9,763 research outputs found

    Rate constants for the reaction of NO and HO2 with peroxy radicals formed from the reaction of OH, Cl or NO3 with alkenes, dienes and α,β-unsaturated carbonyls

    Get PDF
    Rate constants for the gas-phase reaction of NO and HO2 radicals with 33 peroxy radicals are presented. The peroxy radicals are derived from the addition of either OH, Cl, or NO3 radicals, followed by addition of O2, to a series of alkenes: tetrachloroethene, ethene, 2,3-dimethyl but-2-ene, butadiene, 2,3,4,5-tetramethyl hexa-2,4-diene, 1,1,2,3,4,4-hexachlorobutadiene, but-1-ene-3-one (methyl vinyl ketone) and 2,3-dimethylpen-2-ene-4-one. The rate constants were predicted using a correlation between the singly occupied molecular orbital (SOMO) energy of the peroxy radical and the logarithm of the rate constant for reaction with NO or HO2. A discussion of the accuracy of the method and the trends in the reactivity of the titled peroxy radicals is given. Peroxy radicals derived from halogenated alkenes have larger values of rate constants for reaction with NO relative to reaction with HO2, indicating that they are more likely to react with NO, rather than HO2, in the atmosphere. The reverse is true for peroxy radicals derived from alkylated alkenes

    Isoprene Peroxy Radical Dynamics

    Get PDF
    Approximately 500 Tg of 2-methyl-1,3-butadiene (isoprene) is emitted by deciduous trees each year. Isoprene oxidation in the atmosphere is initiated primarily by addition of hydroxyl radicals (OH) to C_4 or C_1 in a ratio 0.57 ± 0.03 (1σ) to produce two sets of distinct allylic radicals. Oxygen (O_2) adds to these allylic radicals either δ (Z or E depending on whether the allylic radical is cis or trans) or β to the OH group forming six distinct peroxy radical isomers. Due to the enhanced stability of the allylic radical, however, these peroxy radicals lose O_2 in competition with bimolecular reactions. In addition, the Z-δ hydroxy peroxy radical isomers undergo unimolecular 1,6 H-shift isomerization. Here, we use isomer-resolved measurements of the reaction products of the peroxy radicals to diagnose this complex chemistry. We find that the ratio of δ to β hydroxy peroxy radicals depends on their bimolecular lifetime (τ_(bimolecular)). At τ_(bimolecular) ≈ 0.1 s, a transition occurs from a kinetically to a largely thermodynamically controlled distribution at 297 K. Thus, in nature, where τ_(bimolecular) > 10 s, the distribution of isoprene hydroxy peroxy radicals will be controlled primarily by the difference in the relative stability of the peroxy radical isomers. In this regime, β hydroxy peroxy radical isomers comprise ∼95% of the radical pool, a much higher fraction than in the nascent (kinetic) distribution. Intramolecular 1,6 H-shift isomerization of the Z-δ hydroxy peroxy radical isomers produced from OH addition to C_4 is estimated to be ∼4 s^(–1) at 297 K. While the Z-δ isomer is initially produced in low yield, it is continually reformed via decomposition of the β hydroxy peroxy radicals. As a result, unimolecular chemistry from this isomer contributes about half of the atmospheric fate of the entire pool of peroxy radicals formed via addition of OH at C_4 for typical atmospheric conditions (τ_(bimolecular) = 100 s and T = 25 C). In contrast, unimolecular chemistry following OH addition at C_1 is slower and less important

    Hohenpeissenberg Photochemical Experiment (HOPE 2000) : measurements and photostationary state calculations of OH and peroxy radicals

    Get PDF
    Measurements of OH, total peroxy radicals, non-methane hydrocarbons (NMHCs) and various other trace gases were made at the Meteorological Observatory Hohenpeissenberg in June 2000. The data from an intensive measurement period characterised by high solar insolation (18-21 June) are analysed. The maximum midday OH concentration ranged between 4.5x106 molecules cm-3 and 7.4x106 molecules cm-3. The maximum total ROx (ROx =OH+RO+HO2+RO2) mixing ratio increased from about 55 pptv on 18 June to nearly 70 pptv on 20 and 21 June. A total of 64 NMHCs, including isoprene and monoterpenes, were measured every 1 to 6 hours. The oxidation rate of the NMHCs by OH was calculated and reached a total of over 14x106 molecules cm-3 s-1 on two days. A simple photostationary state balance model was used to simulate the ambient OH and peroxy radical concentrations with the measured data as input. This approach was able to reproduce the main features of the diurnal profiles of both OH and peroxy radicals. The balance equations were used to test the effect of the assumptions made in this model. The results proved to be most sensitive to assumptions about the impact of unmeasured volatile organic compounds (VOC), e.g. formaldehyde (HCHO), and about the partitioning between HO2 and RO2. The measured OH concentration and peroxy radical mixing ratios were reproduced well by assuming the presence of 3 ppbv HCHO as a proxy for oxygenated hydrocarbons, and a HO2/ RO2 ratio between 1:1 and 1:2. The most important source of OH, and conversely the greatest sink for peroxy radicals, was the recycling of HO2 radicals to OH. This reaction was responsible for the recycling of more than 45x106 molecules cm-3 s-1 on two days. The most important sink for OH, and the largest source of peroxy radicals, was the oxidation of NMHCs, in particular, of isoprene and the monoterpenes

    Computed Pre-reactive Complex Association Lifetimes Explain Trends in Experimental Reaction Rates for Peroxy Radical Recombinations

    Get PDF
    The lifetimes of pre-reactive complexes, although implicitly part of the equations used to model many gas-phase bimolecular reactions, have seldom been included in quantitative calculations of rate coefficients. Here, we demonstrate the application of empirical molecular dynamics simulations of collisions between peroxy radicals to model association lifetimes. With the exception of the methyl peroxy−acetyl peroxy system, measurements of the lifetimes based on a phenomenological model are shown to correlate well with available experimental data for recombination reactions of peroxy radicals in cases where the rate-limiting transition state lies below the reactants in energy. Further, we predict reaction rates for larger α-pinene-derived peroxy radicals, and we interpret our results in tandem with available experimental data on these systems, which are of great relevance to improve our understanding of atmospheric aerosol formation.Peer reviewe

    Investigation of the reactivity of organic materials in liquid oxygen

    Get PDF
    Measurements of impact-ignition sensitivity and studies of the relative reactivity of t-butoxy and t-butyl peroxy radicals toward a variety of organic compounds reveal improved methods of selection of materials for safe use in a liquid oxygen environment

    Photochemical production and loss rates of ozone at Sable Island, Nova Scotia during the North Atlantic Regional Experiment (NARE) 1993 summer intensive

    Get PDF
    Three weeks of summertime surface‐based chemical and meteorological observations at Sable Island, Nova Scotia during the North Atlantic Regional Experiment (NARE) 1993 summer intensive are used to study instantaneous photochemical production and loss rates of ozone by means of a numerical photochemical model. Results are most sensitive to the averaging scheme of data used to constrain the model and the ambient variability of the measurements. Model simulations driven by a time series of 5 min averaged data, most representative of the chemistry at the site, yield an average net photochemical ozone production of 3.6 ppbv/d. Estimates of net ozone production designed to filter out local sources, by using 1000–1400 LT median values of observations to drive the model and by excluding short‐lived hydrocarbons, give values ranging from 1 to 4 ppbv/d. These positive values of net ozone production within the marine boundary layer over Sable Island demonstrate the impact of polluted continental plumes on the background photochemistry of the region during the intensive. The dominant ambient variables controlling photochemical production and loss rates of ozone at the site during the measurement campaign appear to be levels of nitrogen oxides, ozone, nonmethane hydrocarbons, and solar intensity determined by cloud cover. The model partitioning of nitrogen oxides agrees for the most part with measurements, lending credence to calculated photochemical production and loss rates of ozone as well as inferred levels of peroxy radicals not measured at the site. Discrepancies, however, often occur during episodes of intermittent cloud cover, fog, and rain, suggesting the influence of cloud processes on air masses reaching the site
    corecore