110 research outputs found

    Nanogenerators in Korea

    Get PDF
    Fossil fuels leaded the 21st century industrial revolution but caused some critical problems such as exhaustion of resources and global warming. Also, current power plants require too much high cost and long time for establishment and facilities to provide electricity. Thus, developing new power production systems with environmental friendliness and low-cost is critical global needs. There are some emerging energy harvesting technologies such as thermoelectric, piezoelectric, and triboelectric nanogenerators, which have great advantages on eco-friendly low-cost materials, simple fabrication, and various operating sources. Since the introduction of various energy harvesting technologies, many novel designs and applications as power suppliers and physical sensors in the world have been demonstrated based on their unique advantages. In this Special Issue, we would like to address and share basic approaches, new designs, and industrial applications related to thermoelectric, piezoelectric, and triboelectric devices which are on-going in Korea. With this Special Issue, we aim to promote fundamental understanding and to find novel ways to achieve industrial product manufacturing for energy harvesters

    Research on Powering a Personal Heating Garment with a Hybrid Power Supply

    Get PDF
    Due to the extensive contribution of the fossil fuelsโ€™ combustion to the global warming, increasing attention has been drawn to reduce the carbon footprint of all sectors by moving toward green technologies. Accordingly, personal comfort systems (PCSs) are considered as a green substitute for the conventional heating, ventilation, and air conditioning (HVAC) systems in the buildings. Precisely, PCSs can address the thermal comfort of each individual in shared spaces, such as office buildings, with remarkably lower energy consumption than the HVAC systems. To clarify, they save energy by conditioning only the air surrounding each individual, leaving the unoccupied points of the buildings unconditioned. However, their main drawback is that they are mostly powered either by a fossil fuel based power supply (i.e. public electricity) or batteries, which to some extent offsets their eco-friendly feature. Regarding batteries, although they are not considered as a fossil fuel based power supply, they can cause negative environmental impact due to their constitutive elements (e.g. cobalt). Accordingly, in this thesis, it was proposed to develop a hybrid power supply comprising a renewable power source called a thermoelectric generator (TEG) and a rechargeable battery to reduce the carbon footprint of the PCSs. To illustrate, a TEG is considered as a promising thermal energy harvester, which captures the waste ambient heat and converts it into electricity. To put it another way, it employs the temperature difference between a hot and a cold object to generate electricity. In this research, this temperature difference was provided by a candle and the ambient air as the heat and cold sources, respectively. The main reason for using a candle as the heat source was that at room temperature none of the existing internal heat sources (e.g. radiators, hot pipe works) could provide the required temperature difference along the thermoelectric (TE) legs. As a result, the TE legs could not generate enough electricity to power a PCS. Regarding the rechargeable battery, it mainly served as a storage system to store the generated electricity by the TEG to release it on demand. In fact, this storage system performed a pivotal role between the TEG (as a green energy supply) and the electricity demand. To clarify, the generated electricity by a TEG is variable, depending on the temperature difference along its legs. Thus, to provide a reliable power for the studied PCS, usage of a storage system was inevitable. In addition, due to the low output current of the TEGs at the room temperature, the storage system also performed as a backup power supply to provide a constant current for the PCS. To develop the TEG part of the hybrid power supply, initially the life cycle impact of 14 thermoelectric materials were numerically studied from cradle to gate (i.e. raw materialโ€™s extraction to manufacturing the final material). The main aim of this numerical study was to select the most environmental friendly material out of the three TE types of inorganic, organic, and hybrid. The employed software for this life cycle impact assessment (LCIA) was GaBi v.4.4, and the results proved the greatest environmental damage of the inorganic type compared with the other two types. However, Bi2Te3 was an exceptional inorganic TE material that its life cycle impact was not only less than that of the other studied inorganic TE materials, but also far less than that of the studied organic and hybrid ones. According, an off-the-shelf TEG consisted of Bi2Te3 was selected for this research, and different integrating patterns were determined to couple six of that together. These patterns were considered based on providing enough temperature difference along the TE legs. Accordingly, three different patterns were developed namely, coating either the top half, or the bottom half, or fully the legs with the integrating substrate. To further improve the temperature difference along the legs, the thermal conductivity of the integrating substrate was manipulated by adding different fillers to it. Then, the thermoelectric effects of all of the developed samples were studied both numerically (i.e. computational modelling by COMSOL) and experimentally (i.e. laboratory tests). Based on the outcomes of both studies, coating only the top half of the legs with a low thermal conductivity substrate called polydimethylsiloxane (PDMS) resulted in the highest output power compared with the other two patterns. Accordingly, the TEG part of the hybrid power supply was fabricated with respect to the achieved optimal integrating substrate. Then, to further improve the temperature difference along the TE legs, two different heatsinks (pin-shaped and bumpy-shaped) were developed, and their performances were studied in the laboratory under three air flow conditions (0,1.2, and 2.4 m/s). The results proved the superiority of the pin-shaped heatsink to the bumpy-shaped one after being attached to the PDMS-based integrating substrate. Next, six of the considered off-the-shelf TEG were coupled together from the top half of their legs using the optimal developed PDMS-based integrating substrate. After that, the pre-developed pin-shaped heatsink was attached to the integrating substrate. Then, the integrated TEGs were coupled with a rechargeable battery to heat a pair of pre-developed heating armbands (i.e. the studied PCS). To test the heating performance of the armbands, they were tested in-field on eight subjects served as office workers in the heating season of March in the UK. The results revealed that at roughly 15 ยฐC to 16 ยฐC ambient temperature, 75% of the subjects felt warmer after 30 min of wearing the armbands. To specify, the armbands improved their average comfort level from slightly uncomfortable to slightly comfortable after 30 min of wearing them. Thus, not only this thesis developed a PCS concerning its conditioning performance, but also it addressed the sustainability aspect of its power supply. Accordingly, this thesis paves the way for further research on developing different types of renewable power supplies for any green technologies, including PCSs

    Stretchable Piezoelectric Power Generators Based on ZnO Thin Films on Elastic Substrates

    Full text link
    The paper describes a stretchable, microfabricated power generator that will be attached on the skin and will produce energy based on the movements of the human body. The device was fabricated on a polymeric, elastomeric, poly(dimethylsiloxane) (PDMS) sheet. It consists of a piezoelectric thin film of ZnO sandwiched between two stretchable gold electrodes. An innovative technique was used for the deposition of ZnO thin film on the gold electrode-coated polymeric substrate at low temperatures below 150C. This is the first attempt to use a uniform film of ZnO, for energy harvesting. The ZnO film had the thickness at the submicron scale and the surface at the centimeter scale. We demonstrated that under a strain of 8% the voltage output from this power generator was equal to 2 V, the power output was equal to 160 W and the corresponding power density was 1.27 mW/cm2. This device has great potential for application in power sensors attached on the human body, such as temperature sensors or wearable electrocardiography systems

    ์›จ์–ด๋Ÿฌ๋ธ” ์„ผ์„œ ๋ฐ ์—๋„ˆ์ง€ ์†Œ์ž์˜ ๊ณต๊ฐ„ ์‹ ํ˜ธ ๋ฐ ์—ด ์ „๋‹ฌ ์ฆ์ง„์„ ์œ„ํ•œ ๋‚˜๋…ธ๋ณตํ•ฉ์ฒด๋ฅผ ์ด์šฉํ•œ ๊ธฐ๊ณ„์  ์ˆœ์‘์„ฑ ํ–ฅ์ƒ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์ „๊ธฐยท์ •๋ณด๊ณตํ•™๋ถ€, 2020. 8. ํ™์šฉํƒ.Electronic skin (e-skin) that mimics mechanical and functional properties of human skin has a strong impact on the field of wearable electronics. Beyond being just wearable, e-skin seamlessly interfaces human, machine, and environment by perfectly adhering to soft and time-dynamic three-dimensional (3D) geometries of human skin and organs. Real-time and intimate access to the sources of physical and biological signals can be achieved by adopting soft or flexible electronic sensors that can detect pressure, strain, temperature, and chemical substances. Such extensions in accessible signals drastically accelerate the growth of the Internet of Things (IoT) and expand its application to health monitoring, medical implants, and novel human-machine interfaces. In wearable sensors and energy devices, which are essential building blocks for skin-like functionalities and self-power generation in e-skin, spatial signals and heat are transferred from time-dynamic 3D environments through numerous geometries and electrical devices. Therefore, the transfer of high-fidelity signals or a large amount of heat is of great importance in these devices. The mechanical conformability potentially enhances the signal/heat transfer by providing conformal geometries with the 3D sources. However, while the relation between system conformability and electrical signals has been widely investigated, studies on its effect on the transfer of other mechanical signals and heat remain in their early stages. Furthermore, because active materials and their designs for sensors and energy devices have been optimized to maximize their performances, it is challenging to develop ultrathin or soft forms of active layers without compromising their performances. Therefore, many devices in these fields suffer from poor spatial signal/heat transfer due to limited conformability. In this dissertation, to ultimately augment the functionalities of wearable sensors and energy devices, comprehensive studies on conformability enhancement via composite materials and its effect on signal/heat transfer, especially in pressure sensors and thermoelectric generators (TEGs), are conducted. A solution for each device is carefully optimized to reinforce its conformability, taking account of the structure, characteristics, and potential advantages of the device. As a result, the mechanical conformability of each device is significantly enhanced, improving signal/heat transfer and consequently augmenting its functionalities, which have been considered as tough challenges in each area. The effect of the superior conformability on signal/heat transfer is systematically analyzed via a series of experiments and finite element analyses. Demonstrations of practical wearable electronics show the feasibility of the proposed strategies. For wearable pressure sensors, ultrathin piezoresistive layers are developed using cellulose/nanowire nanocomposites (CNNs). The unique nanostructured surface enables unprecedentedly high sensor performances such as ultrahigh sensitivity, wide working range, and fast response time without microstructures in sensing layers. Because the ultrathin pressure sensor perfectly conforms to 3D contact objects, it transfers pressure distribution into conductivity distribution with high spatial fidelity. When integrated with a quantum dot-based electroluminescent film, the transferred high-resolution pressure distribution is directly visualized without the need for pixel structures. The electroluminescent skin enables real-time smart touch interfaces that can identify the user as well as touch force and location. For high-performance wearable TEGs, an intrinsically soft heat transfer and electrical interconnection platform (SHEP) is developed. The SHEP comprises AgNW random networks for intrinsically stretchable electrodes and magnetically self-assembled metal particles for soft thermal conductors (STCs). The stretchable electrodes lower the flexural rigidity, and the STCs enhance the heat exchange capability of the soft platform, maintaining its softness. As a result, a compliant TEG with SHEPs forms unprecedentedly conformal contact with 3D heat sources, thereby enhancing the heat transfer to the TE legs. This results in significant improvement in thermal energy harvesting on 3D surfaces. Self-powered wearable warning systems indicating an abrupt temperature increase with light-emitting alarms are demonstrated to show the feasibility of this strategy. This study provides a systematic and comprehensive framework for enhancing mechanical conformability of e-skin and consequently improving the transfer of spatial signals and energy from time-dynamic and complex 3D surfaces. The framework can be universally applied to other fields in wearable electronics that require improvement in signal/energy transfer through conformal contact with 3D surfaces. The materials, manufacturing methods, and devices introduced in this dissertation will be actively exploited in practical and futuristic applications of wearable electronics such as skin-attachable advanced user interfaces, implantable bio-imaging systems, nervous systems in soft robotics, and self-powered artificial tactile systems.์ธ๊ฐ„ ํ”ผ๋ถ€์˜ ๊ธฐ๊ณ„์  ํŠน์„ฑ ๋ฐ ๊ธฐ๋Šฅ์„ ๋ชจ๋ฐฉํ•˜๋Š” ์ „์žํ”ผ๋ถ€(electronic skin, e-skin)๋Š” ์›จ์–ด๋Ÿฌ๋ธ” ์ „์ž๊ธฐ๊ธฐ ๋ถ„์•ผ์˜ ํŠธ๋ Œ๋“œ๋ฅผ ๋ฐ”๊พธ๊ณ  ์žˆ๋‹ค. ๊ธฐ์กด์˜ ์›จ์–ด๋Ÿฌ๋ธ” ์ „์ž๊ธฐ๊ธฐ๊ฐ€ ๋‹จ์ง€ ์ฐฉ์šฉํ•˜๋Š”๋ฐ ๊ทธ์ณค๋‹ค๋ฉด, ์ „์žํ”ผ๋ถ€๋Š” ์ธ๊ฐ„์˜ ํ”ผ๋ถ€์™€ ์žฅ๊ธฐ ํ‘œ๋ฉด์— ์™„๋ฒฝํ•˜๊ฒŒ ๋ถ™์–ด ๋™์ž‘ํ•จ์œผ๋กœ์จ ๊ธฐ์กด์—๋Š” ์ ‘๊ทผ ๋ถˆ๊ฐ€๋Šฅ ํ–ˆ๋˜ ๋‹ค์–‘ํ•œ ์ƒ์ฒด ์‹ ํ˜ธ๋ฅผ ๋†’์€ ์‹ ๋ขฐ๋„๋กœ ๊ฐ์ง€ํ•˜๊ณ  ์ฒ˜๋ฆฌํ•  ์ˆ˜ ์žˆ๋‹ค. ์‹ค์‹œ๊ฐ„์œผ๋กœ ๊ฐ์ง€ ๊ฐ€๋Šฅํ•œ ์ƒ์ฒด ์‹ ํ˜ธ์˜ ํ™•์žฅ์€ ์‚ฌ๋ฌผ์ธํ„ฐ๋„ท(Internet of Things, IoT)์˜ ์„ฑ์žฅ์„ ํš๊ธฐ์ ์œผ๋กœ ๊ฐ€์†ํ™”ํ•˜๊ณ  ํ—ฌ์Šค์ผ€์–ด, ์˜๋ฃŒ์šฉ ์ž„ํ”Œ๋ž€ํŠธ, ์†Œํ”„ํŠธ ๋กœ๋ด‡ ๋ฐ ์ƒˆ๋กœ์šด ํœด๋จผ ๋จธ์‹  ์ธํ„ฐํŽ˜์ด์Šค๋กœ์˜ ์‘์šฉ์„ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•œ๋‹ค. ์ „์žํ”ผ๋ถ€์˜ ํ•„์ˆ˜์š”์†Œ์ธ ์„ผ์„œ์™€ ์—๋„ˆ์ง€ ์†Œ์ž์—์„œ๋Š” ์‚ผ์ฐจ์› ํ‘œ๋ฉด์˜ ๊ณต๊ฐ„์‹ ํ˜ธ์™€ ์—ด์—๋„ˆ์ง€๋ฅผ ์†์‹ค ์—†์ด ์ „๋‹ฌํ•˜๋Š” ๊ฒƒ์ด ๋งค์šฐ ์ค‘์š”ํ•˜๋‹ค. ์ด๋Ÿฌํ•œ ๊ณต๊ฐ„ ์‹ ํ˜ธ์™€ ์—ด์—๋„ˆ์ง€๋Š” ๋‹ค์–‘ํ•œ ๊ธฐํ•˜ ๊ตฌ์กฐ์™€ ์ „์ž์†Œ์ž๋ฅผ ๊ฑฐ์ณ ์ฒ˜๋ฆฌ ๊ฐ€๋Šฅํ•œ ์‹ ํ˜ธ๋กœ ์ „๋‹ฌ๋œ๋‹ค. ์ด ๊ณผ์ •์—์„œ 3์ฐจ์› ํ‘œ๋ฉด์— ๋นˆํ‹ˆ์—†์ด ๋ถ™๋Š” ๊ธฐ๊ณ„์  ์ˆœ์‘์„ฑ(mechanical conformability)์€ ๊ณต๊ฐ„์‹ ํ˜ธ์™€ ์—ด์—๋„ˆ์ง€๋ฅผ ์™œ๊ณก ์—†์ด ์ „๋‹ฌํ•˜๋Š” ๊ฒƒ์„ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•œ๋‹ค. ์ „์žํ”ผ๋ถ€์˜ ๊ธฐ๊ณ„์  ์ˆœ์‘์„ฑ์„ ์ฆ๊ฐ€์‹œํ‚ค๋Š” ๋ฐฉ๋ฒ•์€ ํฌ๊ฒŒ ๋‹ค์Œ๊ณผ ๊ฐ™์ด ๋‘ ๊ฐ€์ง€๋กœ ๋‚˜๋ˆŒ ์ˆ˜ ์žˆ๋‹ค. (1) ์ „์žํ”ผ๋ถ€๋ฅผ ๋‘๊ป˜๋ฅผ ๋‚ฎ์ถ”๋Š” ์ „๋žต๊ณผ (2) ์ „์žํ”ผ๋ถ€์˜ ์˜๋ฅ (Youngs modulus)์„ ๋‚ฎ์ถ”์–ด ๊ณ ๋ฌด์™€ ๊ฐ™์ด ๋ถ€๋“œ๋Ÿฝ๊ฒŒ ๋งŒ๋“œ๋Š” ์ „๋žต์ด๋‹ค. ํ•˜์ง€๋งŒ, ๊ธฐ์กด ์„ผ์„œ ๋ฐ ์—๋„ˆ์ง€ ์†Œ์ž๋ฅผ ์œ„ํ•œ ์žฌ๋ฃŒ์™€ ๋””์ž์ธ์ด ๊ฐ ์žฅ์น˜์˜ ์„ฑ๋Šฅ์„ ํ–ฅ์ƒ์‹œํ‚ค๋Š” ๊ฒƒ์— ์ดˆ์ ์ด ๋งž์ถ”์–ด์ ธ ์žˆ๊ธฐ ๋•Œ๋ฌธ์—, ๊ณ ์„ฑ๋Šฅ์„ ์œ ์ง€ํ•˜๋ฉด์„œ ๋งค์šฐ ์–‡๊ฑฐ๋‚˜ ์—ฐ์งˆ ํ˜•ํƒœ์˜ ์†Œ์ž๋ฅผ ๊ฐœ๋ฐœํ•˜๋Š” ๊ฒƒ์€ ๋งค์šฐ ๋„์ „์ ์ด์—ˆ๋‹ค. ๋”ฐ๋ผ์„œ ๊ณ ์œ ์—ฐ์„ฑ์„ ํ™•๋ณดํ•˜์ง€ ๋ชปํ•œ ๊ธฐ์กด ์„ผ์„œ์™€ ์—๋„ˆ์ง€ ์†Œ์ž๋Š” ๊ณต๊ฐ„ ์‹ ํ˜ธ ๋ฐ ์—ด ์ „๋‹ฌ์ด ์‹ฌ๊ฐํ•˜๊ฒŒ ์ €ํ•ด๋˜๊ณ , ์ด๋กœ ์ธํ•ด ๊ณต๊ฐ„ ์••๋ ฅ์˜ ์™œ๊ณก, ์—ด์ „ ํšจ์œจ์˜ ์ €ํ•˜์™€ ๊ฐ™์€ ํ•œ๊ณ„๋ฅผ ๋ณด์—ฌ์ค€๋‹ค. ์ด ๋…ผ๋ฌธ์—์„œ๋Š” ์›จ์–ด๋Ÿฌ๋ธ” ์„ผ์„œ์™€ ์—๋„ˆ์ง€ ์†Œ์ž์˜ ๋น„์•ฝ์ ์ธ ๊ธฐ๋Šฅ ํ–ฅ์ƒ์„ ๊ถ๊ทน์ ์ธ ๋ชฉํ‘œ๋กœ, ๊ฐ ์†Œ์ž์— ์ตœ์ ํ™”๋œ ์žฌ๋ฃŒ์™€ ์ œ์ž‘๋ฐฉ์‹, ๊ตฌ์กฐ๋ฅผ ์ด์šฉํ•ด ์ด๋“ค์˜ ๊ธฐ๊ณ„์  ์ˆœ์‘์„ฑ์„ ํš๊ธฐ์ ์œผ๋กœ ๋†’์ด๊ณ , ์ด๋ฅผ ํ†ตํ•œ ๊ณต๊ฐ„ ์‹ ํ˜ธ ๋ฐ ์—ด ์ „๋‹ฌ์˜ ํ–ฅ์ƒ์„ ์‹ฌ๋„ ์žˆ๊ฒŒ ๋ถ„์„ํ•œ๋‹ค. ํŠนํžˆ, ๋‘๊ป˜๋ฅผ ๋‚ฎ์ถ”๊ฑฐ๋‚˜ ์˜๋ฅ ์„ ๋‚ฎ์ถ”๋Š” ๋‘ ๊ฐ€์ง€ ์ „๋žต ์ค‘ ๊ฐ ์†Œ์ž์— ๊ฐ€์žฅ ์ ํ•ฉํ•œ ์ „๋žต์„ ์„ ํƒํ•˜๊ณ , ์ฒด๊ณ„์ ์ธ ๋ฐฉ๋ฒ•๋ก ์„ ์ ์šฉํ•˜์—ฌ ์ด๋“ค์˜ ๊ธฐ๊ณ„์  ์ˆœ์‘์„ฑ๊ณผ ๊ณต๊ฐ„ ์‹ ํ˜ธ ๋ฐ ์—ด ์ „๋‹ฌ์„ ์ฆ์ง„์‹œํ‚จ๋‹ค. ์ด ๊ณผ์ •์—์„œ ๋‚˜๋…ธ์œต๋ณตํ•ฉ์žฌ๋ฃŒ๊ฐ€ ๊ฐ ์ „๋žต์„ ๊ตฌํ˜„ํ•˜๋Š” ํ•ต์‹ฌ ์š”์†Œ๋กœ ์ž‘์šฉํ•œ๋‹ค. ๊ฐ ์†Œ์ž์— ๋”ฐ๋ฅธ ๊ตฌ์ฒด์ ์ธ ์—ฐ๊ตฌ ๋‚ด์šฉ์€ ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค. ์ฒซ์งธ, ์••๋ ฅ ์„ผ์„œ์˜ ๊ฒฝ์šฐ ์ดˆ๋ฐ•๋ง‰ ์…€๋ฃฐ๋กœ์˜ค์Šค/๋‚˜๋…ธ์™€์ด์–ด ๋ณตํ•ฉ์ฒด๋ฅผ ์ด์šฉํ•˜์—ฌ ๊ณ ์„ฑ๋Šฅ์˜ ์ €ํ•ญ๋ฐฉ์‹ ์••๋ ฅ ์„ผ์„œ๋ฅผ ๊ฐœ๋ฐœํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ๋ณตํ•ฉ์ฒด๋Š” ํ‘œ๋ฉด์— ํ˜•์„ฑ๋œ ๊ณ ์œ ํ•œ ๋‚˜๋…ธ๊ตฌ์กฐ ๋•๋ถ„์— ๋งˆ์ดํฌ๋กœ๊ตฌ์กฐ์ฒด๋ฅผ ์ด์šฉํ•œ ๊ธฐ์กด ์••๋ ฅ ์„ผ์„œ๋ณด๋‹ค ์›”๋“ฑํ•œ ์„ฑ๋Šฅ์„ ๋ณด์—ฌ์ค€๋‹ค. ํŠนํžˆ, 1 ๋งˆ์ดํฌ๋กœ ๋ฏธํ„ฐ ์ˆ˜์ค€์˜ ๋งค์šฐ ์–‡์€ ๋‘๊ป˜๋กœ ์ธํ•ด ์ ‘์ด‰ ๋ฌผ์ฒด์˜ ๋ณต์žกํ•œ ํ˜•์ƒ์— ์™„๋ฒฝํ•˜๊ฒŒ ์ˆœ์‘ํ•  ์ˆ˜ ์žˆ๊ณ , ์ด๋กœ ์ธํ•ด ๊ณ ํ•ด์ƒ๋„ ์••๋ ฅ ๋ถ„ํฌ๋ฅผ ์™œ๊ณก ์—†์ด ์ €ํ•ญ ๋ถ„ํฌ๋กœ ์ „๋‹ฌํ•  ์ˆ˜ ์žˆ๋‹ค. ์ด๋Ÿฌํ•œ ์••๋ ฅ ์„ผ์„œ๋ฅผ ์–‘์ž ์  ๋ฐœ๊ด‘์†Œ์ž์™€ ๊ฒฐํ•ฉํ•˜์—ฌ ๊ณ ํ•ด์ƒ๋„์˜ ์••๋ ฅ๋ถ„ํฌ๋ฅผ ๋†’์€ ์ •๋ฐ€๋„๋กœ ์ด๋ฏธ์ง• ๊ฐ€๋Šฅํ•œ ๋ฐœ๊ด‘ ์†Œ์ž๋ฅผ ๋ณด๊ณ ํ•œ๋‹ค. ๋‘˜์งธ, ์—ด์ „ ์†Œ์ž์˜ ๊ฒฝ์šฐ ๊ธฐ์กด์˜ ๊ธˆ์† ์ „๊ทน์œผ๋กœ ์ธํ•œ ๋‚ฎ์€ ์œ ์—ฐ์„ฑ๊ณผ ํƒ„์„ฑ์ค‘ํ•ฉ์ฒด์˜ ๋‚ฎ์€ ์—ด ์ „๋„๋„๋ฅผ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•ด ์—ด ์ „๋‹ฌ ๋Šฅ๋ ฅ์ด ํš๊ธฐ์ ์œผ๋กœ ํ–ฅ์ƒ๋œ ๋‚ฎ์€ ์˜๋ฅ ์˜ ์†Œํ”„ํŠธ ์ „๊ทน ํ”Œ๋žซํผ์„ ๊ฐœ๋ฐœํ•œ๋‹ค. ์†Œํ”„ํŠธ ํ”Œ๋žซํผ์€ ๋‚ด๋ถ€์— ์€ ๋‚˜๋…ธ์™€์ด์–ด ๊ธฐ๋ฐ˜์˜ ์‹ ์ถ•์„ฑ ์ „๊ทน์„ ๊ฐ–๊ณ  ์žˆ์œผ๋ฉฐ, ์ž๊ธฐ์žฅ์„ ํ†ตํ•ด ์ž๊ฐ€ ์ •๋ ฌ๋œ ๊ธˆ์† ์ž…์ž๋“ค์ด ํšจ๊ณผ์ ์œผ๋กœ ์™ธ๋ถ€ ์—ด์„ ์—ด์ „ ์žฌ๋ฃŒ์— ์ „๋‹ฌํ•œ๋‹ค. ์ด๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ์ œ์ž‘๋œ ๊ณ ์œ ์—ฐ์„ฑ ์—ด์ „ ์†Œ์ž๋Š” ์‚ผ์ฐจ์› ์—ด์›์— ๋นˆํ‹ˆ์—†์ด ๋ถ™์–ด ์—ด ์†์‹ค์„ ์ตœ์†Œํ™” ํ•˜๋ฉฐ, ์ด๋กœ ์ธํ•ด ๋†’์€ ์—ด์ „ ํšจ์œจ์„ ๋‹ฌ์„ฑํ•œ๋‹ค. ์ด ๋…ผ๋ฌธ์€ ๋‹ค์–‘ํ•œ ์ „์ž์†Œ์ž์˜ ์œ ์—ฐ์„ฑ์„ ์ฆ์ง„์‹œํ‚ค๊ณ  ์ด๋ฅผ ํ†ตํ•œ ๊ณต๊ฐ„ ์‹ ํ˜ธ ๋ฐ ์—ด ์ „๋‹ฌ์˜ ํ–ฅ์ƒ์„ ๋„๋ชจํ•˜๊ณ  ๋ถ„์„ํ•˜๋Š” ์ฒด๊ณ„์ ์ด๊ณ  ์ข…ํ•ฉ์ ์ธ ๋ฐฉ๋ฒ•๋ก ์„ ์ œ์‹œํ–ˆ๋‹ค๋Š” ๋ฐ ํฐ ์˜์˜๊ฐ€ ์žˆ๋‹ค. ์ œ์•ˆ๋œ ๋ฐฉ๋ฒ•๋ก ์€ ๋ถ„์•ผ์— ๊ตญํ•œ๋˜์ง€ ์•Š๊ณ  ๋‹ค์–‘ํ•œ ์†Œ์ž์˜ ๊ฐœ๋ฐœ์— ์ ์šฉํ•  ์ˆ˜ ์žˆ์–ด ์›จ์–ด๋Ÿฌ๋ธ” ๊ธฐ๊ธฐ์™€ ์ „์žํ”ผ๋ถ€ ๋ถ„์•ผ์˜ ๊ธฐ๊ณ„์ , ๊ธฐ๋Šฅ์  ๋ฐœ์ „์— ํฌ๊ฒŒ ๊ธฐ์—ฌํ•  ๊ฒƒ์œผ๋กœ ๊ธฐ๋Œ€๋œ๋‹ค. ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ์ด ์—ฐ๊ตฌ์—์„œ ์ตœ์ดˆ๋กœ ๊ฐœ๋ฐœํ•œ ์†Œ์žฌ ๋ฐ ์†Œ์ž๋“ค์€ ๋‹ค์–‘ํ•œ ์›จ์–ด๋Ÿฌ๋ธ” ์–ดํ”Œ๋ฆฌ์ผ€์ด์…˜๊ณผ ์‚ฐ์—…์— ๊ณง๋ฐ”๋กœ ์œตํ•ฉ๋˜๊ณ  ์‘์šฉ๋  ์ˆ˜ ์žˆ๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ์‹ ์ฒด ๋ถ€์ฐฉ ๋ฐ ์‚ฝ์ž… ๊ฐ€๋Šฅํ•œ ์ƒ์ฒด ์ด๋ฏธ์ง• ์‹œ์Šคํ…œ, ์†Œํ”„ํŠธ ๋กœ๋ด‡์„ ์œ„ํ•œ ์‹ ๊ฒฝ ์ฒด๊ณ„, ์ž๊ฐ€ ๋ฐœ์ „์ด ๊ฐ€๋Šฅํ•œ ์ธ๊ณต ๊ฐ๊ฐ ๊ธฐ๊ด€, ๊ฐ€์ƒ ๋ฐ ์ฆ๊ฐ• ํ˜„์‹ค์„ ์œ„ํ•œ ์ƒˆ๋กœ์šด ์œ ์ € ์ธํ„ฐํŽ˜์ด์Šค์™€ ๊ฐ™์€ ๋ฏธ๋ž˜ ์ง€ํ–ฅ์  ์œตํ•ฉ ์–ดํ”Œ๋ฆฌ์ผ€์ด์…˜์˜ ์‹คํ˜„์„ ์•ž๋‹น๊ธธ ๊ฒƒ์œผ๋กœ ๊ธฐ๋Œ€๋œ๋‹ค.Chapter 1. Introduction 1 1.1 Wearable Electronics and Electronic Skin 1 1.2 Mechanical Conformability of Electronic Skin 6 1.2.1 Definition and Advantages 6 1.2.2 Thickness-Based Conformability 11 1.2.3 Softness-Based Conformability 15 1.3 Conformability for Enhanced Signal/Heat Transfer in Wearable Sensors and Energy Devices 19 1.3.1 Conformability for Spatial Signal Transfer in Pressure Sensors 20 1.3.2 Conformability for Heat Transfer in Thermoelectric Generators 22 1.4 Motivation and Organization of This Dissertation 24 Chapter 2. Ultrathin Cellulose Nanocomposites for High-Performance Piezoresistive Pressure Sensors 28 2.1 Introduction 28 2.2 Experimental Section 31 2.2.1 Fabrication of the CNNs and Pressure Sensors 31 2.2.2 Measurements 34 2.3 Results and Discussion 38 2.3.1 Morphology of CNNs 38 2.3.2 Piezoresistive Characteristics of CNNs 41 2.3.3 Mechanism of High Sensitivity and Great Linearity 45 2.3.4 Fast Response Time of CNN-Based Pressure Sensors 49 2.3.5 Cyclic Reliability of CNN-Based Pressure Sensors 53 2.3.6 Mechanical Reliability and Conformability 57 2.3.7 Temperature and Humidity Tolerance 63 2.4 Conclusion 66 Chapter 3. Ultraflexible Electroluminescent Skin for High-Resolution Imaging of Pressure Distribution 67 3.1 Introduction 67 3.2 Main Concept 70 3.3 Experimental Section 72 3.3.1 Fabrication of Pressure-Sensitive Photonic Skin 72 3.3.2 Characterization of Photonic Skin 74 3.4 Results and Discussion 76 3.4.1 Structure and Morphology of Photonic Skin 76 3.4.2 Pressure Response of Photonic Skin 79 3.4.3 Effect of Conformability on Spatial Resolution 85 3.4.4 Demonstration of High-Resolution Pressure Imaging 99 3.4.5 Pressure Data Acquisition 104 3.4.6 Application to Smart Touch Interfaces 106 3.5 Conclusion 109 Chapter 4. Intrinsically Soft Heat Transfer and Electrical Interconnection Platforms Using Magnetic Nanocomposites 110 4.1 Introduction 110 4.2 Experimental Section 115 4.2.1 Fabrication of SHEPs 115 4.2.2 Measurements 117 4.3 Results and Discussion 119 4.3.1 Fabrication Scheme and Morphology of SHEPs 119 4.3.2 Calculation of Particle Concentration in STCs 124 4.3.3 Enhancement of Heat Transfer Ability via Magnetic Self-Assembly 127 4.3.4 Softness of STCs 131 4.3.5 Mechanical Reliability of Stretchable Electrodes 133 4.3.6 Optimization of Magnetic Self-Assembly Process 135 4.4 Conclusion 139 Chapter 5. Highly Conformable Thermoelectric Generators with Enhanced Heat Transfer Ability 140 5.1 Introduction 140 5.2 Experimental Section 142 5.2.1 Fabrication of Compliant TEGs 142 5.2.2 Measurements 144 5.2.3 Finite Element Analysis 147 5.3 Results and Discussion 149 5.3.1 Enhancement of TE Performance via STCs 149 5.3.2 Mechanical Reliability of Compliant TEGs 157 5.3.3 Enhanced TE Performance on 3D Surfaces via Conformability 162 5.3.4 Self-Powered Wearable Applications 167 5.4 Conclusion 171 Chapter 6. Summary, Limitations, and Recommendations for Future Researches 172 6.1 Summary and Conclusion 172 6.2 Limitations and Recommendations 176 6.2.1 Pressure Sensors and Photonic Skin 176 6.2.2 Compliant TEGs 177 Bibliography 178 Publication List 186 Abstract in Korean 192Docto

    ๋ธ”๋ก๊ณต์ค‘ํ•ฉ์ฒด์˜ ๋‚˜๋…ธ ๊ตฌ์กฐ ์ œ์–ด๋ฅผ ํ†ตํ•˜์—ฌ ๋‚˜๋…ธ ํŒจํ„ด๋œ ์ด์ฐจ์› ๋ฌผ์งˆ์˜ ์—ด์ „ ์„ฑ๋Šฅ ๊ทน๋Œ€ํ™”์— ๋Œ€ํ•œ ์—ฐ๊ตฌ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ํ™”ํ•™์ƒ๋ฌผ๊ณตํ•™๋ถ€, 2018. 8. ์ด์ข…์ฐฌ.This study presents fabrication and characterization of nano patterned low dimensional materials fabricated from block copolymer (BCP) self-assembly and nano lithography and application to the thermoelectrics. Also the thermoelectric generator from conductive polymer and rubbery BCP is prepared and applied to the self-powered devices. Firstly, universal method to prepare perpendicular BCP nanopattern is introduced. Universal solution for 3 different BCP including polystyrene-b-poly(methyl methacrylate) (PS-b-PMMA), polystyrene-b-polydimethylsiloxane (PS-b-PDMS) and polystyrene-b-poly(2-vinylprydine) (PS-b-P2VP) is adopted to produce perpendicular micro domain. Short time plasma treatment was applied to the top surface of BCP which initiate the crosslinking reaction to produce crosslinking layer. The crosslinking layer exhibits physical immobilization effect to both BCP blocks. The crosslinking layer also applied to the bottom layer replacing random copolymer brush, and the bottom layer can act as a neutral layer to the BCP film. The perpendicular nanopattern from 3 different BCP was observed with scanning electron microscope (SEM) and grazing intensity small angle x-ray scattering (GI-SAXS). BCP with plasma treatment of both top and bottom has fully-perpendicular orientation from the bottom to the top. The crosslinking layer on the top surface is more stiff than neat BCP, the wrinkle is induced after annealing process. In this reason, the thickness of crosslinking layer is controlled by varying the intensity and time of plasma treatment. Secondary, graphene nano structure was fabricated from BCP self-assembly. The large graphene up to 2 centimeter scale was fabricated from chemical vapor deposition (CVD) and nano patterned using PS-b-P2VP sphere nanopattern. Thermoelectric properties of the graphene nanomesh structure with controlled neck width is enhanced up to 40 times higher than pristine graphene. The Seebeck coefficient of the bilayer graphene nanomesh with 8 nm neck width shows the highest value of ~ 520 ฮผV/K among the graphene-related materials. The thermal conductivity of suspended graphene nanomesh is reduced to ~78 W/mยทK which is the lowest thermal conductivity for graphene nanostructure. Classical and quantum mechanical calculations supported my nanomesh approach, which can achieve high thermal properties based on reduced thermal conductivity and higher thermopower due to the confined geometry. Also the heterostructure of graphene nanostructure and transition metal dicalcogenides was introduced. Molybdenum disulfide (MoS2) has extremely high Seebeck coefficient and low thermal conductivity, however, very low electrical conductivity. To enhance the electrical conductivity selectively, graphene nanoribbon is adopted as an electron highways to the MoS2 thin film. The large area graphene nanoribbon was fabrication from block copolymer lithography, and was transferred to the MoS2 atomic layer. The graphene nanostructure significantly enhances the electrical conductivity of the MoS2 atomic layer more than 1000 time higher. We show that with heterostructure, the thermoelectric properties can be enhanced. Finally, PEDOT:PSS with coaxial strut was introduced for thermoelectric generator applications. The increment of the data communication between machine to machine, machine to human and human to human leads the requirement of collecting data from any kinds of sensors. One of the most important sensor is pressure sensor which can give information of blood pressure, heat beating rate or something. And the electric energy source is required to these kinds of electric devices, and the energy source is also needed to be flexible for the wearable electric devices. Recently, wearable thermoelectric generator based on organic materials are reported and the wearable TEG can generate several microwatt energies. However, to apply these wearable TEG, any kind of electric device should be assembled together with TEG. We introduced coaxial structure for thermoelectric generator. It is found that shell structure of SEBS give the mechanical strength and recovery properties to the foam and PEDOT:PSS is well-known thermoelectric polymer which have moderate thermopower and high electrical conductivity and used to the thermoelectric foam structure for thermoelectric generator. This SPM was assembled to the wearable thermoelectric generator and could generate 338 nW from the forearm.Chapter 1 Introduction 1 1.1 Block Copolymer Self-assembly for Nanolithography ๏ผ’ 1.2. 2 Dimensional Materials for Thermoelectrics and Size Effect in Low Dimensional Materials ๏ผ” 1.3. Motivation ๏ผ˜ 1.4. References ๏ผ‘๏ผ Chapter 2 Control of Block Copolymer Nano Domains for Nanolithography 20 2.1. Introduction ๏ผ’๏ผ‘ 2.2. Experimental ๏ผ’๏ผ” 2.3. Results and Discussion ๏ผ’๏ผ— 2.4. Conclusion ๏ผ“๏ผ” 2.5. References ๏ผ“๏ผ• Chapter 3 Significantly reduced thermal conductivity and enhanced thermoelectric properties of single- and bi-layer graphene nanomeshes with sub-10 nm neck-width 57 3.1. Introduction ๏ผ•๏ผ˜ 3.2. Experimental ๏ผ–๏ผ’ 3.3. Results and Discussion ๏ผ—๏ผ• 3.4. Conclusion ๏ผ˜๏ผ˜ 3.5. References ๏ผ˜๏ผ™ Chapter 4 Van der Waals Heterostructure of Graphene Nanostructure and Molybdenum Disulfide for Superior Thermoelectric Materials 113 4.1. Introduction ๏ผ‘๏ผ‘๏ผ” 4.2. Experimental ๏ผ‘๏ผ‘๏ผ— 4.3. Results and Discussion ๏ผ‘๏ผ’๏ผ‘ 4.4. Conclusion ๏ผ‘๏ผ’๏ผ” 4.5. References ๏ผ‘๏ผ’๏ผ• Chapter 5 Coaxial Struts and Microfractured Structures of Compressible Thermoelectric Foams for Self-powered Pressure Sensors 143 5.1. Introduction ๏ผ‘๏ผ”๏ผ” 5.2. Experimental ๏ผ‘๏ผ”๏ผ— 5.3. Results and Discussion ๏ผ‘๏ผ•๏ผ’ 5.4. Conclusion ๏ผ‘๏ผ–๏ผ‘ 5.5. Refences ๏ผ‘๏ผ–๏ผ“ Abstract in Korean ๏ผ‘๏ผ˜๏ผ–Docto

    Conductive Polymers and Polymer Nanocomposites for Flexible Thermoelectrics.

    Get PDF
    PhD ThesisWith the development of fields like soft (micro-) robotics, wearable devices and internet-of-things, there is a growing demand for new materials with combinations of functional properties, ranging from electrical conductivity, sensing and energy storage/harvesting, together with mechanical properties like large elastic deformations and toughness. Organic thermoelectric (OTE) materials and their composites are excellent candidates for self-powered sensors, due to their ability to harvest waste heat energy in a robust and reliable manner, combined with mechanical properties (e.g. high strain at break) and additional functionalities. This thesis focuses on the application of OTE as multi-functional self-powered sensors. Three types of representative OTE materials have been mainly investigated to explore different characteristics and potential applications. Three different processing methods have been explored for achieving the different structures aiming at various functions and potential applications in fields like wearable electronics and self-powered sensors. Poly nickel-ethenetetrathiolates (Nax(Ni-ett)n) has been selected as the n-type OTE material. Highly stretchable n-type composite films are obtained by blending with polyurethane. When subjected to a small temperature difference (< 20 oC), the films generated sufficient thermopower to be used for sensing strain and visible light, independently of humidity. Poly (3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) has also been selected as the most widely investigated p-type OTE material. A novel self-powered ultrasensitive deformation sensor has been demonstrated based on PEDOT:PSS being Abstract vii coated on Lycraยฎ yarns. By controlling the crack induced patterns of the conductive PEDOT:PSS coating, the strain sensitivity could be tuned in a wide range. Finally, carbon nanotube (CNT) has also been studied. A self-folding method has been used to create 3D structures by fixing CNT veils between patterned polycarbonate and biaxial stretched polystyrene films. The obtained honey-comb shaped OTE device has been utilised as a structural composite as a self-powered integrated sensor

    Small-Scale Energy Harvesting from Environment by Triboelectric Nanogenerators

    Get PDF
    The increasing needs to power trillions of sensors and devices for the Internet of Things require effective technology to harvest small-scale energy from renewable natural resources. As a new energy technology, triboelectric nanogenerators (TENGs) can harvest ambient mechanical energy and convert it into electricity for powering small electronic devices continuously. In this chapter, the fundamental working mechanism and fundamental modes of a TENG will be presented. It can harvest all kinds of mechanical energy, especially at low frequencies, such as human motion, walking, vibration, mechanical triggering, rotating tire, wind, moving automobile, flowing water, rain drops, ocean waves, and so on. Such variety of energy harvesting methods promises TENG as a new approach for small-scale energy harvesting

    PEDOT : PSS-based conductive textiles and their applications

    Get PDF
    The conductive polymer complex poly (3,4-ethylene dioxythiophene):polystyrene sulfonate (PEDOT:PSS) is the most explored conductive polymer for conductive textiles applications. Since PEDOT:PSS is readily available in water dispersion form, it is convenient for roll-to-roll processing which is compatible with the current textile processing applications. In this work, we have made a comprehensive review on the PEDOT:PSS-based conductive textiles, methods of application onto textiles and their applications. The conductivity of PEDOT:PSS can be enhanced by several orders of magnitude using processing agents. However, neat PEDOT:PSS lacks flexibility and strechability for wearable electronics applications. One way to improve the mechanical flexibility of conductive polymers is making a composite with commodity polymers such as polyurethane which have high flexibility and stretchability. The conductive polymer composites also increase attachment of the conductive polymer to the textile, thereby increasing durability to washing and mechanical actions. Pure PEDOT:PSS conductive fibers have been produced by solution spinning or electrospinning methods. Application of PEDOT:PSS can be carried out by polymerization of the monomer on the fabric, coating/dyeing and printing methods. PEDOT:PSS-based conductive textiles have been used for the development of sensors, actuators, antenna, interconnections, energy harvesting, and storage devices. In this review, the application methods of PEDOT:SS-based conductive polymers in/on to a textile substrate structure and their application thereof are discussed

    On the Manufacturing Processes of Flexible Thermoelectric Generators

    Get PDF
    • โ€ฆ
    corecore