

Birkbeck ePrints

Birkbeck ePrints: an open access repository of the research output of Birkbeck College

http://eprints.bbk.ac.uk

King, Martin D. and Thompson, Katherine C. (2003) Rate constants for the reaction of NO and HO₂ with peroxy radicals formed from the reaction of OH, CI or NO₃ with alkenes, dienes and α , β -unsaturated carbonyls. *Atmospheric Environment* **37** (32) 4517-4527.

This is an author-produced version of a paper published in *Atmospheric Environment* (ISSN 1352-2310). This version has been peer-reviewed but does not include the final publisher proof corrections, published layout or pagination.

All articles available through Birkbeck ePrints are protected by intellectual property law, including copyright law. Any use made of the contents should comply with the relevant law.

Citation for this version:

King, Martin D. and Thompson, Katherine C. (2003) Rate constants for the reaction of NO and HO₂ with peroxy radicals formed from the reaction of OH, CI or NO₃ with alkenes, dienes and α , β -unsaturated carbonyls. *London: Birkbeck ePrints.* Available at: <u>http://eprints.bbk.ac.uk/archive/00000236</u>

Citation for the publisher's version:

King, Martin D. and Thompson, Katherine C. (2003) Rate constants for the reaction of NO and HO₂ with peroxy radicals formed from the reaction of OH, CI or NO₃ with alkenes, dienes and α , β -unsaturated carbonyls. *Atmospheric Environment* **37** (32) 4517-4527.

Rate constants for the reaction of NO and HO₂ with peroxy radicals formed from the reaction of OH, Cl or NO₃ with alkenes, dienes and α , β -unsaturated carbonyls

Martin D. King^{a1} and Katherine C. Thompson^{b2}

a. Department of Chemistry, King's College London, The Strand, London, WC2R 2LS, U.K.

b. Division of Physical and Inorganic Chemistry, Carnelley Building, University of Dundee, DD1 4HN, U.K.

1. Present address Department of Geology, Royal Holloway University of London, Egham, Surrey

TW20 0EX

2. Present address School of Biological and Chemical Sciences, Birkbeck University of London, Gordon House, 29 Gordon Square, London, WC1H OPP,

Abstract

Rate constants for the gas-phase reaction of NO and HO₂ radicals with 33 peroxy radicals are presented. The peroxy radicals are derived from the addition of either OH, Cl, or NO₃ radicals, followed by addition of O₂, to a series of alkenes: tetrachloroethene, ethene, 1,2–dimethyl but–2–ene, butadiene, 2,3,4,5–tetramethyl hexa–1,3–diene, 1,1,2,3,4,4–hexachlorobutadiene but–1–ene–3–one (methyl vinyl ketone) and 2,3–dimethylpen–2–ene–4–one. The rate constants were predicted using a correlation between the singly occupied molecular orbital (SOMO) energy of the peroxy radical and the logarithm of the rate constant for reaction with NO or HO₂. A discussion of the accuracy of the method and the trends in the reactivity of the titled peroxy radicals is given. Peroxy radicals derived from halogenated alkenes have larger values of rate constants for reaction with NO relative to reaction with HO₂, indicating that they are more likely to react with NO, rather than HO₂, in the atmosphere. The reverse is true for peroxy radicals derived from alkylated alkenes.

Keywords

HOMO energy, SOMO energy, Halogenated alkenes, Alkylated alkenes, Troposphere oxidation, peroxy radical.

1.Introduction

Organic peroxy radicals are formed in the atmosphere during the oxidation of organic species (Alfassi, 1997; Fowler et al., 1997; Lightfoot et al., 1992; Wayne, 2000). Alkenes are an important group of organic pollutants produced by biogenic and anthropogenic sources(Finlayson-Pitts and Pitts, 2000; Wayne, 2000). The addition of atmospheric oxidants, hydroxyl, nitrate or chlorine radicals, to the double bond of these species leads to an alkyl radical which, in the presence of oxygen, forms an organic peroxy radical, RO₂ (Alfassi, 1997; Lightfoot et al., 1992; Wallington et al., 1997). Under the correct conditions the peroxy radical forms part of a chain reaction leading to ozone formation (Fowler *et al.*, 1997). The reaction of NO with RO_2 (1) leads to NO_2 formation, thus the reaction of RO_2 with NO is a propagating reaction in the ozone formation cycle, whereas the reaction of RO_2 with HO_2 (2) is a terminating reaction.(Alfassi, 1997; Fowler et al., 1997; Lightfoot et al., 1992)

$$RO_2 + NO \rightarrow RO + NO_2$$
 (1)

$$RO_2 + HO_2 \rightarrow ROOH + O_2 \tag{2}$$

Hence, the concentrations of HO₂ and NO in the atmosphere and the reactivity of a peroxy radical towards NO or HO₂ are important in calculating the ozone forming potential of an organic compound as it is oxidised in the atmosphere (Derwent et al., 1996; Derwent et al., 1998). Rate constants for the reaction of NO and HO₂ with a number of organic peroxy radicals are known (Alfassi, 1997; Lightfoot et al., 1992; Wallington et al., 1997). However peroxy radicals are difficult to synthesise, especially multifunction peroxy radicals resulting from the reaction of nitrate, hydroxyl or chlorine with an alkene, hence a method of estimating these rate constants would be extremely useful.

In this work, estimated values for the rate constants for the reaction of NO and HO_2 with 33 organic peroxy radicals are reported. The peroxy radicals studied are those that would result from the addition of OH, Cl or NO₃ to a double bond of an alkene followed by the subsequent addition of O_2 . The alkenes chosen are tetrachloroethene, ethene, 1,2-dimethyl but-2-ene, butadiene, 2,3,4,5-tetramethyl hexa-1,3-diene, 1,1,2,3,4,4-hexachlorobutadiene, but-1-ene-3-one (methyl vinyl ketone) and 1,1,2-trimethyl but-1-ene-3-one. The alkenes were chosen to represent a wide range of compounds and produce peroxy radicals likely to have very different reactivity towards the radicals NO and HO₂. Tetrachloroethene, ethene and 1,2-dimethyl but-2-ene, are alkenes which contain only one double bond. The addition of NO_3 , Cl or OH followed by the addition of O_2 to these alkenes produces only one peroxy radical isomer. In the case of the addition of X (X = NO_3 , Cl or OH) to 1,2-dimethyl but-2-ene:

and ethene:

However, the reaction of NO₃, Cl or OH with a conjugated diene, followed by addition of O₂, can lead to different peroxy radical isomers. The reaction of X with butadiene results in the resonance stabilised radical shown below:

The radical can add oxygen in one of two positions leading to two isomeric peroxy radicals:

(6)

Applying a similar mechanism to 2,3,4,5-tetramethyl hexa-1,3-diene results in the following two possible peroxy radical isomers.

(9)

and similarly for 1,1,2,3,4,4-hexachlorobutadiene,

(10)

Both of the peroxy radical isomers that can result from the addition of NO_3 , Cl or OH to a conjugated diene are considered in this paper to see if either isomer is more reactive with NO or HO₂. It is not the aim of this paper to predict the relative ratios of the peroxy radicals formed in reactions 7–10.

The reaction of α , β -unsaturated carbonyl compounds with NO₃, Cl and OH is similar to that of monoalkenes except that there is a strong tendency for the radical to add to the β -carbon. Thus, for methyl vinyl ketone the following peroxy radical is formed:

The aim of this work is to determine the reaction rate constants for the reaction of the peroxy radicals formed in reactions 4-6 and 8-12 with NO and HO₂. The method used to determine the value of the rate constants will now be explained.

A correlation exists between the singly occupied molecular orbital (SOMO) energy, E_{SOMO} , of an organic peroxy radical and the logarithm of the rate constants for the reaction between NO or HO₂ and the organic peroxy radical. The correlation takes the mathematical form:

$$-\ln (k / \text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}) = -m E_{\text{SOMO}} + c \tag{I}$$

where the values of *m* and *c* are determined based on experimentally measured values for the rate constants, *k*, and values of E_{SOMO} that have been calculated using quantum mechanical methods. The estimation technique is based on our previous work (King *et al.*, 2001), reported in this journal. The reactions between organic peroxy radicals and NO or HO₂ have been shown to be controlled by the frontier molecular orbitals, *i.e.* the important orbital interactions during the reaction are between the singly occupied molecular orbital (SOMO) of the organic peroxy radical and the SOMO of

NO or HO₂(King *et al.*, 2001). Our previous work,(King *et al.*, 2001), in which values of *m* and *c* for equation (I) were determined, was exploratory. The calculations used to determine values of E_{SOMO} were undertaken at a very modest level of theory (ROB3LYP/6-31G*//AM1) and the database of experimental rate constants for the reaction of organic peroxy radicals with NO and HO₂ used was not complete. We have therefore chosen to re-determine the coefficients *m* and *c* for equation (I) using a more robust level of theory to calculate E_{SOMO} and we have attempted to use all known experimental determinations of the value of rate constants of the reactions of NO or HO₂ with organic peroxy radicals. Information on frontier molecular orbital theory can be found in (Albright *et al.*, 1985; Dewar and Dougherty, 1975; Fleming, 1996) and information on the correlation of frontier orbital energies with the logarithm of rate constants can be found in (King *et al.*, 1999a; King *et al.*, 1999b; King *et al.*, 2001; Klopman, 1968; Marston *et al.*, 1999; Salem, 1968a; Salem, 1968b).

2. Method.

The NIST reaction data base (NIST standard reference data 17 version 7.0, web version public release 1.1)(NIST, 2000) was used to provide values of rate constants for the reactions of HO₂ and NO with organic peroxy radicals with which to determine the values of *m* and *c*. If more than one determination of a rate constant existed the IUPAC recommendation (2001 web version December 2001) based on evaluations (Atkinson *et al.*, 1997a; Atkinson *et al.*, 1997b; Atkinson *et al.*, 1999; Atkinson *et al.*, 2000; Atkinson *et al.*, 1997c) was used, otherwise the values were simply averaged. The database presented here is considerably larger than the previous work. The values of E_{SOMO} were calculated using the Gaussian 98 computer program (Frisch *et al.*, 1995)at the ROB3LYP/6-311+G(2d,p)/ROB3LYP/6-31+G(d,p) level of theory. Conformers of the peroxy radicals were investigated at the ROB3LYP/6-31G*//AM1 level of theory and the conformer with the lowest Self Consistent Field energy was used for the calculation of E_{SOMO} at the higher level of theory. Table 1 details the values of E_{SOMO} and *k* used to determine *m* and *c* by fitting to a re-arranged equation (I)

$$k = e^c \times e^{-mE_{\rm SOMO}} \tag{II}$$

with each data point receiving equal weighting. In our previous work (King *et al.*, 2001) equation (I) was used to calculate m and c.

3. Results

Table 1 contains the calculated SOMO energies of the peroxy radicals under study. Table 2 contains the predicted rate constants for the reaction of the peroxy radicals formed in reactions 4–6 and 8–12 with NO and HO₂. Figure 1 demonstrates the linear correlation (equation (I)) between the logarithm of rate constant and the E_{SOMO} for reactions of NO and HO₂ with organic peroxy radicals from table 1. Equation (II) is fitted to the data in figure 1 and the values of *m* and *c* displayed in table 3.

4. Discussion

The discussion presented here will focus on two aspects of the work. The first aspect will be the reliability of the correlation using equation (I) and the second will be the consideration of the reactivity of the peroxy radicals in table 2 towards NO and HO₂. The ability of the correlation to predict accurate rate constants can be estimated by comparing the rate constant predicted, $k_{\text{predicted}}$, with the experimentally measured rate constant, k_{measured} . Histograms of

 $\ln\left(\frac{k_{\text{predicted}}}{k_{\text{measured}}}\right)$ values were compiled for the reactions of the organic peroxy radicals shown table 1 with NO and HO₂

and are plotted in figures 3 and 4. A normal function was fitted to the distributions in figure 2. The mean of the normal function is a measure of over- or under-prediction of a rate constant (relative to a measured rate constant). For reactions

of peroxy radicals with NO and HO₂ the mean values of $\frac{k_{\text{predicted}}}{k_{\text{measured}}}$ are 1.01 and 0.931 respectively, (i.e. over predicts on

average by ~1% and under predicts by ~7% for NO and HO₂ respectively). The probabilities of predicting a rate constant within a factor of 2 of a measured rate constants using the data from table 1, are 92% and 86% for reaction with NO and HO₂ respectively. Although it should be acknowledged that the span of rate constants is quite small.

For the reaction of the peroxy radicals included in table 2 with NO and HO_2 , only four experimentally determined rate constants are reported in the literature (the values, and references, are included in table 1). The agreement between the values of the rate constants predicted in this work and the measured rate constants is excellent:

$$CH_{2}(OH)CH_{2}O_{2} + NO \longrightarrow products$$
(13)

$$k_{\text{measured}} = 9 \times 10^{-12} \text{ cm}^{3} \text{ molecule}^{-1} \text{ s}^{-1}, k_{\text{predicted}} = 10.1 \times 10^{-12} \text{ cm}^{3} \text{ molecule}^{-1} \text{ s}^{-1}$$
(14)

$$CH_{2}(OH)CH_{2}O_{2} + HO_{2} \longrightarrow products$$
(14)

$$k_{\text{measured}} = 1.0 \times 10^{-11} \text{ cm}^{3} \text{ molecule}^{-1} \text{ s}^{-1}, k_{\text{predicted}} = 0.916 \times 10^{-11} \text{ cm}^{3} \text{ molecule}^{-1} \text{ s}^{-1}$$

$$C(CH_3)_2(OH)C(CH_3)_2O_2 + HO_2 \longrightarrow \text{products}$$
(15)

$$k_{\text{measured}} = 2.01 \times 10^{-11} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}, k_{\text{predicted}} = 1.50 \times 10^{-11} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$$
(16)

$$CCl_3CCl_2(O_2) + \text{NO} \longrightarrow \text{products}$$
(16)

$$k_{\text{measured}} = 6.19 \times 10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}, k_{\text{predicted}} = 7.46 \times 10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$$

The peroxy radicals in table 2 range from fully chlorinated to fully methylated species and thus have associated values of E_{SOMO} that covers the full range of values expected for RO₂ radicals formed following the attack of OH, NO₃ and Cl radicals with alkenes commonly encountered in the atmosphere. Inspection of table 3 allows some interesting comments to be made about the reactivity of different types of peroxy radicals towards NO and HO₂.

First, a peroxy radical formed following the attack of a double bond by NO_3 has a larger value of rate constant for reaction with NO_2 , than has the peroxy radical formed if Cl or OH had added to the double bond, and in turn peroxy radicals formed following Cl addition tend to be more reactive towards NO and less reactive towards HO_2 than if OH had added to the double bond. Hence the reaction between NO_3 and an alkene (in the presence of oxygen) leads to a peroxy radical that is more likely to propagate atmospheric oxidation (reaction (1)) and form ozone than the attack of the alkene by Cl or OH radicals. This last statement assumes the only loss of these peroxy radicals is by reactions with HO_2 or NO.

Secondly, the isomeric peroxy radicals formed from the addition of X/O_2 to a conjugated diene (reactions 7 and 8), are quite different in their reactivity towards HO₂ and NO.

Thirdly, relative to the peroxy radicals formed from the addition of X/O_2 to butadiene and 2,3,4,5-tetramethyl hexa-1,3-diene, the peroxy radicals formed from the addition of X/O_2 to methyl vinyl ketone and 2,3-dimethyl pen-2-ene-4-one react more slowly with HO₂ and faster with NO. Thus, the peroxy radicals resulting from the addition of X/O_2 to a conjugated diene are more likely to cause chain termination than the peroxy radicals formed resulting from the addition of X/O_2 to a structurally similar α,β -unsaturated carbonyl.

Finally it should be noted that as the value of E_{SOMO} becomes more negative, the ratio $\frac{k(NO)}{k(HO_2)}$ becomes larger and

chain propagation (reaction (1)) becomes more important relative to chain termination (reaction (2)). Peroxy radicals substituted with electron donating chlorine groups have more negative E_{SOMO} values than those with electron donating k(NO)

methyl substituents. Thus, values of $\frac{k(NO)}{k(HO_2)}$ for chlorinated peroxy radicals are larger than form methylated peroxy

radicals, suggesting that heavily chlorinated peroxy radicals will favour reaction with NO rather than HO_2 in the atmosphere and hence the peroxy radicals will participate in chain propagating reactions, leading to increased ozone formation. Similarly, peroxy radicals substituted with electron donating groups will favour reaction with HO_2 radicals and hence will tend to participate in chain terminating reactions. The preceding two sentences should be read with caution, however, because whether a peroxy radical reacts NO or HO_2 in the atmosphere depends on both the ratio

$$\frac{k(NO)}{k(HO_2)}$$
 and on the ratio $\frac{[NO]}{[HO_2]}$. As shown in table 2, the largest value of $\frac{k(NO)}{k(HO_2)}$, 3.29, was for the peroxy

radical resulting from addition of NO_3/O_2 to $Cl_2C=CCl_2$ and the smallest value, 0.4, was for the peroxy radical resulting from the addition of OH/O_2 to 2,3,4,5-tetramethyl hexa-1,3-diene.

As can be seen from Figure 1, the rate of reaction of NO with an RO_2 radical increases with increasing SOMO energy of the RO_2 radical, whilst for the reaction of HO_2 with RO_2 , the converse is true, the rate of reaction decreases with increasing SOMO energy of RO_2 . Frontier molecular orbital theory explains this behavior in terms of the relative energies of the SOMO of the attacking species, either NO or HO_2 , and the SOMO energy of the RO_2 radicals. As shown by Fleming (1996) frontier molecular orbital theory predicts,

$$\ln\left(k/cm^{3}molecule^{-1}s^{-1}\right) \propto \frac{1}{E_{SOMO}(HO_{2}orNO) - E_{SOMO}(RO_{2})}$$
(III)

which over a small range of values of E_{SOMO} , may be approximated to equation (I). The SOMO energy of NO is higher than the SOMO energies of all the RO₂ radicals considered in this work, and the SOMO energy of the HO₂ radical is lower than all the SOMO energies of the RO₂ radicals considered. Thus, if the difference between the SOMO energies of NO and a particular RO₂ radical is small then the difference in the SOMO energies of HO₂ and the same RO₂ radical will inevitably be large. Consequently the reaction between NO and the RO₂ radical would have a larger rate constant than that for the reaction between HO₂ and the RO₂ radical. A fuller description of this explanation for the trends in reactivity of the organic peroxy radicals to NO and HO₂ has been explained by us previously, (King et al., 2001).

5. Acknowledgements MDK wishes to thank department of chemistry, Kings College London for supporting part of this work.

- 6 -

Peroxy Radical RO ₂	-E(SOMO)	$k(NO) / 10^{-12}$	Reference	<i>k</i> (HO ₂) / 10 ⁻¹²	Reference
	/ eV	cm ³ molecule ⁻¹ s ⁻¹		cm ³ molecule ⁻¹ s ⁻¹	
C(CH ₃) ₃ O ₂	3.6025	5.4	(Eberhard and Howard, 1997; Langer <i>et al.</i> , 1995a; Peeters <i>et al.</i> , 1992)		
$Cyclo-C_6H_{11}O_2$	3.6077	6.71	(Platz <i>et al.</i> , 1999a)	16.7	(Rowley <i>et al.</i> , 1992b)
$C(CH_3)_2(OH)C(CH_3)_2O_2$	3.6205			20.1	(Jenkin and Hayman, 1995)
$C(CH_3)_3C(CH_3)_2CH_2O_2$	3.6289	1.79	(Sehested et al., 1993)		
CH(CH ₃)(CH ₂ CH ₂ CH ₃)O ₂	3.6360	8	(Eberhard and Howard, 1997)		
$CH_3CH_2CH(CH_3)O_2$	3.6474				
Cyclo-C ₅ H ₉ O ₂	3.6513	11	(Eberhard and Howard, 1997)	16	(Crawford <i>et al.</i> , 1997; Rowley <i>et al.</i> , 1992b)
$CH(CH_3)_2O_2$	3.6586	9	IUPAC		
$C(CH_3)_3CH_2O_2$	3.6733	4.7	(Sehested <i>et al.</i> , 1993)	14.7	(Rowley <i>et al.</i> , 1992a)
$C_6H_5CH_2O_2$	3.7136	2.49	(Kenley and Hendry, 1982)	10.1	(Noziere <i>et al.</i> , 1994)
$CH_3CH_2CH_2O_2$	3.7182	9.4	IUPAC		
CH ₃ CH ₂ O ₂	3.7340	9	IUPAC	7.7	IUPAC
$CH_2 = CHCH_2O_2$	3.7800	10.5	(Veyret <i>et al.</i> , 1982)	5.6	(Boyd <i>et al.</i> , 1996b)
$C(OH)(CH_3)_2CH_2O_2$	3.8047	4.9	(Langer <i>et al.</i> , 1994)	14.2	(Boyd <i>et al</i> ., 1996a)
$CH_3SCH_2O_2$	3.8382	12	IUPAC		
CH ₃ O ₂	3.8406	7.5	IUPAC	5.2	IUPAC
CH ₃ OCH ₂ O ₂	3.9073	9.1	(Langer <i>et al.</i> , 1995b)		
$CH(CH_3O)_2OCH_2O_2$	3.9378	9	(Platz <i>et al.</i> , 1999b)		
$CH_3CF_2CH_2O_2$	3.9498	8.5	(Mogelberg <i>et al.</i> , 1995b)		
1,4-dioxan-2-yldioxy	3.9603	12	(Platz <i>et al.</i> , 1997)	1.7	(1 1: 1
$CH_3CH(OH)CH(CH_3)O_2$	3.9615	0	(2	15	(Jenkin and Hayman, 1995)
$CH_2 = C(CH_3)CH(CH_2OH)O_2$	3.9650	9	(Stevens <i>et al.</i> , 1999)	10	HIDAC
$CH_2(OH)O_2$	4.0442	5.6	(veyret <i>et al.</i> , 1982)	12	IUPAC
$L_{12}(OH)CH_{2}O2$	4.0485	58	(Platz at al 1008)	10	IUPAC
$CH_0C(\Omega)OCH_0Q_0$	4.0834	J.8 12	(Fiatz et al., 1998) (Bilde et al., 1997)		
$CH_2C(O)CH_2O_2$	4 1111	8	(Sehested <i>et al</i> 1998)	9	IUPAC
CFCl ₂ CH ₂ O ₂	4.2222	13	IUPAC	9.22	(Hayman and Battinleclerc, 1995)
CF ₂ ClCH ₂ O ₂	4.2570	12	IUPAC	6.79	(Hayman and Battinleclerc, 1995)
CH ₂ BrO ₂	4.2758	11	IUPAC	6.71	(Villenave and Lesclaux, 1995)
CF ₃ CH ₂ O ₂	4.2891	12	(Nielsen et al., 1994)		,
CH ₂ ClO ₂	4.2934	19	IUPAC	5	IUPAC
CH ₃ CH ₂ C(O)O ₂	4.3421	28	IUPAC		
CH ₂ FO ₂	4.3454	13	IUPAC		
$CH_3C(O)O_2$	4.3982	20	IUPAC	11	IUPAC
CHCl ₂ O ₂	4.5106			5.87	(Catoire <i>et al.</i> , 1996)

Table 1Calculated SOMO energies and experimentally determined rate constants for reaction of organic peroxy
radicals RO2 with NO and HO2.

CF ₃ CH ₂ OCH(CF ₃)O ₂	4.552	14.5	(Wallington <i>et al.</i> , 1998)		
CHF ₂ O ₂	4.5979	13	IUPAC		
CCl ₃ CCl ₂ O ₂	4.6012	6.19	(Mogelberg <i>et al.</i> , 1995d)		
CCl ₃ O ₂	4.6216	18	IUPAC	5.13	(Catoire <i>et al.</i> , 1996)
$CH(CF_3)_2O_2$	4.6233	11	(Mogelberg <i>et al.</i> , 1995c)		
CFCl ₂ O ₂	4.6913	15	IUPAC		
CF ₃ CHFO ₂	4.7231	13	IUPAC	3.8	IUPAC
$CF_3CCl_2O_2$	4.7465	18	IUPAC	1.9	IUPAC
CF ₃ CClHO ₂	4.7664	10	(Mogelberg <i>et al.</i> , 1995a)		
$CF_3C(O)OCH(CF_3)O_2$	4.7710	15	(Stein et al., 1999)		
CF ₂ ClO ₂	4.7767	15	IUPAC	3.4	(Hayman and Battinleclerc, 1995)
$CF(CF_3)_2O_2$	4.8273	20.9	(Mogelberg <i>et al.</i> , 1996))
CF ₃ CFClO ₂	4.8350	16.8	(Bhatnagar and Carr, 1995)		
CF ₃ O ₂	4.8714	16	IUPAC	2.9	(Hayman <i>et al.</i> , 1994)
CF ₃ CF ₂ O ₂	4.9253			1.2	(Hayman and Battinleclerc, 1995)
$C_6H_5C(O)O_2$	5.0102	16	(Caralp et al., 1999)		,
$CF_3C(O)O_2$	5.0943	26	(Maricq et al., 1996)		
CF(O)O ₂	5.1082	25.1	(Wallington <i>et al.</i> , 1994)		

Note where the reference is given as IUPAC it refers to the IUPAC Subcommittee on Gas Kinetic Data Evaluation for Atmospheric Chemistry Dec 2001, which is based on the original references (Atkinson *et al.*, 1997a; Atkinson *et al.*, 1997b; Atkinson *et al.*, 1999; Atkinson *et al.*, 2000; Atkinson *et al.*, 1997c).

Table 2Calculated SOMO energies and rate constants for reaction with NO or HO_2 for the peroxy radicals
formed by reactions 4–6 and 8–12. Values for rate constants calculated using equation (I) and values of *m*
and *c* in table 3.

Peroxy radical	X=	$-E_{\rm SOMO}$ / eV	$k / 10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ k_{yzz}		k_{NO}
-			NO	HO ₂	$\frac{N}{NO}$
					K _{HO2}
	OH	4.5441	14.2	5.15	2.76
X CI	Cl	4.6015	14.8	4.82	3.07
	ONO ₂	4.6379	15.2	4.62	3.29
$ C ^{\prime}/ ^{\prime}$	_				
, II	OH	4.0483	10.1	9.16	1.10
X H	Cl	4.0624	10.2	9.01	1.13
H H	ONO ₂	4.1547	10.8	8.10	1.33
H'_{I}	2				
H S S					
37 /	OH	3.6205	7.46	15.0	0.50
X	Cl	3.7778	8.33	12.5	0.67
$\rightarrow \leftarrow$	ONO ₂	3.9095	9.13	10.8	0.85
0-0	01102	0.000	,	1010	0.00
	OU	2.0552	0.42	10.2	0.02
0		3.7332 2.0695	9.42	10.2	0.92
O Ó		5.9085	9.51	10.0	0.95
v	ONO_2	4.0423	10.0	9.22	1.08
	OU	2 7509	0.17	12.0	0.62
$X \sim 20$	OH	3.7508	8.17	12.9	0.63
$\sim \sim 0$		3.8880	8.99	11.0	0.82
	ONO_2	3.9990	9.72	9.70	1.00
,0	OH	3.6559	7.65	14.4	0.53
0	CI	3.7225	8.01	13.4	0.60
T	ONO_2	3.8591	8.81	11.4	0.77
X					
	OH	3.5010	6.86	17.3	0.40
	Cl	3.6175	7.44	15.1	0.49
	ONO ₂	3.6951	7.86	13.8	0.57
	-				
0	OH	4.1563	10.8	8.08	1.34
0-0	Cl	4.1547	10.8	8.10	1.33
	ONO ₂	4.3680	12.6	6.32	1.99
X \downarrow 0	2				
	OU	2.0216	9 6 4	11.0	0.72
,0	CI	3.8310	8.04	11.8	0.73
Q´		3.9938	9.68	9.76	0.99
V O	ONO_2	4.1008	10.4	8.62	1.21
$/$ $ $ $ $					
/					
_0	OH	4.2695	11.7	7.09	1.65
O Cl	Cl	4.3313	12.3	6.60	1.86
	ONO ₂	4.5396	14.1	5.24	2.69
	Ĩ				
			ļ	ļ	
Cl Cl Cl	OH	4.4447	13.3	5.78	2.30

Cl	4.5016	13.8	5.41	2.55
ONO ₂	4.5291	14.1	5.24	2.69

Table 3Values for m and c for the equation $-\ln (k / cm^3 \text{ molecule}^{-1} \text{ s}^{-1}) = -m E_{SOMO} + c$, for reactions of organic
peroxy radicals with NO and HO₂. Uncertainties are one standard deviation.DescriptionDescription

Reaction of RO ₂ with	m / eV	С
NO	0.698 ± 0.105	-28.150 ± 0.481
HO ₂	-1.160 ± 0.228	-20.727 ± 0.884

Figure 2 Histogram of the $\ln\left(\frac{k_{\text{predicted}}}{k_{\text{measured}}}\right)$ values for reactions of NO (a) and HO₂ (b) with organic peroxy radicals from table 1.

•

6. References

- Albright, T.A., J.K. Burdett, and M.-H. Whangbo, 1985 Orbital Interactions in Chemistry, John Wiley & Sons, New York.
- Alfassi, Z.B., 1997. Peroxyl Radicals, John Wiley and Sons Ltd, Chichester,
- Atkinson, R., D.L. Baulch, R.A. Cox, R.F. Hampson, J.A. Kerr, M.J. Rossi, and J. Troe, 1997a. Evaluated kinetic and photochemical data for atmospheric chemistry: Supplement VI - IUPAC subcommittee on gas kinetic data evaluation for atmospheric chemistry. Journal of Physical and Chemical Reference Data, 26 (6), 1329-1499.
- Atkinson, R., D.L. Baulch, R.A. Cox, R.F. Hampson, J.A. Kerr, M.J. Rossi, and J. Troe, 1997b. Evaluated kinetic, photochemical and heterogeneous data for atmospheric chemistry .5. IUPAC Subcommittee on Gas Kinetic Data Evaluation for Atmospheric Chemistry. Journal of Physical and Chemical Reference Data, 26 (3), 521-1011.
- Atkinson, R., D.L. Baulch, R.A. Cox, R.F. Hampson, J.A. Kerr, M.J. Rossi, and J. Troe, 1999. Evaluated kinetic and photochemical data for atmospheric chemistry, organic species: Supplement VII. Journal of Physical and Chemical Reference Data, 28 (2), 191-393.
- Atkinson, R., D.L. Baulch, R.A. Cox, R.F. Hampson, J.A. Kerr, M.J. Rossi, and J. Troe, 2000. Evaluated kinetic and photochemical data for atmospheric chemistry: Supplement VIII, halogen species - IUPAC Subcommittee on Gas Kinetic Data Evaluation for Atmospheric Chemistry. Journal of Physical and Chemical Reference Data, 29 (2), 167-266.
- Atkinson, R., D.L. Baulch, R.A. Cox, R.F.J. Hampson, J.A. Kerr, M.J. Rossi, and J. Troe, 1997c. Evaluated kinetic and photochemical data for atmospheric chemistry: Supplement V. Journal of Physical Chemistry Reference Data, 26 (3), 521–1011.
- Bhatnagar, A., and R.W. Carr, 1995. Temperature-Dependence of the Reaction of CF₃CFClO₂ Radicals With NO and the Unimolecular Decomposition of the CF₃CFClO Radical. Journal of Physical Chemistry, 99 (49), 17573-17577.
- Bilde, M., T.E. Mogelberg, J. Sehested, O.J. Nielsen, T.J. Wallington, M.D. Hurley, S.M. Japar, M. Dill, V.L. Orkin, T.J. Buckley, R.E. Huie, and M.J. Kurylo, 1997. Atmospheric chemistry of dimethyl carbonate: Reaction with OH radicals, UV spectra of CH₃OC(O)OCH₂ and CH₃OC(O)OCH₂O₂ radicals, reactions of CH₃OC(O)OCH₂O₂ with NO and NO₂, and fate of CH₃OC(O)OCH₂O radicals. Journal of Physical Chemistry a, 101 (19), 3514-3525.
- Boyd, A.A., R. Lesclaux, M.E. Jenkin, and T.J. Wallington, 1996a. A spectroscopic, kinetic, and product study of the (CH₃)₂C(OH)CH₂O₂ radical self-reaction and reaction with HO₂. Journal of Physical Chemistry, 100 (16), 6594-6603.
- Boyd, A.A., B. Noziere, and R. Lesclaux, 1996b. Kinetic studies of the allylperoxyl radical self-reaction and reaction with HO₂. Journal of the Chemical Society-Faraday Transactions, 92 (2), 201-206.
- Caralp, F., V. Foucher, R. Lesclaux, T.J. Wallington, and M.D. Hurley, 1999. Atmospheric chemistry of benzaldehyde: UV absorption spectrum and reaction kinetics and mechanisms of the C₆H₅C(O)O₂ radical. Physical Chemistry Chemical Physics, 1 (15), 3509-3517.
- Catoire, V., R. Lesclaux, W.F. Schneider, and T.J. Wallington, 1996. Kinetics and mechanisms of the self-reactions of CCl₃O₂ and CHCl₂O₂ radicals and their reactions with HO₂. Journal of Physical Chemistry, 100 (34), 14356-14371.
- Crawford, M.A., J.J. Szente, M.M. Maricq, and J.S. Francisco, 1997. Kinetics of the reaction between cyclopentylperoxy radicals and HO₂. Journal of Physical Chemistry a, 101 (29), 5337-5343.
- Derwent, R.G., M.E. Jenkin, and S.M. Saunders, 1996. Photochemical ozone creation potentials for a large number of reactive hydrocarbons under European conditions. Atmospheric Environment, 30 (2), 181-199.
- Derwent, R.G., M.E. Jenkin, S.M. Saunders, and M.J. Pilling, 1998. Photochemical ozone creation potentials for organic compounds in northwest Europe calculated with a master chemical mechanism. Atmospheric Environment, 32 (14-15), 2429-2441.
- Dewar, M.J.S., and R.C. Dougherty, 1975 The PMO theory of Organic Chemistry, Plenum Press, New York.
- Eberhard, J., and C.J. Howard, 1997. Rate coefficients for the reactions of some C-3 to C-5 hydrocarbon peroxy radicals with NO. Journal of Physical Chemistry a, 101 (18), 3360-3366.
- Finlayson-Pitts, B.J., and J.N.J. Pitts, 2000 Chemistry of the Upper and Lower Atmosphere, Academic Press, San Diego.
- Fleming, I., 1996 Frontier orbital and organic chemical reactions, John Wiley and Sons Ltd., Chichester.
- Fowler, D., M. Coyle, R. Anderson, J.S. Bowar, R.A. Burgess, J.N. Cape, R.A. Cox, R.G. Derwent, D. G.J., F. Greenfelt, R.M. Harrison, C.N. Hewitt, J. Hov, M.E. Jenkin, D.S. Lee, R.L. Maynard, S.A. Penkett, S. R.I., S. J.R., W. K.J., M.L. Williams, and P.J. Woods, 1997. Ozone in the united Kingdom Fourth Report of the photochemical oxidants review group, pp. 252, Department of the Environment, Transport and the Regions, Edinburgh,
- Frisch, M.J., G.W. Trucks, H.B. Schlegel, P.M.W. Gill, B.G. Johnson, M.A. Robb, J.R. Cheeseman, T. Keith, G.A. Peterson, J.A. Montgomery, K. Raghavachari, M.A. Al-Laham, V.G. Zakrzewski, J.V. Oritz, J.B. Foresman, J. Cioslowski, B.B. Stefanov, A. Nanayakkara, M. Challacombe, P. C.Y., P.Y. Ayala, W. Chen, W. M.W., J.L. Andres, E.S. Replogle, R. Gomperts, R.L. Martin, D.J. Fox, J.S. Binkley, D.J. Defrees, and J.A. Pople, 1995. Gaussian94, Gaussian Inc., Pittsburgh PA,

- Hayman, G.D., and F. Battinleclerc, 1995. Kinetics of the Reactions of the HO₂ Radical With Peroxyl Radicals Derived From Hydrochlorofluorocarbons and Hydrofluorocarbons. Journal of the Chemical Society-Faraday Transactions, 91 (9), 1313-1323.
- Hayman, G.D., M.E. Jenkin, T.P. Murrells, and C.E. Johnson, 1994. Tropospheric Degradation Chemistry of HCFC-123 (CF₃CHCl₂) - a Proposed Replacement Chlorofluorocarbon. Atmospheric Environment, 28 (3), 421-437.
- Jenkin, M.E., and G.D. Hayman, 1995. Kinetics of Reactions of Primary, Secondary and Tertiary Beta- Hydroxy Peroxyl Radicals - Application to Isoprene Degradation. Journal of the Chemical Society-Faraday Transactions, 91 (13), 1911-1922.
- Kenley, R.A., and D.G. Hendry, 1982. Generation of Peroxy-Radicals From Peroxynitrates (ROONO₂) Decomposition of Peroxybenzoyl Nitrate (Pbzn). Journal of the American Chemical Society, 104 (1), 220-224.
- King, M.D., C.E. Canosa-Mas, and R.P. Wayne, 1999a. Frontier molecular orbital correlations for predicting rate constants between alkenes and the tropospheric oxidants NO₃, OH and O₃. Physical Chemistry Chemical Physics, 1 (9), 2231-2238.
- King, M.D., C.E. Canosa-Mas, and R.P. Wayne, 1999b. A structure-activity relationship (SAR) for predicting rate constants for the reaction of NO₃, OH and O₃ with monoalkenes and conjugated dienes. Physical Chemistry Chemical Physics, 1 (9), 2239-2246.
- King, M.D., C.E. Canosa-Mas, and R.P. Wayne, 2001. Gas-phase reactions between RO₂ and NO, HO₂ or CH₃O₂: correlations between rate constants and the SOMO energy of the peroxy (RO₂) radical. Atmospheric Environment, 35 (12), 2081-2088.
- Klopman, G., 1968. Chemical Reactivity and the concept of charge- and frontier-controlled reactions. Journal of the American Chemical Society, 90 (2), 225–234.
- Langer, S., E. Ljungstrom, T. Ellermann, O.J. Nielsen, and J. Sehested, 1995a. Pulse-Radiolysis Study of Reactions of Alkyl and Alkylperoxy Radicals Originating From Methyl Tert-Butyl Ether in the Gas- Phase. Chemical Physics Letters, 240 (5-6), 499-505.
- Langer, S., E. Ljungstrom, T. Ellermann, O.J. Nielsen, and J. Sehested, 1995b. UV Absorption-Spectrum of CH₃OCH₂ Radicals and Kinetics of the Reaction of CH₃OCH₂O₂ Radicals With NO and NO₂ in the Gas-Phase. Chemical Physics Letters, 240 (1-3), 53-56.
- Langer, S., E. Ljungstrom, J. Sehested, and O.J. Nielsen, 1994. UV Absorption-Spectra, Kinetics and Mechanism For Alkyl and Alkyl Peroxy-Radicals Originating From t-Butyl Alcohol. Chemical Physics Letters, 226 (1-2), 165-170.
- Lightfoot, P.D., R.A. Cox, J.N. Crowley, M. Destriau, G.D. Hayman, M.E. Jenkin, G.K. Moortgat, and F. Zabel, 1992. Organic Peroxy-Radicals - Kinetics, Spectroscopy and Tropospheric Chemistry. Atmospheric Environment Part a-General Topics, 26 (10), 1805-1961.
- Maricq, M.M., J.J. Szente, G.A. Khitrov, and J.S. Francisco, 1996. The CF3C(O)O-2 radical. Its UV spectrum, self-reaction kinetics, and reaction with NO. Journal of Physical Chemistry, 100 (11), 4514-4520.
- Marston, G., P.S. Monks, and R.P. Wayne, 1999. Correlations between rate parameters and molecular properties. in General Aspects of Free Radical Chemistry, edited by Z. Alfassi, pp. 429–471, John Wiley and Sons, Chichester.
- Mogelberg, T.E., O.J. Nielsen, J. Sehested, and T.J. Wallington, 1995a. Atmospheric Chemistry of HCFC-133a the UV Absorption-Spectra of CF₃CClH and CF₃CClHO₂ Radicals, Reactions of CF₃CClHO2 With NO and NO₂, and Fate of CF₃CClHO Radicals. Journal of Physical Chemistry, 99 (36), 13437-13444.
- Mogelberg, T.E., O.J. Nielsen, J. Sehested, T.J. Wallington, and M.D. Hurley, 1995b. Atmospheric Chemistry of HFC-272ca - Spectrokinetic Investigation of the CH₃CF₂CH₂O₂ Radical, Its Reactions With NO and NO₂, and the Fate of the CH₃CF₂CH₂O Radical. Journal of Physical Chemistry, 99 (7), 1995-2001.
- Mogelberg, T.E., J. Platz, O.J. Nielsen, J. Sehested, and T.J. Wallington, 1995c. Atmospheric Chemistry of HFC-236fa Spectrokinetic Investigation of the CF₃CHO₂CF₃ Radical, Its Reaction With NO, and the Fate of the CF₃CHOCF₃ Radical. Journal of Physical Chemistry, 99 (15), 5373-5378.
- Mogelberg, T.E., J. Sehested, M. Bilde, T.J. Wallington, and O.J. Nielsen, 1996. Atmospheric chemistry of CF₃CFHCF₃ (HFC-227ea): Spectrokinetic investigation of the CF₃CFO₂CF₃ radical, its reactions with NO and NO₂, and fate of the CF₃CFOCF₃ radical. Journal of Physical Chemistry, 100 (21), 8882-8889.
- Mogelberg, T.E., J. Sehested, O.J. Nielsen, and T.J. Wallington, 1995d. Atmospheric Chemistry of Pentachloroethane (CCl₃CCl₂H) Absorption-Spectra of CCl₃CCl₂ and CCl₃CCl₂O₂ Radicals, Kinetics of the CCl₃CCl₂O₂+NO Reaction, and Fate of the CCl₃CCl₂O Radical. Journal of Physical Chemistry, 99 (46), 16932-16938.
- Nielsen, O.J., E. Gamborg, J. Sehested, T.J. Wallington, and M.D. Hurley, 1994. Atmospheric Chemistry of HFC-143a Spectrokinetic Investigation of the CF₃CH₂O₂, Its Reactions With NO and NO₂, and the Fate of CF₃CH₂O. Journal of Physical Chemistry, 98 (38), 9518-9525.
- NIST, 2000. Chemical Kinetics Database on the Web Standard Reference database 17 version 7.0., National Institute of Standards and Technology,

- Noziere, B., R. Lesclaux, M.D. Hurley, M.A. Dearth, and T.J. Wallington, 1994. A Kinetic and Mechanistic Study of the Self-Reaction and Reaction With HO₂ of the Benzylperoxy Radical. Journal of Physical Chemistry, 98 (11), 2864-2873.
- Peeters, J., J. Vertommen, and I. Langhans, 1992. Rate Constants of the Reactions of CF₃O₂, i-C₃H₇O₂ and t-C₄H₉O₂ With NO. Berichte Der Bunsen-Gesellschaft-Physical Chemistry Chemical Physics, 96 (3), 431-436.
- Platz, J., L.K. Christensen, J. Sehested, O.J. Nelson, T.J. Wallington, C. Sauer, I. Barnes, K.H. Becker, and R. Vogt, 1998. Atmospheric chemistry of 1,3,5-trioxane: UV spectra of c-C₃H₅O₃ and (c-C₃H₅O₃)O₂ radicals, kinetics of the reactions of (c-C₃H₅O₃)O₂ radicals with NO and NO₂, and atmospheric fate of the alkoxy radical (c-C₃H₅O₃)O. Journal of Physical Chemistry a, 102 (25), 4829-4838.
- Platz, J., J. Sehested, T. Mogelberg, O.J. Nielsen, and T.J. Wallington, 1997. Atmospheric chemistry of 1,4-dioxane -Laboratory studies. Journal of the Chemical Society-Faraday Transactions, 93 (16), 2855-2863.
- Platz, J., J. Sehested, O.J. Nielsen, and T.J. Wallington, 1999a. Atmospheric chemistry of cyclohexane: UV spectra of c-C₆H₁₁ center dot and (c-C₆H₁₁)O₂radicals, kinetics of the reactions of (c-C₆H₁₁)O₂ radicals with NO and NO₂, and the fate of the alkoxy radical (c-C₆H₁₁)O. Journal of Physical Chemistry a, 103 (15), 2688-2695.
- Platz, J., J. Sehested, O.J. Nielsen, and T.J. Wallington, 1999b. Atmospheric chemistry of trimethoxymethane, (CH₃O)₃CH; Laboratory studies. Journal of Physical Chemistry a, 103 (15), 2632-2640.
- Rowley, D.M., R. Lesclaux, P.D. Lightfoot, K. Hughes, M.D. Hurley, S. Rudy, and T.J. Wallington, 1992a. A Kinetic and Mechanistic Study of the Reaction of Neopentylperoxy Radicals With HO₂. Journal of Physical Chemistry, 96 (17), 7043-7048.
- Rowley, D.M., R. Lesclaux, P.D. Lightfoot, B. Noziere, T.J. Wallington, and M.D. Hurley, 1992b. Kinetic and Mechanistic Studies of the Reactions of Cyclopentylperoxy and Cyclohexylperoxy Radicals With HO₂. Journal of Physical Chemistry, 96 (12), 4889-4894.
- Salem, L., 1968a. Intermolecular orbital theory of the interacion between conjugated systems I. General theory. Journal of American Chemical Society, 90 (3), 543–552.
- Salem, L., 1968b. Intermolecular orbital theory of the interaction between conjugated systems II. Thermal and photochemical cycloadditions. Journal of American Chemical Society, 90 (3), 555–566.
- Sehested, J., L.K. Christensen, O.J. Nielsen, M. Bilde, T.J. Wallington, W.F. Schneider, J.J. Orlando, and G.S. Tyndall, 1998. Atmospheric chemistry of acetone: Kinetic study of the CH₃C(O)CH₂O₂+NO/NO₂ reactions and decomposition of CH₃C(O)CH₂O₂NO₂. International Journal of Chemical Kinetics, 30 (7), 475-489.
- Sehested, J., O.J. Nielsen, and T.J. Wallington, 1993. Absolute Rate Constants For the Reaction of NO With a Series of Peroxy-Radicals in the Gas-Phase At 295-K. Chemical Physics Letters, 213 (5-6), 457-464.
- Stein, T.N.N., L.K. Christensen, J. Platz, J. Sehested, O.J. Nielsen, and T.J. Wallington, 1999. Atmospheric chemistry of CF₃C(O)OCH₂CF₃: UV spectra and kinetic data for CF₃C(O)OCHCF₃ and CF₃C(O)OCHO₂CF3 radicals, and atmospheric fate of CF₃C(O)OCH(O)CF₃ radicals. Journal of Physical Chemistry a, 103 (29), 5705-5713.
- Stevens, P., D. L'Esperance, B. Chuong, and G. Martin, 1999. Measurements of the kinetics of the OH-initiated oxidation of isoprene: Radical propagation in the OH+isoprene+O₂+NO reaction system. International Journal of Chemical Kinetics, 31 (9), 637-643.
- Veyret, B., J.C. Rayez, and R. Lesclaux, 1982. Mechanism of the Photo-Oxidation of Formaldehyde Studied By Flash-Photolysis of CH₂O-O₂-NO Mixtures. Journal of Physical Chemistry, 86 (17), 3424-3430.
- Villenave, E., and R. Lesclaux, 1995. The UV Absorption-Spectra of CH₂Br and CH₂BrO₂ and the Reaction-Kinetics of CH₂BrO₂ With Itself and With HO₂ At 298k. Chemical Physics Letters, 236 (4-5), 376-384.
- Wallington, T.J., T. Ellermann, O.J. Nielsen, and J. Sehested, 1994. Atmospheric Chemistry of FCO_X Radicals Uv Spectra and Self- Reaction Kinetics of FCO and FC(O)O₂ and Kinetics of Some Reactions of FCO_X With O₂, O₃, and NO At 296 K. Journal of Physical Chemistry, 98 (9), 2346-2356.
- Wallington, T.J., A. Guschin, T.N.N. Stein, J. Platz, J. Sehested, L.K. Christensen, and O.J. Nielsen, 1998. Atmospheric chemistry of CF₃CH₂OCH₂CF₃: UV spectra and kinetic data for CF₃CHOCH₂CF₃ and CF₃CH(O₂)OCH₂CF₃ radicals and atmospheric fate of CF₃CH(O)OCH₂CF₃ radicals. Journal of Physical Chemistry a, 102 (7), 1152-1161.
- Wallington, T.J., O.J. Nielsen, and J. Sehested, 1997. Reaction of organic peroxy radicals in the gas phase. in Peroxyl Radicals, edited by Z.B. Alfassi, pp. 113–172, John Wiley and Sons Ltd, Chichester.
- Wayne, R.P., 2000 Chemistry of Atmospheres, Oxford University Press, Oxford.