

383 this . PTLVDataOffset , keyGenMacData , (short) po inter , (short) 16) ;

384 po in t e r = Ut i l . arrayCopyNonAtomic (SCCMDHGeneratedValue , (short) 16 ,

385 keyGenMacData , (short) po inter , (short) 16) ;

386 for (short i = 48 ; i < 64 ; i++) {

387 keyGenMacData [i] = (byte) 0x02 ;

388 }

389 phMacGenerator . s i gn (keyGenMacData , (short) 0 , (short)

390 keyGenMacData . length , SCCMDHGeneratedValue ,

(short)

391 0) ;

392 this . phCipherKey . setKey (SCCMDHGeneratedValue , (short) 0) ;

393 for (short i = 48 ; i < 64 ; i++) {

394 keyGenMacData [i] = (byte) 0x03 ;

395 }

396 phMacGenerator . i n i t (sessionGenKey , S ignature .MODE_SIGN,

397 I n i t i a l i s a t i o nV e c t o r , (short) 0 , (short)

398 I n i t i a l i s a t i o nV e c t o r . l ength) ;

399 phMacGenerator . s i gn (keyGenMacData , (short) 0 , (short)

400 keyGenMacData . length , SCCMDHGeneratedValue ,

(short)

401 0) ;

402 this . phMacGeneratorKey . setKey (SCCMDHGeneratedValue , (short) 0) ;

403 SCCMDHGeneratedValue = null ;

404 JCSystem . r eques tObjec tDe l e t i on () ;

405 }

406 void messageEncryption (byte [] i nbu f f , short i nbu f fO f f s e t , short

407 inbuf fLength) {

408 syCipher . i n i t (phCipherKey , Cipher .MODE_ENCRYPT, I n i t i a l i s a t i o nV e c t o r ,

409 (short) 0 , (short) I n i t i a l i s a t i o nV e c t o r . l ength) ;

280

C.3 Attestation Protocol

410 this . shortToBytes (inbu f f , (short) (i n bu f fO f f s e t − 3) , (short)

411 syCipher . doFinal (inbu f f , i nbu f fO f f s e t , inbuf fLength ,

412 i nbu f f , i n bu f fO f f s e t)) ;

413 }

414 void phDecryption (byte [] i nbu f f , short i nbu f fO f f s e t , short inbuf fLength)

415 {

416 syCipher . i n i t (phCipherKey , Cipher .MODE_DECRYPT, I n i t i a l i s a t i o nV e c t o r ,

417 (short) 0 , (short) I n i t i a l i s a t i o nV e c t o r . l ength) ;

418 syCipher . doFinal (inbu f f , i nbu f fO f f s e t , inbuf fLength , inbu f f ,

419 i n bu f fO f f s e t) ;

420 }

421 boolean macGenerate (byte [] i nbu f f , short i nbu f fO f f s e t , short

422 inbuf fLength , short macMode) {

423 i f (macMode == Signature .MODE_SIGN) {

424 phMacGenerator . i n i t (phMacGeneratorKey , S ignature .MODE_SIGN,

425 I n i t i a l i s a t i o nV e c t o r , (short) 0 , (short)

426 I n i t i a l i s a t i o nV e c t o r . l ength) ;

427 try {

428 copyPointer = Ut i l . arrayCopyNonAtomic (this .MACedDataTag , (short) 0 ,

429 this . r e c e i v i ngBu f f e r , copyPointer , (short)

430 this .MACedDataTag . l ength) ;

431 copyPointer += 2 ;

432 } catch (Exception ce) {

433 ISOException . throwIt ((short) 0xFA17) ;

434 }

435 try {

436 short l ength = (short) phMacGenerator . s i gn (this . r e c e i v i ngBu f f e r ,

437 i nbu f fO f f s e t , inbuf fLength , inbu f f , copyPointer) ;

438 this . shortToBytes (inbu f f , (short) (copyPointer − (short) 2) ,

l ength) ;

439 copyPointer += length ;

440 } catch (Exception ce) {

441 ISOException . throwIt ((short) 0x0987) ;

442 }

443 return true ;

444 } else i f (macMode == Signature .MODE_VERIFY) {

445 try {

446 phMacGenerator . i n i t (phMacGeneratorKey , S ignature .MODE_VERIFY,

447 I n i t i a l i s a t i o nV e c t o r , (short) 0 , (short)

448 I n i t i a l i s a t i o nV e c t o r . l ength) ;

449 return phMacGenerator . v e r i f y (this . r e c e i v i ngBu f f e r , i nbu f fO f f s e t ,

450 inbuf fLength , inbu f f , (short)

451 (i n bu f fO f f s e t + inbuf fLength +

452 this . PTLVDataOffset) , (short) 16) ;

453 } catch (Exception cE) {

454 ISOException . throwIt ((short) 0xC1C2) ;

455 }

456 }

457 return fa l se ;

458 }

459 boolean s ignGenerate (byte [] i nbu f f , short i nbu f fO f f s e t , short

281

C.3 Attestation Protocol

460 i nbu f f l eng th , Key kpSign , short signMode) {

461 i f (signMode == Signature .MODE_SIGN) {

462 copyPointer = Ut i l . arrayCopyNonAtomic (this . SignedDataTag , (short) 0 ,

463 this . r e c e i v i ngBu f f e r , copyPointer , (short)

464 this . SignedDataTag . l ength) ;

465 copyPointer += (short) 2 ;

466 phSign . i n i t ((RSAPrivateKey) kpSign , S ignature .MODE_SIGN) ;

467 s i gn l eng th = phSign . s i gn (inbu f f , (short) i nbu f fO f f s e t , i nbu f f l eng th ,

468 i nbu f f , copyPointer) ;

469 this . shortToBytes (this . r e c e i v i ngBu f f e r , (short) (copyPointer −
(short)

470 2) , s i gn l eng th) ;

471 copyPointer += s i gn l eng th ;

472 return true ;

473 } else i f (signMode == Signature .MODE_VERIFY) {

474 phSign . i n i t ((RSAPublicKey) kpSign , S ignature .MODE_VERIFY) ;

475 return phSign . v e r i f y (inbu f f , i nbu f fO f f s e t , i nbu f f l eng th , inbu f f ,

476 (short) (i n bu f fO f f s e t + inbu f f l e n g th +

477 this . PTLVDataOffset) , (short) 64) ;

478 }

479 return fa l se ;

480 }

481 public stat ic short bytesToShort (byte [] ArrayBytes) {

482 return (short) (((ArrayBytes [0] << 8)) | ((ArrayBytes [1] & 0 x f f))) ;

483 }

484 public stat ic short bytesToShort (byte [] ArrayBytes , short a r r ayOf f s e t) {

485 return (short) (((ArrayBytes [a r r ayOf f s e t] << 8)) | ((ArrayBytes [(short)

486 (a r r ayOf f s e t + (short) 1)] & 0 x f f))) ;

487 }

488 private void shortToBytes (byte [] Array , short ar rayOf f s e t , short

inShort)

489 {

490 Array [a r r ayOf f s e t] = (byte) ((short) (inShort & (short) 0xFF00) >>

(short)

491 0x0008) ;

492 Array [(short) (a r r ayOf f s e t + (short) 1)] = (byte) (inShort & (short)

493 0x00FF) ;

494 }

495 }

C.3.2 Card Manufacturer Implementation

Following is the card manufacturer's implementation of the attestation protocol and to

accomplish its operations it uses helper functions detailed in appendices C.11.1 and C.11.2.

1 package j avacardte rmina l ;

2

3 import java . u t i l . Arrays ;

4 import java . s e c u r i t y . i n t e r f a c e s . RSAPublicKey ;

5 import java . s e c u r i t y . spec . RSAPublicKeySpec ;

6 import java . s e c u r i t y . ∗ ;

282

C.3 Attestation Protocol

7 import java . math . B ig Intege r ;

8 public class Protoco lHand le rAtte s ta t i on {

9 private byte [] CMIdentity = {

10 (byte) 0xC5 , (byte) 0x7D , (byte) 0xB1 , (byte) 0x7C , (byte) 0x62 ,

(byte) 0x0A ,

11 (byte) 0x86 , (byte) 0x52 , (byte) 0xBE, (byte) 0x5E , (byte) 0x90 , (byte)

12 0x01 , (byte) 0xA8 , (byte) 0xD6 , (byte) 0x6A , (byte) 0xD7} ;

13 private byte [] SCIP = {

14 (byte) 0xC5 , (byte) 0x7D , (byte) 0xB1 , (byte) 0x7C} ;

15 private byte [] PlatformHashPreset = {

16 (byte) 0xBF, (byte) 0xE5 , (byte) 0x45 , (byte) 0x86 , (byte) 0x2C ,

(byte) 0xA1 ,

17 (byte) 0x02 , (byte) 0xAD, (byte) 0x1E , (byte) 0xED, (byte) 0xDB, (byte)

18 0x5F , (byte) 0xBF, (byte) 0xA5 , (byte) 0xBF, (byte) 0x85 , (byte) 0x5A ,

19 (byte) 0xC4 , (byte) 0x99 , (byte) 0x5C , (byte) 0x56 , (byte) 0xA8 , (byte)

20 0xB4 , (byte) 0x08 , (byte) 0xCE, (byte) 0x3F , (byte) 0xE0 , (byte) 0x99 ,

21 (byte) 0xDC, (byte) 0xE9 , (byte) 0x3A , (byte) 0x9D} ;

22 private byte [] SCDHStore = {

23 (byte) 0x98 , (byte) 0xD1 , (byte) 0x19 , (byte) 0x52 , (byte) 0x9A ,

24 (byte) 0x45 , (byte) 0xD6 , (byte) 0xF8 , (byte) 0x34 , (byte) 0x56 ,

25 (byte) 0x6E , (byte) 0x30 , (byte) 0x25 , (byte) 0xE3 , (byte) 0x16 ,

26 (byte) 0xA3 , (byte) 0x30 , (byte) 0xEF , (byte) 0xBB, (byte) 0x77 ,

27 (byte) 0xA8 , (byte) 0x6F , (byte) 0x0C , (byte) 0x1A , (byte) 0xB1 ,

28 (byte) 0x5B , (byte) 0x05 , (byte) 0x1A , (byte) 0xE3 , (byte) 0xD4 ,

29 (byte) 0x28 , (byte) 0xC8 , (byte) 0xF8 , (byte) 0xAC, (byte) 0xB7 ,

30 (byte) 0x0A , (byte) 0x81 , (byte) 0x37 , (byte) 0x15 , (byte) 0x0B ,

31 (byte) 0x8E , (byte) 0xEB, (byte) 0x10 , (byte) 0xE1 , (byte) 0x83 ,

32 (byte) 0xED, (byte) 0xD1 , (byte) 0x99 , (byte) 0x63 , (byte) 0xDD,

33 (byte) 0xD9 , (byte) 0xE2 , (byte) 0x63 , (byte) 0xE4 , (byte) 0x77 ,

34 (byte) 0x05 , (byte) 0x89 , (byte) 0xEF , (byte) 0x6A , (byte) 0xA2 ,

35 (byte) 0x1E , (byte) 0x7F , (byte) 0x5F , (byte) 0x2F , (byte) 0xF3 ,

36 (byte) 0x81 , (byte) 0xB5 , (byte) 0x39 , (byte) 0xCC, (byte) 0xE3 ,

37 (byte) 0x40 , (byte) 0x9D , (byte) 0x13 , (byte) 0xCD, (byte) 0x56 ,

38 (byte) 0x6A , (byte) 0xFB, (byte) 0xB4

39 } ;

40 private byte [] MessageHandlerTagOne = {(byte) 0xAA, (byte) 0xAA} ;

41 private byte [] MessageHandlerTagTwo = {(byte) 0xBB, (byte) 0xBB} ;

42 private byte [] CMIdentityTag = {(byte) 0x5F , (byte) 0x01 } ;

43 private byte [] CMSignatureCertTag = {(byte) 0xF0 , (byte) 0xF01 } ;

44 private byte [] CMSigVerif icationKeyTag = {(byte) 0x51 , (byte) 0x01 } ;

45 private byte [] CMRandomNumberTag = {(byte) 0x5A , (byte) 0x01 } ;

46 private byte [] CMCookieTag = {(byte) 0x5B , (byte) 0x01 } ;

47 private byte [] EncryptedDataTag = {(byte) 0xFE , (byte) 0x01 } ;

48 private byte [] MACedDataTag = {(byte) 0x5D , (byte) 0x01 } ;

49 private byte [] SignedDataTag = {(byte) 0x5D , (byte) 0x02 } ;

50 private byte [] PublicExponentTag = {(byte) 0xEE, (byte) 0x01 } ;

51 private byte [] PublicModulusTag = {(byte) 0xEE, (byte) 0x02 } ;

52 private byte [] SCRandomNumberTag = {(byte) 0x5A , (byte) 0x02 } ;

53 private byte [] SCIdentityTag = {(byte) 0x5F , (byte) 0x02 } ;

54 private byte [] SCCert i f i cateTag = {(byte) 0xF0 , (byte) 0x02 } ;

55 private byte [] PlatformHashTag = {(byte) 0x5E , (byte) 0xAF} ;

283

C.3 Attestation Protocol

56 private byte [] UserIdent i tyTag = {(byte) 0x5F , (byte) 0x03 } ;

57 private byte [] SCProtoco l In i t i a torTag = {(byte) 0xA1 , (byte) 0xB2} ;

58 public ConstructedTLV MessageHandler = ConstructedTLV . getConstructedTLV

59 (MessageHandlerTagOne) ;

60 private ConstructedTLV CMSignatureCert i f i cate =

61 ConstructedTLV . getConstructedTLV (CMSignatureCertTag) ;

62 private PrimitiveTLV CMIdentityTLV = PrimitiveTLV . getPrimitiveTLV

63 (CMIdentityTag , CMIdentity) ;

64 private PrimitiveTLV CMSigVeri f icationKey = PrimitiveTLV . getPrimitiveTLV

65 (this . CMSigVerif icationKeyTag) ;

66 private PrimitiveTLV CMRandomNumber = PrimitiveTLV . getPrimitiveTLV

67 (this .CMRandomNumberTag) ;

68 private PrimitiveTLV CMCookie = PrimitiveTLV . getPrimitiveTLV

69 (this . CMCookieTag) ;

70 private ConstructedTLV EncryptedData = ConstructedTLV . getConstructedTLV

71 (this . EncryptedDataTag) ;

72 private PrimitiveTLV MACedData = PrimitiveTLV . getPrimitiveTLV

73 (this .MACedDataTag) ;

74 private PrimitiveTLV SignedData = PrimitiveTLV . getPrimitiveTLV

75 (this . SignedDataTag) ;

76 private PrimitiveTLV PublicExponent = PrimitiveTLV . getPrimitiveTLV

77 (this . PublicExponentTag) ;

78 private PrimitiveTLV PublicModulus = PrimitiveTLV . getPrimitiveTLV

79 (this . PublicModulusTag) ;

80 private PrimitiveTLV SCRandomNumber = PrimitiveTLV . getPrimitiveTLV

81 (this . SCRandomNumberTag) ;

82 private PrimitiveTLV SCIdent ity = PrimitiveTLV . getPrimitiveTLV

83 (SCIdentityTag) ;

84 private ConstructedTLV SCUserCer t i f i ca t e =

85 ConstructedTLV . getConstructedTLV (this . SCUserCert i f i cateTag) ;

86 private ConstructedTLV SCCer t i f i c a t e = ConstructedTLV . getConstructedTLV

87 (this . SCCert i f i cateTag) ;

88 private PrimitiveTLV PlatformHash = PrimitiveTLV . getPrimitiveTLV

89 (this . PlatformHashTag) ;

90 private PrimitiveTLV User Ident i ty = PrimitiveTLV . getPrimitiveTLV

91 (this . UserIdent ityTag) ;

92 private PrimitiveTLV SCPro to co l I n i t i a t o r = PrimitiveTLV . getPrimitiveTLV

93 (this . SCProtoco l In i t i a torTag) ;

94 private Protoco lHe lpe rClas s myProtocolHelperObject = new

95 Protoco lHe lpe rClas s () ;

96 private byte [] mySessionEncryptionKey = new byte [1 6] ;

97 private byte [] mySessionMacKey = new byte [1 6] ;

98 private PublicKey SCUserVer i f i cat ionKey = null ;

99 private PublicKey SCVer i f i cat ionKey = null ;

100 public Protoco lHand le rAtte s ta t i on () {

101 myProtocolHelperObject . p r o t o c o l I n i t i a l i s e () ;

102 RSAPublicKey tempKey = (RSAPublicKey)

103 myProtocolHelperObject . getPublicKey () ;

104 byte [] tempExponent = tempKey . getPubl icExponent () . toByteArray () ;

105 this . PublicExponent . i n i t i a l i s a t i onPTLV (this . PublicExponentTag ,

106 tempExponent . l ength) ;

284

C.3 Attestation Protocol

107 this . PublicExponent . setTlvValues (tempExponent) ;

108 byte [] tempModulus = tempKey . getModulus () . toByteArray () ;

109 this . PublicModulus . i n i t i a l i s a t i onPTLV (this . PublicModulusTag ,

110 (tempModulus . l ength − 1)) ;

111 this . PublicModulus . setTlvValues (tempModulus , 1 , (tempModulus . l ength −
112 1)) ;

113 CMSignatureCert i f i cate . addPTLV(this . PublicExponent) ;

114 CMSignatureCert i f i cate . addPTLV(this . PublicModulus) ;

115 }

116 public byte [] outMessageProcess ing (int Counter) {

117 i f (Counter == 1) {

118 try {

119 this .CMRandomNumber . setTlvValues

120 (this . myProtocolHelperObject . getRandomNumber ()) ;

121 this . MessageHandler . addPTLV(this .CMRandomNumber) ;

122 byte [] temp = new byte [(this . SCPro to co l I n i t i a t o r . getValueBytes ()

123 . l ength +

124 this .CMRandomNumber . getValueLength ())] ;

125 System . arraycopy (this .CMRandomNumber . getValueBytes () , 0 , temp ,

126 0 , this .CMRandomNumber . getValueLength ()) ;

127 System . arraycopy (this . SCPro to co l I n i t i a t o r . getValueBytes () , 0 ,

temp ,

128 temp . l ength −
129 this . SCPro to co l I n i t i a t o r . getValueBytes () . length ,

130 this . SCPro to co l I n i t i a t o r . getValueBytes () . l ength) ;

131 byte [] r e s u l t = new byte [1 6] ;

132 this . myProtocolHelperObject . GenerateMac (temp , 0 , temp . length ,

133 r e su l t , 0 , this . myProtocolHelperObject .myLongTermMacKey) ;

134 this . CMCookie . setTlvValues (r e s u l t) ;

135 this . MessageHandler . addPTLV(this . CMCookie) ;

136 } catch (Exception cE) {

137 System . out . p r i n t l n (

138 "Error Protoco lHandler . inMessageProcess ing

Option = 1 , : " + cE . ge tC la s s () . getName ()) ;

139 }

140 } else i f (Counter == 2) {

141 try {

142 this . EncryptedData . i n i t i a l i s a t i onCTLV (this . EncryptedDataTag) ;

143 this . EncryptedData . addPTLV(this . CMIdentityTLV) ;

144 this . EncryptedData . addPTLV(this . SCIdent ity) ;

145 this . EncryptedData . addPTLV(this .CMRandomNumber) ;

146 this . EncryptedData . addPTLV(this . SCRandomNumber) ;

147 this . myProtocolHelperObject . SignatureMethod

148 (this . EncryptedData . getValueBytes () , 0 ,

149 this . EncryptedData . getValueBytes () . length ,

150 this . SignedData . getBytesTlvRepresentat ion () , 6 , null ,

151 Protoco lHe lpe rClas s .SIGN_MODE_GENERATION) ;

152 this . EncryptedData . addPTLV(this . SignedData) ;

153 this . EncryptedData .addCTLV(this . CMSignatureCert i f i cate) ;

154 this . myProtocolHelperObject . GenerateEncryption

155 (this . EncryptedData . getValueBytes () , 0 ,

285

C.3 Attestation Protocol

156 this . EncryptedData . getValueBytes () . length ,

157 this . EncryptedData . getBytesTlvRepresentat ion () , 7 ,

158 this . mySessionEncryptionKey) ;

159 this .MACedData . i n i t i a l i s a t i onPTLV (this .MACedDataTag , 16) ;

160 this . myProtocolHelperObject . GenerateMac

161 (this . EncryptedData . getValueBytes () , 0 ,

162 this . EncryptedData . getTagValueLength () ,

163 this .MACedData . getBytesTlvRepresentat ion () , 6 ,

164 this . mySessionMacKey) ;

165 this . MessageHandler . i n i t i a l i s a t i onCTLV (this . MessageHandlerTagTwo) ;

166 this . MessageHandler . addCTLV(EncryptedData) ;

167 this . MessageHandler . addPTLV(this .MACedData) ;

168 this . MessageHandler . addPTLV(this . CMCookie) ;

169 } catch (Exception cE) {

170 System . out . p r i n t l n (

171 "Error Protoco lHandler . inMessageProcess ing

Option = 1 , : " + cE . ge tC la s s () . getName ()) ;

172 }

173 } else {

174 System . out . p r i n t l n (

175 "Protoco l Stoped : I l l e g a l Message Value

(Protoco lHanlder . inMessageProcess ing () ") ;

176 }

177 return this . MessageHandler . getBytesTlvRepresentat ion () ;

178 }

179 public boolean inMessageProcess ing (byte [] inMessage , int Counter) {

180 try {

181 i f (Counter == 1) {

182 this . SCPro to co l I n i t i a t o r . s e tBytesTlvRepresentat ion (inMessage , 0 ,

183 22) ;

184 } else

185 i f (Counter == 2) {

186 this . MessageHandler . r e s e t () ;

187 this . EncryptedData . r e s e t () ;

188 this . MessageHandler . s e tBytesTlvRepresentat ion (inMessage , 0 ,

189 inMessage . l ength − 2) ;

190 this . childExtractionFromCTLV (this . MessageHandler) ;

191 GenerateKeys (this . SCDHStore . getValueBytes ()) ;

192 byte [] temp = new byte [1 6] ;

193 this . myProtocolHelperObject . GenerateMac

194 (this . EncryptedData . getValueBytes () , 0 ,

195 this . EncryptedData . getValueBytes () . length , temp , 0 ,

196 this . mySessionMacKey) ;

197 i f (Arrays . equa l s (this .MACedData . getValueBytes () , temp)) {}

198 else {

199 System . out . p r i n t l n (

200 " I n t e g r i t y Check Fa i l u r e : ERROR at

Protoco lHandler . inMessageProcess ing \n") ;

201 System . e x i t (0) ;

202 }

203 this . myProtocolHelperObject . GenerateDecryption

286

C.3 Attestation Protocol

204 (this . EncryptedData . getValueBytes () , 0 ,

205 this . EncryptedData . getValueBytes () . length ,

206 this . EncryptedData . getBytesTlvRepresentat ion () , 7 ,

207 this . mySessionEncryptionKey) ;

208 this . childExtractionFromCTLV (EncryptedData) ;

209 i f (Arrays . equa l s (PlatformHashPreset ,

210 this . PlatformHash . getValueBytes ())) {}

211 else {

212 System . out . p r i n t l n ("Platform Digest Not Ve r i f i e d ") ;

213 }

214 childExtractionFromCTLV (this . SCCer t i f i c a t e) ;

215 Big Intege r SCpublicExponent = new Big Intege r (byteToStr ing

216 (this . PublicExponent . getValueBytes ()) , 16) ;

217 Big Intege r SCpublicModulus = new Big Intege r (byteToStr ing

218 (this . PublicModulus . getValueBytes ()) , 16) ;

219 KeyFactory f a c t o r y = KeyFactory . g e t In s tance ("RSA") ;

220 SCVer i f i cat ionKey = (PublicKey) f a c t o r y . gene ra tePub l i c (new

221 RSAPublicKeySpec (SCpublicModulus ,

222 SCpublicExponent)) ;

223 temp = new byte [(this . PlatformHash . getTagLength () +

224 this . SCIdent ity . getTagLength () +

225 this . SCRandomNumber . getTagLength () +

226 this .CMRandomNumber . getTagLength ())] ;

227 System . arraycopy (this . EncryptedData . getBytesTlvRepresentat ion () ,

7 ,

228 temp , 0 , temp . l ength) ;

229 i f (this . myProtocolHelperObject . SignatureMethod (temp , 0 ,

230 temp . length , this . SignedData . getValueBytes () , 0 ,

231 SCVeri f icat ionKey ,

Protoco lHe lpe rClas s .SIGN_MODE_VERIFICATION))

232 {}

233 else {

234 System . out . p r i n t l n (

235 " S ignature V e r i f i c a t i o n Fa i l ed Check

code") ;

236 }

237 }

238 } catch (Exception cE) {

239 System . out . p r i n t l n ("Error in Protoco lHandler . inMessageProcess ing : "

240 + cE . ge tC la s s () . getName ()) ;

241 }

242 return true ;

243 }

244 public stat ic St r ing byteToStr ing (byte [] inArray) {

245 byte [] HEX_CHAR_TABLE = {

246 (byte) ' 0 ' , (byte) ' 1 ' , (byte) ' 2 ' , (byte) ' 3 ' , (byte) ' 4 ' , (byte) ' 5 ' ,

247 (byte) ' 6 ' , (byte) ' 7 ' , (byte) ' 8 ' , (byte) ' 9 ' , (byte) ' a ' , (byte) 'b ' ,

248 (byte) ' c ' , (byte) 'd ' , (byte) ' e ' , (byte) ' f '

249 } ;

250 byte [] hex = new byte [2 ∗ inArray . l ength] ;

251 int index = 0 ;

287

C.3 Attestation Protocol

252 for (byte b : inArray) {

253 int v = b & 0xFF ;

254 hex [index++] = HEX_CHAR_TABLE[v >>> 4] ;

255 hex [index++] = HEX_CHAR_TABLE[v & 0xF] ;

256 }

257 try {

258 return new St r ing (hex , "ASCII") ;

259 } catch (Exception cE) {

260 System . out . p r i n t l n ("Exception in bytesToStr ing : " +

cE . getMessage ())

261 ;

262 }

263 return "Error " ;

264 }

265 void childExtractionFromCTLV (ConstructedTLV inCTLV) {

266 try {

267 int c h i l d s = inCTLV . getChildNumbers () ;

268 PrimitiveTLV pTemp = null ;

269 ConstructedTLV cTemp = null ;

270 while (c h i l d s > 0) {

271 switch (inCTLV . nextType ()) {

272 case 1 :

273 pTemp = (PrimitiveTLV)inCTLV . getNext () ;

274 i f (Arrays . equa l s (pTemp . getTagName () ,

275 this . SCRandomNumber . getTagName ())) {

276 this . SCRandomNumber = pTemp ;

277 } else i f (Arrays . equa l s (pTemp . getTagName () ,

278 this .MACedData . getTagName ())) {

279 this .MACedData = pTemp ;

280 } else i f (Arrays . equa l s (pTemp . getTagName () ,

281 this . CMCookie . getTagName ())) {

282 i f (Arrays . equa l s (pTemp . getBytesTlvRepresentat ion () ,

283 this . CMCookie . getBytesTlvRepresentat ion ())) {}

284 } else i f (Arrays . equa l s (pTemp . getTagName () ,

285 this . SCIdent ity . getTagName ())) {

286 this . SCIdent ity = pTemp ;

287 } else i f (Arrays . equa l s (pTemp . getTagName () ,

288 this . SignedData . getTagName ())) {

289 this . SignedData = pTemp ;

290 } else i f (Arrays . equa l s (pTemp . getTagName () ,

291 this . PublicExponent . getTagName ())) {

292 this . PublicExponent = pTemp ;

293 } else i f (Arrays . equa l s (pTemp . getTagName () ,

294 this . PublicModulus . getTagName ())) {

295 this . PublicModulus = pTemp ;

296 } else i f (Arrays . equa l s (pTemp . getTagName () ,

297 this . PlatformHash . getTagName ())) {

298 this . PlatformHash = pTemp ;

299 } else i f (Arrays . equa l s (pTemp . getTagName () ,

300 this . Use r Ident i ty . getTagName ())) {

301 this . Use r Ident i ty = pTemp ;

288

C.3 Attestation Protocol

302 }

303 break ;

304 case 0 :

305 cTemp = (ConstructedTLV)inCTLV . getNext () ;

306 i f (Arrays . equa l s (cTemp . getTagName () ,

307 this . EncryptedData . getTagName ())) {

308 this . EncryptedData = cTemp ;

309 } else i f (Arrays . equa l s (cTemp . getTagName () ,

310 SCUserCer t i f i c a t e . getTagName ())) {

311 this . SCUserCer t i f i c a t e = cTemp ;

312 } else i f (Arrays . equa l s (cTemp . getTagName () ,

313 SCCer t i f i c a t e . getTagName ())) {

314 this . SCCer t i f i c a t e = cTemp ;

315 }

316 break ;

317 default :

318 System . out . p r i n t l n ("Error In Pars ing Input Message") ;

319 }

320 ch i l d s −−;
321 }

322 } catch (Exception e) {

323 System . out . p r i n t l n (

324 "Error in Protoco lHanlder . ChildExtractionMethod

: " + e . ge tC la s s () . getName ()) ;

325 }

326 }

327 void GenerateKeys (byte [] i n bu f f) {

328 byte [] DHSecretKey = null ;

329 try {

330 DHSecretKey =

331 this . myProtocolHelperObject . GenerateDHSessionKeyMaterial (inbu f f ,

0 ,

332 i n bu f f . l ength) ;

333 } catch (Exception cE) {

334 System . out . p r i n t l n (

335 "Exception At Protoco lHe lpe rC las s . GenerateKeys :

" + cE . ge tC la s s () . getName ()) ;

336 }

337 byte [] keyGenKey = new byte [1 6] ;

338 System . arraycopy (DHSecretKey , 0 , keyGenKey , 0 , keyGenKey . l ength) ;

339 byte [] macInputValue = new byte [6 4] ;

340 System . arraycopy (this .CMRandomNumber . getValueBytes () , 0 ,

macInputValue ,

341 0 , 16) ;

342 System . arraycopy (this . SCRandomNumber . getValueBytes () , 0 ,

macInputValue ,

343 16 , 16) ;

344 System . arraycopy (DHSecretKey , 16 , macInputValue , 32 , 16) ;

345 for (int i = 48 ; i < 64 ; i++) {

346 macInputValue [i] = (byte) 0x02 ;

347 }

289

C.4 Secure and Trusted Channel Protocol � Service Provider

348 try {

349 this . myProtocolHelperObject . GenerateMac (macInputValue , 0 ,

350 macInputValue . length , this . mySessionEncryptionKey , 0 , keyGenKey) ;

351 } catch (Exception cE) {

352 System . out . p r i n t l n ("Exception at Protoco lHandler . GenerateKeys : " +

353 cE . ge tC la s s () . getName ()) ;

354 }

355 for (int i = 48 ; i < 64 ; i++) {

356 macInputValue [i] = (byte) 0x03 ;

357 }

358 try {

359 this . myProtocolHelperObject . GenerateMac (macInputValue , 0 ,

360 macInputValue . length , this . mySessionMacKey , 0 , keyGenKey) ;

361 } catch (Exception cE) {

362 System . out . p r i n t l n ("Exception at Protoco lHandler . GenerateKeys : " +

363 cE . ge tC la s s () . getName ()) ;

364 }

365 }

366 }

C.4 Secure and Trusted Channel Protocol � Service Provider

The Java Card implementation of the STCPSP discussed in section 6.3 is listed in subse-

quent sections.

C.4.1 Smart Card Implementation

Following is the implementation of the smart card protocol handler that supports the

STCPSP.

1 package protocolSTCPSP ;

2

3 import javacard . framework .APDU;

4 import javacard . framework . Applet ;

5 import javacard . framework . ISO7816 ;

6 import javacard . framework . ISOException ;

7 import javacard . framework . JCSystem ;

8 import javacard . framework . Ut i l ;

9 import javacard . s e c u r i t y .AESKey ;

10 import javacard . s e c u r i t y . Key ;

11 import javacard . s e c u r i t y . KeyBuilder ;

12 import javacard . s e c u r i t y . KeyPair ;

13 import javacard . s e c u r i t y . MessageDigest ;

14 import javacard . s e c u r i t y . RSAPrivateKey ;

15 import javacard . s e c u r i t y . RSAPublicKey ;

16 import javacard . s e c u r i t y . RandomData ;

17 import javacard . s e c u r i t y . S ignature ;

18 import javacardx . apdu . ExtendedLength ;

19 import javacardx . crypto . Cipher ;

20 public class Protoco lHandler extends Applet implements ExtendedLength

290

C.4 Secure and Trusted Channel Protocol � Service Provider

21 {

22 private byte [] SPDHChanllengerArray ;

23 private byte [] SPRandomNumberArray ;

24 private byte [] SPCookieArray ;

25 private byte [] SCSPDHGeneratedValue ;

26 private byte [] SCRandomNumberArray ;

27 private byte [] SCUserCer t i f i ca t e ;

28 private byte [] SCCer t i f i c a t e ;

29 private byte [] SPDHChallengeTag = {

30 (byte) 0x1F , (byte) 0x5F , (byte) 0x5C , (byte) 0x01 } ;

31 private byte [] MessageHandlerTagOne = {

32 (byte) 0x1F , (byte) 0xC0 , (byte) 0xAA, (byte) 0xAA, (byte) 0x00 , (byte)

33 0x00 , (byte) 0x00 } ;

34 private byte [] MessageHandlerTagTwo = {

35 (byte) 0x1F , (byte) 0xC0 , (byte) 0xBB, (byte) 0xBB, (byte) 0x00 , (byte)

36 0x00 , (byte) 0x00 } ;

37 private byte [] SPIdent i ty = null ;

38 private byte [] SPRandomNumberTag = {

39 (byte) 0x1F , (byte) 0x5F , (byte) 0x5A , (byte) 0x01 } ;

40 private byte [] SPCookieTag = {

41 (byte) 0x1F , (byte) 0x5F , (byte) 0x5B , (byte) 0x01 } ;

42 private byte [] EncryptedDataTag = {

43 (byte) 0x1F , (byte) 0xC0 , (byte) 0xFE , (byte) 0x01 } ;

44 private byte [] SignedDataTag = {

45 (byte) 0x1F , (byte) 0x5F , (byte) 0x5D , (byte) 0x02 } ;

46 private byte [] MACedDataTag = {

47 (byte) 0x1F , (byte) 0x5F , (byte) 0x5D , (byte) 0x01 } ;

48 private byte [] PlatformHash = {

49 (byte) 0x1F , (byte) 0x5F , (byte) 0x5E , (byte) 0xAF} ;

50 private byte [] SCIdentityTag = {

51 (byte) 0x1F , (byte) 0x5F , (byte) 0x5F , (byte) 0x02 , (byte) 0x00 , (byte)

52 0x12 , (byte) 0x7A , (byte) 0xD5 , (byte) 0xB7 , (byte) 0xD0 , (byte) 0xB6 ,

53 (byte) 0xC1 , (byte) 0x22 , (byte) 0x07 , (byte) 0xC9 , (byte) 0xF9 ,

54 (byte) 0x8D , (byte) 0x11 , (byte) 0xED, (byte) 0x34 , (byte) 0xDB,

55 (byte) 0xF6 , (byte) 0x0B , (byte) 0x2C} ;

56 private byte [] Use r Ident i ty = {

57 (byte) 0x1F , (byte) 0x5F , (byte) 0x5F , (byte) 0x03 , (byte) 0x00 , (byte)

58 0x14 , (byte) 0x7A , (byte) 0xD5 , (byte) 0xB7 , (byte) 0xD0 , (byte) 0xB6 ,

59 (byte) 0xC1 , (byte) 0x22 , (byte) 0x07 , (byte) 0xC9 , (byte) 0xC9 ,

60 (byte) 0x8D , (byte) 0xD1 , (byte) 0xED, (byte) 0xFC, (byte) 0xDB,

61 (byte) 0xF6 , (byte) 0x0B , (byte) 0x2C , (byte) 0x0B , (byte) 0x2C} ;

62 private byte [] ExponentTag = {

63 (byte) 0x1F , (byte) 0x5F , (byte) 0xEE, (byte) 0x01 } ;

64 private byte [] ModulusTag = {

65 (byte) 0x1F , (byte) 0x5F , (byte) 0xEE, (byte) 0x02 } ;

66 private byte [] SCDHChalleneTag = {

67 (byte) 0x1F , (byte) 0x5F , (byte) 0x5C , (byte) 0x02 } ;

68 private byte [] SCRandomNumberTag = {

69 (byte) 0x1F , (byte) 0x5F , (byte) 0x5A , (byte) 0x02 } ;

70 private byte [] SPCert i f i cateTag = {

71 (byte) 0x1F , (byte) 0xC0 , (byte) 0xF0 , (byte) 0x01 } ;

291

C.4 Secure and Trusted Channel Protocol � Service Provider

72 private byte [] SCCert i f i cateTag = {

73 (byte) 0x1F , (byte) 0xC0 , (byte) 0xF0 , (byte) 0x02 } ;

74 private byte [] SCUserCert i f i cateTag = {

75 (byte) 0x1F , (byte) 0xC0 , (byte) 0xF0 , (byte) 0x03 } ;

76 short PTLVDataOffset = (short) 6 ;

77 short CTLVDataOffset = (short) 7 ;

78 short TLVLengthOffset = (short) 4 ;

79 short copyPointer = (short) 0 ;

80 byte [] SCDHData ;

81 f ina l stat ic byte CLA = (byte) 0xB0 ;

82 f ina l stat ic byte Sta r tPro toco l = (byte) 0x40 ;

83 f ina l stat ic byte I n i t i a t i o nP r o t o c o l = (byte) 0 x f f ;

84 f ina l stat ic short SW_CLASSNOTSUPPORTED = 0x6320 ;

85 f ina l stat ic short SW_ERROR_INS = 0x6300 ;

86 RandomData randomDataGen ;

87 Cipher pkCipher ;

88 short messageNumber = 0 ;

89 byte [] r e c e i v i n gBu f f e r = null ;

90 short byte sLe f t = 0 ;

91 short readCount = 0 ;

92 short rCount = 0 ;

93 short s i gn l eng th = 0 ;

94 private RSAPublicKey dhKey = (RSAPublicKey) KeyBuilder . buildKey

95 (KeyBuilder .TYPE_RSA_PUBLIC,

96 KeyBuilder .LENGTH_RSA_2048, fa l se) ;

97 private byte [] randomExponent ;

98 f ina l stat ic byte GEN_KEYCONTRIBUTION = 0x01 ;

99 f ina l stat ic byte GEN_DHKEY = 0x02 ;

100 AESKey phCipherKey ;

101 Cipher syCipher ;

102 byte [] I n i t i a l i s a t i o nV e c t o r = {

103 (byte) 0x6C , (byte) 0xDE, (byte) 0xBE, (byte) 0x7B , (byte) 0x89 , (byte)

104 0x99 , (byte) 0x8C , (byte) 0xAF, (byte) 0xC5 , (byte) 0x7D , (byte) 0xB1 ,

105 (byte) 0x7C , (byte) 0x62 , (byte) 0x0A , (byte) 0x86 , (byte) 0x52 } ;

106 AESKey phMacGeneratorKey ;

107 Signature phMacGenerator ;

108 Signature phSign ;

109 KeyPair phSCKeyPair ;

110 KeyPair phUserKeyPair ;

111 RSAPublicKey SPVer i f i cat ionKey = null ;

112 private Protoco lHandler () {

113 phMacGeneratorKey = (AESKey) KeyBuilder . buildKey

114 (KeyBuilder .TYPE_AES_TRANSIENT_DESELECT,

115 KeyBuilder .LENGTH_AES_128, fa l se) ;

116 phMacGenerator = Signature . g e t In s tance

117 (S ignature .ALG_AES_MAC_128_NOPAD, fa l se) ;

118 phSign = Signature . g e t In s tance (S ignature .ALG_RSA_SHA_PKCS1, fa l se)

119 ;

120 phSCKeyPair = new KeyPair (KeyPair .ALG_RSA,

121 KeyBuilder .LENGTH_RSA_512) ;

122 phUserKeyPair = new KeyPair (KeyPair .ALG_RSA,

292

C.4 Secure and Trusted Channel Protocol � Service Provider

123 KeyBuilder .LENGTH_RSA_512) ;

124 phCipherKey = (AESKey) KeyBuilder . buildKey

125 (KeyBuilder .TYPE_AES_TRANSIENT_DESELECT,

126 KeyBuilder .LENGTH_AES_128, fa l se) ;

127 syCipher = Cipher . g e t In s tance (Cipher .ALG_AES_BLOCK_128_CBC_NOPAD,

128 fa l se) ;

129 randomDataGen = RandomData . g e t In s tance

130 (RandomData .ALG_SECURE_RANDOM) ;

131 pkCipher = Cipher . g e t In s tance (Cipher .ALG_RSA_NOPAD, fa l se) ;

132 d h I n i t i a l i s a t i o n () ;

133 phSCKeyPair . genKeyPair () ;

134 phUserKeyPair . genKeyPair () ;

135 }

136 public stat ic void i n s t a l l (byte bArray [] , short bOffset , byte

137 bLength)throws ISOException {

138 new Protoco lHandler () . r e g i s t e r () ;

139 }

140 public void i n i t i a l i s e P r o t o c o l () {

141 short i n i t i a l P o i n t e r = 0 ;

142 SCDHData = JCSystem . makeTransientByteArray ((short) ((short)

143 this . ClassDH . dhModulus . l ength + PTLVDataOffset) ,

144 JCSystem .MEMORY_TYPE_TRANSIENT_DESELECT) ;

145 Ut i l . arrayCopyNonAtomic (this . SCDHChalleneTag , (short)

146 i n i t i a l P o i n t e r , this . SCDHData , (short) 0 ,

147 (short) this . SCDHChalleneTag . l ength) ;

148 this . shortToBytes (SCDHData , (short) 4 , (short) ((short)

149 SCDHData . l ength − (short) PTLVDataOffset)) ;

150 this . dhKeyConGen(this . SCDHData , this . PTLVDataOffset ,

151 Protoco lHandler .GEN_KEYCONTRIBUTION) ;

152 SPDHChanllengerArray = JCSystem . makeTransientByteArray ((short) (

153 (short) this . ClassDH . dhModulus . l ength + this . PTLVDataOffset) ,

154 JCSystem .MEMORY_TYPE_TRANSIENT_DESELECT) ;

155 SPRandomNumberArray = JCSystem . makeTransientByteArray ((short) 22 ,

156 JCSystem .MEMORY_TYPE_TRANSIENT_DESELECT) ;

157 SPCookieArray = JCSystem . makeTransientByteArray ((short) 22 ,

158 JCSystem .MEMORY_TYPE_TRANSIENT_DESELECT) ;

159 SCRandomNumberArray = JCSystem . makeTransientByteArray ((short) 22 ,

160 JCSystem .MEMORY_TYPE_TRANSIENT_DESELECT) ;

161 Ut i l . arrayCopyNonAtomic (this . SCRandomNumberTag , (short)

162 i n i t i a l P o i n t e r , this . SCRandomNumberArray ,

163 (short) i n i t i a l P o i n t e r , (short)

164 this . SCRandomNumberTag . l ength) ;

165 this . shortToBytes (this . SCRandomNumberArray , (short) 4 , (short) (

166 (short) this . SCRandomNumberArray . l ength − (short)

167 PTLVDataOffset)) ;

168 try {

169 this . SCUserCer t i f i c a t e = JCSystem . makeTransientByteArray ((short)

170 86 , JCSystem .MEMORY_TYPE_TRANSIENT_DESELECT) ;

171 i n i t i a l P o i n t e r = Ut i l . arrayCopyNonAtomic

172 (this . SCUserCert i f icateTag , (short) 0 ,

this . SCUserCert i f i cate ,

293

C.4 Secure and Trusted Channel Protocol � Service Provider

173 (short) 0 ,

(short) this . SCUserCert i f i cateTag . l ength) ;

174 this . shortToBytes (this . SCUserCert i f i cate , (short) 4 , (short)

175 (this . SCUserCer t i f i c a t e . l ength − (short) 7)) ;

176 i n i t i a l P o i n t e r = Ut i l . arrayCopyNonAtomic (this . ExponentTag ,

177 (short) 0 , this . SCUserCert i f i cate , (short) (i n i t i a l P o i n t e r +

178 (short) 3) , (short) this . ExponentTag . l ength) ;

179 RSAPublicKey myPublic = (RSAPublicKey)

180 this . phUserKeyPair . ge tPub l i c () ;

181 short kLen = myPublic . getExponent (this . SCUserCert i f i cate ,

182 (short) (i n i t i a l P o i n t e r + (short) 2)) ;

183 this . shortToBytes (this . SCUserCert i f i cate , i n i t i a l P o i n t e r , kLen) ;

184 i n i t i a l P o i n t e r += (short) (kLen + (short) 2) ;

185 this . SCUserCer t i f i c a t e [6]++;

186 i n i t i a l P o i n t e r = Ut i l . arrayCopyNonAtomic (this . ModulusTag ,

187 (short) 0 , this . SCUserCert i f i cate , (short) (i n i t i a l P o i n t e r) ,

188 (short) this . ModulusTag . l ength) ;

189 kLen = myPublic . getModulus (this . SCUserCert i f i cate , (short)

190 (i n i t i a l P o i n t e r + (short) 2)) ;

191 this . shortToBytes (this . SCUserCert i f i cate , i n i t i a l P o i n t e r , kLen) ;

192 this . SCUserCer t i f i c a t e [6]++;

193 this . SPIdent i ty = JCSystem . makeTransientByteArray ((short) 24 ,

194 JCSystem .MEMORY_TYPE_TRANSIENT_RESET) ;

195 SPVer i f i cat ionKey = (RSAPublicKey) KeyBuilder . buildKey

196 (KeyBuilder .TYPE_RSA_PUBLIC,

197 KeyBuilder .LENGTH_RSA_512, fa l se) ;

198 } catch (Exception cE) {

199 ISOException . throwIt ((short) 0xCCCC) ;

200 }

201 try {

202 this . SCCer t i f i c a t e = JCSystem . makeTransientByteArray ((short) 86 ,

203 JCSystem .MEMORY_TYPE_TRANSIENT_DESELECT) ;

204 i n i t i a l P o i n t e r = Ut i l . arrayCopyNonAtomic (this . SCCert i f icateTag ,

205 (short) 0 , this . SCCert i f i ca t e , (short) 0 ,

(short)

206 this . SCCert i f i cateTag . l ength) ;

207 this . shortToBytes (this . SCCert i f i ca t e , (short) 4 , (short)

208 (this . SCCer t i f i c a t e . l ength − (short) 7)) ;

209 i n i t i a l P o i n t e r = Ut i l . arrayCopyNonAtomic (this . ExponentTag ,

210 (short) 0 , this . SCCert i f i ca t e ,

(short) (i n i t i a l P o i n t e r + (short)

211 3) , (short) this . ExponentTag . l ength) ;

212 RSAPublicKey myPublic = (RSAPublicKey)

213 this . phSCKeyPair . ge tPub l i c () ;

214 short kLen = myPublic . getExponent (this . SCCert i f i ca t e , (short)

215 (i n i t i a l P o i n t e r + (short) 2)) ;

216 this . shortToBytes (this . SCCert i f i ca t e , i n i t i a l P o i n t e r , kLen) ;

217 i n i t i a l P o i n t e r += (short) (kLen + (short) 2) ;

218 this . SCCer t i f i c a t e [6]++;

219 i n i t i a l P o i n t e r = Ut i l . arrayCopyNonAtomic (this . ModulusTag ,

294

C.4 Secure and Trusted Channel Protocol � Service Provider

220 (short) 0 , this . SCCert i f i ca t e ,

(short) (i n i t i a l P o i n t e r) , (short)

221 this . ModulusTag . l ength) ;

222 kLen = myPublic . getModulus (this . SCCert i f i ca t e , (short)

223 (i n i t i a l P o i n t e r + (short) 2)) ;

224 this . shortToBytes (this . SCCert i f i ca t e , i n i t i a l P o i n t e r , kLen) ;

225 this . SCCer t i f i c a t e [6]++;

226 } catch (Exception cE) {

227 ISOException . throwIt ((short) 0x6666) ;

228 }

229 }

230 public void proce s s (APDU apdu)throws ISOException {

231 byte [] apduBuffer = apdu . ge tBu f f e r () ;

232 i f (s e l e c t i n gApp l e t ()) {

233 return ;

234 }

235 i f (apduBuffer [ISO7816 .OFFSET_CLA] != CLA) {

236 ISOException . throwIt (SW_CLASSNOTSUPPORTED) ;

237 }

238 i f (apduBuffer [ISO7816 .OFFSET_INS] == In i t i a t i o nP r o t o c o l) {

239 this . i n i t i a l i s e P r o t o c o l () ;

240 return ;

241 }

242 r e c e i v i n gBu f f e r = null ;

243 byte sLe f t = 0 ;

244 byte sLe f t = apdu . getIncomingLength () ;

245 r e c e i v i n gBu f f e r = JCSystem . makeTransientByteArray (bytesLe f t ,

246 JCSystem .MEMORY_TYPE_TRANSIENT_DESELECT) ;

247 readCount = (short) ((short) apdu . setIncomingAndReceive ()) ;

248 rCount = 0 ;

249 i f (byte sLe f t > 0) {

250 rCount = Ut i l . arrayCopyNonAtomic (apduBuffer ,

251 ISO7816 .OFFSET_EXT_CDATA, r e c e i v i ngBu f f e r , rCount , readCount) ;

252 byte sLe f t −= readCount ;

253 }

254 while (byte sLe f t > 0) {

255 try {

256 readCount = apdu . r e c e i v eByte s ((short) 0) ;

257 rCount = Ut i l . arrayCopyNonAtomic (apduBuffer , (short) 0 ,

258 r e c e i v i ngBu f f e r , rCount , readCount) ;

259 byte sLe f t −= readCount ;

260 } catch (Exception aE) {

261 ISOException . throwIt ((short) 0x7AAA) ;

262 }

263 }

264 try {

265 parseMessage (r e c e i v i n gBu f f e r) ;

266 } catch (Exception cE) {

267 ISOException . throwIt ((short) 0xA112) ;

268 }

269 i f (this . r e c e i v i n gBu f f e r [3] == this . MessageHandlerTagOne [3]) {

295

C.4 Secure and Trusted Channel Protocol � Service Provider

270 r e c e i v i n gBu f f e r = JCSystem . makeTransientByteArray ((short) 568 ,

271 JCSystem .MEMORY_TYPE_TRANSIENT_DESELECT) ;

272 generateResponse ((short) 1) ;

273 } else i f (this . r e c e i v i n gBu f f e r [3] ==

274 this . MessageHandlerTagTwo [3]) {

275 processSecondMsg (r e c e i v i n gBu f f e r) ;

276 r e c e i v i n gBu f f e r = JCSystem . makeTransientByteArray ((short) 568 ,

277 JCSystem .MEMORY_TYPE_TRANSIENT_DESELECT) ;

278 generateResponse ((short) 2) ;

279 } else {

280 ISOException . throwIt (Protoco lHandler .SW_ERROR_INS) ;

281 }

282 JCSystem . r eques tObjec tDe l e t i on () ;

283 apdu . setOutgoing () ;

284 apdu . setOutgoingLength ((short) copyPointer) ;

285 apdu . sendBytesLong (r e c e i v i ngBu f f e r , (short) 0 , (short) copyPointer) ;

286 JCSystem . r eques tObjec tDe l e t i on () ;

287 }

288 private void generateResponse (short msgNumber) {

289 short ch i ldPo interMessage = 6 ;

290 short enc ryp t i onOf f s e t = 0 ;

291 copyPointer = 0 ;

292 i f (msgNumber == 1) {

293 randomDataGen . generateData (this . SCRandomNumberArray ,

294 this . PTLVDataOffset , (short) 16) ;

295 this . dhKeyConGen(this . SPDHChanllengerArray , this . PTLVDataOffset ,

296 Protoco lHandler .GEN_DHKEY) ;

297 copyPointer = Ut i l . arrayCopyNonAtomic (this . MessageHandlerTagOne ,

298 (short) 0 , this . r e c e i v i ngBu f f e r , copyPointer , (short)

299 this . MessageHandlerTagOne . l ength) ;

300 copyPointer = Ut i l . arrayCopyNonAtomic (this . SCDHData , (short) 0 ,

301 this . r e c e i v i ngBu f f e r , copyPointer , (short)

302 this . SCDHData . l ength) ;

303 this . r e c e i v i n gBu f f e r [ch i ldPo interMessage]++;

304 copyPointer = Ut i l . arrayCopyNonAtomic (this . SCRandomNumberArray ,

305 (short) 0 , this . r e c e i v i ngBu f f e r , copyPointer , (short)

306 this . SCRandomNumberArray . l ength) ;

307 this . r e c e i v i n gBu f f e r [ch i ldPo interMessage]++;

308 keygenerator () ;

309 copyPointer = Ut i l . arrayCopyNonAtomic (this . EncryptedDataTag ,

310 (short) 0 , this . r e c e i v i ngBu f f e r , copyPointer , (short)

311 this . EncryptedDataTag . l ength) ;

312 this . r e c e i v i n gBu f f e r [ch i ldPo interMessage]++;

313 short childEnMessage = (short) (copyPointer + (short) 2) ;

314 copyPointer += (short) 3 ;

315 enc ryp t i onOf f s e t = copyPointer ;

316 copyPointer = Ut i l . arrayCopyNonAtomic (this . SCIdentityTag ,

317 (short) 0 , this . r e c e i v i ngBu f f e r , copyPointer , (short)

318 this . SCIdentityTag . l ength) ;

319 this . r e c e i v i n gBu f f e r [childEnMessage]++;

320 copyPointer = Ut i l . arrayCopyNonAtomic (this . SCRandomNumberArray ,

296

C.4 Secure and Trusted Channel Protocol � Service Provider

321 (short) 0 , this . r e c e i v i ngBu f f e r , copyPointer , (short)

322 this . SCRandomNumberArray . l ength) ;

323 this . r e c e i v i n gBu f f e r [childEnMessage]++;

324 copyPointer = Ut i l . arrayCopyNonAtomic (this . SPRandomNumberArray ,

325 (short) 0 , this . r e c e i v i ngBu f f e r , copyPointer , (short)

326 this . SPRandomNumberArray . l ength) ;

327 this . r e c e i v i n gBu f f e r [childEnMessage]++;

328 this . s ignGenerate (this . r e c e i v i ngBu f f e r , enc rypt ionOf f s e t ,

329 (short) (copyPointer − enc ryp t i onOf f s e t) ,

330 phUserKeyPair . g e tPr iva t e () ,

331 Signature .MODE_SIGN) ;

332 this . r e c e i v i n gBu f f e r [childEnMessage]++;

333 copyPointer = Ut i l . arrayCopyNonAtomic (this . SCUserCert i f i cate ,

334 (short) 0 , this . r e c e i v i ngBu f f e r , copyPointer , (short)

335 this . SCUserCer t i f i c a t e . l ength) ;

336 this . r e c e i v i n gBu f f e r [childEnMessage]++;

337 messageEncryption (this . r e c e i v i ngBu f f e r , enc rypt ionOf f s e t ,

338 (short) (copyPointer − enc ryp t i onOf f s e t)) ;

339 this . shortToBytes (r e c e i v i ngBu f f e r , (short) (enc ryp t i onOf f s e t −
340 (short) 3) , (short) (copyPointer −
341 enc ryp t i onOf f s e t)) ;

342 macGenerate (this . r e c e i v i ngBu f f e r , enc rypt ionOf f s e t , (short)

343 (copyPointer − enc ryp t i onOf f s e t) ,

344 Signature .MODE_SIGN) ;

345 this . r e c e i v i n gBu f f e r [ch i ldPo interMessage]++;

346 copyPointer = Ut i l . arrayCopyNonAtomic (this . SPCookieArray ,

347 (short) 0 , this . r e c e i v i ngBu f f e r , copyPointer , (short)

348 this . SPCookieArray . l ength) ;

349 this . r e c e i v i n gBu f f e r [ch i ldPo interMessage]++;

350 this . shortToBytes (this . r e c e i v i ngBu f f e r , (short) 4 , copyPointer) ;

351 } else i f (msgNumber == 2) {

352 copyPointer = (short) 0 ;

353 short tempLength = (short) 0 ;

354 short mainChildPointer = (short) 6 ;

355 short mainLengthPointer = (short) 4 ;

356 short encryptedChi ldPointer = (short) 13 ;

357 short genera lLengthPointer = (short) 0 ;

358 this . r e c e i v i n gBu f f e r [mainChi ldPointer] = (short) 0 ;

359 this . r e c e i v i n gBu f f e r [encryptedChi ldPointer] = (short) 0 ;

360 copyPointer = Ut i l . arrayCopyNonAtomic (this . MessageHandlerTagTwo ,

361 (short) 0 , this . r e c e i v i ngBu f f e r , copyPointer , (short) 7) ;

362 this . r e c e i v i n gBu f f e r [mainChi ldPointer]++;

363 copyPointer = Ut i l . arrayCopyNonAtomic (this . EncryptedDataTag ,

364 (short) 0 , this . r e c e i v i ngBu f f e r , copyPointer , (short) 4) ;

365 copyPointer += (short) 3 ;

366 enc ryp t i onOf f s e t = copyPointer ;

367 copyPointer = Ut i l . arrayCopyNonAtomic (this . PlatformHash , (short)

368 0 , r e c e i v i ngBu f f e r , copyPointer , (short) 4) ;

369 genera lLengthPointer = copyPointer ;

370 copyPointer += (short) 2 ;

371 MessageDigest myHashGen = MessageDigest . g e t In s tance

297

C.4 Secure and Trusted Channel Protocol � Service Provider

372 (MessageDigest .ALG_SHA_256, fa l se) ;

373 tempLength = (short)myHashGen . doFinal (this . ClassDH . dhModulus ,

(short) 0 ,

374 (short) this . ClassDH . dhModulus . length , r e c e i v i ngBu f f e r ,

375 copyPointer) ;

376 this . r e c e i v i n gBu f f e r [encryptedChi ldPointer]++;

377 this . shortToBytes (this . r e c e i v i ngBu f f e r , genera lLengthPointer ,

378 (short) (tempLength)) ;

379 copyPointer += tempLength ;

380 copyPointer = Ut i l . arrayCopyNonAtomic (this . User Ident i ty , (short)

381 0 , this . r e c e i v i ngBu f f e r , copyPointer , (short)

382 this . Use r Ident i ty . l ength) ;

383 this . r e c e i v i n gBu f f e r [encryptedChi ldPointer]++;

384 copyPointer = Ut i l . arrayCopyNonAtomic (this . SPIdentity , (short) 0 ,

385 this . r e c e i v i ngBu f f e r , copyPointer , (short)

386 this . SPIdent i ty . l ength) ;

387 this . r e c e i v i n gBu f f e r [encryptedChi ldPointer]++;

388 copyPointer = Ut i l . arrayCopyNonAtomic (this . SCRandomNumberArray ,

389 (short) 0 , this . r e c e i v i ngBu f f e r , copyPointer , (short)

390 this . SCRandomNumberArray . l ength) ;

391 this . r e c e i v i n gBu f f e r [encryptedChi ldPointer]++;

392 copyPointer = Ut i l . arrayCopyNonAtomic (this . SPRandomNumberArray ,

393 (short) 0 , this . r e c e i v i ngBu f f e r , (short) copyPointer , (short)

394 this . SPRandomNumberArray . l ength) ;

395 this . r e c e i v i n gBu f f e r [encryptedChi ldPointer]++;

396 try {

397 this . s ignGenerate (r e c e i v i ngBu f f e r , (short) (enc ryp t i onOf f s e t) ,

398 (short) (copyPointer − enc ryp t i onOf f s e t) ,

399 phSCKeyPair . g e tPr iva t e () ,

400 Signature .MODE_SIGN) ;

401 this . r e c e i v i n gBu f f e r [encryptedChi ldPointer]++;

402 } catch (Exception cE) {

403 ISOException . throwIt ((short) 0xFA17) ;

404 }

405 copyPointer = Ut i l . arrayCopyNonAtomic (this . SCCert i f i ca t e ,

406 (short) 0 , this . r e c e i v i ngBu f f e r , copyPointer , (short)

407 this . SCCer t i f i c a t e . l ength) ;

408 this . r e c e i v i n gBu f f e r [encryptedChi ldPointer]++;

409 try {

410 this . messageEncryption (r e c e i v i ngBu f f e r , (short)

411 (encryptedChi ldPointer + (short) 1) ,

412 (short) (copyPointer −
413 (encryptedChi ldPointer + (short) 1))) ;

414 } catch (Exception cE) {

415 ISOException . throwIt ((short) (copyPointer −
416 encryptedChi ldPointer + (short) 1)) ;

417 }

418 this . shortToBytes (this . r e c e i v i ngBu f f e r , (short)

419 (encryptedChi ldPointer − (short) 2) , (short)

420 (copyPointer − (short) (encryptedChi ldPointer

421 + (short) 1))) ;

298

C.4 Secure and Trusted Channel Protocol � Service Provider

422 this . macGenerate (r e c e i v i ngBu f f e r , (short) (encryptedChi ldPointer

423 + (short) 1) , (short) (copyPointer −
424 (encryptedChi ldPointer + (short) 1)) ,

425 Signature .MODE_SIGN) ;

426 this . r e c e i v i n gBu f f e r [mainChi ldPointer]++;

427 copyPointer = Ut i l . arrayCopyNonAtomic (this . SPCookieArray ,

428 (short) 0 , this . r e c e i v i ngBu f f e r , copyPointer , (short)

429 this . SPCookieArray . l ength) ;

430 this . r e c e i v i n gBu f f e r [mainChi ldPointer]++;

431 this . shortToBytes (this . r e c e i v i ngBu f f e r , mainLengthPointer ,

432 (short) (copyPointer − (short) 7)) ;

433 }

434 }

435 void platformHashGeneration (byte [] inArray , short i nO f f s e t) {}

436 void processSecondMsg (byte [] inArray) {

437 short i nO f f s e t = (short) (this . CTLVDataOffset +

438 this . CTLVDataOffset) ;

439 short inLength = (short) (Protoco lHandler . bytesToShort (inArray ,

440 (short) (i nO f f s e t − (short) 3))) ;

441 i f (this . macGenerate (inArray , i nOf f s e t , inLength ,

442 Signature .MODE_VERIFY)) {

443 this . phDecryption (inArray , i nOf f s e t , inLength) ;

444 Ut i l . arrayCopyNonAtomic (inArray , i nOf f s e t , this . SPIdentity ,

445 (short) 0 , (short) this . SPIdent i ty . l ength)

446 ;

447 i nO f f s e t += (short) 151 ;

448 inLength = (short) 3 ;

449 SPVer i f i cat ionKey . setExponent (inArray , i nOf f s e t , inLength) ;

450 i nO f f s e t += (short) (inLength + this . PTLVDataOffset) ;

451 inLength = (short) 64 ;

452 SPVer i f i cat ionKey . setModulus (inArray , i nOf f s e t , inLength) ;

453 i nO f f s e t = (short) (this . CTLVDataOffset + this . CTLVDataOffset) ;

454 inLength = (short) 68 ;

455 i f (this . s ignGenerate (inArray , i nOf f s e t , inLength ,

456 SPVeri f icat ionKey , S ignature .MODE_VERIFY)) {

457 return ;

458 } else {

459 ISOException . throwIt ((short) 0x6666) ;

460 }

461 } else {

462 ISOException . throwIt ((short) 0xFA18) ;

463 }

464 }

465 void parseMessage (byte [] i nBu f f e r) {

466 byte c h i l dL e f t = inBu f f e r [(short) (this . CTLVDataOffset − (short) 1)

467] ;

468 short po in t e r = (short) this . CTLVDataOffset ;

469 try {

470 while (c h i l dL e f t > 0) {

471 i f (Ut i l . arrayCompare (SPDHChallengeTag , (short) 0 , inBuf f e r ,

472 pointer , (short) 4) == 0) {

299

C.4 Secure and Trusted Channel Protocol � Service Provider

473 Ut i l . arrayCopy (inBuf f e r , po inter , this . SPDHChanllengerArray ,

474 (short) 0 , (short)

475 this . SPDHChanllengerArray . l ength) ;

476 po in t e r += (short) this . SPDHChanllengerArray . l ength ;

477 } else i f (Ut i l . arrayCompare (this . SPRandomNumberTag , (short) 0 ,

478 i nBuf f e r , po inter , (short) 4) == 0) {

479 Ut i l . arrayCopyNonAtomic (inBuf f e r , po inter ,

480 this . SPRandomNumberArray , (short) 0 ,

481 (short)

482 (this . SPRandomNumberArray . l ength)) ;

483 po in t e r += (short) (this . SPRandomNumberArray . l ength) ;

484 } else i f (Ut i l . arrayCompare (this . SPCookieTag , (short) 0 ,

485 i nBuf f e r , po inter , (short) 4) == 0) {

486 Ut i l . arrayCopyNonAtomic (inBuf f e r , po inter ,

487 this . SPCookieArray , (short) 0 ,

488 (short) (this . SPCookieArray . l ength)) ;

489 po in t e r += (short) (this . SPCookieArray . l ength) ;

490 }

491 c h i l dL e f t −= (short) 1 ;

492 }

493 } catch (Exception cE) {

494 ISOException . throwIt ((short) c h i l dL e f t) ;

495 }

496 }

497 void protoco l Implementat ion () {}

498 void d h I n i t i a l i s a t i o n () {

499 dhKey . setModulus (ClassDH . dhModulus , (short) 0 ,

(short)ClassDH . dhModulus . l ength) ;

500 }

501 void dhKeyConGen(byte [] i nbu f f , short i nbu f fO f f s e t , byte Oper_Mode)

502 {

503 switch (Oper_Mode) {

504 case GEN_KEYCONTRIBUTION: randomExponent =

505 JCSystem . makeTransientByteArray ((short) 32 ,

506 JCSystem .MEMORY_TYPE_TRANSIENT_DESELECT) ;

507 randomDataGen . generateData (randomExponent , (short) 0 , (short)

508 randomExponent . l ength) ;

509 dhKey . setExponent (randomExponent , (short) 0 , (short)

510 randomExponent . l ength) ;

511 pkCipher . i n i t (dhKey , Cipher .MODE_ENCRYPT) ;

512 pkCipher . doFinal (ClassDH . dhBase , (short) 0 ,

(short)ClassDH . dhBase . length , inbu f f ,

513 i n bu f fO f f s e t) ;

514 break ;

515 case GEN_DHKEY:

516 try {

517 dhKey . setExponent (randomExponent , (short) 0 , (short)

518 randomExponent . l ength) ;

519 pkCipher . i n i t (dhKey , Cipher .MODE_ENCRYPT) ;

520 SCSPDHGeneratedValue = JCSystem . makeTransientByteArray (

521 (short)ClassDH . dhModulus . length ,

300

C.4 Secure and Trusted Channel Protocol � Service Provider

522 JCSystem .MEMORY_TYPE_TRANSIENT_DESELECT) ;

523 pkCipher . doFinal (inbu f f , i nbu f fO f f s e t , (short) ((short)

524 i n bu f f . l ength − (short) this . PTLVDataOffset)

525 , SCSPDHGeneratedValue , (short) 0) ;

526 }

527 catch (Exception cE) {

528 ISOException . throwIt ((short) 0xD86E) ;

529 }

530 break ;

531 default :

532 ISOException . throwIt ((short) 0x5FA1) ;

533 }

534 }

535 void keygenerator () {

536 AESKey sessionGenKey = (AESKey) KeyBuilder . buildKey

537 (KeyBuilder .TYPE_AES_TRANSIENT_DESELECT,

538 KeyBuilder .LENGTH_AES_128, fa l se) ;

539 sessionGenKey . setKey (SCSPDHGeneratedValue , (short) 0) ;

540 phMacGenerator . i n i t (sessionGenKey , S ignature .MODE_SIGN,

541 I n i t i a l i s a t i o nV e c t o r , (short) 0 , (short)

542 I n i t i a l i s a t i o nV e c t o r . l ength) ;

543 byte [] keyGenMacData = JCSystem . makeTransientByteArray ((short) 64 ,

544 JCSystem .MEMORY_TYPE_TRANSIENT_DESELECT) ;

545 short po in t e r = 0 ;

546 po in t e r = Ut i l . arrayCopyNonAtomic (this . SPRandomNumberArray ,

547 this . PTLVDataOffset , keyGenMacData , (short) po inter , (short) 16) ;

548 po in t e r = Ut i l . arrayCopyNonAtomic (this . SCRandomNumberArray ,

549 this . PTLVDataOffset , keyGenMacData , (short) po inter , (short) 16) ;

550 po in t e r = Ut i l . arrayCopyNonAtomic (SCSPDHGeneratedValue , (short) 16 ,

551 keyGenMacData , (short) po inter , (short) 16) ;

552 for (short i = 48 ; i < 64 ; i++) {

553 keyGenMacData [i] = (byte) 0x02 ;

554 }

555 phMacGenerator . s i gn (keyGenMacData , (short) 0 , (short)

556 keyGenMacData . length , SCSPDHGeneratedValue ,

557 (short) 0) ;

558 this . phCipherKey . setKey (SCSPDHGeneratedValue , (short) 0) ;

559 for (short i = 48 ; i < 64 ; i++) {

560 keyGenMacData [i] = (byte) 0x03 ;

561 }

562 phMacGenerator . i n i t (sessionGenKey , S ignature .MODE_SIGN,

563 I n i t i a l i s a t i o nV e c t o r , (short) 0 , (short)

564 I n i t i a l i s a t i o nV e c t o r . l ength) ;

565 phMacGenerator . s i gn (keyGenMacData , (short) 0 , (short)

566 keyGenMacData . length , SCSPDHGeneratedValue ,

567 (short) 0) ;

568 this . phMacGeneratorKey . setKey (SCSPDHGeneratedValue , (short) 0) ;

569 SCSPDHGeneratedValue = null ;

570 JCSystem . r eques tObjec tDe l e t i on () ;

571 }

572 void messageEncryption (byte [] i nbu f f , short i nbu f fO f f s e t , short

301

C.4 Secure and Trusted Channel Protocol � Service Provider

573 inbuf fLength) {

574 syCipher . i n i t (phCipherKey , Cipher .MODE_ENCRYPT,

575 I n i t i a l i s a t i o nV e c t o r , (short) 0 , (short)

576 I n i t i a l i s a t i o nV e c t o r . l ength) ;

577 short temp ;

578 this . shortToBytes (inbu f f , (short) (i n bu f fO f f s e t − 3) , temp =

579 (short) syCipher . doFinal (inbu f f , i nbu f fO f f s e t ,

580 inbuf fLength , inbu f f , i n bu f fO f f s e t)) ;

581 }

582 void phDecryption (byte [] i nbu f f , short i nbu f fO f f s e t , short

583 inbuf fLength) {

584 syCipher . i n i t (phCipherKey , Cipher .MODE_DECRYPT,

585 I n i t i a l i s a t i o nV e c t o r , (short) 0 , (short)

586 I n i t i a l i s a t i o nV e c t o r . l ength) ;

587 syCipher . doFinal (inbu f f , i nbu f fO f f s e t , inbuf fLength , inbu f f ,

588 i n bu f fO f f s e t) ;

589 }

590 boolean macGenerate (byte [] i nbu f f , short i nbu f fO f f s e t , short

591 inbuf fLength , short macMode) {

592 i f (macMode == Signature .MODE_SIGN) {

593 phMacGenerator . i n i t (phMacGeneratorKey , S ignature .MODE_SIGN,

594 I n i t i a l i s a t i o nV e c t o r , (short) 0 , (short)

595 I n i t i a l i s a t i o nV e c t o r . l ength) ;

596 try {

597 copyPointer = Ut i l . arrayCopyNonAtomic (this .MACedDataTag ,

598 (short) 0 , this . r e c e i v i ngBu f f e r , copyPointer , (short)

599 this .MACedDataTag . l ength) ;

600 copyPointer += 2 ;

601 } catch (Exception ce) {

602 ISOException . throwIt ((short) 0xFA17) ;

603 }

604 try {

605 short l ength = (short) phMacGenerator . s i gn

606 (this . r e c e i v i ngBu f f e r , i nbu f fO f f s e t ,

607 inbuf fLength , inbu f f , copyPointer) ;

608 this . shortToBytes (inbu f f , (short) (copyPointer − (short) 2) ,

609 l ength) ;

610 copyPointer += length ;

611 } catch (Exception ce) {

612 ISOException . throwIt ((short) 0x0987) ;

613 }

614 return true ;

615 } else i f (macMode == Signature .MODE_VERIFY) {

616 try {

617 phMacGenerator . i n i t (phMacGeneratorKey , S ignature .MODE_VERIFY,

618 I n i t i a l i s a t i o nV e c t o r , (short) 0 , (short)

619 I n i t i a l i s a t i o nV e c t o r . l ength) ;

620 return phMacGenerator . v e r i f y (this . r e c e i v i ngBu f f e r ,

621 i nbu f fO f f s e t , inbuf fLength , inbu f f , (short) (i n bu f fO f f s e t +

622 inbuf fLength + this . PTLVDataOffset) , (short) 16) ;

623 } catch (Exception cE) {

302

C.4 Secure and Trusted Channel Protocol � Service Provider

624 ISOException . throwIt ((short) 0xC1C2) ;

625 }

626 }

627 return fa l se ;

628 }

629 boolean s ignGenerate (byte [] i nbu f f , short i nbu f fO f f s e t , short

630 i nbu f f l eng th , Key kpSign , short signMode) {

631 i f (signMode == Signature .MODE_SIGN) {

632 copyPointer = Ut i l . arrayCopyNonAtomic (this . SignedDataTag ,

633 (short) 0 , this . r e c e i v i ngBu f f e r , copyPointer , (short)

634 this . SignedDataTag . l ength) ;

635 copyPointer += (short) 2 ;

636 phSign . i n i t ((RSAPrivateKey) kpSign , S ignature .MODE_SIGN) ;

637 s i gn l eng th = phSign . s i gn (inbu f f , (short) i nbu f fO f f s e t ,

638 i nbu f f l eng th , inbu f f , copyPointer) ;

639 this . shortToBytes (this . r e c e i v i ngBu f f e r , (short) (copyPointer −
640 (short) 2) , s i gn l eng th) ;

641 copyPointer += s i gn l eng th ;

642 return true ;

643 } else i f (signMode == Signature .MODE_VERIFY) {

644 phSign . i n i t ((RSAPublicKey) kpSign , S ignature .MODE_VERIFY) ;

645 return phSign . v e r i f y (inbu f f , i nbu f fO f f s e t , i nbu f f l eng th , inbu f f ,

646 (short) (i n bu f fO f f s e t + inbu f f l e n g th +

647 this . PTLVDataOffset) , (short) 64) ;

648 }

649 return fa l se ;

650 }

651 public stat ic short bytesToShort (byte [] ArrayBytes) {

652 return (short) (((ArrayBytes [0] << 8)) | ((ArrayBytes [1] & 0 x f f))) ;

653 }

654 public stat ic short bytesToShort (byte [] ArrayBytes , short

655 a r r ayOf f s e t) {

656 return (short) (((ArrayBytes [a r r ayOf f s e t] << 8)) | ((ArrayBytes [

657 (short) (a r r ayOf f s e t + (short) 1)] & 0 x f f))) ;

658 }

659 private void shortToBytes (byte [] Array , short inShort) {

660 Array [0] = (byte) ((short) (inShort & (short) 0xFF00) >> (short)

661 0x0008) ;

662 Array [1] = (byte) (inShort & (short) 0x00FF) ;

663 }

664 private void shortToBytes (byte [] Array , short ar rayOf f s e t , short

665 inShort) {

666 Array [a r r ayOf f s e t] = (byte) ((short) (inShort & (short) 0xFF00) >>

667 (short) 0x0008) ;

668 Array [(short) (a r r ayOf f s e t + (short) 1)] = (byte) (inShort & (short)

669 0x00FF) ;

670 }

671 }

303

C.4 Secure and Trusted Channel Protocol � Service Provider

C.4.2 Service Provider Implementation

In this section, we detail the SP's implementation of the STCPSP and the helper functions

utlised during the STCPSP are discussed in appendices C.11.1 and C.11.2.

1 package j avacardte rmina l ;

2

3 import java . math . B ig Intege r ;

4 import java . s e c u r i t y . ∗ ;
5 import java . s e c u r i t y . i n t e r f a c e s . RSAPublicKey ;

6 import java . s e c u r i t y . spec . RSAPublicKeySpec ;

7 import java . u t i l . Arrays ;

8 import javax . crypto . ∗ ;
9 import javax . crypto . spec . SecretKeySpec ;

10 public class Protoco lHandler {

11 private byte [] EncryptedDataTag = {

12 (byte) 0xFE , (byte) 0x01 } ;

13 private byte [] MACedDataTag = {

14 (byte) 0x5D , (byte) 0x01 } ;

15 private byte [] MessageHandlerTagOne = {

16 (byte) 0xAA, (byte) 0xAA} ;

17 private byte [] MessageHandlerTagTwo = {

18 (byte) 0xBB, (byte) 0xBB} ;

19 private byte [] PlatformHashPreset = {

20 (byte) 0xBF, (byte) 0xE5 , (byte) 0x45 , (byte) 0x86 , (byte) 0x2C , (byte)

21 0xA1 , (byte) 0x02 , (byte) 0xAD, (byte) 0x1E , (byte) 0xED, (byte) 0xDB,

22 (byte) 0x5F , (byte) 0xBF, (byte) 0xA5 , (byte) 0xBF, (byte) 0x85 ,

23 (byte) 0x5A , (byte) 0xC4 , (byte) 0x99 , (byte) 0x5C , (byte) 0x56 ,

24 (byte) 0xA8 , (byte) 0xB4 , (byte) 0x08 , (byte) 0xCE, (byte) 0x3F ,

25 (byte) 0xE0 , (byte) 0x99 , (byte) 0xDC, (byte) 0xE9 , (byte) 0x3A ,

26 (byte) 0x9D} ;

27 private byte [] PlatformHashTag = {

28 (byte) 0x5E , (byte) 0xAF} ;

29 private byte [] PublicExponentTag = {

30 (byte) 0xEE, (byte) 0x01 } ;

31 private byte [] PublicModulusTag = {

32 (byte) 0xEE, (byte) 0x02 } ;

33 private byte [] SCCert i f i cateTag = {

34 (byte) 0xF0 , (byte) 0x02 } ;

35 private byte [] SCDHChallengeTag = {

36 (byte) 0x5C , (byte) 0x02 } ;

37 private byte [] SCIP = {

38 (byte) 0xC5 , (byte) 0x7D , (byte) 0xB1 , (byte) 0x7C} ;

39 private byte [] SCIdentityTag = {

40 (byte) 0x5F , (byte) 0x02 } ;

41 private byte [] SCRandomNumberTag = {

42 (byte) 0x5A , (byte) 0x02 } ;

43 private byte [] SCUserCert i f i cateTag = {

44 (byte) 0xF0 , (byte) 0x03

45 }

46 ;

304

C.4 Secure and Trusted Channel Protocol � Service Provider

47 private PublicKey SCUserVer i f i cat ionKey = null ;

48 private PublicKey SCVer i f i cat ionKey = null ;

49 private byte [] SPCookieTag = {

50 (byte) 0x5B , (byte) 0x01 } ;

51 private byte [] SPDHChallengeTag = {

52 (byte) 0x5C , (byte) 0x01 } ;

53 private byte [] SPIdent i ty = {

54 (byte) 0xC5 , (byte) 0x7D , (byte) 0xB1 , (byte) 0x7C , (byte) 0x62 , (byte)

55 0x0A , (byte) 0x86 , (byte) 0x52 , (byte) 0xBE, (byte) 0x5E , (byte) 0x90 ,

56 (byte) 0x01 , (byte) 0xA8 , (byte) 0xD6 , (byte) 0x6A , (byte) 0xD7 ,

57 (byte) 0xB1 , (byte) 0x7C} ;

58 private byte [] SPIdentityTag = {

59 (byte) 0x5F , (byte) 0x01 } ;

60 private byte [] SPRandomNumberTag = {

61 (byte) 0x5A , (byte) 0x01 } ;

62 private byte [] SPSigVeri f icat ionKeyTag = {

63 (byte) 0x51 , (byte) 0x01 } ;

64 private byte [] SPSignatureCertTag = {

65 (byte) 0xF0 , (byte) 0xF01 } ;

66 private byte [] SignedDataTag = {

67 (byte) 0x5D , (byte) 0x02 } ;

68 private byte [] UserIdent i tyTag = {

69 (byte) 0x5F , (byte) 0x03 } ;

70 private PrimitiveTLV User Ident i ty = PrimitiveTLV . getPrimitiveTLV

71 (this . UserIdent ityTag) ;

72 private PrimitiveTLV SignedData = PrimitiveTLV . getPrimitiveTLV

73 (this . SignedDataTag) ;

74 private ConstructedTLV SPS igna tu r eCe r t i f i c a t e =

75 ConstructedTLV . getConstructedTLV (SPSignatureCertTag) ;

76 private PrimitiveTLV SPSigVer i f i cat ionKey =

77 PrimitiveTLV . getPrimitiveTLV (this . SPSigVer i f icat ionKeyTag) ;

78 private PrimitiveTLV SPRandomNumber = PrimitiveTLV . getPrimitiveTLV

79 (this . SPRandomNumberTag) ;

80 private PrimitiveTLV SPIdentityTLV = PrimitiveTLV . getPrimitiveTLV

81 (SPIdentityTag , SPIdent i ty) ;

82 private PrimitiveTLV SPDHChanllenger = PrimitiveTLV . getPrimitiveTLV

83 (this . SPDHChallengeTag) ;

84 private PrimitiveTLV SPCookie = PrimitiveTLV . getPrimitiveTLV

85 (this . SPCookieTag) ;

86 private ConstructedTLV SCUserCer t i f i ca t e =

87 ConstructedTLV . getConstructedTLV (this . SCUserCert i f i cateTag) ;

88 private PrimitiveTLV SCRandomNumber = PrimitiveTLV . getPrimitiveTLV

89 (this . SCRandomNumberTag) ;

90 private PrimitiveTLV SCIdent ity = PrimitiveTLV . getPrimitiveTLV

91 (SCIdentityTag) ;

92 private PrimitiveTLV SCDHChallenge = PrimitiveTLV . getPrimitiveTLV

93 (this . SCDHChallengeTag) ;

94 private ConstructedTLV SCCer t i f i c a t e =

95 ConstructedTLV . getConstructedTLV (this . SCCert i f i cateTag) ;

96 private PrimitiveTLV PublicModulus = PrimitiveTLV . getPrimitiveTLV

97 (this . PublicModulusTag) ;

305

C.4 Secure and Trusted Channel Protocol � Service Provider

98 private PrimitiveTLV PublicExponent = PrimitiveTLV . getPrimitiveTLV

99 (this . PublicExponentTag) ;

100 private PrimitiveTLV PlatformHash = PrimitiveTLV . getPrimitiveTLV

101 (this . PlatformHashTag) ;

102 public ConstructedTLV MessageHandler =

103 ConstructedTLV . getConstructedTLV (MessageHandlerTagOne) ;

104 private PrimitiveTLV MACedData = PrimitiveTLV . getPrimitiveTLV

105 (this .MACedDataTag) ;

106 private ConstructedTLV EncryptedData =

107 ConstructedTLV . getConstructedTLV (this . EncryptedDataTag) ;

108 private Protoco lHe lpe rClas s myProtocolHelperObject = new

109 Protoco lHe lpe rClas s () ;

110 private byte [] mySessionEncryptionKey = new byte [1 6] ;

111 private byte [] mySessionMacKey = new byte [1 6] ;

112 public Protoco lHandler () {

113 myProtocolHelperObject . p r o t o c o l I n i t i a l i s e () ;

114 RSAPublicKey tempKey = (RSAPublicKey)

115 myProtocolHelperObject . getPublicKey () ;

116 byte [] tempExponent = tempKey . getPubl icExponent () . toByteArray () ;

117 this . PublicExponent . i n i t i a l i s a t i onPTLV (this . PublicExponentTag ,

118 tempExponent . l ength) ;

119 this . PublicExponent . setTlvValues (tempExponent) ;

120 byte [] tempModulus = tempKey . getModulus () . toByteArray () ;

121 this . PublicModulus . i n i t i a l i s a t i onPTLV (this . PublicModulusTag ,

122 (tempModulus . l ength − 1)) ;

123 this . PublicModulus . setTlvValues (tempModulus , 1 ,

124 (tempModulus . l ength − 1)) ;

125 SPS igna tu r eCe r t i f i c a t e . addPTLV(this . PublicExponent) ;

126 SPS igna tu r eCe r t i f i c a t e . addPTLV(this . PublicModulus) ;

127 }

128 public void i n i t i a l i s e P r o t o c o l () {

129 try {

130 this . SPDHChanllenger . setTlvValues

131 (this . myProtocolHelperObject . GenerateDHPublicValue ()) ;

132 this . MessageHandler . addPTLV(this . SPDHChanllenger) ;

133 } catch (Exception cE) {

134 System . out . p r i n t l n (

135 "Error Protoco lHandler . i n i t i a l i s e P r o t o c o l Option

= 1 , : " + cE . ge tC la s s () . getName ()) ;

136 }

137 }

138 public byte [] outMessageProcess ing (int Counter) {

139 i f (Counter == 1) {

140 try {

141 this . SPRandomNumber . setTlvValues

142 (this . myProtocolHelperObject . getRandomNumber ()) ;

143 this . MessageHandler . addPTLV(this . SPRandomNumber) ;

144 byte [] temp = new byte [(this . SCIP . l ength +

145 this . SPDHChanllenger . getValueLength ()

146 + this . SPRandomNumber . getValueLength ()

147)] ;

306

C.4 Secure and Trusted Channel Protocol � Service Provider

148 System . arraycopy (this . SPDHChanllenger . getValueBytes () , 0 ,

149 temp , 0 , this . SPDHChanllenger . getValueLength

150 ()) ;

151 System . arraycopy (this . SPRandomNumber . getValueBytes () , 0 , temp ,

152 this . SPDHChanllenger . getValueLength () ,

153 this . SPRandomNumber . getValueLength ()) ;

154 System . arraycopy (this . SCIP , 0 , temp , temp . l ength −
155 this . SCIP . length , this . SCIP . l ength) ;

156 byte [] r e s u l t = new byte [1 6] ;

157 this . myProtocolHelperObject . GenerateMac (temp , 0 , temp . length ,

158 r e su l t , 0 , this . myProtocolHelperObject .myLongTermMacKey) ;

159 this . SPCookie . setTlvValues (r e s u l t) ;

160 this . MessageHandler . addPTLV(this . SPCookie) ;

161 } catch (Exception cE) {

162 System . out . p r i n t l n (

163 "Error Protoco lHandler . inMessageProcess ing

Option = 1 , : " + cE . ge tC la s s () . getName ()) ;

164 }

165 } else i f (Counter == 2) {

166 try {

167 this . EncryptedData . i n i t i a l i s a t i onCTLV (this . EncryptedDataTag) ;

168 this . EncryptedData . addPTLV(this . SPIdentityTLV) ;

169 this . EncryptedData . addPTLV(this . SPRandomNumber) ;

170 this . EncryptedData . addPTLV(this . SCRandomNumber) ;

171 this . myProtocolHelperObject . SignatureMethod

172 (this . EncryptedData . getValueBytes () , 0 ,

173 this . EncryptedData . getValueBytes () . length ,

174 this . SignedData . getBytesTlvRepresentat ion () , 6 , null ,

175 Protoco lHe lpe rClas s .SIGN_MODE_GENERATION) ;

176 this . EncryptedData . addPTLV(this . SignedData) ;

177 this . EncryptedData .addCTLV(this . SPS i gna tu r eCe r t i f i c a t e) ;

178 this . myProtocolHelperObject . GenerateEncryption

179 (this . EncryptedData . getValueBytes () , 0 ,

180 this . EncryptedData . getValueBytes () . length ,

181 this . EncryptedData . getBytesTlvRepresentat ion () , 7 ,

182 this . mySessionEncryptionKey) ;

183 this .MACedData . i n i t i a l i s a t i onPTLV (this .MACedDataTag , 16) ;

184 this . myProtocolHelperObject . GenerateMac

185 (this . EncryptedData . getValueBytes () , 0 ,

186 this . EncryptedData . getTagValueLength () ,

187 this .MACedData . getBytesTlvRepresentat ion () , 6 ,

188 this . mySessionMacKey) ;

189 this . MessageHandler . i n i t i a l i s a t i onCTLV

190 (this . MessageHandlerTagTwo) ;

191 this . MessageHandler . addCTLV(EncryptedData) ;

192 this . MessageHandler . addPTLV(this .MACedData) ;

193 this . MessageHandler . addPTLV(this . SPCookie) ;

194 } catch (Exception cE) {

195 System . out . p r i n t l n (

196 "Error Protoco lHandler . inMessageProcess ing

Option = 1 , : " + cE . ge tC la s s () . getName ()) ;

307

C.4 Secure and Trusted Channel Protocol � Service Provider

197 }

198 } else {

199 System . out . p r i n t l n (

200 "Protoco l Stoped : I l l e g a l Message Value

(Protoco lHanlder . inMessageProcess ing () ") ;

201 }

202 return this . MessageHandler . getBytesTlvRepresentat ion () ;

203 }

204 public boolean inMessageProcess ing (byte [] inMessage , int Counter) {

205 try {

206 i f (Counter == 1) {

207 MessageHandler . s e tBytesTlvRepresentat ion (inMessage , 0 ,

208 (inMessage . l ength − 2)) ;

209 childExtractionFromCTLV (MessageHandler) ;

210 GenerateKeys (this . SCDHChallenge . getValueBytes ()) ;

211 byte [] temp = new byte [1 6] ;

212 this . myProtocolHelperObject . GenerateMac

213 (this . EncryptedData . getValueBytes () , 0 ,

214 this . EncryptedData . getValueBytes () . length , temp , 0 ,

215 this . mySessionMacKey) ;

216 i f (Arrays . equa l s (this .MACedData . getValueBytes () , temp)) {}

217 else {

218 System . out . p r i n t l n (

219 " I n t e g r i t y Check Fa i l u r e : ERROR at

Protoco lHandler . inMessageProcess ing \n") ;

220 System . e x i t (0) ;

221 }

222 this . myProtocolHelperObject . GenerateDecryption

223 (this . EncryptedData . getValueBytes () , 0 ,

224 this . EncryptedData . getValueBytes () . length ,

225 this . EncryptedData . getBytesTlvRepresentat ion () , 7 ,

226 this . mySessionEncryptionKey) ;

227 childExtractionFromCTLV (this . EncryptedData) ;

228 childExtractionFromCTLV (this . SCUserCer t i f i c a t e) ;

229 Big Intege r publicExponent = new Big Intege r (byteToStr ing

230 (this . PublicExponent . getValueBytes ()) , 16) ;

231 Big Intege r publicModulus = new Big Intege r (byteToStr ing

232 (this . PublicModulus . getValueBytes ()) , 16) ;

233 KeyFactory f a c t o r y = KeyFactory . g e t In s tance ("RSA") ;

234 SCUserVer i f i cat ionKey = (PublicKey) f a c t o r y . gene ra tePub l i c (new

235 RSAPublicKeySpec (publicModulus ,

236 publicExponent)) ;

237 temp = new byte [(this . SCIdent ity . getTagLength () +

238 this . SCRandomNumber . getTagLength () +

239 this . SPRandomNumber . getTagLength ())] ;

240 System . arraycopy (this . EncryptedData . getBytesTlvRepresentat ion

241 () , 7 , temp , 0 , temp . l ength) ;

242 i f (this . myProtocolHelperObject . SignatureMethod (temp , 0 ,

243 temp . length , this . SignedData . getValueBytes () , 0 ,

244 SCUserVeri f icat ionKey ,

245 Protoco lHe lpe rClas s .SIGN_MODE_VERIFICATION)) {}

308

C.4 Secure and Trusted Channel Protocol � Service Provider

246 else {

247 System . out . p r i n t l n (

248 " S ignature V e r i f i c a t i o n Fa i l ed Check

code") ;

249 }

250 } else i f (Counter == 2) {

251 this . MessageHandler . r e s e t () ;

252 this . EncryptedData . r e s e t () ;

253 this . MessageHandler . s e tBytesTlvRepresentat ion (inMessage , 0 ,

254 inMessage . l ength − 2) ;

255 this . childExtractionFromCTLV (this . MessageHandler) ;

256 byte [] temp = new byte [1 6] ;

257 this . myProtocolHelperObject . GenerateMac

258 (this . EncryptedData . getValueBytes () , 0 ,

259 this . EncryptedData . getValueBytes () . length , temp , 0 ,

260 this . mySessionMacKey) ;

261 i f (Arrays . equa l s (this .MACedData . getValueBytes () , temp)) {}

262 else {

263 System . out . p r i n t l n (

264 " I n t e g r i t y Check Fa i l u r e : ERROR at

Protoco lHandler . inMessageProcess ing \n") ;

265 System . e x i t (0) ;

266 }

267 this . myProtocolHelperObject . GenerateDecryption

268 (this . EncryptedData . getValueBytes () , 0 ,

269 this . EncryptedData . getValueBytes () . length ,

270 this . EncryptedData . getBytesTlvRepresentat ion () , 7 ,

271 this . mySessionEncryptionKey) ;

272 this . childExtractionFromCTLV (EncryptedData) ;

273 i f (Arrays . equa l s (PlatformHashPreset ,

274 this . PlatformHash . getValueBytes ())) {}

275 else {

276 System . out . p r i n t l n ("Platform Digest Not Ve r i f i e d ") ;

277 }

278 childExtractionFromCTLV (this . SCCer t i f i c a t e) ;

279 Big Intege r SCpublicExponent = new Big Intege r (byteToStr ing

280 (this . PublicExponent . getValueBytes ()) , 16) ;

281 Big Intege r SCpublicModulus = new Big Intege r (byteToStr ing

282 (this . PublicModulus . getValueBytes ()) , 16) ;

283 KeyFactory f a c t o r y = KeyFactory . g e t In s tance ("RSA") ;

284 SCVer i f i cat ionKey = (PublicKey) f a c t o r y . gene ra tePub l i c (new

285 RSAPublicKeySpec (SCpublicModulus ,

286 SCpublicExponent)) ;

287 temp = new byte [(this . PlatformHash . getTagLength () +

288 this . Use r Ident i ty . getTagLength () +

289 this . SCIdent ity . getTagLength () +

290 this . SCRandomNumber . getTagLength () +

291 this . SPRandomNumber . getTagLength ())] ;

292 System . arraycopy (this . EncryptedData . getBytesTlvRepresentat ion

293 () , 7 , temp , 0 , temp . l ength) ;

294 i f (this . myProtocolHelperObject . SignatureMethod (temp , 0 ,

309

C.4 Secure and Trusted Channel Protocol � Service Provider

295 temp . length , this . SignedData . getValueBytes () , 0 ,

296 SCVeri f icat ionKey ,

297 Protoco lHe lpe rClas s .SIGN_MODE_VERIFICATION)) {}

298 else {

299 System . out . p r i n t l n (

300 " S ignature V e r i f i c a t i o n Fa i l ed Check

code") ;

301 }

302 }

303 } catch (Exception cE) {

304 System . out . p r i n t l n (

305 "Error in Protoco lHandler . inMessageProcess ing :

" + cE . ge tC la s s () . getName ()) ;

306 }

307 return true ;

308 }

309 public stat ic St r ing byteToStr ing (byte [] inArray) {

310 byte [] HEX_CHAR_TABLE = {

311 (byte) ' 0 ' , (byte) ' 1 ' , (byte) ' 2 ' , (byte) ' 3 ' , (byte) ' 4 ' , (byte)

312 ' 5 ' , (byte) ' 6 ' , (byte) ' 7 ' , (byte) ' 8 ' , (byte) ' 9 ' , (byte) ' a ' ,

313 (byte) 'b ' , (byte) ' c ' , (byte) 'd ' , (byte) ' e ' , (byte) ' f '

314 } ;

315 byte [] hex = new byte [2 ∗ inArray . l ength] ;

316 int index = 0 ;

317 for (byte b : inArray) {

318 int v = b & 0xFF ;

319 hex [index++] = HEX_CHAR_TABLE[v >>> 4] ;

320 hex [index++] = HEX_CHAR_TABLE[v & 0xF] ;

321 }

322 try {

323 return new St r ing (hex , "ASCII") ;

324 } catch (Exception cE) {

325 System . out . p r i n t l n ("Exception in bytesToStr ing : " +

326 cE . getMessage ()) ;

327 }

328 return "Error " ;

329 }

330 void childExtractionFromCTLV (ConstructedTLV inCTLV) {

331 try {

332 int c h i l d s = inCTLV . getChildNumbers () ;

333 PrimitiveTLV pTemp = null ;

334 ConstructedTLV cTemp = null ;

335 while (c h i l d s > 0) {

336 switch (inCTLV . nextType ()) {

337 case 1 :

338 pTemp = (PrimitiveTLV)inCTLV . getNext () ;

339 i f (Arrays . equa l s (pTemp . getTagName () ,

340 this . SCDHChallenge . getTagName ())) {

341 this . SCDHChallenge = pTemp ;

342 } else i f (Arrays . equa l s (pTemp . getTagName () ,

343 this . SCRandomNumber . getTagName ())) {

310

C.4 Secure and Trusted Channel Protocol � Service Provider

344 this . SCRandomNumber = pTemp ;

345 } else i f (Arrays . equa l s (pTemp . getTagName () ,

346 this .MACedData . getTagName ())) {

347 this .MACedData = pTemp ;

348 } else i f (Arrays . equa l s (pTemp . getTagName () ,

349 this . SPCookie . getTagName ())) {

350 i f (Arrays . equa l s (pTemp . getBytesTlvRepresentat ion () ,

351 this . SPCookie . getBytesTlvRepresentat ion ())) {}

352 } else i f (Arrays . equa l s (pTemp . getTagName () ,

353 this . SCIdent ity . getTagName ())) {

354 this . SCIdent ity = pTemp ;

355 } else i f (Arrays . equa l s (pTemp . getTagName () ,

356 this . SignedData . getTagName ())) {

357 this . SignedData = pTemp ;

358 } else i f (Arrays . equa l s (pTemp . getTagName () ,

359 this . PublicExponent . getTagName ())) {

360 this . PublicExponent = pTemp ;

361 } else i f (Arrays . equa l s (pTemp . getTagName () ,

362 this . PublicModulus . getTagName ())) {

363 this . PublicModulus = pTemp ;

364 } else i f (Arrays . equa l s (pTemp . getTagName () ,

365 this . PlatformHash . getTagName ())) {

366 this . PlatformHash = pTemp ;

367 } else i f (Arrays . equa l s (pTemp . getTagName () ,

368 this . Use r Ident i ty . getTagName ())) {

369 this . Use r Ident i ty = pTemp ;

370 }

371 break ;

372 case 0 : cTemp = (ConstructedTLV)inCTLV . getNext () ;

373 i f (Arrays . equa l s (cTemp . getTagName () ,

374 this . EncryptedData . getTagName ())) {

375 this . EncryptedData = cTemp ;

376 } else i f (Arrays . equa l s (cTemp . getTagName () ,

377 SCUserCer t i f i c a t e . getTagName ())) {

378 this . SCUserCer t i f i c a t e = cTemp ;

379 }

380 else

381 i f (Arrays . equa l s (cTemp . getTagName () ,

382 SCCer t i f i c a t e . getTagName ())) {

383 this . SCCer t i f i c a t e = cTemp ;

384 }

385 break ;

386 default :

387 System . out . p r i n t l n ("Error In Pars ing Input Message") ;

388 }

389 ch i l d s −−;
390 }

391 } catch (Exception e) {

392 System . out . p r i n t l n (

393 "Error in Protoco lHanlder . ChildExtractionMethod

: " + e . ge tC la s s () . getName ()) ;

311

C.4 Secure and Trusted Channel Protocol � Service Provider

394 }

395 }

396 void GenerateKeys (byte [] i n bu f f) {

397 byte [] DHSecretKey = null ;

398 try {

399 DHSecretKey =

400 this . myProtocolHelperObject . GenerateDHSessionKeyMaterial

401 (inbu f f , 0 , i n bu f f . l ength) ;

402 } catch (Exception cE) {

403 System . out . p r i n t l n (

404 "Exception At Protoco lHe lpe rC las s . GenerateKeys :

" + cE . ge tC la s s () . getName ()) ;

405 }

406 byte [] keyGenKey = new byte [1 6] ;

407 System . arraycopy (DHSecretKey , 0 , keyGenKey , 0 , keyGenKey . l ength) ;

408 byte [] macInputValue = new byte [6 4] ;

409 System . arraycopy (this . SPRandomNumber . getValueBytes () , 0 ,

410 macInputValue , 0 , 16) ;

411 System . arraycopy (this . SCRandomNumber . getValueBytes () , 0 ,

412 macInputValue , 16 , 16) ;

413 System . arraycopy (DHSecretKey , 16 , macInputValue , 32 , 16) ;

414 for (int i = 48 ; i < 64 ; i++) {

415 macInputValue [i] = (byte) 0x02 ;

416 }

417 try {

418 this . myProtocolHelperObject . GenerateMac (macInputValue , 0 ,

419 macInputValue . length , this . mySessionEncryptionKey , 0 ,

420 keyGenKey) ;

421 } catch (Exception cE) {

422 System . out . p r i n t l n (

423 "Exception at Protoco lHandler . GenerateKeys : " +

cE . ge tC la s s () . getName ()) ;

424 }

425 for (int i = 48 ; i < 64 ; i++) {

426 macInputValue [i] = (byte) 0x03 ;

427 }

428 try {

429 this . myProtocolHelperObject . GenerateMac (macInputValue , 0 ,

430 macInputValue . length , this . mySessionMacKey , 0 , keyGenKey) ;

431 } catch (Exception cE) {

432 System . out . p r i n t l n (

433 "Exception at Protoco lHandler . GenerateKeys : " +

cE . ge tC la s s () . getName ()) ;

434 }

435 }

436 }

312

C.5 Secure and Trusted Channel Protocol � Smart Card

C.5 Secure and Trusted Channel Protocol � Smart Card

The Java Card implementation of the STCPSC discussed in section 6.4 is listed in subse-

quent sections.

C.5.1 Smart Card Implementation

In this section, we list the smart card implementation of the STCPSC, and the implemen-

tation is similar to the on discussed in section C.9.

1 package protocolSTCPSC ;

2

3 import javacard . framework .APDU;

4 import javacard . framework . Applet ;

5 import javacard . framework . ISO7816 ;

6 import javacard . framework . ISOException ;

7 import javacard . framework . JCSystem ;

8 import javacard . framework . Ut i l ;

9 import javacard . s e c u r i t y .AESKey ;

10 import javacard . s e c u r i t y . Key ;

11 import javacard . s e c u r i t y . KeyBuilder ;

12 import javacard . s e c u r i t y . KeyPair ;

13 import javacard . s e c u r i t y . MessageDigest ;

14 import javacard . s e c u r i t y . RSAPrivateKey ;

15 import javacard . s e c u r i t y . RSAPublicKey ;

16 import javacard . s e c u r i t y . RandomData ;

17 import javacard . s e c u r i t y . S ignature ;

18 import javacardx . apdu . ExtendedLength ;

19 import javacardx . crypto . Cipher ;

20 public class Protoco lHandler extends Applet implements ExtendedLength {

21 private byte [] SPRandomNumberArray ;

22 private byte [] SPCookieArray ;

23 private byte [] SCSPDHGeneratedValue ;

24 private byte [] SCRandomNumberArray ;

25 private byte [] SCCer t i f i c a t e ;

26 private byte [] SPDHChallengeTag = {

27 (byte) 0x1F , (byte) 0x5F , (byte) 0x5C , (byte) 0x01 } ;

28 private byte [] MessageHandlerTagOne = {

29 (byte) 0x1F , (byte) 0xC0 , (byte) 0xAA, (byte) 0xAA, (byte) 0x00 ,

(byte) 0x00 ,

30 (byte) 0x00 } ;

31 private byte [] MessageHandlerTagTwo = {

32 (byte) 0x1F , (byte) 0xC0 , (byte) 0xBB, (byte) 0xBB, (byte) 0x00 ,

(byte) 0x00 ,

33 (byte) 0x00 } ;

34 private byte [] SPIdent i ty = null ;

35 private byte [] SPRandomNumberTag = {

36 (byte) 0x1F , (byte) 0x5F , (byte) 0x5A , (byte) 0x01 } ;

37 private byte [] SPCookieTag = {

38 (byte) 0x1F , (byte) 0x5F , (byte) 0x5B , (byte) 0x01 } ;

313

C.5 Secure and Trusted Channel Protocol � Smart Card

39 private byte [] EncryptedDataTag = {

40 (byte) 0x1F , (byte) 0xC0 , (byte) 0xFE , (byte) 0x01 } ;

41 private byte [] SignedDataTag = {

42 (byte) 0x1F , (byte) 0x5F , (byte) 0x5D , (byte) 0x02 } ;

43 private byte [] MACedDataTag = {

44 (byte) 0x1F , (byte) 0x5F , (byte) 0x5D , (byte) 0x01 } ;

45 private byte [] PlatformHash = {

46 (byte) 0x1F , (byte) 0x5F , (byte) 0x5E , (byte) 0xAF} ;

47 private byte [] SCIdentityTag = {

48 (byte) 0x1F , (byte) 0x5F , (byte) 0x5F , (byte) 0x02 , (byte) 0x00 ,

(byte) 0x0C ,

49 (byte) 0x7A , (byte) 0xD5 , (byte) 0xB7 , (byte) 0xD0 , (byte) 0xB6 , (byte)

50 0xC1 , (byte) 0x22 , (byte) 0x07 , (byte) 0xC9 , (byte) 0xF9 , (byte) 0x8D ,

51 (byte) 0x11 } ;

52 private byte [] ExponentTag = {

53 (byte) 0x1F , (byte) 0x5F , (byte) 0xEE, (byte) 0x01 } ;

54 private byte [] ModulusTag = {

55 (byte) 0x1F , (byte) 0x5F , (byte) 0xEE, (byte) 0x02 } ;

56 private byte [] SCDHChalleneTag = {

57 (byte) 0x1F , (byte) 0x5F , (byte) 0x5C , (byte) 0x02 } ;

58 private byte [] SCRandomNumberTag = {

59 (byte) 0x1F , (byte) 0x5F , (byte) 0x5A , (byte) 0x02 } ;

60 private byte [] SPCert i f i cateTag = {

61 (byte) 0x1F , (byte) 0xC0 , (byte) 0xF0 , (byte) 0x01 } ;

62 private byte [] SCCert i f i cateTag = {

63 (byte) 0x1F , (byte) 0xC0 , (byte) 0xF0 , (byte) 0x02 } ;

64 private byte [] SCProtoco l In i t i a torTag = {

65 (byte) 0x1F , (byte) 0x5F , (byte) 0xA1 , (byte) 0xB2} ;

66 short PTLVDataOffset = (short) 6 ;

67 short CTLVDataOffset = (short) 7 ;

68 short TLVLengthOffset = (short) 4 ;

69 short copyPointer = (short) 0 ;

70 byte [] SCDHData ;

71 f ina l stat ic byte CLA = (byte) 0xB0 ;

72 f ina l stat ic byte Sta r tPro toco l = (byte) 0x40 ;

73 f ina l stat ic byte I n i t i a t i o nP r o t o c o l = (byte) 0 x f f ;

74 f ina l stat ic short SW_CLASSNOTSUPPORTED = 0x6320 ;

75 f ina l stat ic short SW_ERROR_INS = 0x6300 ;

76 RandomData randomDataGen ;

77 Cipher pkCipher ;

78 short messageNumber = 0 ;

79 byte [] r e c e i v i n gBu f f e r = null ;

80 short byte sLe f t = 0 ;

81 short readCount = 0 ;

82 short rCount = 0 ;

83 short s i gn l eng th = 0 ;

84 private RSAPublicKey dhKey = (RSAPublicKey) KeyBuilder . buildKey

85 (KeyBuilder .TYPE_RSA_PUBLIC,

86 KeyBuilder .LENGTH_RSA_2048, fa l se) ;

87 private byte [] randomExponent ;

88 f ina l stat ic byte GEN_KEYCONTRIBUTION = 0x01 ;

314

C.5 Secure and Trusted Channel Protocol � Smart Card

89 f ina l stat ic byte GEN_DHKEY = 0x02 ;

90 AESKey phCipherKey ;

91 Cipher syCipher ;

92 byte [] I n i t i a l i s a t i o nV e c t o r = {

93 (byte) 0x6C , (byte) 0xDE, (byte) 0xBE, (byte) 0x7B , (byte) 0x89 ,

(byte) 0x99 ,

94 (byte) 0x8C , (byte) 0xAF, (byte) 0xC5 , (byte) 0x7D , (byte) 0xB1 , (byte)

95 0x7C , (byte) 0x62 , (byte) 0x0A , (byte) 0x86 , (byte) 0x52 } ;

96 AESKey phMacGeneratorKey ;

97 Signature phMacGenerator ;

98 Signature phSign ;

99 KeyPair phSCKeyPair ;

100 KeyPair phUserKeyPair ;

101 RSAPublicKey SPVer i f i cat ionKey = null ;

102 private Protoco lHandler () {

103 phMacGeneratorKey = (AESKey) KeyBuilder . buildKey

104 (KeyBuilder .TYPE_AES_TRANSIENT_DESELECT,

105 KeyBuilder .LENGTH_AES_128, fa l se) ;

106 phMacGenerator =

Signature . g e t In s tance (S ignature .ALG_AES_MAC_128_NOPAD,

107 fa l se) ;

108 phSign = Signature . g e t In s tance (S ignature .ALG_RSA_SHA_PKCS1, fa l se) ;

109 phSCKeyPair = new KeyPair (KeyPair .ALG_RSA, KeyBuilder .LENGTH_RSA_512) ;

110 phUserKeyPair = new KeyPair (KeyPair .ALG_RSA,

KeyBuilder .LENGTH_RSA_512)

111 ;

112 phCipherKey = (AESKey) KeyBuilder . buildKey

113 (KeyBuilder .TYPE_AES_TRANSIENT_DESELECT,

114 KeyBuilder .LENGTH_AES_128, fa l se) ;

115 syCipher = Cipher . g e t In s tance (Cipher .ALG_AES_BLOCK_128_CBC_NOPAD,

116 fa l se) ;

117 randomDataGen = RandomData . g e t In s tance (RandomData .ALG_SECURE_RANDOM) ;

118 pkCipher = Cipher . g e t In s tance (Cipher .ALG_RSA_NOPAD, fa l se) ;

119 d h I n i t i a l i s a t i o n () ;

120 phSCKeyPair . genKeyPair () ;

121 phUserKeyPair . genKeyPair () ;

122 }

123 public stat ic void i n s t a l l (byte bArray [] , short bOffset , byte bLength)

124 throws ISOException {

125 new Protoco lHandler () . r e g i s t e r () ;

126 }

127 public void i n i t i a l i s e P r o t o c o l () {

128 short i n i t i a l P o i n t e r = 0 ;

129 SCDHData = JCSystem . makeTransientByteArray ((short) ((short)

130 this . ClassDH . dhModulus . l ength + PTLVDataOffset) ,

131 JCSystem .MEMORY_TYPE_TRANSIENT_DESELECT) ;

132 Ut i l . arrayCopyNonAtomic (this . SCDHChalleneTag , (short) i n i t i a l P o i n t e r ,

133 this . SCDHData , (short) 0 , (short)

134 this . SCDHChalleneTag . l ength) ;

135 this . shortToBytes (SCDHData , (short) 4 , (short) ((short)SCDHData . l ength −
136 (short) PTLVDataOffset)) ;

315

C.5 Secure and Trusted Channel Protocol � Smart Card

137 this . dhKeyConGen(this . SCDHData , this . PTLVDataOffset ,

138 Protoco lHandler .GEN_KEYCONTRIBUTION) ;

139 SPDHChanllengerArray = JCSystem . makeTransientByteArray ((short) ((short)

140 this . ClassDH . dhModulus . l ength + this . PTLVDataOffset) ,

141 JCSystem .MEMORY_TYPE_TRANSIENT_DESELECT) ;

142 SPRandomNumberArray = JCSystem . makeTransientByteArray ((short) 22 ,

143 JCSystem .MEMORY_TYPE_TRANSIENT_DESELECT) ;

144 SPCookieArray = JCSystem . makeTransientByteArray ((short) 22 ,

145 JCSystem .MEMORY_TYPE_TRANSIENT_DESELECT) ;

146 SCRandomNumberArray = JCSystem . makeTransientByteArray ((short) 22 ,

147 JCSystem .MEMORY_TYPE_TRANSIENT_DESELECT) ;

148 Ut i l . arrayCopyNonAtomic (this . SCRandomNumberTag , (short) i n i t i a l P o i n t e r ,

149 this . SCRandomNumberArray , (short)

150 i n i t i a l P o i n t e r , (short)

151 this . SCRandomNumberTag . l ength) ;

152 this . shortToBytes (this . SCRandomNumberArray , (short) 4 , (short) ((short)

153 this . SCRandomNumberArray . l ength − (short)

154 PTLVDataOffset)) ;

155 try {

156 this . SCCer t i f i c a t e = JCSystem . makeTransientByteArray ((short) 86 ,

157 JCSystem .MEMORY_TYPE_TRANSIENT_DESELECT) ;

158 i n i t i a l P o i n t e r = Ut i l . arrayCopyNonAtomic (this . SCCert i f icateTag ,

159 (short) 0 , this . SCCert i f i ca t e , (short) 0 ,

(short)

160 this . SCCert i f i cateTag . l ength) ;

161 this . shortToBytes (this . SCCert i f i ca t e , (short) 4 , (short)

162 (this . SCCer t i f i c a t e . l ength − (short) 7)) ;

163 i n i t i a l P o i n t e r = Ut i l . arrayCopyNonAtomic (this . ExponentTag , (short) 0 ,

164 this . SCCert i f i ca t e , (short) (i n i t i a l P o i n t e r +

(short) 3) , (short)

165 this . ExponentTag . l ength) ;

166 RSAPublicKey myPublic = (RSAPublicKey) this . phSCKeyPair . ge tPub l i c () ;

167 short kLen = myPublic . getExponent (this . SCCert i f i ca t e , (short)

168 (i n i t i a l P o i n t e r + (short) 2)) ;

169 this . shortToBytes (this . SCCert i f i ca t e , i n i t i a l P o i n t e r , kLen) ;

170 i n i t i a l P o i n t e r += (short) (kLen + (short) 2) ;

171 this . SCCer t i f i c a t e [6]++;

172 i n i t i a l P o i n t e r = Ut i l . arrayCopyNonAtomic (this . ModulusTag , (short) 0 ,

173 this . SCCert i f i ca t e , (short) (i n i t i a l P o i n t e r) , (short)

174 this . ModulusTag . l ength) ;

175 kLen = myPublic . getModulus (this . SCCert i f i ca t e , (short)

176 (i n i t i a l P o i n t e r + (short) 2)) ;

177 this . shortToBytes (this . SCCert i f i ca t e , i n i t i a l P o i n t e r , kLen) ;

178 this . SCCer t i f i c a t e [6]++;

179 SPVer i f i cat ionKey = (RSAPublicKey) KeyBuilder . buildKey

180 (KeyBuilder .TYPE_RSA_PUBLIC,

181 KeyBuilder .LENGTH_RSA_512, fa l se) ;

182 } catch (Exception cE) {

183 ISOException . throwIt ((short) 0x6666) ;

184 }

185 }

316

C.5 Secure and Trusted Channel Protocol � Smart Card

186 public void proce s s (APDU apdu)throws ISOException {

187 byte [] apduBuffer = apdu . ge tBu f f e r () ;

188 i f (s e l e c t i n gApp l e t ()) {

189 this . i n i t i a l i s e P r o t o c o l () ;

190 return ;

191 }

192 i f (apduBuffer [ISO7816 .OFFSET_CLA] != CLA) {

193 ISOException . throwIt (SW_CLASSNOTSUPPORTED) ;

194 }

195 i f (apduBuffer [ISO7816 .OFFSET_INS] == In i t i a t i o nP r o t o c o l) {

196 r e c e i v i n gBu f f e r = JCSystem . makeTransientByteArray ((short) 64 ,

197 JCSystem .MEMORY_TYPE_TRANSIENT_DESELECT) ;

198 generateResponse ((short) 1) ;

199 apdu . setOutgoing () ;

200 apdu . setOutgoingLength ((short) copyPointer) ;

201 apdu . sendBytesLong (r e c e i v i ngBu f f e r , (short) 0 , (short) copyPointer) ;

202 return ;

203 }

204 r e c e i v i n gBu f f e r = null ;

205 byte sLe f t = 0 ;

206 byte sLe f t = apdu . getIncomingLength () ;

207 r e c e i v i n gBu f f e r = JCSystem . makeTransientByteArray (bytesLe f t ,

208 JCSystem .MEMORY_TYPE_TRANSIENT_DESELECT) ;

209 readCount = (short) ((short) apdu . setIncomingAndReceive ()) ;

210 rCount = 0 ;

211 i f (byte sLe f t > 0) {

212 rCount = Ut i l . arrayCopyNonAtomic (apduBuffer ,

213 ISO7816 .OFFSET_EXT_CDATA, r e c e i v i ngBu f f e r , rCount , readCount) ;

214 byte sLe f t −= readCount ;

215 }

216 while (byte sLe f t > 0) {

217 try {

218 readCount = apdu . r e c e i v eByte s ((short) 0) ;

219 rCount = Ut i l . arrayCopyNonAtomic (apduBuffer , (short) 0 ,

220 r e c e i v i ngBu f f e r , rCount , readCount) ;

221 byte sLe f t −= readCount ;

222 } catch (Exception aE) {

223 ISOException . throwIt ((short) 0x7AAA) ;

224 }

225 }

226 i f (this . r e c e i v i n gBu f f e r [3] == this . MessageHandlerTagOne [3]) {

227 try {

228 parseMessage (r e c e i v i n gBu f f e r) ;

229 } catch (Exception cE) {

230 ISOException . throwIt ((short) 0xA112) ;

231 }

232 r e c e i v i n gBu f f e r = JCSystem . makeTransientByteArray ((short) 600 ,

233 JCSystem .MEMORY_TYPE_TRANSIENT_DESELECT) ;

234 generateResponse ((short) 2) ;

235 JCSystem . r eques tObjec tDe l e t i on () ;

236 apdu . setOutgoing () ;

317

C.5 Secure and Trusted Channel Protocol � Smart Card

237 apdu . setOutgoingLength ((short) copyPointer) ;

238 apdu . sendBytesLong (r e c e i v i ngBu f f e r , (short) 0 , (short) copyPointer) ;

239 } else i f (this . r e c e i v i n gBu f f e r [3] == this . MessageHandlerTagTwo [3]) {

240 i f (processSecondMsg (r e c e i v i n gBu f f e r)) {

241 return ;

242 } else {

243 ISOException . throwIt ((short) 0xFA17) ;

244 }

245 return ;

246 } else {

247 ISOException . throwIt (Protoco lHandler .SW_ERROR_INS) ;

248 }

249 JCSystem . r eques tObjec tDe l e t i on () ;

250 }

251 private void generateResponse (short msgNumber) {

252 short childPM1 = 0 ;

253 short childPM2 = 0 ;

254 copyPointer = 0 ;

255 i f (msgNumber == 1) {

256 copyPointer = Ut i l . arrayCopy (this . SCProtoco l In i t iatorTag , (short) 0 ,

257 this . r e c e i v i ngBu f f e r , copyPointer ,

258 (short)

259 this . SCProtoco l In i t i a torTag . l ength) ;

260 randomDataGen . generateData (this . SCRandomNumberArray ,

261 this . PTLVDataOffset , (short) 16) ;

262 childPM1 = copyPointer ;

263 copyPointer += 2 ;

264 phMacGeneratorKey . setKey (this . SCRandomNumberArray ,

265 this . PTLVDataOffset) ;

266 phMacGenerator . i n i t (phMacGeneratorKey , S ignature .MODE_SIGN,

267 I n i t i a l i s a t i o nV e c t o r , (short) 0 , (short)

268 I n i t i a l i s a t i o nV e c t o r . l ength) ;

269 short l ength = 0 ;

270 l ength = phMacGenerator . s i gn (SCDHData , (short) this . PTLVDataOffset ,

271 (short) (SCDHData . l ength −
272 this . PTLVDataOffset) ,

273 this . r e c e i v i ngBu f f e r , copyPointer) ;

274 copyPointer += length ;

275 this . shortToBytes (this . r e c e i v i ngBu f f e r , childPM1 , l ength) ;

276 return ;

277 } else i f (msgNumber == 2) {

278 this . dhKeyConGen(this . SPDHChanllengerArray , this . PTLVDataOffset ,

279 Protoco lHandler .GEN_DHKEY) ;

280 keygenerator () ;

281 childPM1 = (short) 6 ;

282 copyPointer = Ut i l . arrayCopyNonAtomic (this . MessageHandlerTagTwo ,

283 (short) 0 , this . r e c e i v i ngBu f f e r , copyPointer , (short)

284 this . MessageHandlerTagTwo . l ength) ;

285 copyPointer = Ut i l . arrayCopyNonAtomic (this . SCDHData , (short) 0 ,

286 this . r e c e i v i ngBu f f e r , (short) copyPointer , (short)

287 this . SCDHData . l ength) ;

318

C.5 Secure and Trusted Channel Protocol � Smart Card

288 this . r e c e i v i n gBu f f e r [childPM1]++;

289 copyPointer = Ut i l . arrayCopyNonAtomic (this . SCRandomNumberArray ,

290 (short) 0 , this . r e c e i v i ngBu f f e r , copyPointer , (short)

291 this . SCRandomNumberArray . l ength) ;

292 this . r e c e i v i n gBu f f e r [childPM1]++;

293 copyPointer = Ut i l . arrayCopyNonAtomic (this . EncryptedDataTag , (short)

294 0 , this . r e c e i v i ngBu f f e r , copyPointer , (short)

295 this . EncryptedDataTag . l ength) ;

296 copyPointer += 3 ;

297 childPM2 = (short) (copyPointer − (short) 1) ;

298 this . r e c e i v i n gBu f f e r [childPM1]++;

299 copyPointer = Ut i l . arrayCopyNonAtomic (this . PlatformHash , (short) 0 ,

300 this . r e c e i v i ngBu f f e r , copyPointer ,

(short) this . PlatformHash . l ength)

301 ;

302 copyPointer += 2 ;

303 MessageDigest myHashGen = MessageDigest . g e t In s tance

304 (MessageDigest .ALG_SHA_256, fa l se) ;

305 short tempLength = (short)myHashGen . doFinal (this . ClassDH . dhModulus ,

(short) 0 ,

306 (short) this . ClassDH . dhModulus . length ,

r e c e i v i ngBu f f e r ,

307 copyPointer) ;

308 this . r e c e i v i n gBu f f e r [childPM2]++;

309 this . shortToBytes (this . r e c e i v i ngBu f f e r , (short) (copyPointer −
(short)

310 2) , tempLength) ;

311 copyPointer += tempLength ;

312 copyPointer = Ut i l . arrayCopyNonAtomic (this . SCIdentityTag , (short) 0 ,

313 this . r e c e i v i ngBu f f e r , copyPointer , (short)

314 this . SCIdentityTag . l ength) ;

315 this . r e c e i v i n gBu f f e r [childPM2]++;

316 copyPointer = Ut i l . arrayCopyNonAtomic (this . SCRandomNumberArray ,

317 (short) 0 , this . r e c e i v i ngBu f f e r , copyPointer , (short)

318 this . SCRandomNumberArray . l ength) ;

319 this . r e c e i v i n gBu f f e r [childPM2]++;

320 copyPointer = Ut i l . arrayCopyNonAtomic (this . SPRandomNumberArray ,

321 (short) 0 , this . r e c e i v i ngBu f f e r , copyPointer , (short)

322 this . SPRandomNumberArray . l ength) ;

323 this . r e c e i v i n gBu f f e r [childPM2]++;

324 try {

325 this . s ignGenerate (this . r e c e i v i ngBu f f e r , (short) (childPM2 + (short)

326 1) , (short) (copyPointer − (short) (childPM2 +

327 (short) 1)) , this . phSCKeyPair . g e tPr iva t e () ,

328 Signature .MODE_SIGN) ;

329 } catch (Exception cE) {

330 ISOException . throwIt ((short) 0x3141) ;

331 }

332 this . r e c e i v i n gBu f f e r [childPM2]++;

333 copyPointer = Ut i l . arrayCopyNonAtomic (this . SCCert i f i ca t e , (short) 0 ,

334 this . r e c e i v i ngBu f f e r , copyPointer , (short)

319

C.5 Secure and Trusted Channel Protocol � Smart Card

335 this . SCCer t i f i c a t e . l ength) ;

336 this . r e c e i v i n gBu f f e r [childPM2]++;

337 try {

338 this . messageEncryption (this . r e c e i v i ngBu f f e r , (short) (childPM2 +

339 (short) 1) , (short) (copyPointer − (short)

340 (childPM2 + (short) 1))) ;

341 } catch (Exception ce) {

342 ISOException . throwIt ((short) (copyPointer − (short) (childPM2 +

343 (short) 1))) ;

344 }

345 this . shortToBytes (this . r e c e i v i ngBu f f e r , (short) (childPM2 −
(short) 2) ,

346 (short) (copyPointer − childPM2 − (short) 1)) ;

347 this . macGenerate (this . r e c e i v i ngBu f f e r , (short) (childPM2 + (short) 1) ,

348 (short) (copyPointer − (short) (childPM2 +

(short) 1)) ,

349 Signature .MODE_SIGN) ;

350 this . r e c e i v i n gBu f f e r [childPM1]++;

351 copyPointer = Ut i l . arrayCopyNonAtomic (this . SPCookieArray , (short) 0 ,

352 this . r e c e i v i ngBu f f e r , (short) copyPointer , (short)

353 this . SPCookieArray . l ength) ;

354 this . r e c e i v i n gBu f f e r [childPM1]++;

355 this . shortToBytes (this . r e c e i v i ngBu f f e r , (short) (childPM1 −
(short) 2) ,

356 (short) (copyPointer − (short) 7)) ;

357 }

358 }

359 boolean processSecondMsg (byte [] inArray) {

360 short i nO f f s e t = (short) (this . CTLVDataOffset + this . CTLVDataOffset) ;

361 short inLength = (short) (Protoco lHandler . bytesToShort (inArray , (short)

362 (i nO f f s e t − (short) 3))) ;

363 i f (this . macGenerate (inArray , i nOf f s e t , inLength ,

364 Signature .MODE_VERIFY)) {

365 try {

366 this . phDecryption (inArray , i nOf f s e t , inLength) ;

367 i nO f f s e t = (short) (this . CTLVDataOffset + this . PTLVDataOffset +

368 (short) 168) ;

369 inLength = 3 ;

370 SPVer i f i cat ionKey . setExponent (inArray , i nOf f s e t , inLength) ;

371 i nO f f s e t += (short) (inLength + this . PTLVDataOffset) ;

372 inLength = (short) 64 ;

373 SPVer i f i cat ionKey . setModulus (inArray , i nOf f s e t , inLength) ;

374 i nO f f s e t = (short) (this . CTLVDataOffset + this . CTLVDataOffset) ;

375 inLength = (short) 84 ;

376 i f (this . s ignGenerate (inArray , i nOf f s e t , inLength ,

377 SPVeri f icat ionKey , S ignature .MODE_VERIFY)) {

378 return true ;

379 } else {

380 ISOException . throwIt ((short) 0x6666) ;

381 }

382 } catch (Exception ce) {

320

C.5 Secure and Trusted Channel Protocol � Smart Card

383 ISOException . throwIt ((short) 0xAB23) ;

384 }

385 return true ;

386 } else {

387 ISOException . throwIt ((short) 0xFA18) ;

388 }

389 return fa l se ;

390 }

391 void parseMessage (byte [] i nBu f f e r) {

392 byte c h i l dL e f t = inBu f f e r [(short) (this . CTLVDataOffset − (short) 1)] ;

393 short po in t e r = (short) this . CTLVDataOffset ;

394 try {

395 while (c h i l dL e f t > 0) {

396 i f (Ut i l . arrayCompare (SPDHChallengeTag , (short) 0 , inBuf f e r ,

397 pointer , (short) 4) == 0) {

398 Ut i l . arrayCopy (inBuf f e r , po inter , this . SPDHChanllengerArray ,

399 (short) 0 ,

(short) this . SPDHChanllengerArray . l ength)

400 ;

401 po in t e r += (short) this . SPDHChanllengerArray . l ength ;

402 } else i f (Ut i l . arrayCompare (this . SPRandomNumberTag , (short) 0 ,

403 i nBuf f e r , po inter , (short) 4) == 0) {

404 Ut i l . arrayCopyNonAtomic (inBuf f e r , po inter ,

405 this . SPRandomNumberArray , (short) 0 ,

406 (short) (this . SPRandomNumberArray . l ength))

407 ;

408 po in t e r += (short) (this . SPRandomNumberArray . l ength) ;

409 } else i f (Ut i l . arrayCompare (this . SPCookieTag , (short) 0 , inBuf f e r ,

410 pointer , (short) 4) == 0) {

411 Ut i l . arrayCopyNonAtomic (inBuf f e r , po inter , this . SPCookieArray ,

412 (short) 0 , (short)

413 (this . SPCookieArray . l ength)) ;

414 po in t e r += (short) (this . SPCookieArray . l ength) ;

415 }

416 c h i l dL e f t −= (short) 1 ;

417 }

418 } catch (Exception cE) {

419 ISOException . throwIt ((short) c h i l dL e f t) ;

420 }

421 }

422 void protoco l Implementat ion () {}

423 void d h I n i t i a l i s a t i o n () {

424 dhKey . setModulus (ClassDH . dhModulus , (short) 0 ,

(short)ClassDH . dhModulus . l ength) ;

425 }

426 void dhKeyConGen(byte [] i nbu f f , short i nbu f fO f f s e t , byte Oper_Mode) {

427 switch (Oper_Mode) {

428 case GEN_KEYCONTRIBUTION:

429 randomExponent = JCSystem . makeTransientByteArray ((short) 32 ,

430 JCSystem .MEMORY_TYPE_TRANSIENT_DESELECT) ;

431 randomDataGen . generateData (randomExponent , (short) 0 , (short)

321

C.5 Secure and Trusted Channel Protocol � Smart Card

432 randomExponent . l ength) ;

433 dhKey . setExponent (randomExponent , (short) 0 , (short)

434 randomExponent . l ength) ;

435 pkCipher . i n i t (dhKey , Cipher .MODE_ENCRYPT) ;

436 pkCipher . doFinal (ClassDH . dhBase , (short) 0 ,

(short)ClassDH . dhBase . length , inbu f f ,

437 i n bu f fO f f s e t) ;

438 break ;

439 case GEN_DHKEY:

440 try {

441 dhKey . setExponent (randomExponent , (short) 0 , (short)

442 randomExponent . l ength) ;

443 pkCipher . i n i t (dhKey , Cipher .MODE_ENCRYPT) ;

444 SCSPDHGeneratedValue = JCSystem . makeTransientByteArray ((short)

445 ClassDH . dhModulus . length ,

JCSystem .MEMORY_TYPE_TRANSIENT_DESELECT) ;

446 pkCipher . doFinal (inbu f f , i nbu f fO f f s e t , (short) ((short)

447 i n bu f f . l ength − (short) this . PTLVDataOffset) ,

448 SCSPDHGeneratedValue , (short) 0) ;

449 }

450 catch (Exception cE) {

451 ISOException . throwIt ((short) 0xD86E) ;

452 }

453 break ;

454 default :

455 ISOException . throwIt ((short) 0x5FA1) ;

456 }

457 }

458 void keygenerator () {

459 AESKey sessionGenKey = (AESKey) KeyBuilder . buildKey

460 (KeyBuilder .TYPE_AES_TRANSIENT_DESELECT,

461 KeyBuilder .LENGTH_AES_128, fa l se) ;

462 sessionGenKey . setKey (SCSPDHGeneratedValue , (short) 0) ;

463 phMacGenerator . i n i t (sessionGenKey , S ignature .MODE_SIGN,

464 I n i t i a l i s a t i o nV e c t o r , (short) 0 , (short)

465 I n i t i a l i s a t i o nV e c t o r . l ength) ;

466 byte [] keyGenMacData = JCSystem . makeTransientByteArray ((short) 64 ,

467 JCSystem .MEMORY_TYPE_TRANSIENT_DESELECT) ;

468 short po in t e r = 0 ;

469 po in t e r = Ut i l . arrayCopyNonAtomic (this . SPRandomNumberArray ,

470 this . PTLVDataOffset , keyGenMacData , (short) po inter , (short) 16) ;

471 po in t e r = Ut i l . arrayCopyNonAtomic (this . SCRandomNumberArray ,

472 this . PTLVDataOffset , keyGenMacData , (short) po inter , (short) 16) ;

473 po in t e r = Ut i l . arrayCopyNonAtomic (SCSPDHGeneratedValue , (short) 16 ,

474 keyGenMacData , (short) po inter , (short) 16) ;

475 for (short i = 48 ; i < 64 ; i++) {

476 keyGenMacData [i] = (byte) 0x02 ;

477 }

478 phMacGenerator . s i gn (keyGenMacData , (short) 0 , (short)

479 keyGenMacData . length , SCSPDHGeneratedValue ,

(short)

322

C.5 Secure and Trusted Channel Protocol � Smart Card

480 0) ;

481 this . phCipherKey . setKey (SCSPDHGeneratedValue , (short) 0) ;

482 for (short i = 48 ; i < 64 ; i++) {

483 keyGenMacData [i] = (byte) 0x03 ;

484 }

485 phMacGenerator . i n i t (sessionGenKey , S ignature .MODE_SIGN,

486 I n i t i a l i s a t i o nV e c t o r , (short) 0 , (short)

487 I n i t i a l i s a t i o nV e c t o r . l ength) ;

488 phMacGenerator . s i gn (keyGenMacData , (short) 0 , (short)

489 keyGenMacData . length , SCSPDHGeneratedValue ,

(short)

490 0) ;

491 this . phMacGeneratorKey . setKey (SCSPDHGeneratedValue , (short) 0) ;

492 SCSPDHGeneratedValue = null ;

493 JCSystem . r eques tObjec tDe l e t i on () ;

494 }

495 void messageEncryption (byte [] i nbu f f , short i nbu f fO f f s e t , short

496 inbuf fLength) {

497 syCipher . i n i t (phCipherKey , Cipher .MODE_ENCRYPT, I n i t i a l i s a t i o nV e c t o r ,

498 (short) 0 , (short) I n i t i a l i s a t i o nV e c t o r . l ength) ;

499 this . shortToBytes (inbu f f , (short) (i n bu f fO f f s e t − 3) , (short)

500 syCipher . doFinal (inbu f f , i nbu f fO f f s e t , inbuf fLength ,

501 i nbu f f , i n bu f fO f f s e t)) ;

502 }

503 void phDecryption (byte [] i nbu f f , short i nbu f fO f f s e t , short inbuf fLength)

504 {

505 syCipher . i n i t (phCipherKey , Cipher .MODE_DECRYPT, I n i t i a l i s a t i o nV e c t o r ,

506 (short) 0 , (short) I n i t i a l i s a t i o nV e c t o r . l ength) ;

507 syCipher . doFinal (inbu f f , i nbu f fO f f s e t , inbuf fLength , inbu f f ,

508 i n bu f fO f f s e t) ;

509 }

510 boolean macGenerate (byte [] i nbu f f , short i nbu f fO f f s e t , short

511 inbuf fLength , short macMode) {

512 i f (macMode == Signature .MODE_SIGN) {

513 phMacGenerator . i n i t (phMacGeneratorKey , S ignature .MODE_SIGN,

514 I n i t i a l i s a t i o nV e c t o r , (short) 0 , (short)

515 I n i t i a l i s a t i o nV e c t o r . l ength) ;

516 try {

517 copyPointer = Ut i l . arrayCopyNonAtomic (this .MACedDataTag , (short) 0 ,

518 this . r e c e i v i ngBu f f e r , copyPointer , (short)

519 this .MACedDataTag . l ength) ;

520 copyPointer += 2 ;

521 } catch (Exception ce) {

522 ISOException . throwIt ((short) 0xFA17) ;

523 }

524 try {

525 short l ength = (short) phMacGenerator . s i gn (this . r e c e i v i ngBu f f e r ,

526 i nbu f fO f f s e t , inbuf fLength , inbu f f , copyPointer) ;

527 this . shortToBytes (inbu f f , (short) (copyPointer − (short) 2) ,

l ength) ;

528 copyPointer += length ;

323

C.5 Secure and Trusted Channel Protocol � Smart Card

529 } catch (Exception ce) {

530 ISOException . throwIt ((short) 0x0987) ;

531 }

532 return true ;

533 } else i f (macMode == Signature .MODE_VERIFY) {

534 try {

535 phMacGenerator . i n i t (phMacGeneratorKey , S ignature .MODE_VERIFY,

536 I n i t i a l i s a t i o nV e c t o r , (short) 0 , (short)

537 I n i t i a l i s a t i o nV e c t o r . l ength) ;

538 return phMacGenerator . v e r i f y (this . r e c e i v i ngBu f f e r , i nbu f fO f f s e t ,

539 inbuf fLength , inbu f f , (short)

540 (i n bu f fO f f s e t + inbuf fLength +

541 this . PTLVDataOffset) , (short) 16) ;

542 } catch (Exception cE) {

543 ISOException . throwIt ((short) 0xC1C2) ;

544 }

545 }

546 return fa l se ;

547 }

548 boolean s ignGenerate (byte [] i nbu f f , short i nbu f fO f f s e t , short

549 i nbu f f l eng th , Key kpSign , short signMode) {

550 i f (signMode == Signature .MODE_SIGN) {

551 copyPointer = Ut i l . arrayCopyNonAtomic (this . SignedDataTag , (short) 0 ,

552 this . r e c e i v i ngBu f f e r , copyPointer , (short)

553 this . SignedDataTag . l ength) ;

554 copyPointer += (short) 2 ;

555 phSign . i n i t ((RSAPrivateKey) kpSign , S ignature .MODE_SIGN) ;

556 s i gn l eng th = phSign . s i gn (inbu f f , (short) i nbu f fO f f s e t , i nbu f f l eng th ,

557 i nbu f f , copyPointer) ;

558 this . shortToBytes (this . r e c e i v i ngBu f f e r , (short) (copyPointer −
(short)

559 2) , s i gn l eng th) ;

560 copyPointer += s i gn l eng th ;

561 return true ;

562 } else i f (signMode == Signature .MODE_VERIFY) {

563 phSign . i n i t ((RSAPublicKey) kpSign , S ignature .MODE_VERIFY) ;

564 return phSign . v e r i f y (inbu f f , i nbu f fO f f s e t , i nbu f f l eng th , inbu f f ,

565 (short) (i n bu f fO f f s e t + inbu f f l e n g th +

566 this . PTLVDataOffset) , (short) 64) ;

567 }

568 return fa l se ;

569 }

570 public stat ic short bytesToShort (byte [] ArrayBytes) {

571 return (short) (((ArrayBytes [0] << 8)) | ((ArrayBytes [1] & 0 x f f))) ;

572 }

573 public stat ic short bytesToShort (byte [] ArrayBytes , short a r r ayOf f s e t) {

574 return (short) (((ArrayBytes [a r r ayOf f s e t] << 8)) | ((ArrayBytes [(short)

575 (a r r ayOf f s e t + (short) 1)] & 0 x f f))) ;

576 }

577 private void shortToBytes (byte [] Array , short ar rayOf f s e t , short

inShort)

324

C.5 Secure and Trusted Channel Protocol � Smart Card

578 {

579 Array [a r r ayOf f s e t] = (byte) ((short) (inShort & (short) 0xFF00) >>

(short)

580 0x0008) ;

581 Array [(short) (a r r ayOf f s e t + (short) 1)] = (byte) (inShort & (short)

582 0x00FF) ;

583 }

584 }

C.5.2 Service Provider Implementation

Following is the implementation code for the protocol hander used by the SP during the

STCPSC.

1 package j avacardte rmina l ;

2

3 import java . u t i l . Arrays ;

4 import java . s e c u r i t y . i n t e r f a c e s . RSAPublicKey ;

5 import java . s e c u r i t y . spec . RSAPublicKeySpec ;

6 import java . s e c u r i t y . ∗ ;
7 import java . math . B ig Intege r ;

8 public class ProtocolHandlerSCIn {

9 private byte [] SPIdent i ty = {

10 (byte) 0xC5 , (byte) 0x7D , (byte) 0xB1 , (byte) 0x7C , (byte) 0x62 ,

(byte) 0x0A ,

11 (byte) 0x86 , (byte) 0x52 , (byte) 0xBE, (byte) 0x5E , (byte) 0x90 , (byte)

12 0x01 , (byte) 0xA8 , (byte) 0xD6 , (byte) 0x6A , (byte) 0xD7} ;

13 private byte [] SCIP = {

14 (byte) 0xC5 , (byte) 0x7D , (byte) 0xB1 , (byte) 0x7C} ;

15 private byte [] PlatformHashPreset = {

16 (byte) 0xBF, (byte) 0xE5 , (byte) 0x45 , (byte) 0x86 , (byte) 0x2C ,

(byte) 0xA1 ,

17 (byte) 0x02 , (byte) 0xAD, (byte) 0x1E , (byte) 0xED, (byte) 0xDB, (byte)

18 0x5F , (byte) 0xBF, (byte) 0xA5 , (byte) 0xBF, (byte) 0x85 , (byte) 0x5A ,

19 (byte) 0xC4 , (byte) 0x99 , (byte) 0x5C , (byte) 0x56 , (byte) 0xA8 , (byte)

20 0xB4 , (byte) 0x08 , (byte) 0xCE, (byte) 0x3F , (byte) 0xE0 , (byte) 0x99 ,

21 (byte) 0xDC, (byte) 0xE9 , (byte) 0x3A , (byte) 0x9D} ;

22 private byte [] MessageHandlerTagOne = {(byte) 0xAA, (byte) 0xAA} ;

23 private byte [] MessageHandlerTagTwo = {(byte) 0xBB, (byte) 0xBB} ;

24 private byte [] SPIdentityTag = {(byte) 0x5F , (byte) 0x01 } ;

25 private byte [] SPDHChallengeTag = {(byte) 0x5C , (byte) 0x01 } ;

26 private byte [] SPSignatureCertTag = {(byte) 0xF0 , (byte) 0xF01 } ;

27 private byte [] SPSigVeri f icat ionKeyTag = {(byte) 0x51 , (byte) 0x01 } ;

28 private byte [] SPRandomNumberTag = {(byte) 0x5A , (byte) 0x01 } ;

29 private byte [] SPCookieTag = {(byte) 0x5B , (byte) 0x01 } ;

30 private byte [] EncryptedDataTag = {(byte) 0xFE , (byte) 0x01 } ;

31 private byte [] MACedDataTag = {(byte) 0x5D , (byte) 0x01 } ;

32 private byte [] SignedDataTag = {(byte) 0x5D , (byte) 0x02 } ;

33 private byte [] PublicExponentTag = {(byte) 0xEE, (byte) 0x01 } ;

34 private byte [] PublicModulusTag = {(byte) 0xEE, (byte) 0x02 } ;

35 private byte [] SCDHChallengeTag = {(byte) 0x5C , (byte) 0x02 } ;

325

C.5 Secure and Trusted Channel Protocol � Smart Card

36 private byte [] SCRandomNumberTag = {(byte) 0x5A , (byte) 0x02 } ;

37 private byte [] SCIdentityTag = {(byte) 0x5F , (byte) 0x02 } ;

38 private byte [] SCUserCert i f i cateTag = {(byte) 0xF0 , (byte) 0x03 } ;

39 private byte [] SCCert i f i cateTag = {(byte) 0xF0 , (byte) 0x02 } ;

40 private byte [] PlatformHashTag = {(byte) 0x5E , (byte) 0xAF} ;

41 private byte [] UserIdent i tyTag = {(byte) 0x5F , (byte) 0x03 } ;

42 private byte [] SCProtoco l In i t i a torTag = {(byte) 0xA1 , (byte) 0xB2} ;

43 public ConstructedTLV MessageHandler = ConstructedTLV . getConstructedTLV

44 (MessageHandlerTagOne) ;

45 private ConstructedTLV SPS igna tu r eCe r t i f i c a t e =

46 ConstructedTLV . getConstructedTLV (SPSignatureCertTag) ;

47 private PrimitiveTLV SPIdentityTLV = PrimitiveTLV . getPrimitiveTLV

48 (SPIdentityTag , SPIdent i ty) ;

49 private PrimitiveTLV SPSigVer i f i cat ionKey = PrimitiveTLV . getPrimitiveTLV

50 (this . SPSigVer i f icat ionKeyTag) ;

51 private PrimitiveTLV SPDHChanllenger = PrimitiveTLV . getPrimitiveTLV

52 (this . SPDHChallengeTag) ;

53 private PrimitiveTLV SPRandomNumber = PrimitiveTLV . getPrimitiveTLV

54 (this . SPRandomNumberTag) ;

55 private PrimitiveTLV SPCookie = PrimitiveTLV . getPrimitiveTLV

56 (this . SPCookieTag) ;

57 private ConstructedTLV EncryptedData = ConstructedTLV . getConstructedTLV

58 (this . EncryptedDataTag) ;

59 private PrimitiveTLV MACedData = PrimitiveTLV . getPrimitiveTLV

60 (this .MACedDataTag) ;

61 private PrimitiveTLV SignedData = PrimitiveTLV . getPrimitiveTLV

62 (this . SignedDataTag) ;

63 private PrimitiveTLV PublicExponent = PrimitiveTLV . getPrimitiveTLV

64 (this . PublicExponentTag) ;

65 private PrimitiveTLV PublicModulus = PrimitiveTLV . getPrimitiveTLV

66 (this . PublicModulusTag) ;

67 private PrimitiveTLV SCDHChallenge = PrimitiveTLV . getPrimitiveTLV

68 (this . SCDHChallengeTag) ;

69 private PrimitiveTLV SCRandomNumber = PrimitiveTLV . getPrimitiveTLV

70 (this . SCRandomNumberTag) ;

71 private PrimitiveTLV SCIdent ity = PrimitiveTLV . getPrimitiveTLV

72 (SCIdentityTag) ;

73 private ConstructedTLV SCUserCer t i f i ca t e =

74 ConstructedTLV . getConstructedTLV (this . SCUserCert i f i cateTag) ;

75 private ConstructedTLV SCCer t i f i c a t e = ConstructedTLV . getConstructedTLV

76 (this . SCCert i f i cateTag) ;

77 private PrimitiveTLV PlatformHash = PrimitiveTLV . getPrimitiveTLV

78 (this . PlatformHashTag) ;

79 private PrimitiveTLV User Ident i ty = PrimitiveTLV . getPrimitiveTLV

80 (this . UserIdent ityTag) ;

81 private PrimitiveTLV SCPro to co l I n i t i a t o r = PrimitiveTLV . getPrimitiveTLV

82 (this . SCProtoco l In i t i a torTag) ;

83 private Protoco lHe lpe rClas s myProtocolHelperObject = new

84 Protoco lHe lpe rClas s () ;

85 private byte [] mySessionEncryptionKey = new byte [1 6] ;

86 private byte [] mySessionMacKey = new byte [1 6] ;

326

C.5 Secure and Trusted Channel Protocol � Smart Card

87 private PublicKey SCUserVer i f i cat ionKey = null ;

88 private PublicKey SCVer i f i cat ionKey = null ;

89 public ProtocolHandlerSCIn () {

90 myProtocolHelperObject . p r o t o c o l I n i t i a l i s e () ;

91 RSAPublicKey tempKey = (RSAPublicKey)

92 myProtocolHelperObject . getPublicKey () ;

93 byte [] tempExponent = tempKey . getPubl icExponent () . toByteArray () ;

94 this . PublicExponent . i n i t i a l i s a t i onPTLV (this . PublicExponentTag ,

95 tempExponent . l ength) ;

96 this . PublicExponent . setTlvValues (tempExponent) ;

97 byte [] tempModulus = tempKey . getModulus () . toByteArray () ;

98 this . PublicModulus . i n i t i a l i s a t i onPTLV (this . PublicModulusTag ,

99 (tempModulus . l ength − 1)) ;

100 this . PublicModulus . setTlvValues (tempModulus , 1 , (tempModulus . l ength −
101 1)) ;

102 SPS igna tu r eCe r t i f i c a t e . addPTLV(this . PublicExponent) ;

103 SPS igna tu r eCe r t i f i c a t e . addPTLV(this . PublicModulus) ;

104 }

105 public void i n i t i a l i s e P r o t o c o l () {

106 try {

107 this . SPDHChanllenger . setTlvValues

108 (this . myProtocolHelperObject . GenerateDHPublicValue ()) ;

109 this . MessageHandler . addPTLV(this . SPDHChanllenger) ;

110 } catch (Exception cE) {

111 System . out . p r i n t l n (

112 "Error Protoco lHandler . i n i t i a l i s e P r o t o c o l Option

= 1 , : " + cE . ge tC la s s () . getName ()) ;

113 }

114 }

115 public byte [] outMessageProcess ing (int Counter) {

116 i f (Counter == 1) {

117 try {

118 this . SPRandomNumber . setTlvValues

119 (this . myProtocolHelperObject . getRandomNumber ()) ;

120 this . MessageHandler . addPTLV(this . SPRandomNumber) ;

121 byte [] temp = new byte [(this . SCPro to co l I n i t i a t o r . getValueBytes ()

122 . l ength +

123 this . SPDHChanllenger . getValueLength () +

124 this . SPRandomNumber . getValueLength ())] ;

125 System . arraycopy (this . SPDHChanllenger . getValueBytes () , 0 , temp , 0 ,

126 this . SPDHChanllenger . getValueLength ()) ;

127 System . arraycopy (this . SPRandomNumber . getValueBytes () , 0 , temp ,

128 this . SPDHChanllenger . getValueLength () ,

129 this . SPRandomNumber . getValueLength ()) ;

130 System . arraycopy (this . SCPro to co l I n i t i a t o r . getValueBytes () , 0 ,

temp ,

131 temp . l ength −
132 this . SCPro to co l I n i t i a t o r . getValueBytes () . length ,

133 this . SCPro to co l I n i t i a t o r . getValueBytes () . l ength) ;

134 byte [] r e s u l t = new byte [1 6] ;

135 this . myProtocolHelperObject . GenerateMac (temp , 0 , temp . length ,

327

C.5 Secure and Trusted Channel Protocol � Smart Card

136 r e su l t , 0 , this . myProtocolHelperObject .myLongTermMacKey) ;

137 this . SPCookie . setTlvValues (r e s u l t) ;

138 this . MessageHandler . addPTLV(this . SPCookie) ;

139 } catch (Exception cE) {

140 System . out . p r i n t l n (

141 "Error Protoco lHandler . inMessageProcess ing

Option = 1 , : " + cE . ge tC la s s () . getName ()) ;

142 }

143 } else i f (Counter == 2) {

144 try {

145 this . EncryptedData . i n i t i a l i s a t i onCTLV (this . EncryptedDataTag) ;

146 this . EncryptedData . addPTLV(this . SPIdentityTLV) ;

147 this . EncryptedData . addPTLV(this . SCIdent ity) ;

148 this . EncryptedData . addPTLV(this . SPRandomNumber) ;

149 this . EncryptedData . addPTLV(this . SCRandomNumber) ;

150 this . myProtocolHelperObject . SignatureMethod

151 (this . EncryptedData . getValueBytes () , 0 ,

152 this . EncryptedData . getValueBytes () . length ,

153 this . SignedData . getBytesTlvRepresentat ion () , 6 , null ,

154 Protoco lHe lpe rClas s .SIGN_MODE_GENERATION) ;

155 this . EncryptedData . addPTLV(this . SignedData) ;

156 this . EncryptedData .addCTLV(this . SPS i gna tu r eCe r t i f i c a t e) ;

157 this . myProtocolHelperObject . GenerateEncryption

158 (this . EncryptedData . getValueBytes () , 0 ,

159 this . EncryptedData . getValueBytes () . length ,

160 this . EncryptedData . getBytesTlvRepresentat ion () , 7 ,

161 this . mySessionEncryptionKey) ;

162 this .MACedData . i n i t i a l i s a t i onPTLV (this .MACedDataTag , 16) ;

163 this . myProtocolHelperObject . GenerateMac

164 (this . EncryptedData . getValueBytes () , 0 ,

165 this . EncryptedData . getTagValueLength () ,

166 this .MACedData . getBytesTlvRepresentat ion () , 6 ,

167 this . mySessionMacKey) ;

168 this . MessageHandler . i n i t i a l i s a t i onCTLV (this . MessageHandlerTagTwo) ;

169 this . MessageHandler . addCTLV(EncryptedData) ;

170 this . MessageHandler . addPTLV(this .MACedData) ;

171 this . MessageHandler . addPTLV(this . SPCookie) ;

172 } catch (Exception cE) {

173 System . out . p r i n t l n (

174 "Error Protoco lHandler . inMessageProcess ing

Option = 1 , : " + cE . ge tC la s s () . getName ()) ;

175 }

176 } else {

177 System . out . p r i n t l n (

178 "Protoco l Stoped : I l l e g a l Message Value

(Protoco lHanlder . inMessageProcess ing () ") ;

179 }

180 return this . MessageHandler . getBytesTlvRepresentat ion () ;

181 }

182 public boolean inMessageProcess ing (byte [] inMessage , int Counter) {

183 try {

328

C.5 Secure and Trusted Channel Protocol � Smart Card

184 i f (Counter == 1) {

185 this . SCPro to co l I n i t i a t o r . s e tBytesTlvRepresentat ion (inMessage , 0 ,

186 22) ;

187 } else

188 i f (Counter == 2) {

189 this . MessageHandler . r e s e t () ;

190 this . EncryptedData . r e s e t () ;

191 this . MessageHandler . s e tBytesTlvRepresentat ion (inMessage , 0 ,

192 inMessage . l ength − 2) ;

193 this . childExtractionFromCTLV (this . MessageHandler) ;

194 GenerateKeys (this . SCDHChallenge . getValueBytes ()) ;

195 byte [] temp = new byte [1 6] ;

196 this . myProtocolHelperObject . GenerateMac

197 (this . EncryptedData . getValueBytes () , 0 ,

198 this . EncryptedData . getValueBytes () . length , temp , 0 ,

199 this . mySessionMacKey) ;

200 i f (Arrays . equa l s (this .MACedData . getValueBytes () , temp)) {}

201 else {

202 System . out . p r i n t l n (

203 " I n t e g r i t y Check Fa i l u r e : ERROR at

Protoco lHandler . inMessageProcess ing \n") ;

204 System . e x i t (0) ;

205 }

206 this . myProtocolHelperObject . GenerateDecryption

207 (this . EncryptedData . getValueBytes () , 0 ,

208 this . EncryptedData . getValueBytes () . length ,

209 this . EncryptedData . getBytesTlvRepresentat ion () , 7 ,

210 this . mySessionEncryptionKey) ;

211 this . childExtractionFromCTLV (EncryptedData) ;

212 i f (Arrays . equa l s (PlatformHashPreset ,

213 this . PlatformHash . getValueBytes ())) {}

214 else {

215 System . out . p r i n t l n ("Platform Digest Not Ve r i f i e d ") ;

216 }

217 childExtractionFromCTLV (this . SCCer t i f i c a t e) ;

218 Big Intege r SCpublicExponent = new Big Intege r (byteToStr ing

219 (this . PublicExponent . getValueBytes ()) , 16) ;

220 Big Intege r SCpublicModulus = new Big Intege r (byteToStr ing

221 (this . PublicModulus . getValueBytes ()) , 16) ;

222 KeyFactory f a c t o r y = KeyFactory . g e t In s tance ("RSA") ;

223 SCVer i f i cat ionKey = (PublicKey) f a c t o r y . gene ra tePub l i c (new

224 RSAPublicKeySpec (SCpublicModulus ,

225 SCpublicExponent)) ;

226 temp = new byte [(this . PlatformHash . getTagLength () +

227 this . SCIdent ity . getTagLength () +

228 this . SCRandomNumber . getTagLength () +

229 this . SPRandomNumber . getTagLength ())] ;

230 System . arraycopy (this . EncryptedData . getBytesTlvRepresentat ion () ,

7 ,

231 temp , 0 , temp . l ength) ;

232 i f (this . myProtocolHelperObject . SignatureMethod (temp , 0 ,

329

C.5 Secure and Trusted Channel Protocol � Smart Card

233 temp . length , this . SignedData . getValueBytes () , 0 ,

234 SCVeri f icat ionKey ,

Protoco lHe lpe rClas s .SIGN_MODE_VERIFICATION))

235 {}

236 else {

237 System . out . p r i n t l n (

238 " S ignature V e r i f i c a t i o n Fa i l ed Check

code") ;

239 }

240 }

241 } catch (Exception cE) {

242 System . out . p r i n t l n ("Error in Protoco lHandler . inMessageProcess ing : "

243 + cE . ge tC la s s () . getName ()) ;

244 }

245 return true ;

246 }

247 public stat ic St r ing byteToStr ing (byte [] inArray) {

248 byte [] HEX_CHAR_TABLE = {

249 (byte) ' 0 ' , (byte) ' 1 ' , (byte) ' 2 ' , (byte) ' 3 ' , (byte) ' 4 ' , (byte) ' 5 ' ,

250 (byte) ' 6 ' , (byte) ' 7 ' , (byte) ' 8 ' , (byte) ' 9 ' , (byte) ' a ' , (byte) 'b ' ,

251 (byte) ' c ' , (byte) 'd ' , (byte) ' e ' , (byte) ' f '

252 } ;

253 byte [] hex = new byte [2 ∗ inArray . l ength] ;

254 int index = 0 ;

255 for (byte b : inArray) {

256 int v = b & 0xFF ;

257 hex [index++] = HEX_CHAR_TABLE[v >>> 4] ;

258 hex [index++] = HEX_CHAR_TABLE[v & 0xF] ;

259 }

260 try {

261 return new St r ing (hex , "ASCII") ;

262 } catch (Exception cE) {

263 System . out . p r i n t l n ("Exception in bytesToStr ing : " +

cE . getMessage ())

264 ;

265 }

266 return "Error " ;

267 }

268 void childExtractionFromCTLV (ConstructedTLV inCTLV) {

269 try {

270 int c h i l d s = inCTLV . getChildNumbers () ;

271 PrimitiveTLV pTemp = null ;

272 ConstructedTLV cTemp = null ;

273 while (c h i l d s > 0) {

274 switch (inCTLV . nextType ()) {

275 case 1 :

276 pTemp = (PrimitiveTLV)inCTLV . getNext () ;

277 i f (Arrays . equa l s (pTemp . getTagName () ,

278 this . SCDHChallenge . getTagName ())) {

279 this . SCDHChallenge = pTemp ;

280 } else i f (Arrays . equa l s (pTemp . getTagName () ,

330

C.5 Secure and Trusted Channel Protocol � Smart Card

281 this . SCRandomNumber . getTagName ())) {

282 this . SCRandomNumber = pTemp ;

283 } else i f (Arrays . equa l s (pTemp . getTagName () ,

284 this .MACedData . getTagName ())) {

285 this .MACedData = pTemp ;

286 } else i f (Arrays . equa l s (pTemp . getTagName () ,

287 this . SPCookie . getTagName ())) {

288 i f (Arrays . equa l s (pTemp . getBytesTlvRepresentat ion () ,

289 this . SPCookie . getBytesTlvRepresentat ion ())) {}

290 } else i f (Arrays . equa l s (pTemp . getTagName () ,

291 this . SCIdent ity . getTagName ())) {

292 this . SCIdent ity = pTemp ;

293 } else i f (Arrays . equa l s (pTemp . getTagName () ,

294 this . SignedData . getTagName ())) {

295 this . SignedData = pTemp ;

296 } else i f (Arrays . equa l s (pTemp . getTagName () ,

297 this . PublicExponent . getTagName ())) {

298 this . PublicExponent = pTemp ;

299 } else i f (Arrays . equa l s (pTemp . getTagName () ,

300 this . PublicModulus . getTagName ())) {

301 this . PublicModulus = pTemp ;

302 } else i f (Arrays . equa l s (pTemp . getTagName () ,

303 this . PlatformHash . getTagName ())) {

304 this . PlatformHash = pTemp ;

305 } else i f (Arrays . equa l s (pTemp . getTagName () ,

306 this . Use r Ident i ty . getTagName ())) {

307 this . Use r Ident i ty = pTemp ;

308 }

309 break ;

310 case 0 :

311 cTemp = (ConstructedTLV)inCTLV . getNext () ;

312 i f (Arrays . equa l s (cTemp . getTagName () ,

313 this . EncryptedData . getTagName ())) {

314 this . EncryptedData = cTemp ;

315 } else i f (Arrays . equa l s (cTemp . getTagName () ,

316 SCUserCer t i f i c a t e . getTagName ())) {

317 this . SCUserCer t i f i c a t e = cTemp ;

318 } else i f (Arrays . equa l s (cTemp . getTagName () ,

319 SCCer t i f i c a t e . getTagName ())) {

320 this . SCCer t i f i c a t e = cTemp ;

321 }

322 break ;

323 default :

324 System . out . p r i n t l n ("Error In Pars ing Input Message") ;

325 }

326 ch i l d s −−;
327 }

328 } catch (Exception e) {

329 System . out . p r i n t l n (

330 "Error in Protoco lHanlder . ChildExtractionMethod

: " + e . ge tC la s s () . getName ()) ;

331

C.5 Secure and Trusted Channel Protocol � Smart Card

331 }

332 }

333 void GenerateKeys (byte [] i n bu f f) {

334 byte [] DHSecretKey = null ;

335 try {

336 DHSecretKey =

337 this . myProtocolHelperObject . GenerateDHSessionKeyMaterial (inbu f f ,

0 ,

338 i n bu f f . l ength) ;

339 } catch (Exception cE) {

340 System . out . p r i n t l n (

341 "Exception At Protoco lHe lpe rC las s . GenerateKeys :

" + cE . ge tC la s s () . getName ()) ;

342 }

343 byte [] keyGenKey = new byte [1 6] ;

344 System . arraycopy (DHSecretKey , 0 , keyGenKey , 0 , keyGenKey . l ength) ;

345 byte [] macInputValue = new byte [6 4] ;

346 System . arraycopy (this . SPRandomNumber . getValueBytes () , 0 ,

macInputValue ,

347 0 , 16) ;

348 System . arraycopy (this . SCRandomNumber . getValueBytes () , 0 ,

macInputValue ,

349 16 , 16) ;

350 System . arraycopy (DHSecretKey , 16 , macInputValue , 32 , 16) ;

351 for (int i = 48 ; i < 64 ; i++) {

352 macInputValue [i] = (byte) 0x02 ;

353 }

354 try {

355 this . myProtocolHelperObject . GenerateMac (macInputValue , 0 ,

356 macInputValue . length , this . mySessionEncryptionKey , 0 , keyGenKey) ;

357 } catch (Exception cE) {

358 System . out . p r i n t l n ("Exception at Protoco lHandler . GenerateKeys : " +

359 cE . ge tC la s s () . getName ()) ;

360 }

361 for (int i = 48 ; i < 64 ; i++) {

362 macInputValue [i] = (byte) 0x03 ;

363 }

364 try {

365 this . myProtocolHelperObject . GenerateMac (macInputValue , 0 ,

366 macInputValue . length , this . mySessionMacKey , 0 , keyGenKey) ;

367 } catch (Exception cE) {

368 System . out . p r i n t l n ("Exception at Protoco lHandler . GenerateKeys : " +

369 cE . ge tC la s s () . getName ()) ;

370 }

371 }

372 }

332

C.6 Application Acquisition and Contractual Agreement Protocol

C.6 Application Acquisition and Contractual Agreement Pro-

tocol

The Java Card implementation of the STCPACA discussed in section 6.5 is listed in sub-

sequent sections.

C.6.1 Smart Card Implementation

Following is the implementation of the smart card protocol handler that supports the

STCPACA.

1 package protocolACAP ;

2

3 import javacard . framework .APDU;

4 import javacard . framework . Applet ;

5 import javacard . framework . ISO7816 ;

6 import javacard . framework . ISOException ;

7 import javacard . framework . JCSystem ;

8 import javacard . framework . Ut i l ;

9 import javacard . s e c u r i t y .AESKey ;

10 import javacard . s e c u r i t y . Key ;

11 import javacard . s e c u r i t y . KeyBuilder ;

12 import javacard . s e c u r i t y . KeyPair ;

13 import javacard . s e c u r i t y . MessageDigest ;

14 import javacard . s e c u r i t y . RSAPrivateKey ;

15 import javacard . s e c u r i t y . RSAPublicKey ;

16 import javacard . s e c u r i t y . RandomData ;

17 import javacard . s e c u r i t y . S ignature ;

18 import javacardx . apdu . ExtendedLength ;

19 import javacardx . crypto . Cipher ;

20 public class Protoco lHandler extends Applet implements ExtendedLength {

21 private byte [] SPDHChanllengerArray ;

22 private byte [] SPRandomNumberArray ;

23 private byte [] SPCookieArray ;

24 private byte [] SCSPDHGeneratedValue ;

25 private byte [] SCRandomNumberArray ;

26 private byte [] SCUserCer t i f i ca t e ;

27 private byte [] SCCer t i f i c a t e ;

28 private byte [] SID ;

29 private byte [] SPDHChallengeTag = {

30 (byte) 0x1F , (byte) 0x5F , (byte) 0x5C , (byte) 0x01 } ;

31 private byte [] MessageHandlerTagOne = {

32 (byte) 0x1F , (byte) 0xC0 , (byte) 0xAA, (byte) 0xAA, (byte) 0x00 ,

(byte) 0x00 ,

33 (byte) 0x00 } ;

34 private byte [] MessageHandlerTagTwo = {

35 (byte) 0x1F , (byte) 0xC0 , (byte) 0xBB, (byte) 0xBB, (byte) 0x00 ,

(byte) 0x00 ,

36 (byte) 0x00 } ;

333

C.6 Application Acquisition and Contractual Agreement Protocol

37 private byte [] MessageHandlerTagThree = {

38 (byte) 0x1F , (byte) 0xC0 , (byte) 0xCC, (byte) 0xCC, (byte) 0x00 ,

(byte) 0x00 ,

39 (byte) 0x00 } ;

40 private byte [] MessageHandlerTagSCTSM = {

41 (byte) 0x1F , (byte) 0xC0 , (byte) 0xFF , (byte) 0xFF , (byte) 0x00 ,

(byte) 0x00 ,

42 (byte) 0x00 } ;

43 private byte [] SPIdentityTag = {

44 (byte) 0x1F , (byte) 0x5F , (byte) 0x5F , (byte) 0x01 } ;

45 private byte [] SPSignatureCertTag = {

46 (byte) 0xF0 , (byte) 0xF01 } ;

47 private byte [] SPSigVeri f icat ionKeyTag = {

48 (byte) 0x1F , (byte) 0x5F , (byte) 0x51 , (byte) 0x01 } ;

49 private byte [] SPIdent i ty = null ;

50 private byte [] AppIdentity = null ;

51 private byte [] SPSignatureCert = null ;

52 private byte [] SPRandomNumberTag = {

53 (byte) 0x1F , (byte) 0x5F , (byte) 0x5A , (byte) 0x01 } ;

54 private byte [] SPCookieTag = {

55 (byte) 0x1F , (byte) 0x5F , (byte) 0x5B , (byte) 0x01 } ;

56 private byte [] EncryptedDataTag = {

57 (byte) 0x1F , (byte) 0xC0 , (byte) 0xFE , (byte) 0x01 } ;

58 private byte [] SignedDataTag = {

59 (byte) 0x1F , (byte) 0x5F , (byte) 0x5D , (byte) 0x02 } ;

60 private byte [] MACedDataTag = {

61 (byte) 0x1F , (byte) 0x5F , (byte) 0x5D , (byte) 0x01 } ;

62 private byte [] PlatformHash = {

63 (byte) 0x1F , (byte) 0x5F , (byte) 0x5E , (byte) 0xAF} ;

64 private byte [] SCIdentityTag = {

65 (byte) 0x1F , (byte) 0x5F , (byte) 0x5F , (byte) 0x02 , (byte) 0x00 ,

(byte) 0x12 ,

66 (byte) 0x7A , (byte) 0xD5 , (byte) 0xB7 , (byte) 0xD0 , (byte) 0xB6 , (byte)

67 0xC1 , (byte) 0x22 , (byte) 0x07 , (byte) 0xC9 , (byte) 0xF9 , (byte) 0x8D ,

68 (byte) 0x11 , (byte) 0xED, (byte) 0x34 , (byte) 0xDB, (byte) 0xF6 , (byte)

69 0x0B , (byte) 0x2C} ;

70 private byte [] Use r Ident i ty = {

71 (byte) 0x1F , (byte) 0x5F , (byte) 0x5F , (byte) 0x03 , (byte) 0x00 ,

(byte) 0x14 ,

72 (byte) 0x7A , (byte) 0xD5 , (byte) 0xB7 , (byte) 0xD0 , (byte) 0xB6 , (byte)

73 0xC1 , (byte) 0x22 , (byte) 0x07 , (byte) 0xC9 , (byte) 0xC9 , (byte) 0x8D ,

74 (byte) 0xD1 , (byte) 0xED, (byte) 0xFC, (byte) 0xDB, (byte) 0xF6 , (byte)

75 0x0B , (byte) 0x2C , (byte) 0x0B , (byte) 0x2C} ;

76 private byte [] TSMIdentity = {

77 (byte) 0x1F , (byte) 0x5F , (byte) 0x5F , (byte) 0x04 , (byte) 0x00 ,

(byte) 0x12 ,

78 (byte) 0x7d , (byte) 0xD5 , (byte) 0xB7 , (byte) 0xD0 , (byte) 0xB6 , (byte)

79 0xC1 , (byte) 0x2e , (byte) 0x07 , (byte) 0xe9 , (byte) 0x69 , (byte) 0x8D ,

80 (byte) 0x11 , (byte) 0xEf , (byte) 0x34 , (byte) 0xfB , (byte) 0xFe , (byte)

81 0x0B , (byte) 0x2C} ;

82 private byte [] CardID = {

334

C.6 Application Acquisition and Contractual Agreement Protocol

83 (byte) 0x1F , (byte) 0x5F , (byte) 0x5F , (byte) 0x05 , (byte) 0x00 ,

(byte) 0x12 ,

84 (byte) 0x7d , (byte) 0xD5 , (byte) 0xB7 , (byte) 0xD0 , (byte) 0xB6 , (byte)

85 0xC1 , (byte) 0x2e , (byte) 0x06 , (byte) 0xe9 , (byte) 0xe9 , (byte) 0x8D ,

86 (byte) 0x11 , (byte) 0xEf , (byte) 0x37 , (byte) 0xfB , (byte) 0xFe , (byte)

87 0x0B , (byte) 0x2C} ;

88 private byte [] ExponentTag = {

89 (byte) 0x14 , (byte) 0x5F , (byte) 0x5E , (byte) 0x01 } ;

90 private byte [] ModulusTag = {

91 (byte) 0x1F , (byte) 0x5F , (byte) 0xEE, (byte) 0x02 } ;

92 private byte [] SCDHChalleneTag = {

93 (byte) 0x1F , (byte) 0x5F , (byte) 0x5C , (byte) 0x02 } ;

94 private byte [] SCRandomNumberTag = {

95 (byte) 0x1F , (byte) 0x5F , (byte) 0x5A , (byte) 0x02 } ;

96 private byte [] SPCert i f i cateTag = {

97 (byte) 0x1F , (byte) 0xC0 , (byte) 0xF0 , (byte) 0x01 } ;

98 private byte [] SCCert i f i cateTag = {

99 (byte) 0x1F , (byte) 0xC0 , (byte) 0xF0 , (byte) 0x02 } ;

100 private byte [] SCUserCert i f i cateTag = {

101 (byte) 0x1F , (byte) 0xC0 , (byte) 0xF0 , (byte) 0x03 } ;

102 short PTLVDataOffset = (short) 6 ;

103 short CTLVDataOffset = (short) 7 ;

104 short TLVLengthOffset = (short) 4 ;

105 short copyPointer = (short) 0 ;

106 byte [] SCDHData ;

107 f ina l stat ic byte CLA = (byte) 0xB0 ;

108 f ina l stat ic byte Sta r tPro toco l = (byte) 0x40 ;

109 f ina l stat ic byte I n i t i a t i o nP r o t o c o l = (byte) 0xF1 ;

110 private stat ic f ina l byte PhaseTwo = (byte) 0xF2 ;

111 private stat ic f ina l byte PhaseThree = (byte) 0xF3 ;

112 f ina l stat ic short SW_CLASSNOTSUPPORTED = 0x6320 ;

113 f ina l stat ic short SW_ERROR_INS = 0x6300 ;

114 RandomData randomDataGen ;

115 Cipher pkCipher ;

116 short messageNumber = 0 ;

117 byte [] r e c e i v i n gBu f f e r = null ;

118 short byte sLe f t = 0 ;

119 short readCount = 0 ;

120 short rCount = 0 ;

121 short s i gn l eng th = 0 ;

122 private RSAPublicKey dhKey = (RSAPublicKey) KeyBuilder . buildKey

123 (KeyBuilder .TYPE_RSA_PUBLIC,

124 KeyBuilder .LENGTH_RSA_2048, fa l se) ;

125 private byte [] randomExponent ;

126 f ina l stat ic byte GEN_KEYCONTRIBUTION = 0x01 ;

127 f ina l stat ic byte GEN_DHKEY = 0x02 ;

128 private byte [] myLongTermEncryptionKey = {

129 (byte) 0x9D , (byte) 0xF3 , (byte) 0x0B , (byte) 0x5C , (byte) 0x8F ,

(byte) 0xFD,

130 (byte) 0xAC, (byte) 0x50 , (byte) 0x6C , (byte) 0xDE, (byte) 0xBE, (byte)

131 0x7B , (byte) 0x89 , (byte) 0x99 , (byte) 0x8C , (byte) 0xAF} ;

335

C.6 Application Acquisition and Contractual Agreement Protocol

132 private byte [] myLongTermMacKey = {

133 (byte) 0x74 , (byte) 0x86 , (byte) 0x6A , (byte) 0x08 , (byte) 0xCF,

(byte) 0xE4 ,

134 (byte) 0xFF , (byte) 0xE3 , (byte) 0xA6 , (byte) 0x82 , (byte) 0x4A , (byte)

135 0x4E , (byte) 0x10 , (byte) 0xB9 , (byte) 0xA6 , (byte) 0xF0 } ;

136 AESKey phCipherKey ;

137 Cipher syCipher ;

138 byte [] I n i t i a l i s a t i o nV e c t o r = {

139 (byte) 0x6C , (byte) 0xDE, (byte) 0xBE, (byte) 0x7B , (byte) 0x89 ,

(byte) 0x99 ,

140 (byte) 0x8C , (byte) 0xAF, (byte) 0xC5 , (byte) 0x7D , (byte) 0xB1 , (byte)

141 0x7C , (byte) 0x62 , (byte) 0x0A , (byte) 0x86 , (byte) 0x52 } ;

142 AESKey phMacGeneratorKey ;

143 Signature phMacGenerator ;

144 Signature phSign ;

145 KeyPair phSCKeyPair ;

146 KeyPair phUserKeyPair ;

147 RSAPublicKey SPVer i f i cat ionKey = null ;

148 RSAPublicKey TSMVerificationKey = null ;

149 private Protoco lHandler () {

150 phMacGeneratorKey = (AESKey) KeyBuilder . buildKey

151 (KeyBuilder .TYPE_AES_TRANSIENT_DESELECT,

152 KeyBuilder .LENGTH_AES_128, fa l se) ;

153 phMacGenerator =

Signature . g e t In s tance (S ignature .ALG_AES_MAC_128_NOPAD,

154 fa l se) ;

155 phSign = Signature . g e t In s tance (S ignature .ALG_RSA_SHA_PKCS1, fa l se) ;

156 phSCKeyPair = new KeyPair (KeyPair .ALG_RSA, KeyBuilder .LENGTH_RSA_512) ;

157 phUserKeyPair = new KeyPair (KeyPair .ALG_RSA,

KeyBuilder .LENGTH_RSA_512)

158 ;

159 phCipherKey = (AESKey) KeyBuilder . buildKey

160 (KeyBuilder .TYPE_AES_TRANSIENT_DESELECT,

161 KeyBuilder .LENGTH_AES_128, fa l se) ;

162 syCipher = Cipher . g e t In s tance (Cipher .ALG_AES_BLOCK_128_CBC_NOPAD,

163 fa l se) ;

164 randomDataGen = RandomData . g e t In s tance (RandomData .ALG_SECURE_RANDOM) ;

165 pkCipher = Cipher . g e t In s tance (Cipher .ALG_RSA_NOPAD, fa l se) ;

166 d h I n i t i a l i s a t i o n () ;

167 phSCKeyPair . genKeyPair () ;

168 phUserKeyPair . genKeyPair () ;

169 }

170 public stat ic void i n s t a l l (byte bArray [] , short bOffset , byte bLength)

171 throws ISOException {

172 new Protoco lHandler () . r e g i s t e r () ;

173 }

174 public void i n i t i a l i s e P r o t o c o l () {

175 SID = JCSystem . makeTransientByteArray ((short) 16 ,

176 JCSystem .CLEAR_ON_RESET) ;

177 short i n i t i a l P o i n t e r = 0 ;

178 SCDHData = JCSystem . makeTransientByteArray ((short) ((short)

336

C.6 Application Acquisition and Contractual Agreement Protocol

179 this . ClassDH . dhModulus . l ength + PTLVDataOffset) ,

180 JCSystem .MEMORY_TYPE_TRANSIENT_DESELECT) ;

181 Ut i l . arrayCopyNonAtomic (this . SCDHChalleneTag , (short) i n i t i a l P o i n t e r ,

182 this . SCDHData , (short) 0 , (short)

183 this . SCDHChalleneTag . l ength) ;

184 this . shortToBytes (SCDHData , (short) 4 , (short) ((short)SCDHData . l ength −
185 (short) PTLVDataOffset)) ;

186 this . dhKeyConGen(this . SCDHData , this . PTLVDataOffset ,

187 Protoco lHandler .GEN_KEYCONTRIBUTION) ;

188 SPDHChanllengerArray = JCSystem . makeTransientByteArray ((short) ((short)

189 this . ClassDH . dhModulus . l ength + this . PTLVDataOffset) ,

190 JCSystem .MEMORY_TYPE_TRANSIENT_DESELECT) ;

191 SPRandomNumberArray = JCSystem . makeTransientByteArray ((short) 22 ,

192 JCSystem .MEMORY_TYPE_TRANSIENT_DESELECT) ;

193 SPCookieArray = JCSystem . makeTransientByteArray ((short) 22 ,

194 JCSystem .MEMORY_TYPE_TRANSIENT_DESELECT) ;

195 SCRandomNumberArray = JCSystem . makeTransientByteArray ((short) 22 ,

196 JCSystem .MEMORY_TYPE_TRANSIENT_DESELECT) ;

197 Ut i l . arrayCopyNonAtomic (this . SCRandomNumberTag , (short) i n i t i a l P o i n t e r ,

198 this . SCRandomNumberArray , (short)

199 i n i t i a l P o i n t e r , (short)

200 this . SCRandomNumberTag . l ength) ;

201 this . shortToBytes (this . SCRandomNumberArray , (short) 4 , (short) ((short)

202 this . SCRandomNumberArray . l ength − (short)

203 PTLVDataOffset)) ;

204 try {

205 this . SCUserCer t i f i c a t e = JCSystem . makeTransientByteArray ((short) 86 ,

206 JCSystem .MEMORY_TYPE_TRANSIENT_DESELECT) ;

207 i n i t i a l P o i n t e r = Ut i l . arrayCopyNonAtomic (this . SCUserCert i f icateTag ,

208 (short) 0 , this . SCUserCert i f i cate , (short) 0 , (short)

209 this . SCUserCert i f i cateTag . l ength) ;

210 this . shortToBytes (this . SCUserCert i f i cate , (short) 4 , (short)

211 (this . SCUserCer t i f i c a t e . l ength − (short) 7)) ;

212 i n i t i a l P o i n t e r = Ut i l . arrayCopyNonAtomic (this . ExponentTag , (short) 0 ,

213 this . SCUserCert i f i cate , (short) (i n i t i a l P o i n t e r +

(short) 3) , (short)

214 this . ExponentTag . l ength) ;

215 RSAPublicKey myPublic = (RSAPublicKey) this . phUserKeyPair

. ge tPub l i c ()

216 ;

217 short kLen = myPublic . getExponent (this . SCUserCert i f i cate , (short)

218 (i n i t i a l P o i n t e r + (short) 2)) ;

219 this . shortToBytes (this . SCUserCert i f i cate , i n i t i a l P o i n t e r , kLen) ;

220 i n i t i a l P o i n t e r += (short) (kLen + (short) 2) ;

221 this . SCUserCer t i f i c a t e [6]++;

222 i n i t i a l P o i n t e r = Ut i l . arrayCopyNonAtomic (this . ModulusTag , (short) 0 ,

223 this . SCUserCert i f i cate , (short) (i n i t i a l P o i n t e r) ,

(short)

224 this . ModulusTag . l ength) ;

225 kLen = myPublic . getModulus (this . SCUserCert i f i cate , (short)

226 (i n i t i a l P o i n t e r + (short) 2)) ;

337

C.6 Application Acquisition and Contractual Agreement Protocol

227 this . shortToBytes (this . SCUserCert i f i cate , i n i t i a l P o i n t e r , kLen) ;

228 this . SCUserCer t i f i c a t e [6]++;

229 this . SPIdent i ty = JCSystem . makeTransientByteArray ((short) 24 ,

230 JCSystem .MEMORY_TYPE_TRANSIENT_RESET) ;

231 this . AppIdentity = JCSystem . makeTransientByteArray ((short) 28 ,

232 JCSystem .MEMORY_TYPE_TRANSIENT_RESET) ;

233 SPVer i f i cat ionKey = (RSAPublicKey) KeyBuilder . buildKey

234 (KeyBuilder .TYPE_RSA_PUBLIC,

235 KeyBuilder .LENGTH_RSA_512, fa l se) ;

236 TSMVerificationKey = (RSAPublicKey) KeyBuilder . buildKey

237 (KeyBuilder .TYPE_RSA_PUBLIC,

238 KeyBuilder .LENGTH_RSA_512, fa l se) ;

239 } catch (Exception cE) {

240 ISOException . throwIt ((short) 0xCCCC) ;

241 }

242 try {

243 this . SCCer t i f i c a t e = JCSystem . makeTransientByteArray ((short) 86 ,

244 JCSystem .MEMORY_TYPE_TRANSIENT_DESELECT) ;

245 i n i t i a l P o i n t e r = Ut i l . arrayCopyNonAtomic (this . SCCert i f icateTag ,

246 (short) 0 , this . SCCert i f i ca t e , (short) 0 ,

(short)

247 this . SCCert i f i cateTag . l ength) ;

248 this . shortToBytes (this . SCCert i f i ca t e , (short) 4 , (short)

249 (this . SCCer t i f i c a t e . l ength − (short) 7)) ;

250 i n i t i a l P o i n t e r = Ut i l . arrayCopyNonAtomic (this . ExponentTag , (short) 0 ,

251 this . SCCert i f i ca t e , (short) (i n i t i a l P o i n t e r +

(short) 3) , (short)

252 this . ExponentTag . l ength) ;

253 RSAPublicKey myPublic = (RSAPublicKey) this . phSCKeyPair . ge tPub l i c () ;

254 short kLen = myPublic . getExponent (this . SCCert i f i ca t e , (short)

255 (i n i t i a l P o i n t e r + (short) 2)) ;

256 this . shortToBytes (this . SCCert i f i ca t e , i n i t i a l P o i n t e r , kLen) ;

257 i n i t i a l P o i n t e r += (short) (kLen + (short) 2) ;

258 this . SCCer t i f i c a t e [6]++;

259 i n i t i a l P o i n t e r = Ut i l . arrayCopyNonAtomic (this . ModulusTag , (short) 0 ,

260 this . SCCert i f i ca t e , (short) (i n i t i a l P o i n t e r) , (short)

261 this . ModulusTag . l ength) ;

262 kLen = myPublic . getModulus (this . SCCert i f i ca t e , (short)

263 (i n i t i a l P o i n t e r + (short) 2)) ;

264 this . shortToBytes (this . SCCert i f i ca t e , i n i t i a l P o i n t e r , kLen) ;

265 this . SCCer t i f i c a t e [6]++;

266 } catch (Exception cE) {

267 ISOException . throwIt ((short) 0x6666) ;

268 }

269 }

270 public void proce s s (APDU apdu)throws ISOException {

271 byte [] apduBuffer = apdu . ge tBu f f e r () ;

272 i f (s e l e c t i n gApp l e t ()) {

273 return ;

274 }

275 i f (apduBuffer [ISO7816 .OFFSET_CLA] != CLA) {

338

C.6 Application Acquisition and Contractual Agreement Protocol

276 ISOException . throwIt (SW_CLASSNOTSUPPORTED) ;

277 }

278 i f (apduBuffer [ISO7816 .OFFSET_INS] == In i t i a t i o nP r o t o c o l) {

279 this . i n i t i a l i s e P r o t o c o l () ;

280 return ;

281 }

282 i f (apduBuffer [ISO7816 .OFFSET_INS] == PhaseTwo) {

283 this . AppDownloadCompleted (apdu) ;

284 }

285 i f (apduBuffer [ISO7816 .OFFSET_INS] == PhaseThree) {

286 r e c e i v i n gBu f f e r = JCSystem . makeTransientByteArray ((short) 568 ,

287 JCSystem .MEMORY_TYPE_TRANSIENT_DESELECT) ;

288 this . SCTSMChargeRequest (apdu) ;

289 JCSystem . r eques tObjec tDe l e t i on () ;

290 apdu . setOutgoing () ;

291 apdu . setOutgoingLength ((short) copyPointer) ;

292 apdu . sendBytesLong (r e c e i v i ngBu f f e r , (short) 0 , (short) copyPointer) ;

293 JCSystem . r eques tObjec tDe l e t i on () ;

294 return ;

295 }

296 byte sLe f t = apdu . getIncomingLength () ;

297 i f (byte sLe f t > 255) {

298 r e c e i v i n gBu f f e r = JCSystem . makeTransientByteArray (bytesLe f t ,

299 JCSystem .MEMORY_TYPE_TRANSIENT_DESELECT) ;

300 readCount = (short) ((short) apdu . setIncomingAndReceive ()) ;

301 rCount = 0 ;

302 short bytesRead = 0 ;

303 while (byte sLe f t > 0) {

304 try {

305 rCount = Ut i l . arrayCopyNonAtomic (apduBuffer , (short)

306 ISO7816 .OFFSET_EXT_CDATA, r e c e i v i ngBu f f e r , rCount , readCount) ;

307 byte sLe f t −= readCount ;

308 i f (byte sLe f t != 0) {

309 readCount = apdu

. r e c e i v eByte s ((short) ISO7816 .OFFSET_EXT_CDATA)

310 ;

311 }

312 } catch (Exception aE) {

313 ISOException . throwIt ((short) bytesRead) ;

314 }

315 }

316 } else {

317 try {

318 r e c e i v i n gBu f f e r = JCSystem . makeTransientByteArray (bytesLe f t ,

319 JCSystem .MEMORY_TYPE_TRANSIENT_DESELECT) ;

320 Ut i l . arrayCopyNonAtomic (apduBuffer , ISO7816 .OFFSET_CDATA,

321 this . r e c e i v i ngBu f f e r , (short) 0 , (short)

322 this . r e c e i v i n gBu f f e r . l ength) ;

323 } catch (Exception cE) {

324 ISOException . throwIt ((short) apduBuffer . l ength) ;

325 }

339

C.6 Application Acquisition and Contractual Agreement Protocol

326 }

327 i f (this . r e c e i v i n gBu f f e r [3] == this . MessageHandlerTagOne [3]) {

328 try {

329 parseMessage (r e c e i v i n gBu f f e r) ;

330 } catch (Exception cE) {

331 ISOException . throwIt ((short) 0xA112) ;

332 }

333 r e c e i v i n gBu f f e r = JCSystem . makeTransientByteArray ((short) 568 ,

334 JCSystem .MEMORY_TYPE_TRANSIENT_DESELECT) ;

335 generateResponse ((short) 1) ;

336 } else

337 i f (this . r e c e i v i n gBu f f e r [3] == this . MessageHandlerTagTwo [3]) {

338 processSecondMsg (r e c e i v i n gBu f f e r) ;

339 r e c e i v i n gBu f f e r = JCSystem . makeTransientByteArray ((short) 568 ,

340 JCSystem .MEMORY_TYPE_TRANSIENT_DESELECT) ;

341 generateResponse ((short) 2) ;

342 } else i f (this . r e c e i v i n gBu f f e r [3] == this . MessageHandlerTagThree [3])

{

343 processSPsThirdMsg (r e c e i v i n gBu f f e r) ;

344 JCSystem . r eques tObjec tDe l e t i on () ;

345 return ;

346 } else i f (this . r e c e i v i n gBu f f e r [3] == (byte) 0xF1) {

347 i f (processTSMActAppMessage ()) {

348 JCSystem . r eques tObjec tDe l e t i on () ;

349 return ;

350 } else {

351 JCSystem . r eques tObjec tDe l e t i on () ;

352 apdu . setOutgoing () ;

353 apdu . setOutgoingLength ((short) r e c e i v i n gBu f f e r . l ength) ;

354 apdu . sendBytesLong (r e c e i v i ngBu f f e r , (short) 0 , (short)

355 r e c e i v i n gBu f f e r . l ength) ;

356 }

357 } else {

358 ISOException . throwIt (Protoco lHandler .SW_ERROR_INS) ;

359 }

360 JCSystem . r eques tObjec tDe l e t i on () ;

361 apdu . setOutgoing () ;

362 apdu . setOutgoingLength ((short) copyPointer) ;

363 apdu . sendBytesLong (r e c e i v i ngBu f f e r , (short) 0 , (short) copyPointer) ;

364 JCSystem . r eques tObjec tDe l e t i on () ;

365 }

366 private void SCTSMChargeRequest (APDU apdu) {

367 short ch i ldPo interMessage = 6 ;

368 short enc ryp t i onOf f s e t = 0 ;

369 short encryptedDataChild = 0 ;

370 short encrypt ionLength = 0 ;

371 copyPointer = 0 ;

372 try {

373 copyPointer = Ut i l . arrayCopyNonAtomic (this . MessageHandlerTagSCTSM ,

374 (short) 0 , this . r e c e i v i ngBu f f e r , copyPointer , (short)

375 this . MessageHandlerTagSCTSM . length) copyPointer =

340

C.6 Application Acquisition and Contractual Agreement Protocol

376 Ut i l . arrayCopyNonAtomic (this . CardID , (short) 0 ,

377 this . r e c e i v i ngBu f f e r , copyPointer ,

(short) this . CardID . l ength) ;

378 this . r e c e i v i n gBu f f e r [ch i ldPo interMessage]++;

379 copyPointer = Ut i l . arrayCopyNonAtomic (this . EncryptedDataTag , (short)

380 0 , this . r e c e i v i ngBu f f e r , copyPointer , (short)

381 this . EncryptedDataTag . l ength) ;

382 encryptedDataChild = (short) (copyPointer + (short) 2) ;

383 copyPointer += (short) 3 ;

384 enc ryp t i onOf f s e t = copyPointer ;

385 this . r e c e i v i n gBu f f e r [ch i ldPo interMessage]++;

386 copyPointer = Ut i l . arrayCopyNonAtomic (this . SCIdentityTag , (short) 0 ,

387 this . r e c e i v i ngBu f f e r , copyPointer , (short)

388 this . SCIdentityTag . l ength) ;

389 this . r e c e i v i n gBu f f e r [encryptedDataChild]++;

390 copyPointer = Ut i l . arrayCopyNonAtomic (this . User Ident i ty , (short) 0 ,

391 this . r e c e i v i ngBu f f e r , copyPointer ,

(short) this . Use r Ident i ty . l ength)

392 ;

393 this . r e c e i v i n gBu f f e r [encryptedDataChild]++;

394 copyPointer = Ut i l . arrayCopyNonAtomic (this . TSMIdentity , (short) 0 ,

395 this . r e c e i v i ngBu f f e r , copyPointer ,

(short) this . TSMIdentity . l ength) ;

396 this . r e c e i v i n gBu f f e r [encryptedDataChild]++;

397 randomDataGen . generateData (this . SCRandomNumberArray ,

398 this . PTLVDataOffset , (short) 16) ;

399 copyPointer = Ut i l . arrayCopyNonAtomic (this . SCRandomNumberArray ,

400 (short) 0 , this . r e c e i v i ngBu f f e r , copyPointer , (short)

401 this . SCRandomNumberArray . l ength) ;

402 this . r e c e i v i n gBu f f e r [encryptedDataChild]++;

403 encrypt ionLength = (short) (copyPointer − enc ryp t i onOf f s e t) ;

404 this . phCipherKey . setKey (this . myLongTermEncryptionKey , (short) 0) ;

405 messageEncryption (this . r e c e i v i ngBu f f e r , enc rypt ionOf f s e t , (short)

406 (copyPointer − enc ryp t i onOf f s e t)) ;

407 this . shortToBytes (r e c e i v i ngBu f f e r , (short) (enc ryp t i onOf f s e t −
(short)

408 3) , (short) (copyPointer − enc ryp t i onOf f s e t)) ;

409 this . phMacGeneratorKey . setKey (this .myLongTermMacKey , (short) 0) ;

410 macGenerate (this . r e c e i v i ngBu f f e r , enc rypt ionOf f s e t , (short)

411 (copyPointer − enc ryp t i onOf f s e t) , S ignature .MODE_SIGN) ;

412 this . r e c e i v i n gBu f f e r [ch i ldPo interMessage]++;

413 copyPointer = Ut i l . arrayCopyNonAtomic (this . SPCookieArray , (short) 0 ,

414 this . r e c e i v i ngBu f f e r , copyPointer , (short)

415 this . SPCookieArray . l ength) ;

416 this . r e c e i v i n gBu f f e r [ch i ldPo interMessage]++;

417 this . shortToBytes (this . r e c e i v i ngBu f f e r , (short) 4 , copyPointer) ;

418 } catch (Exception cE) {

419 ISOException . throwIt ((short) encrypt ionLength) ;

420 }

421 }

422 private void AppDownloadCompleted (APDU apdu) {

341

C.6 Application Acquisition and Contractual Agreement Protocol

423 r e c e i v i n gBu f f e r = JCSystem . makeTransientByteArray ((short) 568 ,

424 JCSystem .MEMORY_TYPE_TRANSIENT_DESELECT) ;

425 generateResponse ((short) 2) ;

426 JCSystem . r eques tObjec tDe l e t i on () ;

427 apdu . setOutgoing () ;

428 apdu . setOutgoingLength ((short) copyPointer) ;

429 apdu . sendBytesLong (r e c e i v i ngBu f f e r , (short) 0 , (short) copyPointer) ;

430 JCSystem . r eques tObjec tDe l e t i on () ;

431 }

432 private void generateResponse (short msgNumber) {

433 short ch i ldPo interMessage = 6 ;

434 short enc ryp t i onOf f s e t = 0 ;

435 copyPointer = 0 ;

436 i f (msgNumber == 1) {

437 randomDataGen . generateData (this . SCRandomNumberArray ,

438 this . PTLVDataOffset , (short) 16) ;

439 this . dhKeyConGen(this . SPDHChanllengerArray , this . PTLVDataOffset ,

440 Protoco lHandler .GEN_DHKEY) ;

441 copyPointer = Ut i l . arrayCopyNonAtomic (this . MessageHandlerTagOne ,

442 (short) 0 , this . r e c e i v i ngBu f f e r , copyPointer , (short)

443 this . MessageHandlerTagOne . l ength) ;

444 copyPointer = Ut i l . arrayCopyNonAtomic (this . SCDHData , (short) 0 ,

445 this . r e c e i v i ngBu f f e r , copyPointer , (short) this . SCDHData . l ength) ;

446 this . r e c e i v i n gBu f f e r [ch i ldPo interMessage]++;

447 copyPointer = Ut i l . arrayCopyNonAtomic (this . SCRandomNumberArray ,

448 (short) 0 , this . r e c e i v i ngBu f f e r , copyPointer , (short)

449 this . SCRandomNumberArray . l ength) ;

450 this . r e c e i v i n gBu f f e r [ch i ldPo interMessage]++;

451 keygenerator () ;

452 copyPointer = Ut i l . arrayCopyNonAtomic (this . EncryptedDataTag , (short)

453 0 , this . r e c e i v i ngBu f f e r , copyPointer , (short)

454 this . EncryptedDataTag . l ength) ;

455 this . r e c e i v i n gBu f f e r [ch i ldPo interMessage]++;

456 short childEnMessage = (short) (copyPointer + (short) 2) ;

457 copyPointer += (short) 3 ;

458 enc ryp t i onOf f s e t = copyPointer ;

459 copyPointer = Ut i l . arrayCopyNonAtomic (this . SCIdentityTag , (short) 0 ,

460 this . r e c e i v i ngBu f f e r , copyPointer , (short)

461 this . SCIdentityTag . l ength) ;

462 this . r e c e i v i n gBu f f e r [childEnMessage]++;

463 copyPointer = Ut i l . arrayCopyNonAtomic (this . SCRandomNumberArray ,

464 (short) 0 , this . r e c e i v i ngBu f f e r , copyPointer , (short)

465 this . SCRandomNumberArray . l ength) ;

466 this . r e c e i v i n gBu f f e r [childEnMessage]++;

467 copyPointer = Ut i l . arrayCopyNonAtomic (this . SPRandomNumberArray ,

468 (short) 0 , this . r e c e i v i ngBu f f e r , copyPointer , (short)

469 this . SPRandomNumberArray . l ength) ;

470 this . r e c e i v i n gBu f f e r [childEnMessage]++;

471 this . s ignGenerate (this . r e c e i v i ngBu f f e r , enc rypt ionOf f s e t , (short)

472 (copyPointer − enc ryp t i onOf f s e t) , phUserKeyPair

473 . g e tPr iva t e () , S ignature .MODE_SIGN) ;

342

C.6 Application Acquisition and Contractual Agreement Protocol

474 this . r e c e i v i n gBu f f e r [childEnMessage]++;

475 copyPointer = Ut i l . arrayCopyNonAtomic (this . SCUserCert i f i cate ,

(short)

476 0 , this . r e c e i v i ngBu f f e r , copyPointer , (short)

477 this . SCUserCer t i f i c a t e . l ength) ;

478 this . r e c e i v i n gBu f f e r [childEnMessage]++;

479 messageEncryption (this . r e c e i v i ngBu f f e r , enc rypt ionOf f s e t , (short)

480 (copyPointer − enc ryp t i onOf f s e t)) ;

481 this . shortToBytes (r e c e i v i ngBu f f e r , (short) (enc ryp t i onOf f s e t −
(short)

482 3) , (short) (copyPointer − enc ryp t i onOf f s e t)) ;

483 macGenerate (this . r e c e i v i ngBu f f e r , enc rypt ionOf f s e t , (short)

484 (copyPointer − enc ryp t i onOf f s e t) , S ignature .MODE_SIGN) ;

485 this . r e c e i v i n gBu f f e r [ch i ldPo interMessage]++;

486 copyPointer = Ut i l . arrayCopyNonAtomic (this . SPCookieArray , (short) 0 ,

487 this . r e c e i v i ngBu f f e r , copyPointer , (short)

488 this . SPCookieArray . l ength) ;

489 this . r e c e i v i n gBu f f e r [ch i ldPo interMessage]++;

490 this . shortToBytes (this . r e c e i v i ngBu f f e r , (short) 4 , copyPointer) ;

491 } else i f (msgNumber == 2) {

492 copyPointer = (short) 0 ;

493 short tempLength = (short) 0 ;

494 short mainChildPointer = (short) 6 ;

495 short mainLengthPointer = (short) 4 ;

496 short encryptedChi ldPointer = (short) 13 ;

497 short genera lLengthPointer = (short) 0 ;

498 this . r e c e i v i n gBu f f e r [mainChi ldPointer] = (short) 0 ;

499 this . r e c e i v i n gBu f f e r [encryptedChi ldPointer] = (short) 0 ;

500 copyPointer = Ut i l . arrayCopyNonAtomic (this . MessageHandlerTagTwo ,

501 (short) 0 , this . r e c e i v i ngBu f f e r , copyPointer , (short) 7) ;

502 this . r e c e i v i n gBu f f e r [mainChi ldPointer]++;

503 copyPointer = Ut i l . arrayCopyNonAtomic (this . EncryptedDataTag , (short)

504 0 , this . r e c e i v i ngBu f f e r , copyPointer , (short) 4) ;

505 copyPointer += (short) 3 ;

506 enc ryp t i onOf f s e t = copyPointer ;

507 copyPointer = Ut i l . arrayCopyNonAtomic (this . PlatformHash , (short) 0 ,

508 r e c e i v i ngBu f f e r , copyPointer , (short) 4) ;

509 genera lLengthPointer = copyPointer ;

510 copyPointer += (short) 2 ;

511 MessageDigest myHashGen = MessageDigest . g e t In s tance

512 (MessageDigest .ALG_SHA_256, fa l se) ;

513 tempLength = (short)myHashGen . doFinal (this . ClassDH . dhModulus ,

(short) 0 ,

514 (short) this . ClassDH . dhModulus . length , r e c e i v i ngBu f f e r ,

515 copyPointer) ;

516 this . r e c e i v i n gBu f f e r [encryptedChi ldPointer]++;

517 this . shortToBytes (this . r e c e i v i ngBu f f e r , genera lLengthPointer ,

(short)

518 (tempLength)) ;

519 copyPointer += tempLength ;

520 copyPointer = Ut i l . arrayCopyNonAtomic (this . User Ident i ty , (short) 0 ,

343

C.6 Application Acquisition and Contractual Agreement Protocol

521 this . r e c e i v i ngBu f f e r , copyPointer ,

(short) this . Use r Ident i ty . l ength)

522 ;

523 this . r e c e i v i n gBu f f e r [encryptedChi ldPointer]++;

524 copyPointer = Ut i l . arrayCopyNonAtomic (this . SPIdentity , (short) 0 ,

525 this . r e c e i v i ngBu f f e r , copyPointer , (short) this . SPIdent i ty . l ength) ;

526 this . r e c e i v i n gBu f f e r [encryptedChi ldPointer]++;

527 copyPointer = Ut i l . arrayCopyNonAtomic (this . SCRandomNumberArray ,

528 (short) 0 , this . r e c e i v i ngBu f f e r , copyPointer , (short)

529 this . SCRandomNumberArray . l ength) ;

530 this . r e c e i v i n gBu f f e r [encryptedChi ldPointer]++;

531 copyPointer = Ut i l . arrayCopyNonAtomic (this . SPRandomNumberArray ,

532 (short) 0 , this . r e c e i v i ngBu f f e r ,

(short) copyPointer , (short)

533 this . SPRandomNumberArray . l ength) ;

534 this . r e c e i v i n gBu f f e r [encryptedChi ldPointer]++;

535 try {

536 this . s ignGenerate (r e c e i v i ngBu f f e r , (short) (enc ryp t i onOf f s e t) ,

537 (short) (copyPointer − enc ryp t i onOf f s e t) ,

538 phSCKeyPair . g e tPr iva t e () , S ignature .MODE_SIGN) ;

539 this . r e c e i v i n gBu f f e r [encryptedChi ldPointer]++;

540 } catch (Exception cE) {

541 ISOException . throwIt ((short) 0xFA17) ;

542 }

543 copyPointer = Ut i l . arrayCopyNonAtomic (this . SCCert i f i ca t e , (short) 0 ,

544 this . r e c e i v i ngBu f f e r , copyPointer , (short)

545 this . SCCer t i f i c a t e . l ength) ;

546 this . r e c e i v i n gBu f f e r [encryptedChi ldPointer]++;

547 try {

548 this . messageEncryption (r e c e i v i ngBu f f e r , (short)

549 (encryptedChi ldPointer + (short) 1) ,

(short)

550 (copyPointer − (encryptedChi ldPointer +

551 (short) 1))) ;

552 } catch (Exception cE) {

553 ISOException . throwIt ((short) (copyPointer − encryptedChi ldPointer +

554 (short) 1)) ;

555 }

556 this . shortToBytes (this . r e c e i v i ngBu f f e r , (short)

557 (encryptedChi ldPointer − (short) 2) , (short)

558 (copyPointer − (short) (encryptedChi ldPointer +

559 (short) 1))) ;

560 this . macGenerate (r e c e i v i ngBu f f e r , (short) (encryptedChi ldPointer +

561 (short) 1) , (short) (copyPointer −
562 (encryptedChi ldPointer + (short) 1)) ,

563 Signature .MODE_SIGN) ;

564 this . r e c e i v i n gBu f f e r [mainChi ldPointer]++;

565 copyPointer = Ut i l . arrayCopyNonAtomic (this . SPCookieArray , (short) 0 ,

566 this . r e c e i v i ngBu f f e r , copyPointer , (short)

567 this . SPCookieArray . l ength) ;

568 this . r e c e i v i n gBu f f e r [mainChi ldPointer]++;

344

C.6 Application Acquisition and Contractual Agreement Protocol

569 this . shortToBytes (this . r e c e i v i ngBu f f e r , mainLengthPointer , (short)

570 (copyPointer − (short) 7)) ;

571 }

572 }

573 void platformHashGeneration (byte [] inArray , short i nO f f s e t) {}

574 void processSecondMsg (byte [] inArray) {

575 short i nO f f s e t = (short) 14 ;

576 short inLength = (short) (Protoco lHandler . bytesToShort (inArray , (short)

577 11)) ;

578 i f (this . macGenerate (inArray , i nOf f s e t , inLength ,

579 Signature .MODE_VERIFY)) {

580 this . phDecryption (inArray , i nOf f s e t , inLength) ;

581 Ut i l . arrayCopyNonAtomic (inArray , i nOf f s e t , this . SPIdentity ,

(short) 0 ,

582 (short) this . SPIdent i ty . l ength) ;

583 Ut i l . arrayCopyNonAtomic (inArray , (short) (i nO f f s e t + (short)

584 this . SPIdent i ty . l ength) , this . AppIdentity ,

585 (short) 0 , (short) this . AppIdentity . l ength) ;

586 } else {

587 ISOException . throwIt ((short) 0xFA18) ;

588 }

589 }

590 boolean processTSMActAppMessage () {

591 short i nO f f s e t = (short) (this . CTLVDataOffset + this . CTLVDataOffset) ;

592 short inLength = (short) (Protoco lHandler . bytesToShort (r e c e i v i ngBu f f e r ,

593 (short) (i nO f f s e t − (short) 3))) ;

594 i f (this . macGenerate (r e c e i v i ngBu f f e r , i nOf f s e t , inLength ,

595 Signature .MODE_VERIFY)) {

596 this . phDecryption (r e c e i v i ngBu f f e r , i nOf f s e t , inLength) ;

597 i nO f f s e t += (short) 225 ;

598 inLength = (short) 3 ;

599 TSMVerificationKey . setExponent (r e c e i v i ngBu f f e r , i nOf f s e t , inLength) ;

600 i nO f f s e t += (short) (inLength + this . PTLVDataOffset) ;

601 inLength = (short) 64 ;

602 TSMVerificationKey . setModulus (r e c e i v i ngBu f f e r , i nOf f s e t , inLength) ;

603 i nO f f s e t = (short) (this . CTLVDataOffset + this . CTLVDataOffset) ;

604 inLength = (short) 142 ;

605 i f (this . s ignGenerate (r e c e i v i ngBu f f e r , (short) i nOf f s e t , (short)

606 inLength , TSMVerificationKey , S ignature .MODE_VERIFY)) {

607 Ut i l . arrayCopyNonAtomic (r e c e i v i ngBu f f e r , (short) 224 ,

608 this . SPCookieArray , (short) 0 , (short)

609 this . SPCookieArray . l ength) ;

610 this . phMacGeneratorKey . setKey (this .myLongTermMacKey , (short) 0) ;

611 phMacGenerator . i n i t (phMacGeneratorKey , S ignature .MODE_SIGN,

612 I n i t i a l i s a t i o nV e c t o r , (short) 0 , (short)

613 I n i t i a l i s a t i o nV e c t o r . l ength) ;

614 phMacGenerator . s i gn (this . r e c e i v i ngBu f f e r , (short) 14 , (short) 96 ,

615 this . SID , (short) 0) ;

616 return true ;

617 } else {

618 return fa l se ;

345

C.6 Application Acquisition and Contractual Agreement Protocol

619 }

620 } else {

621 return fa l se ;

622 }

623 }

624 void processSPsThirdMsg (byte [] inArray) {

625 short i nO f f s e t = (short) (this . CTLVDataOffset + this . CTLVDataOffset) ;

626 short inLength = (short) (Protoco lHandler . bytesToShort (inArray , (short)

627 (i nO f f s e t − (short) 3))) ;

628 i f (this . macGenerate (inArray , i nOf f s e t , inLength ,

629 Signature .MODE_VERIFY)) {

630 this . phDecryption (inArray , i nOf f s e t , inLength) ;

631 Ut i l . arrayCopyNonAtomic (inArray , i nOf f s e t , this . SPIdentity ,

(short) 0 ,

632 (short) this . SPIdent i ty . l ength) ;

633 i nO f f s e t += (short) 151 ;

634 inLength = (short) 3 ;

635 SPVer i f i cat ionKey . setExponent (inArray , i nOf f s e t , inLength) ;

636 i nO f f s e t += (short) (inLength + this . PTLVDataOffset) ;

637 inLength = (short) 64 ;

638 SPVer i f i cat ionKey . setModulus (inArray , i nOf f s e t , inLength) ;

639 i nO f f s e t = (short) (this . CTLVDataOffset + this . CTLVDataOffset) ;

640 inLength = (short) 68 ;

641 i f (this . s ignGenerate (inArray , i nOf f s e t , inLength ,

SPVeri f icat ionKey ,

642 Signature .MODE_VERIFY)) {

643 return ;

644 } else {

645 ISOException . throwIt ((short) 0x6666) ;

646 }

647 } else {

648 ISOException . throwIt ((short) 0xFA18) ;

649 }

650 }

651 void parseMessage (byte [] i nBu f f e r) {

652 byte c h i l dL e f t = inBu f f e r [(short) (this . CTLVDataOffset − (short) 1)] ;

653 short po in t e r = (short) this . CTLVDataOffset ;

654 while (c h i l dL e f t > 0) {

655 i f (Ut i l . arrayCompare (SPDHChallengeTag , (short) 0 , inBuf f e r , po inter ,

656 (short) 4) == 0) {

657 Ut i l . arrayCopy (inBuf f e r , po inter , this . SPDHChanllengerArray ,

658 (short) 0 , (short) this . SPDHChanllengerArray . l ength) ;

659 po in t e r += (short) this . SPDHChanllengerArray . l ength ;

660 } else i f (Ut i l . arrayCompare (this . SPRandomNumberTag , (short) 0 ,

661 i nBuf f e r , po inter , (short) 4) == 0) {

662 Ut i l . arrayCopyNonAtomic (inBuf f e r , po inter ,

663 this . SPRandomNumberArray , (short) 0 ,

(short)

664 (this . SPRandomNumberArray . l ength)) ;

665 po in t e r += (short) (this . SPRandomNumberArray . l ength) ;

666 } else i f (Ut i l . arrayCompare (this . SPCookieTag , (short) 0 , inBuf f e r ,

346

C.6 Application Acquisition and Contractual Agreement Protocol

667 pointer , (short) 4) == 0) {

668 Ut i l . arrayCopyNonAtomic (inBuf f e r , po inter , this . SPCookieArray ,

669 (short) 0 , (short)

670 (this . SPCookieArray . l ength)) ;

671 po in t e r += (short) (this . SPCookieArray . l ength) ;

672 }

673 c h i l dL e f t −= (short) 1 ;

674 }

675 }

676 void d h I n i t i a l i s a t i o n () {

677 dhKey . setModulus (ClassDH . dhModulus , (short) 0 ,

(short)ClassDH . dhModulus . l ength) ;

678 }

679 void dhKeyConGen(byte [] i nbu f f , short i nbu f fO f f s e t , byte Oper_Mode) {

680 switch (Oper_Mode) {

681 case GEN_KEYCONTRIBUTION:

682 randomExponent = JCSystem . makeTransientByteArray ((short) 32 ,

683 JCSystem .MEMORY_TYPE_TRANSIENT_DESELECT) ;

684 randomDataGen . generateData (randomExponent , (short) 0 , (short)

685 randomExponent . l ength) ;

686 dhKey . setExponent (randomExponent , (short) 0 , (short)

687 randomExponent . l ength) ;

688 pkCipher . i n i t (dhKey , Cipher .MODE_ENCRYPT) ;

689 pkCipher . doFinal (ClassDH . dhBase , (short) 0 ,

(short)ClassDH . dhBase . length , inbu f f ,

690 i n bu f fO f f s e t) ;

691 break ;

692 case GEN_DHKEY:

693 dhKey . setExponent (randomExponent , (short) 0 , (short)

694 randomExponent . l ength) ;

695 pkCipher . i n i t (dhKey , Cipher .MODE_ENCRYPT) ;

696 SCSPDHGeneratedValue = JCSystem . makeTransientByteArray ((short)

697 ClassDH . dhModulus . length ,

JCSystem .MEMORY_TYPE_TRANSIENT_DESELECT) ;

698 pkCipher . doFinal (inbu f f , i nbu f fO f f s e t , (short) ((short)

699 i n bu f f . l ength − (short) this . PTLVDataOffset) ,

700 SCSPDHGeneratedValue , (short) 0) ;

701 break ;

702 default :

703 ISOException . throwIt ((short) 0x5FA1) ;

704 }

705 }

706 void keygenerator () {

707 AESKey sessionGenKey = (AESKey) KeyBuilder . buildKey

708 (KeyBuilder .TYPE_AES_TRANSIENT_DESELECT,

709 KeyBuilder .LENGTH_AES_128, fa l se) ;

710 sessionGenKey . setKey (SCSPDHGeneratedValue , (short) 0) ;

711 phMacGenerator . i n i t (sessionGenKey , S ignature .MODE_SIGN,

712 I n i t i a l i s a t i o nV e c t o r , (short) 0 , (short)

713 I n i t i a l i s a t i o nV e c t o r . l ength) ;

714 byte [] keyGenMacData = JCSystem . makeTransientByteArray ((short) 64 ,

347

C.6 Application Acquisition and Contractual Agreement Protocol

715 JCSystem .MEMORY_TYPE_TRANSIENT_DESELECT) ;

716 short po in t e r = 0 ;

717 po in t e r = Ut i l . arrayCopyNonAtomic (this . SPRandomNumberArray ,

718 this . PTLVDataOffset , keyGenMacData , (short) po inter , (short) 16) ;

719 po in t e r = Ut i l . arrayCopyNonAtomic (this . SCRandomNumberArray ,

720 this . PTLVDataOffset , keyGenMacData , (short) po inter , (short) 16) ;

721 po in t e r = Ut i l . arrayCopyNonAtomic (SCSPDHGeneratedValue , (short) 16 ,

722 keyGenMacData , (short) po inter , (short) 16) ;

723 for (short i = 48 ; i < 64 ; i++) {

724 keyGenMacData [i] = (byte) 0x02 ;

725 }

726 phMacGenerator . s i gn (keyGenMacData , (short) 0 , (short)

727 keyGenMacData . length , SCSPDHGeneratedValue ,

(short)

728 0) ;

729 this . phCipherKey . setKey (SCSPDHGeneratedValue , (short) 0) ;

730 for (short i = 48 ; i < 64 ; i++) {

731 keyGenMacData [i] = (byte) 0x03 ;

732 }

733 phMacGenerator . i n i t (sessionGenKey , S ignature .MODE_SIGN,

734 I n i t i a l i s a t i o nV e c t o r , (short) 0 , (short)

735 I n i t i a l i s a t i o nV e c t o r . l ength) ;

736 phMacGenerator . s i gn (keyGenMacData , (short) 0 , (short)

737 keyGenMacData . length , SCSPDHGeneratedValue ,

(short)

738 0) ;

739 this . phMacGeneratorKey . setKey (SCSPDHGeneratedValue , (short) 0) ;

740 SCSPDHGeneratedValue = null ;

741 JCSystem . r eques tObjec tDe l e t i on () ;

742 }

743 void messageEncryption (byte [] i nbu f f , short i nbu f fO f f s e t , short

744 inbuf fLength) {

745 syCipher . i n i t (phCipherKey , Cipher .MODE_ENCRYPT, I n i t i a l i s a t i o nV e c t o r ,

746 (short) 0 , (short) I n i t i a l i s a t i o nV e c t o r . l ength) ;

747 this . shortToBytes (inbu f f , (short) (i n bu f fO f f s e t − 3) , (short) syCipher

748 . doFinal (inbu f f , i nbu f fO f f s e t , inbuf fLength , inbu f f ,

749 i n bu f fO f f s e t)) ;

750 }

751 void phDecryption (byte [] i nbu f f , short i nbu f fO f f s e t , short inbuf fLength)

752 {

753 syCipher . i n i t (phCipherKey , Cipher .MODE_DECRYPT, I n i t i a l i s a t i o nV e c t o r ,

754 (short) 0 , (short) I n i t i a l i s a t i o nV e c t o r . l ength) ;

755 syCipher . doFinal (inbu f f , i nbu f fO f f s e t , inbuf fLength , inbu f f ,

756 i n bu f fO f f s e t) ;

757 }

758 boolean macGenerate (byte [] i nbu f f , short i nbu f fO f f s e t , short

759 inbuf fLength , short macMode) {

760 i f (macMode == Signature .MODE_SIGN) {

761 phMacGenerator . i n i t (phMacGeneratorKey , S ignature .MODE_SIGN,

762 I n i t i a l i s a t i o nV e c t o r , (short) 0 , (short)

763 I n i t i a l i s a t i o nV e c t o r . l ength) ;

348

C.6 Application Acquisition and Contractual Agreement Protocol

764 copyPointer = Ut i l . arrayCopyNonAtomic (this .MACedDataTag , (short) 0 ,

765 this . r e c e i v i ngBu f f e r , copyPointer ,

(short) this .MACedDataTag . l ength)

766 ;

767 copyPointer += 2 ;

768 short l ength = (short) phMacGenerator . s i gn (this . r e c e i v i ngBu f f e r ,

769 i nbu f fO f f s e t , inbuf fLength , inbu f f , copyPointer) ;

770 this . shortToBytes (inbu f f , (short) (copyPointer − (short) 2) , l ength) ;

771 copyPointer += length ;

772 return true ;

773 } else i f (macMode == Signature .MODE_VERIFY) {

774 phMacGenerator . i n i t (phMacGeneratorKey , S ignature .MODE_VERIFY,

775 I n i t i a l i s a t i o nV e c t o r , (short) 0 , (short)

776 I n i t i a l i s a t i o nV e c t o r . l ength) ;

777 return phMacGenerator . v e r i f y (this . r e c e i v i ngBu f f e r , i nbu f fO f f s e t ,

778 inbuf fLength , inbu f f , (short)

779 (i n bu f fO f f s e t + inbuf fLength +

780 this . PTLVDataOffset) , (short) 16) ;

781 }

782 return fa l se ;

783 }

784 boolean s ignGenerate (byte [] i nbu f f , short i nbu f fO f f s e t , short

785 i nbu f f l eng th , Key kpSign , short signMode) {

786 i f (signMode == Signature .MODE_SIGN) {

787 copyPointer = Ut i l . arrayCopyNonAtomic (this . SignedDataTag , (short) 0 ,

788 this . r e c e i v i ngBu f f e r , copyPointer , (short)

789 this . SignedDataTag . l ength) ;

790 copyPointer += (short) 2 ;

791 phSign . i n i t ((RSAPrivateKey) kpSign , S ignature .MODE_SIGN) ;

792 s i gn l eng th = phSign . s i gn (inbu f f , (short) i nbu f fO f f s e t , i nbu f f l eng th ,

793 i nbu f f , copyPointer) ;

794 this . shortToBytes (this . r e c e i v i ngBu f f e r , (short) (copyPointer −
(short)

795 2) , s i gn l eng th) ;

796 copyPointer += s i gn l eng th ;

797 return true ;

798 } else i f (signMode == Signature .MODE_VERIFY) {

799 phSign . i n i t ((RSAPublicKey) kpSign , S ignature .MODE_VERIFY) ;

800 return phSign . v e r i f y (inbu f f , i nbu f fO f f s e t , i nbu f f l eng th , inbu f f ,

801 (short) (i n bu f fO f f s e t + inbu f f l e n g th +

802 this . PTLVDataOffset) , (short) 64) ;

803 }

804 return fa l se ;

805 }

806 public stat ic short bytesToShort (byte [] ArrayBytes) {

807 return (short) (((ArrayBytes [0] << 8)) | ((ArrayBytes [1] & 0 x f f))) ;

808 }

809 public stat ic short bytesToShort (byte [] ArrayBytes , short a r r ayOf f s e t) {

810 return (short) (((ArrayBytes [a r r ayOf f s e t] << 8)) | ((ArrayBytes [(short)

811 (a r r ayOf f s e t + (short) 1)] & 0 x f f))) ;

812 }

349

C.6 Application Acquisition and Contractual Agreement Protocol

813 private void shortToBytes (byte [] Array , short ar rayOf f s e t , short

inShort)

814 {

815 Array [a r r ayOf f s e t] = (byte) ((short) (inShort & (short) 0xFF00) >>

(short)

816 0x0008) ;

817 Array [(short) (a r r ayOf f s e t + (short) 1)] = (byte) (inShort & (short)

818 0x00FF) ;

819 }

820 }

C.6.2 Service Provider Implementation

In this section, we detail the SP's implementation of the STCPACA and the helper functions

utlised during the STCPSP are discussed in appendices C.11.1 and C.11.2.

1 package ACAPTerminal ;

2

3 import java . u t i l . Arrays ;

4 import java . s e c u r i t y . i n t e r f a c e s . RSAPublicKey ;

5 import javax . crypto . spec . SecretKeySpec ;

6 import java . s e c u r i t y . spec . RSAPublicKeySpec ;

7 import javax . crypto . ∗ ;
8 import java . s e c u r i t y . ∗ ;
9 import java . math . B ig Intege r ;

10 public class Serv i ceProv ide rProtoco lHand le r {

11 private byte [] SPIdent i ty = {

12 (byte) 0xC5 , (byte) 0x7D , (byte) 0xB1 , (byte) 0x7C , (byte) 0x62 ,

13 (byte) 0x0A , (byte) 0x86 , (byte) 0x52 , (byte) 0xBE, (byte) 0x5E ,

14 (byte) 0x90 , (byte) 0x01 , (byte) 0xA8 , (byte) 0xD6 , (byte) 0x6A ,

15 (byte) 0xD7 , (byte) 0xB1 , (byte) 0x7C} ;

16 private byte [] AppIdentity = {

17 (byte) 0xC5 , (byte) 0x7D , (byte) 0xB1 , (byte) 0x7C , (byte) 0x62 ,

(byte) 0x0A ,

18 (byte) 0x86 , (byte) 0x52 , (byte) 0xBE, (byte) 0x5E , (byte) 0x90 , (byte)

19 0x01 , (byte) 0xA8 , (byte) 0xD6 , (byte) 0x6A , (byte) 0xD7 , (byte) 0xB1 ,

20 (byte) 0x7C , (byte) 0xA8 , (byte) 0xD6 , (byte) 0x6A , (byte) 0xD7} ;

21 private byte [] SCIP = {

22 (byte) 0xC5 , (byte) 0x7D , (byte) 0xB1 , (byte) 0x7C} ;

23 private byte [] PlatformHashPreset = {

24 (byte) 0xBF, (byte) 0xE5 , (byte) 0x45 , (byte) 0x86 , (byte) 0x2C ,

(byte) 0xA1 ,

25 (byte) 0x02 , (byte) 0xAD, (byte) 0x1E , (byte) 0xED, (byte) 0xDB, (byte)

26 0x5F , (byte) 0xBF, (byte) 0xA5 , (byte) 0xBF, (byte) 0x85 , (byte) 0x5A ,

27 (byte) 0xC4 , (byte) 0x99 , (byte) 0x5C , (byte) 0x56 , (byte) 0xA8 , (byte)

28 0xB4 , (byte) 0x08 , (byte) 0xCE, (byte) 0x3F , (byte) 0xE0 , (byte) 0x99 ,

29 (byte) 0xDC, (byte) 0xE9 , (byte) 0x3A , (byte) 0x9D} ;

30 private byte [] MessageHandlerTagOne = {(byte) 0xAA, (byte) 0xAA} ;

31 private byte [] MessageHandlerTagTwo = {(byte) 0xBB, (byte) 0xBB} ;

32 private byte [] MessageHandlerTagThree = {(byte) 0xCC, (byte) 0xCC} ;

33 private byte [] SPIdentityTag = {(byte) 0x5F , (byte) 0x01 } ;

350

C.6 Application Acquisition and Contractual Agreement Protocol

34 private byte [] AppIdentityTag = {(byte) 0x5F , (byte) 0x0E } ;

35 private byte [] SPDHChallengeTag = {(byte) 0x5C , (byte) 0x01 } ;

36 private byte [] SPSignatureCertTag = {(byte) 0xF0 , (byte) 0xF01 } ;

37 private byte [] SPSigVeri f icat ionKeyTag = {(byte) 0x51 , (byte) 0x01 } ;

38 private byte [] SPRandomNumberTag = {(byte) 0x5A , (byte) 0x01 } ;

39 private byte [] SPCookieTag = {(byte) 0x5B , (byte) 0x01 } ;

40 private byte [] EncryptedDataTag = {(byte) 0xFE , (byte) 0x01 } ;

41 private byte [] MACedDataTag = {(byte) 0x5D , (byte) 0x01 } ;

42 private byte [] SignedDataTag = {(byte) 0x5D , (byte) 0x02 } ;

43 private byte [] PublicExponentTag = {(byte) 0xEE, (byte) 0x01 } ;

44 private byte [] PublicModulusTag = {(byte) 0xEE, (byte) 0x02 } ;

45 private byte [] SCDHChallengeTag = {(byte) 0x5C , (byte) 0x02 } ;

46 private byte [] SCRandomNumberTag = {(byte) 0x5A , (byte) 0x02 } ;

47 private byte [] SCIdentityTag = {(byte) 0x5F , (byte) 0x02 } ;

48 private byte [] SCUserCert i f i cateTag = {(byte) 0xF0 , (byte) 0x03 } ;

49 private byte [] SCCert i f i cateTag = {(byte) 0xF0 , (byte) 0x02 } ;

50 private byte [] PlatformHashTag = {(byte) 0x5E , (byte) 0xAF} ;

51 private byte [] UserIdent i tyTag = {(byte) 0x5F , (byte) 0x03 } ;

52 public ConstructedTLV MessageHandler = ConstructedTLV . getConstructedTLV

53 (MessageHandlerTagOne) ;

54 private ConstructedTLV SPS igna tu r eCe r t i f i c a t e =

55 ConstructedTLV . getConstructedTLV (SPSignatureCertTag) ;

56 private PrimitiveTLV SPIdentityTLV = PrimitiveTLV . getPrimitiveTLV

57 (SPIdentityTag , SPIdent i ty) ;

58 private PrimitiveTLV AppIdentityTLV = PrimitiveTLV . getPrimitiveTLV

59 (AppIdentityTag , AppIdentity) ;

60 private PrimitiveTLV SPSigVer i f i cat ionKey = PrimitiveTLV . getPrimitiveTLV

61 (this . SPSigVer i f icat ionKeyTag) ;

62 private PrimitiveTLV SPDHChanllenger = PrimitiveTLV . getPrimitiveTLV

63 (this . SPDHChallengeTag) ;

64 private PrimitiveTLV SPRandomNumber = PrimitiveTLV . getPrimitiveTLV

65 (this . SPRandomNumberTag) ;

66 private PrimitiveTLV SPCookie = PrimitiveTLV . getPrimitiveTLV

67 (this . SPCookieTag) ;

68 private ConstructedTLV EncryptedData = ConstructedTLV . getConstructedTLV

69 (this . EncryptedDataTag) ;

70 private PrimitiveTLV MACedData = PrimitiveTLV . getPrimitiveTLV

71 (this .MACedDataTag) ;

72 private PrimitiveTLV SignedData = PrimitiveTLV . getPrimitiveTLV

73 (this . SignedDataTag) ;

74 private PrimitiveTLV PublicExponent = PrimitiveTLV . getPrimitiveTLV

75 (this . PublicExponentTag) ;

76 private PrimitiveTLV PublicModulus = PrimitiveTLV . getPrimitiveTLV

77 (this . PublicModulusTag) ;

78 private PrimitiveTLV SCDHChallenge = PrimitiveTLV . getPrimitiveTLV

79 (this . SCDHChallengeTag) ;

80 private PrimitiveTLV SCRandomNumber = PrimitiveTLV . getPrimitiveTLV

81 (this . SCRandomNumberTag) ;

82 private PrimitiveTLV SCIdent ity = PrimitiveTLV . getPrimitiveTLV

83 (SCIdentityTag) ;

84 private ConstructedTLV SCUserCer t i f i ca t e =

351

C.6 Application Acquisition and Contractual Agreement Protocol

85 ConstructedTLV . getConstructedTLV (this . SCUserCert i f i cateTag) ;

86 private ConstructedTLV SCCer t i f i c a t e = ConstructedTLV . getConstructedTLV

87 (this . SCCert i f i cateTag) ;

88 private PrimitiveTLV PlatformHash = PrimitiveTLV . getPrimitiveTLV

89 (this . PlatformHashTag) ;

90 private PrimitiveTLV User Ident i ty = PrimitiveTLV . getPrimitiveTLV

91 (this . UserIdent ityTag) ;

92 private Protoco lHe lpe rClas s myProtocolHelperObject = new

93 Protoco lHe lpe rClas s () ;

94 private byte [] mySessionEncryptionKey = new byte [1 6] ;

95 private byte [] mySessionMacKey = new byte [1 6] ;

96 private PublicKey SCUserVer i f i cat ionKey = null ;

97 private PublicKey SCVer i f i cat ionKey = null ;

98 public Serv i ceProv ide rProtoco lHand le r () {

99 myProtocolHelperObject . p r o t o c o l I n i t i a l i s e () ;

100 RSAPublicKey tempKey = (RSAPublicKey)

101 myProtocolHelperObject . getPublicKey () ;

102 byte [] tempExponent = tempKey . getPubl icExponent () . toByteArray () ;

103 this . PublicExponent . i n i t i a l i s a t i onPTLV (this . PublicExponentTag ,

104 tempExponent . l ength) ;

105 this . PublicExponent . setTlvValues (tempExponent) ;

106 byte [] tempModulus = tempKey . getModulus () . toByteArray () ;

107 this . PublicModulus . i n i t i a l i s a t i onPTLV (this . PublicModulusTag ,

108 (tempModulus . l ength − 1)) ;

109 this . PublicModulus . setTlvValues (tempModulus , 1 , (tempModulus . l ength −
110 1)) ;

111 SPS igna tu r eCe r t i f i c a t e . addPTLV(this . PublicExponent) ;

112 SPS igna tu r eCe r t i f i c a t e . addPTLV(this . PublicModulus) ;

113 }

114 public void i n i t i a l i s e P r o t o c o l () {

115 try {

116 this . SPDHChanllenger . setTlvValues

117 (this . myProtocolHelperObject . GenerateDHPublicValue ()) ;

118 this . MessageHandler . addPTLV(this . SPDHChanllenger) ;

119 } catch (Exception cE) {

120 System . out . p r i n t l n (

121 "Error Protoco lHandler . i n i t i a l i s e P r o t o c o l Option

= 1 , : " + cE . ge tC la s s () . getName ()) ;

122 }

123 }

124 public byte [] outMessageProcess ing (int Counter) {

125 i f (Counter == 1) {

126 try {

127 this . SPRandomNumber . setTlvValues

128 (this . myProtocolHelperObject . getRandomNumber ()) ;

129 this . MessageHandler . addPTLV(this . SPRandomNumber) ;

130 byte [] temp = new byte [(this . SCIP . l ength +

131 this . SPDHChanllenger . getValueLength () +

132 this . SPRandomNumber . getValueLength ())] ;

133 System . arraycopy (this . SPDHChanllenger . getValueBytes () , 0 , temp , 0 ,

134 this . SPDHChanllenger . getValueLength ()) ;

352

C.6 Application Acquisition and Contractual Agreement Protocol

135 System . arraycopy (this . SPRandomNumber . getValueBytes () , 0 , temp ,

136 this . SPDHChanllenger . getValueLength () ,

137 this . SPRandomNumber . getValueLength ()) ;

138 System . arraycopy (this . SCIP , 0 , temp , temp . l ength −
139 this . SCIP . length , this . SCIP . l ength) ;

140 byte [] r e s u l t = new byte [1 6] ;

141 this . myProtocolHelperObject . GenerateMac (temp , 0 , temp . length ,

142 r e su l t , 0 , this . myProtocolHelperObject .myLongTermMacKey) ;

143 this . SPCookie . setTlvValues (r e s u l t) ;

144 this . MessageHandler . addPTLV(this . SPCookie) ;

145 } catch (Exception cE) {

146 System . out . p r i n t l n (

147 "Error Protoco lHandler . inMessageProcess ing

Option = 2 , : " + cE . ge tC la s s () . getName ()) ;

148 }

149 } else i f (Counter == 2) {

150 try {

151 this . EncryptedData . i n i t i a l i s a t i onCTLV (this . EncryptedDataTag) ;

152 this . EncryptedData . addPTLV(this . SPIdentityTLV) ;

153 this . EncryptedData . addPTLV(this . AppIdentityTLV) ;

154 this . EncryptedData . addPTLV(this . SPRandomNumber) ;

155 this . EncryptedData . addPTLV(this . SCRandomNumber) ;

156 this . myProtocolHelperObject . GenerateEncryption

157 (this . EncryptedData . getValueBytes () , 0 ,

158 this . EncryptedData . getValueBytes () . length ,

159 this . EncryptedData . getBytesTlvRepresentat ion () , 7 ,

160 this . mySessionEncryptionKey) ;

161 this .MACedData . i n i t i a l i s a t i onPTLV (this .MACedDataTag , 16) ;

162 this . myProtocolHelperObject . GenerateMac

163 (this . EncryptedData . getValueBytes () , 0 ,

164 this . EncryptedData . getTagValueLength () ,

165 this .MACedData . getBytesTlvRepresentat ion () , 6 ,

166 this . mySessionMacKey) ;

167 this . MessageHandler . i n i t i a l i s a t i onCTLV (this . MessageHandlerTagTwo) ;

168 this . MessageHandler . addCTLV(EncryptedData) ;

169 this . MessageHandler . addPTLV(this .MACedData) ;

170 } catch (Exception cE) {

171 System . out . p r i n t l n (

172 "Error Protoco lHandler . inMessageProcess ing

Option = 3 , : " + cE . ge tC la s s () . getName ()) ;

173 }

174 } else i f (Counter == 3) {

175 try {

176 this . EncryptedData . i n i t i a l i s a t i onCTLV (this . EncryptedDataTag) ;

177 this . EncryptedData . addPTLV(this . SPIdentityTLV) ;

178 this . EncryptedData . addPTLV(this . SPRandomNumber) ;

179 this . EncryptedData . addPTLV(this . SCRandomNumber) ;

180 this . myProtocolHelperObject . SignatureMethod

181 (this . EncryptedData . getValueBytes () , 0 ,

182 this . EncryptedData . getValueBytes () . length ,

183 this . SignedData . getBytesTlvRepresentat ion () , 6 , null ,

353

C.6 Application Acquisition and Contractual Agreement Protocol

184 Protoco lHe lpe rClas s .SIGN_MODE_GENERATION) ;

185 this . EncryptedData . addPTLV(this . SignedData) ;

186 this . EncryptedData .addCTLV(this . SPS i gna tu r eCe r t i f i c a t e) ;

187 this . myProtocolHelperObject . GenerateEncryption

188 (this . EncryptedData . getValueBytes () , 0 ,

189 this . EncryptedData . getValueBytes () . length ,

190 this . EncryptedData . getBytesTlvRepresentat ion () , 7 ,

191 this . mySessionEncryptionKey) ;

192 this .MACedData . i n i t i a l i s a t i onPTLV (this .MACedDataTag , 16) ;

193 this . myProtocolHelperObject . GenerateMac

194 (this . EncryptedData . getValueBytes () , 0 ,

195 this . EncryptedData . getTagValueLength () ,

196 this .MACedData . getBytesTlvRepresentat ion () , 6 ,

197 this . mySessionMacKey) ;

198 this . MessageHandler . i n i t i a l i s a t i onCTLV (this . MessageHandlerTagThree)

199 ;

200 this . MessageHandler . addCTLV(EncryptedData) ;

201 this . MessageHandler . addPTLV(this .MACedData) ;

202 this . MessageHandler . addPTLV(this . SPCookie) ;

203 } catch (Exception cE) {

204 System . out . p r i n t l n (

205 "Error Protoco lHandler . inMessageProcess ing

Option = 1 , : " + cE . ge tC la s s () . getName ()) ;

206 }

207 } else {

208 System . out . p r i n t l n (

209 "Protoco l Stoped : I l l e g a l Message Value

(Protoco lHanlder . inMessageProcess ing () ") ;

210 }

211 return this . MessageHandler . getBytesTlvRepresentat ion () ;

212 }

213 public boolean inMessageProcess ing (byte [] inMessage , int Counter) {

214 try {

215 i f (Counter == 1) {

216 MessageHandler . s e tBytesTlvRepresentat ion (inMessage , 0 ,

217 (inMessage . l ength − 2)) ;

218 childExtractionFromCTLV (MessageHandler) ;

219 GenerateKeys (this . SCDHChallenge . getValueBytes ()) ;

220 byte [] temp = new byte [1 6] ;

221 this . myProtocolHelperObject . GenerateMac

222 (this . EncryptedData . getValueBytes () , 0 ,

223 this . EncryptedData . getValueBytes () . length , temp , 0 ,

224 this . mySessionMacKey) ;

225 i f (Arrays . equa l s (this .MACedData . getValueBytes () , temp)) {}

226 else {

227 System . out . p r i n t l n (

228 " I n t e g r i t y Check Fa i l u r e : ERROR at

Protoco lHandler . inMessageProcess ing \n") ;

229 System . e x i t (0) ;

230 }

231 this . myProtocolHelperObject . GenerateDecryption

354

C.6 Application Acquisition and Contractual Agreement Protocol

232 (this . EncryptedData . getValueBytes () , 0 ,

233 this . EncryptedData . getValueBytes () . length ,

234 this . EncryptedData . getBytesTlvRepresentat ion () , 7 ,

235 this . mySessionEncryptionKey) ;

236 childExtractionFromCTLV (this . EncryptedData) ;

237 childExtractionFromCTLV (this . SCUserCer t i f i c a t e) ;

238 Big Intege r publicExponent = new Big Intege r (byteToStr ing

239 (this . PublicExponent . getValueBytes ()) , 16) ;

240 Big Intege r publicModulus = new Big Intege r (byteToStr ing

241 (this . PublicModulus . getValueBytes ()) , 16) ;

242 KeyFactory f a c t o r y = KeyFactory . g e t In s tance ("RSA") ;

243 SCUserVer i f i cat ionKey = (PublicKey) f a c t o r y . gene ra tePub l i c (new

244 RSAPublicKeySpec (publicModulus ,

245 publicExponent)) ;

246 temp = new byte [(this . SCIdent ity . getTagLength () +

247 this . SCRandomNumber . getTagLength () +

248 this . SPRandomNumber . getTagLength ())] ;

249 System . arraycopy (this . EncryptedData . getBytesTlvRepresentat ion () ,

7 ,

250 temp , 0 , temp . l ength) ;

251 i f (this . myProtocolHelperObject . SignatureMethod (temp , 0 ,

252 temp . length , this . SignedData . getValueBytes () , 0 ,

253 SCUserVeri f icat ionKey ,

254 Protoco lHe lpe rClas s .SIGN_MODE_VERIFICATION)) {}

255 else {

256 System . out . p r i n t l n (

257 " S ignature V e r i f i c a t i o n Fa i l ed Check

code") ;

258 }

259 } else i f (Counter == 2) {

260 this . MessageHandler . r e s e t () ;

261 this . EncryptedData . r e s e t () ;

262 this . MessageHandler . s e tBytesTlvRepresentat ion (inMessage , 0 ,

263 inMessage . l ength − 2) ;

264 this . childExtractionFromCTLV (this . MessageHandler) ;

265 byte [] temp = new byte [1 6] ;

266 this . myProtocolHelperObject . GenerateMac

267 (this . EncryptedData . getValueBytes () , 0 ,

268 this . EncryptedData . getValueBytes () . length , temp , 0 ,

269 this . mySessionMacKey) ;

270 i f (Arrays . equa l s (this .MACedData . getValueBytes () , temp)) {}

271 else {

272 System . out . p r i n t l n (

273 " I n t e g r i t y Check Fa i l u r e : ERROR at

Protoco lHandler . inMessageProcess ing \n") ;

274 System . e x i t (0) ;

275 }

276 this . myProtocolHelperObject . GenerateDecryption

277 (this . EncryptedData . getValueBytes () , 0 ,

278 this . EncryptedData . getValueBytes () . length ,

279 this . EncryptedData . getBytesTlvRepresentat ion () , 7 ,

355

C.6 Application Acquisition and Contractual Agreement Protocol

280 this . mySessionEncryptionKey) ;

281 this . childExtractionFromCTLV (EncryptedData) ;

282 i f (Arrays . equa l s (PlatformHashPreset ,

283 this . PlatformHash . getValueBytes ())) {}

284 else {

285 System . out . p r i n t l n ("Platform Digest Not Ve r i f i e d ") ;

286 }

287 childExtractionFromCTLV (this . SCCer t i f i c a t e) ;

288 Big Intege r SCpublicExponent = new Big Intege r (byteToStr ing

289 (this . PublicExponent . getValueBytes ()) , 16) ;

290 Big Intege r SCpublicModulus = new Big Intege r (byteToStr ing

291 (this . PublicModulus . getValueBytes ()) , 16) ;

292 KeyFactory f a c t o r y = KeyFactory . g e t In s tance ("RSA") ;

293 SCVer i f i cat ionKey = (PublicKey) f a c t o r y . gene ra tePub l i c (new

294 RSAPublicKeySpec (SCpublicModulus ,

295 SCpublicExponent)) ;

296 temp = new byte [(this . PlatformHash . getTagLength () +

297 this . Use r Ident i ty . getTagLength () +

298 this . SCIdent ity . getTagLength () +

299 this . SCRandomNumber . getTagLength () +

300 this . SPRandomNumber . getTagLength ())] ;

301 System . arraycopy (this . EncryptedData . getBytesTlvRepresentat ion () ,

7 ,

302 temp , 0 , temp . l ength) ;

303 i f (this . myProtocolHelperObject . SignatureMethod (temp , 0 ,

304 temp . length , this . SignedData . getValueBytes () , 0 ,

305 SCVeri f icat ionKey ,

Protoco lHe lpe rClas s .SIGN_MODE_VERIFICATION))

306 {}

307 else {

308 System . out . p r i n t l n (

309 " S ignature V e r i f i c a t i o n Fa i l ed Check

code") ;

310 }

311 }

312 } catch (Exception cE) {

313 System . out . p r i n t l n ("Error in Protoco lHandler . inMessageProcess ing : "

314 + cE . ge tC la s s () . getName ()) ;

315 }

316 return true ;

317 }

318 public stat ic St r ing byteToStr ing (byte [] inArray) {

319 byte [] HEX_CHAR_TABLE = {

320 (byte) ' 0 ' , (byte) ' 1 ' , (byte) ' 2 ' , (byte) ' 3 ' , (byte) ' 4 ' , (byte) ' 5 ' ,

321 (byte) ' 6 ' , (byte) ' 7 ' , (byte) ' 8 ' , (byte) ' 9 ' , (byte) ' a ' , (byte) 'b ' ,

322 (byte) ' c ' , (byte) 'd ' , (byte) ' e ' , (byte) ' f '

323 } ;

324 byte [] hex = new byte [2 ∗ inArray . l ength] ;

325 int index = 0 ;

326 for (byte b : inArray) {

327 int v = b & 0xFF ;

356

C.6 Application Acquisition and Contractual Agreement Protocol

328 hex [index++] = HEX_CHAR_TABLE[v >>> 4] ;

329 hex [index++] = HEX_CHAR_TABLE[v & 0xF] ;

330 }

331 try {

332 return new St r ing (hex , "ASCII") ;

333 } catch (Exception cE) {

334 System . out . p r i n t l n ("Exception in bytesToStr ing : " +

cE . getMessage ())

335 ;

336 }

337 return "Error " ;

338 }

339 void childExtractionFromCTLV (ConstructedTLV inCTLV) {

340 try {

341 int c h i l d s = inCTLV . getChildNumbers () ;

342 PrimitiveTLV pTemp = null ;

343 ConstructedTLV cTemp = null ;

344 while (c h i l d s > 0) {

345 switch (inCTLV . nextType ()) {

346 case 1 :

347 pTemp = (PrimitiveTLV)inCTLV . getNext () ;

348 i f (Arrays . equa l s (pTemp . getTagName () ,

349 this . SCDHChallenge . getTagName ())) {

350 this . SCDHChallenge = pTemp ;

351 } else i f (Arrays . equa l s (pTemp . getTagName () ,

352 this . SCRandomNumber . getTagName ())) {

353 this . SCRandomNumber = pTemp ;

354 } else i f (Arrays . equa l s (pTemp . getTagName () ,

355 this .MACedData . getTagName ())) {

356 this .MACedData = pTemp ;

357 } else i f (Arrays . equa l s (pTemp . getTagName () ,

358 this . SPCookie . getTagName ())) {

359 i f (Arrays . equa l s (pTemp . getBytesTlvRepresentat ion () ,

360 this . SPCookie . getBytesTlvRepresentat ion ())) {}

361 } else i f (Arrays . equa l s (pTemp . getTagName () ,

362 this . SCIdent ity . getTagName ())) {

363 this . SCIdent ity = pTemp ;

364 } else i f (Arrays . equa l s (pTemp . getTagName () ,

365 this . SignedData . getTagName ())) {

366 this . SignedData = pTemp ;

367 } else i f (Arrays . equa l s (pTemp . getTagName () ,

368 this . PublicExponent . getTagName ())) {

369 this . PublicExponent = pTemp ;

370 } else i f (Arrays . equa l s (pTemp . getTagName () ,

371 this . PublicModulus . getTagName ())) {

372 this . PublicModulus = pTemp ;

373 } else i f (Arrays . equa l s (pTemp . getTagName () ,

374 this . PlatformHash . getTagName ())) {

375 this . PlatformHash = pTemp ;

376 } else i f (Arrays . equa l s (pTemp . getTagName () ,

377 this . Use r Ident i ty . getTagName ())) {

357

C.6 Application Acquisition and Contractual Agreement Protocol

378 this . Use r Ident i ty = pTemp ;

379 }

380 break ;

381 case 0 :

382 cTemp = (ConstructedTLV)inCTLV . getNext () ;

383 i f (Arrays . equa l s (cTemp . getTagName () ,

384 this . EncryptedData . getTagName ())) {

385 this . EncryptedData = cTemp ;

386 } else i f (Arrays . equa l s (cTemp . getTagName () ,

387 SCUserCer t i f i c a t e . getTagName ())) {

388 this . SCUserCer t i f i c a t e = cTemp ;

389 } else i f (Arrays . equa l s (cTemp . getTagName () ,

390 SCCer t i f i c a t e . getTagName ())) {

391 this . SCCer t i f i c a t e = cTemp ;

392 }

393 break ;

394 default :

395 System . out . p r i n t l n ("Error In Pars ing Input Message") ;

396 }

397 ch i l d s −−;
398 }

399 } catch (Exception e) {

400 System . out . p r i n t l n (

401 "Error in Protoco lHanlder . ChildExtractionMethod

: " + e . ge tC la s s () . getName ()) ;

402 }

403 }

404 void GenerateKeys (byte [] i n bu f f) {

405 byte [] DHSecretKey = null ;

406 try {

407 DHSecretKey =

408 this . myProtocolHelperObject . GenerateDHSessionKeyMaterial (inbu f f ,

0 ,

409 i n bu f f . l ength) ;

410 } catch (Exception cE) {

411 System . out . p r i n t l n (

412 "Exception At Protoco lHe lpe rC las s . GenerateKeys :

" + cE . ge tC la s s () . getName ()) ;

413 }

414 byte [] keyGenKey = new byte [1 6] ;

415 System . arraycopy (DHSecretKey , 0 , keyGenKey , 0 , keyGenKey . l ength) ;

416 byte [] macInputValue = new byte [6 4] ;

417 System . arraycopy (this . SPRandomNumber . getValueBytes () , 0 ,

macInputValue ,

418 0 , 16) ;

419 System . arraycopy (this . SCRandomNumber . getValueBytes () , 0 ,

macInputValue ,

420 16 , 16) ;

421 System . arraycopy (DHSecretKey , 16 , macInputValue , 32 , 16) ;

422 for (int i = 48 ; i < 64 ; i++) {

423 macInputValue [i] = (byte) 0x02 ;

358

C.6 Application Acquisition and Contractual Agreement Protocol

424 }

425 try {

426 this . myProtocolHelperObject . GenerateMac (macInputValue , 0 ,

427 macInputValue . length , this . mySessionEncryptionKey , 0 , keyGenKey) ;

428 } catch (Exception cE) {

429 System . out . p r i n t l n ("Exception at Protoco lHandler . GenerateKeys : " +

430 cE . ge tC la s s () . getName ()) ;

431 }

432 for (int i = 48 ; i < 64 ; i++) {

433 macInputValue [i] = (byte) 0x03 ;

434 }

435 try {

436 this . myProtocolHelperObject . GenerateMac (macInputValue , 0 ,

437 macInputValue . length , this . mySessionMacKey , 0 , keyGenKey) ;

438 } catch (Exception cE) {

439 System . out . p r i n t l n ("Exception at Protoco lHandler . GenerateKeys : " +

440 cE . ge tC la s s () . getName ()) ;

441 }

442 }

443 }

C.6.3 Administrative Authority Implementation

Below is the code related to the administrative authority's implementation for the STCPACA.

1 package ACAPTerminal ;

2

3 import java . math . B ig Intege r ;

4 import java . s e c u r i t y . ∗ ;
5 import java . s e c u r i t y . i n t e r f a c e s . RSAPublicKey ;

6 import java . s e c u r i t y . spec . RSAPublicKeySpec ;

7 import java . u t i l . Arrays ;

8 public class TSMProtocolHandler {

9 private byte [] AppAct = {

10 (byte) 0x7d , (byte) 0xD5 , (byte) 0xB7 , (byte) 0xD0 , (byte) 0xB6 , (byte)

11 0xC1 , (byte) 0x2e , (byte) 0x07 , (byte) 0xe9 , (byte) 0x69 , (byte) 0x8D ,

12 (byte) 0x11 , (byte) 0xB6 , (byte) 0xC1 , (byte) 0x2e , (byte) 0x07 ,

13 (byte) 0xe9 , (byte) 0x69 , } ;

14 private byte [] AppActTag = {

15 (byte) 0x9A , (byte) 0x9B} ;

16 private byte [] CardIDTag = {

17 (byte) 0x5F , (byte) 0x05 } ;

18 private byte [] EncryptedDataTag = {

19 (byte) 0xFE , (byte) 0x01 } ;

20 private byte [] LongTermEncryptionKey = new byte [1 6] ;

21 private byte [] LongTermMacKey = new byte [1 6] ;

22 private byte [] MACedDataTag = {

23 (byte) 0x5D , (byte) 0x01 } ;

24 private byte [] MessageHandlerTSMSC = {

25 (byte) 0xF1 , (byte) 0xF1 } ;

26 private byte [] PublicExponentTag = {

27 (byte) 0xEE, (byte) 0x01 } ;

359

C.6 Application Acquisition and Contractual Agreement Protocol

28 private byte [] PublicModulusTag = {

29 (byte) 0xEE, (byte) 0x02 } ;

30 private byte [] SCIdentityTag = {

31 (byte) 0x5F , (byte) 0x02 } ;

32 private byte [] SCRandomNumberTag = {

33 (byte) 0x5A , (byte) 0x02 } ;

34 private byte [] SIDTag = {

35 (byte) 0x9B , (byte) 0x9D} ;

36 private byte [] SignedDataTag = {

37 (byte) 0x5D , (byte) 0x02 } ;

38 private byte [] TSMIDTag = {

39 (byte) 0x5F , (byte) 0x04 } ;

40 private byte [] TSMIdentity = {

41 (byte) 0x7d , (byte) 0xD5 , (byte) 0xB7 , (byte) 0xD0 , (byte) 0xB6 , (byte)

42 0xC1 , (byte) 0x2e , (byte) 0x07 , (byte) 0xe9 , (byte) 0x69 , (byte) 0x8D ,

43 (byte) 0x11 , (byte) 0xEf , (byte) 0x34 , (byte) 0xfB , (byte) 0xFe ,

44 (byte) 0x0B , (byte) 0x2C} ;

45 private byte [] TSMRandomNumberTag = {

46 (byte) 0x5A , (byte) 0x04 } ;

47 private byte [] TSMSignatureCertTag = {

48 (byte) 0xF9 , (byte) 0xF9 } ;

49 private byte [] TempTag = {

50 (byte) 0x00 , (byte) 0x00 } ;

51 private byte [] UserIdent i tyTag = {

52 (byte) 0x5F , (byte) 0x03 } ;

53 private byte [] myLongTermEncryptionKey = {

54 (byte) 0x9D , (byte) 0xF3 , (byte) 0x0B , (byte) 0x5C , (byte) 0x8F , (byte)

55 0xFD, (byte) 0xAC, (byte) 0x50 , (byte) 0x6C , (byte) 0xDE, (byte) 0xBE,

56 (byte) 0x7B , (byte) 0x89 , (byte) 0x99 , (byte) 0x8C , (byte) 0xAF} ;

57 private byte [] myLongTermMacKey = {

58 (byte) 0x74 , (byte) 0x86 , (byte) 0x6A , (byte) 0x08 , (byte) 0xCF, (byte)

59 0xE4 , (byte) 0xFF , (byte) 0xE3 , (byte) 0xA6 , (byte) 0x82 , (byte) 0x4A ,

60 (byte) 0x4E , (byte) 0x10 , (byte) 0xB9 , (byte) 0xA6 , (byte) 0xF0 } ;

61 private PrimitiveTLV User Ident i ty = PrimitiveTLV . getPrimitiveTLV

62 (this . UserIdent ityTag) ;

63 private ConstructedTLV TSMSignatureCert i f i cate =

64 ConstructedTLV . getConstructedTLV (TSMSignatureCertTag) ;

65 private PrimitiveTLV TSMRandomNumber = PrimitiveTLV . getPrimitiveTLV

66 (this .TSMRandomNumberTag , 16) ;

67 private PrimitiveTLV TSMID = PrimitiveTLV . getPrimitiveTLV (TSMIDTag,

68 TSMIdentity) ;

69 private PrimitiveTLV SignedData = PrimitiveTLV . getPrimitiveTLV

70 (this . SignedDataTag , 64) ;

71 private PrimitiveTLV SID = PrimitiveTLV . getPrimitiveTLV (SIDTag , 16) ;

72 private PrimitiveTLV SCRandomNumber = PrimitiveTLV . getPrimitiveTLV

73 (this . SCRandomNumberTag) ;

74 private PrimitiveTLV SCIdent ity = PrimitiveTLV . getPrimitiveTLV

75 (SCIdentityTag) ;

76 private PrimitiveTLV PublicModulus = PrimitiveTLV . getPrimitiveTLV

77 (this . PublicModulusTag) ;

78 private PrimitiveTLV PublicExponent = PrimitiveTLV . getPrimitiveTLV

360

C.6 Application Acquisition and Contractual Agreement Protocol

79 (this . PublicExponentTag) ;

80 private ConstructedTLV MessageHandler =

81 ConstructedTLV . getConstructedTLV (TempTag) ;

82 private PrimitiveTLV MACedData = PrimitiveTLV . getPrimitiveTLV

83 (this .MACedDataTag) ;

84 private ConstructedTLV EncryptedData =

85 ConstructedTLV . getConstructedTLV (this . EncryptedDataTag) ;

86 private PrimitiveTLV CardID = PrimitiveTLV . getPrimitiveTLV

87 (CardIDTag) ;

88 private PrimitiveTLV AppActTLV = PrimitiveTLV . getPrimitiveTLV

89 (this . AppActTag , this . AppAct) ;

90 private Protoco lHe lpe rClas s myProtocolHelperObject = new

91 Protoco lHe lpe rClas s () ;

92 public TSMProtocolHandler () {

93 myProtocolHelperObject . p r o t o c o l I n i t i a l i s e () ;

94 RSAPublicKey tempKey = (RSAPublicKey)

95 myProtocolHelperObject . getPublicKey () ;

96 byte [] tempExponent = tempKey . getPubl icExponent () . toByteArray () ;

97 this . PublicExponent . i n i t i a l i s a t i onPTLV (this . PublicExponentTag ,

98 tempExponent . l ength) ;

99 this . PublicExponent . setTlvValues (tempExponent) ;

100 byte [] tempModulus = tempKey . getModulus () . toByteArray () ;

101 this . PublicModulus . i n i t i a l i s a t i onPTLV (this . PublicModulusTag ,

102 (tempModulus . l ength − 1)) ;

103 this . PublicModulus . setTlvValues (tempModulus , 1 ,

104 (tempModulus . l ength − 1)) ;

105 TSMSignatureCert i f i cate . addPTLV(this . PublicExponent) ;

106 TSMSignatureCert i f i cate . addPTLV(this . PublicModulus) ;

107 }

108 public void i n i t i a l i s e P r o t o c o l () {

109 try{}

110 catch (Exception cE) {

111 System . out . p r i n t l n (

112 "Error Protoco lHandler . i n i t i a l i s e P r o t o c o l Option

= 1 , : " + cE . ge tC la s s () . getName ()) ;

113 }

114 }

115 public byte [] outMessageProcess ing () {

116 try {

117 this . EncryptedData . r e s e t () ;

118 this . EncryptedData . i n i t i a l i s a t i onCTLV (this . EncryptedDataTag) ;

119 this . EncryptedData . addPTLV(this .TSMID) ;

120 this . EncryptedData . addPTLV(this . SCIdent ity) ;

121 this .TSMRandomNumber . setTlvValues

122 (this . myProtocolHelperObject . getRandomNumber ()) ;

123 this . EncryptedData . addPTLV(this .TSMRandomNumber) ;

124 this . EncryptedData . addPTLV(this . SCRandomNumber) ;

125 this . EncryptedData . addPTLV(this . Use r Ident i ty) ;

126 this . EncryptedData . addPTLV(this .AppActTLV) ;

127 this . myProtocolHelperObject . SignatureMethod

128 (this . EncryptedData . getValueBytes () , 0 ,

361

C.6 Application Acquisition and Contractual Agreement Protocol

129 this . EncryptedData . getValueBytes () . length ,

130 this . SignedData . getBytesTlvRepresentat ion () , 6 , null ,

131 Protoco lHe lpe rClas s .SIGN_MODE_GENERATION) ;

132 this . EncryptedData . addPTLV(this . SignedData) ;

133 this . EncryptedData .addCTLV(this . TSMSignatureCert i f i cate) ;

134 ConstructedTLV Temp = ConstructedTLV . getConstructedTLV (TempTag) ;

135 Temp.addPTLV(this .TSMID) ;

136 Temp.addPTLV(this . SCIdent ity) ;

137 Temp.addPTLV(this . SCRandomNumber) ;

138 Temp.addPTLV(this .TSMRandomNumber) ;

139 this . myProtocolHelperObject . GenerateMac (Temp. getValueBytes () , 0 ,

140 Temp. getTagValueLength () ,

141 this . CardID . getBytesTlvRepresentat ion () , 6 ,

142 this .myLongTermMacKey) ;

143 Temp.addPTLV(this . CardID) ;

144 this . myProtocolHelperObject . GenerateMac (Temp. getValueBytes () , 0 ,

145 Temp. getTagValueLength () ,

this . SID . getBytesTlvRepresentat ion ()

146 , 6 , this .myLongTermMacKey) ;

147 this . EncryptedData . addPTLV(SID) ;

148 this . myProtocolHelperObject . GenerateEncryption

149 (this . EncryptedData . getValueBytes () , 0 ,

150 this . EncryptedData . getValueBytes () . length ,

151 this . EncryptedData . getBytesTlvRepresentat ion () , 7 ,

152 this . myLongTermEncryptionKey) ;

153 this .MACedData . i n i t i a l i s a t i onPTLV (this .MACedDataTag , 16) ;

154 this . myProtocolHelperObject . GenerateMac

155 (this . EncryptedData . getValueBytes () , 0 ,

156 this . EncryptedData . getTagValueLength () ,

157 this .MACedData . getBytesTlvRepresentat ion () , 6 ,

158 this .myLongTermMacKey) ;

159 this . MessageHandler . r e s e t () ;

160 this . MessageHandler . i n i t i a l i s a t i onCTLV (this . MessageHandlerTSMSC)

161 ;

162 this . MessageHandler . addCTLV(EncryptedData) ;

163 this . MessageHandler . addPTLV(this .MACedData) ;

164 } catch (Exception cE) {

165 System . out . p r i n t l n (

166 "Error Protoco lHandler . inMessageProcess ing

Option = 1 , : " + cE . ge tC la s s () . getName ()) ;

167 }

168 return this . MessageHandler . getBytesTlvRepresentat ion () ;

169 }

170 public boolean inMessageProcess ing (byte [] inMessage) {

171 try {

172 this . MessageHandler . r e s e t () ;

173 this . EncryptedData . r e s e t () ;

174 MessageHandler . s e tBytesTlvRepresentat ion (inMessage , 0 ,

175 (inMessage . l ength − 2)) ;

176 childExtractionFromCTLV (MessageHandler) ;

177 byte [] temp = new byte [1 6] ;

362

C.6 Application Acquisition and Contractual Agreement Protocol

178 this . myProtocolHelperObject . GenerateMac

179 (this . EncryptedData . getValueBytes () , 0 ,

180 this . EncryptedData . getValueBytes () . length , temp , 0 ,

181 this .myLongTermMacKey) ;

182 i f (Arrays . equa l s (this .MACedData . getValueBytes () , temp)) {}

183 else {

184 System . out . p r i n t l n (

185 " I n t e g r i t y Check Fa i l u r e : ERROR at

Protoco lHandler . inMessageProcess ing \n") ;

186 System . e x i t (0) ;

187 }

188 this . myProtocolHelperObject . GenerateDecryption

189 (this . EncryptedData . getValueBytes () , 0 ,

190 this . EncryptedData . getValueBytes () . length ,

191 this . EncryptedData . getBytesTlvRepresentat ion () , 7 ,

192 this . myLongTermEncryptionKey) ;

193 this . childExtractionFromCTLV (EncryptedData) ;

194 } catch (Exception cE) {

195 System . out . p r i n t l n (

196 "Error in Protoco lHandler . inMessageProcess ing :

" + cE . ge tC la s s () . getName ()) ;

197 }

198 return true ;

199 }

200 public stat ic St r ing byteToStr ing (byte [] inArray) {

201 byte [] HEX_CHAR_TABLE = {

202 (byte) ' 0 ' , (byte) ' 1 ' , (byte) ' 2 ' , (byte) ' 3 ' , (byte) ' 4 ' , (byte)

203 ' 5 ' , (byte) ' 6 ' , (byte) ' 7 ' , (byte) ' 8 ' , (byte) ' 9 ' , (byte) ' a ' ,

204 (byte) 'b ' , (byte) ' c ' , (byte) 'd ' , (byte) ' e ' , (byte) ' f '

205 } ;

206 byte [] hex = new byte [2 ∗ inArray . l ength] ;

207 int index = 0 ;

208 for (byte b : inArray) {

209 int v = b & 0xFF ;

210 hex [index++] = HEX_CHAR_TABLE[v >>> 4] ;

211 hex [index++] = HEX_CHAR_TABLE[v & 0xF] ;

212 }

213 try {

214 return new St r ing (hex , "ASCII") ;

215 } catch (Exception cE) {

216 System . out . p r i n t l n ("Exception in bytesToStr ing : " +

217 cE . getMessage () + "\n" + cE . getStackTrace ()

218 . t oS t r i ng ()) ;

219 }

220 return "Error " ;

221 }

222 void childExtractionFromCTLV (ConstructedTLV inCTLV) {

223 try {

224 int c h i l d s = inCTLV . getChildNumbers () ;

225 PrimitiveTLV pTemp = null ;

226 ConstructedTLV cTemp = null ;

363

C.7 Application Binding Protocol - Local

227 while (c h i l d s > 0) {

228 switch (inCTLV . nextType ()) {

229 case 1 :

230 pTemp = (PrimitiveTLV)inCTLV . getNext () ;

231 i f (Arrays . equa l s (pTemp . getTagName () ,

232 this . CardID . getTagName ())) {

233 this . CardID = pTemp ;

234 }

235 else i f (Arrays . equa l s (pTemp . getTagName () ,

236 this . SCIdent ity . getTagName ())) {

237 this . SCIdent ity = pTemp ;

238 }

239 else i f (Arrays . equa l s (pTemp . getTagName () ,

240 this . SCRandomNumber . getTagName ())) {

241 this . SCRandomNumber = pTemp ;

242 }

243 else i f (Arrays . equa l s (pTemp . getTagName () ,

244 this .MACedData . getTagName ())) {

245 this .MACedData = pTemp ;

246 }

247 i f (Arrays . equa l s (pTemp . getTagName () ,

248 this . Use r Ident i ty . getTagName ())) {

249 this . Use r Ident i ty = pTemp ;

250 }

251 break ;

252 case 0 : cTemp = (ConstructedTLV)inCTLV . getNext () ;

253 i f (Arrays . equa l s (cTemp . getTagName () ,

254 this . EncryptedData . getTagName ())) {

255 this . EncryptedData = cTemp ;

256 }

257 break ;

258 default :

259 System . out . p r i n t l n ("Error In Pars ing Input Message") ;

260 }

261 ch i l d s −−;
262 }

263 } catch (Exception e) {

264 System . out . p r i n t l n (

265 "Error in Protoco lHanlder . ChildExtractionMethod

: " + e . ge tC la s s () . getName ()) ;

266 }

267 }

268 }

C.7 Application Binding Protocol - Local

The Java Card implementation of the ABPL discussed in section 7.4 is listed in subsequent

sections.

364

C.7 Application Binding Protocol - Local

C.7.1 Client Application

Implementation of a client application that request for the application binding in the

UCOM �rewall mechanism is listed as below:

1 package AppBindingProt ;

2

3 import javacard . framework . ∗ ;
4 import javacard . s e c u r i t y . ∗ ;
5 import javacardx . crypto . ∗ ;
6 public class ClientApp {

7 byte [] C l i e n t I d en t i t y = {

8 (byte) 0xbc , (byte) 0xc0 , (byte) 0xea , (byte) 0x07 , (byte) 0x94 } ;

9 byte [] S e rve rDige s t = new byte [3 2] ;

10 byte [] S e r v e r I d en t i t y = {

11 (byte) 0x4f , (byte) 0x39 , (byte) 0xf5 , (byte) 0xdb , (byte) 0xd1 } ;

12 byte [] TokenValue = {

13 (byte) 0x4f , (byte) 0x39 , (byte) 0xf5 , (byte) 0xdb } ;

14 byte [] c l i en tR = {

15 (byte) 0x4D , (byte) 0xAB, (byte) 0xC0 , (byte) 0x70 , (byte) 0x8B , (byte)

16 0x11 , (byte) 0x45 , (byte) 0xA9 , (byte) 0xCC, (byte) 0xD7 , (byte) 0x4F ,

17 (byte) 0x3A , (byte) 0xD8 , (byte) 0xBB, (byte) 0xF1 , (byte) 0x61 } ;

18 Cipher AESCipher ;

19 RandomData clientPRNG ;

20 AESKey clientTPMKey ;

21 private KeyPair c l ient_SignKeyPair ;

22 short encrypt ionLength ;

23 AESKey myClientAppServerKey ;

24 Cipher myClientAppSignature ;

25 ScTPM mySCTPMRef ;

26 ServerApp myServerAppRef ;

27 byte [] pMessage ;

28 PublicKey s e rv e rVe r i f i c a t i onKey ;

29 protected ClientApp () {

30 clientPRNG = RandomData . g e t In s tance (RandomData .ALG_PSEUDO_RANDOM) ;

31 c l ient_SignKeyPair = new KeyPair (KeyPair .ALG_RSA_CRT,

32 KeyBuilder .LENGTH_RSA_512) ;

33 myClientAppServerKey = (AESKey) KeyBuilder . buildKey

34 (KeyBuilder .TYPE_AES,

35 KeyBuilder .LENGTH_AES_128, fa l se) ;

36 clientTPMKey = (AESKey) KeyBuilder . buildKey (KeyBuilder .TYPE_AES,

37 KeyBuilder .LENGTH_AES_128, fa l se) ;

38 AESCipher = Cipher . g e t In s tance (Cipher .ALG_AES_BLOCK_128_CBC_NOPAD,

39 fa l se) ;

40 myClientAppSignature = Cipher . g e t In s tance (Cipher .ALG_RSA_NOPAD,

41 fa l se) ;

42 }

43 public stat ic ClientApp objectGenerator () {

44 return new ClientApp () ;

45 }

46 public void ob j e c t I n s t a n t i a t i o n () {

365

C.7 Application Binding Protocol - Local

47 c l ient_SignKeyPair . genKeyPair () ;

48 clientPRNG . generateData (c l i entR , (short) 0 , (short) c l i en tR . l ength) ;

49 clientTPMKey . setKey (c l i entR , (short) 0) ;

50 }

51 public void c l i entUpdate (ScTPM obSCTPM, ServerApp obServerApp) {

52 mySCTPMRef = obSCTPM;

53 myServerAppRef = obServerApp ;

54 myServerAppRef . c l i e n tS i gnVe r i f i c a t i onUpda t e

55 (c l ient_SignKeyPair . ge tPub l i c ()) ;

56 obSCTPM. clientTPMKeyAgreement (clientTPMKey) ;

57 }

58 public void s e rv e rS i gnVe r i f i c a t i onUpdat e (PublicKey s i g nV e r i f i c a t i o n)

59 {

60 s e r v e rVe r i f i c a t i onKey = s i g nV e r i f i c a t i o n ;

61 }

62 public void digestUpdate (byte [] spServe rDiges t) {

63 ServerDige s t = spServe rDige s t ;

64 }

65 public byte [] s t a r tP r o t o c o l () {

66 pMessage = JCSystem . makeTransientByteArray ((short) 256 ,

67 JCSystem .MEMORY_TYPE_TRANSIENT_DESELECT) ;

68 short i n i t i a lTab = 4 ;

69 pMessage [0] = (byte) i n i t i a lTab ;

70 pMessage [0] = (byte) Ut i l . arrayCopyNonAtomic (C l i en t Id en t i t y ,

71 (short) 0 , pMessage , i n i t i a lTab , (short)

72 Cl i e n t I d en t i t y . l ength) ;

73 pMessage [0] = (byte) Ut i l . arrayCopyNonAtomic (Se rve r Ident i ty ,

74 (short) 0 , pMessage , pMessage [0] , (short)

75 Se rv e r I d en t i t y . l ength) ;

76 clientPRNG . generateData (c l i entR , (short) 0 , (short) c l i en tR . l ength) ;

77 pMessage [0] = (byte) Ut i l . arrayCopyNonAtomic (c l i entR , (short) 0 ,

78 pMessage , pMessage [0] , (short) c l i en tR . l ength) ;

79 generateEncryptionData (clientTPMKey) ;

80 for (short i = (short) ((short) 58+(short) i n i t i a lTab) ; i < (short)

81 (64+ i n i t i a lTab) ; i++) {

82 pMessage [i] = (byte) 0xCC;

83 }

84 generateS ignatureData () ;

85 try {

86 myServerAppRef . protocolManager ((short) 1 , pMessage) ;

87 } catch (Exception e) {

88 ISOException . throwIt ((short) 0xB001) ;

89 }

90 AESKey sess ionKey = (AESKey) KeyBuilder . buildKey

91 (KeyBuilder .TYPE_AES,

92 KeyBuilder .LENGTH_AES_128, fa l se) ;

93 generatedDecryptedData ((short) 4 , (short) 64 , clientTPMKey) ;

94 sess ionKey . setKey (pMessage , (short) 36) ;

95 try {

96 generatedDecryptedData ((short) 68 , (short) 48 , sess ionKey) ;

97 myClientAppServerKey . setKey (pMessage , (short) 68) ;

366

C.7 Application Binding Protocol - Local

98 } catch (Exception e) {

99 ISOException . throwIt ((short) 0x0001) ;

100 }

101 try {

102 ver i fyS ignedData ((short) 116 , (short) 64) ;

103 } catch (Exception e) {

104 ISOException . throwIt ((short) 0x0002) ;

105 }

106 try {

107 generatedDecryptedData ((short) 116 , (short) 32 ,

108 myClientAppServerKey) ;

109 } catch (Exception e) {

110 ISOException . throwIt ((short) 0x0003) ;

111 }

112 Ut i l . arrayCopyNonAtomic (pMessage , (short) 116 , TokenValue , (short)

113 0 , (short) TokenValue . l ength) ;

114 pMessage [0] = (byte) Ut i l . arrayCopyNonAtomic (C l i en t Id en t i t y ,

115 (short) 0 , pMessage , i n i t i a lTab , (short)

116 Cl i e n t I d en t i t y . l ength) ;

117 pMessage [0] = (byte) Ut i l . arrayCopyNonAtomic (Se rve r Ident i ty ,

118 (short) 0 , pMessage , pMessage [0] , (short)

119 Se rv e r I d en t i t y . l ength) ;

120 pMessage [2] = pMessage [0] ;

121 pMessage [0] = (byte) Ut i l . arrayCopyNonAtomic (TokenValue , (short) 0 ,

122 pMessage , pMessage [0] , (short) TokenValue . l ength) ;

123 pMessage [0] = (byte) Ut i l . arrayCopyNonAtomic (c l i entR , (short) 0 ,

124 pMessage , pMessage [0] , (short) c l i en tR . l ength) ;

125 pMessage [0] = (byte) (pMessage [0] − pMessage [2]) ;

126 try {

127 encryptData ((short) 4 , (short) 30 , myClientAppServerKey) ;

128 } catch (Exception e) {

129 ISOException . throwIt ((short) 0x0004) ;

130 }

131 try {

132 myServerAppRef . protocolManager ((short) 2 , pMessage) ;

133 } catch (Exception e) {

134 ISOException . throwIt ((short) 0x00A5) ;

135 }

136 return TokenValue ;

137 }

138 public void protocolManager (byte [] pMessage) {}

139 protected void generateEncryptionData (AESKey Key) {

140 pMessage [3] += (short) (pMessage [0] − 4) ;

141 AESCipher . i n i t (Key , Cipher .MODE_ENCRYPT) ;

142 short paddingbytes = (short) (16−((pMessage [0] % 16) − (short) 4)) ;

143 i f (paddingbytes != 0) {

144 for (short i = 0 ; i < paddingbytes ; i++) {

145 pMessage [(short) (pMessage [0] + i)] = (byte) 0xFF ;

146 }

147 }

148 pMessage [0] += (byte) paddingbytes ;

367

C.7 Application Binding Protocol - Local

149 byte [] temp = new byte [pMessage [0]] ;

150 pMessage [1] = (byte)AESCipher . doFinal (pMessage , (short) 4 , (short)

151 (pMessage [0] − 4) , temp , (short) 0) ;

152 pMessage [3] += pMessage [1] ;

153 pMessage [0] −= (byte) paddingbytes ;

154 Ut i l . arrayCopyNonAtomic (temp , (short) 0 , pMessage , pMessage [0] ,

155 (short) pMessage [1]) ;

156 }

157 protected void encryptData (short s ta r t , short l ength , AESKey Key) {

158 short paddingbytes = 0 ;

159 i f ((short) (l ength % 16) != 0) {

160 paddingbytes = (short) (16−(l ength % 16)) ;

161 }

162 byte [] temp = JCSystem . makeTransientByteArray ((short) (l ength +

163 paddingbytes) , JCSystem .CLEAR_ON_DESELECT) ;

164 AESCipher . i n i t (Key , Cipher .MODE_ENCRYPT) ;

165 Ut i l . arrayCopyNonAtomic (pMessage , (short) s ta r t , temp , (short) 0 ,

166 (short) l ength) ;

167 i f (paddingbytes != 0) {

168 for (short i = 0 ; i < paddingbytes ; i++, l ength++) {

169 temp [(short) (l ength)] = (byte) 0xFF ;

170 }

171 }

172 AESCipher . doFinal (temp , (short) 0 , (short) length , pMessage , (short)

173 s t a r t) ;

174 }

175 protected void generateS ignatureData () {

176 byte [] s i gBu f f = JCSystem . makeTransientByteArray ((short) 256 ,

177 JCSystem .CLEAR_ON_DESELECT) ;

178 short s igLen = 0 ;

179 myClientAppSignature . i n i t (c l ient_SignKeyPair . g e tPr iva t e () ,

180 Cipher .MODE_ENCRYPT) ;

181 s igLen = myClientAppSignature . doFinal (pMessage , (short) 4 , (short)

182 64 , s i gBuf f , (short) 0) ;

183 Ut i l . arrayCopyNonAtomic (s i gBuf f , (short) 0 , pMessage , (short) 4 ,

184 s igLen) ;

185 pMessage [2] = (byte) s igLen ;

186 }

187 protected void generatedDecryptedData (short s ta r t , short l ength ,

188 AESKey Key) {

189 byte [] tempBuff = JCSystem . makeTransientByteArray (length ,

190 JCSystem .MEMORY_TYPE_TRANSIENT_DESELECT) ;

191 AESCipher . i n i t (Key , Cipher .MODE_DECRYPT) ;

192 Ut i l . arrayCopyNonAtomic (pMessage , s t a r t , tempBuff , (short) 0 ,

193 (short) l ength) ;

194 AESCipher . doFinal (tempBuff , (short) 0 , (short) length , pMessage ,

195 (short) s t a r t) ;

196 }

197 protected boolean ver i fyS ignedData (short s ta r t , short l ength) {

198 myClientAppSignature . i n i t (s e rv e rVe r i f i c a t i onKey ,

199 Cipher .MODE_DECRYPT) ;

368

C.7 Application Binding Protocol - Local

200 byte [] tempBuff = JCSystem . makeTransientByteArray ((short) 256 ,

201 JCSystem .MEMORY_TYPE_TRANSIENT_DESELECT) ;

202 Ut i l . arrayCopyNonAtomic (pMessage , (short) s ta r t , tempBuff , (short)

203 0 , (short) l ength) ;

204 myClientAppSignature . doFinal (tempBuff , (short) 0 , (short) length ,

205 pMessage , (short) s t a r t) ;

206 return true ;

207 }

208 }

C.7.2 Server Application

Implementation of a server application that responds to the application binding request in

the UCOM �rewall mechanism is listed as below:

1 package AppBindingProt ;

2

3 import javacard . framework . ∗ ;
4 import javacard . s e c u r i t y . ∗ ;
5 import javacardx . crypto . ∗ ;
6 public class ServerApp {

7 byte [] C l i en tD ige s t = new byte [3 2] ;

8 byte [] C l i e n t I d en t i t y = {

9 (byte) 0xbc , (byte) 0xc0 , (byte) 0xea , (byte) 0x07 , (byte) 0x94 } ;

10 byte [] RandomNumberClient = new byte [1 6] ;

11 byte [] RandomNumberServer = {

12 (byte) 0x04 , (byte) 0x95 , (byte) 0x5E , (byte) 0x4F , (byte) 0x13 , (byte)

13 0x9A , (byte) 0x06 , (byte) 0x89 , (byte) 0x2C , (byte) 0x3D , (byte) 0x79 ,

14 (byte) 0xFA, (byte) 0xD1 , (byte) 0xAB, (byte) 0x2D , (byte) 0x5F } ;

15 byte [] S e r v e r I d en t i t y = {

16 (byte) 0x4f , (byte) 0x39 , (byte) 0xf5 , (byte) 0xdb , (byte) 0xd1 } ;

17 byte [] TokenValue = {

18 (byte) 0xbc , (byte) 0xbc , (byte) 0xbc , (byte) 0xbc } ;

19 RandomData myServerAppRandomData = RandomData . g e t In s tance

20 (RandomData .ALG_PSEUDO_RANDOM) ;

21 KeyPair server_SignKeyPair = new KeyPair (KeyPair .ALG_RSA_CRT,

22 KeyBuilder .LENGTH_RSA_512) ;

23 AESKey SerTpmKey = (AESKey) KeyBuilder . buildKey (KeyBuilder .TYPE_AES,

24 KeyBuilder .LENGTH_AES_128, fa l se) ;

25 Cipher AESCipher = Cipher . g e t In s tance

26 (Cipher .ALG_AES_BLOCK_128_CBC_NOPAD, fa l se) ;

27 ClientApp myClientAppRef ;

28 PublicKey myCl ientVer i f i cat ionKey ;

29 Cipher myServerAppSignature ;

30 AESKey myServerClientAppKey ;

31 ScTPM myTPMRef ;

32 byte [] pMessage ;

33 AESKey sess ionKey ;

34 protected ServerApp () {

35 myServerAppSignature = Cipher . g e t In s tance (Cipher .ALG_RSA_NOPAD,

36 fa l se) ;

369

C.7 Application Binding Protocol - Local

37 }

38 public stat ic ServerApp objectGenerator () {

39 return new ServerApp () ;

40 }

41 public void ob j e c t I n s t a n t i a t i o n () {

42 server_SignKeyPair . genKeyPair () ;

43 SerTpmKey . setKey (RandomNumberServer , (short) 0) ;

44 }

45 public void serverUpdate (ScTPM obScTPM, ClientApp obClientApp) {

46 myTPMRef = obScTPM;

47 myClientAppRef = obClientApp ;

48 myClientAppRef . s e rv e rS i gnVe r i f i c a t i onUpdat e

49 (server_SignKeyPair . ge tPub l i c ()) ;

50 obScTPM. serverTPMKeyAgreement (SerTpmKey) ;

51 }

52 public void c l i e n tS i gnVe r i f i c a t i onUpda t e (PublicKey s i g nV e r i f i c a t i o n)

53 {

54 myCl ientVer i f i cat ionKey = s i g nV e r i f i c a t i o n ;

55 }

56 public void digestUpdate (byte [] s pC l i en tD ige s t) {

57 Cl i en tD ige s t = spCl i en tD ige s t ;

58 }

59 public void protocolManager (short stage , byte [] p_Message) {

60 this . pMessage = p_Message ;

61 i f (s tage == 1) {

62 pMessage [3] = (byte) 64 ;

63 ver i fyS ignedData () ;

64 Ut i l . arrayCopyNonAtomic (pMessage , (short) (4

65 +Cl i e n t I d en t i t y . l ength +

66 Se rv e r I d en t i t y . l ength) ,

67 RandomNumberClient , (short) 0 , (short)

68 RandomNumberClient . l ength) ;

69 pMessage [3] = (byte) 68 ;

70 pMessage [2] = pMessage [3] ;

71 pMessage [3] = (byte) Ut i l . arrayCopyNonAtomic (Se rve r Ident i ty ,

72 (short) 0 , pMessage , (short) pMessage [3] , (short)

73 Se rv e r Id en t i t y . l ength) ;

74 pMessage [3] = (byte) Ut i l . arrayCopyNonAtomic (C l i en t Id en t i t y ,

75 (short) 0 , pMessage , (short) pMessage [3] , (short)

76 Cl i e n t I d en t i t y . l ength) ;

77 myServerAppRandomData . generateData (RandomNumberServer , (short) 0 ,

78 (short)RandomNumberServer . l ength) ;

79 pMessage [3] = (byte) Ut i l . arrayCopyNonAtomic (RandomNumberServer ,

80 (short) 0 , pMessage , (short) pMessage [3] , (short)

81 RandomNumberServer . l ength) ;

82 pMessage [0] = (byte) (C l i e n t I d en t i t y . l ength +

83 Se rv e r Id en t i t y . l ength +

84 RandomNumberServer . l ength) ;

85 for (short i = 0 ; i < 6 ; i++) {

86 pMessage [(short) (pMessage [3] + i)] = (byte) 0xCA;

87 }

370

C.7 Application Binding Protocol - Local

88 pMessage [2] = (byte) 32 ;

89 pMessage [0] = (byte) 68 ;

90 generateEncryptedData ((short) pMessage [0] , (short) pMessage [2] ,

91 SerTpmKey) ;

92 myTPMRef . v a l i d a t eApp l i c a t i on s (pMessage) ;

93 generatedDecryptedData ((short) 68 , (short) 64 , SerTpmKey) ;

94 sess ionKey = (AESKey) KeyBuilder . buildKey (KeyBuilder .TYPE_AES,

95 KeyBuilder .LENGTH_AES_128, fa l se) ;

96 sess ionKey . setKey (pMessage , (short) (100)) ;

97 myServerClientAppKey = (AESKey) KeyBuilder . buildKey

98 (KeyBuilder .TYPE_AES,

99 KeyBuilder .LENGTH_AES_128, fa l se) ;

100 byte [] keyGenerationArray = JCSystem . makeTransientByteArray (

101 (short) 16 , JCSystem .MEMORY_TYPE_TRANSIENT_DESELECT) ;

102 myServerAppRandomData . generateData (keyGenerationArray , (short) 0 ,

103 (short) keyGenerationArray . l ength) ;

104 myServerClientAppKey . setKey (keyGenerationArray , (short) 0) ;

105 for (short i = 0 ; i < 16 ; i++) {

106 RandomNumberClient [i] = (byte) 0xFF ;

107 }

108 myServerClientAppKey . getKey (pMessage , (short) 68) ;

109 Ut i l . arrayCopyNonAtomic (RandomNumberClient , (short) 0 , p_Message ,

110 (short) 84 , (short)

111 RandomNumberClient . l ength) ;

112 Ut i l . arrayCopyNonAtomic (RandomNumberServer , (short) 0 , p_Message ,

113 (short) 100 , (short)

114 RandomNumberServer . l ength) ;

115 generateEncryptedData ((short) 68 , (short) 48 , sess ionKey) ;

116 Ut i l . arrayCopyNonAtomic (TokenValue , (short) 0 , pMessage , (short)

117 116 , (short) TokenValue . l ength) ;

118 xorRandomNumberCS ((short) 120) ;

119 generateEncryptedData ((short) 116 , (short) 20 ,

120 myServerClientAppKey) ;

121 generateS ignatureData ((short) 116 , (short) 32) ;

122 return ;

123 }

124 i f (s tage == 2) {

125 generatedDecryptedData ((short) 4 , (short) 32 ,

126 myServerClientAppKey) ;

127 i f ((byte) Ut i l . arrayCompare (TokenValue , (short) 0 , pMessage ,

128 (short) 14 , (short) 4) == (byte) 0) {

129 return ;

130 } else {

131 ISOException . throwIt ((short) 0xFFFF) ;

132 }

133 } else {

134 ISOException . throwIt ((short) 0x6300) ;

135 }

136 }

137 protected void xorRandomNumberCS(short s t a r t) {

138 for (short i = 0 ; i < (short) 16 ; i++, s t a r t++) {

371

C.7 Application Binding Protocol - Local

139 pMessage [s t a r t] = (byte) (RandomNumberServer [i] |

140 RandomNumberClient [i]) ;

141 }

142 }

143 protected void generateEncryptedData (short s ta r t , short l ength ,

144 AESKey Key) {

145 short paddingbytes = 0 ;

146 i f ((short) (l ength % 16) != 0) {

147 paddingbytes = (short) (16−(l ength % 16)) ;

148 }

149 byte [] temp = JCSystem . makeTransientByteArray ((short) (l ength +

150 paddingbytes) , JCSystem .MEMORY_TYPE_TRANSIENT_DESELECT) ;

151 AESCipher . i n i t (Key , Cipher .MODE_ENCRYPT) ;

152 Ut i l . arrayCopyNonAtomic (pMessage , (short) s ta r t , temp , (short) 0 ,

153 (short) l ength) ;

154 i f (paddingbytes != 0) {

155 for (short i = 0 ; i < paddingbytes ; i++, l ength++) {

156 temp [(short) (l ength)] = (byte) 0xFF ;

157 }

158 }

159 AESCipher . doFinal (temp , (short) 0 , (short) length , pMessage , (short)

160 s t a r t) ;

161 }

162 protected void generatedDecryptedData (short s ta r t , short l ength ,

163 AESKey Key) {

164 byte [] tempBuff = JCSystem . makeTransientByteArray (length ,

165 JCSystem .MEMORY_TYPE_TRANSIENT_DESELECT) ;

166 AESCipher . i n i t (Key , Cipher .MODE_DECRYPT) ;

167 Ut i l . arrayCopyNonAtomic (pMessage , s t a r t , tempBuff , (short) 0 ,

168 (short) l ength) ;

169 AESCipher . doFinal (tempBuff , (short) 0 , (short) length , pMessage ,

170 (short) s t a r t) ;

171 }

172 protected void generateS ignatureData (short s ta r t , short l ength) {

173 byte [] s i gBu f f = JCSystem . makeTransientByteArray ((short) (64+2) ,

174 JCSystem .MEMORY_TYPE_TRANSIENT_DESELECT) ;

175 myServerAppSignature . i n i t (server_SignKeyPair . g e tPr iva t e () ,

176 Cipher .MODE_ENCRYPT) ;

177 i f (l ength < 64) {

178 for (short i = 0 ; i < (short) 32 ; i++) {

179 pMessage [(short) (s t a r t + length + i)] = (byte) 0x5A ;

180 }

181 }

182 myServerAppSignature . doFinal (pMessage , (short) s ta r t , (short) 64 ,

183 s i gBuf f , (short) 0) ;

184 Ut i l . arrayCopyNonAtomic (s i gBuf f , (short) 0 , pMessage , (short) s ta r t ,

185 (short) 64) ;

186 }

187 protected boolean ver i fyS ignedData () {

188 myServerAppSignature . i n i t (myCl ientVer i f i cat ionKey ,

189 Cipher .MODE_DECRYPT) ;

372

C.7 Application Binding Protocol - Local

190 byte [] tempBuff = JCSystem . makeTransientByteArray ((short) 256 ,

191 JCSystem .MEMORY_TYPE_TRANSIENT_DESELECT) ;

192 Ut i l . arrayCopyNonAtomic (pMessage , (short) 4 , tempBuff , (short) 0 ,

193 (short) 64) ;

194 myServerAppSignature . doFinal (tempBuff , (short) 0 , (short) 64 ,

195 pMessage , (short) 4) ;

196 return true ;

197 }

198 }

C.7.3 TEM Handler

Implementation of TEM handler that generates the state proof of individual applications

in the UCOM �rewall mechanism is listed as below:

1 package AppBindingProt ;

2

3 import javacard . framework . ∗ ;
4 import javacard . s e c u r i t y . ∗ ;
5 import javacardx . crypto . ∗ ;
6 public class ScTPM {

7 private stat ic byte [] AppDataFile = {

8 (byte) 0x37 , (byte) 0x7a , (byte) 0xbc , (byte) 0xc0 , (byte) 0xea , (byte)

9 0x07 , (byte) 0x94 , (byte) 0x59 , (byte) 0xd6 , (byte) 0x37 , (byte) 0x6b ,

10 (byte) 0x4c , (byte) 0x82 , (byte) 0xdb , (byte) 0x54 , (byte) 0xb2 ,

11 (byte) 0xe8 , (byte) 0xea , (byte) 0x71 , (byte) 0xe1 , (byte) 0xa4 ,

12 (byte) 0x41 , (byte) 0x06 , (byte) 0x44 , (byte) 0 xfe , (byte) 0x86 ,

13 (byte) 0x8e , (byte) 0x4f , (byte) 0x39 , (byte) 0xf5 , (byte) 0xdb ,

14 (byte) 0xd1 , (byte) 0xf1 , (byte) 0xc5 , (byte) 0xd8 , (byte) 0xac ,

15 (byte) 0xbb , (byte) 0x73 , (byte) 0x51 , (byte) 0xa1 , (byte) 0xa3 ,

16 (byte) 0x8a , (byte) 0x26 , (byte) 0x5d , (byte) 0xf3 , (byte) 0x61 ,

17 (byte) 0x55 , (byte) 0x56 , (byte) 0x39 , (byte) 0x3f , (byte) 0x4c ,

18 (byte) 0x2a , (byte) 0x43 , (byte) 0xc4 , (byte) 0xd7 , (byte) 0xa1 ,

19 (byte) 0xaa , (byte) 0xc1 , (byte) 0xf2 , (byte) 0xd6 , (byte) 0x07 ,

20 (byte) 0xa8 , (byte) 0x58 , (byte) 0x9a , (byte) 0x70 , (byte) 0x84 ,

21 (byte) 0x15 , (byte) 0x19 , (byte) 0x56 , (byte) 0x61 , (byte) 0x3d ,

22 (byte) 0x88 , (byte) 0x2a , (byte) 0x44 , (byte) 0x54 , (byte) 0x29 ,

23 (byte) 0x29 , (byte) 0x26 , (byte) 0x36 , (byte) 0x06 , (byte) 0 xfe ,

24 (byte) 0xad , (byte) 0x27 , (byte) 0x13 , (byte) 0x86 , (byte) 0x0e ,

25 (byte) 0x85 , (byte) 0x3c , (byte) 0x32 , (byte) 0xe2 , (byte) 0x38 ,

26 (byte) 0xd2 , (byte) 0x91 , (byte) 0x82 , (byte) 0x89 , (byte) 0xce ,

27 (byte) 0x79 , (byte) 0x02 , (byte) 0x43 , (byte) 0xfd , (byte) 0xaf ,

28 (byte) 0x18 , (byte) 0xe8 , (byte) 0x5b , (byte) 0xd4 , (byte) 0x72 ,

29 (byte) 0x03 , (byte) 0x63 , (byte) 0x2b , (byte) 0x29 , (byte) 0x72 ,

30 (byte) 0xe0 , (byte) 0x92 , (byte) 0x54 , (byte) 0x06 , (byte) 0x1c ,

31 (byte) 0x7f , (byte) 0xc7 , (byte) 0x37 , (byte) 0x93 , (byte) 0x2f ,

32 (byte) 0x7a , (byte) 0x84 , (byte) 0x95 , (byte) 0xec , (byte) 0x5e ,

33 (byte) 0xa5 , (byte) 0xf6 , (byte) 0x4e , (byte) 0x7e , (byte) 0x1f ,

34 (byte) 0xe6 , (byte) 0xe2 , (byte) 0x04 , (byte) 0x2e , (byte) 0x25 ,

35 (byte) 0x7f , (byte) 0x2f , (byte) 0x3c , (byte) 0 xfe , (byte) 0x57 ,

36 (byte) 0x9e , (byte) 0x7f , (byte) 0xce , (byte) 0x72 , (byte) 0xc0 ,

373

C.7 Application Binding Protocol - Local

37 (byte) 0xe9 , (byte) 0x79 , (byte) 0x05 , (byte) 0xc5 , (byte) 0xfd ,

38 (byte) 0x6a , (byte) 0x46 , (byte) 0 xfe , (byte) 0x33 , (byte) 0x84 ,

39 (byte) 0x3f , (byte) 0x09 , (byte) 0xae , (byte) 0x01 , (byte) 0x18 ,

40 (byte) 0x5a , (byte) 0xf6 , (byte) 0xc6 , (byte) 0xd3 , (byte) 0xa1 ,

41 (byte) 0xe2 , (byte) 0x90 , (byte) 0x83 , (byte) 0x79 , (byte) 0xee ,

42 (byte) 0xa6 , (byte) 0xd4 , (byte) 0xf6 , (byte) 0xd1 , (byte) 0x86 ,

43 (byte) 0x91 , (byte) 0x34 , (byte) 0x00 , (byte) 0xd3 , (byte) 0xe4 ,

44 (byte) 0x8a , (byte) 0xfb , (byte) 0xaa , (byte) 0x6c , (byte) 0xe5 ,

45 (byte) 0x46 , (byte) 0xa7 , (byte) 0x00 , (byte) 0x9e , (byte) 0xd8 ,

46 (byte) 0x81 , (byte) 0xbc , (byte) 0xd1 , (byte) 0xb5 , (byte) 0x60 ,

47 (byte) 0xd5 , (byte) 0x91 , (byte) 0x13 , (byte) 0x06 , (byte) 0x68 ,

48 (byte) 0x21 , (byte) 0x8f , (byte) 0x7d , (byte) 0xc2 , (byte) 0x3e ,

49 (byte) 0xd2 , (byte) 0x75 , (byte) 0x0f , (byte) 0x97 , (byte) 0x64 ,

50 (byte) 0xb1 , (byte) 0xdb , (byte) 0x74 , (byte) 0x6e , (byte) 0x91 ,

51 (byte) 0x6b , (byte) 0xa7 , (byte) 0x7d , (byte) 0 xef , (byte) 0x8b ,

52 (byte) 0x37 , (byte) 0xb7 , (byte) 0x84 , (byte) 0x1e , (byte) 0xa7 ,

53 (byte) 0x26 , (byte) 0x26 , (byte) 0xea , (byte) 0xe9 , (byte) 0xb7 ,

54 (byte) 0x5e , (byte) 0x3f , (byte) 0xdf , (byte) 0xa4 , (byte) 0xc5 ,

55 (byte) 0x45 , (byte) 0x4e , (byte) 0x34 , (byte) 0x33 , (byte) 0xe5 ,

56 (byte) 0x43 , (byte) 0x46 , (byte) 0xc0 , (byte) 0x2b , (byte) 0xbd ,

57 (byte) 0x85 , (byte) 0x2f , (byte) 0xca , (byte) 0xf8 , (byte) 0x9d ,

58 (byte) 0xb4 , (byte) 0xbc , (byte) 0x67 , (byte) 0x92 , (byte) 0xd4 ,

59 (byte) 0x33 , (byte) 0xfd , (byte) 0xbd , (byte) 0x82 , (byte) 0x9d ,

60 (byte) 0x62 , (byte) 0 xfc , (byte) 0xbb , (byte) 0xd2 , (byte) 0xad ,

61 (byte) 0x05 , (byte) 0xa2 , (byte) 0 xfc , (byte) 0x2d , (byte) 0xe3 ,

62 (byte) 0x02 , (byte) 0xe2 , (byte) 0x41 , (byte) 0x9b , (byte) 0x1f ,

63 (byte) 0xf8 , (byte) 0x87 , (byte) 0x15 , (byte) 0x89 , (byte) 0xfb ,

64 (byte) 0x53 , (byte) 0x99 , (byte) 0xb3 , (byte) 0xeb , (byte) 0xdb ,

65 (byte) 0x01 , (byte) 0xaf , (byte) 0x71 , (byte) 0xd2 , (byte) 0xf2 ,

66 (byte) 0x73 , (byte) 0xb7 , (byte) 0x82 , (byte) 0x30 , (byte) 0x25 ,

67 (byte) 0x04 , (byte) 0x29 , (byte) 0x2b , (byte) 0xb9 , (byte) 0x92 ,

68 (byte) 0x92 , (byte) 0x35 , (byte) 0x97 , (byte) 0x0e , (byte) 0xb8 ,

69 (byte) 0xf2 , (byte) 0xc6 , (byte) 0x2e , (byte) 0xa7 , (byte) 0x2d ,

70 (byte) 0x0c , (byte) 0x09 , (byte) 0x5e , (byte) 0x07 , (byte) 0x06 ,

71 (byte) 0x67 , (byte) 0xa0 , (byte) 0xdf , (byte) 0x55 , (byte) 0x09 ,

72 (byte) 0 xfc , (byte) 0xee , (byte) 0x2b , (byte) 0x13 , (byte) 0x1a ,

73 (byte) 0x2e , (byte) 0x5d , (byte) 0x0a , (byte) 0xbb , (byte) 0x45 ,

74 (byte) 0x75 , (byte) 0xf4 , (byte) 0xd8 , (byte) 0xdc , (byte) 0x2e ,

75 (byte) 0x99 , (byte) 0x2a , (byte) 0x13 , (byte) 0xa1 , (byte) 0x1e ,

76 (byte) 0x99 , (byte) 0xfd , (byte) 0xdc , (byte) 0 xcf , (byte) 0xcc ,

77 (byte) 0x3f , (byte) 0x42 , (byte) 0xf7 , (byte) 0x3d , (byte) 0x73 ,

78 (byte) 0xee , (byte) 0xca , (byte) 0x76 , (byte) 0xe4 , (byte) 0x75 ,

79 (byte) 0xc4 , (byte) 0x21 , (byte) 0xd4 , (byte) 0x14 , (byte) 0x2e ,

80 (byte) 0x22 , (byte) 0x9c , (byte) 0xce , (byte) 0x10 , (byte) 0xaf ,

81 (byte) 0xa6 , (byte) 0x25 , (byte) 0xa0 , (byte) 0x01 , (byte) 0xb1 ,

82 (byte) 0x82 , (byte) 0xba , (byte) 0x4c , (byte) 0xb2 , (byte) 0x66 ,

83 (byte) 0x89 , (byte) 0x89 , (byte) 0x6b , (byte) 0x06 , (byte) 0x15 ,

84 (byte) 0xba , (byte) 0x64 , (byte) 0xa3 , (byte) 0x73 , (byte) 0x88 ,

85 (byte) 0x34 , (byte) 0x99 , (byte) 0x3e , (byte) 0x75 , (byte) 0x24 ,

86 (byte) 0xf4 , (byte) 0xba , (byte) 0xb0 , (byte) 0x22 , (byte) 0x8f ,

87 (byte) 0xc3 , (byte) 0x44 , (byte) 0x74 , (byte) 0x0b , (byte) 0x52 ,

374

C.7 Application Binding Protocol - Local

88 (byte) 0x96 , (byte) 0xc6 , (byte) 0x97 , (byte) 0x8b , (byte) 0xf2 ,

89 (byte) 0xe3 , (byte) 0xc1 , (byte) 0xaf , (byte) 0x53 , (byte) 0x03 ,

90 (byte) 0x51 , (byte) 0xa7 , (byte) 0x0d , (byte) 0x42 , (byte) 0x6a ,

91 (byte) 0x20 , (byte) 0x03 , (byte) 0x31 , (byte) 0xb4 , (byte) 0xc9 ,

92 (byte) 0xaa , (byte) 0x9e , (byte) 0xda , (byte) 0x6f , (byte) 0x7b ,

93 (byte) 0xb8 , (byte) 0x6d , (byte) 0x54 , (byte) 0x57 , (byte) 0xa8 ,

94 (byte) 0xed , (byte) 0x51 , (byte) 0xa4 , (byte) 0x23 , (byte) 0x05 ,

95 (byte) 0x0b , (byte) 0xb3 , (byte) 0x90 , (byte) 0x42 , (byte) 0x38 ,

96 (byte) 0xa8 , (byte) 0xbc , (byte) 0xd5 , (byte) 0x2f , (byte) 0x87 ,

97 (byte) 0x82 , (byte) 0x5b , (byte) 0 x f f , (byte) 0xdb , (byte) 0xba ,

98 (byte) 0x41 , (byte) 0x18 , (byte) 0xe0 , (byte) 0x4a , (byte) 0x07 ,

99 (byte) 0x04 , (byte) 0xe1 , (byte) 0x3c , (byte) 0xd5 , (byte) 0xbf ,

100 (byte) 0x3e , (byte) 0x40 , (byte) 0x7a , (byte) 0x33 , (byte) 0x2a ,

101 (byte) 0x61 , (byte) 0x33 , (byte) 0xa5 , (byte) 0xb4 , (byte) 0x06 ,

102 (byte) 0x96 , (byte) 0xc0 , (byte) 0xaa , (byte) 0xdb , (byte) 0x79 ,

103 (byte) 0x46 , (byte) 0xe7 , (byte) 0xe5 , (byte) 0x6d , (byte) 0xae ,

104 (byte) 0x16 , (byte) 0x6d , (byte) 0xa9 , (byte) 0x4a , (byte) 0x39 ,

105 (byte) 0x0e , (byte) 0x5b , (byte) 0x99 , (byte) 0x35 , (byte) 0x42 ,

106 (byte) 0xc3 , (byte) 0xac , (byte) 0xc1 , (byte) 0x1b , (byte) 0x6c ,

107 (byte) 0x3b , (byte) 0xdc , (byte) 0x74 , (byte) 0x3b , (byte) 0x52 ,

108 (byte) 0x5d , (byte) 0x74 , (byte) 0x30 , (byte) 0x77 , (byte) 0x3f ,

109 (byte) 0x95 , (byte) 0xf3 , (byte) 0x92 , (byte) 0xfb , (byte) 0xf6 ,

110 (byte) 0xd7 , (byte) 0x94 , (byte) 0x49 , (byte) 0x63 , (byte) 0x56 ,

111 (byte) 0xd4 , (byte) 0x8c , (byte) 0x7d , (byte) 0x56 , (byte) 0x84 ,

112 (byte) 0xca , (byte) 0x54 , (byte) 0x77 , (byte) 0x29 , (byte) 0x3b ,

113 (byte) 0xa7 , (byte) 0x60 } ;

114 public byte [] C l i e n t I d en t i t y = {

115 (byte) 0xbc , (byte) 0xc0 , (byte) 0xea , (byte) 0x07 , (byte) 0x94 } ;

116 public byte [] S e r v e r I d en t i t y = {

117 (byte) 0x4f , (byte) 0x39 , (byte) 0xf5 , (byte) 0xdb , (byte) 0xd1 } ;

118 byte [] scTPMDigestBuffer = new byte [(short) 3 2] ;

119 MessageDigest tpmDigestGen = MessageDigest . g e t In s tance

120 (MessageDigest .ALG_SHA_256, fa l se) ;

121 byte [] ServerRandomNumber = JCSystem . makeTransientByteArray ((short)

122 16 , JCSystem .CLEAR_ON_RESET) ;

123 byte [] ClientRandomNumber = JCSystem . makeTransientByteArray ((short)

124 16 , JCSystem .CLEAR_ON_RESET) ;

125 Cipher AESCipher ;

126 AESKey TpmClientApp , TpmServerApp ;

127 ClientApp myClientAppRef ;

128 ServerApp myServerAppRef ;

129 byte [] pMessage ;

130 protected ScTPM() {}

131 public void i n s t an t i a t eOb j e c t () {

132 tpmDigestGen . doFinal (AppDataFile , (short) 0 , (short)

133 AppDataFile . length , scTPMDigestBuffer ,

134 (short) 0) ;

135 AESCipher = Cipher . g e t In s tance (Cipher .ALG_AES_BLOCK_128_CBC_NOPAD,

136 fa l se) ;

137 }

138 public stat ic ScTPM objectGenerator () {

375

C.7 Application Binding Protocol - Local

139 return new ScTPM() ;

140 }

141 public void ScTPMUpdate(ServerApp obServerApp , ClientApp

142 obClientApp) {

143 myServerAppRef = obServerApp ;

144 myClientAppRef = obClientApp ;

145 myServerAppRef . d igestUpdate (scTPMDigestBuffer) ;

146 myClientAppRef . d igestUpdate (scTPMDigestBuffer) ;

147 }

148 public void clientTPMKeyAgreement (AESKey TPMClient) {

149 TpmClientApp = TPMClient ;

150 }

151 public void serverTPMKeyAgreement (AESKey TPMServer) {

152 TpmServerApp = TPMServer ;

153 }

154 public void va l i d a t eApp l i c a t i on s (byte [] p_Message) {

155 pMessage = p_Message ;

156 generateDecryt ion ((short) 30 , (short) 32 , TpmClientApp) ;

157 Ut i l . arrayCopyNonAtomic (pMessage , (short) (pMessage [0] +

158 Cl i e n t I d en t i t y . l ength +

159 Se rv e r I d en t i t y . l ength) ,

160 ClientRandomNumber , (short) 0 , (short)

161 ClientRandomNumber . l ength) ;

162 generateDecryt ion ((short) 68 , (short) 32 , TpmServerApp) ;

163 Ut i l . arrayCopyNonAtomic (pMessage , (short) (pMessage [0] +

164 Cl i e n t I d en t i t y . l ength +

165 Se rv e r I d en t i t y . l ength) ,

166 ServerRandomNumber , (short) 0 , (short)

167 ServerRandomNumber . l ength) ;

168 tpmDigestGen . doFinal (AppDataFile , (short) 0 , (short)

169 AppDataFile . length , scTPMDigestBuffer ,

170 (short) 0) ;

171 tpmDigestGen . doFinal (AppDataFile , (short) 0 , (short)

172 AppDataFile . length , scTPMDigestBuffer ,

173 (short) 0) ;

174 AESKey sess ionKey ;

175 byte [] tempDebugSessionKey = JCSystem . makeTransientByteArray (

176 (short) 16 , JCSystem .MEMORY_TYPE_TRANSIENT_DESELECT) ;

177 sess ionKey = (AESKey) KeyBuilder . buildKey (KeyBuilder .TYPE_AES,

178 KeyBuilder .LENGTH_AES_128, fa l se) ;

179 RandomData tpmKeyGenPRNG = RandomData . g e t In s tance

180 (RandomData .ALG_PSEUDO_RANDOM) ;

181 tpmKeyGenPRNG. generateData (tempDebugSessionKey , (short) 0 , (short)

182 tempDebugSessionKey . l ength) ;

183 sess ionKey . setKey (tempDebugSessionKey , (short) 0) ;

184 pMessage [0] = (byte) Ut i l . arrayCopyNonAtomic (scTPMDigestBuffer ,

185 (short) 0 , pMessage , (short) 4 , (short)

186 scTPMDigestBuffer . l ength) ;

187 pMessage [0] += (byte) sess ionKey . getKey (pMessage , (short)

188 (pMessage [0])) ;

189 ClientRandomNumber [1 5] = (byte) (ClientRandomNumber [1 5] | (byte)

376

C.8 Application Binding Protocol - Distributed

190 0x01) ;

191 pMessage [0] = (byte) Ut i l . arrayCopyNonAtomic (ClientRandomNumber ,

192 (short) 0 , pMessage , (short) pMessage [0] , (short)

193 ClientRandomNumber . l ength) ;

194 generateEncrypt ion ((short) 4 , (short) 64 , TpmClientApp) ;

195 pMessage [0] = (byte) Ut i l . arrayCopyNonAtomic (scTPMDigestBuffer ,

196 (short) 0 , pMessage , (short) 68 , (short)

197 scTPMDigestBuffer . l ength) ;

198 pMessage [0] += (byte) sess ionKey . getKey (pMessage , (short)

199 pMessage [0]) ;

200 ServerRandomNumber [1 5] = (byte) (ServerRandomNumber [1 5] + (byte) 1) ;

201 pMessage [0] = (byte) Ut i l . arrayCopyNonAtomic (ServerRandomNumber ,

202 (short) 0 , pMessage , (short) pMessage [0] , (short)

203 ServerRandomNumber . l ength) ;

204 generateEncrypt ion ((short) 68 , (short) 64 , TpmServerApp) ;

205 }

206 public void generateDecryt ion (short s ta r t , short l ength , AESKey Key)

207 {

208 byte [] tempBuff = JCSystem . makeTransientByteArray (length ,

209 JCSystem .MEMORY_TYPE_TRANSIENT_DESELECT) ;

210 AESCipher . i n i t (Key , Cipher .MODE_DECRYPT) ;

211 Ut i l . arrayCopyNonAtomic (pMessage , (short) s ta r t , tempBuff , (short)

212 0 , (short) l ength) ;

213 AESCipher . doFinal (tempBuff , (short) 0 , (short) length , pMessage ,

214 (short) s t a r t) ;

215 }

216 public void generateEncrypt ion (short s ta r t , short l ength , AESKey

217 Key) {

218 AESCipher . i n i t (Key , Cipher .MODE_ENCRYPT) ;

219 short paddingbytes = (short) (l ength % 16) ;

220 byte [] temp = JCSystem . makeTransientByteArray ((short) (l ength +

221 paddingbytes) , JCSystem .MEMORY_TYPE_TRANSIENT_DESELECT) ;

222 Ut i l . arrayCopyNonAtomic (pMessage , s t a r t , temp , (short) 0 , l ength) ;

223 i f (paddingbytes != 0) {

224 for (short i = 0 ; i < paddingbytes ; i++, l ength++) {

225 temp [l ength] = (byte) 0xFF ;

226 }

227 }

228 pMessage [1] = (byte)AESCipher . doFinal (temp , (short) 0 , length ,

229 pMessage , s t a r t) ;

230 }

231 }

C.8 Application Binding Protocol - Distributed

The Java Card implementation of the ABPD discussed in section 7.6 is listed in subsequent

sections.

377

C.8 Application Binding Protocol - Distributed

C.8.1 Client Application

Implementation of a client application that request for the application binding in the

CDAM �rewall mechanism is listed as below:

1 package protocolABPDClient ;

2

3 import javacard . framework .APDU;

4 import javacard . framework . Applet ;

5 import javacard . framework . ISO7816 ;

6 import javacard . framework . ISOException ;

7 import javacard . framework . JCSystem ;

8 import javacard . framework . Ut i l ;

9 import javacard . s e c u r i t y .AESKey ;

10 import javacard . s e c u r i t y . Key ;

11 import javacard . s e c u r i t y . KeyBuilder ;

12 import javacard . s e c u r i t y . KeyPair ;

13 import javacard . s e c u r i t y . MessageDigest ;

14 import javacard . s e c u r i t y . RSAPrivateKey ;

15 import javacard . s e c u r i t y . RSAPublicKey ;

16 import javacard . s e c u r i t y . RandomData ;

17 import javacard . s e c u r i t y . S ignature ;

18 import javacardx . apdu . ExtendedLength ;

19 import javacardx . crypto . Cipher ;

20 public class Protoco lHandler extends Applet implements ExtendedLength

21 {

22 private byte [] ServerAppDHChanllengerArray ;

23 private byte [] ServerAppRandomNumberArray ;

24 private byte [] ServerAppCookieArray ;

25 private byte [] ClientAppServerAppDHGeneratedValue ;

26 private byte [] ClientAppRandomNumberArray ;

27 private byte [] C l i en tAppUserCer t i f i c a t e ;

28 private byte [] C l i en tAppCer t i f i c a t e ;

29 private byte [] ServerAppDHChallengeTag = {

30 (byte) 0x1F , (byte) 0x5F , (byte) 0x5C , (byte) 0x01 } ;

31 private byte [] MessageHandlerTagOne = {

32 (byte) 0x1F , (byte) 0xC0 , (byte) 0xAA, (byte) 0xAA, (byte) 0x00 , (byte)

33 0x00 , (byte) 0x00 } ;

34 private byte [] MessageHandlerTagTwo = {

35 (byte) 0x1F , (byte) 0xC0 , (byte) 0xBB, (byte) 0xBB, (byte) 0x00 , (byte)

36 0x00 , (byte) 0x00 } ;

37 private byte [] ServerAppIdent i ty = null ;

38 private byte [] ServerAppRandomNumberTag = {

39 (byte) 0x1F , (byte) 0x5F , (byte) 0x5A , (byte) 0x01 } ;

40 private byte [] ServerAppCookieTag = {

41 (byte) 0x1F , (byte) 0x5F , (byte) 0x5B , (byte) 0x01 } ;

42 private byte [] EncryptedDataTag = {

43 (byte) 0x1F , (byte) 0xC0 , (byte) 0xFE , (byte) 0x01 } ;

44 private byte [] SignedDataTag = {

45 (byte) 0x1F , (byte) 0x5F , (byte) 0x5D , (byte) 0x02 } ;

46 private byte [] MACedDataTag = {

378

C.8 Application Binding Protocol - Distributed

47 (byte) 0x1F , (byte) 0x5F , (byte) 0x5D , (byte) 0x01 } ;

48 private byte [] PlatformHash = {

49 (byte) 0x1F , (byte) 0x5F , (byte) 0x5E , (byte) 0xAF} ;

50 private byte [] Cl ientAppIdentityTag = {

51 (byte) 0x1F , (byte) 0x5F , (byte) 0x5F , (byte) 0x02 , (byte) 0x00 , (byte)

52 0x12 , (byte) 0x7A , (byte) 0xD5 , (byte) 0xB7 , (byte) 0xD0 , (byte) 0xB6 ,

53 (byte) 0xC1 , (byte) 0x22 , (byte) 0x07 , (byte) 0xC9 , (byte) 0xF9 ,

54 (byte) 0x8D , (byte) 0x11 , (byte) 0xED, (byte) 0x34 , (byte) 0xDB,

55 (byte) 0xF6 , (byte) 0x0B , (byte) 0x2C} ;

56 private byte [] Use r Ident i ty = {

57 (byte) 0x1F , (byte) 0x5F , (byte) 0x5F , (byte) 0x03 , (byte) 0x00 , (byte)

58 0x14 , (byte) 0x7A , (byte) 0xD5 , (byte) 0xB7 , (byte) 0xD0 , (byte) 0xB6 ,

59 (byte) 0xC1 , (byte) 0x22 , (byte) 0x07 , (byte) 0xC9 , (byte) 0xC9 ,

60 (byte) 0x8D , (byte) 0xD1 , (byte) 0xED, (byte) 0xFC, (byte) 0xDB,

61 (byte) 0xF6 , (byte) 0x0B , (byte) 0x2C , (byte) 0x0B , (byte) 0x2C} ;

62 private byte [] ExponentTag = {

63 (byte) 0x1F , (byte) 0x5F , (byte) 0xEE, (byte) 0x01 } ;

64 private byte [] ModulusTag = {

65 (byte) 0x1F , (byte) 0x5F , (byte) 0xEE, (byte) 0x02 } ;

66 private byte [] ClientAppDHChalleneTag = {

67 (byte) 0x1F , (byte) 0x5F , (byte) 0x5C , (byte) 0x02 } ;

68 private byte [] ClientAppRandomNumberTag = {

69 (byte) 0x1F , (byte) 0x5F , (byte) 0x5A , (byte) 0x02 } ;

70 private byte [] ServerAppCert i f i cateTag = {

71 (byte) 0x1F , (byte) 0xC0 , (byte) 0xF0 , (byte) 0x01 } ;

72 private byte [] C l i entAppCert i f i cateTag = {

73 (byte) 0x1F , (byte) 0xC0 , (byte) 0xF0 , (byte) 0x02 } ;

74 private byte [] C l i entAppUserCert i f i cateTag = {

75 (byte) 0x1F , (byte) 0xC0 , (byte) 0xF0 , (byte) 0x03 } ;

76 short PTLVDataOffset = (short) 6 ;

77 short CTLVDataOffset = (short) 7 ;

78 short TLVLengthOffset = (short) 4 ;

79 byte [] ClientAppDHData ;

80 f ina l stat ic byte CLA = (byte) 0xB0 ;

81 f ina l stat ic byte Sta r tPro toco l = (byte) 0x40 ;

82 f ina l stat ic byte I n i t i a t i o nP r o t o c o l = (byte) 0 x f f ;

83 f ina l stat ic short SW_CLASSNOTSUPPORTED = 0x6320 ;

84 f ina l stat ic short SW_ERROR_INS = 0x6300 ;

85 RandomData randomDataGen ;

86 Cipher pkCipher ;

87 short messageNumber = 0 ;

88 byte [] r e c e i v i n gBu f f e r = null ;

89 short byte sLe f t = 0 ;

90 short readCount = 0 ;

91 short rCount = 0 ;

92 short s i gn l eng th = 0 ;

93 private RSAPublicKey dhKey = (RSAPublicKey) KeyBuilder . buildKey

94 (KeyBuilder .TYPE_RSA_PUBLIC,

95 KeyBuilder .LENGTH_RSA_2048, fa l se) ;

96 private byte [] randomExponent ;

97 f ina l stat ic byte GEN_KEYCONTRIBUTION = 0x01 ;

379

C.8 Application Binding Protocol - Distributed

98 f ina l stat ic byte GEN_DHKEY = 0x02 ;

99 AESKey phCipherKey ;

100 Cipher syCipher ;

101 byte [] I n i t i a l i s a t i o nV e c t o r = {

102 (byte) 0x6C , (byte) 0xDE, (byte) 0xBE, (byte) 0x7B , (byte) 0x89 , (byte)

103 0x99 , (byte) 0x8C , (byte) 0xAF, (byte) 0xC5 , (byte) 0x7D , (byte) 0xB1 ,

104 (byte) 0x7C , (byte) 0x62 , (byte) 0x0A , (byte) 0x86 , (byte) 0x52 } ;

105 AESKey phMacGeneratorKey ;

106 Signature phMacGenerator ;

107 Signature phSign ;

108 KeyPair phClientAppKeyPair ;

109 KeyPair phUserKeyPair ;

110 RSAPublicKey ServerAppVer i f i cat ionKey = null ;

111 private Protoco lHandler () {

112 phMacGeneratorKey = (AESKey) KeyBuilder . buildKey

113 (KeyBuilder .TYPE_AES_TRANSIENT_DESELECT,

114 KeyBuilder .LENGTH_AES_128, fa l se) ;

115 phMacGenerator = Signature . g e t In s tance

116 (S ignature .ALG_AES_MAC_128_NOPAD, fa l se) ;

117 phSign = Signature . g e t In s tance (S ignature .ALG_RSA_SHA_PKCS1, fa l se)

118 ;

119 phClientAppKeyPair = new KeyPair (KeyPair .ALG_RSA,

120 KeyBuilder .LENGTH_RSA_512) ;

121 phUserKeyPair = new KeyPair (KeyPair .ALG_RSA,

122 KeyBuilder .LENGTH_RSA_512) ;

123 phCipherKey = (AESKey) KeyBuilder . buildKey

124 (KeyBuilder .TYPE_AES_TRANSIENT_DESELECT,

125 KeyBuilder .LENGTH_AES_128, fa l se) ;

126 syCipher = Cipher . g e t In s tance (Cipher .ALG_AES_BLOCK_128_CBC_NOPAD,

127 fa l se) ;

128 randomDataGen = RandomData . g e t In s tance

129 (RandomData .ALG_SECURE_RANDOM) ;

130 pkCipher = Cipher . g e t In s tance (Cipher .ALG_RSA_NOPAD, fa l se) ;

131 d h I n i t i a l i s a t i o n () ;

132 phClientAppKeyPair . genKeyPair () ;

133 phUserKeyPair . genKeyPair () ;

134 }

135 public stat ic void i n s t a l l (byte bArray [] , short bOffset , byte

136 bLength)throws ISOException {

137 new Protoco lHandler () . r e g i s t e r () ;

138 }

139 public void i n i t i a l i s e P r o t o c o l () {

140 short i n i t i a l P o i n t e r = 0 ;

141 ClientAppDHData = JCSystem . makeTransientByteArray ((short) ((short)

142 this . ClassDH . dhModulus . l ength + PTLVDataOffset) ,

143 JCSystem .MEMORY_TYPE_TRANSIENT_DESELECT) ;

144 Ut i l . arrayCopyNonAtomic (this . ClientAppDHChalleneTag , (short)

145 i n i t i a l P o i n t e r , this . ClientAppDHData ,

(short) 0 ,

146 (short) this . ClientAppDHChalleneTag . l ength) ;

147 this . shortToBytes (ClientAppDHData , (short) 4 , (short) ((short)

380

C.8 Application Binding Protocol - Distributed

148 ClientAppDHData . l ength − (short) PTLVDataOffset)) ;

149 this . dhKeyConGen(this . ClientAppDHData , this . PTLVDataOffset ,

150 Protoco lHandler .GEN_KEYCONTRIBUTION) ;

151 ServerAppDHChanllengerArray = JCSystem . makeTransientByteArray ((short) (

152 (short) this . ClassDH . dhModulus . l ength + this . PTLVDataOffset) ,

153 JCSystem .MEMORY_TYPE_TRANSIENT_DESELECT) ;

154 ServerAppRandomNumberArray =

JCSystem . makeTransientByteArray ((short) 22 ,

155 JCSystem .MEMORY_TYPE_TRANSIENT_DESELECT) ;

156 ServerAppCookieArray = JCSystem . makeTransientByteArray ((short) 22 ,

157 JCSystem .MEMORY_TYPE_TRANSIENT_DESELECT) ;

158 ClientAppRandomNumberArray =

JCSystem . makeTransientByteArray ((short) 22 ,

159 JCSystem .MEMORY_TYPE_TRANSIENT_DESELECT) ;

160 Ut i l . arrayCopyNonAtomic (this . ClientAppRandomNumberTag , (short)

161 i n i t i a l P o i n t e r ,

this . ClientAppRandomNumberArray ,

162 (short) i n i t i a l P o i n t e r , (short)

163 this . ClientAppRandomNumberTag . l ength) ;

164 this . shortToBytes (this . ClientAppRandomNumberArray , (short) 4 , (short) (

165 (short) this . ClientAppRandomNumberArray . l ength −
166 (short) PTLVDataOffset)) ;

167 try {

168 this . C l i en tAppUse rCer t i f i c a t e = JCSystem . makeTransientByteArray (

169 (short) 86 , JCSystem .MEMORY_TYPE_TRANSIENT_DESELECT) ;

170 i n i t i a l P o i n t e r = Ut i l . arrayCopyNonAtomic

171 (this . C l i entAppUserCert i f i cateTag , (short) 0 ,

172 this . C l i entAppUserCer t i f i ca te , (short) 0 ,

(short)

173 this . C l i entAppUserCert i f i cateTag . l ength) ;

174 this . shortToBytes (this . C l i entAppUserCer t i f i ca te , (short) 4 , (short)

175 (this . C l i en tAppUse rCer t i f i c a t e . l ength −
(short) 7)) ;

176 i n i t i a l P o i n t e r = Ut i l . arrayCopyNonAtomic (this . ExponentTag ,

177 (short) 0 , this . C l i entAppUserCer t i f i ca te , (short) (i n i t i a l P o i n t e r +

178 (short) 3) , (short) this . ExponentTag . l ength) ;

179 RSAPublicKey myPublic = (RSAPublicKey)

180 this . phUserKeyPair . ge tPub l i c () ;

181 short kLen = myPublic . getExponent (this . C l i entAppUserCer t i f i ca te ,

182 (short) (i n i t i a l P o i n t e r + (short) 2)) ;

183 this . shortToBytes (this . C l i entAppUserCer t i f i ca te , i n i t i a l P o i n t e r ,

kLen)

184 ;

185 i n i t i a l P o i n t e r += (short) (kLen + (short) 2) ;

186 this . C l i en tAppUse rCer t i f i c a t e [6]++;

187 i n i t i a l P o i n t e r = Ut i l . arrayCopyNonAtomic (this . ModulusTag ,

188 (short) 0 , this . C l i entAppUserCer t i f i ca te , (short) (i n i t i a l P o i n t e r) ,

189 (short) this . ModulusTag . l ength) ;

190 kLen = myPublic . getModulus (this . C l i entAppUserCer t i f i ca te , (short)

191 (i n i t i a l P o i n t e r + (short) 2)) ;

381

C.8 Application Binding Protocol - Distributed

192 this . shortToBytes (this . C l i entAppUserCer t i f i ca te , i n i t i a l P o i n t e r ,

kLen)

193 ;

194 this . C l i en tAppUse rCer t i f i c a t e [6]++;

195 this . ServerAppIdent i ty = JCSystem . makeTransientByteArray ((short) 24 ,

196 JCSystem .MEMORY_TYPE_TRANSIENT_RESET) ;

197 ServerAppVer i f i cat ionKey = (RSAPublicKey) KeyBuilder . buildKey

198 (KeyBuilder .TYPE_RSA_PUBLIC,

199 KeyBuilder .LENGTH_RSA_512, fa l se) ;

200 } catch (Exception cE) {

201 ISOException . throwIt ((short) 0xCCCC) ;

202 }

203 try {

204 this . C l i en tAppCer t i f i c a t e =

JCSystem . makeTransientByteArray ((short) 86 ,

205 JCSystem .MEMORY_TYPE_TRANSIENT_DESELECT) ;

206 i n i t i a l P o i n t e r =

Ut i l . arrayCopyNonAtomic (this . C l i entAppCert i f i cateTag ,

207 (short) 0 , this . C l i en tAppCer t i f i c a t e , (short) 0 , (short)

208 this . C l i entAppCert i f i cateTag . l ength) ;

209 this . shortToBytes (this . C l i en tAppCer t i f i c a t e , (short) 4 , (short)

210 (this . C l i en tAppCer t i f i c a t e . l ength − (short) 7)) ;

211 i n i t i a l P o i n t e r = Ut i l . arrayCopyNonAtomic (this . ExponentTag ,

212 (short) 0 , this . C l i en tAppCer t i f i c a t e , (short) (i n i t i a l P o i n t e r +

213 (short) 3) , (short) this . ExponentTag . l ength) ;

214 RSAPublicKey myPublic = (RSAPublicKey)

215 this . phClientAppKeyPair . ge tPub l i c () ;

216 short kLen = myPublic . getExponent (this . C l i en tAppCer t i f i c a t e , (short)

217 (i n i t i a l P o i n t e r + (short) 2)) ;

218 this . shortToBytes (this . C l i en tAppCer t i f i c a t e , i n i t i a l P o i n t e r , kLen) ;

219 i n i t i a l P o i n t e r += (short) (kLen + (short) 2) ;

220 this . C l i en tAppCer t i f i c a t e [6]++;

221 i n i t i a l P o i n t e r = Ut i l . arrayCopyNonAtomic (this . ModulusTag ,

222 (short) 0 , this . C l i en tAppCer t i f i c a t e , (short) (i n i t i a l P o i n t e r) ,

223 (short) this . ModulusTag . l ength) ;

224 kLen = myPublic . getModulus (this . C l i en tAppCer t i f i c a t e , (short)

225 (i n i t i a l P o i n t e r + (short) 2)) ;

226 this . shortToBytes (this . C l i en tAppCer t i f i c a t e , i n i t i a l P o i n t e r , kLen) ;

227 this . C l i en tAppCer t i f i c a t e [6]++;

228 } catch (Exception cE) {

229 ISOException . throwIt ((short) 0x6666) ;

230 }

231 }

232 public void proce s s (APDU apdu)throws ISOException {

233 byte [] apduBuffer = apdu . ge tBu f f e r () ;

234 i f (s e l e c t i n gApp l e t ()) {

235 return ;

236 }

237 i f (apduBuffer [ISO7816 .OFFSET_CLA] != CLA) {

238 ISOException . throwIt (SW_CLASSNOTSUPPORTED) ;

239 }

382

C.8 Application Binding Protocol - Distributed

240 i f (apduBuffer [ISO7816 .OFFSET_INS] == In i t i a t i o nP r o t o c o l) {

241 this . i n i t i a l i s e P r o t o c o l () ;

242 return ;

243 }

244 r e c e i v i n gBu f f e r = null ;

245 byte sLe f t = 0 ;

246 byte sLe f t = apdu . getIncomingLength () ;

247 r e c e i v i n gBu f f e r = JCSystem . makeTransientByteArray (bytesLe f t ,

248 JCSystem .MEMORY_TYPE_TRANSIENT_DESELECT) ;

249 readCount = (short) ((short) apdu . setIncomingAndReceive ()) ;

250 rCount = 0 ;

251 i f (byte sLe f t > 0) {

252 rCount = Ut i l . arrayCopyNonAtomic (apduBuffer ,

253 ISO7816 .OFFSET_EXT_CDATA, r e c e i v i ngBu f f e r , rCount , readCount) ;

254 byte sLe f t −= readCount ;

255 }

256 while (byte sLe f t > 0) {

257 try {

258 readCount = apdu . r e c e i v eByte s ((short) 0) ;

259 rCount = Ut i l . arrayCopyNonAtomic (apduBuffer , (short) 0 ,

260 r e c e i v i ngBu f f e r , rCount , readCount) ;

261 byte sLe f t −= readCount ;

262 } catch (Exception aE) {

263 ISOException . throwIt ((short) 0x7AAA) ;

264 }

265 }

266 try {

267 parseMessage (r e c e i v i n gBu f f e r) ;

268 } catch (Exception cE) {

269 ISOException . throwIt ((short) 0xA112) ;

270 }

271 i f (this . r e c e i v i n gBu f f e r [3] == this . MessageHandlerTagOne [3]) {

272 r e c e i v i n gBu f f e r = JCSystem . makeTransientByteArray ((short) 568 ,

273 JCSystem .MEMORY_TYPE_TRANSIENT_DESELECT) ;

274 generateResponse ((short) 1) ;

275 } else i f (this . r e c e i v i n gBu f f e r [3] ==

276 this . MessageHandlerTagTwo [3]) {

277 processSecondMsg (r e c e i v i n gBu f f e r) ;

278 r e c e i v i n gBu f f e r = JCSystem . makeTransientByteArray ((short) 568 ,

279 JCSystem .MEMORY_TYPE_TRANSIENT_DESELECT) ;

280 generateResponse ((short) 2) ;

281 } else {

282 ISOException . throwIt (Protoco lHandler .SW_ERROR_INS) ;

283 }

284 JCSystem . r eques tObjec tDe l e t i on () ;

285 apdu . setOutgoing () ;

286 apdu . setOutgoingLength ((short) copyPointer) ;

287 apdu . sendBytesLong (r e c e i v i ngBu f f e r , (short) 0 , (short) copyPointer) ;

288 JCSystem . r eques tObjec tDe l e t i on () ;

289 }

290 private void generateResponse (short msgNumber) {

383

C.8 Application Binding Protocol - Distributed

291 short ch i ldPo interMessage = 6 ;

292 short enc ryp t i onOf f s e t = 0 ;

293 copyPointer = 0 ;

294 i f (msgNumber == 1) {

295 randomDataGen . generateData (this . ClientAppRandomNumberArray ,

296 this . PTLVDataOffset , (short) 16) ;

297 this . dhKeyConGen(this . ServerAppDHChanllengerArray ,

298 this . PTLVDataOffset , Protoco lHandler .GEN_DHKEY)

299 ;

300 copyPointer = Ut i l . arrayCopyNonAtomic (this . MessageHandlerTagOne ,

301 (short) 0 , this . r e c e i v i ngBu f f e r , copyPointer , (short)

302 this . MessageHandlerTagOne . l ength) ;

303 copyPointer = Ut i l . arrayCopyNonAtomic (this . ClientAppDHData ,

(short) 0 ,

304 this . r e c e i v i ngBu f f e r , copyPointer , (short)

305 this . ClientAppDHData . l ength) ;

306 this . r e c e i v i n gBu f f e r [ch i ldPo interMessage]++;

307 copyPointer =

Ut i l . arrayCopyNonAtomic (this . ClientAppRandomNumberArray ,

308 (short) 0 , this . r e c e i v i ngBu f f e r , copyPointer , (short)

309 this . ClientAppRandomNumberArray . l ength) ;

310 this . r e c e i v i n gBu f f e r [ch i ldPo interMessage]++;

311 keygenerator () ;

312 copyPointer = Ut i l . arrayCopyNonAtomic (this . EncryptedDataTag ,

313 (short) 0 , this . r e c e i v i ngBu f f e r , copyPointer , (short)

314 this . EncryptedDataTag . l ength) ;

315 this . r e c e i v i n gBu f f e r [ch i ldPo interMessage]++;

316 short childEnMessage = (short) (copyPointer + (short) 2) ;

317 copyPointer += (short) 3 ;

318 enc ryp t i onOf f s e t = copyPointer ;

319 copyPointer = Ut i l . arrayCopyNonAtomic (this . Cl ientAppIdentityTag ,

320 (short) 0 , this . r e c e i v i ngBu f f e r , copyPointer , (short)

321 this . Cl ientAppIdentityTag . l ength) ;

322 this . r e c e i v i n gBu f f e r [childEnMessage]++;

323 copyPointer =

Ut i l . arrayCopyNonAtomic (this . ClientAppRandomNumberArray ,

324 (short) 0 , this . r e c e i v i ngBu f f e r , copyPointer , (short)

325 this . ClientAppRandomNumberArray . l ength) ;

326 this . r e c e i v i n gBu f f e r [childEnMessage]++;

327 copyPointer =

Ut i l . arrayCopyNonAtomic (this . ServerAppRandomNumberArray ,

328 (short) 0 , this . r e c e i v i ngBu f f e r , copyPointer , (short)

329 this . ServerAppRandomNumberArray . l ength) ;

330 this . r e c e i v i n gBu f f e r [childEnMessage]++;

331 this . s ignGenerate (this . r e c e i v i ngBu f f e r , enc rypt ionOf f s e t ,

332 (short) (copyPointer − enc ryp t i onOf f s e t) ,

333 phUserKeyPair . g e tPr iva t e () ,

334 Signature .MODE_SIGN) ;

335 this . r e c e i v i n gBu f f e r [childEnMessage]++;

336 copyPointer = Ut i l . arrayCopyNonAtomic (this . C l i entAppUserCer t i f i ca te ,

337 (short) 0 , this . r e c e i v i ngBu f f e r , copyPointer , (short)

384

C.8 Application Binding Protocol - Distributed

338 this . C l i en tAppUse rCer t i f i c a t e . l ength) ;

339 this . r e c e i v i n gBu f f e r [childEnMessage]++;

340 messageEncryption (this . r e c e i v i ngBu f f e r , enc rypt ionOf f s e t ,

341 (short) (copyPointer − enc ryp t i onOf f s e t)) ;

342 this . shortToBytes (r e c e i v i ngBu f f e r , (short) (enc ryp t i onOf f s e t −
343 (short) 3) , (short) (copyPointer −
344 enc ryp t i onOf f s e t)) ;

345 macGenerate (this . r e c e i v i ngBu f f e r , enc rypt ionOf f s e t , (short)

346 (copyPointer − enc ryp t i onOf f s e t) ,

347 Signature .MODE_SIGN) ;

348 this . r e c e i v i n gBu f f e r [ch i ldPo interMessage]++;

349 copyPointer = Ut i l . arrayCopyNonAtomic (this . ServerAppCookieArray ,

350 (short) 0 , this . r e c e i v i ngBu f f e r , copyPointer , (short)

351 this . ServerAppCookieArray . l ength) ;

352 this . r e c e i v i n gBu f f e r [ch i ldPo interMessage]++;

353 this . shortToBytes (this . r e c e i v i ngBu f f e r , (short) 4 , copyPointer) ;

354 } else i f (msgNumber == 2) {

355 copyPointer = (short) 0 ;

356 short tempLength = (short) 0 ;

357 short mainChildPointer = (short) 6 ;

358 short mainLengthPointer = (short) 4 ;

359 short encryptedChi ldPointer = (short) 13 ;

360 short genera lLengthPointer = (short) 0 ;

361 this . r e c e i v i n gBu f f e r [mainChi ldPointer] = (short) 0 ;

362 this . r e c e i v i n gBu f f e r [encryptedChi ldPointer] = (short) 0 ;

363 copyPointer = Ut i l . arrayCopyNonAtomic (this . MessageHandlerTagTwo ,

364 (short) 0 , this . r e c e i v i ngBu f f e r , copyPointer , (short) 7) ;

365 this . r e c e i v i n gBu f f e r [mainChi ldPointer]++;

366 copyPointer = Ut i l . arrayCopyNonAtomic (this . EncryptedDataTag ,

367 (short) 0 , this . r e c e i v i ngBu f f e r , copyPointer , (short) 4) ;

368 copyPointer += (short) 3 ;

369 enc ryp t i onOf f s e t = copyPointer ;

370 copyPointer = Ut i l . arrayCopyNonAtomic (this . PlatformHash , (short)

371 0 , r e c e i v i ngBu f f e r , copyPointer , (short) 4) ;

372 genera lLengthPointer = copyPointer ;

373 copyPointer += (short) 2 ;

374 MessageDigest myHashGen = MessageDigest . g e t In s tance

375 (MessageDigest .ALG_SHA_256, fa l se) ;

376 tempLength = (short)myHashGen . doFinal (this . ClassDH . dhModulus ,

(short) 0 ,

377 (short) this . ClassDH . dhModulus . length , r e c e i v i ngBu f f e r ,

378 copyPointer) ;

379 this . r e c e i v i n gBu f f e r [encryptedChi ldPointer]++;

380 this . shortToBytes (this . r e c e i v i ngBu f f e r , genera lLengthPointer ,

381 (short) (tempLength)) ;

382 copyPointer += tempLength ;

383 copyPointer = Ut i l . arrayCopyNonAtomic (this . User Ident i ty , (short)

384 0 , this . r e c e i v i ngBu f f e r , copyPointer , (short)

385 this . Use r Ident i ty . l ength) ;

386 this . r e c e i v i n gBu f f e r [encryptedChi ldPointer]++;

385

C.8 Application Binding Protocol - Distributed

387 copyPointer = Ut i l . arrayCopyNonAtomic (this . ServerAppIdent ity ,

(short)

388 0 , this . r e c e i v i ngBu f f e r , copyPointer , (short)

389 this . ServerAppIdent i ty . l ength) ;

390 this . r e c e i v i n gBu f f e r [encryptedChi ldPointer]++;

391 copyPointer =

Ut i l . arrayCopyNonAtomic (this . ClientAppRandomNumberArray ,

392 (short) 0 , this . r e c e i v i ngBu f f e r , copyPointer , (short)

393 this . ClientAppRandomNumberArray . l ength) ;

394 this . r e c e i v i n gBu f f e r [encryptedChi ldPointer]++;

395 copyPointer =

Ut i l . arrayCopyNonAtomic (this . ServerAppRandomNumberArray ,

396 (short) 0 , this . r e c e i v i ngBu f f e r , (short) copyPointer , (short)

397 this . ServerAppRandomNumberArray . l ength) ;

398 this . r e c e i v i n gBu f f e r [encryptedChi ldPointer]++;

399 try {

400 this . s ignGenerate (r e c e i v i ngBu f f e r , (short) (enc ryp t i onOf f s e t) ,

401 (short) (copyPointer − enc ryp t i onOf f s e t) ,

402 phClientAppKeyPair . g e tPr iva t e () ,

403 Signature .MODE_SIGN) ;

404 this . r e c e i v i n gBu f f e r [encryptedChi ldPointer]++;

405 } catch (Exception cE) {

406 ISOException . throwIt ((short) 0xFA17) ;

407 }

408 copyPointer = Ut i l . arrayCopyNonAtomic (this . C l i en tAppCer t i f i c a t e ,

409 (short) 0 , this . r e c e i v i ngBu f f e r , copyPointer , (short)

410 this . C l i en tAppCer t i f i c a t e . l ength) ;

411 this . r e c e i v i n gBu f f e r [encryptedChi ldPointer]++;

412 try {

413 this . messageEncryption (r e c e i v i ngBu f f e r , (short)

414 (encryptedChi ldPointer + (short) 1) ,

415 (short) (copyPointer −
416 (encryptedChi ldPointer + (short) 1))) ;

417 } catch (Exception cE) {

418 ISOException . throwIt ((short) (copyPointer −
419 encryptedChi ldPointer + (short) 1)) ;

420 }

421 this . shortToBytes (this . r e c e i v i ngBu f f e r , (short)

422 (encryptedChi ldPointer − (short) 2) , (short)

423 (copyPointer − (short) (encryptedChi ldPointer

424 + (short) 1))) ;

425 this . macGenerate (r e c e i v i ngBu f f e r , (short) (encryptedChi ldPointer

426 + (short) 1) , (short) (copyPointer −
427 (encryptedChi ldPointer + (short) 1)) ,

428 Signature .MODE_SIGN) ;

429 this . r e c e i v i n gBu f f e r [mainChi ldPointer]++;

430 copyPointer = Ut i l . arrayCopyNonAtomic (this . ServerAppCookieArray ,

431 (short) 0 , this . r e c e i v i ngBu f f e r , copyPointer , (short)

432 this . ServerAppCookieArray . l ength) ;

433 this . r e c e i v i n gBu f f e r [mainChi ldPointer]++;

434 this . shortToBytes (this . r e c e i v i ngBu f f e r , mainLengthPointer ,

386

C.8 Application Binding Protocol - Distributed

435 (short) (copyPointer − (short) 7)) ;

436 }

437 }

438 void platformHashGeneration (byte [] inArray , short i nO f f s e t) {}

439 void processSecondMsg (byte [] inArray) {

440 short i nO f f s e t = (short) (this . CTLVDataOffset +

441 this . CTLVDataOffset) ;

442 short inLength = (short) (Protoco lHandler . bytesToShort (inArray ,

443 (short) (i nO f f s e t − (short) 3))) ;

444 i f (this . macGenerate (inArray , i nOf f s e t , inLength ,

445 Signature .MODE_VERIFY)) {

446 this . phDecryption (inArray , i nOf f s e t , inLength) ;

447 Ut i l . arrayCopyNonAtomic (inArray , i nOf f s e t , this . ServerAppIdent ity ,

448 (short) 0 , (short)

449 this . ServerAppIdent i ty . l ength) ;

450 i nO f f s e t += (short) 151 ;

451 inLength = (short) 3 ;

452 ServerAppVer i f i cat ionKey . setExponent (inArray , i nOf f s e t , inLength) ;

453 i nO f f s e t += (short) (inLength + this . PTLVDataOffset) ;

454 inLength = (short) 64 ;

455 ServerAppVer i f i cat ionKey . setModulus (inArray , i nOf f s e t , inLength) ;

456 i nO f f s e t = (short) (this . CTLVDataOffset + this . CTLVDataOffset) ;

457 inLength = (short) 68 ;

458 i f (this . s ignGenerate (inArray , i nOf f s e t , inLength ,

459 ServerAppVer i f icat ionKey , S ignature .MODE_VERIFY)) {

460 return ;

461 } else {

462 ISOException . throwIt ((short) 0x6666) ;

463 }

464 } else {

465 ISOException . throwIt ((short) 0xFA18) ;

466 }

467 }

468 void parseMessage (byte [] i nBu f f e r) {

469 byte c h i l dL e f t = inBu f f e r [(short) (this . CTLVDataOffset − (short) 1)

470] ;

471 short po in t e r = (short) this . CTLVDataOffset ;

472 try {

473 while (c h i l dL e f t > 0) {

474 i f (Ut i l . arrayCompare (ServerAppDHChallengeTag , (short) 0 , inBuf f e r ,

475 pointer , (short) 4) == 0) {

476 Ut i l . arrayCopy (inBuf f e r , po inter ,

477 this . ServerAppDHChanllengerArray , (short) 0 ,

(short)

478 this . ServerAppDHChanllengerArray . l ength) ;

479 po in t e r += (short) this . ServerAppDHChanllengerArray . l ength ;

480 } else i f (Ut i l . arrayCompare (this . ServerAppRandomNumberTag ,

(short)

481 0 , inBuf f e r , po inter , (short) 4) == 0) {

482 Ut i l . arrayCopyNonAtomic (inBuf f e r , po inter ,

387

C.8 Application Binding Protocol - Distributed

483 this . ServerAppRandomNumberArray ,

(short) 0 ,

484 (short)

485 (this . ServerAppRandomNumberArray . l ength)) ;

486 po in t e r += (short) (this . ServerAppRandomNumberArray . l ength) ;

487 } else i f (Ut i l . arrayCompare (this . ServerAppCookieTag , (short) 0 ,

488 i nBuf f e r , po inter , (short) 4) == 0) {

489 Ut i l . arrayCopyNonAtomic (inBuf f e r , po inter ,

490 this . ServerAppCookieArray , (short) 0 ,

491 (short) (this . ServerAppCookieArray . l ength))

492 ;

493 po in t e r += (short) (this . ServerAppCookieArray . l ength) ;

494 }

495 c h i l dL e f t −= (short) 1 ;

496 }

497 } catch (Exception cE) {

498 ISOException . throwIt ((short) c h i l dL e f t) ;

499 }

500 }

501 void protoco l Implementat ion () {}

502 void d h I n i t i a l i s a t i o n () {

503 dhKey . setModulus (ClassDH . dhModulus , (short) 0 ,

(short)ClassDH . dhModulus . l ength) ;

504 }

505 void dhKeyConGen(byte [] i nbu f f , short i nbu f fO f f s e t , byte Oper_Mode)

506 {

507 switch (Oper_Mode) {

508 case GEN_KEYCONTRIBUTION: randomExponent =

509 JCSystem . makeTransientByteArray ((short) 32 ,

510 JCSystem .MEMORY_TYPE_TRANSIENT_DESELECT) ;

511 randomDataGen . generateData (randomExponent , (short) 0 , (short)

512 randomExponent . l ength) ;

513 dhKey . setExponent (randomExponent , (short) 0 , (short)

514 randomExponent . l ength) ;

515 pkCipher . i n i t (dhKey , Cipher .MODE_ENCRYPT) ;

516 pkCipher . doFinal (ClassDH . dhBase , (short) 0 ,

(short)ClassDH . dhBase . length , inbu f f ,

517 i n bu f fO f f s e t) ;

518 break ;

519 case GEN_DHKEY:

520 try {

521 dhKey . setExponent (randomExponent , (short) 0 , (short)

522 randomExponent . l ength) ;

523 pkCipher . i n i t (dhKey , Cipher .MODE_ENCRYPT) ;

524 ClientAppServerAppDHGeneratedValue =

JCSystem . makeTransientByteArray (

525 (short)ClassDH . dhModulus . length ,

526 JCSystem .MEMORY_TYPE_TRANSIENT_DESELECT) ;

527 pkCipher . doFinal (inbu f f , i nbu f fO f f s e t , (short) ((short)

528 i n bu f f . l ength − (short) this . PTLVDataOffset)

388

C.8 Application Binding Protocol - Distributed

529 , ClientAppServerAppDHGeneratedValue ,

(short) 0) ;

530 }

531 catch (Exception cE) {

532 ISOException . throwIt ((short) 0xD86E) ;

533 }

534 break ;

535 default :

536 ISOException . throwIt ((short) 0x5FA1) ;

537 }

538 }

539 void keygenerator () {

540 AESKey sessionGenKey = (AESKey) KeyBuilder . buildKey

541 (KeyBuilder .TYPE_AES_TRANSIENT_DESELECT,

542 KeyBuilder .LENGTH_AES_128, fa l se) ;

543 sessionGenKey . setKey (ClientAppServerAppDHGeneratedValue , (short) 0) ;

544 phMacGenerator . i n i t (sessionGenKey , S ignature .MODE_SIGN,

545 I n i t i a l i s a t i o nV e c t o r , (short) 0 , (short)

546 I n i t i a l i s a t i o nV e c t o r . l ength) ;

547 byte [] keyGenMacData = JCSystem . makeTransientByteArray ((short) 64 ,

548 JCSystem .MEMORY_TYPE_TRANSIENT_DESELECT) ;

549 short po in t e r = 0 ;

550 po in t e r = Ut i l . arrayCopyNonAtomic (this . ServerAppRandomNumberArray ,

551 this . PTLVDataOffset , keyGenMacData , (short) po inter , (short) 16) ;

552 po in t e r = Ut i l . arrayCopyNonAtomic (this . ClientAppRandomNumberArray ,

553 this . PTLVDataOffset , keyGenMacData , (short) po inter , (short) 16) ;

554 po in t e r = Ut i l . arrayCopyNonAtomic (ClientAppServerAppDHGeneratedValue ,

(short)

555 16 , keyGenMacData , (short) po inter , (short) 16) ;

556 for (short i = 48 ; i < 64 ; i++) {

557 keyGenMacData [i] = (byte) 0x02 ;

558 }

559 phMacGenerator . s i gn (keyGenMacData , (short) 0 , (short)

560 keyGenMacData . length ,

ClientAppServerAppDHGeneratedValue ,

561 (short) 0) ;

562 this . phCipherKey . setKey (ClientAppServerAppDHGeneratedValue , (short) 0) ;

563 for (short i = 48 ; i < 64 ; i++) {

564 keyGenMacData [i] = (byte) 0x03 ;

565 }

566 phMacGenerator . i n i t (sessionGenKey , S ignature .MODE_SIGN,

567 I n i t i a l i s a t i o nV e c t o r , (short) 0 , (short)

568 I n i t i a l i s a t i o nV e c t o r . l ength) ;

569 phMacGenerator . s i gn (keyGenMacData , (short) 0 , (short)

570 keyGenMacData . length ,

ClientAppServerAppDHGeneratedValue ,

571 (short) 0) ;

572 this . phMacGeneratorKey . setKey (ClientAppServerAppDHGeneratedValue ,

(short) 0) ;

573 ClientAppServerAppDHGeneratedValue = null ;

574 JCSystem . r eques tObjec tDe l e t i on () ;

389

C.8 Application Binding Protocol - Distributed

575 }

576 void messageEncryption (byte [] i nbu f f , short i nbu f fO f f s e t , short

577 inbuf fLength) {

578 syCipher . i n i t (phCipherKey , Cipher .MODE_ENCRYPT,

579 I n i t i a l i s a t i o nV e c t o r , (short) 0 , (short)

580 I n i t i a l i s a t i o nV e c t o r . l ength) ;

581 short temp ;

582 this . shortToBytes (inbu f f , (short) (i n bu f fO f f s e t − 3) , temp =

583 (short) syCipher . doFinal (inbu f f , i nbu f fO f f s e t ,

584 inbuf fLength , inbu f f , i n bu f fO f f s e t)) ;

585 }

586 void phDecryption (byte [] i nbu f f , short i nbu f fO f f s e t , short

587 inbuf fLength) {

588 syCipher . i n i t (phCipherKey , Cipher .MODE_DECRYPT,

589 I n i t i a l i s a t i o nV e c t o r , (short) 0 , (short)

590 I n i t i a l i s a t i o nV e c t o r . l ength) ;

591 syCipher . doFinal (inbu f f , i nbu f fO f f s e t , inbuf fLength , inbu f f ,

592 i n bu f fO f f s e t) ;

593 }

594 boolean macGenerate (byte [] i nbu f f , short i nbu f fO f f s e t , short

595 inbuf fLength , short macMode) {

596 i f (macMode == Signature .MODE_SIGN) {

597 phMacGenerator . i n i t (phMacGeneratorKey , S ignature .MODE_SIGN,

598 I n i t i a l i s a t i o nV e c t o r , (short) 0 , (short)

599 I n i t i a l i s a t i o nV e c t o r . l ength) ;

600 try {

601 copyPointer = Ut i l . arrayCopyNonAtomic (this .MACedDataTag ,

602 (short) 0 , this . r e c e i v i ngBu f f e r , copyPointer , (short)

603 this .MACedDataTag . l ength) ;

604 copyPointer += 2 ;

605 } catch (Exception ce) {

606 ISOException . throwIt ((short) 0xFA17) ;

607 }

608 try {

609 short l ength = (short) phMacGenerator . s i gn

610 (this . r e c e i v i ngBu f f e r , i nbu f fO f f s e t ,

611 inbuf fLength , inbu f f , copyPointer) ;

612 this . shortToBytes (inbu f f , (short) (copyPointer − (short) 2) ,

613 l ength) ;

614 copyPointer += length ;

615 } catch (Exception ce) {

616 ISOException . throwIt ((short) 0x0987) ;

617 }

618 return true ;

619 } else i f (macMode == Signature .MODE_VERIFY) {

620 try {

621 phMacGenerator . i n i t (phMacGeneratorKey , S ignature .MODE_VERIFY,

622 I n i t i a l i s a t i o nV e c t o r , (short) 0 , (short)

623 I n i t i a l i s a t i o nV e c t o r . l ength) ;

624 return phMacGenerator . v e r i f y (this . r e c e i v i ngBu f f e r ,

625 i nbu f fO f f s e t , inbuf fLength , inbu f f , (short) (i n bu f fO f f s e t +

390

C.8 Application Binding Protocol - Distributed

626 inbuf fLength + this . PTLVDataOffset) , (short) 16) ;

627 } catch (Exception cE) {

628 ISOException . throwIt ((short) 0xC1C2) ;

629 }

630 }

631 return fa l se ;

632 }

633 boolean s ignGenerate (byte [] i nbu f f , short i nbu f fO f f s e t , short

634 i nbu f f l eng th , Key kpSign , short signMode) {

635 i f (signMode == Signature .MODE_SIGN) {

636 copyPointer = Ut i l . arrayCopyNonAtomic (this . SignedDataTag ,

637 (short) 0 , this . r e c e i v i ngBu f f e r , copyPointer , (short)

638 this . SignedDataTag . l ength) ;

639 copyPointer += (short) 2 ;

640 phSign . i n i t ((RSAPrivateKey) kpSign , S ignature .MODE_SIGN) ;

641 s i gn l eng th = phSign . s i gn (inbu f f , (short) i nbu f fO f f s e t ,

642 i nbu f f l eng th , inbu f f , copyPointer) ;

643 this . shortToBytes (this . r e c e i v i ngBu f f e r , (short) (copyPointer −
644 (short) 2) , s i gn l eng th) ;

645 copyPointer += s i gn l eng th ;

646 return true ;

647 } else i f (signMode == Signature .MODE_VERIFY) {

648 phSign . i n i t ((RSAPublicKey) kpSign , S ignature .MODE_VERIFY) ;

649 return phSign . v e r i f y (inbu f f , i nbu f fO f f s e t , i nbu f f l eng th , inbu f f ,

650 (short) (i n bu f fO f f s e t + inbu f f l e n g th +

651 this . PTLVDataOffset) , (short) 64) ;

652 }

653 return fa l se ;

654 }

655 public stat ic short bytesToShort (byte [] ArrayBytes) {

656 return (short) (((ArrayBytes [0] << 8)) | ((ArrayBytes [1] & 0 x f f))) ;

657 }

658 public stat ic short bytesToShort (byte [] ArrayBytes , short

659 a r r ayOf f s e t) {

660 return (short) (((ArrayBytes [a r r ayOf f s e t] << 8)) | ((ArrayBytes [

661 (short) (a r r ayOf f s e t + (short) 1)] & 0 x f f))) ;

662 }

663 private void shortToBytes (byte [] Array , short inShort) {

664 Array [0] = (byte) ((short) (inShort & (short) 0xFF00) >> (short)

665 0x0008) ;

666 Array [1] = (byte) (inShort & (short) 0x00FF) ;

667 }

668 private void shortToBytes (byte [] Array , short ar rayOf f s e t , short

669 inShort) {

670 Array [a r r ayOf f s e t] = (byte) ((short) (inShort & (short) 0xFF00) >>

671 (short) 0x0008) ;

672 Array [(short) (a r r ayOf f s e t + (short) 1)] = (byte) (inShort & (short)

673 0x00FF) ;

674 }

675 }

391

C.8 Application Binding Protocol - Distributed

C.8.2 Server Application

Implementation of a server application that responds to the application binding request in

the CDAM �rewall mechanism is listed as below:

1 package protocolABPDServerApp ;

2

3 import javacard . framework .APDU;

4 import javacard . framework . Applet ;

5 import javacard . framework . ISO7816 ;

6 import javacard . framework . ISOException ;

7 import javacard . framework . JCSystem ;

8 import javacard . framework . Ut i l ;

9 import javacard . s e c u r i t y .AESKey ;

10 import javacard . s e c u r i t y . Key ;

11 import javacard . s e c u r i t y . KeyBuilder ;

12 import javacard . s e c u r i t y . KeyPair ;

13 import javacard . s e c u r i t y . MessageDigest ;

14 import javacard . s e c u r i t y . RSAPrivateKey ;

15 import javacard . s e c u r i t y . RSAPublicKey ;

16 import javacard . s e c u r i t y . RandomData ;

17 import javacard . s e c u r i t y . S ignature ;

18 import javacardx . apdu . ExtendedLength ;

19 import javacardx . crypto . Cipher ;

20 public class Protoco lHandler extends Applet implements ExtendedLength

21 {

22 private byte [] ClientAppRandomNumberArray ;

23 private byte [] ClientAppCookieArray ;

24 private byte [] ServerAppClientAppDHGeneratedValue ;

25 private byte [] ServerAppRandomNumberArray ;

26 private byte [] S e rve rAppCer t i f i c a t e ;

27 private byte [] ClientAppDHChallengeTag = {

28 (byte) 0x1F , (byte) 0x5F , (byte) 0x5C , (byte) 0x01 } ;

29 private byte [] MessageHandlerTagOne = {

30 (byte) 0x1F , (byte) 0xC0 , (byte) 0xAA, (byte) 0xAA, (byte) 0x00 , (byte)

31 0x00 , (byte) 0x00 } ;

32 private byte [] MessageHandlerTagTwo = {

33 (byte) 0x1F , (byte) 0xC0 , (byte) 0xBB, (byte) 0xBB, (byte) 0x00 , (byte)

34 0x00 , (byte) 0x00 } ;

35 private byte [] C l i entAppIdent i ty = null ;

36 private byte [] ClientAppRandomNumberTag = {

37 (byte) 0x1F , (byte) 0x5F , (byte) 0x5A , (byte) 0x01 } ;

38 private byte [] ClientAppCookieTag = {

39 (byte) 0x1F , (byte) 0x5F , (byte) 0x5B , (byte) 0x01 } ;

40 private byte [] EncryptedDataTag = {

41 (byte) 0x1F , (byte) 0xC0 , (byte) 0xFE , (byte) 0x01 } ;

42 private byte [] SignedDataTag = {

43 (byte) 0x1F , (byte) 0x5F , (byte) 0x5D , (byte) 0x02 } ;

44 private byte [] MACedDataTag = {

45 (byte) 0x1F , (byte) 0x5F , (byte) 0x5D , (byte) 0x01 } ;

46 private byte [] PlatformHash = {

392

C.8 Application Binding Protocol - Distributed

47 (byte) 0x1F , (byte) 0x5F , (byte) 0x5E , (byte) 0xAF} ;

48 private byte [] ServerAppIdentityTag = {

49 (byte) 0x1F , (byte) 0x5F , (byte) 0x5F , (byte) 0x02 , (byte) 0x00 , (byte)

50 0x0C , (byte) 0x7A , (byte) 0xD5 , (byte) 0xB7 , (byte) 0xD0 , (byte) 0xB6 ,

51 (byte) 0xC1 , (byte) 0x22 , (byte) 0x07 , (byte) 0xC9 , (byte) 0xF9 ,

52 (byte) 0x8D , (byte) 0x11 } ;

53 private byte [] ExponentTag = {

54 (byte) 0x1F , (byte) 0x5F , (byte) 0xEE, (byte) 0x01 } ;

55 private byte [] ModulusTag = {

56 (byte) 0x1F , (byte) 0x5F , (byte) 0xEE, (byte) 0x02 } ;

57 private byte [] ServerAppDHChalleneTag = {

58 (byte) 0x1F , (byte) 0x5F , (byte) 0x5C , (byte) 0x02 } ;

59 private byte [] ServerAppRandomNumberTag = {

60 (byte) 0x1F , (byte) 0x5F , (byte) 0x5A , (byte) 0x02 } ;

61 private byte [] C l i entAppCert i f i cateTag = {

62 (byte) 0x1F , (byte) 0xC0 , (byte) 0xF0 , (byte) 0x01 } ;

63 private byte [] ServerAppCert i f i cateTag = {

64 (byte) 0x1F , (byte) 0xC0 , (byte) 0xF0 , (byte) 0x02 } ;

65 private byte [] Se rverAppProtoco l In i t i a torTag = {

66 (byte) 0x1F , (byte) 0x5F , (byte) 0xA1 , (byte) 0xB2} ;

67 short PTLVDataOffset = (short) 6 ;

68 short CTLVDataOffset = (short) 7 ;

69 short TLVLengthOffset = (short) 4 ;

70 short copyPointer = (short) 0 ;

71 byte [] ServerAppDHData ;

72 f ina l stat ic byte CLA = (byte) 0xB0 ;

73 f ina l stat ic byte Sta r tPro toco l = (byte) 0x40 ;

74 f ina l stat ic byte I n i t i a t i o nP r o t o c o l = (byte) 0 x f f ;

75 f ina l stat ic short SW_CLASSNOTSUPPORTED = 0x6320 ;

76 f ina l stat ic short SW_ERROR_INS = 0x6300 ;

77 RandomData randomDataGen ;

78 Cipher pkCipher ;

79 short messageNumber = 0 ;

80 byte [] r e c e i v i n gBu f f e r = null ;

81 short byte sLe f t = 0 ;

82 short readCount = 0 ;

83 short rCount = 0 ;

84 short s i gn l eng th = 0 ;

85 private RSAPublicKey dhKey = (RSAPublicKey) KeyBuilder . buildKey

86 (KeyBuilder .TYPE_RSA_PUBLIC,

87 KeyBuilder .LENGTH_RSA_2048, fa l se) ;

88 private byte [] randomExponent ;

89 f ina l stat ic byte GEN_KEYCONTRIBUTION = 0x01 ;

90 f ina l stat ic byte GEN_DHKEY = 0x02 ;

91 AESKey phCipherKey ;

92 Cipher syCipher ;

93 byte [] I n i t i a l i s a t i o nV e c t o r = {

94 (byte) 0x6C , (byte) 0xDE, (byte) 0xBE, (byte) 0x7B , (byte) 0x89 , (byte)

95 0x99 , (byte) 0x8C , (byte) 0xAF, (byte) 0xC5 , (byte) 0x7D , (byte) 0xB1 ,

96 (byte) 0x7C , (byte) 0x62 , (byte) 0x0A , (byte) 0x86 , (byte) 0x52 } ;

97 AESKey phMacGeneratorKey ;

393

C.8 Application Binding Protocol - Distributed

98 Signature phMacGenerator ;

99 Signature phSign ;

100 KeyPair phServerAppKeyPair ;

101 KeyPair phUserKeyPair ;

102 RSAPublicKey Cl ientAppVer i f i cat ionKey = null ;

103 private Protoco lHandler () {

104 phMacGeneratorKey = (AESKey) KeyBuilder . buildKey

105 (KeyBuilder .TYPE_AES_TRANSIENT_DESELECT,

106 KeyBuilder .LENGTH_AES_128, fa l se) ;

107 phMacGenerator = Signature . g e t In s tance

108 (S ignature .ALG_AES_MAC_128_NOPAD, fa l se) ;

109 phSign = Signature . g e t In s tance (S ignature .ALG_RSA_SHA_PKCS1, fa l se)

110 ;

111 phServerAppKeyPair = new KeyPair (KeyPair .ALG_RSA,

112 KeyBuilder .LENGTH_RSA_512) ;

113 phUserKeyPair = new KeyPair (KeyPair .ALG_RSA,

114 KeyBuilder .LENGTH_RSA_512) ;

115 phCipherKey = (AESKey) KeyBuilder . buildKey

116 (KeyBuilder .TYPE_AES_TRANSIENT_DESELECT,

117 KeyBuilder .LENGTH_AES_128, fa l se) ;

118 syCipher = Cipher . g e t In s tance (Cipher .ALG_AES_BLOCK_128_CBC_NOPAD,

119 fa l se) ;

120 randomDataGen = RandomData . g e t In s tance

121 (RandomData .ALG_SECURE_RANDOM) ;

122 pkCipher = Cipher . g e t In s tance (Cipher .ALG_RSA_NOPAD, fa l se) ;

123 d h I n i t i a l i s a t i o n () ;

124 phServerAppKeyPair . genKeyPair () ;

125 phUserKeyPair . genKeyPair () ;

126 }

127 public stat ic void i n s t a l l (byte bArray [] , short bOffset , byte

128 bLength)throws ISOException {

129 new Protoco lHandler () . r e g i s t e r () ;

130 }

131 public void i n i t i a l i s e P r o t o c o l () {

132 short i n i t i a l P o i n t e r = 0 ;

133 ServerAppDHData = JCSystem . makeTransientByteArray ((short) ((short)

134 this . ClassDH . dhModulus . l ength + PTLVDataOffset) ,

135 JCSystem .MEMORY_TYPE_TRANSIENT_DESELECT) ;

136 Ut i l . arrayCopyNonAtomic (this . ServerAppDHChalleneTag , (short)

137 i n i t i a l P o i n t e r , this . ServerAppDHData ,

(short) 0 ,

138 (short) this . ServerAppDHChalleneTag . l ength) ;

139 this . shortToBytes (ServerAppDHData , (short) 4 , (short) ((short)

140 ServerAppDHData . l ength − (short) PTLVDataOffset)) ;

141 this . dhKeyConGen(this . ServerAppDHData , this . PTLVDataOffset ,

142 Protoco lHandler .GEN_KEYCONTRIBUTION) ;

143 ClientAppDHChanllengerArray = JCSystem . makeTransientByteArray ((short) (

144 (short) this . ClassDH . dhModulus . l ength + this . PTLVDataOffset) ,

145 JCSystem .MEMORY_TYPE_TRANSIENT_DESELECT) ;

146 ClientAppRandomNumberArray =

JCSystem . makeTransientByteArray ((short) 22 ,

394

C.8 Application Binding Protocol - Distributed

147 JCSystem .MEMORY_TYPE_TRANSIENT_DESELECT) ;

148 ClientAppCookieArray = JCSystem . makeTransientByteArray ((short) 22 ,

149 JCSystem .MEMORY_TYPE_TRANSIENT_DESELECT) ;

150 ServerAppRandomNumberArray =

JCSystem . makeTransientByteArray ((short) 22 ,

151 JCSystem .MEMORY_TYPE_TRANSIENT_DESELECT) ;

152 Ut i l . arrayCopyNonAtomic (this . ServerAppRandomNumberTag , (short)

153 i n i t i a l P o i n t e r ,

this . ServerAppRandomNumberArray ,

154 (short) i n i t i a l P o i n t e r , (short)

155 this . ServerAppRandomNumberTag . l ength) ;

156 this . shortToBytes (this . ServerAppRandomNumberArray , (short) 4 , (short) (

157 (short) this . ServerAppRandomNumberArray . l ength −
(short)

158 PTLVDataOffset)) ;

159 try {

160 this . S e rve rAppCer t i f i c a t e =

JCSystem . makeTransientByteArray ((short) 86 ,

161 JCSystem .MEMORY_TYPE_TRANSIENT_DESELECT) ;

162 i n i t i a l P o i n t e r =

Ut i l . arrayCopyNonAtomic (this . ServerAppCert i f i cateTag ,

163 (short) 0 , this . Se rve rAppCert i f i ca te ,

(short) 0 , (short)

164 this . ServerAppCert i f i cateTag . l ength) ;

165 this . shortToBytes (this . Se rve rAppCert i f i ca te , (short) 4 , (short)

166 (this . S e rve rAppCer t i f i c a t e . l ength − (short) 7)) ;

167 i n i t i a l P o i n t e r = Ut i l . arrayCopyNonAtomic (this . ExponentTag ,

168 (short) 0 , this . Se rve rAppCert i f i ca te ,

(short) (i n i t i a l P o i n t e r + (short)

169 3) , (short) this . ExponentTag . l ength) ;

170 RSAPublicKey myPublic = (RSAPublicKey)

171 this . phServerAppKeyPair . ge tPub l i c () ;

172 short kLen = myPublic . getExponent (this . Se rve rAppCert i f i ca te , (short)

173 (i n i t i a l P o i n t e r + (short) 2)) ;

174 this . shortToBytes (this . Se rve rAppCert i f i ca te , i n i t i a l P o i n t e r , kLen) ;

175 i n i t i a l P o i n t e r += (short) (kLen + (short) 2) ;

176 this . S e rve rAppCer t i f i c a t e [6]++;

177 i n i t i a l P o i n t e r = Ut i l . arrayCopyNonAtomic (this . ModulusTag ,

178 (short) 0 , this . Se rve rAppCert i f i ca te ,

(short) (i n i t i a l P o i n t e r) , (short)

179 this . ModulusTag . l ength) ;

180 kLen = myPublic . getModulus (this . Se rve rAppCert i f i ca te , (short)

181 (i n i t i a l P o i n t e r + (short) 2)) ;

182 this . shortToBytes (this . Se rve rAppCert i f i ca te , i n i t i a l P o i n t e r , kLen) ;

183 this . S e rve rAppCer t i f i c a t e [6]++;

184 Cl ientAppVer i f i cat ionKey = (RSAPublicKey) KeyBuilder . buildKey

185 (KeyBuilder .TYPE_RSA_PUBLIC,

186 KeyBuilder .LENGTH_RSA_512, fa l se) ;

187 } catch (Exception cE) {

188 ISOException . throwIt ((short) 0x6666) ;

189 }

395

C.8 Application Binding Protocol - Distributed

190 }

191 public void proce s s (APDU apdu)throws ISOException {

192 byte [] apduBuffer = apdu . ge tBu f f e r () ;

193 i f (s e l e c t i n gApp l e t ()) {

194 this . i n i t i a l i s e P r o t o c o l () ;

195 return ;

196 }

197 i f (apduBuffer [ISO7816 .OFFSET_CLA] != CLA) {

198 ISOException . throwIt (SW_CLASSNOTSUPPORTED) ;

199 }

200 i f (apduBuffer [ISO7816 .OFFSET_INS] == In i t i a t i o nP r o t o c o l) {

201 r e c e i v i n gBu f f e r = JCSystem . makeTransientByteArray ((short) 64 ,

202 JCSystem .MEMORY_TYPE_TRANSIENT_DESELECT) ;

203 generateResponse ((short) 1) ;

204 apdu . setOutgoing () ;

205 apdu . setOutgoingLength ((short) copyPointer) ;

206 apdu . sendBytesLong (r e c e i v i ngBu f f e r , (short) 0 , (short)

207 copyPointer) ;

208 return ;

209 }

210 r e c e i v i n gBu f f e r = null ;

211 byte sLe f t = 0 ;

212 byte sLe f t = apdu . getIncomingLength () ;

213 r e c e i v i n gBu f f e r = JCSystem . makeTransientByteArray (bytesLe f t ,

214 JCSystem .MEMORY_TYPE_TRANSIENT_DESELECT) ;

215 readCount = (short) ((short) apdu . setIncomingAndReceive ()) ;

216 rCount = 0 ;

217 i f (byte sLe f t > 0) {

218 rCount = Ut i l . arrayCopyNonAtomic (apduBuffer ,

219 ISO7816 .OFFSET_EXT_CDATA, r e c e i v i ngBu f f e r , rCount , readCount) ;

220 byte sLe f t −= readCount ;

221 }

222 while (byte sLe f t > 0) {

223 try {

224 readCount = apdu . r e c e i v eByte s ((short) 0) ;

225 rCount = Ut i l . arrayCopyNonAtomic (apduBuffer , (short) 0 ,

226 r e c e i v i ngBu f f e r , rCount , readCount) ;

227 byte sLe f t −= readCount ;

228 } catch (Exception aE) {

229 ISOException . throwIt ((short) 0x7AAA) ;

230 }

231 }

232 i f (this . r e c e i v i n gBu f f e r [3] == this . MessageHandlerTagOne [3]) {

233 try {

234 parseMessage (r e c e i v i n gBu f f e r) ;

235 } catch (Exception cE) {

236 ISOException . throwIt ((short) 0xA112) ;

237 }

238 r e c e i v i n gBu f f e r = JCSystem . makeTransientByteArray ((short) 600 ,

239 JCSystem .MEMORY_TYPE_TRANSIENT_DESELECT) ;

240 generateResponse ((short) 2) ;

396

C.8 Application Binding Protocol - Distributed

241 JCSystem . r eques tObjec tDe l e t i on () ;

242 apdu . setOutgoing () ;

243 apdu . setOutgoingLength ((short) copyPointer) ;

244 apdu . sendBytesLong (r e c e i v i ngBu f f e r , (short) 0 , (short)

245 copyPointer) ;

246 } else i f (this . r e c e i v i n gBu f f e r [3] ==

247 this . MessageHandlerTagTwo [3]) {

248 i f (processSecondMsg (r e c e i v i n gBu f f e r)) {

249 return ;

250 } else {

251 ISOException . throwIt ((short) 0xFA17) ;

252 }

253 return ;

254 } else {

255 ISOException . throwIt (Protoco lHandler .SW_ERROR_INS) ;

256 }

257 JCSystem . r eques tObjec tDe l e t i on () ;

258 }

259 private void generateResponse (short msgNumber) {

260 short childPM1 = 0 ;

261 short childPM2 = 0 ;

262 copyPointer = 0 ;

263 i f (msgNumber == 1) {

264 copyPointer = Ut i l . arrayCopy (this . ServerAppProtoco l In i t ia torTag ,

265 (short) 0 , this . r e c e i v i ngBu f f e r ,

266 copyPointer , (short)

267 this . Se rverAppProtoco l In i t i a torTag . l ength)

268 ;

269 randomDataGen . generateData (this . ServerAppRandomNumberArray ,

270 this . PTLVDataOffset , (short) 16) ;

271 childPM1 = copyPointer ;

272 copyPointer += 2 ;

273 phMacGeneratorKey . setKey (this . ServerAppRandomNumberArray ,

274 this . PTLVDataOffset) ;

275 phMacGenerator . i n i t (phMacGeneratorKey , S ignature .MODE_SIGN,

276 I n i t i a l i s a t i o nV e c t o r , (short) 0 , (short)

277 I n i t i a l i s a t i o nV e c t o r . l ength) ;

278 short l ength = 0 ;

279 l ength = phMacGenerator . s i gn (ServerAppDHData , (short)

280 this . PTLVDataOffset , (short)

281 (ServerAppDHData . l ength −
282 this . PTLVDataOffset) ,

283 this . r e c e i v i ngBu f f e r , copyPointer) ;

284 copyPointer += length ;

285 this . shortToBytes (this . r e c e i v i ngBu f f e r , childPM1 , l ength) ;

286 return ;

287 } else i f (msgNumber == 2) {

288 this . dhKeyConGen(this . ClientAppDHChanllengerArray ,

this . PTLVDataOffset ,

289 Protoco lHandler .GEN_DHKEY) ;

290 keygenerator () ;

397

C.8 Application Binding Protocol - Distributed

291 childPM1 = (short) 6 ;

292 copyPointer = Ut i l . arrayCopyNonAtomic (this . MessageHandlerTagTwo ,

293 (short) 0 , this . r e c e i v i ngBu f f e r , copyPointer , (short)

294 this . MessageHandlerTagTwo . l ength) ;

295 copyPointer = Ut i l . arrayCopyNonAtomic (this . ServerAppDHData ,

(short) 0 ,

296 this . r e c e i v i ngBu f f e r , (short) copyPointer , (short)

297 this . ServerAppDHData . l ength) ;

298 this . r e c e i v i n gBu f f e r [childPM1]++;

299 copyPointer =

Ut i l . arrayCopyNonAtomic (this . ServerAppRandomNumberArray ,

300 (short) 0 , this . r e c e i v i ngBu f f e r , copyPointer , (short)

301 this . ServerAppRandomNumberArray . l ength) ;

302 this . r e c e i v i n gBu f f e r [childPM1]++;

303 copyPointer = Ut i l . arrayCopyNonAtomic (this . EncryptedDataTag ,

304 (short) 0 , this . r e c e i v i ngBu f f e r , copyPointer , (short)

305 this . EncryptedDataTag . l ength) ;

306 copyPointer += 3 ;

307 childPM2 = (short) (copyPointer − (short) 1) ;

308 this . r e c e i v i n gBu f f e r [childPM1]++;

309 copyPointer = Ut i l . arrayCopyNonAtomic (this . PlatformHash , (short)

310 0 , this . r e c e i v i ngBu f f e r , copyPointer , (short)

311 this . PlatformHash . l ength) ;

312 copyPointer += 2 ;

313 MessageDigest myHashGen = MessageDigest . g e t In s tance

314 (MessageDigest .ALG_SHA_256, fa l se) ;

315 short tempLength = (short)myHashGen . doFinal (this . ClassDH . dhModulus ,

316 (short) 0 , (short) this . ClassDH . dhModulus . length ,

317 r e c e i v i ngBu f f e r , copyPointer) ;

318 this . r e c e i v i n gBu f f e r [childPM2]++;

319 this . shortToBytes (this . r e c e i v i ngBu f f e r , (short) (copyPointer −
320 (short) 2) , tempLength) ;

321 copyPointer += tempLength ;

322 copyPointer = Ut i l . arrayCopyNonAtomic (this . ServerAppIdentityTag ,

323 (short) 0 , this . r e c e i v i ngBu f f e r , copyPointer , (short)

324 this . ServerAppIdentityTag . l ength) ;

325 this . r e c e i v i n gBu f f e r [childPM2]++;

326 copyPointer =

Ut i l . arrayCopyNonAtomic (this . ServerAppRandomNumberArray ,

327 (short) 0 , this . r e c e i v i ngBu f f e r , copyPointer , (short)

328 this . ServerAppRandomNumberArray . l ength) ;

329 this . r e c e i v i n gBu f f e r [childPM2]++;

330 copyPointer =

Ut i l . arrayCopyNonAtomic (this . ClientAppRandomNumberArray ,

331 (short) 0 , this . r e c e i v i ngBu f f e r , copyPointer , (short)

332 this . ClientAppRandomNumberArray . l ength) ;

333 this . r e c e i v i n gBu f f e r [childPM2]++;

334 try {

335 this . s ignGenerate (this . r e c e i v i ngBu f f e r , (short) (childPM2 +

336 (short) 1) , (short) (copyPointer − (short)

337 (childPM2 + (short) 1)) ,

398

C.8 Application Binding Protocol - Distributed

338 this . phServerAppKeyPair . g e tPr iva t e () ,

339 Signature .MODE_SIGN) ;

340 } catch (Exception cE) {

341 ISOException . throwIt ((short) 0x3141) ;

342 }

343 this . r e c e i v i n gBu f f e r [childPM2]++;

344 copyPointer = Ut i l . arrayCopyNonAtomic (this . Se rve rAppCert i f i ca te ,

345 (short) 0 , this . r e c e i v i ngBu f f e r , copyPointer , (short)

346 this . S e rve rAppCer t i f i c a t e . l ength) ;

347 this . r e c e i v i n gBu f f e r [childPM2]++;

348 try {

349 this . messageEncryption (this . r e c e i v i ngBu f f e r , (short) (childPM2

350 + (short) 1) , (short) (copyPointer −
351 (short) (childPM2 + (short) 1))) ;

352 } catch (Exception ce) {

353 ISOException . throwIt ((short) (copyPointer − (short) (childPM2 +

354 (short) 1))) ;

355 }

356 this . shortToBytes (this . r e c e i v i ngBu f f e r , (short) (childPM2 −
357 (short) 2) , (short) (copyPointer − childPM2 −
358 (short) 1)) ;

359 this . macGenerate (this . r e c e i v i ngBu f f e r , (short) (childPM2 +

360 (short) 1) , (short) (copyPointer − (short)

361 (childPM2 + (short) 1)) , S ignature .MODE_SIGN) ;

362 this . r e c e i v i n gBu f f e r [childPM1]++;

363 copyPointer = Ut i l . arrayCopyNonAtomic (this . ClientAppCookieArray ,

364 (short) 0 , this . r e c e i v i ngBu f f e r , (short) copyPointer , (short)

365 this . ClientAppCookieArray . l ength) ;

366 this . r e c e i v i n gBu f f e r [childPM1]++;

367 this . shortToBytes (this . r e c e i v i ngBu f f e r , (short) (childPM1 −
368 (short) 2) , (short) (copyPointer − (short) 7)) ;

369 }

370 }

371 boolean processSecondMsg (byte [] inArray) {

372 short i nO f f s e t = (short) (this . CTLVDataOffset +

373 this . CTLVDataOffset) ;

374 short inLength = (short) (Protoco lHandler . bytesToShort (inArray ,

375 (short) (i nO f f s e t − (short) 3))) ;

376 i f (this . macGenerate (inArray , i nOf f s e t , inLength ,

377 Signature .MODE_VERIFY)) {

378 try {

379 this . phDecryption (inArray , i nOf f s e t , inLength) ;

380 i nO f f s e t = (short) (this . CTLVDataOffset + this . PTLVDataOffset

381 + (short) 168) ;

382 inLength = 3 ;

383 Cl ientAppVer i f i cat ionKey . setExponent (inArray , i nOf f s e t , inLength) ;

384 i nO f f s e t += (short) (inLength + this . PTLVDataOffset) ;

385 inLength = (short) 64 ;

386 Cl ientAppVer i f i cat ionKey . setModulus (inArray , i nOf f s e t , inLength) ;

387 i nO f f s e t = (short) (this . CTLVDataOffset + this . CTLVDataOffset) ;

388 inLength = (short) 84 ;

399

C.8 Application Binding Protocol - Distributed

389 i f (this . s ignGenerate (inArray , i nOf f s e t , inLength ,

390 ClientAppVer i f i cat ionKey , S ignature .MODE_VERIFY)) {

391 return true ;

392 } else {

393 ISOException . throwIt ((short) 0x6666) ;

394 }

395 } catch (Exception ce) {

396 ISOException . throwIt ((short) 0xAB23) ;

397 }

398 return true ;

399 } else {

400 ISOException . throwIt ((short) 0xFA18) ;

401 }

402 return fa l se ;

403 }

404 void parseMessage (byte [] i nBu f f e r) {

405 byte c h i l dL e f t = inBu f f e r [(short) (this . CTLVDataOffset − (short) 1)

406] ;

407 short po in t e r = (short) this . CTLVDataOffset ;

408 try {

409 while (c h i l dL e f t > 0) {

410 i f (Ut i l . arrayCompare (ClientAppDHChallengeTag , (short) 0 , inBuf f e r ,

411 pointer , (short) 4) == 0) {

412 Ut i l . arrayCopy (inBuf f e r , po inter ,

this . ClientAppDHChanllengerArray ,

413 (short) 0 , (short)

414 this . ClientAppDHChanllengerArray . l ength) ;

415 po in t e r += (short) this . ClientAppDHChanllengerArray . l ength ;

416 } else i f (Ut i l . arrayCompare (this . ClientAppRandomNumberTag ,

(short) 0 ,

417 i nBuf f e r , po inter , (short) 4) == 0) {

418 Ut i l . arrayCopyNonAtomic (inBuf f e r , po inter ,

419 this . ClientAppRandomNumberArray ,

(short) 0 ,

420 (short)

421 (this . ClientAppRandomNumberArray . l ength)) ;

422 po in t e r += (short) (this . ClientAppRandomNumberArray . l ength) ;

423 } else i f (Ut i l . arrayCompare (this . ClientAppCookieTag , (short) 0 ,

424 i nBuf f e r , po inter , (short) 4) == 0) {

425 Ut i l . arrayCopyNonAtomic (inBuf f e r , po inter ,

426 this . ClientAppCookieArray , (short) 0 ,

427 (short) (this . ClientAppCookieArray . l ength)) ;

428 po in t e r += (short) (this . ClientAppCookieArray . l ength) ;

429 }

430 c h i l dL e f t −= (short) 1 ;

431 }

432 } catch (Exception cE) {

433 ISOException . throwIt ((short) c h i l dL e f t) ;

434 }

435 }

436 void protoco l Implementat ion () {}

400

C.8 Application Binding Protocol - Distributed

437 void d h I n i t i a l i s a t i o n () {

438 dhKey . setModulus (ClassDH . dhModulus , (short) 0 ,

(short)ClassDH . dhModulus . l ength) ;

439 }

440 void dhKeyConGen(byte [] i nbu f f , short i nbu f fO f f s e t , byte Oper_Mode)

441 {

442 switch (Oper_Mode) {

443 case GEN_KEYCONTRIBUTION: randomExponent =

444 JCSystem . makeTransientByteArray ((short) 32 ,

445 JCSystem .MEMORY_TYPE_TRANSIENT_DESELECT) ;

446 randomDataGen . generateData (randomExponent , (short) 0 , (short)

447 randomExponent . l ength) ;

448 dhKey . setExponent (randomExponent , (short) 0 , (short)

449 randomExponent . l ength) ;

450 pkCipher . i n i t (dhKey , Cipher .MODE_ENCRYPT) ;

451 pkCipher . doFinal (ClassDH . dhBase , (short) 0 ,

(short)ClassDH . dhBase . length , inbu f f ,

452 i n bu f fO f f s e t) ;

453 break ;

454 case GEN_DHKEY:

455 try {

456 dhKey . setExponent (randomExponent , (short) 0 , (short)

457 randomExponent . l ength) ;

458 pkCipher . i n i t (dhKey , Cipher .MODE_ENCRYPT) ;

459 ServerAppClientAppDHGeneratedValue =

JCSystem . makeTransientByteArray (

460 (short)ClassDH . dhModulus . length ,

461 JCSystem .MEMORY_TYPE_TRANSIENT_DESELECT) ;

462 pkCipher . doFinal (inbu f f , i nbu f fO f f s e t , (short) ((short)

463 i n bu f f . l ength − (short) this . PTLVDataOffset)

464 , ServerAppClientAppDHGeneratedValue ,

(short) 0) ;

465 }

466 catch (Exception cE) {

467 ISOException . throwIt ((short) 0xD86E) ;

468 }

469 break ;

470 default :

471 ISOException . throwIt ((short) 0x5FA1) ;

472 }

473 }

474 void keygenerator () {

475 AESKey sessionGenKey = (AESKey) KeyBuilder . buildKey

476 (KeyBuilder .TYPE_AES_TRANSIENT_DESELECT,

477 KeyBuilder .LENGTH_AES_128, fa l se) ;

478 sessionGenKey . setKey (ServerAppClientAppDHGeneratedValue , (short) 0) ;

479 phMacGenerator . i n i t (sessionGenKey , S ignature .MODE_SIGN,

480 I n i t i a l i s a t i o nV e c t o r , (short) 0 , (short)

481 I n i t i a l i s a t i o nV e c t o r . l ength) ;

482 byte [] keyGenMacData = JCSystem . makeTransientByteArray ((short) 64 ,

483 JCSystem .MEMORY_TYPE_TRANSIENT_DESELECT) ;

401

C.8 Application Binding Protocol - Distributed

484 short po in t e r = 0 ;

485 po in t e r = Ut i l . arrayCopyNonAtomic (this . ClientAppRandomNumberArray ,

486 this . PTLVDataOffset , keyGenMacData , (short) po inter , (short) 16) ;

487 po in t e r = Ut i l . arrayCopyNonAtomic (this . ServerAppRandomNumberArray ,

488 this . PTLVDataOffset , keyGenMacData , (short) po inter , (short) 16) ;

489 po in t e r = Ut i l . arrayCopyNonAtomic (ServerAppClientAppDHGeneratedValue ,

(short) 16 ,

490 keyGenMacData , (short) po inter , (short) 16) ;

491 for (short i = 48 ; i < 64 ; i++) {

492 keyGenMacData [i] = (byte) 0x02 ;

493 }

494 phMacGenerator . s i gn (keyGenMacData , (short) 0 , (short)

495 keyGenMacData . length ,

ServerAppClientAppDHGeneratedValue ,

496 (short) 0) ;

497 this . phCipherKey . setKey (ServerAppClientAppDHGeneratedValue , (short) 0) ;

498 for (short i = 48 ; i < 64 ; i++) {

499 keyGenMacData [i] = (byte) 0x03 ;

500 }

501 phMacGenerator . i n i t (sessionGenKey , S ignature .MODE_SIGN,

502 I n i t i a l i s a t i o nV e c t o r , (short) 0 , (short)

503 I n i t i a l i s a t i o nV e c t o r . l ength) ;

504 phMacGenerator . s i gn (keyGenMacData , (short) 0 , (short)

505 keyGenMacData . length ,

ServerAppClientAppDHGeneratedValue ,

506 (short) 0) ;

507 this . phMacGeneratorKey . setKey (ServerAppClientAppDHGeneratedValue ,

(short) 0) ;

508 ServerAppClientAppDHGeneratedValue = null ;

509 JCSystem . r eques tObjec tDe l e t i on () ;

510 }

511 void messageEncryption (byte [] i nbu f f , short i nbu f fO f f s e t , short

512 inbuf fLength) {

513 syCipher . i n i t (phCipherKey , Cipher .MODE_ENCRYPT,

514 I n i t i a l i s a t i o nV e c t o r , (short) 0 , (short)

515 I n i t i a l i s a t i o nV e c t o r . l ength) ;

516 this . shortToBytes (inbu f f , (short) (i n bu f fO f f s e t − 3) , (short)

517 syCipher . doFinal (inbu f f , i nbu f fO f f s e t ,

518 inbuf fLength , inbu f f , i n bu f fO f f s e t)) ;

519 }

520 void phDecryption (byte [] i nbu f f , short i nbu f fO f f s e t , short

521 inbuf fLength) {

522 syCipher . i n i t (phCipherKey , Cipher .MODE_DECRYPT,

523 I n i t i a l i s a t i o nV e c t o r , (short) 0 , (short)

524 I n i t i a l i s a t i o nV e c t o r . l ength) ;

525 syCipher . doFinal (inbu f f , i nbu f fO f f s e t , inbuf fLength , inbu f f ,

526 i n bu f fO f f s e t) ;

527 }

528 boolean macGenerate (byte [] i nbu f f , short i nbu f fO f f s e t , short

529 inbuf fLength , short macMode) {

530 i f (macMode == Signature .MODE_SIGN) {

402

C.8 Application Binding Protocol - Distributed

531 phMacGenerator . i n i t (phMacGeneratorKey , S ignature .MODE_SIGN,

532 I n i t i a l i s a t i o nV e c t o r , (short) 0 , (short)

533 I n i t i a l i s a t i o nV e c t o r . l ength) ;

534 try {

535 copyPointer = Ut i l . arrayCopyNonAtomic (this .MACedDataTag ,

536 (short) 0 , this . r e c e i v i ngBu f f e r , copyPointer , (short)

537 this .MACedDataTag . l ength) ;

538 copyPointer += 2 ;

539 } catch (Exception ce) {

540 ISOException . throwIt ((short) 0xFA17) ;

541 }

542 try {

543 short l ength = (short) phMacGenerator . s i gn

544 (this . r e c e i v i ngBu f f e r , i nbu f fO f f s e t ,

545 inbuf fLength , inbu f f , copyPointer) ;

546 this . shortToBytes (inbu f f , (short) (copyPointer − (short) 2) ,

547 l ength) ;

548 copyPointer += length ;

549 } catch (Exception ce) {

550 ISOException . throwIt ((short) 0x0987) ;

551 }

552 return true ;

553 } else i f (macMode == Signature .MODE_VERIFY) {

554 try {

555 phMacGenerator . i n i t (phMacGeneratorKey , S ignature .MODE_VERIFY,

556 I n i t i a l i s a t i o nV e c t o r , (short) 0 , (short)

557 I n i t i a l i s a t i o nV e c t o r . l ength) ;

558 return phMacGenerator . v e r i f y (this . r e c e i v i ngBu f f e r ,

559 i nbu f fO f f s e t , inbuf fLength , inbu f f , (short) (i n bu f fO f f s e t +

560 inbuf fLength + this . PTLVDataOffset) , (short) 16) ;

561 } catch (Exception cE) {

562 ISOException . throwIt ((short) 0xC1C2) ;

563 }

564 }

565 return fa l se ;

566 }

567 boolean s ignGenerate (byte [] i nbu f f , short i nbu f fO f f s e t , short

568 i nbu f f l eng th , Key kpSign , short signMode) {

569 i f (signMode == Signature .MODE_SIGN) {

570 copyPointer = Ut i l . arrayCopyNonAtomic (this . SignedDataTag ,

571 (short) 0 , this . r e c e i v i ngBu f f e r , copyPointer , (short)

572 this . SignedDataTag . l ength) ;

573 copyPointer += (short) 2 ;

574 phSign . i n i t ((RSAPrivateKey) kpSign , S ignature .MODE_SIGN) ;

575 s i gn l eng th = phSign . s i gn (inbu f f , (short) i nbu f fO f f s e t ,

576 i nbu f f l eng th , inbu f f , copyPointer) ;

577 this . shortToBytes (this . r e c e i v i ngBu f f e r , (short) (copyPointer −
578 (short) 2) , s i gn l eng th) ;

579 copyPointer += s i gn l eng th ;

580 return true ;

581 } else i f (signMode == Signature .MODE_VERIFY) {

403

C.9 Platform Binding Protocol

582 phSign . i n i t ((RSAPublicKey) kpSign , S ignature .MODE_VERIFY) ;

583 return phSign . v e r i f y (inbu f f , i nbu f fO f f s e t , i nbu f f l eng th , inbu f f ,

584 (short) (i n bu f fO f f s e t + inbu f f l e n g th +

585 this . PTLVDataOffset) , (short) 64) ;

586 }

587 return fa l se ;

588 }

589 public stat ic short bytesToShort (byte [] ArrayBytes) {

590 return (short) (((ArrayBytes [0] << 8)) | ((ArrayBytes [1] & 0 x f f))) ;

591 }

592 public stat ic short bytesToShort (byte [] ArrayBytes , short

593 a r r ayOf f s e t) {

594 return (short) (((ArrayBytes [a r r ayOf f s e t] << 8)) | ((ArrayBytes [

595 (short) (a r r ayOf f s e t + (short) 1)] & 0 x f f))) ;

596 }

597 private void shortToBytes (byte [] Array , short ar rayOf f s e t , short

598 inShort) {

599 Array [a r r ayOf f s e t] = (byte) ((short) (inShort & (short) 0xFF00) >>

600 (short) 0x0008) ;

601 Array [(short) (a r r ayOf f s e t + (short) 1)] = (byte) (inShort & (short)

602 0x00FF) ;

603 }

604 }

C.9 Platform Binding Protocol

The Java Card implementation of the PBP discussed in section 7.5 is listed in subsequent

sections.

C.9.1 Initiator Smart Card Implementation

Implementation of a initiator smart card that request for the platform binding in the

CDAM �rewall mechanism is listed as below:

1 package protocolSCA ;

2

3 import javacard . framework .APDU;

4 import javacard . framework . Applet ;

5 import javacard . framework . ISO7816 ;

6 import javacard . framework . ISOException ;

7 import javacard . framework . JCSystem ;

8 import javacard . framework . Ut i l ;

9 import javacard . s e c u r i t y .AESKey ;

10 import javacard . s e c u r i t y . Key ;

11 import javacard . s e c u r i t y . KeyBuilder ;

12 import javacard . s e c u r i t y . KeyPair ;

13 import javacard . s e c u r i t y . MessageDigest ;

14 import javacard . s e c u r i t y . RSAPrivateKey ;

15 import javacard . s e c u r i t y . RSAPublicKey ;

16 import javacard . s e c u r i t y . RandomData ;

404

C.9 Platform Binding Protocol

17 import javacard . s e c u r i t y . S ignature ;

18 import javacardx . apdu . ExtendedLength ;

19 import javacardx . crypto . Cipher ;

20 public class Protoco lHandler extends Applet implements ExtendedLength

21 {

22 private byte [] SCBDHChanllengerArray ;

23 private byte [] SCBRandomNumberArray ;

24 private byte [] SCBCookieArray ;

25 private byte [] SCASCBDHGeneratedValue ;

26 private byte [] SCARandomNumberArray ;

27 private byte [] SCAUserCert i f i cate ;

28 private byte [] SCACert i f i cate ;

29 private byte [] SCBDHChallengeTag = {

30 (byte) 0x1F , (byte) 0x5F , (byte) 0x5C , (byte) 0x01 } ;

31 private byte [] MessageHandlerTagOne = {

32 (byte) 0x1F , (byte) 0xC0 , (byte) 0xAA, (byte) 0xAA, (byte) 0x00 , (byte)

33 0x00 , (byte) 0x00 } ;

34 private byte [] MessageHandlerTagTwo = {

35 (byte) 0x1F , (byte) 0xC0 , (byte) 0xBB, (byte) 0xBB, (byte) 0x00 , (byte)

36 0x00 , (byte) 0x00 } ;

37 private byte [] SCBIdentity = null ;

38 private byte [] SCBRandomNumberTag = {

39 (byte) 0x1F , (byte) 0x5F , (byte) 0x5A , (byte) 0x01 } ;

40 private byte [] SCBCookieTag = {

41 (byte) 0x1F , (byte) 0x5F , (byte) 0x5B , (byte) 0x01 } ;

42 private byte [] EncryptedDataTag = {

43 (byte) 0x1F , (byte) 0xC0 , (byte) 0xFE , (byte) 0x01 } ;

44 private byte [] SignedDataTag = {

45 (byte) 0x1F , (byte) 0x5F , (byte) 0x5D , (byte) 0x02 } ;

46 private byte [] MACedDataTag = {

47 (byte) 0x1F , (byte) 0x5F , (byte) 0x5D , (byte) 0x01 } ;

48 private byte [] PlatformHash = {

49 (byte) 0x1F , (byte) 0x5F , (byte) 0x5E , (byte) 0xAF} ;

50 private byte [] SCAIdentityTag = {

51 (byte) 0x1F , (byte) 0x5F , (byte) 0x5F , (byte) 0x02 , (byte) 0x00 , (byte)

52 0x12 , (byte) 0x7A , (byte) 0xD5 , (byte) 0xB7 , (byte) 0xD0 , (byte) 0xB6 ,

53 (byte) 0xC1 , (byte) 0x22 , (byte) 0x07 , (byte) 0xC9 , (byte) 0xF9 ,

54 (byte) 0x8D , (byte) 0x11 , (byte) 0xED, (byte) 0x34 , (byte) 0xDB,

55 (byte) 0xF6 , (byte) 0x0B , (byte) 0x2C} ;

56 private byte [] Use r Ident i ty = {

57 (byte) 0x1F , (byte) 0x5F , (byte) 0x5F , (byte) 0x03 , (byte) 0x00 , (byte)

58 0x14 , (byte) 0x7A , (byte) 0xD5 , (byte) 0xB7 , (byte) 0xD0 , (byte) 0xB6 ,

59 (byte) 0xC1 , (byte) 0x22 , (byte) 0x07 , (byte) 0xC9 , (byte) 0xC9 ,

60 (byte) 0x8D , (byte) 0xD1 , (byte) 0xED, (byte) 0xFC, (byte) 0xDB,

61 (byte) 0xF6 , (byte) 0x0B , (byte) 0x2C , (byte) 0x0B , (byte) 0x2C} ;

62 private byte [] ExponentTag = {

63 (byte) 0x1F , (byte) 0x5F , (byte) 0xEE, (byte) 0x01 } ;

64 private byte [] ModulusTag = {

65 (byte) 0x1F , (byte) 0x5F , (byte) 0xEE, (byte) 0x02 } ;

66 private byte [] SCADHChalleneTag = {

67 (byte) 0x1F , (byte) 0x5F , (byte) 0x5C , (byte) 0x02 } ;

405

C.9 Platform Binding Protocol

68 private byte [] SCARandomNumberTag = {

69 (byte) 0x1F , (byte) 0x5F , (byte) 0x5A , (byte) 0x02 } ;

70 private byte [] SCBCerti f icateTag = {

71 (byte) 0x1F , (byte) 0xC0 , (byte) 0xF0 , (byte) 0x01 } ;

72 private byte [] SCACerti f icateTag = {

73 (byte) 0x1F , (byte) 0xC0 , (byte) 0xF0 , (byte) 0x02 } ;

74 private byte [] SCAUserCerti f icateTag = {

75 (byte) 0x1F , (byte) 0xC0 , (byte) 0xF0 , (byte) 0x03 } ;

76 short PTLVDataOffset = (short) 6 ;

77 short CTLVDataOffset = (short) 7 ;

78 short TLVLengthOffset = (short) 4 ;

79 byte [] SCADHData ;

80 f ina l stat ic byte CLA = (byte) 0xB0 ;

81 f ina l stat ic byte Sta r tPro toco l = (byte) 0x40 ;

82 f ina l stat ic byte I n i t i a t i o nP r o t o c o l = (byte) 0 x f f ;

83 f ina l stat ic short SW_CLASSNOTSUPPORTED = 0x6320 ;

84 f ina l stat ic short SW_ERROR_INS = 0x6300 ;

85 RandomData randomDataGen ;

86 Cipher pkCipher ;

87 short messageNumber = 0 ;

88 byte [] r e c e i v i n gBu f f e r = null ;

89 short byte sLe f t = 0 ;

90 short readCount = 0 ;

91 short rCount = 0 ;

92 short s i gn l eng th = 0 ;

93 private RSAPublicKey dhKey = (RSAPublicKey) KeyBuilder . buildKey

94 (KeyBuilder .TYPE_RSA_PUBLIC,

95 KeyBuilder .LENGTH_RSA_2048, fa l se) ;

96 private byte [] randomExponent ;

97 f ina l stat ic byte GEN_KEYCONTRIBUTION = 0x01 ;

98 f ina l stat ic byte GEN_DHKEY = 0x02 ;

99 AESKey phCipherKey ;

100 Cipher syCipher ;

101 byte [] I n i t i a l i s a t i o nV e c t o r = {

102 (byte) 0x6C , (byte) 0xDE, (byte) 0xBE, (byte) 0x7B , (byte) 0x89 , (byte)

103 0x99 , (byte) 0x8C , (byte) 0xAF, (byte) 0xC5 , (byte) 0x7D , (byte) 0xB1 ,

104 (byte) 0x7C , (byte) 0x62 , (byte) 0x0A , (byte) 0x86 , (byte) 0x52 } ;

105 AESKey phMacGeneratorKey ;

106 Signature phMacGenerator ;

107 Signature phSign ;

108 KeyPair phSCAKeyPair ;

109 KeyPair phUserKeyPair ;

110 RSAPublicKey SCBVeri f icationKey = null ;

111 private Protoco lHandler () {

112 phMacGeneratorKey = (AESKey) KeyBuilder . buildKey

113 (KeyBuilder .TYPE_AES_TRANSIENT_DESELECT,

114 KeyBuilder .LENGTH_AES_128, fa l se) ;

115 phMacGenerator = Signature . g e t In s tance

116 (S ignature .ALG_AES_MAC_128_NOPAD, fa l se) ;

117 phSign = Signature . g e t In s tance (S ignature .ALG_RSA_SHA_PKCS1, fa l se)

118 ;

406

C.9 Platform Binding Protocol

119 phSCAKeyPair = new KeyPair (KeyPair .ALG_RSA,

120 KeyBuilder .LENGTH_RSA_512) ;

121 phUserKeyPair = new KeyPair (KeyPair .ALG_RSA,

122 KeyBuilder .LENGTH_RSA_512) ;

123 phCipherKey = (AESKey) KeyBuilder . buildKey

124 (KeyBuilder .TYPE_AES_TRANSIENT_DESELECT,

125 KeyBuilder .LENGTH_AES_128, fa l se) ;

126 syCipher = Cipher . g e t In s tance (Cipher .ALG_AES_BLOCK_128_CBC_NOPAD,

127 fa l se) ;

128 randomDataGen = RandomData . g e t In s tance

129 (RandomData .ALG_SECURE_RANDOM) ;

130 pkCipher = Cipher . g e t In s tance (Cipher .ALG_RSA_NOPAD, fa l se) ;

131 d h I n i t i a l i s a t i o n () ;

132 phSCAKeyPair . genKeyPair () ;

133 phUserKeyPair . genKeyPair () ;

134 }

135 public stat ic void i n s t a l l (byte bArray [] , short bOffset , byte

136 bLength)throws ISOException {

137 new Protoco lHandler () . r e g i s t e r () ;

138 }

139 public void i n i t i a l i s e P r o t o c o l () {

140 short i n i t i a l P o i n t e r = 0 ;

141 SCADHData = JCSystem . makeTransientByteArray ((short) ((short)

142 this . ClassDH . dhModulus . l ength + PTLVDataOffset) ,

143 JCSystem .MEMORY_TYPE_TRANSIENT_DESELECT) ;

144 Ut i l . arrayCopyNonAtomic (this . SCADHChalleneTag , (short)

145 i n i t i a l P o i n t e r , this . SCADHData, (short) 0 ,

146 (short) this . SCADHChalleneTag . l ength) ;

147 this . shortToBytes (SCADHData, (short) 4 , (short) ((short)

148 SCADHData . l ength − (short) PTLVDataOffset)) ;

149 this . dhKeyConGen(this . SCADHData, this . PTLVDataOffset ,

150 Protoco lHandler .GEN_KEYCONTRIBUTION) ;

151 SCBDHChanllengerArray = JCSystem . makeTransientByteArray ((short) (

152 (short) this . ClassDH . dhModulus . l ength + this . PTLVDataOffset) ,

153 JCSystem .MEMORY_TYPE_TRANSIENT_DESELECT) ;

154 SCBRandomNumberArray = JCSystem . makeTransientByteArray ((short) 22 ,

155 JCSystem .MEMORY_TYPE_TRANSIENT_DESELECT) ;

156 SCBCookieArray = JCSystem . makeTransientByteArray ((short) 22 ,

157 JCSystem .MEMORY_TYPE_TRANSIENT_DESELECT) ;

158 SCARandomNumberArray = JCSystem . makeTransientByteArray ((short) 22 ,

159 JCSystem .MEMORY_TYPE_TRANSIENT_DESELECT) ;

160 Ut i l . arrayCopyNonAtomic (this . SCARandomNumberTag , (short)

161 i n i t i a l P o i n t e r , this . SCARandomNumberArray ,

162 (short) i n i t i a l P o i n t e r , (short)

163 this . SCARandomNumberTag . l ength) ;

164 this . shortToBytes (this . SCARandomNumberArray , (short) 4 , (short) (

165 (short) this . SCARandomNumberArray . l ength −
166 (short) PTLVDataOffset)) ;

167 try {

168 this . SCAUserCert i f i cate = JCSystem . makeTransientByteArray (

169 (short) 86 , JCSystem .MEMORY_TYPE_TRANSIENT_DESELECT) ;

407

C.9 Platform Binding Protocol

170 i n i t i a l P o i n t e r = Ut i l . arrayCopyNonAtomic

171 (this . SCAUserCerti f icateTag , (short) 0 ,

172 this . SCAUserCert i f icate , (short) 0 , (short)

173 this . SCAUserCerti f icateTag . l ength) ;

174 this . shortToBytes (this . SCAUserCert i f icate , (short) 4 , (short)

175 (this . SCAUserCert i f i cate . l ength − (short) 7)) ;

176 i n i t i a l P o i n t e r = Ut i l . arrayCopyNonAtomic (this . ExponentTag ,

177 (short) 0 , this . SCAUserCert i f icate , (short) (i n i t i a l P o i n t e r +

178 (short) 3) , (short) this . ExponentTag . l ength) ;

179 RSAPublicKey myPublic = (RSAPublicKey)

180 this . phUserKeyPair . ge tPub l i c () ;

181 short kLen = myPublic . getExponent (this . SCAUserCert i f icate ,

182 (short) (i n i t i a l P o i n t e r + (short) 2)) ;

183 this . shortToBytes (this . SCAUserCert i f icate , i n i t i a l P o i n t e r , kLen)

184 ;

185 i n i t i a l P o i n t e r += (short) (kLen + (short) 2) ;

186 this . SCAUserCert i f i cate [6]++;

187 i n i t i a l P o i n t e r = Ut i l . arrayCopyNonAtomic (this . ModulusTag ,

188 (short) 0 , this . SCAUserCert i f icate , (short) (i n i t i a l P o i n t e r) ,

189 (short) this . ModulusTag . l ength) ;

190 kLen = myPublic . getModulus (this . SCAUserCert i f icate , (short)

191 (i n i t i a l P o i n t e r + (short) 2)) ;

192 this . shortToBytes (this . SCAUserCert i f icate , i n i t i a l P o i n t e r , kLen)

193 ;

194 this . SCAUserCert i f i cate [6]++;

195 this . SCBIdentity = JCSystem . makeTransientByteArray ((short) 24 ,

196 JCSystem .MEMORY_TYPE_TRANSIENT_RESET) ;

197 SCBVerif icationKey = (RSAPublicKey) KeyBuilder . buildKey

198 (KeyBuilder .TYPE_RSA_PUBLIC,

199 KeyBuilder .LENGTH_RSA_512, fa l se) ;

200 } catch (Exception cE) {

201 ISOException . throwIt ((short) 0xCCCC) ;

202 }

203 try {

204 this . SCACert i f i cate = JCSystem . makeTransientByteArray ((short) 86 ,

205 JCSystem .MEMORY_TYPE_TRANSIENT_DESELECT) ;

206 i n i t i a l P o i n t e r = Ut i l . arrayCopyNonAtomic (this . SCACertif icateTag ,

207 (short) 0 , this . SCACert i f icate , (short) 0 , (short)

208 this . SCACerti f icateTag . l ength) ;

209 this . shortToBytes (this . SCACert i f icate , (short) 4 , (short)

210 (this . SCACert i f i cate . l ength − (short) 7)) ;

211 i n i t i a l P o i n t e r = Ut i l . arrayCopyNonAtomic (this . ExponentTag ,

212 (short) 0 , this . SCACert i f icate , (short) (i n i t i a l P o i n t e r +

213 (short) 3) , (short) this . ExponentTag . l ength) ;

214 RSAPublicKey myPublic = (RSAPublicKey)

215 this . phSCAKeyPair . ge tPub l i c () ;

216 short kLen = myPublic . getExponent (this . SCACert i f icate , (short)

217 (i n i t i a l P o i n t e r + (short) 2)) ;

218 this . shortToBytes (this . SCACert i f icate , i n i t i a l P o i n t e r , kLen) ;

219 i n i t i a l P o i n t e r += (short) (kLen + (short) 2) ;

220 this . SCACert i f i cate [6]++;

408

C.9 Platform Binding Protocol

221 i n i t i a l P o i n t e r = Ut i l . arrayCopyNonAtomic (this . ModulusTag ,

222 (short) 0 , this . SCACert i f icate , (short) (i n i t i a l P o i n t e r) ,

223 (short) this . ModulusTag . l ength) ;

224 kLen = myPublic . getModulus (this . SCACert i f icate , (short)

225 (i n i t i a l P o i n t e r + (short) 2)) ;

226 this . shortToBytes (this . SCACert i f icate , i n i t i a l P o i n t e r , kLen) ;

227 this . SCACert i f i cate [6]++;

228 } catch (Exception cE) {

229 ISOException . throwIt ((short) 0x6666) ;

230 }

231 }

232 public void proce s s (APDU apdu)throws ISOException {

233 byte [] apduBuffer = apdu . ge tBu f f e r () ;

234 i f (s e l e c t i n gApp l e t ()) {

235 return ;

236 }

237 i f (apduBuffer [ISO7816 .OFFSET_CLA] != CLA) {

238 ISOException . throwIt (SW_CLASSNOTSUPPORTED) ;

239 }

240 i f (apduBuffer [ISO7816 .OFFSET_INS] == In i t i a t i o nP r o t o c o l) {

241 this . i n i t i a l i s e P r o t o c o l () ;

242 return ;

243 }

244 r e c e i v i n gBu f f e r = null ;

245 byte sLe f t = 0 ;

246 byte sLe f t = apdu . getIncomingLength () ;

247 r e c e i v i n gBu f f e r = JCSystem . makeTransientByteArray (bytesLe f t ,

248 JCSystem .MEMORY_TYPE_TRANSIENT_DESELECT) ;

249 readCount = (short) ((short) apdu . setIncomingAndReceive ()) ;

250 rCount = 0 ;

251 i f (byte sLe f t > 0) {

252 rCount = Ut i l . arrayCopyNonAtomic (apduBuffer ,

253 ISO7816 .OFFSET_EXT_CDATA, r e c e i v i ngBu f f e r , rCount , readCount) ;

254 byte sLe f t −= readCount ;

255 }

256 while (byte sLe f t > 0) {

257 try {

258 readCount = apdu . r e c e i v eByte s ((short) 0) ;

259 rCount = Ut i l . arrayCopyNonAtomic (apduBuffer , (short) 0 ,

260 r e c e i v i ngBu f f e r , rCount , readCount) ;

261 byte sLe f t −= readCount ;

262 } catch (Exception aE) {

263 ISOException . throwIt ((short) 0x7AAA) ;

264 }

265 }

266 try {

267 parseMessage (r e c e i v i n gBu f f e r) ;

268 } catch (Exception cE) {

269 ISOException . throwIt ((short) 0xA112) ;

270 }

271 i f (this . r e c e i v i n gBu f f e r [3] == this . MessageHandlerTagOne [3]) {

409

C.9 Platform Binding Protocol

272 r e c e i v i n gBu f f e r = JCSystem . makeTransientByteArray ((short) 568 ,

273 JCSystem .MEMORY_TYPE_TRANSIENT_DESELECT) ;

274 generateResponse ((short) 1) ;

275 } else i f (this . r e c e i v i n gBu f f e r [3] ==

276 this . MessageHandlerTagTwo [3]) {

277 processSecondMsg (r e c e i v i n gBu f f e r) ;

278 r e c e i v i n gBu f f e r = JCSystem . makeTransientByteArray ((short) 568 ,

279 JCSystem .MEMORY_TYPE_TRANSIENT_DESELECT) ;

280 generateResponse ((short) 2) ;

281 } else {

282 ISOException . throwIt (Protoco lHandler .SW_ERROR_INS) ;

283 }

284 JCSystem . r eques tObjec tDe l e t i on () ;

285 apdu . setOutgoing () ;

286 apdu . setOutgoingLength ((short) copyPointer) ;

287 apdu . sendBytesLong (r e c e i v i ngBu f f e r , (short) 0 , (short) copyPointer) ;

288 JCSystem . r eques tObjec tDe l e t i on () ;

289 }

290 private void generateResponse (short msgNumber) {

291 short ch i ldPo interMessage = 6 ;

292 short enc ryp t i onOf f s e t = 0 ;

293 copyPointer = 0 ;

294 i f (msgNumber == 1) {

295 randomDataGen . generateData (this . SCARandomNumberArray ,

296 this . PTLVDataOffset , (short) 16) ;

297 this . dhKeyConGen(this . SCBDHChanllengerArray ,

298 this . PTLVDataOffset , Protoco lHandler .GEN_DHKEY)

299 ;

300 copyPointer = Ut i l . arrayCopyNonAtomic (this . MessageHandlerTagOne ,

301 (short) 0 , this . r e c e i v i ngBu f f e r , copyPointer , (short)

302 this . MessageHandlerTagOne . l ength) ;

303 copyPointer = Ut i l . arrayCopyNonAtomic (this . SCADHData, (short) 0 ,

304 this . r e c e i v i ngBu f f e r , copyPointer , (short)

305 this . SCADHData . l ength) ;

306 this . r e c e i v i n gBu f f e r [ch i ldPo interMessage]++;

307 copyPointer = Ut i l . arrayCopyNonAtomic (this . SCARandomNumberArray ,

308 (short) 0 , this . r e c e i v i ngBu f f e r , copyPointer , (short)

309 this . SCARandomNumberArray . l ength) ;

310 this . r e c e i v i n gBu f f e r [ch i ldPo interMessage]++;

311 keygenerator () ;

312 copyPointer = Ut i l . arrayCopyNonAtomic (this . EncryptedDataTag ,

313 (short) 0 , this . r e c e i v i ngBu f f e r , copyPointer , (short)

314 this . EncryptedDataTag . l ength) ;

315 this . r e c e i v i n gBu f f e r [ch i ldPo interMessage]++;

316 short childEnMessage = (short) (copyPointer + (short) 2) ;

317 copyPointer += (short) 3 ;

318 enc ryp t i onOf f s e t = copyPointer ;

319 copyPointer = Ut i l . arrayCopyNonAtomic (this . SCAIdentityTag ,

320 (short) 0 , this . r e c e i v i ngBu f f e r , copyPointer , (short)

321 this . SCAIdentityTag . l ength) ;

322 this . r e c e i v i n gBu f f e r [childEnMessage]++;

410

C.9 Platform Binding Protocol

323 copyPointer = Ut i l . arrayCopyNonAtomic (this . SCARandomNumberArray ,

324 (short) 0 , this . r e c e i v i ngBu f f e r , copyPointer , (short)

325 this . SCARandomNumberArray . l ength) ;

326 this . r e c e i v i n gBu f f e r [childEnMessage]++;

327 copyPointer = Ut i l . arrayCopyNonAtomic (this . SCBRandomNumberArray ,

328 (short) 0 , this . r e c e i v i ngBu f f e r , copyPointer , (short)

329 this . SCBRandomNumberArray . l ength) ;

330 this . r e c e i v i n gBu f f e r [childEnMessage]++;

331 this . s ignGenerate (this . r e c e i v i ngBu f f e r , enc rypt ionOf f s e t ,

332 (short) (copyPointer − enc ryp t i onOf f s e t) ,

333 phUserKeyPair . g e tPr iva t e () ,

334 Signature .MODE_SIGN) ;

335 this . r e c e i v i n gBu f f e r [childEnMessage]++;

336 copyPointer = Ut i l . arrayCopyNonAtomic (this . SCAUserCert i f icate ,

337 (short) 0 , this . r e c e i v i ngBu f f e r , copyPointer , (short)

338 this . SCAUserCert i f i cate . l ength) ;

339 this . r e c e i v i n gBu f f e r [childEnMessage]++;

340 messageEncryption (this . r e c e i v i ngBu f f e r , enc rypt ionOf f s e t ,

341 (short) (copyPointer − enc ryp t i onOf f s e t)) ;

342 this . shortToBytes (r e c e i v i ngBu f f e r , (short) (enc ryp t i onOf f s e t −
343 (short) 3) , (short) (copyPointer −
344 enc ryp t i onOf f s e t)) ;

345 macGenerate (this . r e c e i v i ngBu f f e r , enc rypt ionOf f s e t , (short)

346 (copyPointer − enc ryp t i onOf f s e t) ,

347 Signature .MODE_SIGN) ;

348 this . r e c e i v i n gBu f f e r [ch i ldPo interMessage]++;

349 copyPointer = Ut i l . arrayCopyNonAtomic (this . SCBCookieArray ,

350 (short) 0 , this . r e c e i v i ngBu f f e r , copyPointer , (short)

351 this . SCBCookieArray . l ength) ;

352 this . r e c e i v i n gBu f f e r [ch i ldPo interMessage]++;

353 this . shortToBytes (this . r e c e i v i ngBu f f e r , (short) 4 , copyPointer) ;

354 } else i f (msgNumber == 2) {

355 copyPointer = (short) 0 ;

356 short tempLength = (short) 0 ;

357 short mainChildPointer = (short) 6 ;

358 short mainLengthPointer = (short) 4 ;

359 short encryptedChi ldPointer = (short) 13 ;

360 short genera lLengthPointer = (short) 0 ;

361 this . r e c e i v i n gBu f f e r [mainChi ldPointer] = (short) 0 ;

362 this . r e c e i v i n gBu f f e r [encryptedChi ldPointer] = (short) 0 ;

363 copyPointer = Ut i l . arrayCopyNonAtomic (this . MessageHandlerTagTwo ,

364 (short) 0 , this . r e c e i v i ngBu f f e r , copyPointer , (short) 7) ;

365 this . r e c e i v i n gBu f f e r [mainChi ldPointer]++;

366 copyPointer = Ut i l . arrayCopyNonAtomic (this . EncryptedDataTag ,

367 (short) 0 , this . r e c e i v i ngBu f f e r , copyPointer , (short) 4) ;

368 copyPointer += (short) 3 ;

369 enc ryp t i onOf f s e t = copyPointer ;

370 copyPointer = Ut i l . arrayCopyNonAtomic (this . PlatformHash , (short)

371 0 , r e c e i v i ngBu f f e r , copyPointer , (short) 4) ;

372 genera lLengthPointer = copyPointer ;

373 copyPointer += (short) 2 ;

411

C.9 Platform Binding Protocol

374 MessageDigest myHashGen = MessageDigest . g e t In s tance

375 (MessageDigest .ALG_SHA_256, fa l se) ;

376 tempLength = (short)myHashGen . doFinal (this . ClassDH . dhModulus ,

(short) 0 ,

377 (short) this . ClassDH . dhModulus . length , r e c e i v i ngBu f f e r ,

378 copyPointer) ;

379 this . r e c e i v i n gBu f f e r [encryptedChi ldPointer]++;

380 this . shortToBytes (this . r e c e i v i ngBu f f e r , genera lLengthPointer ,

381 (short) (tempLength)) ;

382 copyPointer += tempLength ;

383 copyPointer = Ut i l . arrayCopyNonAtomic (this . User Ident i ty , (short)

384 0 , this . r e c e i v i ngBu f f e r , copyPointer , (short)

385 this . Use r Ident i ty . l ength) ;

386 this . r e c e i v i n gBu f f e r [encryptedChi ldPointer]++;

387 copyPointer = Ut i l . arrayCopyNonAtomic (this . SCBIdentity , (short)

388 0 , this . r e c e i v i ngBu f f e r , copyPointer , (short)

389 this . SCBIdentity . l ength) ;

390 this . r e c e i v i n gBu f f e r [encryptedChi ldPointer]++;

391 copyPointer = Ut i l . arrayCopyNonAtomic (this . SCARandomNumberArray ,

392 (short) 0 , this . r e c e i v i ngBu f f e r , copyPointer , (short)

393 this . SCARandomNumberArray . l ength) ;

394 this . r e c e i v i n gBu f f e r [encryptedChi ldPointer]++;

395 copyPointer = Ut i l . arrayCopyNonAtomic (this . SCBRandomNumberArray ,

396 (short) 0 , this . r e c e i v i ngBu f f e r , (short) copyPointer , (short)

397 this . SCBRandomNumberArray . l ength) ;

398 this . r e c e i v i n gBu f f e r [encryptedChi ldPointer]++;

399 try {

400 this . s ignGenerate (r e c e i v i ngBu f f e r , (short) (enc ryp t i onOf f s e t) ,

401 (short) (copyPointer − enc ryp t i onOf f s e t) ,

402 phSCAKeyPair . g e tPr iva t e () ,

403 Signature .MODE_SIGN) ;

404 this . r e c e i v i n gBu f f e r [encryptedChi ldPointer]++;

405 } catch (Exception cE) {

406 ISOException . throwIt ((short) 0xFA17) ;

407 }

408 copyPointer = Ut i l . arrayCopyNonAtomic (this . SCACert i f icate ,

409 (short) 0 , this . r e c e i v i ngBu f f e r , copyPointer , (short)

410 this . SCACert i f i cate . l ength) ;

411 this . r e c e i v i n gBu f f e r [encryptedChi ldPointer]++;

412 try {

413 this . messageEncryption (r e c e i v i ngBu f f e r , (short)

414 (encryptedChi ldPointer + (short) 1) ,

415 (short) (copyPointer −
416 (encryptedChi ldPointer + (short) 1))) ;

417 } catch (Exception cE) {

418 ISOException . throwIt ((short) (copyPointer −
419 encryptedChi ldPointer + (short) 1)) ;

420 }

421 this . shortToBytes (this . r e c e i v i ngBu f f e r , (short)

422 (encryptedChi ldPointer − (short) 2) , (short)

423 (copyPointer − (short) (encryptedChi ldPointer

412

C.9 Platform Binding Protocol

424 + (short) 1))) ;

425 this . macGenerate (r e c e i v i ngBu f f e r , (short) (encryptedChi ldPointer

426 + (short) 1) , (short) (copyPointer −
427 (encryptedChi ldPointer + (short) 1)) ,

428 Signature .MODE_SIGN) ;

429 this . r e c e i v i n gBu f f e r [mainChi ldPointer]++;

430 copyPointer = Ut i l . arrayCopyNonAtomic (this . SCBCookieArray ,

431 (short) 0 , this . r e c e i v i ngBu f f e r , copyPointer , (short)

432 this . SCBCookieArray . l ength) ;

433 this . r e c e i v i n gBu f f e r [mainChi ldPointer]++;

434 this . shortToBytes (this . r e c e i v i ngBu f f e r , mainLengthPointer ,

435 (short) (copyPointer − (short) 7)) ;

436 }

437 }

438 void platformHashGeneration (byte [] inArray , short i nO f f s e t) {}

439 void processSecondMsg (byte [] inArray) {

440 short i nO f f s e t = (short) (this . CTLVDataOffset +

441 this . CTLVDataOffset) ;

442 short inLength = (short) (Protoco lHandler . bytesToShort (inArray ,

443 (short) (i nO f f s e t − (short) 3))) ;

444 i f (this . macGenerate (inArray , i nOf f s e t , inLength ,

445 Signature .MODE_VERIFY)) {

446 this . phDecryption (inArray , i nOf f s e t , inLength) ;

447 Ut i l . arrayCopyNonAtomic (inArray , i nOf f s e t , this . SCBIdentity ,

448 (short) 0 , (short)

449 this . SCBIdentity . l ength) ;

450 i nO f f s e t += (short) 151 ;

451 inLength = (short) 3 ;

452 SCBVerif icationKey . setExponent (inArray , i nOf f s e t , inLength) ;

453 i nO f f s e t += (short) (inLength + this . PTLVDataOffset) ;

454 inLength = (short) 64 ;

455 SCBVerif icationKey . setModulus (inArray , i nOf f s e t , inLength) ;

456 i nO f f s e t = (short) (this . CTLVDataOffset + this . CTLVDataOffset) ;

457 inLength = (short) 68 ;

458 i f (this . s ignGenerate (inArray , i nOf f s e t , inLength ,

459 SCBVerif icationKey , S ignature .MODE_VERIFY)) {

460 return ;

461 } else {

462 ISOException . throwIt ((short) 0x6666) ;

463 }

464 } else {

465 ISOException . throwIt ((short) 0xFA18) ;

466 }

467 }

468 void parseMessage (byte [] i nBu f f e r) {

469 byte c h i l dL e f t = inBu f f e r [(short) (this . CTLVDataOffset − (short) 1)

470] ;

471 short po in t e r = (short) this . CTLVDataOffset ;

472 try {

473 while (c h i l dL e f t > 0) {

474 i f (Ut i l . arrayCompare (SCBDHChallengeTag , (short) 0 , inBuf f e r ,

413

C.9 Platform Binding Protocol

475 pointer , (short) 4) == 0) {

476 Ut i l . arrayCopy (inBuf f e r , po inter ,

477 this . SCBDHChanllengerArray , (short) 0 , (short)

478 this . SCBDHChanllengerArray . l ength) ;

479 po in t e r += (short) this . SCBDHChanllengerArray . l ength ;

480 } else i f (Ut i l . arrayCompare (this . SCBRandomNumberTag , (short)

481 0 , inBuf f e r , po inter , (short) 4) == 0) {

482 Ut i l . arrayCopyNonAtomic (inBuf f e r , po inter ,

483 this . SCBRandomNumberArray , (short) 0 ,

484 (short)

485 (this . SCBRandomNumberArray . l ength)) ;

486 po in t e r += (short) (this . SCBRandomNumberArray . l ength) ;

487 } else i f (Ut i l . arrayCompare (this . SCBCookieTag , (short) 0 ,

488 i nBuf f e r , po inter , (short) 4) == 0) {

489 Ut i l . arrayCopyNonAtomic (inBuf f e r , po inter ,

490 this . SCBCookieArray , (short) 0 ,

491 (short) (this . SCBCookieArray . l ength))

492 ;

493 po in t e r += (short) (this . SCBCookieArray . l ength) ;

494 }

495 c h i l dL e f t −= (short) 1 ;

496 }

497 } catch (Exception cE) {

498 ISOException . throwIt ((short) c h i l dL e f t) ;

499 }

500 }

501 void protoco l Implementat ion () {}

502 void d h I n i t i a l i s a t i o n () {

503 dhKey . setModulus (ClassDH . dhModulus , (short) 0 ,

(short)ClassDH . dhModulus . l ength) ;

504 }

505 void dhKeyConGen(byte [] i nbu f f , short i nbu f fO f f s e t , byte Oper_Mode)

506 {

507 switch (Oper_Mode) {

508 case GEN_KEYCONTRIBUTION: randomExponent =

509 JCSystem . makeTransientByteArray ((short) 32 ,

510 JCSystem .MEMORY_TYPE_TRANSIENT_DESELECT) ;

511 randomDataGen . generateData (randomExponent , (short) 0 , (short)

512 randomExponent . l ength) ;

513 dhKey . setExponent (randomExponent , (short) 0 , (short)

514 randomExponent . l ength) ;

515 pkCipher . i n i t (dhKey , Cipher .MODE_ENCRYPT) ;

516 pkCipher . doFinal (ClassDH . dhBase , (short) 0 ,

(short)ClassDH . dhBase . length , inbu f f ,

517 i n bu f fO f f s e t) ;

518 break ;

519 case GEN_DHKEY:

520 try {

521 dhKey . setExponent (randomExponent , (short) 0 , (short)

522 randomExponent . l ength) ;

523 pkCipher . i n i t (dhKey , Cipher .MODE_ENCRYPT) ;

414

C.9 Platform Binding Protocol

524 SCASCBDHGeneratedValue = JCSystem . makeTransientByteArray (

525 (short)ClassDH . dhModulus . length ,

526 JCSystem .MEMORY_TYPE_TRANSIENT_DESELECT) ;

527 pkCipher . doFinal (inbu f f , i nbu f fO f f s e t , (short) ((short)

528 i n bu f f . l ength − (short) this . PTLVDataOffset)

529 , SCASCBDHGeneratedValue , (short) 0) ;

530 }

531 catch (Exception cE) {

532 ISOException . throwIt ((short) 0xD86E) ;

533 }

534 break ;

535 default :

536 ISOException . throwIt ((short) 0x5FA1) ;

537 }

538 }

539 void keygenerator () {

540 AESKey sessionGenKey = (AESKey) KeyBuilder . buildKey

541 (KeyBuilder .TYPE_AES_TRANSIENT_DESELECT,

542 KeyBuilder .LENGTH_AES_128, fa l se) ;

543 sessionGenKey . setKey (SCASCBDHGeneratedValue , (short) 0) ;

544 phMacGenerator . i n i t (sessionGenKey , S ignature .MODE_SIGN,

545 I n i t i a l i s a t i o nV e c t o r , (short) 0 , (short)

546 I n i t i a l i s a t i o nV e c t o r . l ength) ;

547 byte [] keyGenMacData = JCSystem . makeTransientByteArray ((short) 64 ,

548 JCSystem .MEMORY_TYPE_TRANSIENT_DESELECT) ;

549 short po in t e r = 0 ;

550 po in t e r = Ut i l . arrayCopyNonAtomic (this . SCBRandomNumberArray ,

551 this . PTLVDataOffset , keyGenMacData , (short) po inter , (short) 16) ;

552 po in t e r = Ut i l . arrayCopyNonAtomic (this . SCARandomNumberArray ,

553 this . PTLVDataOffset , keyGenMacData , (short) po inter , (short) 16) ;

554 po in t e r = Ut i l . arrayCopyNonAtomic (SCASCBDHGeneratedValue , (short)

555 16 , keyGenMacData , (short) po inter , (short) 16) ;

556 for (short i = 48 ; i < 64 ; i++) {

557 keyGenMacData [i] = (byte) 0x02 ;

558 }

559 phMacGenerator . s i gn (keyGenMacData , (short) 0 , (short)

560 keyGenMacData . length , SCASCBDHGeneratedValue ,

561 (short) 0) ;

562 this . phCipherKey . setKey (SCASCBDHGeneratedValue , (short) 0) ;

563 for (short i = 48 ; i < 64 ; i++) {

564 keyGenMacData [i] = (byte) 0x03 ;

565 }

566 phMacGenerator . i n i t (sessionGenKey , S ignature .MODE_SIGN,

567 I n i t i a l i s a t i o nV e c t o r , (short) 0 , (short)

568 I n i t i a l i s a t i o nV e c t o r . l ength) ;

569 phMacGenerator . s i gn (keyGenMacData , (short) 0 , (short)

570 keyGenMacData . length , SCASCBDHGeneratedValue ,

571 (short) 0) ;

572 this . phMacGeneratorKey . setKey (SCASCBDHGeneratedValue , (short) 0) ;

573 SCASCBDHGeneratedValue = null ;

574 JCSystem . r eques tObjec tDe l e t i on () ;

415

C.9 Platform Binding Protocol

575 }

576 void messageEncryption (byte [] i nbu f f , short i nbu f fO f f s e t , short

577 inbuf fLength) {

578 syCipher . i n i t (phCipherKey , Cipher .MODE_ENCRYPT,

579 I n i t i a l i s a t i o nV e c t o r , (short) 0 , (short)

580 I n i t i a l i s a t i o nV e c t o r . l ength) ;

581 short temp ;

582 this . shortToBytes (inbu f f , (short) (i n bu f fO f f s e t − 3) , temp =

583 (short) syCipher . doFinal (inbu f f , i nbu f fO f f s e t ,

584 inbuf fLength , inbu f f , i n bu f fO f f s e t)) ;

585 }

586 void phDecryption (byte [] i nbu f f , short i nbu f fO f f s e t , short

587 inbuf fLength) {

588 syCipher . i n i t (phCipherKey , Cipher .MODE_DECRYPT,

589 I n i t i a l i s a t i o nV e c t o r , (short) 0 , (short)

590 I n i t i a l i s a t i o nV e c t o r . l ength) ;

591 syCipher . doFinal (inbu f f , i nbu f fO f f s e t , inbuf fLength , inbu f f ,

592 i n bu f fO f f s e t) ;

593 }

594 boolean macGenerate (byte [] i nbu f f , short i nbu f fO f f s e t , short

595 inbuf fLength , short macMode) {

596 i f (macMode == Signature .MODE_SIGN) {

597 phMacGenerator . i n i t (phMacGeneratorKey , S ignature .MODE_SIGN,

598 I n i t i a l i s a t i o nV e c t o r , (short) 0 , (short)

599 I n i t i a l i s a t i o nV e c t o r . l ength) ;

600 try {

601 copyPointer = Ut i l . arrayCopyNonAtomic (this .MACedDataTag ,

602 (short) 0 , this . r e c e i v i ngBu f f e r , copyPointer , (short)

603 this .MACedDataTag . l ength) ;

604 copyPointer += 2 ;

605 } catch (Exception ce) {

606 ISOException . throwIt ((short) 0xFA17) ;

607 }

608 try {

609 short l ength = (short) phMacGenerator . s i gn

610 (this . r e c e i v i ngBu f f e r , i nbu f fO f f s e t ,

611 inbuf fLength , inbu f f , copyPointer) ;

612 this . shortToBytes (inbu f f , (short) (copyPointer − (short) 2) ,

613 l ength) ;

614 copyPointer += length ;

615 } catch (Exception ce) {

616 ISOException . throwIt ((short) 0x0987) ;

617 }

618 return true ;

619 } else i f (macMode == Signature .MODE_VERIFY) {

620 try {

621 phMacGenerator . i n i t (phMacGeneratorKey , S ignature .MODE_VERIFY,

622 I n i t i a l i s a t i o nV e c t o r , (short) 0 , (short)

623 I n i t i a l i s a t i o nV e c t o r . l ength) ;

624 return phMacGenerator . v e r i f y (this . r e c e i v i ngBu f f e r ,

625 i nbu f fO f f s e t , inbuf fLength , inbu f f , (short) (i n bu f fO f f s e t +

416

C.9 Platform Binding Protocol

626 inbuf fLength + this . PTLVDataOffset) , (short) 16) ;

627 } catch (Exception cE) {

628 ISOException . throwIt ((short) 0xC1C2) ;

629 }

630 }

631 return fa l se ;

632 }

633 boolean s ignGenerate (byte [] i nbu f f , short i nbu f fO f f s e t , short

634 i nbu f f l eng th , Key kpSign , short signMode) {

635 i f (signMode == Signature .MODE_SIGN) {

636 copyPointer = Ut i l . arrayCopyNonAtomic (this . SignedDataTag ,

637 (short) 0 , this . r e c e i v i ngBu f f e r , copyPointer , (short)

638 this . SignedDataTag . l ength) ;

639 copyPointer += (short) 2 ;

640 phSign . i n i t ((RSAPrivateKey) kpSign , S ignature .MODE_SIGN) ;

641 s i gn l eng th = phSign . s i gn (inbu f f , (short) i nbu f fO f f s e t ,

642 i nbu f f l eng th , inbu f f , copyPointer) ;

643 this . shortToBytes (this . r e c e i v i ngBu f f e r , (short) (copyPointer −
644 (short) 2) , s i gn l eng th) ;

645 copyPointer += s i gn l eng th ;

646 return true ;

647 } else i f (signMode == Signature .MODE_VERIFY) {

648 phSign . i n i t ((RSAPublicKey) kpSign , S ignature .MODE_VERIFY) ;

649 return phSign . v e r i f y (inbu f f , i nbu f fO f f s e t , i nbu f f l eng th , inbu f f ,

650 (short) (i n bu f fO f f s e t + inbu f f l e n g th +

651 this . PTLVDataOffset) , (short) 64) ;

652 }

653 return fa l se ;

654 }

655 public stat ic short bytesToShort (byte [] ArrayBytes) {

656 return (short) (((ArrayBytes [0] << 8)) | ((ArrayBytes [1] & 0 x f f))) ;

657 }

658 public stat ic short bytesToShort (byte [] ArrayBytes , short

659 a r r ayOf f s e t) {

660 return (short) (((ArrayBytes [a r r ayOf f s e t] << 8)) | ((ArrayBytes [

661 (short) (a r r ayOf f s e t + (short) 1)] & 0 x f f))) ;

662 }

663 private void shortToBytes (byte [] Array , short inShort) {

664 Array [0] = (byte) ((short) (inShort & (short) 0xFF00) >> (short)

665 0x0008) ;

666 Array [1] = (byte) (inShort & (short) 0x00FF) ;

667 }

668 private void shortToBytes (byte [] Array , short ar rayOf f s e t , short

669 inShort) {

670 Array [a r r ayOf f s e t] = (byte) ((short) (inShort & (short) 0xFF00) >>

671 (short) 0x0008) ;

672 Array [(short) (a r r ayOf f s e t + (short) 1)] = (byte) (inShort & (short)

673 0x00FF) ;

674 }

675 }

417

C.9 Platform Binding Protocol

C.9.2 Responder Smart Card Implementation

Implementation of a responder smart card that request for the platform binding in the

CDAM �rewall mechanism is listed as below:

1 package protocolSCB ;

2

3 import javacard . framework .APDU;

4 import javacard . framework . Applet ;

5 import javacard . framework . ISO7816 ;

6 import javacard . framework . ISOException ;

7 import javacard . framework . JCSystem ;

8 import javacard . framework . Ut i l ;

9 import javacard . s e c u r i t y .AESKey ;

10 import javacard . s e c u r i t y . Key ;

11 import javacard . s e c u r i t y . KeyBuilder ;

12 import javacard . s e c u r i t y . KeyPair ;

13 import javacard . s e c u r i t y . MessageDigest ;

14 import javacard . s e c u r i t y . RSAPrivateKey ;

15 import javacard . s e c u r i t y . RSAPublicKey ;

16 import javacard . s e c u r i t y . RandomData ;

17 import javacard . s e c u r i t y . S ignature ;

18 import javacardx . apdu . ExtendedLength ;

19 import javacardx . crypto . Cipher ;

20 public class Protoco lHandler extends Applet implements ExtendedLength

21 {

22 private byte [] SCARandomNumberArray ;

23 private byte [] SCACookieArray ;

24 private byte [] SCBSCADHGeneratedValue ;

25 private byte [] SCBRandomNumberArray ;

26 private byte [] SCBCert i f i cate ;

27 private byte [] SCADHChallengeTag = {

28 (byte) 0x1F , (byte) 0x5F , (byte) 0x5C , (byte) 0x01 } ;

29 private byte [] MessageHandlerTagOne = {

30 (byte) 0x1F , (byte) 0xC0 , (byte) 0xAA, (byte) 0xAA, (byte) 0x00 , (byte)

31 0x00 , (byte) 0x00 } ;

32 private byte [] MessageHandlerTagTwo = {

33 (byte) 0x1F , (byte) 0xC0 , (byte) 0xBB, (byte) 0xBB, (byte) 0x00 , (byte)

34 0x00 , (byte) 0x00 } ;

35 private byte [] SCAIdentity = null ;

36 private byte [] SCARandomNumberTag = {

37 (byte) 0x1F , (byte) 0x5F , (byte) 0x5A , (byte) 0x01 } ;

38 private byte [] SCACookieTag = {

39 (byte) 0x1F , (byte) 0x5F , (byte) 0x5B , (byte) 0x01 } ;

40 private byte [] EncryptedDataTag = {

41 (byte) 0x1F , (byte) 0xC0 , (byte) 0xFE , (byte) 0x01 } ;

42 private byte [] SignedDataTag = {

43 (byte) 0x1F , (byte) 0x5F , (byte) 0x5D , (byte) 0x02 } ;

44 private byte [] MACedDataTag = {

45 (byte) 0x1F , (byte) 0x5F , (byte) 0x5D , (byte) 0x01 } ;

46 private byte [] PlatformHash = {

418

C.9 Platform Binding Protocol

47 (byte) 0x1F , (byte) 0x5F , (byte) 0x5E , (byte) 0xAF} ;

48 private byte [] SCBIdentityTag = {

49 (byte) 0x1F , (byte) 0x5F , (byte) 0x5F , (byte) 0x02 , (byte) 0x00 , (byte)

50 0x0C , (byte) 0x7A , (byte) 0xD5 , (byte) 0xB7 , (byte) 0xD0 , (byte) 0xB6 ,

51 (byte) 0xC1 , (byte) 0x22 , (byte) 0x07 , (byte) 0xC9 , (byte) 0xF9 ,

52 (byte) 0x8D , (byte) 0x11 } ;

53 private byte [] ExponentTag = {

54 (byte) 0x1F , (byte) 0x5F , (byte) 0xEE, (byte) 0x01 } ;

55 private byte [] ModulusTag = {

56 (byte) 0x1F , (byte) 0x5F , (byte) 0xEE, (byte) 0x02 } ;

57 private byte [] SCBDHChalleneTag = {

58 (byte) 0x1F , (byte) 0x5F , (byte) 0x5C , (byte) 0x02 } ;

59 private byte [] SCBRandomNumberTag = {

60 (byte) 0x1F , (byte) 0x5F , (byte) 0x5A , (byte) 0x02 } ;

61 private byte [] SCACerti f icateTag = {

62 (byte) 0x1F , (byte) 0xC0 , (byte) 0xF0 , (byte) 0x01 } ;

63 private byte [] SCBCerti f icateTag = {

64 (byte) 0x1F , (byte) 0xC0 , (byte) 0xF0 , (byte) 0x02 } ;

65 private byte [] SCBProtoco l In i t iatorTag = {

66 (byte) 0x1F , (byte) 0x5F , (byte) 0xA1 , (byte) 0xB2} ;

67 short PTLVDataOffset = (short) 6 ;

68 short CTLVDataOffset = (short) 7 ;

69 short TLVLengthOffset = (short) 4 ;

70 short copyPointer = (short) 0 ;

71 byte [] SCBDHData ;

72 f ina l stat ic byte CLA = (byte) 0xB0 ;

73 f ina l stat ic byte Sta r tPro toco l = (byte) 0x40 ;

74 f ina l stat ic byte I n i t i a t i o nP r o t o c o l = (byte) 0 x f f ;

75 f ina l stat ic short SW_CLASSNOTSUPPORTED = 0x6320 ;

76 f ina l stat ic short SW_ERROR_INS = 0x6300 ;

77 RandomData randomDataGen ;

78 Cipher pkCipher ;

79 short messageNumber = 0 ;

80 byte [] r e c e i v i n gBu f f e r = null ;

81 short byte sLe f t = 0 ;

82 short readCount = 0 ;

83 short rCount = 0 ;

84 short s i gn l eng th = 0 ;

85 private RSAPublicKey dhKey = (RSAPublicKey) KeyBuilder . buildKey

86 (KeyBuilder .TYPE_RSA_PUBLIC,

87 KeyBuilder .LENGTH_RSA_2048, fa l se) ;

88 private byte [] randomExponent ;

89 f ina l stat ic byte GEN_KEYCONTRIBUTION = 0x01 ;

90 f ina l stat ic byte GEN_DHKEY = 0x02 ;

91 AESKey phCipherKey ;

92 Cipher syCipher ;

93 byte [] I n i t i a l i s a t i o nV e c t o r = {

94 (byte) 0x6C , (byte) 0xDE, (byte) 0xBE, (byte) 0x7B , (byte) 0x89 , (byte)

95 0x99 , (byte) 0x8C , (byte) 0xAF, (byte) 0xC5 , (byte) 0x7D , (byte) 0xB1 ,

96 (byte) 0x7C , (byte) 0x62 , (byte) 0x0A , (byte) 0x86 , (byte) 0x52 } ;

97 AESKey phMacGeneratorKey ;

419

C.9 Platform Binding Protocol

98 Signature phMacGenerator ;

99 Signature phSign ;

100 KeyPair phSCBKeyPair ;

101 KeyPair phUserKeyPair ;

102 RSAPublicKey SCAVerif icationKey = null ;

103 private Protoco lHandler () {

104 phMacGeneratorKey = (AESKey) KeyBuilder . buildKey

105 (KeyBuilder .TYPE_AES_TRANSIENT_DESELECT,

106 KeyBuilder .LENGTH_AES_128, fa l se) ;

107 phMacGenerator = Signature . g e t In s tance

108 (S ignature .ALG_AES_MAC_128_NOPAD, fa l se) ;

109 phSign = Signature . g e t In s tance (S ignature .ALG_RSA_SHA_PKCS1, fa l se)

110 ;

111 phSCBKeyPair = new KeyPair (KeyPair .ALG_RSA,

112 KeyBuilder .LENGTH_RSA_512) ;

113 phUserKeyPair = new KeyPair (KeyPair .ALG_RSA,

114 KeyBuilder .LENGTH_RSA_512) ;

115 phCipherKey = (AESKey) KeyBuilder . buildKey

116 (KeyBuilder .TYPE_AES_TRANSIENT_DESELECT,

117 KeyBuilder .LENGTH_AES_128, fa l se) ;

118 syCipher = Cipher . g e t In s tance (Cipher .ALG_AES_BLOCK_128_CBC_NOPAD,

119 fa l se) ;

120 randomDataGen = RandomData . g e t In s tance

121 (RandomData .ALG_SECURE_RANDOM) ;

122 pkCipher = Cipher . g e t In s tance (Cipher .ALG_RSA_NOPAD, fa l se) ;

123 d h I n i t i a l i s a t i o n () ;

124 phSCBKeyPair . genKeyPair () ;

125 phUserKeyPair . genKeyPair () ;

126 }

127 public stat ic void i n s t a l l (byte bArray [] , short bOffset , byte

128 bLength)throws ISOException {

129 new Protoco lHandler () . r e g i s t e r () ;

130 }

131 public void i n i t i a l i s e P r o t o c o l () {

132 short i n i t i a l P o i n t e r = 0 ;

133 SCBDHData = JCSystem . makeTransientByteArray ((short) ((short)

134 this . ClassDH . dhModulus . l ength + PTLVDataOffset) ,

135 JCSystem .MEMORY_TYPE_TRANSIENT_DESELECT) ;

136 Ut i l . arrayCopyNonAtomic (this . SCBDHChalleneTag , (short)

137 i n i t i a l P o i n t e r , this . SCBDHData, (short) 0 ,

138 (short) this . SCBDHChalleneTag . l ength) ;

139 this . shortToBytes (SCBDHData, (short) 4 , (short) ((short)

140 SCBDHData . l ength − (short) PTLVDataOffset)) ;

141 this . dhKeyConGen(this . SCBDHData, this . PTLVDataOffset ,

142 Protoco lHandler .GEN_KEYCONTRIBUTION) ;

143 SCADHChanllengerArray = JCSystem . makeTransientByteArray ((short) (

144 (short) this . ClassDH . dhModulus . l ength + this . PTLVDataOffset) ,

145 JCSystem .MEMORY_TYPE_TRANSIENT_DESELECT) ;

146 SCARandomNumberArray = JCSystem . makeTransientByteArray ((short) 22 ,

147 JCSystem .MEMORY_TYPE_TRANSIENT_DESELECT) ;

148 SCACookieArray = JCSystem . makeTransientByteArray ((short) 22 ,

420

C.9 Platform Binding Protocol

149 JCSystem .MEMORY_TYPE_TRANSIENT_DESELECT) ;

150 SCBRandomNumberArray = JCSystem . makeTransientByteArray ((short) 22 ,

151 JCSystem .MEMORY_TYPE_TRANSIENT_DESELECT) ;

152 Ut i l . arrayCopyNonAtomic (this . SCBRandomNumberTag , (short)

153 i n i t i a l P o i n t e r , this . SCBRandomNumberArray ,

154 (short) i n i t i a l P o i n t e r , (short)

155 this . SCBRandomNumberTag . l ength) ;

156 this . shortToBytes (this . SCBRandomNumberArray , (short) 4 , (short) (

157 (short) this . SCBRandomNumberArray . l ength − (short)

158 PTLVDataOffset)) ;

159 try {

160 this . SCBCert i f i cate = JCSystem . makeTransientByteArray ((short) 86 ,

161 JCSystem .MEMORY_TYPE_TRANSIENT_DESELECT) ;

162 i n i t i a l P o i n t e r = Ut i l . arrayCopyNonAtomic (this . SCBCerti f icateTag ,

163 (short) 0 , this . SCBCert i f i cate , (short) 0 ,

(short)

164 this . SCBCerti f icateTag . l ength) ;

165 this . shortToBytes (this . SCBCert i f i cate , (short) 4 , (short)

166 (this . SCBCert i f i cate . l ength − (short) 7)) ;

167 i n i t i a l P o i n t e r = Ut i l . arrayCopyNonAtomic (this . ExponentTag ,

168 (short) 0 , this . SCBCert i f i cate ,

(short) (i n i t i a l P o i n t e r + (short)

169 3) , (short) this . ExponentTag . l ength) ;

170 RSAPublicKey myPublic = (RSAPublicKey)

171 this . phSCBKeyPair . ge tPub l i c () ;

172 short kLen = myPublic . getExponent (this . SCBCert i f i cate , (short)

173 (i n i t i a l P o i n t e r + (short) 2)) ;

174 this . shortToBytes (this . SCBCert i f i cate , i n i t i a l P o i n t e r , kLen) ;

175 i n i t i a l P o i n t e r += (short) (kLen + (short) 2) ;

176 this . SCBCert i f i cate [6]++;

177 i n i t i a l P o i n t e r = Ut i l . arrayCopyNonAtomic (this . ModulusTag ,

178 (short) 0 , this . SCBCert i f i cate ,

(short) (i n i t i a l P o i n t e r) , (short)

179 this . ModulusTag . l ength) ;

180 kLen = myPublic . getModulus (this . SCBCert i f i cate , (short)

181 (i n i t i a l P o i n t e r + (short) 2)) ;

182 this . shortToBytes (this . SCBCert i f i cate , i n i t i a l P o i n t e r , kLen) ;

183 this . SCBCert i f i cate [6]++;

184 SCAVerif icationKey = (RSAPublicKey) KeyBuilder . buildKey

185 (KeyBuilder .TYPE_RSA_PUBLIC,

186 KeyBuilder .LENGTH_RSA_512, fa l se) ;

187 } catch (Exception cE) {

188 ISOException . throwIt ((short) 0x6666) ;

189 }

190 }

191 public void proce s s (APDU apdu)throws ISOException {

192 byte [] apduBuffer = apdu . ge tBu f f e r () ;

193 i f (s e l e c t i n gApp l e t ()) {

194 this . i n i t i a l i s e P r o t o c o l () ;

195 return ;

196 }

421

C.9 Platform Binding Protocol

197 i f (apduBuffer [ISO7816 .OFFSET_CLA] != CLA) {

198 ISOException . throwIt (SW_CLASSNOTSUPPORTED) ;

199 }

200 i f (apduBuffer [ISO7816 .OFFSET_INS] == In i t i a t i o nP r o t o c o l) {

201 r e c e i v i n gBu f f e r = JCSystem . makeTransientByteArray ((short) 64 ,

202 JCSystem .MEMORY_TYPE_TRANSIENT_DESELECT) ;

203 generateResponse ((short) 1) ;

204 apdu . setOutgoing () ;

205 apdu . setOutgoingLength ((short) copyPointer) ;

206 apdu . sendBytesLong (r e c e i v i ngBu f f e r , (short) 0 , (short)

207 copyPointer) ;

208 return ;

209 }

210 r e c e i v i n gBu f f e r = null ;

211 byte sLe f t = 0 ;

212 byte sLe f t = apdu . getIncomingLength () ;

213 r e c e i v i n gBu f f e r = JCSystem . makeTransientByteArray (bytesLe f t ,

214 JCSystem .MEMORY_TYPE_TRANSIENT_DESELECT) ;

215 readCount = (short) ((short) apdu . setIncomingAndReceive ()) ;

216 rCount = 0 ;

217 i f (byte sLe f t > 0) {

218 rCount = Ut i l . arrayCopyNonAtomic (apduBuffer ,

219 ISO7816 .OFFSET_EXT_CDATA, r e c e i v i ngBu f f e r , rCount , readCount) ;

220 byte sLe f t −= readCount ;

221 }

222 while (byte sLe f t > 0) {

223 try {

224 readCount = apdu . r e c e i v eByte s ((short) 0) ;

225 rCount = Ut i l . arrayCopyNonAtomic (apduBuffer , (short) 0 ,

226 r e c e i v i ngBu f f e r , rCount , readCount) ;

227 byte sLe f t −= readCount ;

228 } catch (Exception aE) {

229 ISOException . throwIt ((short) 0x7AAA) ;

230 }

231 }

232 i f (this . r e c e i v i n gBu f f e r [3] == this . MessageHandlerTagOne [3]) {

233 try {

234 parseMessage (r e c e i v i n gBu f f e r) ;

235 } catch (Exception cE) {

236 ISOException . throwIt ((short) 0xA112) ;

237 }

238 r e c e i v i n gBu f f e r = JCSystem . makeTransientByteArray ((short) 600 ,

239 JCSystem .MEMORY_TYPE_TRANSIENT_DESELECT) ;

240 generateResponse ((short) 2) ;

241 JCSystem . r eques tObjec tDe l e t i on () ;

242 apdu . setOutgoing () ;

243 apdu . setOutgoingLength ((short) copyPointer) ;

244 apdu . sendBytesLong (r e c e i v i ngBu f f e r , (short) 0 , (short)

245 copyPointer) ;

246 } else i f (this . r e c e i v i n gBu f f e r [3] ==

247 this . MessageHandlerTagTwo [3]) {

422

C.9 Platform Binding Protocol

248 i f (processSecondMsg (r e c e i v i n gBu f f e r)) {

249 return ;

250 } else {

251 ISOException . throwIt ((short) 0xFA17) ;

252 }

253 return ;

254 } else {

255 ISOException . throwIt (Protoco lHandler .SW_ERROR_INS) ;

256 }

257 JCSystem . r eques tObjec tDe l e t i on () ;

258 }

259 private void generateResponse (short msgNumber) {

260 short childPM1 = 0 ;

261 short childPM2 = 0 ;

262 copyPointer = 0 ;

263 i f (msgNumber == 1) {

264 copyPointer = Ut i l . arrayCopy (this . SCBProtocolInit iatorTag ,

265 (short) 0 , this . r e c e i v i ngBu f f e r ,

266 copyPointer , (short)

267 this . SCBProtoco l In i t iatorTag . l ength)

268 ;

269 randomDataGen . generateData (this . SCBRandomNumberArray ,

270 this . PTLVDataOffset , (short) 16) ;

271 childPM1 = copyPointer ;

272 copyPointer += 2 ;

273 phMacGeneratorKey . setKey (this . SCBRandomNumberArray ,

274 this . PTLVDataOffset) ;

275 phMacGenerator . i n i t (phMacGeneratorKey , S ignature .MODE_SIGN,

276 I n i t i a l i s a t i o nV e c t o r , (short) 0 , (short)

277 I n i t i a l i s a t i o nV e c t o r . l ength) ;

278 short l ength = 0 ;

279 l ength = phMacGenerator . s i gn (SCBDHData, (short)

280 this . PTLVDataOffset , (short)

281 (SCBDHData . l ength −
282 this . PTLVDataOffset) ,

283 this . r e c e i v i ngBu f f e r , copyPointer) ;

284 copyPointer += length ;

285 this . shortToBytes (this . r e c e i v i ngBu f f e r , childPM1 , l ength) ;

286 return ;

287 } else i f (msgNumber == 2) {

288 this . dhKeyConGen(this . SCADHChanllengerArray , this . PTLVDataOffset ,

289 Protoco lHandler .GEN_DHKEY) ;

290 keygenerator () ;

291 childPM1 = (short) 6 ;

292 copyPointer = Ut i l . arrayCopyNonAtomic (this . MessageHandlerTagTwo ,

293 (short) 0 , this . r e c e i v i ngBu f f e r , copyPointer , (short)

294 this . MessageHandlerTagTwo . l ength) ;

295 copyPointer = Ut i l . arrayCopyNonAtomic (this . SCBDHData, (short) 0 ,

296 this . r e c e i v i ngBu f f e r , (short) copyPointer , (short)

297 this . SCBDHData . l ength) ;

298 this . r e c e i v i n gBu f f e r [childPM1]++;

423

C.9 Platform Binding Protocol

299 copyPointer = Ut i l . arrayCopyNonAtomic (this . SCBRandomNumberArray ,

300 (short) 0 , this . r e c e i v i ngBu f f e r , copyPointer , (short)

301 this . SCBRandomNumberArray . l ength) ;

302 this . r e c e i v i n gBu f f e r [childPM1]++;

303 copyPointer = Ut i l . arrayCopyNonAtomic (this . EncryptedDataTag ,

304 (short) 0 , this . r e c e i v i ngBu f f e r , copyPointer , (short)

305 this . EncryptedDataTag . l ength) ;

306 copyPointer += 3 ;

307 childPM2 = (short) (copyPointer − (short) 1) ;

308 this . r e c e i v i n gBu f f e r [childPM1]++;

309 copyPointer = Ut i l . arrayCopyNonAtomic (this . PlatformHash , (short)

310 0 , this . r e c e i v i ngBu f f e r , copyPointer , (short)

311 this . PlatformHash . l ength) ;

312 copyPointer += 2 ;

313 MessageDigest myHashGen = MessageDigest . g e t In s tance

314 (MessageDigest .ALG_SHA_256, fa l se) ;

315 short tempLength = (short)myHashGen . doFinal (this . ClassDH . dhModulus ,

316 (short) 0 , (short) this . ClassDH . dhModulus . length ,

317 r e c e i v i ngBu f f e r , copyPointer) ;

318 this . r e c e i v i n gBu f f e r [childPM2]++;

319 this . shortToBytes (this . r e c e i v i ngBu f f e r , (short) (copyPointer −
320 (short) 2) , tempLength) ;

321 copyPointer += tempLength ;

322 copyPointer = Ut i l . arrayCopyNonAtomic (this . SCBIdentityTag ,

323 (short) 0 , this . r e c e i v i ngBu f f e r , copyPointer , (short)

324 this . SCBIdentityTag . l ength) ;

325 this . r e c e i v i n gBu f f e r [childPM2]++;

326 copyPointer = Ut i l . arrayCopyNonAtomic (this . SCBRandomNumberArray ,

327 (short) 0 , this . r e c e i v i ngBu f f e r , copyPointer , (short)

328 this . SCBRandomNumberArray . l ength) ;

329 this . r e c e i v i n gBu f f e r [childPM2]++;

330 copyPointer = Ut i l . arrayCopyNonAtomic (this . SCARandomNumberArray ,

331 (short) 0 , this . r e c e i v i ngBu f f e r , copyPointer , (short)

332 this . SCARandomNumberArray . l ength) ;

333 this . r e c e i v i n gBu f f e r [childPM2]++;

334 try {

335 this . s ignGenerate (this . r e c e i v i ngBu f f e r , (short) (childPM2 +

336 (short) 1) , (short) (copyPointer − (short)

337 (childPM2 + (short) 1)) ,

338 this . phSCBKeyPair . g e tPr iva t e () ,

339 Signature .MODE_SIGN) ;

340 } catch (Exception cE) {

341 ISOException . throwIt ((short) 0x3141) ;

342 }

343 this . r e c e i v i n gBu f f e r [childPM2]++;

344 copyPointer = Ut i l . arrayCopyNonAtomic (this . SCBCert i f i cate ,

345 (short) 0 , this . r e c e i v i ngBu f f e r , copyPointer , (short)

346 this . SCBCert i f i cate . l ength) ;

347 this . r e c e i v i n gBu f f e r [childPM2]++;

348 try {

349 this . messageEncryption (this . r e c e i v i ngBu f f e r , (short) (childPM2

424

C.9 Platform Binding Protocol

350 + (short) 1) , (short) (copyPointer −
351 (short) (childPM2 + (short) 1))) ;

352 } catch (Exception ce) {

353 ISOException . throwIt ((short) (copyPointer − (short) (childPM2 +

354 (short) 1))) ;

355 }

356 this . shortToBytes (this . r e c e i v i ngBu f f e r , (short) (childPM2 −
357 (short) 2) , (short) (copyPointer − childPM2 −
358 (short) 1)) ;

359 this . macGenerate (this . r e c e i v i ngBu f f e r , (short) (childPM2 +

360 (short) 1) , (short) (copyPointer − (short)

361 (childPM2 + (short) 1)) , S ignature .MODE_SIGN) ;

362 this . r e c e i v i n gBu f f e r [childPM1]++;

363 copyPointer = Ut i l . arrayCopyNonAtomic (this . SCACookieArray ,

364 (short) 0 , this . r e c e i v i ngBu f f e r , (short) copyPointer , (short)

365 this . SCACookieArray . l ength) ;

366 this . r e c e i v i n gBu f f e r [childPM1]++;

367 this . shortToBytes (this . r e c e i v i ngBu f f e r , (short) (childPM1 −
368 (short) 2) , (short) (copyPointer − (short) 7)) ;

369 }

370 }

371 boolean processSecondMsg (byte [] inArray) {

372 short i nO f f s e t = (short) (this . CTLVDataOffset +

373 this . CTLVDataOffset) ;

374 short inLength = (short) (Protoco lHandler . bytesToShort (inArray ,

375 (short) (i nO f f s e t − (short) 3))) ;

376 i f (this . macGenerate (inArray , i nOf f s e t , inLength ,

377 Signature .MODE_VERIFY)) {

378 try {

379 this . phDecryption (inArray , i nOf f s e t , inLength) ;

380 i nO f f s e t = (short) (this . CTLVDataOffset + this . PTLVDataOffset

381 + (short) 168) ;

382 inLength = 3 ;

383 SCAVerif icationKey . setExponent (inArray , i nOf f s e t , inLength) ;

384 i nO f f s e t += (short) (inLength + this . PTLVDataOffset) ;

385 inLength = (short) 64 ;

386 SCAVerif icationKey . setModulus (inArray , i nOf f s e t , inLength) ;

387 i nO f f s e t = (short) (this . CTLVDataOffset + this . CTLVDataOffset) ;

388 inLength = (short) 84 ;

389 i f (this . s ignGenerate (inArray , i nOf f s e t , inLength ,

390 SCAVerif icationKey , S ignature .MODE_VERIFY)) {

391 return true ;

392 } else {

393 ISOException . throwIt ((short) 0x6666) ;

394 }

395 } catch (Exception ce) {

396 ISOException . throwIt ((short) 0xAB23) ;

397 }

398 return true ;

399 } else {

400 ISOException . throwIt ((short) 0xFA18) ;

425

C.9 Platform Binding Protocol

401 }

402 return fa l se ;

403 }

404 void parseMessage (byte [] i nBu f f e r) {

405 byte c h i l dL e f t = inBu f f e r [(short) (this . CTLVDataOffset − (short) 1)

406] ;

407 short po in t e r = (short) this . CTLVDataOffset ;

408 try {

409 while (c h i l dL e f t > 0) {

410 i f (Ut i l . arrayCompare (SCADHChallengeTag , (short) 0 , inBuf f e r ,

411 pointer , (short) 4) == 0) {

412 Ut i l . arrayCopy (inBuf f e r , po inter , this . SCADHChanllengerArray ,

413 (short) 0 , (short)

414 this . SCADHChanllengerArray . l ength) ;

415 po in t e r += (short) this . SCADHChanllengerArray . l ength ;

416 } else i f (Ut i l . arrayCompare (this . SCARandomNumberTag , (short) 0 ,

417 i nBuf f e r , po inter , (short) 4) == 0) {

418 Ut i l . arrayCopyNonAtomic (inBuf f e r , po inter ,

419 this . SCARandomNumberArray , (short) 0 ,

420 (short)

421 (this . SCARandomNumberArray . l ength)) ;

422 po in t e r += (short) (this . SCARandomNumberArray . l ength) ;

423 } else i f (Ut i l . arrayCompare (this . SCACookieTag , (short) 0 ,

424 i nBuf f e r , po inter , (short) 4) == 0) {

425 Ut i l . arrayCopyNonAtomic (inBuf f e r , po inter ,

426 this . SCACookieArray , (short) 0 ,

427 (short) (this . SCACookieArray . l ength)) ;

428 po in t e r += (short) (this . SCACookieArray . l ength) ;

429 }

430 c h i l dL e f t −= (short) 1 ;

431 }

432 } catch (Exception cE) {

433 ISOException . throwIt ((short) c h i l dL e f t) ;

434 }

435 }

436 void protoco l Implementat ion () {}

437 void d h I n i t i a l i s a t i o n () {

438 dhKey . setModulus (ClassDH . dhModulus , (short) 0 ,

(short)ClassDH . dhModulus . l ength) ;

439 }

440 void dhKeyConGen(byte [] i nbu f f , short i nbu f fO f f s e t , byte Oper_Mode)

441 {

442 switch (Oper_Mode) {

443 case GEN_KEYCONTRIBUTION: randomExponent =

444 JCSystem . makeTransientByteArray ((short) 32 ,

445 JCSystem .MEMORY_TYPE_TRANSIENT_DESELECT) ;

446 randomDataGen . generateData (randomExponent , (short) 0 , (short)

447 randomExponent . l ength) ;

448 dhKey . setExponent (randomExponent , (short) 0 , (short)

449 randomExponent . l ength) ;

450 pkCipher . i n i t (dhKey , Cipher .MODE_ENCRYPT) ;

426

C.9 Platform Binding Protocol

451 pkCipher . doFinal (ClassDH . dhBase , (short) 0 ,

(short)ClassDH . dhBase . length , inbu f f ,

452 i n bu f fO f f s e t) ;

453 break ;

454 case GEN_DHKEY:

455 try {

456 dhKey . setExponent (randomExponent , (short) 0 , (short)

457 randomExponent . l ength) ;

458 pkCipher . i n i t (dhKey , Cipher .MODE_ENCRYPT) ;

459 SCBSCADHGeneratedValue = JCSystem . makeTransientByteArray (

460 (short)ClassDH . dhModulus . length ,

461 JCSystem .MEMORY_TYPE_TRANSIENT_DESELECT) ;

462 pkCipher . doFinal (inbu f f , i nbu f fO f f s e t , (short) ((short)

463 i n bu f f . l ength − (short) this . PTLVDataOffset)

464 , SCBSCADHGeneratedValue , (short) 0) ;

465 }

466 catch (Exception cE) {

467 ISOException . throwIt ((short) 0xD86E) ;

468 }

469 break ;

470 default :

471 ISOException . throwIt ((short) 0x5FA1) ;

472 }

473 }

474 void keygenerator () {

475 AESKey sessionGenKey = (AESKey) KeyBuilder . buildKey

476 (KeyBuilder .TYPE_AES_TRANSIENT_DESELECT,

477 KeyBuilder .LENGTH_AES_128, fa l se) ;

478 sessionGenKey . setKey (SCBSCADHGeneratedValue , (short) 0) ;

479 phMacGenerator . i n i t (sessionGenKey , S ignature .MODE_SIGN,

480 I n i t i a l i s a t i o nV e c t o r , (short) 0 , (short)

481 I n i t i a l i s a t i o nV e c t o r . l ength) ;

482 byte [] keyGenMacData = JCSystem . makeTransientByteArray ((short) 64 ,

483 JCSystem .MEMORY_TYPE_TRANSIENT_DESELECT) ;

484 short po in t e r = 0 ;

485 po in t e r = Ut i l . arrayCopyNonAtomic (this . SCARandomNumberArray ,

486 this . PTLVDataOffset , keyGenMacData , (short) po inter , (short) 16) ;

487 po in t e r = Ut i l . arrayCopyNonAtomic (this . SCBRandomNumberArray ,

488 this . PTLVDataOffset , keyGenMacData , (short) po inter , (short) 16) ;

489 po in t e r = Ut i l . arrayCopyNonAtomic (SCBSCADHGeneratedValue , (short) 16 ,

490 keyGenMacData , (short) po inter , (short) 16) ;

491 for (short i = 48 ; i < 64 ; i++) {

492 keyGenMacData [i] = (byte) 0x02 ;

493 }

494 phMacGenerator . s i gn (keyGenMacData , (short) 0 , (short)

495 keyGenMacData . length , SCBSCADHGeneratedValue ,

496 (short) 0) ;

497 this . phCipherKey . setKey (SCBSCADHGeneratedValue , (short) 0) ;

498 for (short i = 48 ; i < 64 ; i++) {

499 keyGenMacData [i] = (byte) 0x03 ;

500 }

427

C.9 Platform Binding Protocol

501 phMacGenerator . i n i t (sessionGenKey , S ignature .MODE_SIGN,

502 I n i t i a l i s a t i o nV e c t o r , (short) 0 , (short)

503 I n i t i a l i s a t i o nV e c t o r . l ength) ;

504 phMacGenerator . s i gn (keyGenMacData , (short) 0 , (short)

505 keyGenMacData . length , SCBSCADHGeneratedValue ,

506 (short) 0) ;

507 this . phMacGeneratorKey . setKey (SCBSCADHGeneratedValue , (short) 0) ;

508 SCBSCADHGeneratedValue = null ;

509 JCSystem . r eques tObjec tDe l e t i on () ;

510 }

511 void messageEncryption (byte [] i nbu f f , short i nbu f fO f f s e t , short

512 inbuf fLength) {

513 syCipher . i n i t (phCipherKey , Cipher .MODE_ENCRYPT,

514 I n i t i a l i s a t i o nV e c t o r , (short) 0 , (short)

515 I n i t i a l i s a t i o nV e c t o r . l ength) ;

516 this . shortToBytes (inbu f f , (short) (i n bu f fO f f s e t − 3) , (short)

517 syCipher . doFinal (inbu f f , i nbu f fO f f s e t ,

518 inbuf fLength , inbu f f , i n bu f fO f f s e t)) ;

519 }

520 void phDecryption (byte [] i nbu f f , short i nbu f fO f f s e t , short

521 inbuf fLength) {

522 syCipher . i n i t (phCipherKey , Cipher .MODE_DECRYPT,

523 I n i t i a l i s a t i o nV e c t o r , (short) 0 , (short)

524 I n i t i a l i s a t i o nV e c t o r . l ength) ;

525 syCipher . doFinal (inbu f f , i nbu f fO f f s e t , inbuf fLength , inbu f f ,

526 i n bu f fO f f s e t) ;

527 }

528 boolean macGenerate (byte [] i nbu f f , short i nbu f fO f f s e t , short

529 inbuf fLength , short macMode) {

530 i f (macMode == Signature .MODE_SIGN) {

531 phMacGenerator . i n i t (phMacGeneratorKey , S ignature .MODE_SIGN,

532 I n i t i a l i s a t i o nV e c t o r , (short) 0 , (short)

533 I n i t i a l i s a t i o nV e c t o r . l ength) ;

534 try {

535 copyPointer = Ut i l . arrayCopyNonAtomic (this .MACedDataTag ,

536 (short) 0 , this . r e c e i v i ngBu f f e r , copyPointer , (short)

537 this .MACedDataTag . l ength) ;

538 copyPointer += 2 ;

539 } catch (Exception ce) {

540 ISOException . throwIt ((short) 0xFA17) ;

541 }

542 try {

543 short l ength = (short) phMacGenerator . s i gn

544 (this . r e c e i v i ngBu f f e r , i nbu f fO f f s e t ,

545 inbuf fLength , inbu f f , copyPointer) ;

546 this . shortToBytes (inbu f f , (short) (copyPointer − (short) 2) ,

547 l ength) ;

548 copyPointer += length ;

549 } catch (Exception ce) {

550 ISOException . throwIt ((short) 0x0987) ;

551 }

428

C.9 Platform Binding Protocol

552 return true ;

553 } else i f (macMode == Signature .MODE_VERIFY) {

554 try {

555 phMacGenerator . i n i t (phMacGeneratorKey , S ignature .MODE_VERIFY,

556 I n i t i a l i s a t i o nV e c t o r , (short) 0 , (short)

557 I n i t i a l i s a t i o nV e c t o r . l ength) ;

558 return phMacGenerator . v e r i f y (this . r e c e i v i ngBu f f e r ,

559 i nbu f fO f f s e t , inbuf fLength , inbu f f , (short) (i n bu f fO f f s e t +

560 inbuf fLength + this . PTLVDataOffset) , (short) 16) ;

561 } catch (Exception cE) {

562 ISOException . throwIt ((short) 0xC1C2) ;

563 }

564 }

565 return fa l se ;

566 }

567 boolean s ignGenerate (byte [] i nbu f f , short i nbu f fO f f s e t , short

568 i nbu f f l eng th , Key kpSign , short signMode) {

569 i f (signMode == Signature .MODE_SIGN) {

570 copyPointer = Ut i l . arrayCopyNonAtomic (this . SignedDataTag ,

571 (short) 0 , this . r e c e i v i ngBu f f e r , copyPointer , (short)

572 this . SignedDataTag . l ength) ;

573 copyPointer += (short) 2 ;

574 phSign . i n i t ((RSAPrivateKey) kpSign , S ignature .MODE_SIGN) ;

575 s i gn l eng th = phSign . s i gn (inbu f f , (short) i nbu f fO f f s e t ,

576 i nbu f f l eng th , inbu f f , copyPointer) ;

577 this . shortToBytes (this . r e c e i v i ngBu f f e r , (short) (copyPointer −
578 (short) 2) , s i gn l eng th) ;

579 copyPointer += s i gn l eng th ;

580 return true ;

581 } else i f (signMode == Signature .MODE_VERIFY) {

582 phSign . i n i t ((RSAPublicKey) kpSign , S ignature .MODE_VERIFY) ;

583 return phSign . v e r i f y (inbu f f , i nbu f fO f f s e t , i nbu f f l eng th , inbu f f ,

584 (short) (i n bu f fO f f s e t + inbu f f l e n g th +

585 this . PTLVDataOffset) , (short) 64) ;

586 }

587 return fa l se ;

588 }

589 public stat ic short bytesToShort (byte [] ArrayBytes) {

590 return (short) (((ArrayBytes [0] << 8)) | ((ArrayBytes [1] & 0 x f f))) ;

591 }

592 public stat ic short bytesToShort (byte [] ArrayBytes , short

593 a r r ayOf f s e t) {

594 return (short) (((ArrayBytes [a r r ayOf f s e t] << 8)) | ((ArrayBytes [

595 (short) (a r r ayOf f s e t + (short) 1)] & 0 x f f))) ;

596 }

597 private void shortToBytes (byte [] Array , short ar rayOf f s e t , short

598 inShort) {

599 Array [a r r ayOf f s e t] = (byte) ((short) (inShort & (short) 0xFF00) >>

600 (short) 0x0008) ;

601 Array [(short) (a r r ayOf f s e t + (short) 1)] = (byte) (inShort & (short)

602 0x00FF) ;

429

C.10 Abstract Virtual Machine

603 }

604 }

C.10 Abstract Virtual Machine

In this section, we illustrate the implementation of the abstract virtual machine that counts

the number of selected opcodes a Java Card application has and calculate the associated

cost for individual security mechanism.

1 package abstractVM ;

2

3 import java . i o . ∗ ;
4 import java . u t i l . I t e r a t o r ;

5 import org . apache . lucene . a n a l y s i s . Analyzer ;

6 import org . apache . lucene . a n a l y s i s . standard . StandardAnalyzer ;

7 import org . apache . lucene . document . Document ;

8 import org . apache . lucene . document . F i e ld ;

9 import org . apache . lucene . index . CorruptIndexException ;

10 import org . apache . lucene . index . IndexReader ;

11 import org . apache . lucene . index . IndexWriter ;

12 import org . apache . lucene . queryParser . ParseException ;

13 import org . apache . lucene . queryParser . QueryParser ;

14 import org . apache . lucene . search . Hit ;

15 import org . apache . lucene . search . Hits ;

16 import org . apache . lucene . search . IndexSearcher ;

17 import org . apache . lucene . search . Query ;

18 import org . apache . lucene . s t o r e . D i rec tory ;

19 import org . apache . lucene . s t o r e . FSDirectory ;

20 import org . apache . lucene . s t o r e . LockObtainFai ledException ;

21 public class abst ractVir tua lMach ine {

22 private St r ing inputClassFi leName = " eva l u a t i o nF i l e " ;

23 private St r ing mnemonicOutputFileName = inputClassFi leName + " . txt " ;

24 public stat ic f ina l St r ing FILES_TO_INDEX_DIRECTORY =

25 "D:\\ eva lua t i onFo lde r " ;

26 public stat ic f ina l St r ing INDEX_DIRECTORY =

27 "D:\\ eva lua t i onFo lde r \\ indexFolder " ;

28 public stat ic f ina l St r ing FIELD_PATH = "path" ;

29 public stat ic f ina l St r ing FIELD_CONTENTS = " contents " ;

30 public stat ic f ina l St r ing [] keywordList = {

31 " aaload " , " iand" , " aa s to r e " , " i a s t o r e " , " aconst_nul l " , " icmp" ,

32 " aload " , " iconst_0 " , "aload_0" , " iconst_1" , "aload_1" ,

33 " iconst_2" , "aload_2" , " iconst_3" , "aload_3" , " iconst_4 " ,

34 "anewarray" , " iconst_5" , " areturn " , " iconst_m1" , " ar ray l ength " ,

35 " i d i v " , " a s t o r e " , " if_acmpeq" , " astore_0" , "if_acmpeq_w" ,

36 "astore_1" , " if_acmpne" , " astore_2" , "if_acmpne_w" , " astore_3" ,

37 " if_scmpeq" , "athrow" , "if_scmpeq_w" , "baload" , " if_scmpge" ,

38 " bas tore " , "if_scmpge_w" , "bipush " , " if_scmpgt" , "bspush" ,

39 "if_scmpgt_w" , " checkcas t " , " i f_scmple " , "dup" , " if_scmple_w" ,

40 "dup_x" , " i f_scmplt " , "dup2" , " if_scmplt_w" , " g e t f i e l d_a " ,

41 " if_scmpne" , " ge t f i e l d_a_th i s " , "if_scmpne_w" , "getfield_a_w" ,

430

C.10 Abstract Virtual Machine

42 " i f e q " , " ge t f i e l d_b " , " ifeq_w" , " ge t f i e ld_b_th i s " , " i f g e " ,

43 "getfield_b_w" , " ifge_w" , " g e t f i e l d_ i " , " i f g t " ,

44 " g e t f i e l d_ i_th i s " , " ifgt_w" , " get f ie ld_i_w" , " i f l e " ,

45 " g e t f i e l d_s " , " i f l e_w" , " g e t f i e l d_s_th i s " , " i f l t " ,

46 " getf ie ld_s_w" , " i f l t_w" , " ge t s ta t i c_a " , " i f n e " , " ge t s ta t i c_b " ,

47 " ifne_w" , " g e t s t a t i c_ i " , " i f n onnu l l " , " g e t s t a t i c_s " ,

48 " ifnonnull_w" , " goto " , " i f n u l l " , "goto_w" , " i fnul l_w" , " i2b " ,

49 " i i n c " , " i 2 s " , " iinc_w" , " iadd" , " i i pu sh " , " i a l o ad " , " i l o ad " ,

50 " i load_0" , " puts ta t i c_s " , " i load_1" , " r e t " , " i load_2" , " re turn " ,

51 " i load_3" , " s2b" , " i l ookupswi t ch " , " s 2 i " , " imul " , " sadd" ,

52 " ineg " , " sa load " , " i n s t an c e o f " , " sand" , " i n v ok e i n t e r f a c e " ,

53 " s a s t o r e " , " i n vok e sp e c i a l " , " sconst_0" , " i n v ok e s t a t i c " ,

54 " sconst_1" , " i nvok ev i r t u a l " , " sconst_2" , " i o r " , " sconst_3" ,

55 " irem" , " sconst_4" , " i r e t u r n " , " sconst_5" , " i s h l " , "sconst_m1" ,

56 " i s h r " , " sd iv " , " i s t o r e " , " s i n c " , " i s tore_0 " , "sinc_w" ,

57 " i s to re_1 " , " s ipush " , " i s to re_2 " , " s l oad " , " i s to re_3 " ,

58 " sload_0" , " i sub " , " sload_1" , " i t a b l e sw i t c h " , " sload_2" ,

59 " iu sh r " , " sload_3" , " i xo r " , " s lookupswitch " , " j s r " , "smul" ,

60 "new" , " sneg " , "newarray" , " so r " , "nop" , "srem" , "pop" ,

61 " s r e tu rn " , "pop2" , " s s h l " , " put f i e ld_a " , " s sh r " ,

62 " put f i e ld_a_th i s " , " sspush " , "putfield_a_w" , " s s t o r e " ,

63 " put f i e ld_b " , " sstore_0 " , " put f i e ld_b_this " , " sstore_1 " ,

64 "putfield_b_w" , " sstore_2 " , " pu t f i e l d_ i " , " sstore_3 " ,

65 " put f i e l d_ i_th i s " , " ssub" , "putfield_i_w" , " s t ab l e sw i t ch " ,

66 " put f i e l d_s " , " sushr " , " put f i e ld_s_th i s " , "swap_x" ,

67 "putfield_s_w" , " sxor " , " putstat i c_a " , " putstat ic_b " ,

68 " put s t a t i c_ i " ,

69 } ;

70 public stat ic void main (St r ing [] a rgs) {

71 abst ractVir tua lMach ine v i r tua lMachine = new

72 abst ractVir tua lMach ine () ;

73 St r ing command = " javap −c " + virtua lMachine . inputClassFi leName ;

74 vi r tua lMachine . runCommand(command . s p l i t (" ")) ;

75 c rea te Index () ;

76 St r ing myFile = "D:\\ eva lua t i onFo lde r \\ Eva luat ionResu l t s . eva" ;

77 FileOutputStream outStream = new FileOutputStream (myFile) ;

78 PrintWriter out = new PrintWriter (outStream) ;

79 int numberPresent = 0 ;

80 for (int i = 0 ; i < keywordList . l ength ; i++) {

81 numberPresent = searchIndex (keywordList [i]) ;

82 out . p r i n t l n (keywordList [i] + " : " + numberPresent +) ;

83 }

84 out . c l o s e () ;

85 System . out . p r i n t l n ("========= END ============") ;

86 }

87 public void runCommand(St r ing [] inputCommandString) {

88 int number = inputCommandString . l ength ;

89 try {

90 St r ing [] commands = new St r ing [inputCommandString . l ength + 2] ;

91 commands [0] = "cmd . exe " ;

92 commands [1] = "/c" ;

431

C.10 Abstract Virtual Machine

93 for (int i = 0 ; i < number ; i++) {

94 commands [i + 2] = inputCommandString [i] ;

95 }

96 System . out . p r i n t ("Executing : ") ;

97 for (int i = 0 ; i < commands . l ength ; i++) {

98 System . out . p r i n t (commands [i] + " ") ;

99 }

100 Runtime runtime = Runtime . getRuntime () ;

101 Process p roce s s = runtime . exec (commands) ;

102 CheckStream cmdProcessInputStream = new CheckStream

103 (p roce s s . getInputStream ()) ;

104 CheckStream cmdProcessErrorStream = new CheckStream

105 (p roce s s . getErrorStream ()) ;

106 cmdProcessInputStream . s t a r t () ;

107 cmdProcessErrorStream . s t a r t () ;

108 System . out . p r i n t ("Waiting ") ;

109 int done = proce s s . waitFor () ;

110 proce s s . des t roy () ;

111 System . out . p r i n t l n ("Conversion Completed . ") ;

112 } catch (Inter ruptedExcept ion i e) {

113 System . out . p r i n t l n ("Error Execution : " + i e . getMessage ()) ;

114 } catch (IOException i o e) {

115 System . out . p r i n t l n ("Error IO Operat ions : " + i o e . getMessage ()) ;

116 }

117 }

118 public stat ic void c rea te Index () throws CorruptIndexException ,

119 LockObtainFailedException ,

120 IOException {

121 F i l e f i l e D i r = new F i l e (FILES_TO_INDEX_DIRECTORY) ;

122 F i l e indexDir = new F i l e (INDEX_DIRECTORY) ;

123 Analyzer luceneAnalyzer = new StandardAnalyzer () ;

124 IndexWriter indexWriter = new IndexWriter (indexDir ,

125 luceneAnalyzer , true) ;

126 F i l e [] t e x tF i l e s = f i l e D i r . l i s t F i l e s () ;

127 long startTime = new Date () . getTime () ;

128 for (int i = 0 ; i < t e x tF i l e s . l ength ; i++) {

129 i f (t e x tF i l e s [i] . i s F i l e () >> t e x tF i l e s [i] . getName () . endsWith (

130 " . txt ")) {

131 System . out . p r i n t l n (" F i l e " + t e x tF i l e s [i] . getCanonicalPath ()

132 + " i s being indexed ") ;

133 Reader textReader = new Fi leReader (t e x tF i l e s [i]) ;

134 Document document = new Document () ;

135 document . add (F i e ld . Text (FIELD_CONTENTS, textReader)) ;

136 document . add (F i e ld . Text (FIELD_PATH, t e x tF i l e s [i] . getPath ())) ;

137 indexWriter . addDocument (document) ;

138 }

139 }

140 indexWriter . opt imize () ;

141 indexWriter . c l o s e () ;

142 long endTime = new Date () . getTime () ;

143 System . out . p r i n t l n (" I t took " + (endTime − startTime) +

432

C.11 Implementation Helper Classes

144 " m i l l i s e c ond s to c r e a t e an index f o r the f i l e s in

the d i r e c t o r y " + f i l e D i r . getPath ()) ;

145 }

146 public stat ic int searchIndex (St r ing s ea r chS t r i ng)throws

147 IOException , ParseException {

148 System . out . p r i n t l n (" Search ing f o r ' " + sea r chS t r i ng + " ' ") ;

149 Direc tory d i r e c t o r y = FSDirectory . g e tD i r e c to ry (INDEX_DIRECTORY) ;

150 IndexReader indexReader = IndexReader . open (d i r e c t o r y) ;

151 IndexSearcher indexSearcher = new IndexSearcher (indexReader) ;

152 Analyzer ana lyze r = new StandardAnalyzer () ;

153 QueryParser queryParser = new QueryParser (FIELD_CONTENTS,

154 ana lyze r) ;

155 Query query = queryParser . parse (s e a r chS t r i ng) ;

156 Hits h i t s = indexSearcher . s earch (query) ;

157 System . out . p r i n t l n ("Number o f h i t s : " + h i t s . l ength ()) ;

158 return h i t s . l ength () ;

159 }

160 class CheckStream extends Thread {

161 BufferedReader buf feredReader ;

162 St r ing l i n e r e ad = "" ;

163 CheckStream (InputStream inputStream) {

164 buf feredReader = new BufferedReader (new InputStreamReader

165 (inputStream)) ;

166 }

167 public void run () {

168 try {

169 Fi l eWr i t e r f i l eWr i t e r = new Fi l eWr i t e r (mnemonicOutputFileName)

170 ;

171 while ((l i n e r e ad = buf feredReader . readLine ()) != null) {

172 System . out . p r i n t l n (l i n e r e ad) ;

173 f i l eWr i t e r . wr i t e (l i n e r e ad + "\n") ;

174 }

175 f i l eWr i t e r . c l o s e () ;

176 } catch (IOException i o e) {

177 System . out . p r i n t l n (" IOException : " + i o e . getMessage ()) ;

178 }

179 }

180 }

181 }

C.11 Implementation Helper Classes

In this section, we detail the helper classes that we implemented to overcome the limited

capability of our test bed.

C.11.1 Protocol Cryptographic Support

The helper function this section implements the support of cryptographic algorihtms that

an SP, card manufacturer or administrative authority uses during the respective protocol

433

C.11 Implementation Helper Classes

execution.

1 package j avacardte rmina l ;

2

3 import java . math . B ig Intege r ;

4 import java . n io . ByteBuffer ;

5 import java . s e c u r i t y . spec . RSAPublicKeySpec ;

6 import java . s e c u r i t y . spec . Inval idKeySpecExcept ion ;

7 import java . s e c u r i t y . i n t e r f a c e s . RSAPublicKey ;

8 import javax . crypto . spec . SecretKeySpec ;

9 import javax . crypto . spec . IvParameterSpec ;

10 import java . s e c u r i t y . ∗ ;
11 import javax . crypto . ∗ ;
12 import org . bouncycast l e . crypto . macs . CBCBlockCipherMac ;

13 import org . bouncycast l e . crypto . eng ines . AESEngine ;

14 import org . bouncycast l e . crypto . params . KeyParameter ;

15 import org . bouncycast l e . crypto . params . ParametersWithIV ;

16 public class Protoco lHe lpe rClas s {

17 byte [] ServiceProviderRandom = new byte [1 6] ;

18 byte [] SmartCardRandom = new byte [1 6] ;

19 Cipher rsaCipher = null ;

20 SecureRandom myRNG = null ;

21 PrivateKey mySignatureGenerationKey = null ;

22 PublicKey mySignatureVer i f i cat ionKey = null ;

23 Signature mySignature = null ;

24 public stat ic f ina l short SIGN_MODE_GENERATION = 1 ;

25 public stat ic f ina l short SIGN_MODE_VERIFICATION = 2 ;

26 byte [] mySessionAESEnKey = new byte [1 6] ;

27 SecretKeySpec myAESKey = null ;

28 Cipher myAESCipher = null ;

29 byte [] I n i t i a l i s a t i o nV e c t o r = {

30 (byte) 0x6C , (byte) 0xDE, (byte) 0xBE, (byte) 0x7B , (byte) 0x89 , (byte)

31 0x99 , (byte) 0x8C , (byte) 0xAF, (byte) 0xC5 , (byte) 0x7D , (byte) 0xB1 ,

32 (byte) 0x7C , (byte) 0x62 , (byte) 0x0A , (byte) 0x86 , (byte) 0x52 } ;

33 byte [] myLongTermMacKey = {

34 (byte) 0xAC, (byte) 0x40 , (byte) 0x32 , (byte) 0xEF , (byte) 0x4F , (byte)

35 0x2D , (byte) 0x9A , (byte) 0xE3 , (byte) 0x9D , (byte) 0xF3 , (byte) 0x0B ,

36 (byte) 0x5C , (byte) 0x8F , (byte) 0xFD, (byte) 0xAC, (byte) 0x50 } ;

37 byte [] mySessionMacKey = new byte [1 6] ;

38 SecretKeySpec myMacKey = null ;

39 private RSAPublicKey myRSAPublicKey ;

40 private byte [] dhBase = {

41 (byte) 0xAC, (byte) 0x40 , (byte) 0x32 , (byte) 0xEF , (byte) 0x4F , (byte)

42 0x2D , (byte) 0x9A , (byte) 0xE3 , (byte) 0x9D , (byte) 0xF3 , (byte) 0x0B ,

43 (byte) 0x5C , (byte) 0x8F , (byte) 0xFD, (byte) 0xAC, (byte) 0x50 ,

44 (byte) 0x6C , (byte) 0xDE, (byte) 0xBE, (byte) 0x7B , (byte) 0x89 ,

45 (byte) 0x99 , (byte) 0x8C , (byte) 0xAF, (byte) 0x74 , (byte) 0x86 ,

46 (byte) 0x6A , (byte) 0x08 , (byte) 0xCF, (byte) 0xE4 , (byte) 0xFF ,

47 (byte) 0xE3 , (byte) 0xA6 , (byte) 0x82 , (byte) 0x4A , (byte) 0x4E ,

48 (byte) 0x10 , (byte) 0xB9 , (byte) 0xA6 , (byte) 0xF0 , (byte) 0xDD,

49 (byte) 0x92 , (byte) 0x1F , (byte) 0x01 , (byte) 0xA7 , (byte) 0x0C ,

50 (byte) 0x4A , (byte) 0xFA, (byte) 0xAB, (byte) 0x73 , (byte) 0x9D ,

434

C.11 Implementation Helper Classes

51 (byte) 0x77 , (byte) 0x00 , (byte) 0xC2 , (byte) 0x9F , (byte) 0x52 ,

52 (byte) 0xC5 , (byte) 0x7D , (byte) 0xB1 , (byte) 0x7C , (byte) 0x62 ,

53 (byte) 0x0A , (byte) 0x86 , (byte) 0x52 , (byte) 0xBE, (byte) 0x5E ,

54 (byte) 0x90 , (byte) 0x01 , (byte) 0xA8 , (byte) 0xD6 , (byte) 0x6A ,

55 (byte) 0xD7 , (byte) 0xC1 , (byte) 0x76 , (byte) 0x69 , (byte) 0x10 ,

56 (byte) 0x19 , (byte) 0x99 , (byte) 0x02 , (byte) 0x4A , (byte) 0xF4 ,

57 (byte) 0xD0 , (byte) 0x27 , (byte) 0x27 , (byte) 0x5A , (byte) 0xC1 ,

58 (byte) 0x34 , (byte) 0x8B , (byte) 0xB8 , (byte) 0xA7 , (byte) 0x62 ,

59 (byte) 0xD0 , (byte) 0x52 , (byte) 0x1B , (byte) 0xC9 , (byte) 0x8A ,

60 (byte) 0xE2 , (byte) 0x47 , (byte) 0x15 , (byte) 0x04 , (byte) 0x22 ,

61 (byte) 0xEA, (byte) 0x1E , (byte) 0xD4 , (byte) 0x09 , (byte) 0x93 ,

62 (byte) 0x9D , (byte) 0x54 , (byte) 0xDA, (byte) 0x74 , (byte) 0x60 ,

63 (byte) 0xCD, (byte) 0xB5 , (byte) 0xF6 , (byte) 0xC6 , (byte) 0xB2 ,

64 (byte) 0x50 , (byte) 0x71 , (byte) 0x7C , (byte) 0xBE, (byte) 0xF1 ,

65 (byte) 0x80 , (byte) 0xEB, (byte) 0x34 , (byte) 0x11 , (byte) 0x8E ,

66 (byte) 0x98 , (byte) 0xD1 , (byte) 0x19 , (byte) 0x52 , (byte) 0x9A ,

67 (byte) 0x45 , (byte) 0xD6 , (byte) 0xF8 , (byte) 0x34 , (byte) 0x56 ,

68 (byte) 0x6E , (byte) 0x30 , (byte) 0x25 , (byte) 0xE3 , (byte) 0x16 ,

69 (byte) 0xA3 , (byte) 0x30 , (byte) 0xEF , (byte) 0xBB, (byte) 0x77 ,

70 (byte) 0xA8 , (byte) 0x6F , (byte) 0x0C , (byte) 0x1A , (byte) 0xB1 ,

71 (byte) 0x5B , (byte) 0x05 , (byte) 0x1A , (byte) 0xE3 , (byte) 0xD4 ,

72 (byte) 0x28 , (byte) 0xC8 , (byte) 0xF8 , (byte) 0xAC, (byte) 0xB7 ,

73 (byte) 0x0A , (byte) 0x81 , (byte) 0x37 , (byte) 0x15 , (byte) 0x0B ,

74 (byte) 0x8E , (byte) 0xEB, (byte) 0x10 , (byte) 0xE1 , (byte) 0x83 ,

75 (byte) 0xED, (byte) 0xD1 , (byte) 0x99 , (byte) 0x63 , (byte) 0xDD,

76 (byte) 0xD9 , (byte) 0xE2 , (byte) 0x63 , (byte) 0xE4 , (byte) 0x77 ,

77 (byte) 0x05 , (byte) 0x89 , (byte) 0xEF , (byte) 0x6A , (byte) 0xA2 ,

78 (byte) 0x1E , (byte) 0x7F , (byte) 0x5F , (byte) 0x2F , (byte) 0xF3 ,

79 (byte) 0x81 , (byte) 0xB5 , (byte) 0x39 , (byte) 0xCC, (byte) 0xE3 ,

80 (byte) 0x40 , (byte) 0x9D , (byte) 0x13 , (byte) 0xCD, (byte) 0x56 ,

81 (byte) 0x6A , (byte) 0xFB, (byte) 0xB4 , (byte) 0x8D , (byte) 0x6C ,

82 (byte) 0x01 , (byte) 0x91 , (byte) 0x81 , (byte) 0xE1 , (byte) 0xBC,

83 (byte) 0xFE , (byte) 0x94 , (byte) 0xB3 , (byte) 0x02 , (byte) 0x69 ,

84 (byte) 0xED, (byte) 0xFE , (byte) 0x72 , (byte) 0xFE , (byte) 0x9B ,

85 (byte) 0x6A , (byte) 0xA4 , (byte) 0xBD, (byte) 0x7B , (byte) 0x5A ,

86 (byte) 0x0F , (byte) 0x1C , (byte) 0x71 , (byte) 0xCF, (byte) 0xFF ,

87 (byte) 0x4C , (byte) 0x19 , (byte) 0xC4 , (byte) 0x18 , (byte) 0xE1 ,

88 (byte) 0xF6 , (byte) 0xEC, (byte) 0x01 , (byte) 0x79 , (byte) 0x81 ,

89 (byte) 0xBC, (byte) 0x08 , (byte) 0x7F , (byte) 0x2A , (byte) 0x70 ,

90 (byte) 0x65 , (byte) 0xB3 , (byte) 0x84 , (byte) 0xB8 , (byte) 0x90 ,

91 (byte) 0xD3 , (byte) 0x19 , (byte) 0x1F , (byte) 0x2B , (byte) 0xFA} ;

92 private stat ic f ina l St r ing dhModulus =

93 "AD107E1E9123A9D0D660FAA79559C51FA20D64E5683B9FD1B54B1597B61D0A75E6FA1"

94 + "41DF95A56DBAF9A3C407BA1DF15EB3D688A309C180E1DE6B85A1274A0A66D3F8152AD"

95 + "6AC2129037C9EDEFDA4DF8D91E8FEF55B7394B7AD5B7D0B6C12207C9F98D11ED34DBF"

96 + "6C6BA0B2C8BBC27BE6A00E0A0B9C49708B3BF8A317091883681286130BC8985DB1602"

97 + "E714415D9330278273C7DE31EFDC7310F7121FD5A07415987D9ADC0A486DCDF93ACC4"

98 + "4328387315D75E198C641A480CD86A1B9E587E8BE60E69CC928B2B9C52172E413042E"

99 + "9B23F10B0E16E79763C9B53DCF4BA80A29E3FB73C16B8E75B97EF363E2FFA31F71CF9"

100 + "DE5384E71B81C0AC4DFFE0C10E64F" ;

101 private byte [] randomExponent = new byte [3 2] ;

435

C.11 Implementation Helper Classes

102 private byte [] DHContribution = new byte [5 1 2] ;

103 void p r o t o c o l I n i t i a l i s e () {

104 try {

105 KeyPairGenerator myKeyGenerator = KeyPairGenerator . g e t In s tance (

106 "RSA") ;

107 myKeyGenerator . i n i t i a l i z e (512) ;

108 KeyPair myKeyPair = myKeyGenerator . genKeyPair () ;

109 mySignatureGenerationKey = myKeyPair . g e tPr iva t e () ;

110 mySignatureVer i f i cat ionKey = myKeyPair . ge tPub l i c () ;

111 mySignature = Signature . g e t In s tance ("SHA1withRSA") ;

112 } catch (Exception cE) {

113 System . out . p r i n t l n (

114 "Protoco l Helper Class I n i t i a l i s a t i o n Fa i l ed : "

+ cE . getMessage ()) ;

115 }

116 }

117 byte [] GenerateDHPublicValue () throws NoSuchAlgorithmException ,

118 Inval idKeyException ,

119 I l l e g a lB l o ckS i z eExcep t i on ,

120 NoSuchProviderException ,

121 BadPaddingException ,

122 NoSuchPaddingException ,

123 Inval idKeySpecException {

124 rsaCipher = Cipher . g e t In s tance ("RSA/None/NoPadding" , "BC") ;

125 KeyFactory myKeyFactory = KeyFactory . g e t In s tance ("RSA" , "BC") ;

126 myRNG = SecureRandom . ge t In s tance ("SHA1PRNG") ;

127 myRNG. nextBytes (randomExponent) ;

128 RSAPublicKeySpec myPublicKeySpec = new RSAPublicKeySpec (new

129 Big Intege r (dhModulus , 16) , new Big Intege r (byteToStr ing

130 (randomExponent) , 16)) ;

131 myRSAPublicKey = (RSAPublicKey)myKeyFactory . genera tePub l i c

132 (myPublicKeySpec) ;

133 rsaCipher . i n i t (Cipher .ENCRYPT_MODE, myRSAPublicKey) ;

134 DHContribution = rsaCipher . doFinal (dhBase) ;

135 return DHContribution ;

136 }

137 byte [] GenerateDHSessionKeyMaterial (byte [] i nbu f f , int o f f s e t , int

138 l ength)throws NoSuchAlgorithmException , Inval idKeyException ,

139 I l l e g a lB l o ckS i z eExcep t i on , NoSuchProviderException ,

140 BadPaddingException , NoSuchPaddingException ,

141 Inval idKeySpecException {

142 rsaCipher . i n i t (Cipher .ENCRYPT_MODE, myRSAPublicKey) ;

143 return rsaCipher . doFinal (inbu f f , o f f s e t , l ength) ;

144 }

145 void GenerateMac (byte [] i nbu f f , int i nbu f fO f f s e t , int inbuf fLength ,

146 byte [] outbuf f , int outbu f fO f f s e t , byte [] MacKey)

147 throws NoSuchAlgorithmException ,

148 Inval idKeyException , I l l e ga lB l o ckS i z eExc ep t i on ,

149 NoSuchProviderException , BadPaddingException ,

150 NoSuchPaddingException , Inval idKeySpecException {

151 AESEngine AESMacEngine = new AESEngine () ;

436

C.11 Implementation Helper Classes

152 KeyParameter myMacKey = new KeyParameter (MacKey) ;

153 CBCBlockCipherMac myAESMac = new CBCBlockCipherMac (AESMacEngine ,

154 128) ;

155 ParametersWithIV ivparam = new ParametersWithIV (myMacKey ,

156 I n i t i a l i s a t i o nV e c t o r) ;

157 myAESMac. i n i t (ivparam) ;

158 myAESMac. update (inbu f f , i nbu f fO f f s e t , inbuf fLength) ;

159 myAESMac. doFinal (outbuf f , ou tbu f fO f f s e t) ;

160 }

161 boolean SignatureMethod (byte [] inBuf f , int i nBu f fO f f s e t , int

162 inBuffLength , byte [] outBuff , int

163 outBuf fOf f se t , Key inKey , short SIGN_MODE)

164 throws Inval idKeyException ,

165 SignatureExcept ion {

166 ByteBuffer myTempByteBuffer = ByteBuffer . wrap (inBuff ,

167 i nBu f fO f f s e t , inBuffLength) ;

168 i f (inKey == null && SIGN_MODE == this .SIGN_MODE_GENERATION) {

169 inKey = (Key) this . mySignatureGenerationKey ;

170 } else i f (inKey == null && SIGN_MODE ==

171 this .SIGN_MODE_VERIFICATION) {

172 inKey = (Key) this . mySignatureVer i f i cat ionKey ;

173 }

174 switch (SIGN_MODE) {

175 case SIGN_MODE_GENERATION: mySignature . i n i t S i g n ((PrivateKey)

176 inKey) ;

177 mySignature . update (myTempByteBuffer) ;

178 mySignature . s i gn (outBuff , outBuf fOf f s e t , 64) ;

179 return true ;

180 case SIGN_MODE_VERIFICATION:

181 mySignature . i n i tV e r i f y ((PublicKey) inKey) ;

182 mySignature . update (myTempByteBuffer) ;

183 return mySignature . v e r i f y (outBuff , outBuf fOf f se t , 64) ;

184 default :

185 System . out . p r i n t l n ("ERROR−−−−−−−−−−−−WRONG MODE SELECTION") ;

186 }

187 return fa l se ;

188 }

189 void GenerateDecryption (byte [] i nbu f f , int i nbu f fO f f s e t , int

190 inbuf fLength , byte [] outbuf f , int

191 outbu f fO f f s e t , byte [] EnKey)throws

192 NoSuchAlgorithmException ,

193 Inval idKeyException ,

194 I l l e g a lB l o ckS i z eExcep t i on ,

195 NoSuchProviderException ,

196 BadPaddingException , NoSuchPaddingException ,

197 Inval idKeySpecException ,

198 ShortBuf ferExcept ion ,

199 Inval idAlgor ithmParameterExcept ion {

200 try {

201 IvParameterSpec ivS = new IvParameterSpec (I n i t i a l i s a t i o nV e c t o r) ;

202 myAESKey = new SecretKeySpec (EnKey , "AES") ;

437

C.11 Implementation Helper Classes

203 myAESCipher = Cipher . g e t In s tance ("AES/CBC/NoPadding") ;

204 myAESCipher . i n i t (Cipher .DECRYPT_MODE, myAESKey, ivS) ;

205 myAESCipher . doFinal (inbu f f , i nbu f fO f f s e t , inbuf fLength , outbuf f ,

206 ou tbu f fO f f s e t) ;

207 } catch (I l l e g a lB l o ckS i z eExc ep t i on ce) {

208 System . out . p r i n t l n ("Error at l i k e n 140 : " + ce . getMessage () +

209 "\nInput Length " + inbuf fLength) ;

210 }

211 }

212 void GenerateEncryption (byte [] i nbu f f , int i nbu f fO f f s e t , int

213 inbuf fLength , byte [] outbuf f , int

214 outbu f fO f f s e t , byte [] EnKey)throws

215 NoSuchAlgorithmException ,

216 Inval idKeyException ,

217 I l l e g a lB l o ckS i z eExcep t i on ,

218 NoSuchProviderException ,

219 BadPaddingException , NoSuchPaddingException ,

220 Inval idKeySpecException ,

221 ShortBuf ferExcept ion ,

222 Inval idAlgor ithmParameterExcept ion {

223 IvParameterSpec ivS = new IvParameterSpec (I n i t i a l i s a t i o nV e c t o r) ;

224 myAESKey = new SecretKeySpec (EnKey , "AES") ;

225 myAESCipher = Cipher . g e t In s tance ("AES/CBC/NoPadding") ;

226 myAESCipher . i n i t (Cipher .ENCRYPT_MODE, myAESKey, ivS) ;

227 myAESCipher . doFinal (inbu f f , i nbu f fO f f s e t , inbuf fLength , outbuf f ,

228 ou tbu f fO f f s e t) ;

229 }

230 public Protoco lHe lpe rClas s () {

231 Secur i ty . addProvider (new

232 org . bouncycast l e . j c e . p rov ide r . BouncyCastleProvider ()) ;

233 }

234 public PublicKey getPublicKey () {

235 return this . mySignatureVer i f i cat ionKey ;

236 }

237 public byte [] getRandomNumber () {

238 try {

239 myRNG = SecureRandom . ge t In s tance ("SHA1PRNG") ;

240 myRNG. nextBytes (this . ServiceProviderRandom) ;

241 } catch (Exception cE) {

242 System . out . p r i n t l n (

243 "Error ? : Protoco lHe lpe rC las s . getRandomNumber :

" + cE . getMessage ()) ;

244 }

245 return this . ServiceProviderRandom ;

246 }

247 public stat ic St r ing byteToStr ing (byte [] inArray) {

248 byte [] HEX_CHAR_TABLE = {

249 (byte) ' 0 ' , (byte) ' 1 ' , (byte) ' 2 ' , (byte) ' 3 ' , (byte) ' 4 ' , (byte)

250 ' 5 ' , (byte) ' 6 ' , (byte) ' 7 ' , (byte) ' 8 ' , (byte) ' 9 ' , (byte) ' a ' ,

251 (byte) 'b ' , (byte) ' c ' , (byte) 'd ' , (byte) ' e ' , (byte) ' f '

252 } ;

438

C.11 Implementation Helper Classes

253 byte [] hex = new byte [2 ∗ inArray . l ength] ;

254 int index = 0 ;

255 for (byte b : inArray) {

256 int v = b & 0xFF ;

257 hex [index++] = HEX_CHAR_TABLE[v >>> 4] ;

258 hex [index++] = HEX_CHAR_TABLE[v & 0xF] ;

259 }

260 try {

261 return new St r ing (hex , "ASCII") ;

262 } catch (Exception cE) {

263 System . out . p r i n t l n ("Exception in bytesToStr ing : " +

264 cE . getMessage ()) ;

265 }

266 return "Error " ;

267 }

268 }

C.11.2 CAMS Implementation

The implementation of the helper function discussed in this section provides the function-

ality of a Card Application Management System (CAMS) that provides an interface to the

smart card.

1 package j avacardte rmina l ;

2 import java . u t i l . ∗ ;
3 import javax . smartcard io . ∗ ;
4 import java . math . B ig Intege r ;

5 import java . i o . FileOutputStream ;

6 import java . i o . Pr intWriter ;

7 public class Terminal {

8 long protoco lStartTime = 0 ;

9 long protocolEndTime = 0 ;

10 TerminalFactory myTerminal = TerminalFactory . ge tDe fau l t () ;

11 CardTerminals myCardTerminals = myTerminal . t e rm ina l s () ;

12 L i s t < CardTerminal > l i s tTe rm ina l = null ;

13 Card myCard = null ;

14 CardChannel myCardChannel = null ;

15 CardTerminal myCardTerminal = null ;

16 Protoco lHandler myProtocolHandler = new Protoco lHandler () ;

17 ProtocolHandlerSCIn myProtocolHanlderSCIn = new ProtocolHandlerSCIn () ;

18 private stat ic f ina l int TimeOut = 10 ;

19 private stat ic f ina l int MAX_APDU_SIZE = 1028 ;

20 private ConstructedTLV messageIncoming =

ConstructedTLV . getConstructedTLV () ;

21 private stat ic f ina l byte [] CMD_APPLICATION_SELECT = {

22 (byte) 0x00 , (byte) 0xA4 , (byte) 0x04 , (byte) 0x00 , (byte) 0x09 ,

(byte) 0xD0 ,

23 (byte) 0x00 , (byte) 0x00 , (byte) 0x00 , (byte) 0x62 , (byte) 0x02 ,

(byte) 0x01 ,

24 (byte) 0x0C , (byte) 0x08 } ;

25 private stat ic f ina l byte [] CMD_APPLICATION_INITIALISATION = {

439

C.11 Implementation Helper Classes

26 (byte) 0xB0 , (byte) 0xFF , (byte) 0x00 , (byte) 0x00 , (byte) 0x01 ,

(byte) 0xAA} ;

27 private stat ic CommandAPDU SELECT_APDU = new CommandAPDU

28 (CMD_APPLICATION_SELECT) ;

29 private stat ic CommandAPDU Application_INITIALISATION = new CommandAPDU

30 (CMD_APPLICATION_INITIALISATION) ;

31 byte [] r e sponse ;

32 public Terminal () {}

33 public void TerminalConnection () {

34 try {

35 l i s tTe rm ina l = myCardTerminals . l i s t () ;

36 } catch (Exception e) {

37 System . out . p r i n t l n ("Error L i s t i n g Attached Terminals : " +

e . t oS t r i ng ()) ;

38 }

39 L i s t I t e r a t o r t e rm i n a l I t e r a t o r = l i s tTe rm ina l . l i s t I t e r a t o r () ;

40 while (t e rm i n a l I t e r a t o r . hasNext ()) {

41 t e rm i n a l I t e r a t o r . next () ;

42 }

43 myCardTerminal = myCardTerminals . getTerminal ("OMNIKEY CardMan 3x21

0") ;

44 try {

45 try {

46 myCard = myCardTerminal . connect ("T=1") ;

47 } catch (Exception e) {

48 System . out . p r i n t l n ("Terminal Disconnected ") ;

49 }

50 myCardChannel = myCard . getBasicChannel () ;

51 i f (ResponseTest (myCardChannel . t ransmit (SELECT_APDU))) {}

52 else {

53 System . out . p r i n t l n ("Appl i ca t ion Not Se l e c t ed ") ;

54 }

55 } catch (Exception eX) {

56 System . out . p r i n t l n ("Error " + eX . ge tC la s s () + "\n" +

eX . getMessage ()) ;

57 }

58 }

59 private boolean ResponseTest (ResponseAPDU resAPDU) {

60 byte [] t e s tByte s = resAPDU . getBytes () ;

61 return (t e s tByte s [t e s tByte s . l ength − 2] == (byte) 0x90 &&

62 t e s tByte s [t e s tByte s . l ength − 1] == (byte) 0x00) ;

63 }

64 public stat ic St r ing byteToStr ing (byte [] inArray) {

65 byte [] HEX_CHAR_TABLE = {

66 (byte) ' 0 ' , (byte) ' 1 ' , (byte) ' 2 ' , (byte) ' 3 ' , (byte) ' 4 ' , (byte) ' 5 ' ,

(byte)

67 ' 6 ' , (byte) ' 7 ' , (byte) ' 8 ' , (byte) ' 9 ' , (byte) ' a ' , (byte) 'b ' ,

(byte) ' c ' ,

68 (byte) 'd ' , (byte) ' e ' , (byte) ' f '

69 } ;

70 byte [] hex = new byte [2 ∗ inArray . l ength] ;

440

C.11 Implementation Helper Classes

71 int index = 0 ;

72 for (byte b : inArray) {

73 int v = b & 0xFF ;

74 hex [index++] = HEX_CHAR_TABLE[v >>> 4] ;

75 hex [index++] = HEX_CHAR_TABLE[v & 0xF] ;

76 }

77 try {

78 return new St r ing (hex , "ASCII") . r e p l a c eA l l (" . (? ! $) . (? ! $) " , "$0 ") ;

79 } catch (Exception cE) {

80 System . out . p r i n t l n ("Exception in bytesToStr ing : " +

cE . getMessage ()) ;

81 }

82 return "Error " ;

83 }

84 public stat ic void main (St r ing [] a rgs) {

85 try {

86 St r ing myFile = "C:\\SCTP−SP_Data\\ Per formanceSPIn i t ia tor . txt " ;

87 FileOutputStream outStream = new FileOutputStream (myFile) ;

88 PrintWriter out = new PrintWriter (outStream) ;

89 int i t e r a t o r = 1000 ;

90 int counter = 1 ;

91 while (i t e r a t o r > 0) {

92 Terminal myTerminal = new Terminal () ;

93 myTerminal . TerminalConnection () ;

94 myTerminal . s t a r tP r o t o c o l SP In i t i a r o r () ;

95 System . out . p r i n t l n ("ITERATION NUMBER : " + counter + " SPEED : " +

96 (double) ((myTerminal . protocolEndTime −
97 myTerminal . protoco lStartTime))) ;

98 i t e r a t o r −−;
99 counter++;

100 out . p r i n t l n ((double) ((myTerminal . protocolEndTime −
101 myTerminal . protoco lStartTime))) ;

102 myTerminal = null ;

103 }

104 out . c l o s e () ;

105 } catch (Exception cE) {

106 System . out . p r i n t l n ("Error : Error " + cE . getMessage ()) ;

107 }

108 }

109 public void cardTerminalCommunicator (CommandAPDU commandApduMsg) {

110 try {

111 re sponse = myCardChannel . t ransmit (commandApduMsg) . getBytes () ;

112 } catch (CardException cE) {

113 System . out . p r i n t l n (cE . getMessage ()) ;

114 }

115 }

116 public void s t a r tP r o t o c o l SC In i t i a t o r () {

117 CommandAPDU commandApduMsg ;

118 this . myProtocolHanlderSCIn . i n i t i a l i s e P r o t o c o l () ;

119 try {

441

C.11 Implementation Helper Classes

120 re sponse =

myCardChannel . t ransmit (Application_INITIALISATION) . getBytes () ;

121 protoco lStartTime = System . cur rentT imeMi l l i s () ;

122 this . myProtocolHanlderSCIn . inMessageProcess ing (response , 1) ;

123 commandApduMsg = new CommandAPDU(0xB0 , 0x44 , 0x00 , 0x00 ,

124 this . myProtocolHanlderSCIn . outMessageProcess ing (1)) ;

125 cardTerminalCommunicator (commandApduMsg) ;

126 i f (this . myProtocolHanlderSCIn . inMessageProcess ing (response , 2)) {

127 commandApduMsg = new CommandAPDU(0xB0 , 0x44 , 0x00 , 0x00 ,

128 this . myProtocolHanlderSCIn . outMessageProcess ing (2)) ;

129 i f (ResponseTest (myCardChannel . t ransmit (commandApduMsg))) {}

130 else {

131 System . out . p r i n t l n ("Error in Protoco l ") ;

132 System . e x i t (0) ;

133 }

134 }

135 protocolEndTime = System . cur rentT imeMi l l i s () ;

136 } catch (Exception ce) {

137 System . out . p r i n t l n ("Error in Terminal . s t a r tP r o t o c o l SC In i t i a t o r : " +

138 ce . getMessage ()) ;

139 }

140 }

141 public void s t a r tP r o t o c o l SP In i t i a r o r () {

142 CommandAPDU commandApduMsg ;

143 myProtocolHandler . i n i t i a l i s e P r o t o c o l () ;

144 try {

145 myCardChannel . t ransmit (Application_INITIALISATION) ;

146 protoco lStartTime = System . cur rentT imeMi l l i s () ;

147 commandApduMsg = new CommandAPDU(0xB0 , 0x44 , 0x00 , 0x00 ,

148 myProtocolHandler . outMessageProcess ing (

149 (short) 1)) ;

150 cardTerminalCommunicator (commandApduMsg) ;

151 i f (this . r e sponse [3] == (byte) 0xAA) {

152 i f (myProtocolHandler . inMessageProcess ing (response , (short) 1)) {

153 commandApduMsg = new CommandAPDU(0xB0 , 0x44 , 0x00 , 0x00 ,

154 myProtocolHandler . outMessageProcess ing ((short) 2)) ;

155 cardTerminalCommunicator (commandApduMsg) ;

156 }

157 }

158 i f (this . r e sponse [3] == (byte) 0xBB) {

159 i f (myProtocolHandler . inMessageProcess ing (response , (short) 2)) {}

160 }

161 protocolEndTime = System . cur rentT imeMi l l i s () ;

162 } catch (Exception cE) {

163 System . out . p r i n t l n ("Exception in Terminal . s t a r tP r o t o c o l : " +

cE . ge tC la s s

164 () . getName ()) ;

165 }

166 try {

167 myCard . d i s connec t (true) ;

168 } catch (CardException cE) {

442

C.11 Implementation Helper Classes

169 System . out . p r i n t l n (cE . getMessage ()) ;

170 }

171 }

172 }

C.11.3 Di�e-Hellman Group

The Di�e-Hellman group used by the SPs, and SCs in this thesis is listed as below:

1 package {Which ever p ro to co l i s us ing this DH group } ;

2

3 public class ClassDH

4 {

5 public byte [] dhBase = {(byte) 0xAC,

6 (byte) 0x40 , (byte) 0x32 , (byte) 0xEF , (byte) 0x4F , (byte) 0x2D ,

7 (byte) 0x9A , (byte) 0xE3 , (byte) 0x9D , (byte) 0xF3 , (byte) 0x0B ,

8 (byte) 0x5C , (byte) 0x8F , (byte) 0xFD, (byte) 0xAC, (byte) 0x50 ,

9 (byte) 0x6C , (byte) 0xDE, (byte) 0xBE, (byte) 0x7B , (byte) 0x89 ,

10 (byte) 0x99 , (byte) 0x8C , (byte) 0xAF, (byte) 0x74 , (byte) 0x86 ,

11 (byte) 0x6A , (byte) 0x08 , (byte) 0xCF, (byte) 0xE4 , (byte) 0xFF ,

12 (byte) 0xE3 , (byte) 0xA6 , (byte) 0x82 , (byte) 0x4A , (byte) 0x4E ,

13 (byte) 0x10 , (byte) 0xB9 , (byte) 0xA6 , (byte) 0xF0 , (byte) 0xDD,

14 (byte) 0x92 , (byte) 0x1F , (byte) 0x01 , (byte) 0xA7 , (byte) 0x0C ,

15 (byte) 0x4A , (byte) 0xFA, (byte) 0xAB, (byte) 0x73 , (byte) 0x9D ,

16 (byte) 0x77 , (byte) 0x00 , (byte) 0xC2 , (byte) 0x9F , (byte) 0x52 ,

17 (byte) 0xC5 , (byte) 0x7D , (byte) 0xB1 , (byte) 0x7C , (byte) 0x62 ,

18 (byte) 0x0A , (byte) 0x86 , (byte) 0x52 , (byte) 0xBE, (byte) 0x5E ,

19 (byte) 0x90 , (byte) 0x01 , (byte) 0xA8 , (byte) 0xD6 , (byte) 0x6A ,

20 (byte) 0xD7 , (byte) 0xC1 , (byte) 0x76 , (byte) 0x69 , (byte) 0x10 ,

21 (byte) 0x19 , (byte) 0x99 , (byte) 0x02 , (byte) 0x4A , (byte) 0xF4 ,

22 (byte) 0xD0 , (byte) 0x27 , (byte) 0x27 , (byte) 0x5A , (byte) 0xC1 ,

23 (byte) 0x34 , (byte) 0x8B , (byte) 0xB8 , (byte) 0xA7 , (byte) 0x62 ,

24 (byte) 0xD0 , (byte) 0x52 , (byte) 0x1B , (byte) 0xC9 , (byte) 0x8A ,

25 (byte) 0xE2 , (byte) 0x47 , (byte) 0x15 , (byte) 0x04 , (byte) 0x22 ,

26 (byte) 0xEA, (byte) 0x1E , (byte) 0xD4 , (byte) 0x09 , (byte) 0x93 ,

27 (byte) 0x9D , (byte) 0x54 , (byte) 0xDA, (byte) 0x74 , (byte) 0x60 ,

28 (byte) 0xCD, (byte) 0xB5 , (byte) 0xF6 , (byte) 0xC6 , (byte) 0xB2 ,

29 (byte) 0x50 , (byte) 0x71 , (byte) 0x7C , (byte) 0xBE, (byte) 0xF1 ,

30 (byte) 0x80 , (byte) 0xEB, (byte) 0x34 , (byte) 0x11 , (byte) 0x8E ,

31 (byte) 0x98 , (byte) 0xD1 , (byte) 0x19 , (byte) 0x52 , (byte) 0x9A ,

32 (byte) 0x45 , (byte) 0xD6 , (byte) 0xF8 , (byte) 0x34 , (byte) 0x56 ,

33 (byte) 0x6E , (byte) 0x30 , (byte) 0x25 , (byte) 0xE3 , (byte) 0x16 ,

34 (byte) 0xA3 , (byte) 0x30 , (byte) 0xEF , (byte) 0xBB, (byte) 0x77 ,

35 (byte) 0xA8 , (byte) 0x6F , (byte) 0x0C , (byte) 0x1A , (byte) 0xB1 ,

36 (byte) 0x5B , (byte) 0x05 , (byte) 0x1A , (byte) 0xE3 , (byte) 0xD4 ,

37 (byte) 0x28 , (byte) 0xC8 , (byte) 0xF8 , (byte) 0xAC, (byte) 0xB7 ,

38 (byte) 0x0A , (byte) 0x81 , (byte) 0x37 , (byte) 0x15 , (byte) 0x0B ,

39 (byte) 0x8E , (byte) 0xEB, (byte) 0x10 , (byte) 0xE1 , (byte) 0x83 ,

40 (byte) 0xED, (byte) 0xD1 , (byte) 0x99 , (byte) 0x63 , (byte) 0xDD,

41 (byte) 0xD9 , (byte) 0xE2 , (byte) 0x63 , (byte) 0xE4 , (byte) 0x77 ,

42 (byte) 0x05 , (byte) 0x89 , (byte) 0xEF , (byte) 0x6A , (byte) 0xA2 ,

43 (byte) 0x1E , (byte) 0x7F , (byte) 0x5F , (byte) 0x2F , (byte) 0xF3 ,

443

C.11 Implementation Helper Classes

44 (byte) 0x81 , (byte) 0xB5 , (byte) 0x39 , (byte) 0xCC, (byte) 0xE3 ,

45 (byte) 0x40 , (byte) 0x9D , (byte) 0x13 , (byte) 0xCD, (byte) 0x56 ,

46 (byte) 0x6A , (byte) 0xFB, (byte) 0xB4 , (byte) 0x8D , (byte) 0x6C ,

47 (byte) 0x01 , (byte) 0x91 , (byte) 0x81 , (byte) 0xE1 , (byte) 0xBC,

48 (byte) 0xFE , (byte) 0x94 , (byte) 0xB3 , (byte) 0x02 , (byte) 0x69 ,

49 (byte) 0xED, (byte) 0xFE , (byte) 0x72 , (byte) 0xFE , (byte) 0x9B ,

50 (byte) 0x6A , (byte) 0xA4 , (byte) 0xBD, (byte) 0x7B , (byte) 0x5A ,

51 (byte) 0x0F , (byte) 0x1C , (byte) 0x71 , (byte) 0xCF, (byte) 0xFF ,

52 (byte) 0x4C , (byte) 0x19 , (byte) 0xC4 , (byte) 0x18 , (byte) 0xE1 ,

53 (byte) 0xF6 , (byte) 0xEC, (byte) 0x01 , (byte) 0x79 , (byte) 0x81 ,

54 (byte) 0xBC, (byte) 0x08 , (byte) 0x7F , (byte) 0x2A , (byte) 0x70 ,

55 (byte) 0x65 , (byte) 0xB3 , (byte) 0x84 , (byte) 0xB8 , (byte) 0x90 ,

56 (byte) 0xD3 , (byte) 0x19 , (byte) 0x1F , (byte) 0x2B , (byte) 0xFA} ;

57 public byte [] dhModulus = {(byte) 0xAD,

58 (byte) 0x10 , (byte) 0x7E , (byte) 0x1E , (byte) 0x91 , (byte) 0x23 ,

59 (byte) 0xA9 , (byte) 0xD0 , (byte) 0xD6 , (byte) 0x60 , (byte) 0xFA,

60 (byte) 0xA7 , (byte) 0x95 , (byte) 0x59 , (byte) 0xC5 , (byte) 0x1F ,

61 (byte) 0xA2 , (byte) 0x0D , (byte) 0x64 , (byte) 0xE5 , (byte) 0x68 ,

62 (byte) 0x3B , (byte) 0x9F , (byte) 0xD1 , (byte) 0xB5 , (byte) 0x4B ,

63 (byte) 0x15 , (byte) 0x97 , (byte) 0xB6 , (byte) 0x1D , (byte) 0x0A ,

64 (byte) 0x75 , (byte) 0xE6 , (byte) 0xFA, (byte) 0x14 , (byte) 0x1D ,

65 (byte) 0xF9 , (byte) 0x5A , (byte) 0x56 , (byte) 0xDB, (byte) 0xAF,

66 (byte) 0x9A , (byte) 0x3C , (byte) 0x40 , (byte) 0x7B , (byte) 0xA1 ,

67 (byte) 0xDF, (byte) 0x15 , (byte) 0xEB, (byte) 0x3D , (byte) 0x68 ,

68 (byte) 0x8A , (byte) 0x30 , (byte) 0x9C , (byte) 0x18 , (byte) 0x0E ,

69 (byte) 0x1D , (byte) 0xE6 , (byte) 0xB8 , (byte) 0x5A , (byte) 0x12 ,

70 (byte) 0x74 , (byte) 0xA0 , (byte) 0xA6 , (byte) 0x6D , (byte) 0x3F ,

71 (byte) 0x81 , (byte) 0x52 , (byte) 0xAD, (byte) 0x6A , (byte) 0xC2 ,

72 (byte) 0x12 , (byte) 0x90 , (byte) 0x37 , (byte) 0xC9 , (byte) 0xED,

73 (byte) 0xEF , (byte) 0xDA, (byte) 0x4D , (byte) 0xF8 , (byte) 0xD9 ,

74 (byte) 0x1E , (byte) 0x8F , (byte) 0xEF , (byte) 0x55 , (byte) 0xB7 ,

75 (byte) 0x39 , (byte) 0x4B , (byte) 0x7A , (byte) 0xD5 , (byte) 0xB7 ,

76 (byte) 0xD0 , (byte) 0xB6 , (byte) 0xC1 , (byte) 0x22 , (byte) 0x07 ,

77 (byte) 0xC9 , (byte) 0xF9 , (byte) 0x8D , (byte) 0x11 , (byte) 0xED,

78 (byte) 0x34 , (byte) 0xDB, (byte) 0xF6 , (byte) 0xC6 , (byte) 0xBA,

79 (byte) 0x0B , (byte) 0x2C , (byte) 0x8B , (byte) 0xBC, (byte) 0x27 ,

80 (byte) 0xBE, (byte) 0x6A , (byte) 0x00 , (byte) 0xE0 , (byte) 0xA0 ,

81 (byte) 0xB9 , (byte) 0xC4 , (byte) 0x97 , (byte) 0x08 , (byte) 0xB3 ,

82 (byte) 0xBF, (byte) 0x8A , (byte) 0x31 , (byte) 0x70 , (byte) 0x91 ,

83 (byte) 0x88 , (byte) 0x36 , (byte) 0x81 , (byte) 0x28 , (byte) 0x61 ,

84 (byte) 0x30 , (byte) 0xBC, (byte) 0x89 , (byte) 0x85 , (byte) 0xDB,

85 (byte) 0x16 , (byte) 0x02 , (byte) 0xE7 , (byte) 0x14 , (byte) 0x41 ,

86 (byte) 0x5D , (byte) 0x93 , (byte) 0x30 , (byte) 0x27 , (byte) 0x82 ,

87 (byte) 0x73 , (byte) 0xC7 , (byte) 0xDE, (byte) 0x31 , (byte) 0xEF ,

88 (byte) 0xDC, (byte) 0x73 , (byte) 0x10 , (byte) 0xF7 , (byte) 0x12 ,

89 (byte) 0x1F , (byte) 0xD5 , (byte) 0xA0 , (byte) 0x74 , (byte) 0x15 ,

90 (byte) 0x98 , (byte) 0x7D , (byte) 0x9A , (byte) 0xDC, (byte) 0x0A ,

91 (byte) 0x48 , (byte) 0x6D , (byte) 0xCD, (byte) 0xF9 , (byte) 0x3A ,

92 (byte) 0xCC, (byte) 0x44 , (byte) 0x32 , (byte) 0x83 , (byte) 0x87 ,

93 (byte) 0x31 , (byte) 0x5D , (byte) 0x75 , (byte) 0xE1 , (byte) 0x98 ,

94 (byte) 0xC6 , (byte) 0x41 , (byte) 0xA4 , (byte) 0x80 , (byte) 0xCD,

444

C.11 Implementation Helper Classes

95 (byte) 0x86 , (byte) 0xA1 , (byte) 0xB9 , (byte) 0xE5 , (byte) 0x87 ,

96 (byte) 0xE8 , (byte) 0xBE, (byte) 0x60 , (byte) 0xE6 , (byte) 0x9C ,

97 (byte) 0xC9 , (byte) 0x28 , (byte) 0xB2 , (byte) 0xB9 , (byte) 0xC5 ,

98 (byte) 0x21 , (byte) 0x72 , (byte) 0xE4 , (byte) 0x13 , (byte) 0x04 ,

99 (byte) 0x2E , (byte) 0x9B , (byte) 0x23 , (byte) 0xF1 , (byte) 0x0B ,

100 (byte) 0x0E , (byte) 0x16 , (byte) 0xE7 , (byte) 0x97 , (byte) 0x63 ,

101 (byte) 0xC9 , (byte) 0xB5 , (byte) 0x3D , (byte) 0xCF, (byte) 0x4B ,

102 (byte) 0xA8 , (byte) 0x0A , (byte) 0x29 , (byte) 0xE3 , (byte) 0xFB,

103 (byte) 0x73 , (byte) 0xC1 , (byte) 0x6B , (byte) 0x8E , (byte) 0x75 ,

104 (byte) 0xB9 , (byte) 0x7E , (byte) 0xF3 , (byte) 0x63 , (byte) 0xE2 ,

105 (byte) 0xFF , (byte) 0xA3 , (byte) 0x1F , (byte) 0x71 , (byte) 0xCF,

106 (byte) 0x9D , (byte) 0xE5 , (byte) 0x38 , (byte) 0x4E , (byte) 0x71 ,

107 (byte) 0xB8 , (byte) 0x1C , (byte) 0x0A , (byte) 0xC4 , (byte) 0xDF,

108 (byte) 0xFE , (byte) 0x0C , (byte) 0x10 , (byte) 0xE6 , (byte) 0x4F } ;

109 }

C.11.4 SHA256 Pseudorandom Number Generator

The Pseudorandom Number Generator (PRNG) algorithm used during the attestation

mechanism is based on the SHA 256 and its implementation is listed as below:

1 package prngSHA256 ;

2

3 import javacard . framework . Applet ;

4 import javacard . framework . ISO7816 ;

5 import javacard . framework . ISOException ;

6 import javacard . framework . JCSystem ;

7 import javacard . framework . Ut i l ;

8 import javacard . s e c u r i t y . MessageDigest ;

9 public class PrngSHA256 extends Applet {

10 private stat ic byte [] Cyc l i cSe edF i l e = {

11 (byte) 0x49 , (byte) 0x29 , (byte) 0x8e , (byte) 0x5f , (byte) 0xd3 , (byte)

12 0x61 , (byte) 0xc9 , (byte) 0xd2 , (byte) 0x88 , (byte) 0x4c , (byte) 0xfa ,

13 (byte) 0xd5 , (byte) 0xcb , (byte) 0x9f , (byte) 0x93 , (byte) 0x91 ,

14 (byte) 0x26 , (byte) 0xba , (byte) 0x65 , (byte) 0xd0 , (byte) 0x0c ,

15 (byte) 0x7c , (byte) 0x5e , (byte) 0x74 , (byte) 0x92 , (byte) 0x00 ,

16 (byte) 0x47 , (byte) 0xa5 , (byte) 0x74 , (byte) 0x44 , (byte) 0xe1 ,

17 (byte) 0xc2 , (byte) 0x14 , (byte) 0x9e , (byte) 0 x f f , (byte) 0xe8 ,

18 (byte) 0x77 , (byte) 0x62 , (byte) 0x95 , (byte) 0x0b , (byte) 0x10 ,

19 (byte) 0x5d , (byte) 0xf8 , (byte) 0x66 , (byte) 0x12 , (byte) 0x12 ,

20 (byte) 0x79 , (byte) 0x9d , (byte) 0x83 , (byte) 0xbf , (byte) 0x74 ,

21 (byte) 0xae , (byte) 0xd2 , (byte) 0x45 , (byte) 0xf9 , (byte) 0x01 ,

22 (byte) 0x54 , (byte) 0x22 , (byte) 0xbb , (byte) 0x39 , (byte) 0xf8 ,

23 (byte) 0xf0 , (byte) 0xe2 , (byte) 0x4e , (byte) 0xec , (byte) 0x2f ,

24 (byte) 0x26 , (byte) 0x38 , (byte) 0x95 , (byte) 0x06 , (byte) 0x79 ,

25 (byte) 0x0d , (byte) 0x4c , (byte) 0xdb , (byte) 0x58 , (byte) 0x12 ,

26 (byte) 0xeb , (byte) 0xf2 , (byte) 0xee , (byte) 0x92 , (byte) 0xde ,

27 (byte) 0x9f , (byte) 0x51 , (byte) 0x8a , (byte) 0xb4 , (byte) 0x1a ,

28 (byte) 0xcb , (byte) 0x46 , (byte) 0x84 , (byte) 0x8a , (byte) 0x28 ,

29 (byte) 0xa4 , (byte) 0x15 , (byte) 0xdf , (byte) 0x21 , (byte) 0xa6 ,

30 (byte) 0xcd , (byte) 0x88 , (byte) 0xdb , (byte) 0x01 , (byte) 0x07 ,

445

C.11 Implementation Helper Classes

31 (byte) 0xb3 , (byte) 0xd8 , (byte) 0x04 , (byte) 0x9c , (byte) 0xdd ,

32 (byte) 0x55 , (byte) 0x3e , (byte) 0x4a , (byte) 0xf0 , (byte) 0x00 ,

33 (byte) 0xb9 , (byte) 0x8e , (byte) 0x85 , (byte) 0x4d , (byte) 0x36 ,

34 (byte) 0x7d , (byte) 0 xef , (byte) 0x40 , (byte) 0xa0 , (byte) 0x66 ,

35 (byte) 0x18 , (byte) 0xcb , (byte) 0x43 , (byte) 0x59 , (byte) 0xfa ,

36 (byte) 0x64 , (byte) 0x01 , (byte) 0xda , (byte) 0x34 , (byte) 0x7d ,

37 (byte) 0xcd , (byte) 0x40 , (byte) 0x14 , (byte) 0xc4 , (byte) 0xd6 ,

38 (byte) 0x50 , (byte) 0x05 , (byte) 0x52 , (byte) 0x5e , (byte) 0x67 ,

39 (byte) 0xec , (byte) 0xa6 , (byte) 0 xef , (byte) 0x34 , (byte) 0x71 ,

40 (byte) 0xb3 , (byte) 0x9a , (byte) 0x87 , (byte) 0xc3 , (byte) 0xa9 ,

41 (byte) 0xe9 , (byte) 0xc7 , (byte) 0x0b , (byte) 0xb6 , (byte) 0xfd ,

42 (byte) 0xbc , (byte) 0xb5 , (byte) 0x8d , (byte) 0x21 , (byte) 0xde ,

43 (byte) 0x44 , (byte) 0x27 , (byte) 0xf7 , (byte) 0xd0 , (byte) 0xd2 ,

44 (byte) 0x67 , (byte) 0xac , (byte) 0x00 , (byte) 0xbb , (byte) 0x2b ,

45 (byte) 0xa4 , (byte) 0x1a , (byte) 0x7f , (byte) 0x82 , (byte) 0x85 ,

46 (byte) 0x23 , (byte) 0x5f , (byte) 0x13 , (byte) 0x27 , (byte) 0x0d ,

47 (byte) 0x78 , (byte) 0x59 , (byte) 0xab , (byte) 0xa5 , (byte) 0xd0 ,

48 (byte) 0x96 , (byte) 0x1a , (byte) 0x11 , (byte) 0x8f , (byte) 0x6e ,

49 (byte) 0x87 , (byte) 0x33 , (byte) 0x0f , (byte) 0x20 , (byte) 0xec ,

50 (byte) 0x61 , (byte) 0x31 , (byte) 0x79 , (byte) 0xd9 , (byte) 0x36 ,

51 (byte) 0x1c , (byte) 0xa6 , (byte) 0xd7 , (byte) 0x2a , (byte) 0xdc ,

52 (byte) 0x3a , (byte) 0x9d , (byte) 0xdb , (byte) 0xf5 , (byte) 0x77 ,

53 (byte) 0x95 , (byte) 0x79 , (byte) 0xdf , (byte) 0xe4 , (byte) 0x0b ,

54 (byte) 0x7d , (byte) 0xbc , (byte) 0xd0 , (byte) 0xc5 , (byte) 0xe8 ,

55 (byte) 0x29 , (byte) 0x22 , (byte) 0x8a , (byte) 0x52 , (byte) 0xf1 ,

56 (byte) 0x02 , (byte) 0x9e , (byte) 0x06 , (byte) 0x3b , (byte) 0x73 ,

57 (byte) 0x28 , (byte) 0xdd , (byte) 0xbc , (byte) 0xe7 , (byte) 0x7b ,

58 (byte) 0xd3 , (byte) 0xb6 , (byte) 0xc2 , (byte) 0x25 , (byte) 0x33 ,

59 (byte) 0x14 , (byte) 0xdb , (byte) 0x49 , (byte) 0x06 , (byte) 0xbe ,

60 (byte) 0xd8 , (byte) 0x38 , (byte) 0 x f f , (byte) 0x59 , (byte) 0 xfe ,

61 (byte) 0x7e , (byte) 0x5b , (byte) 0x9f , (byte) 0x87 , (byte) 0x0b ,

62 (byte) 0x05 , (byte) 0x0a , (byte) 0xcd , (byte) 0x21 , (byte) 0xfb ,

63 (byte) 0x58 , (byte) 0xf6 , (byte) 0x57 , (byte) 0xb0 , (byte) 0x12 ,

64 (byte) 0xc2 , (byte) 0xe8 , (byte) 0x8b , (byte) 0x87 , (byte) 0x42 ,

65 (byte) 0xf6 , (byte) 0x03 , (byte) 0x43 , (byte) 0x4c , (byte) 0x96 ,

66 (byte) 0x3a , (byte) 0x37 , (byte) 0xac , (byte) 0x06 , (byte) 0x3a ,

67 (byte) 0x6a , (byte) 0xf0 , (byte) 0x92 , (byte) 0xf2 , (byte) 0x48 ,

68 (byte) 0x77 , (byte) 0x0c , (byte) 0xe4 , (byte) 0x1f , (byte) 0x8c ,

69 (byte) 0 x f f , (byte) 0x58 , (byte) 0x70 , (byte) 0x00 , (byte) 0x1b ,

70 (byte) 0xb6 , (byte) 0x0d , (byte) 0x65 , (byte) 0x2f , (byte) 0x53 ,

71 (byte) 0xcd , (byte) 0xb6 , (byte) 0xc4 , (byte) 0x2f , (byte) 0x63 ,

72 (byte) 0x3f , (byte) 0x5f , (byte) 0x47 , (byte) 0x63 , (byte) 0x92 ,

73 (byte) 0xce , (byte) 0x7b , (byte) 0x59 , (byte) 0x01 , (byte) 0x8b ,

74 (byte) 0x9a , (byte) 0xe8 , (byte) 0xfd , (byte) 0xe6 , (byte) 0x61 ,

75 (byte) 0xb2 , (byte) 0x88 , (byte) 0x9c , (byte) 0x4e , (byte) 0x18 ,

76 (byte) 0xd4 , (byte) 0xca , (byte) 0xbd , (byte) 0x02 , (byte) 0x3e ,

77 (byte) 0x06 , (byte) 0xd4 , (byte) 0xa7 , (byte) 0x81 , (byte) 0xae ,

78 (byte) 0x11 , (byte) 0x9c , (byte) 0x6c , (byte) 0xae , (byte) 0x97 ,

79 (byte) 0xd5 , (byte) 0x55 , (byte) 0x1c , (byte) 0x16 , (byte) 0x74 ,

80 (byte) 0x67 , (byte) 0x44 , (byte) 0xf9 , (byte) 0xfd , (byte) 0xd6 ,

81 (byte) 0xad , (byte) 0 x f f , (byte) 0x35 , (byte) 0xcc , (byte) 0x69 ,

446

C.11 Implementation Helper Classes

82 (byte) 0x14 , (byte) 0xc9 , (byte) 0xe6 , (byte) 0x44 , (byte) 0x4b ,

83 (byte) 0x10 , (byte) 0 x f f , (byte) 0x98 , (byte) 0x8f , (byte) 0x60 ,

84 (byte) 0x02 , (byte) 0x4a , (byte) 0x44 , (byte) 0x60 , (byte) 0x5c ,

85 (byte) 0x2b , (byte) 0xe5 , (byte) 0x2e , (byte) 0x0a , (byte) 0x49 ,

86 (byte) 0x98 , (byte) 0x5e , (byte) 0x75 , (byte) 0x6a , (byte) 0xde ,

87 (byte) 0xd9 , (byte) 0x42 , (byte) 0xda , (byte) 0x2f , (byte) 0xbd ,

88 (byte) 0xcd , (byte) 0xfb , (byte) 0xbd , (byte) 0x03 , (byte) 0x00 ,

89 (byte) 0x4b , (byte) 0xa9 , (byte) 0x40 , (byte) 0x4a , (byte) 0x5a ,

90 (byte) 0xa7 , (byte) 0x98 , (byte) 0x77 , (byte) 0xbb , (byte) 0x0a ,

91 (byte) 0x28 , (byte) 0xec , (byte) 0x14 , (byte) 0x5c , (byte) 0xa6 ,

92 (byte) 0x47 , (byte) 0xd0 , (byte) 0xf4 , (byte) 0x42 , (byte) 0xb5 ,

93 (byte) 0x81 , (byte) 0x20 , (byte) 0x79 , (byte) 0 x f f , (byte) 0x2b ,

94 (byte) 0xe7 , (byte) 0xc6 , (byte) 0x95 , (byte) 0x96 , (byte) 0xe4 ,

95 (byte) 0x45 , (byte) 0xf1 , (byte) 0x10 , (byte) 0xe0 , (byte) 0x12 ,

96 (byte) 0 xcf , (byte) 0xb5 , (byte) 0x3a , (byte) 0x99 , (byte) 0x66 ,

97 (byte) 0x8c , (byte) 0x6b , (byte) 0xb6 , (byte) 0x7c , (byte) 0xab ,

98 (byte) 0x38 , (byte) 0x63 , (byte) 0x72 , (byte) 0x22 , (byte) 0x14 ,

99 (byte) 0x2d , (byte) 0x4c , (byte) 0x87 , (byte) 0x86 , (byte) 0x89 ,

100 (byte) 0x8d , (byte) 0xf5 , (byte) 0x53 , (byte) 0xa1 , (byte) 0x02 ,

101 (byte) 0x6b , (byte) 0xd4 , (byte) 0xa3 , (byte) 0xce , (byte) 0x7b ,

102 (byte) 0x56 , (byte) 0x06 , (byte) 0x19 , (byte) 0x0b , (byte) 0x4f ,

103 (byte) 0x74 , (byte) 0x03 , (byte) 0x8d , (byte) 0x51 , (byte) 0x7a ,

104 (byte) 0xb8 , (byte) 0xe0 , (byte) 0xdc , (byte) 0x2a , (byte) 0x26 ,

105 (byte) 0xdd , (byte) 0 x f f , (byte) 0x3e , (byte) 0x23 , (byte) 0xe5 ,

106 (byte) 0x9b , (byte) 0x2f , (byte) 0xc8 , (byte) 0x6c , (byte) 0x25 ,

107 (byte) 0x60 , (byte) 0xd7 , (byte) 0x33 , (byte) 0x95 , (byte) 0xca ,

108 (byte) 0xaf , (byte) 0x0c , (byte) 0x7f , (byte) 0x3f , (byte) 0x95 ,

109 (byte) 0x09 , (byte) 0xe8 , (byte) 0xd5 , (byte) 0x64 , (byte) 0x8c ,

110 (byte) 0x82 , (byte) 0x12 , (byte) 0x7e , (byte) 0x68 , (byte) 0x0e ,

111 (byte) 0xb5 , (byte) 0xd0 , (byte) 0x15 , (byte) 0x85 , (byte) 0x72 ,

112 (byte) 0x6b , (byte) 0x3c , (byte) 0xc6 , (byte) 0x17 , (byte) 0x7a ,

113 (byte) 0x3c , (byte) 0x4a , (byte) 0xba , (byte) 0x71 , (byte) 0xa4 ,

114 (byte) 0x30 , (byte) 0x26 , (byte) 0 xfe , (byte) 0x1c , (byte) 0x21 ,

115 (byte) 0x44 , (byte) 0x46 , (byte) 0xbc , (byte) 0x90 , (byte) 0x15 ,

116 (byte) 0x77 , (byte) 0x22 , (byte) 0x54 , (byte) 0x60 , (byte) 0x02 ,

117 (byte) 0x81 , (byte) 0xe2 , (byte) 0x5b , (byte) 0x98 , (byte) 0x9f ,

118 (byte) 0 xfe , (byte) 0x18 , (byte) 0xcd , (byte) 0x3d , (byte) 0x72 ,

119 (byte) 0xc0 , (byte) 0x67 , (byte) 0x7b , (byte) 0x7c , (byte) 0x26 ,

120 (byte) 0x09 , (byte) 0x45 , (byte) 0xa5 , (byte) 0x2c , (byte) 0x5f ,

121 (byte) 0x63 , (byte) 0x9f , (byte) 0x2f , (byte) 0xc3 , (byte) 0x05 ,

122 (byte) 0x07 , (byte) 0xbe

123 } ;

124 private f ina l short FILE_SIZE = (short) 540 ;

125 private f ina l byte RECORD_SIZE = (byte) 54 ;

126 private stat ic short Cycl icRecordReadPointer = 54 ;

127 private stat ic short Cycl icRecordWritePointer = 0 ;

128 f ina l stat ic byte CLA = (byte) 0xB0 ;

129 f ina l stat ic byte GETRND = (byte) 0x40 ;

130 f ina l stat ic short SW_CLASSNOTSUPPORTED = 0x6320 ;

131 f ina l stat ic short SW_ERROR_INS = 0x6300 ;

132 byte [] Bu f f e r = JCSystem . makeTransientByteArray ((short) 32 ,

447

C.11 Implementation Helper Classes

133 JCSystem .CLEAR_ON_DESELECT) ;

134 MessageDigest SHA256 ;

135 void Xor (byte [] inputBuf fer , byte cond i t i on) {

136 i f (cond i t i on == 1) {

137 for (short i = 1 , j = 0 ; i <= RECORD_SIZE + 1 ; i++) {

138 i nputBuf f e r [i] = (byte) (inputBuf f e r [i] ^ Buf f e r [j]) ;

139 i f (++j >= (short) 32) {

140 j = 0 ;

141 }

142 }

143 } else {

144 for (short i = 1 ; i <= RECORD_SIZE; i++) {

145 i nputBuf f e r [(short) i] = (byte) (inputBuf f e r [(short) i] ^

146 i nputBuf f e r [(byte) (RECORD_SIZE)]) ;

147 }

148 }

149 }

150 private void Cycl icSeedFi leRead (byte [] r eadBuf f e r) {

151 i f (Cycl icRecordReadPointer >= FILE_SIZE) {

152 Cycl icRecordReadPointer = 0 ;

153 } Ut i l . arrayCopyNonAtomic (Cyc l i cSeedF i l e , Cycl icRecordReadPointer ,

154 readBuf fer , (short) 1 , (short)

155 (RECORD_SIZE + 1)) ;

156 Cycl icRecordReadPointer = (short) ((short) Cycl icRecordReadPointer

157 + RECORD_SIZE) ;

158 }

159 private void Cyc l i cSeedFi l eWr i te (byte [] w r i t eBu f f e r) {

160 i f (Cycl icRecordWritePointer >= FILE_SIZE) {

161 Cycl icRecordWritePointer = 0 ;

162 } Ut i l . arrayCopyNonAtomic (Cyc l i cSeedF i l e ,

163 Cycl icRecordWritePointer , wr i t eBuf f e r ,

164 (short) (RECORD_SIZE + 1) , RECORD_SIZE) ;

165 Xor (wr i t eBuf f e r , (byte) 0) ;

166 Ut i l . arrayCopyNonAtomic (wr i t eBuf f e r , (byte) 1 , Cyc l i cSeedFi l e ,

167 Cycl icRecordWritePointer , RECORD_SIZE) ;

168 Cycl icRecordWritePointer = (short) ((short)

169 Cycl icRecordWritePointer +

170 RECORD_SIZE) ;

171 }

172 private void Adjuster (inputBuf f e r) {

173 for (short i = 0 ; i < 16 ; i++) {

174 i nputBuf f e r [(short) i] = (byte) (Buf f e r [(short) i] ^ Buf f e r [(short) (31

175 − i)]) ;

176 }

177 }

178

179

180 private PrngSHA256(byte bArray [] , short bOffset , byte bLength) {

181 SHA256 = MessageDigest . g e t In s tance (MessageDigest .ALG_SHA_256,

182 fa l se) ;

183 r e g i s t e r () ;

448

C.11 Implementation Helper Classes

184 }

185 public stat ic void i n s t a l l (byte bArray [] , short bOffset , byte

186 bLength) {

187 new PrngSHA256(bArray , bOffset , bLength) ;

188 }

189

190 byte [] generateMACPrng () {

191 apduBuffer [0] = (byte) 0x02 ;

192 Cycl icSeedFi leRead (apduBuffer) ;

193 SHA256 . doFinal (apduBuffer , (short) 0 , (short) (RECORD_SIZE + 1) ,

194 Buffer , (short) 0) ;

195 Xor (apduBuffer , (byte) 1) ;

196 apduBuffer [0] = (byte) 0x03 ;

197 SHA256 . doFinal (apduBuffer , (short) 0 , (short) (RECORD_SIZE + 1) ,

198 Buffer , (short) 0) ;

199 Xor (apduBuffer , (byte) 1) ;

200 Cyc l i cSeedFi l eWr i te (apduBuffer) ;

201 Adjuster () ;

202 }

203 byte [] generateMACPrng (byte [] InputBuf f e r) {

204 Cycl icSeedFi leRead (InputBuf f e r) ;

205 SHA256 . doFinal (inputBuf fer , (short) 0 , (short) (RECORD_SIZE + 1) ,

206 Buffer , (short) 0) ;

207 Adjuster (inputBuf fer , Bu f f e r) ;

208 }

209

210 byte [] generateMACPrng (byte [] InputBuf fer , byte [] OutputBuffer) {

211 Cycl icSeedFi leRead (InputBuf f e r) ;

212 SHA256 . doFinal (inputBuf fer , (short) 0 , (short) (RECORD_SIZE + 1) ,

213 Buffer , (short) 0) ;

214 Adjuster (OutputBuffer) ;

215 }

216 }

449

Bibliography

[1] �GlobalPlatform Card Security Requirement Speci�cation 1.0,� Online, Redwood

City, USA, Speci�cation, May 2003. Online Available: http://www.globalplatform.

org/speci�cationscard.asp

[2] (Visited December, 2009) History of Plastic Cards in the UK. Online.

The UK Cards Association. London, United Kingdom. Online Available:

http://www.theukcardsassociation.org.uk/history_of_cards/

[3] (Visited March, 2011) History of the Card Payments System. Online. Master Card

Worldwide. Online Available: http://www.mastercard.com/us/company/en/docs/

history%20of%20payments.pdf

[4] J. Wonglimpiyarat, Strategies of Competition in the Bank Card Business: Innovation

Management in a Complex Economic Environment. Brighton, United Kingdom:

Sussex Academic Press, 2005.

[5] W. Rankl and W. E�ng, Smart Card Handbook, 3rd ed. New York, NY, USA: John

Wiley & Sons, Inc., 2003.

[6] K. Mayes and K. Markantonakis, Eds., Smart Cards, Tokens, Security and Applica-

tions. Springer, 2008.

[7] ISO/IEC 7813: Information Technology - Identi�cation Cards - Financial

Transaction Cards, Online, International Organization for Standardization (ISO)

Std., 2006. Online Available: http://www.iso.org/iso/iso_catalogue/catalogue_ics/

catalogue_detail_ics.htm?csnumber=43317

[8] W. C. Barker, D. Howard, T. Grance, and L. Eyuboglu, �NIST IR 7056: Card

Technology Developments and Gap Analysis Interagency Report,� Electronic,

Gaithersburg, Maryland, United Kingdom, Recommedation, March 2004. Online

Available: http://csrc.nist.gov/publications/nistir/nistir-7056.pdf

[9] EMV 4.2 : Book 1 - Application Independent ICC to Terminal Interface

Requirements, Book 2 - Security and Key Management, Book 3 - Application

Speci�cation, Book 4 - Cardholder, Attendant, and Acquirer Interface Requirements,

Online, EMVCo Speci�cation 4.2, May 2008. Online Available: http://www.emvco.

com/speci�cations.aspx?id=155

[10] R. N. Akram, K. Markantonakis, and K. Mayes, �Application Management

Framework in User Centric Smart Card Ownership Model,� in The 10th

International Workshop on Information Security Applications (WISA09), H. Y.

YOUM and M. Yung, Eds., vol. 5932/2009. Busan, Korea: Springer,

450

http://www.globalplatform.org/specificationscard.asp
http://www.globalplatform.org/specificationscard.asp
http://www.theukcardsassociation.org.uk/history_of_cards/
http://www.mastercard.com/us/company/en/docs/history%20of%20payments.pdf
http://www.mastercard.com/us/company/en/docs/history%20of%20payments.pdf
http://www.iso.org/iso/iso_catalogue/catalogue_ics/catalogue_detail_ics.htm?csnumber=43317
http://www.iso.org/iso/iso_catalogue/catalogue_ics/catalogue_detail_ics.htm?csnumber=43317
http://csrc.nist.gov/publications/nistir/nistir-7056.pdf
http://www.emvco.com/specifications.aspx?id=155
http://www.emvco.com/specifications.aspx?id=155

BIBLIOGRAPHY

August 2009, pp. 20�35. Online Available: http://www.springerlink.com/content/

f7027021h1067261/fulltext.pdf

[11] D. Sauveron, �Multiapplication Smart Card: Towards an Open Smart Card?� Inf.

Secur. Tech. Rep., vol. 14, no. 2, pp. 70�78, 2009.

[12] W. Atkins, The Smart Card Report, 8th ed. Elsevier, January 2004.

[13] E. Brack, �Déterminants du Développement du Porte-Monnaie Électronique:

Analyse Théorique et Empirique: Exemple Moneo, English Title: Electronic

Wallet Development Determinants: Theoretical and Empirical Analysis: Moneo,�

University Library of Munich, Germany, MPRA Paper 23453, 2003. Online

Available: http://ideas.repec.org/p/pra/mprapa/23453.html

[14] D. Deville, A. Galland, G. Grimaud, and S. Jean, �Smart Card Operating

Systems: Past, Present and Future,� in In Proceedings of the 5 th

NORDU/USENIX Conference, 2003. Online Available: http://www.gemplus.com/

smart/rd/publications/pdf/DGGJ03os.pdf

[15] K. Markantonakis, �The Case for a Secure Multi-Application Smart Card Operating

System,� in ISW '97: Proceedings of the First International Workshop on

Information Security. London, UK: Springer-Verlag, 1998, pp. 188�197. Online

Available: http://www.springerlink.com/content/w62286334532m71n/fulltext.pdf

[16] Java Card Platform Speci�cation: Classic Edition; Application Programming

Interface, Runtime Environment Speci�cation, Virtual Machine Speci�cation,

Connected Edition; Runtime Environment Speci�cation, Java Servlet Speci�cation,

Application Programming Interface, Virtual Machine Speci�cation, Sample Structure

of Application Modules, Oracle Std. Version 3.0.1, May 2009. Online Available:

http://java.sun.com/javacard/3.0.1/specs.jsp

[17] ISO/IEC 18092: Near Field Communication - Interface and Protocol (NFCIP-1),

International Organization for Standardization (ISO) Std., April 2004.

[18] Trusted Module Speci�cation 1.2: Part 1- Design Principles, Part 2- Structures

of the TPM, Part 3- Commands, Trusted Computing Group Std., Rev. 103, July

2007. Online Available: http://www.trustedcomputinggroup.org/resources/tpm_

speci�cation_version_12_revision_103_part_1__3

[19] �TCG Mobile Trusted Module Speci�cation,� Trusted Computing Group (TCG),

Speci�cation Ver 1.0, June 2008.

[20] G. E. Suh, D. Clarke, B. Gassend, M. van Dijk, and S. Devadas, �AEGIS: Architec-

ture for Tamper-Evident and Tamper-Resistant Processing,� in ICS '03: Proceedings

of the 17th annual international conference on Supercomputing. New York, NY,

USA: ACM, 2003, pp. 160�171.

[21] �ARM Security Technology: Building a Secure System using TrustZone Technology,�

ARM, White Paper PRD29-GENC-009492C, 2009.

[22] �M-Shield Mobile Security Technology: Making Wireless Secure,� Texas Instruments,

Whilte Paper, February 2008. Online Available: http://focus.ti.com/pdfs/wtbu/ti_

mshield_whitepaper.pdf

451

http://www.springerlink.com/content/f7027021h1067261/fulltext.pdf
http://www.springerlink.com/content/f7027021h1067261/fulltext.pdf
http://ideas.repec.org/p/pra/mprapa/23453.html
http://www.gemplus.com/smart/rd/publications/pdf/DGGJ03os.pdf
http://www.gemplus.com/smart/rd/publications/pdf/DGGJ03os.pdf
http://www.springerlink.com/content/w62286334532m71n/fulltext.pdf
http://java.sun.com/javacard/3.0.1/specs.jsp
http://www.trustedcomputinggroup.org/resources/tpm_specification_version_12_revision_103_part_1__3
http://www.trustedcomputinggroup.org/resources/tpm_specification_version_12_revision_103_part_1__3
http://focus.ti.com/pdfs/wtbu/ti_mshield_whitepaper.pdf
http://focus.ti.com/pdfs/wtbu/ti_mshield_whitepaper.pdf

BIBLIOGRAPHY

[23] �GlobalPlatform Device Technology: TEE System Architecture,� GlobalPlatform,

Speci�cation Version 0.4, October 2011.

[24] ISO/IEC 7816-5, "Information Technology - Identi�cation cards - Integrated Cir-

cuit(s) cards with contacts - Part 5: Numbering systems and registration procedure for

application identi�ers, International Organization for Standardization, International

Organization for Standardization (ISO) Std., 2004. Online Available: http://www.

iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=34259

[25] ISO/IEC 14443-1: Identi�cation Cards - Contactless Integrated Circuit(s) Cards

- Proximity Cards, Part1: Physical Characteristics, Part 2: Radio Frequency

Power and Signal Interface, Part3: Initialization and Anticollision, Part 4:

Transmission Protocol, International Organization for Standardization (ISO) Std.,

Rev. 2nd Edition, June 2008. Online Available: http://www.iso.org/iso/iso_

catalogue/catalogue_tc/catalogue_detail.htm?csnumber=28728

[26] ETSI. Digital Cellular Telecommunications System, European Telecommunications

Standards Institution (ETSI) Std. Online Available: http://www.etsi.org/website/

Technologies/gsm.aspx

[27] ITSO Technical Speci�cation 1000: Interoperable Public Transport Ticketing Using

Contactless Smart Customer Media, Online, Integrated Transport Smartcard

Organisation Std., Rev. V2.1.4, February 2010. Online Available: http:

//www.itso.org.uk/page49/ITSO%20Speci�cation

[28] Java Card Platform Speci�cation; Application Programming Interface, Runtime

Environment Speci�cation, Virtual Machine Speci�cation, Sun Microsystem Inc Std.

Version 2.2.2, March 2006. Online Available: http://java.sun.com/javacard/specs.

html

[29] Multos: The Multos Speci�cation,, Online, Std. Online Available: http:

//www.multos.com/

[30] GlobalPlatform: GlobalPlatform Card Speci�cation, Version 2.2,, GlobalPlat-

form Std., March 2006. Online Available: http://www.globalplatform.org/

speci�cationscard.asp

[31] R. N. Akram, K. Markantonakis, and K. Mayes, �User Centric Security Model for

Tamper-Resistant Devices,� in the 8th IEEE International Conference on e-Business

Engineering (ICEBE 2011), J. Li and J.-Y. Chung, Eds. Beijing, China: IEEE

Computer Science, October 2011.

[32] R. N. Akram, K. Markantonakis, and K. Mayes, �A Paradigm Shift in Smart Card

Ownership Model,� in Proceedings of the 2010 International Conference on Compu-

tational Science and Its Applications (ICCSA 2010), B. O. Apduhan, O. Gervasi,

A. Iglesias, D. Taniar, and M. Gavrilova, Eds. Fukuoka, Japan: IEEE Computer

Society, March 2010, pp. 191�200.

[33] A. M. Brandenburger and B. J. Nalebu�, Co-Opetition : A Revolution Mindset

That Combines Competition and Cooperation : The Game Theory Strategy That's

Changing the Game of Business, 1st ed. Doubleday Business, Dec. 1997. Online

452

http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=34259
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=34259
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=28728
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=28728
http://www.etsi.org/website/Technologies/gsm.aspx
http://www.etsi.org/website/Technologies/gsm.aspx
http://www.itso.org.uk/page49/ITSO%20Specification
http://www.itso.org.uk/page49/ITSO%20Specification
http://java.sun.com/javacard/specs.html
http://java.sun.com/javacard/specs.html
http://www.multos.com/
http://www.multos.com/
http://www.globalplatform.org/specificationscard.asp
http://www.globalplatform.org/specificationscard.asp

BIBLIOGRAPHY

Available: http://www.worldcat.org/isbn/0385479506

[34] M' Chirgui, Zouhaier, �The Economics of the Smart Card Industry: Towards

Coopetitive Strategies,� Economics of Innovation and New Technology, vol. 14,

no. 6, pp. 455�477, 2005. Online Available: http://www.informaworld.com/openurl?

genre=article&doi=10.1080/1043859042000304070&magic=crossref

[35] Coopetition An Introduction to the Subject and an Agenda for Research, vol. 37, no. 2,

August 2007.

[36] �Trusted Computing Group, TCG Speci�cation Architecture Overview,� The

Trusted Computing Group (TCG), Beaverton, Oregon, USA, revision 1.4, August

2007. Online Available: http://www.trustedcomputinggroup.org/�les/resource_

�les/AC652DE1-1D09-3519-ADA026A0C05CFAC2/TCG_1_4_Architecture_

Overview.pdf

[37] H. Kopetz, �Internet of Things,� in Real-Time Systems, ser. Real-Time Systems

Series. Springer US, 2011, pp. 307�323.

[38] M. E. Porter, �How Competitive Forces Shape Strategy,� Harvard Business Review,

vol. 57, no. 2, 1979. Online Available: http://search.ebscohost.com.ezproxy.libraries.

claremont.edu/login.aspx?direct=true&db=buh&AN=3867673&site=ehost-live

[39] N. Mallat, �Exploring Consumer Adoption of Mobile Payments - A Qualitative

Study,� J. Strateg. Inf. Syst., vol. 16, pp. 413�432, December 2007. Online Available:

http://portal.acm.org/citation.cfm?id=1321790.1322013

[40] J. Laugesen and Y. Yuan, �What Factors Contributed to the Success of Apple's

iPhone?� in Proceedings of the 2010 Ninth International Conference on Mobile Busi-

ness / 2010 Ninth Global Mobility Roundtable, ser. ICMB-GMR '10. Washington,

DC, USA: IEEE Computer Society, 2010, pp. 91�99.

[41] (Visited January, 2011) NFC Trials, Pilots, Tests and Live Services around the World.

Online. NFC World. Online Available: http://www.near�eldcommunicationsworld.

com/list-of-nfc-trials-pilots-tests-and-commercial-services-around-the-world/

[42] �Pay-Buy-Mobile: Business Opportunity Analysis,� GSM Association, White Paper

1.0, November 2007. Online Available: http://www.gsmworld.com/documents/

gsma_nfc_tech_guide_vs1.pdf

[43] �EPC-GSMAMobile Contactless Payments Service Management Roles Requirements

and Speci�cations,� European Payments Council (EPC) and GSM Association, Tech.

Rep. EPC 220-08, October 2010.

[44] �The Role and Scope of EMVCo in Standardising the Mobile Payments

Infrastructure,� Online, EMVCo., California, USA, Tech. Rep., October 2007.

Online Available: http://www.emvco.com/download_agreement.aspx?id=385

[45] �Framework for Smart card Use in Government,� Foundation for Information Policy

Research, Consultation Response, 1999. Online Available: http://www.cl.cam.ac.

uk/~rja14/Papers/smartcards-�pr.pdf

[46] P. Girard, �Which Security Policy for Multiplication Smart Cards?� in Proceedings

of the USENIX Workshop on Smartcard Technology on USENIX Workshop on

453

http://www.worldcat.org/isbn/0385479506
http://www.informaworld.com/openurl?genre=article&doi=10.1080/1043859042000304070&magic=crossref
http://www.informaworld.com/openurl?genre=article&doi=10.1080/1043859042000304070&magic=crossref
http://www.trustedcomputinggroup.org/files/resource_files/AC652DE1-1D09-3519-ADA026A0C05CFAC2/TCG_1_4_Architecture_Overview.pdf
http://www.trustedcomputinggroup.org/files/resource_files/AC652DE1-1D09-3519-ADA026A0C05CFAC2/TCG_1_4_Architecture_Overview.pdf
http://www.trustedcomputinggroup.org/files/resource_files/AC652DE1-1D09-3519-ADA026A0C05CFAC2/TCG_1_4_Architecture_Overview.pdf
http://search.ebscohost.com.ezproxy.libraries.claremont.edu/login.aspx?direct=true&db=buh&AN=3867673&site=ehost-live
http://search.ebscohost.com.ezproxy.libraries.claremont.edu/login.aspx?direct=true&db=buh&AN=3867673&site=ehost-live
http://portal.acm.org/citation.cfm?id=1321790.1322013
http://www.nearfieldcommunicationsworld.com/list-of-nfc-trials-pilots-tests-and-commercial-services-around-the-world/
http://www.nearfieldcommunicationsworld.com/list-of-nfc-trials-pilots-tests-and-commercial-services-around-the-world/
http://www.gsmworld.com/documents/gsma_nfc_tech_guide_vs1.pdf
http://www.gsmworld.com/documents/gsma_nfc_tech_guide_vs1.pdf
http://www.emvco.com/download_agreement.aspx?id=385
http://www.cl.cam.ac.uk/~rja14/Papers/smartcards-fipr.pdf
http://www.cl.cam.ac.uk/~rja14/Papers/smartcards-fipr.pdf

BIBLIOGRAPHY

Smartcard Technology. Berkeley, CA, USA: USENIX Association, 1999, pp. 3�3.

Online Available: http://portal.acm.org/citation.cfm?id=1267115.1267118

[47] C. K. Prahalad and G. Hamel, �The Core Competence of the Corporation,�

Harvard Business Review, 1990. Online Available: http://tle-inc.com/PDFS/

FILES/resources/The%20Core%20Competencies%20of%20the%20Corp.pdf

[48] J. Vincent, �A�liations, Emotion and the Mobile Phone,� in Cross-Modal Analysis

of Speech, Gestures, Gaze and Facial Expressions, ser. Lecture Notes in Computer

Science, A. Esposito and R. Vích, Eds. Springer, 2009, vol. 5641, pp. 28�41.

[49] R. Ling, New Tech, New Ties: How Mobile Communication Is Reshaping Social

Cohesion. The MIT Press, 2008.

[50] �GlobalPlatform Device: Secure Element Remote Application Management,� Online,

GlobalPlatform, Speci�cation, February 2011.

[51] N. Seriot, �iPhone Privacy,� in Black Hat DC, 2010.

[52] J. Winter, �Trusted computing building blocks for embedded linux-based ARM trust-

zone platforms,� in Proceedings of the 3rd ACM workshop on Scalable trusted com-

puting, ser. STC '08. New York, NY, USA: ACM, 2008, pp. 21�30.

[53] S. R. White, �ABYSS: A Trusted Architecture for Software Protection,� Security and

Privacy, IEEE Symposium on, vol. 0, p. 38, 1987.

[54] GlobalPlatform Device Technology: Device Application Security Management

- Concepts and Description Document Speci�cation, Online, GlobalPlatform

Speci�cation, April 2008. Online Available: http://www.globalplatform.org/

speci�cationsdevice.asp

[55] V. Costan, L. F. Sarmenta, M. Dijk, and S. Devadas, �The Trusted Execution Mod-

ule: Commodity General-Purpose Trusted Computing,� in 8th IFIP WG 8.8/11.2

international conference on Smart Card Research and Advanced Applications. Lon-

don, United Kingdom: Springer, 2008, pp. 133�148.

[56] R. N. Akram, K. Markantonakis, and K. Mayes, �A Dynamic and Ubiquitous Smart

Card Security Assurance and Validation Mechanism,� in 25th IFIP International

Information Security Conference (SEC 2010), ser. IFIP AICT Series, K. Rannenberg

and V. Varadharajan, Eds. Brisbane, Australia: Springer, September 2010, pp. 161�

172.

[57] S. Peng and Z. Han, �Design and Implementation of Portable TPM Device Driver

Based on Extensible Firmware Interface,� International Conference on Multimedia

Information Networking and Security, vol. 2, pp. 342�345, November 2009.

[58] K. Dietrich and J. Winter, �Implementation Aspects of Mobile and Embedded

Trusted Computing,� in Trust '09: Proceedings of the 2nd International Conference

on Trusted Computing. Berlin, Heidelberg: Springer-Verlag, 2009, pp. 29�44.

[59] P. England and T. Tariq, �Towards a Programmable TPM,� in Trusted Computing,

ser. LNCS, L. Chen, C. Mitchell, and A. Martin, Eds. Springer Berlin / Heidelberg,

2009, vol. 5471, pp. 1�13.

[60] R. S. Pappu, �Physical One-way Functions,� Ph.D. dissertation, Massachusetts

454

http://portal.acm.org/citation.cfm?id=1267115.1267118
http://tle-inc.com/PDFS/FILES/resources/The%20Core%20Competencies%20of%20the%20Corp.pdf
http://tle-inc.com/PDFS/FILES/resources/The%20Core%20Competencies%20of%20the%20Corp.pdf
http://www.globalplatform.org/specificationsdevice.asp
http://www.globalplatform.org/specificationsdevice.asp

BIBLIOGRAPHY

Institute of Technology, March 2001. Online Available: http://pubs.media.mit.edu/

pubs/papers/01.03.pappuphd.powf.pdf

[61] G. Suh, C. O'Donnell, and S. Devadas, �Aegis: A Single-Chip Secure Processor,�

Design Test of Computers, vol. 24, no. 6, pp. 570 �580, December 2007.

[62] P. Wilson, A. Frey, T. Mihm, D. Kershaw, and T. Alves, �Implementing Embed-

ded Security on Dual-Virtual-CPU Systems,� IEEE Design and Test of Computers,

vol. 24, pp. 582�591, 2007.

[63] K. Kostiainen, J.-E. Ekberg, N. Asokan, and A. Rantala, �On-board credentials with

open provisioning,� in Proceedings of the 4th International Symposium on Informa-

tion, Computer, and Communications Security, ser. ASIACCS '09. New York, NY,

USA: ACM, 2009, pp. 104�115.

[64] J. A. Halderman, S. D. Schoen, N. Heninger, W. Clarkson, W. Paul, J. A. Calan-

drino, A. J. Feldman, J. Appelbaum, and E. W. Felten, �Lest we remember: cold

boot attacks on encryption keys,� in Proceedings of the 17th conference on Security

symposium. Berkeley, CA, USA: USENIX Association, 2008, pp. 45�60.

[65] �GlobalPlatform Device: GPD/STIP Speci�cation Overview,� GlobalPlatform,

Speci�cation Version 2.3, August 2007.

[66] F. C. Bormann, L. Manteau, A. Linke, J. C. Pailles, and J. D. van, �Concept

for Trusted Personal Devices in a Mobile and Networked Environment,� in 15th

IST Mobile & Wireless Communications Summit, June 2006. Online Available:

http://doc.utwente.nl/59784/1/Bormann06concept.pdf

[67] S. Drimer, S. J. Murdoch, and R. Anderson, �Thinking Inside the Box: System-Level

Failures of Tamper Proo�ng,� in IEEE Symposium on Security and Privacy. USA:

IEEE CS, 2008, pp. 281�295.

[68] R. N. Akram, K. Markantonakis, and K. Mayes, �Location Based Application Avail-

ability,� in On the Move to Meaningful Internet Systems: OTM 2009 Workshops,

R. M. P. Herrero and T. Dillon, Eds., vol. 5872/2009. Vilamoura, Portugal: Springer,

November 2009, pp. 128 � 138.

[69] Common Criteria for Information Technology Security Evaluation, Part 1:

Introduction and General Model, Part 2: Security Functional Requirements, Part 3:

Security Assurance Requirements,, Common Criteria Std. Version 3.1, August 2006.

Online Available: http://www.commoncriteriaportal.org/thecc.html

[70] S. Chaumette and D. Sauveron, �New Security Problems Raised by Open Multiap-

plication Smart Cards.� LaBRI, Université Bordeaux 1., pp. 1332�04, 2004.

[71] B. Parkinson and J. J. Spiker, Global Positioning System: Theory and Applications.

AIAA, January 1996, vol. 1.

[72] (Visited June, 2010) London Underground: Oyster Card. London Underground.

United Kingdom. Online Available: https://oyster.t�.gov.uk/oyster/entry.do

[73] (Visited December, 2010) Octopus. Octopus Holdings Ltd. Hong Kong, China.

Online Available: http://www.octopus.com.hk/home/en/index.html

[74] �The GlobalPlatform Proposition for NFC Mobile: Secure Element Management

455

http://pubs.media.mit.edu/pubs/papers/01.03.pappuphd.powf.pdf
http://pubs.media.mit.edu/pubs/papers/01.03.pappuphd.powf.pdf
http://doc.utwente.nl/59784/1/Bormann06concept.pdf
http://www.commoncriteriaportal.org/thecc.html
https://oyster.tfl.gov.uk/oyster/entry.do
http://www.octopus.com.hk/home/en/index.html

BIBLIOGRAPHY

and Messaging,� GlobalPlatform, White Paper, April 2009. Online Avail-

able: http://www.globalplatform.org/documents/GlobalPlatform_NFC_Mobile_

White_Paper.pdf

[75] �3D-Secure: Veri�ed by Visa System Overview,� Visa International Service Associa-

tion, External Version 1.0.2, December 2006.

[76] S. J. Murdoch and R. J. Anderson, �Veri�ed by Visa and MasterCard SecureCode:

Or, How Not to Design Authentication,� in Financial Cryptography and Data Secu-

rity, 14th International Conference, FC 2010, ser. LNCS, R. Sion, Ed., vol. 6052.

Springer, January 2010, pp. 336�342.

[77] R. Anderson, �Can We Fix the Security Economics of Federated Authentication?� in

SPW 2011, 19th International Workshop on Security Protocols, J. A. Malcolm, Ed.

London, UK: Springer, March 2011.

[78] S. Drimer, S. J. Murdoch, and R. J. Anderson, �Optimised to Fail: Card Readers

for Online Banking,� in Financial Cryptography and Data Security, 13th Interna-

tional Conference, FC 2009, R. Dingledine and P. Golle, Eds., vol. 5628. Barbados:

Springer, February 2009, pp. 184�200.

[79] (Visited May, 2011) Sony's PlayStation Network Hack: When Did They Know?

Online. PCMagazine. Online Available: http://www.pcmag.com/article2/0,2817,

2384366,00.asp

[80] T. Moore, R. Clayton, and R. Anderson, �The Economics of Online Crime,� Journal

of Economic Perspectives, vol. 23, no. 3, pp. 3�20, Summer 2009.

[81] (Visited June, 2010) Barclaycard OnePulse. BarclayCard, Barclay Bank PLC.

United Kingdom. Online Available: http://www.barclaycard-onepulse.co.uk

[82] Z. Chen, Java Card Technology for Smart Cards: Architecture and Programmer's

Guide. Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc., 2000.

[83] K. Markantonakis and K. Mayes, �A Secure Channel Protocol for Multi-application

Smart Cards based on Public Key Cryptography,� in CMS 2004 - Eight IFIP

TC-6-11 Conference on Communications and Multimedia Security, D. Chadwick and

B. Prennel, Eds. Springer, September 2004, pp. 79�96. Online Available: http://

www.scc.rhul.ac.uk/public/A%20Secure%20Channel%20Protocol%20for%20Multi%

20application%20smart%20cards%20based%20on%20PK%20Crytpography.pdf

[84] G. Barthe, G. Dufay, L. Jakubiec, and a. M. d. Sousa, Sim �A Formal Correspon-

dence between O�ensive and Defensive JavaCard Virtual Machines,� in VMCAI '02:

Revised Papers from the Third International Workshop on Veri�cation, Model Check-

ing, and Abstract Interpretation. London, UK: Springer-Verlag, 2002, pp. 32�45.

[85] R. N. Akram, K. Markantonakis, and K. Mayes, �Simulator Problem in User Cen-

tric Smart Card Ownership Model,� in 6th IEEE/IFIP International Symposium on

Trusted Computing and Communications (TrustCom-10), H. Y. Tang and X. Fu,

Eds. HongKong, China: IEEE Computer Society, December 2010.

[86] D. Sauveron and P. Dusart, �Which Trust Can Be Expected of the Common Criteria

Certi�cation at End-User Level?� Future Generation Communication and Network-

456

http://www.globalplatform.org/documents/GlobalPlatform_NFC_Mobile_White_Paper.pdf
http://www.globalplatform.org/documents/GlobalPlatform_NFC_Mobile_White_Paper.pdf
http://www.pcmag.com/article2/0,2817,2384366,00.asp
http://www.pcmag.com/article2/0,2817,2384366,00.asp
http://www.barclaycard-onepulse.co.uk
http://www.scc.rhul.ac.uk/public/A%20Secure%20Channel%20Protocol%20for%20Multi%20application%20smart%20cards%20based%20on%20PK%20Crytpography.pdf
http://www.scc.rhul.ac.uk/public/A%20Secure%20Channel%20Protocol%20for%20Multi%20application%20smart%20cards%20based%20on%20PK%20Crytpography.pdf
http://www.scc.rhul.ac.uk/public/A%20Secure%20Channel%20Protocol%20for%20Multi%20application%20smart%20cards%20based%20on%20PK%20Crytpography.pdf

BIBLIOGRAPHY

ing, vol. 2, pp. 423�428, 2007.

[87] Smartcard-Web-Server, Smartcard Web Server Enabler Architecture, Smartcard Web

Server Requirements, Open Mobile Alliance (OMA) Std., 2008. Online Available:

http://www.openmobilealliance.org/technical/release_program/SCWS_v1_0.aspx

[88] ISO/IEC 7816-3:2006, "Identi�cation Cards � Integrated Circuit Cards � Part 3:

Cards with Contacts � Electrical Interface and Transmission Protocols, International

Organization for Standardization (ISO) Std., 2006. Online Available: http://www.

iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=38770

[89] ISO/IEC 28361: Near Field Communication Wired Interface (NFC-WI),

International Organization for Standardization (ISO) Std., October 2007. Online

Available: http://www.iso.org/iso/iso_catalogue/catalogue_ics/catalogue_detail_

ics.htm?csnumber=44659&ics1=35&ics2=100&ics3=10

[90] Kevin Foster and Erik Meijer and Scott Schuh and Micahael A. Zabek, �The 2008

Survey of Consumer Payment Choice,� Public Policy Discussion Papers No. 09-10,

Federal Reserve Bank of Boston, USA, Tech. Rep., April 2010. Online Available:

http://www.bos.frb.org/economic/ppdp/2009/ppdp0910.pdf

[91] Y. A. Au and R. J. Kau�man, �The Economics of Mobile Payments: Understanding

Stakeholder Issues for an Emerging Financial Technology Application,� Electron.

Commer. Rec. Appl., vol. 7, pp. 141�164, July 2008.

[92] �Information Technology Security Evaluation Criteria (ITSEC) - Provisional

Harmonised Criteria,� O�ce for O�cial Publications of the European Communities,

Luxembourg, Brussels, Tech. Rep. COM(90) 314, June 1991. Online Available:

http://www.ssi.gouv.fr/site_documents/ITSEC/ITSEC-uk.pdf

[93] �Multos: Version 4 on Hitachi AE45C Integrated Circuit Card,� Uk IT Security

Evaluation and Certi�cation Scheme, Cheltenham, United Kingdom, Certi�cation

Report NO. P167, June 2002. Online Available: http://www.cesg.gov.uk/products_

services/iacs/cc_and_itsec/media/certreps/CRP167.pdf

[94] T. Frane-Massey, �Multos - the High Security Smart Card OS,� MAOSCO,

Tech. Rep., September 2005. Online Available: http://www.multos.com/downloads/

marketing/Whitepaper_MULTOS_Security.pdf

[95] �StepNexus: Multos International Division for Key Managnement Authority

(KMA),� Visited July 2010. Online Available: http://www.multosinternational.

com/services/stepnexus.aspx

[96] �Multos SmartDeck: The Software Development Kit for Multos,� StepNexus

Developer Tools, Visited July 2010. Online Available: http://www.stepdeveloper.

com/

[97] �Multos: Guide to Loading and Deleting Applications,� MAOSCO, Tech. Rep.

MAO-DOC-TEC-008 v2.21, 2006. Online Available: http://www.multos.com/

downloads/technical/glda.pdf

[98] B. du Castel. (Visted March, 2010) Personal History of the Java

Card. Internet. Online Available: http://knol.google.com/k/bertrand-du-castel/

457

http://www.openmobilealliance.org/technical/release_program/SCWS_v1_0.aspx
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=38770
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=38770
http://www.iso.org/iso/iso_catalogue/catalogue_ics/catalogue_detail_ics.htm?csnumber=44659&ics1=35&ics2=100&ics3=10
http://www.iso.org/iso/iso_catalogue/catalogue_ics/catalogue_detail_ics.htm?csnumber=44659&ics1=35&ics2=100&ics3=10
http://www.bos.frb.org/economic/ppdp/2009/ppdp0910.pdf
http://www.ssi.gouv.fr/site_documents/ITSEC/ITSEC-uk.pdf
http://www.cesg.gov.uk/products_services/iacs/cc_and_itsec/media/certreps/CRP167.pdf
http://www.cesg.gov.uk/products_services/iacs/cc_and_itsec/media/certreps/CRP167.pdf
http://www.multos.com/downloads/marketing/Whitepaper_MULTOS_Security.pdf
http://www.multos.com/downloads/marketing/Whitepaper_MULTOS_Security.pdf
http://www.multosinternational.com/services/stepnexus.aspx
http://www.multosinternational.com/services/stepnexus.aspx
http://www.stepdeveloper.com/
http://www.stepdeveloper.com/
http://www.multos.com/downloads/technical/glda.pdf
http://www.multos.com/downloads/technical/glda.pdf
http://knol.google.com/k/bertrand-du-castel/personal-history-of-the-java-card/3cjtq1rfm2r15/8
http://knol.google.com/k/bertrand-du-castel/personal-history-of-the-java-card/3cjtq1rfm2r15/8

BIBLIOGRAPHY

personal-history-of-the-java-card/3cjtq1rfm2r15/8

[99] �RFC 1122 - Requirements for Internet Hosts - Communication Layers,� United

States, Tech. Rep., 1989.

[100] T. Dierks and E. Rescorla, �RFC 5246 - The Transport Layer Security

(TLS) Protocol Version 1.2,� Tech. Rep., August 2008. Online Available:

http://tools.ietf.org/html/rfc5246

[101] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-

Lee, �RFC 2616 - Hypertext Transfer Protocol � HTTP/1.1,� United States, Tech.

Rep., 1999.

[102] E. Rescorla and A. Schi�man, �RFC 2660 - The Secure HyperText Transfer Protocol,�

United States, Tech. Rep., 1999.

[103] K. Markantonakis and K. Mayes, �An Overview of the GlobalPlatform Smart

Card Speci�cation,� Information Security Technical Report, vol. 8, no. 1, pp.

17 � 29, 2003. Online Available: http://www.sciencedirect.com/science/article/

B6VJC-48GF0G2-3/2/84de64208e223dea3f18a3e887c524ed

[104] �Security of Proximity Mobile Payments,� Smart Card Alliance, 191 Clarksville

Rd. Princeton Junction, NJ 08550, White Paper, May 2009. Online Avail-

able: http://www.smartcardalliance.org/resources/pdf/Security_of_Proximity_

Mobile_Payments.pdf

[105] T. M. Jurgensen and S. Guthery, The Smart Cards: A Developer's Toolkit. Upper

Saddle River, NJ, USA: Prentice Hall PTR, 2002.

[106] ECMA, ECMA-107: Volume and File Structure of Disk Cartridges for Information

Interchange, 2nd ed. Geneva, Switzerland: European Association for Standardizing

Information and Communication Systems (ECMA), June 1995. Online Available:

http://www.ecma.ch/ecma1/STAND/ECMA-107.HTM

[107] ISO/IEC 9293: Information Technology - Volume and File Structure of Disk

Cartridges for Information Interchange, Online, International Organization for

Standardization (ISO) Standard, November 1994. Online Available: http://www.

iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=21273

[108] (Visited June, 2010) The Smart Card Deployment Cookbook . Microsoft. USA.

Online Available: http://technet.microsoft.com/en-gb/library/dd277386.aspx

[109] (Visited April, 2011) Gemalto .Net Smart Card Solutions. Online. Gemalto. Online

Available: http://www.protiva.gemalto.com/download/Gemalto.net.pdf

[110] �ZeitControl Card Systems GmbH.� Online Available: http://www.basiccard.com

[111] W. Stallings, Data and Computer Communications (8th Edition), 8th ed. Prentice

Hall, August 2006. Online Available: http://www.worldcat.org/isbn/0132433109

[112] R. M. Cohen, �Defensive Java Virtual Machine Version 0.5 alpha,� Online, May

1997. Online Available: http://www.computationallogic.com/software/djvm/

[113] FIPS 140-2: Security Requirements for Cryptographic Modules, Online, National

Institute of Standards and Technology (NIST) Federal Information Processing

Standards Publication, Rev. Supercedes FIPS PUB 140-1, May 2005. Online

458

http://knol.google.com/k/bertrand-du-castel/personal-history-of-the-java-card/3cjtq1rfm2r15/8
http://knol.google.com/k/bertrand-du-castel/personal-history-of-the-java-card/3cjtq1rfm2r15/8
http://knol.google.com/k/bertrand-du-castel/personal-history-of-the-java-card/3cjtq1rfm2r15/8
http://tools.ietf.org/html/rfc5246
http://www.sciencedirect.com/science/article/B6VJC-48GF0G2-3/2/84de64208e223dea3f18a3e887c524ed
http://www.sciencedirect.com/science/article/B6VJC-48GF0G2-3/2/84de64208e223dea3f18a3e887c524ed
http://www.smartcardalliance.org/resources/pdf/Security_of_Proximity_Mobile_Payments.pdf
http://www.smartcardalliance.org/resources/pdf/Security_of_Proximity_Mobile_Payments.pdf
http://www.ecma.ch/ecma1/STAND/ECMA-107.HTM
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=21273
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=21273
http://technet.microsoft.com/en-gb/library/dd277386.aspx
http://www.protiva.gemalto.com/download/Gemalto.net.pdf
http://www.basiccard.com
http://www.worldcat.org/isbn/0132433109
http://www.computationallogic.com/software/djvm/

BIBLIOGRAPHY

Available: http://csrc.nist.gov/publications/�ps/�ps140-2/�ps1402.pdf

[114] (Visited September, 2011) Trusted Computing Group: Embedded Systems Work

Group. Online. Trusted Compouting Group. Oregon, USA. Online Available:

http://www.trustedcomputinggroup.org/developers/embedded_systems

[115] K. Eagles, K. Markantonakis, and K. Mayes, �A comparative analysis of common

threats, vulnerabilities, attacks and countermeasures within smart card and

wireless sensor network node technologies,� in Proceedings of the 1st IFIP TC6

/WG8.8 /WG11.2 international conference on Information security theory and

practices: smart cards, mobile and ubiquitous computing systems, ser. WISTP'07.

Berlin, Heidelberg: Springer-Verlag, 2007, pp. 161�174. Online Available: http:

//ubiquinet.org/Files/Smart_Card_&_WSN_Node_Threat_Comparisons.pdf

[116] B. Gassend, D. Clarke, M. van Dijk, and S. Devadas, �Silicon Physical Random Func-

tions,� in Proceedings of the 9th ACM conference on Computer and communications

security, ser. CCS '02. New York, NY, USA: ACM, 2002, pp. 148�160.

[117] H. Busch, M. Sotáková, S. Katzenbeisser, and R. Sion, �The PUF promise,� in

Proceedings of the 3rd international conference on Trust and trustworthy computing,

ser. TRUST'10. Berlin, Heidelberg: Springer-Verlag, June 2010, pp. 290�297.

Online Available: http://portal.acm.org/citation.cfm?id=1875652.1875675

[118] D. Kirovski, �Anti-Counterfeiting: Mixing the Physical and the Digital World,� in

Foundations for Forgery-Resilient Cryptographic Hardware, ser. Dagstuhl Seminar

Proceedings, J. Guajardo, B. Preneel, A.-R. Sadeghi, and P. Tuyls, Eds., no. 09282.

Dagstuhl, Germany: Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany,

2010. Online Available: http://drops.dagstuhl.de/opus/volltexte/2010/2406

[119] S. S. Kumar, J. Guajardo, R. Maes, G.-J. Schrijen, and P. Tuyls, �Extended

Abstract: The Butter�y PUF Protecting IP on every FPGA,� in Proceedings of

the 2008 IEEE International Workshop on Hardware-Oriented Security and Trust.

Washington, DC, USA: IEEE Computer Society, 2008, pp. 67�70. Online Available:

http://www.cosic.esat.kuleuven.be/publications/article-1154.pdf

[120] J. H. Anderson, �A PUF Design for Secure FPGA-based Embedded Systems,� in

Proceedings of the 2010 Asia and South Paci�c Design Automation Conference, ser.

ASPDAC '10. Piscataway, NJ, USA: IEEE Press, 2010, pp. 1�6.

[121] J. Guajardo, S. S. Kumar, G. J. Schrijen, and P. Tuyls, �Physical Unclonable Func-

tions and Public-Key Crypto for FPGA IP Protection,� in Field Programmable Logic

and Applications, 2007. FPL 2007. International Conference on, 2007, pp. 189�195.

[122] P. Tuyls, G.-J. Schrijen, B. �kori¢, J. van Geloven, N. Verhaegh, and R. Wolters,

�Read-proof Hardware from Protective Coatings,� in Cryptographic Hardware

and Embedded Systems Workshop, ser. LNCS, vol. 4249. Springer, October

2006, pp. 369�383. Online Available: http://www.springerlink.com/content/

8454587207415662/fulltext.pdf

[123] G. E. Suh and S. Devadas, �Physical Unclonable Functions for Device Authentication

and Secret Key Generation,� in Proceedings of the 44th annual Design Automation

459

http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf
http://www.trustedcomputinggroup.org/developers/embedded_systems
http://ubiquinet.org/Files/Smart_Card_&_WSN_Node_Threat_Comparisons.pdf
http://ubiquinet.org/Files/Smart_Card_&_WSN_Node_Threat_Comparisons.pdf
http://portal.acm.org/citation.cfm?id=1875652.1875675
http://drops.dagstuhl.de/opus/volltexte/2010/2406
http://www.cosic.esat.kuleuven.be/publications/article-1154.pdf
http://www.springerlink.com/content/8454587207415662/fulltext.pdf
http://www.springerlink.com/content/8454587207415662/fulltext.pdf

BIBLIOGRAPHY

Conference, ser. DAC '07. New York, NY, USA: ACM, 2007, pp. 9�14.

[124] L. Bolotnyy and G. Robins, �Physically Unclonable Function-Based Security

and Privacy in RFID Systems,� in Proceedings of the Fifth IEEE International

Conference on Pervasive Computing and Communications. Washington, DC,

USA: IEEE Computer Society, 2007, pp. 211�220. Online Available: http:

//portal.acm.org/citation.cfm?id=1263542.1263714

[125] D. E. Lazich and M. Wuensche, �Protection of Sensitive Security Parameters in

Integrated Circuits,� in Mathematical Methods in Computer Science, J. Calmet,

W. Geiselmann, and J. Müller-Quade, Eds. Berlin, Heidelberg: Springer-Verlag,

2008, pp. 157�178.

[126] G. E. Suh, C. W. O'Donnell, I. Sachdev, and S. Devadas, �Design and Implementa-

tion of the AEGIS Single-Chip Secure Processor Using Physical Random Function,�

SIGARCH Comput. Archit. News, vol. 33, pp. 25�36, May 2005.

[127] D. Merli, D. Schuster, F. Stumpf, and G. Sigl, �Side-Channel Analysis

of PUFs and Fuzzy Extractors,� in Trust and Trustworthy Computing, ser.

Lecture Notes in Computer Science, J. McCune, B. Balache�, A. Perrig,

A.-R. Sadeghi, A. Sasse, and Y. Beres, Eds. Springer Berlin / Heidelberg,

2011, vol. 6740, pp. 33�47, 10.1007/978-3-642-21599-5_3. Online Available:

http://www.springerlink.com/content/h77526861527tg06/fulltext.pdf

[128] X. Leroy, �Bytecode veri�cation on Java smart cards,� Softw. Pract. Exper., vol. 32,

no. 4, pp. 319�340, 2002.

[129] ISO/IEC 15408: Common Criteria for Information Technology Security Evaluation,

Std. Version 2.2, Rev. 256, 2004.

[130] �Common Methodology for Information Technology Security Evaluation; Evaluation

Methodology,� Tech. Rep. Version 3.1, July 2009. Online Available: http:

//www.commoncriteriaportal.org/thecc.html

[131] E. Roback, �Exploring Common Criteria: Can it Ensure that the Federal Government

Gets Needed Security in Software?� US govt. publication, Sept. 2003.

[132] B. Schneier, Applied cryptography (2nd ed.): protocols, algorithms, and source code

in C. New York, NY, USA: John Wiley & Sons, Inc., 1995.

[133] A. Maiti, R. Nagesh, A. Reddy, and P. Schaumont, �Physical unclonable function

and true random number generator: a compact and scalable implementation,� in

Proceedings of the 19th ACM Great Lakes symposium on VLSI, ser. GLSVLSI '09.

New York, NY, USA: ACM, 2009, pp. 425�428.

[134] D. E. Holcomb, W. P. Burleson, and K. Fu, �Power-Up SRAM State as an Iden-

tifying Fingerprint and Source of True Random Numbers,� IEEE Transactions on

Computers, vol. 58, pp. 1198�1210, 2009.

[135] S. Schulz, C. Wachsmann, and A.-R. Sadeghis, �Lightweight Remote

Attestation using Physical Functions,� Technische Universitat Darmstadt,

Darmstadt, Germany, Technical Report TR-2001-06-11, July 2011. On-

line Available: http://www.informatik.tu-darmstadt.de/�leadmin/user_upload/

460

http://portal.acm.org/citation.cfm?id=1263542.1263714
http://portal.acm.org/citation.cfm?id=1263542.1263714
http://www.springerlink.com/content/h77526861527tg06/fulltext.pdf
http://www.commoncriteriaportal.org/thecc.html
http://www.commoncriteriaportal.org/thecc.html
http://www.informatik.tu-darmstadt.de/fileadmin/user_upload/Group_TRUST/PubsPDF/CASED-TR-2011-06-01.pdf
http://www.informatik.tu-darmstadt.de/fileadmin/user_upload/Group_TRUST/PubsPDF/CASED-TR-2011-06-01.pdf

BIBLIOGRAPHY

Group_TRUST/PubsPDF/CASED-TR-2011-06-01.pdf

[136] S. Chari, V. V. Diluo�o, P. A. Karger, E. R. Palmer, T. Rabin, J. R. Rao, P. Rohatgi,

H. Scherzer, M. Steiner, and D. C. Toll, �Designing a Side Channel Resistant Random

Number Generator,� in Smart Card Research and Advanced Application, 9th IFIP

WG 8.8/11.2 International Conference, CARDIS 2010, D. Gollmann, J.-L. Lanet,

and J. Iguchi-Cartigny, Eds. Springer, April 2010, pp. 49�64.

[137] J. Bringer, H. Chabanne, T. Kevenaar, and B. Kindarji, �Extending Match-On-Card

to Local Biometric Identi�cation,� in Biometric ID Management and Multimodal

Communication, ser. Lecture Notes in Computer Science, J. Fierrez, J. Ortega-

Garcia, A. Esposito, A. Drygajlo, and M. Faundez-Zanuy, Eds. Springer Berlin

/ Heidelberg, 2009, vol. 5707, pp. 178�186, 10.1007/978-3-642-04391-8_23. Online

Available: http://www.springerlink.com/content/b16016708315549v/fulltext.pdf

[138] T. Bourlai, J. Kittler, and K. Messer, �On design and optimization of

face veri�cation systems that are smart-card based,� Machine Vision and

Applications, vol. 21, pp. 695�711, 2010, 10.1007/s00138-009-0187-x. Online

Available: http://www.springerlink.com/content/e73334305v740016/fulltext.pdf

[139] L. Beaugé and A. Drygajlo, �Fully featured secure biometric smart card device for

�ngerprint-based authentication and identi�cation,� in Proceedings of the 12th ACM

workshop on Multimedia and security, ser. MM&Sec '10. New York, NY, USA:

ACM, 2010, pp. 181�186.

[140] ISO/IEC 14888: Information Technology � Security Techiques � Digital Signature

with Appendix, International Organization for Standardization (ISO) Std., April

2008.

[141] ISO/IEC 9796: Information Technology � Security Techniques � Digital Signature

Schemes Giving Message Recovery , International Organization for Standardization

(ISO) Std., December 2010.

[142] G. Lowe, �Casper: a compiler for the analysis of security protocols,�

J. Comput. Secur., vol. 6, pp. 53�84, January 1998. Online Available:

http://dl.acm.org/citation.cfm?id=353677.353680

[143] C. A. R. Hoare, Communicating sequential processes. New York, NY, USA: ACM,

1978, vol. 21, no. 8.

[144] P. Ryan and S. Schneider, The Modelling and Analysis of Security Protocols: the

CSP Approach. Addison-Wesley Professional, 2000.

[145] Joan Daemen and Vincent Rijmen, The Design of Rijndael: AES - The Advanced

Encryption Standard. Berlin, Heidelberg, New York: Springer Verlag, 2002.

[146] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone, Handbook of Applied Cryp-

tography. CRC, October 1996.

[147] FIPS 180-2: Secure Hash Standard (SHS), National Institute of Standards and

Technology (NIST) Std., 2002. Online Available: http://csrc.nist.gov/publications/

�ps/�ps180-2/�ps180-2.pdf

[148] M. Lepinski and S. Kent, �RFC 5114 - Additional Di�e-Hellman Groups

461

http://www.informatik.tu-darmstadt.de/fileadmin/user_upload/Group_TRUST/PubsPDF/CASED-TR-2011-06-01.pdf
http://www.informatik.tu-darmstadt.de/fileadmin/user_upload/Group_TRUST/PubsPDF/CASED-TR-2011-06-01.pdf
http://www.informatik.tu-darmstadt.de/fileadmin/user_upload/Group_TRUST/PubsPDF/CASED-TR-2011-06-01.pdf
http://www.springerlink.com/content/b16016708315549v/fulltext.pdf
http://www.springerlink.com/content/e73334305v740016/fulltext.pdf
http://dl.acm.org/citation.cfm?id=353677.353680
http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf
http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf

BIBLIOGRAPHY

for Use with IETF Standards,� Tech. Rep., January 2008. Online Available:

http://tools.ietf.org/html/rfc5114

[149] R. N. Akram, �Pseudorandom Number Generation/Attacks in Smart Cards,� Mas-

ter's Thesis, Smart Card Centre, Information Security Group, Royal Holloway, Uni-

versity of London, Egham, United Kingdom, September 2007.

[150] A. Seshadri, M. Luk, A. Perrig, L. van Doorn, and P. Khosla, �SCUBA: Secure Code

Update By Attestation in sensor networks,� in Proceedings of the 5th ACM workshop

on Wireless security, ser. WiSe '06. New York, NY, USA: ACM, 2006, pp. 85�94.

[151] Y. Li, J. M. McCune, and A. Perrig, �SBAP: software-based attestation for

peripherals,� in Proceedings of the 3rd international conference on Trust and

trustworthy computing, ser. TRUST'10. Berlin, Heidelberg: Springer-Verlag,

2010, pp. 16�29. Online Available: http://portal.acm.org/citation.cfm?id=1875652.

1875655

[152] A. Seshadri, A. Perrig, L. van Doorn, and P. Khosla, �SWATT: SoftWare-based

ATTestation for Embedded Devices,� Security and Privacy, IEEE Symposium on,

vol. 0, p. 272, 2004.

[153] D. Schellekens, B. Wyseur, and B. Preneel, �Remote attestation on legacy operating

systems with trusted platform modules,� Sci. Comput. Program., vol. 74, pp. 13�22,

December 2008. Online Available: http://portal.acm.org/citation.cfm?id=1464515.

1464789

[154] H. Busch, S. Katzenbeisser, and P. Baecher, �PUF-Based Authentication Protocols

- Revisited,� in Information Security Applications, ser. Lecture Notes in Computer

Science, H. Youm and M. Yung, Eds. Springer Berlin / Heidelberg, 2009, vol. 5932,

pp. 296�308, 10.1007/978-3-642-10838-9_22.

[155] �GlobalPlatform's Proposition for NFC Mobile: Secure Element Managment and

Messaging,� Online, GlobalPlatform, Speci�cation, April 2009.

[156] (Visited August, 2010) Global Systems for Mobile Communication (GSM). GSM

Association. Online Available: http://www.gsm.org

[157] �GlobalPlatform Guide to Common Personalization,� Online, Redwood City, USA,

Speci�cation 1.0, May 2003.

[158] �GlobalPlatform Card: Con�dential Card Content Management. Card Speci�cation

v2.2 - Amendment A,� Online, Redwood City, USA, Speci�cation 1.0.1, January

2011. Online Available: http://www.globalplatform.org/speci�cationscard.asp

[159] �Multos: Guide to Generating Application Load Units,� MAOSCO, Tech. Rep.

MAO-DOC-TEC-009 v2.52, 2006. Online Available: http://www.multos.com/

downloads/technical/galu.pdf

[160] �Future Networks and the Internet: Early Challenges Regarding the Internet

of Things,� Commission of the European Communities, Brussels, Commi-

sision Sta� Working Document SEC(2008) 2516, September 2008. Online

Available: http://ec.europa.eu/information_society/eeurope/i2010/docs/future_

internet/swp_internet_things.pdf

462

http://tools.ietf.org/html/rfc5114
http://portal.acm.org/citation.cfm?id=1875652.1875655
http://portal.acm.org/citation.cfm?id=1875652.1875655
http://portal.acm.org/citation.cfm?id=1464515.1464789
http://portal.acm.org/citation.cfm?id=1464515.1464789
http://www.gsm.org
http://www.globalplatform.org/specificationscard.asp
http://www.multos.com/downloads/technical/galu.pdf
http://www.multos.com/downloads/technical/galu.pdf
http://ec.europa.eu/information_society/eeurope/i2010/docs/future_internet/swp_internet_things.pdf
http://ec.europa.eu/information_society/eeurope/i2010/docs/future_internet/swp_internet_things.pdf

BIBLIOGRAPHY

[161] D. A. Basin, S. Friedrich, J. Posegga, and H. Vogt, �Java Bytecode Veri�cation by

Model Checking,� in CAV '99: Proceedings of the 11th International Conference on

Computer Aided Veri�cation. London, UK: Springer-Verlag, 1999, pp. 491�494.

[162] D. A. Basin, S. Friedrich, and M. Gawkowski, �Veri�ed Bytecode Model Checkers,� in

TPHOLs '02: Proceedings of the 15th International Conference on Theorem Proving

in Higher Order Logics. London, UK: Springer-Verlag, 2002, pp. 47�66.

[163] X. Leroy, �On-Card Bytecode Veri�cation for Java Card,� in E-SMART '01: Pro-

ceedings of the International Conference on Research in Smart Cards. London, UK:

Springer-Verlag, 2001, pp. 150�164.

[164] �Smart Cards; Smart Card Platform Requirements Stage 1(Release 9),� European

Telecommunications Standards Institute (ETSI), France, Technical Speci�cation

ETSI TS 102 412 (V9.1.0), June 2009. Online Available: http://www.etsi.org/

deliver/etsi_ts/102400_102499/102412/09.01.00_60/ts_102412v090100p.pdf

[165] Y. Gasmi, A.-R. Sadeghi, P. Stewin, M. Unger, and N. Asokan, �Beyond Secure

Channels,� in STC '07: Proceedings of the 2007 ACM workshop on Scalable trusted

computing. New York, NY, USA: ACM, 2007, pp. 30�40.

[166] L. Zhou and Z. Zhang, �Trusted Channels with Password-Based Authentication and

TPM-Based Attestation,� Communications and Mobile Computing, International

Conference on, vol. 1, pp. 223�227, 2010.

[167] F. Armknecht, Y. Gasmi, A.-R. Sadeghi, P. Stewin, M. Unger, G. Ramunno, and

D. Vernizzi, �An e�cient implementation of trusted channels based on openssl,� in

Proceedings of the 3rd ACM workshop on Scalable trusted computing, ser. STC '08.

New York, NY, USA: ACM, 2008, pp. 41�50.

[168] G. Horn, K. M. Martin, and C. J. Mitchell, �Authentication Protocols for

Mobile Network Environment Value-Added Services,� in IEEE Transactions on

Vehicular Technology, vol. 51. IEEE, March 2002, pp. 383�392. Online Available:

http://www.isg.rhul.ac.uk/cjm/apfmne2.pdf

[169] Remote Application Management over HTTP, Card Speci�cation v 2.2 - Amendment

B, Online, GlobalPlatform Speci�cation, September 2006. Online Available:

http://www.globalplatform.org/speci�cationscard.asp

[170] GlobalPlatform Card Technology: Secure Channel Protocol 03, Card Speci�cation v 2.2

- Amendment D,, Online, GlobalPlatform Public Release GPC SPE 014, September

2009. Online Available: http://www.globalplatform.org/speci�cationscard.asp

[171] �Smart Cards; Secured Packet Structure for UICC based Applications (Release 6),�

European Telecommunications Standards Institute (ETSI), France, Technical Spec-

i�cation ETSI TS 102 225 (V6.8.0), April 2006.

[172] Y. S. T. Tin, C. Boyd, and J. M. G. Nieto, �Provably Secure Mobile Key

Exchange: Applying the Canetti-Krawczyk Approach,� in Proceedings of the

8th Australasian conference on Information security and privacy, ser. ACISP'03.

Berlin, Heidelberg: Springer-Verlag, 2003, pp. 166�179. Online Available:

http://portal.acm.org/citation.cfm?id=1760479.1760499

463

http://www.etsi.org/deliver/etsi_ts/102400_102499/102412/09.01.00_60/ts_102412v090100p.pdf
http://www.etsi.org/deliver/etsi_ts/102400_102499/102412/09.01.00_60/ts_102412v090100p.pdf
http://www.isg.rhul.ac.uk/cjm/apfmne2.pdf
http://www.globalplatform.org/specificationscard.asp
http://www.globalplatform.org/specificationscard.asp
http://portal.acm.org/citation.cfm?id=1760479.1760499

BIBLIOGRAPHY

[173] W. G. Sirett, J. A. MacDonald, K. Mayes, and C. Markantonakis, �Design, Instal-

lation and Execution of a Security Agent for Mobile Stations,� in Smart Card Re-

search and Advanced Applications, 7th IFIP WG 8.8/11.2 International Conference,

CARDIS, ser. LNCS, J. Domingo-Ferrer, J. Posegga, and D. Schreckling, Eds., vol.

3928. Tarragona, Spain: Springer, April 2006, pp. 1�15.

[174] W. Di�e, P. C. van Oorschot, and M. J. Wiener, �Authentication and Authenticated

Key Exchanges,� Designs, Codes and Cryptography, vol. 2, no. 2, pp. 107�125, 1992.

[175] A. Aziz and W. Di�e, �Privacy And Authentication For Wireless Local Area Net-

works,� IEEE Personal Communications, vol. 1, pp. 25�31, First Quarter 1994.

[176] K. Martin, B. Preneel, C. Mitchell, H. Hitz, G. Horn, A. Poliakova, and P. Howard,

�Secure billing for mobile information services in UMTS,� in Intelligence in Services

and Networks: Technology for Ubiquitous Telecom Services, ser. Lecture Notes in

Computer Science, S. Trigila, A. Mullery, M. Campolargo, H. Vanderstraeten, and

M. Mampaey, Eds. Springer Berlin / Heidelberg, 1998, vol. 1430, pp. 535�548,

10.1007/BFb0056997.

[177] G. Horn and B. Preneel, �Authentication and Payment in Future Mobile Systems,�

in Computer Security � ESORICS 98, ser. Lecture Notes in Computer Science, J.-J.

Quisquater, Y. Deswarte, C. Meadows, and D. Gollmann, Eds. Springer Berlin /

Heidelberg, 1998, vol. 1485, pp. 277�293, 10.1007/BFb0055870.

[178] W. Aiello, S. M. Bellovin, M. Blaze, R. Canetti, J. Ioannidis, A. D. Keromytis, and

O. Reingold, �Just fast keying: Key agreement in a hostile internet,� ACM Trans.

Inf. Syst. Secur., vol. 7, pp. 242�273, May 2004.

[179] S. Blake-Wilson, D. Johnson, and A. Menezes, �Key Agreement Protocols and

Their Security Analysis,� in Proceedings of the 6th IMA International Conference on

Cryptography and Coding. London, UK: Springer-Verlag, 1997, pp. 30�45. Online

Available: http://portal.acm.org/citation.cfm?id=647993.742138

[180] C. Mitchell, M. Ward, and P. Wilson, �Key Control in Key Agreement Protocols,�

Electronics Letters, vol. 34, no. 10, pp. 980 �981, May 1998.

[181] W. Di�e and M. E. Hellman, �New Directions in Cryptography,� IEEE Transactions

on Information Theory, vol. IT-22, no. 6, pp. 644�654, 1976.

[182] P. Urien, �Collaboration of SSL Smart Cards within the WEB2 Landscape,� Collab-

orative Technologies and Systems, International Symposium on, vol. 0, pp. 187�194,

2009.

[183] P. Urien and S. Elrharbi, �Tandem Smart Cards: Enforcing Trust for TLS-Based

Network Services,� Applications and Services in Wireless Networks, International

Workshop on, vol. 0, pp. 96�104, 2008.

[184] A. Harbitter and D. A. Menascé, �The Performance of Public Key-Enabled Kerberos

Authentication in Mobile Computing Applications,� pp. 78�85, 2001.

[185] M. Montgomery and K. Krishna, �Secure Object Sharing in Java Card,� inWOST'99:

Proceedings of the USENIX Workshop on Smartcard Technology on USENIX Work-

shop on Smartcard Technology. Berkeley, CA, USA: USENIX Association, 1999,

464

http://portal.acm.org/citation.cfm?id=647993.742138

BIBLIOGRAPHY

pp. 14�14.

[186] R. N. Akram, K. Markantonakis, and K. Mayes, �Firewall Mechanism in a User

Centric Smart Card Ownership Model,� in Smart Card Research and Advanced Ap-

plication, 9th IFIP WG 8.8/11.2 International Conference, CARDIS 2010, D. Goll-

mann, J.-L. Lanet, and J. Iguchi-Cartigny, Eds., vol. 6035/2010. Passau, Germany:

Springer, April 2010, pp. 118�132.

[187] M. Éluard, T. P. Jensen, and E. Denney, �An Operational Semantics of the Java

Card Firewall,� in E-SMART '01: Proceedings of the International Conference on

Research in Smart Cards. London, UK: Springer-Verlag, 2001, pp. 95�110.

[188] C. Bernardeschi and L. Martini, �Enforcement of Applet Boundaries in Java Card

Systems,� in IASTED Conf. on Software Engineering and Applications, 2004, pp.

96�101.

[189] M. Huisman, D. Gurov, C. Sprenger, and G. Chugunov, �Checking Absence of Illicit

Applet Interactions: A Case Study,� in Fundamental Approaches to Software Engi-

neering, FASE 2004, ser. Lecture Notes in Computer Science, no. 2984. Springer,

2004.

[190] W. Mostowski and E. Poll, �Malicious Code on Java Card Smartcards: Attacks

and Countermeasures,� in CARDIS '08: Proceedings of the 8th IFIP WG 8.8/11.2

international conference on Smart Card Research and Advanced Applications. Berlin,

Heidelberg: Springer-Verlag, 2008, pp. 1�16.

[191] M. Éluard and T. Jensen, �Secure Object Flow Analysis for Java Card,� in

CARDIS'02: Proceedings of the 5th conference on Smart Card Research and Ad-

vanced Application Conference. Berkeley, CA, USA: USENIX Association, 2002,

pp. 11�11.

[192] P. Bieber, J. Cazin, A. E. Marouani, P. Girard, J. L. Lanet, V. Wiels, and G. Zanon,

�The PACAP Prototype: A Tool for Detecting Java Card Illegal Flow,� in JavaCard

'00: Revised Papers from the First International Workshop on Java on Smart Cards:

Programming and Security. London, UK: Springer-Verlag, 2001, pp. 25�37.

[193] �National Strategy for Trusted Identities in Cyberspace,� Department of

Homeland Security, USA, Draft Proposal, June 2010. Online Available:

http://www.dhs.gov/xlibrary/assets/ns_tic.pdf

[194] G. Barbu, H. Thiebeauld, and V. Guerin, �Attacks on Java Card 3.0 Combining Fault

and Logical Attacks,� in Smart Card Research and Advanced Application, 9th IFIP

WG 8.8/11.2 International Conference, CARDIS 2010, ser. LNCS, D. Gollmann,

J.-L. Lanet, and J. Iguchi-Cartigny, Eds., vol. 6035/2010, 2010, pp. 148�163.

[195] J.-L. Lanet and J. Iguchi-Cartigny, �Developing a Trojan applet in a Smart Card ,�

Journal in Computer Virology, vol. 6, no. 1, 2009.

[196] R. Anderson and M. Kuhn, �Low Cost Attacks on Tamper Resistant Devices,� in Se-

curity Protocols, B. Christianson, B. Crispo, M. Lomas, and M. Roe, Eds. Springer,

1998, vol. 1361, pp. 125�136.

[197] P. C. Kocher, J. Ja�e, and B. Jun, �Di�erential Power Analysis,� in CRYPTO '99:

465

http://www.dhs.gov/xlibrary/assets/ns_tic.pdf

BIBLIOGRAPHY

Proceedings of the 19th Annual International Cryptology Conference on Advances in

Cryptology. London, UK: Springer-Verlag, 1999, pp. 388�397.

[198] E. Vétillard and A. Ferrari, �Combined Attacks and Countermeasures,� in Smart

Card Research and Advanced Application, 9th IFIP WG 8.8/11.2 International Con-

ference, CARDIS 2010, ser. LNCS, D. Gollmann, J.-L. Lanet, and J. Iguchi-Cartigny,

Eds., vol. 6035/2010, 2010, pp. 133�147.

[199] S. Chaumette and D. Sauveron, �An E�cient and Simple Way to Test the Security

of Java Cards,� in Security in Information Systems, Proceedings of the 3rd Interna-

tional Workshop on Security in Information Systems, WOSIS 2005, In conjunction

with ICEIS2005, E. Fernández-Medina, J. C. H. Castro, and L. J. G. Castro, Eds.

INSTICC Press, 2005, pp. 331�341.

[200] T. Lindholm and F. Yellin, The Java Virtual Machine Speci�cation, 2nd ed.

Addison-Wesley Longman, Amsterdam, April 1999.

[201] G. Barthe, G. Dufay, L. Jakubiec, B. P. Serpette, and S. a. M. d. Sousa,

�A Formal Executable Semantics of the JavaCard Platform,� in Proceedings of

the 10th European Symposium on Programming Languages and Systems, ser.

ESOP '01. London, UK: Springer-Verlag, 2001, pp. 302�319. Online Available:

http://dl.acm.org/citation.cfm?id=645395.757559

[202] G. Barthe and S. Stratulat, �Validation of the JavaCard Platform with Implicit

Induction Techniques,� in RTA, 2003, pp. 337�351.

[203] M. Éluard, T. P. Jensen, and E. Denney, �An Operational Semantics of

the Java Card Firewall,� in Proceedings of the International Conference on

Research in Smart Cards: Smart Card Programming and Security, ser. E-SMART

'01. London, UK, UK: Springer-Verlag, 2001, pp. 95�110. Online Available:

http://dl.acm.org/citation.cfm?id=646803.706114

[204] J. L. Lanet and A. Requet, �Formal Proof of Smart Card Applets Correctness,�

in Proceedings of the The International Conference on Smart Card Research and

Applications. London, UK: Springer-Verlag, 2000, pp. 85�97. Online Available:

http://dl.acm.org/citation.cfm?id=646692.703437

[205] H. Meijer and E. Poll, �Towards a Full Formal Speci�cation of the JavaCard API,�

in Smart Card Programming and Security, ser. Lecture Notes in Computer Science,

I. Attali and T. Jensen, Eds. Springer Berlin / Heidelberg, 2001, vol. 2140, pp.

165�178, 10.1007/3-540-45418-7_14.

[206] V. Almaliotis, A. Loizidis, P. Katsaros, P. Louridas, and D. Spinellis, �Static Pro-

gram Analysis for Java Card Applets,� in CARDIS '08: Proceedings of the 8th IFIP

WG 8.8/11.2 international conference on Smart Card Research and Advanced Appli-

cations. Berlin, Heidelberg: Springer-Verlag, 2008, pp. 17�31.

[207] E. Biham and A. Shamir, �Di�erential Fault Analysis of Secret Key Cryptosystems,�

in Proceedings of the 17th Annual International Cryptology Conference on Advances

in Cryptology. London, UK: Springer-Verlag, 1997, pp. 513�525. Online Available:

http://dl.acm.org/citation.cfm?id=646762.706179

466

http://dl.acm.org/citation.cfm?id=645395.757559
http://dl.acm.org/citation.cfm?id=646803.706114
http://dl.acm.org/citation.cfm?id=646692.703437
http://dl.acm.org/citation.cfm?id=646762.706179

BIBLIOGRAPHY

[208] T. S. Messerges, E. A. Dabbish, and R. H. Sloan, �Investigations of power

analysis attacks on smartcards,� in Proceedings of the USENIX Workshop

on Smartcard Technology on USENIX Workshop on Smartcard Technology.

Berkeley, CA, USA: USENIX Association, 1999, pp. 17�17. Online Available:

http://dl.acm.org/citation.cfm?id=1267115.1267132

[209] S. P. Skorobogatov and R. J. Anderson, �Optical Fault Induction Attacks,� in

Revised Papers from the 4th International Workshop on Cryptographic Hardware and

Embedded Systems, ser. CHES '02. London, UK, UK: Springer-Verlag, 2003, pp.

2�12. Online Available: http://dl.acm.org/citation.cfm?id=648255.752727

[210] J.-J. Quisquater and D. Samyde, Eddy current for Magnetic Analysis with Active

Sensor. Springer, 2002.

[211] C. Aumüller, P. Bier, W. Fischer, P. Hofreiter, and J.-P. Seifert, �Fault Attacks on

RSA with CRT: Concrete Results and Practical Countermeasures,� in Cryptographic

Hardware and Embedded Systems - CHES 2002, ser. Lecture Notes in Computer

Science. Springer, 2003, vol. 2523, pp. 81�95, 10.1007/3-540-36400-5_20.

[212] �Joint Interpretation Library - Application of Attack Potential

to Smartcards,� Online, Tech. Rep., Apirl 2006. Online Avail-

able: http://www.ssi.gouv.fr/site_documents/JIL/JIL-The_application_o_f_

attack_potential_to_smartcards_V2-1.pdf

[213] O. Vertanen, �Java Type Confusion and Fault Attacks,� in Fault Diagnosis and

Tolerance in Cryptography, ser. Lecture Notes in Computer Science, L. Breveglieri,

I. Koren, D. Naccache, and J.-P. Seifert, Eds. Springer Berlin / Heidelberg, 2006,

vol. 4236, pp. 237�251, 10.1007/11889700_21.

[214] A. Lemarechal, �Introduction to fault attacks on smartcard,� in On-Line Testing

Symposium, 2005. IOLTS 2005. 11th IEEE International, july 2005, p. 116.

[215] J. Hogenboom and W. Mostowski, �Full Memory Read Attack on a Java Card,� in 4th

Benelux Workshop on Information and System Security, O. Pereira, J.-J. Quisquater,

and F.-X. Standaert, Eds. Belgium: Springer, November 2009.

[216] A. A. Sere, J. Iguchi-Cartigny, and J.-L. Lanet, �Automatic Detection of Fault Attack

and Countermeasures,� in Proceedings of the 4th Workshop on Embedded Systems

Security, ser. WESS '09. New York, NY, USA: ACM, 2009, pp. 71�77.

[217] G. Barbu, G. Duc, and P. Hoogvorst, �Java Card Operand Stack: Fault Attacks,

Combined Attacks and Countermeasures,� in The tenth Smart Card Research and

Advanced Application IFIP Conference (CARDIS2011), ser. LNCS, E. Prou�, Ed.

Belgium: Sp, September 2011.

[218] G. Barbu and H. Thiebeauld, �Synchronized Attacks on Multithreaded Systems -

Application to Java Card 3.0-,� in The tenth Smart Card Research and Advanced

Application IFIP Conference (CARDIS2011), ser. LNCS, E. Prou�, Ed. Springer,

September 2011.

[219] G. Bou�ard, J. Iguchi-Cartigny, and J.-L. Lanet, �Combined Software and Hardware

Attacks on the Java Card Control Flow,� in The tenth Smart Card Research and

467

http://dl.acm.org/citation.cfm?id=1267115.1267132
http://dl.acm.org/citation.cfm?id=648255.752727
http://www.ssi.gouv.fr/site_documents/JIL/JIL-The_application_o_f_attack_potential_to_smartcards_V2-1.pdf
http://www.ssi.gouv.fr/site_documents/JIL/JIL-The_application_o_f_attack_potential_to_smartcards_V2-1.pdf

BIBLIOGRAPHY

Advanced Application IFIP Conference (CARDIS2011), ser. LNCS, E. Prou�, Ed.

Belgium: Springer, September 2011.

[220] A. A. Sere, J. Iguchi-Cartigny, and J.-L. Lanet, �Evaluation of Countermeasures

Against Fault Attacks on Smart Cards,� in International Journal of Security and its

Applications, vol. 5, no. 2, April 2011.

[221] O. Derouet. (2007, September) Secure Smartcard Design Againist Laser Fault

In. (Invited Speaker) 4th Workshop on Fault Diagnosis and Tolerance in

Cryptography (FDRC 2007). IEEE-CS. Vienna, Austria. Online Available:

http://conferenze.dei.polimi.it/FDTC07/Derouet_remaster.pdf

[222] S.-K. Kim, T. H. Kim, D.-G. Han, and S. Hong, �An e�cient CRT-

RSA algorithm secure against power and fault attacks,� Journal of Systems

and Software, vol. 84, no. 10, pp. 1660�1669, 2011. Online Available:

http://linkinghub.elsevier.com/retrieve/pii/S0164121211001014

[223] S. Liu, B. King, and W. Wang, �A CRT-RSA Algorithm Secure against

Hardware Fault Attacks,� 2006 2nd IEEE International Symposium on Dependable

Autonomic and Secure Computing, pp. 51�60, 2006. Online Available: http:

//ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4030866

[224] E. Trichina and R. Korkikyan, �Multi Fault Laser Attacks on Protected CRT-

RSA,� 2010 Workshop on Fault Diagnosis and Tolerance in Cryptography, pp.

75�86, 2010. Online Available: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.

htm?arnumber=5577278

[225] S. Zhou, B. R. Childers, and N. Kumar, �Pro�le Guided Management of Code Parti-

tions for Embedded Systems,� in DATE '04: Proceedings of the conference on Design,

automation and test in Europe. Washington, DC, USA: IEEE Computer Society,

2004, p. 21396.

[226] T. Zhang, S. Pande, and A. Valverde, �Tamper-resistant Whole Program Partition-

ing,� in LCTES '03: Proceedings of the 2003 ACM SIGPLAN conference on Lan-

guage, compiler, and tool for embedded systems. New York, NY, USA: ACM, 2003,

pp. 209�219.

[227] X. Zhuang, T. Zhang, H.-H. S. Lee, and S. Pande, �Hardware Assisted Control Flow

Obfuscation for Embedded Processors,� in CASES '04: Proceedings of the 2004 inter-

national conference on Compilers, architecture, and synthesis for embedded systems.

New York, NY, USA: ACM, 2004, pp. 292�302.

[228] G. Bou�ard, J.-L. Lanet, J.-B. Machemie, J.-Y. Poichotte, and J.-P. Wary, �Evalu-

ation of the Ability to Transform SIM Application into Hostile Application,� in the

Tenth Smart Card Research and Advanced Application Conference (CARDIS 2011,

ser. LNCS, E. Prou�, Ed. Leuven, Belgium: Springer, September 2011.

[229] J. Loinig, C. Steger, R. Weiss, and E. Haselsteiner, �Identi�cation and Veri�cation

of Security Relevant Functions in Embedded Systems Based on Source Code Anno-

tations and Assertions,� in Information Security Theory and Practices. Security and

Privacy of Pervasive Systems and Smart Devices, ser. Lecture Notes in Computer

468

http://conferenze.dei.polimi.it/FDTC07/Derouet_remaster.pdf
http://linkinghub.elsevier.com/retrieve/pii/S0164121211001014
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4030866
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4030866
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5577278
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5577278

BIBLIOGRAPHY

Science, P. Samarati, M. Tunstall, J. Posegga, K. Markantonakis, and D. Sauveron,

Eds. Springer, 2010, vol. 6033, pp. 316�323, 10.1007/978-3-642-12368-9_25.

[230] A.-A.-K. Séré, J. Iguchi-Cartigny, and J.-L. Lanet, �Checking the Paths to Iden-

tify Mutant Application on Embedded Systems,� in Future Generation Information

Technology - Second International Conference (FGIT 2010), ser. Lecture Notes in

Computer Science, T.-H. Kim, Y.-H. Lee, B. H. Kang, and D. Slezak, Eds., vol.

6485. Jeju Island, Korea,: Springer, December 2010, pp. 459�468.

[231] K. Markantonakis, �Secure Logging Mechanisms for Smart Cards,� Ph.D. disserta-

tion, Royal Holloway, University of London, Egham, United Kingdom, December

1999.

[232] �Advanced Security for Personal Communications Technology (ASPeCT).� Online

Available: http://www.esat.kuleuven.be/cosic/aspect/

[233] Failures-Divergence Re�nement, Formal Systems (Europe) Ltd, June 2005. Online

Available: www.fsel.com

469

http://www.esat.kuleuven.be/cosic/aspect/
www.fsel.com

	Introduction
	Setting the Scene
	A Brief History of Smart Cards
	Motivation and Challenges
	Contributions
	Structure of the Thesis

	User Centric Tamper-Resistant Device
	Introduction
	Rationale for a User Centric Tamper-Resistant Device
	Smart Card Environment
	Hand-held Devices
	Traditional Computing Devices

	Candidates for User Centric Tamper-Resistant Device
	Trusted Platform Module
	AEGIS
	ARM TrustZone
	M-Shield
	GlobalPlatform Trusted Execution Environment (TEE)
	Trusted Personal Devices
	Comparative Analysis

	The User Centric Tamper-Resistant Device
	Smart Card Management Initiatives
	User Centricity in the Smart Card Industry

	Case Studies
	One Card - All Services
	Authentication Gateway (Single Sign On)
	E-Commerce
	Online Gaming

	Summary

	Smart Card Ownership Models
	Introduction
	Issuer Centric Smart Card Ownership Model (ICOM)
	Advantages of the ICOM
	Drawbacks of the ICOM

	Frameworks for the ICOM
	Multos
	Java Card
	GlobalPlatform
	Other Proposals

	User Centric Smart Card Ownership Model (UCOM)
	Supplier
	Cardholder
	User Centric Smart Card (UCSC)
	Card Application Management Software (CAMS)
	Host Device
	Service Provider (SP)
	Service Access Point (SAP)

	Security and Operational Requirements of the UCOM
	General Requirements
	Cardholder's Requirements
	User Centric Smart Card's Requirements
	Service Provider's Requirements

	Coopetitive Architecture
	Summary

	User Centric Smart Card Architecture
	Introduction
	Platform Architecture
	Spaces
	Card Security Manager
	Card Services Manager
	Cardholder's Security Manager
	Subscription Manager

	Trusted Environment & Execution Manager
	Interface
	Backup Token Handler
	Runtime Security Manager
	Attestation Handler
	Self-test Manager

	Security Assurance and Validation Mechanism
	Common Criteria
	Assurance Phase
	Validation Phase

	Attestation Mechanisms
	Non-simulatable PUFs
	Pseudorandom Number Generator
	Challenge-Response Pair Generation

	Device Ownership
	Administrative Ownership
	User Ownership
	Ownership Acquisition & Delegation
	Key Generation

	Attestation Protocol
	Protocol Prerequisites
	Protocol Goals
	Intruder's Capabilities
	Protocol Notation and Terminology
	Protocol Description

	Protocol Analysis
	Informal Analysis
	Protocol Verification by CasperFDR
	Implementation Results & Performance Measurements
	Related Work

	Summary

	Smart Card Management Architecture
	Introduction
	GlobalPlatform Card Management Framework
	Architecture Overview
	Support for Trusted Service Manager Architecture

	Multos Card Management Framework
	Architecture Overview
	Support for Trusted Service Manager Architecture

	Proposed Smart Card Management Framework
	Administrative Management Architecture
	User Management Architecture
	Types of Application Leases
	Possible Relationships between a Cardholder and an SP
	Application Installation
	Application Deletion

	Card Management-Related Issues
	Simulator Problem
	User Ownership Issues
	Parasite Application Problem

	Summary

	Secure and Trusted Channel Protocol
	Introduction
	Secure Channel Protocols
	Rationale
	Related Work
	Minimum Security and Operational Goals
	Protocol Notation and Terminology
	Pre-protocol Process
	Protocol Assumptions

	Secure and Trusted Channel Protocol — Service Provider
	Protocol Prerequisites
	Protocol Description

	Secure and Trusted Channel Protocol — Smart Card
	Protocol Description

	Application Acquisition and Contractual Agreement Protocol
	Enrolment Phase
	Protocol Prerequisites
	Protocol Description

	Analysis of the Proposed Protocols
	Informal Analysis of the Proposed Protocols
	CasperFDR Analysis of the Proposed Protocols
	Revisiting the Requirements and Goals
	Implementation Results and Performance Measurements

	Summary

	Application Sharing Mechanisms
	Introduction
	Application Sharing Mechanism
	Firewall Mechanism in Java Card
	Firewall Mechanism in Multos
	Rationale for User Centric Smart Card Firewall

	UCTD Firewall
	Firewall Architecture
	Application Binding
	Using Shareable Resources
	Privilege Modification
	Application-Platform Communication
	Cross-Device Application Sharing
	Minimum Goals and Requirements for the Proposed Protocols
	Protocol Notation and Terminology
	Enrolment Process

	Application Binding Protocol — Local
	Protocol Prerequisites
	Protocol Description

	Platform Binding Protocol
	Protocol Prerequisite
	Protocol Description

	Application Binding Protocol — Distributed
	Protocol Prerequisite
	Protocol Description

	Analysis of the Proposed Protocols
	Informal Analysis of the Proposed Protocols
	Revisiting the Requirements and Goals
	CasperFDR Analysis of the Proposed Protocols
	Implementation Results and Performance Measurements

	Summary

	Smart Card Runtime Environment
	Introduction
	Smart Card Runtime Environment
	Java Card Virtual Machine
	Related Work

	Runtime Protection Mechanism
	Motivation
	Attacker's Capability
	Overview of the Runtime Protection Mechanism
	Application Compilation
	Execution Environment
	Runtime Security Manager
	Runtime Security Counter-Measures

	Analysis of the Runtime Protection Mechanism
	Security Analysis
	Evaluation Context
	Latency Analysis
	Performance Analysis

	Summary

	Backup, Migration, and Decommissioning Mechanisms
	Introduction
	Backup and Migration Framework
	Backup Mechanism
	Migration Mechanism
	Analysis of the Backup and Migration Mechanism

	Application Deletion
	Existing Framework
	Application Deletion in the UCOM

	Decommissioning Process
	Summary

	Conclusions and Future Research Directions
	Summary and Conclusions
	Recommendations for Future Work

	Description of Protocols Used for Comparison
	Protocol Notation and Terminology
	Station-to-Station (STS) Protocol
	Aziz-Diffie (AD) Protocol
	ASPeCT Protocol
	Just-Fast-Keying (JFK) Protocol
	Trusted Transport Layer Protocol (T2LS) Protocol
	Secure Channel Protocol - 81 (SCP81) Protocol
	Markantonakis-Mayes (MM) Protocol
	Sirett-Mayes-Markantonakis (SM) Protocol

	CasperFDR Scripts
	Brief Introduction to the CasperFDR
	Protocol Definition
	System Definition

	Attestation Protocol
	Secure and Trusted Channel Protocol — Service Provider
	Secure and Trusted Channel Protocol — Smart Card
	Application Acquisition and Contractual Agreement Protocol
	Application Binding Protocol — Local
	Platform Binding Protocol
	Application Binding Protocol — Distributed

	Practical Implementation Source Code
	Offline Attestation Mechanism
	Offline PRNG Algorithm
	Offline PUF Algorithm

	Online Attestation Mechanism
	Online PRNG Algorithm
	Online PUF Algorithm

	Attestation Protocol
	Smart Card Implementation
	Card Manufacturer Implementation

	Secure and Trusted Channel Protocol — Service Provider
	Smart Card Implementation
	Service Provider Implementation

	Secure and Trusted Channel Protocol — Smart Card
	Smart Card Implementation
	Service Provider Implementation

	Application Acquisition and Contractual Agreement Protocol
	Smart Card Implementation
	Service Provider Implementation
	Administrative Authority Implementation

	Application Binding Protocol - Local
	Client Application
	Server Application
	TEM Handler

	Application Binding Protocol - Distributed
	Client Application
	Server Application

	Platform Binding Protocol
	Initiator Smart Card Implementation
	Responder Smart Card Implementation

	Abstract Virtual Machine
	Implementation Helper Classes
	Protocol Cryptographic Support
	CAMS Implementation
	Diffie-Hellman Group
	SHA256 Pseudorandom Number Generator

	Bibliography

