6 research outputs found

    ์›จ์–ด๋Ÿฌ๋ธ” ์„ผ์„œ ๋ฐ ์—๋„ˆ์ง€ ์†Œ์ž์˜ ๊ณต๊ฐ„ ์‹ ํ˜ธ ๋ฐ ์—ด ์ „๋‹ฌ ์ฆ์ง„์„ ์œ„ํ•œ ๋‚˜๋…ธ๋ณตํ•ฉ์ฒด๋ฅผ ์ด์šฉํ•œ ๊ธฐ๊ณ„์  ์ˆœ์‘์„ฑ ํ–ฅ์ƒ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์ „๊ธฐยท์ •๋ณด๊ณตํ•™๋ถ€, 2020. 8. ํ™์šฉํƒ.Electronic skin (e-skin) that mimics mechanical and functional properties of human skin has a strong impact on the field of wearable electronics. Beyond being just wearable, e-skin seamlessly interfaces human, machine, and environment by perfectly adhering to soft and time-dynamic three-dimensional (3D) geometries of human skin and organs. Real-time and intimate access to the sources of physical and biological signals can be achieved by adopting soft or flexible electronic sensors that can detect pressure, strain, temperature, and chemical substances. Such extensions in accessible signals drastically accelerate the growth of the Internet of Things (IoT) and expand its application to health monitoring, medical implants, and novel human-machine interfaces. In wearable sensors and energy devices, which are essential building blocks for skin-like functionalities and self-power generation in e-skin, spatial signals and heat are transferred from time-dynamic 3D environments through numerous geometries and electrical devices. Therefore, the transfer of high-fidelity signals or a large amount of heat is of great importance in these devices. The mechanical conformability potentially enhances the signal/heat transfer by providing conformal geometries with the 3D sources. However, while the relation between system conformability and electrical signals has been widely investigated, studies on its effect on the transfer of other mechanical signals and heat remain in their early stages. Furthermore, because active materials and their designs for sensors and energy devices have been optimized to maximize their performances, it is challenging to develop ultrathin or soft forms of active layers without compromising their performances. Therefore, many devices in these fields suffer from poor spatial signal/heat transfer due to limited conformability. In this dissertation, to ultimately augment the functionalities of wearable sensors and energy devices, comprehensive studies on conformability enhancement via composite materials and its effect on signal/heat transfer, especially in pressure sensors and thermoelectric generators (TEGs), are conducted. A solution for each device is carefully optimized to reinforce its conformability, taking account of the structure, characteristics, and potential advantages of the device. As a result, the mechanical conformability of each device is significantly enhanced, improving signal/heat transfer and consequently augmenting its functionalities, which have been considered as tough challenges in each area. The effect of the superior conformability on signal/heat transfer is systematically analyzed via a series of experiments and finite element analyses. Demonstrations of practical wearable electronics show the feasibility of the proposed strategies. For wearable pressure sensors, ultrathin piezoresistive layers are developed using cellulose/nanowire nanocomposites (CNNs). The unique nanostructured surface enables unprecedentedly high sensor performances such as ultrahigh sensitivity, wide working range, and fast response time without microstructures in sensing layers. Because the ultrathin pressure sensor perfectly conforms to 3D contact objects, it transfers pressure distribution into conductivity distribution with high spatial fidelity. When integrated with a quantum dot-based electroluminescent film, the transferred high-resolution pressure distribution is directly visualized without the need for pixel structures. The electroluminescent skin enables real-time smart touch interfaces that can identify the user as well as touch force and location. For high-performance wearable TEGs, an intrinsically soft heat transfer and electrical interconnection platform (SHEP) is developed. The SHEP comprises AgNW random networks for intrinsically stretchable electrodes and magnetically self-assembled metal particles for soft thermal conductors (STCs). The stretchable electrodes lower the flexural rigidity, and the STCs enhance the heat exchange capability of the soft platform, maintaining its softness. As a result, a compliant TEG with SHEPs forms unprecedentedly conformal contact with 3D heat sources, thereby enhancing the heat transfer to the TE legs. This results in significant improvement in thermal energy harvesting on 3D surfaces. Self-powered wearable warning systems indicating an abrupt temperature increase with light-emitting alarms are demonstrated to show the feasibility of this strategy. This study provides a systematic and comprehensive framework for enhancing mechanical conformability of e-skin and consequently improving the transfer of spatial signals and energy from time-dynamic and complex 3D surfaces. The framework can be universally applied to other fields in wearable electronics that require improvement in signal/energy transfer through conformal contact with 3D surfaces. The materials, manufacturing methods, and devices introduced in this dissertation will be actively exploited in practical and futuristic applications of wearable electronics such as skin-attachable advanced user interfaces, implantable bio-imaging systems, nervous systems in soft robotics, and self-powered artificial tactile systems.์ธ๊ฐ„ ํ”ผ๋ถ€์˜ ๊ธฐ๊ณ„์  ํŠน์„ฑ ๋ฐ ๊ธฐ๋Šฅ์„ ๋ชจ๋ฐฉํ•˜๋Š” ์ „์žํ”ผ๋ถ€(electronic skin, e-skin)๋Š” ์›จ์–ด๋Ÿฌ๋ธ” ์ „์ž๊ธฐ๊ธฐ ๋ถ„์•ผ์˜ ํŠธ๋ Œ๋“œ๋ฅผ ๋ฐ”๊พธ๊ณ  ์žˆ๋‹ค. ๊ธฐ์กด์˜ ์›จ์–ด๋Ÿฌ๋ธ” ์ „์ž๊ธฐ๊ธฐ๊ฐ€ ๋‹จ์ง€ ์ฐฉ์šฉํ•˜๋Š”๋ฐ ๊ทธ์ณค๋‹ค๋ฉด, ์ „์žํ”ผ๋ถ€๋Š” ์ธ๊ฐ„์˜ ํ”ผ๋ถ€์™€ ์žฅ๊ธฐ ํ‘œ๋ฉด์— ์™„๋ฒฝํ•˜๊ฒŒ ๋ถ™์–ด ๋™์ž‘ํ•จ์œผ๋กœ์จ ๊ธฐ์กด์—๋Š” ์ ‘๊ทผ ๋ถˆ๊ฐ€๋Šฅ ํ–ˆ๋˜ ๋‹ค์–‘ํ•œ ์ƒ์ฒด ์‹ ํ˜ธ๋ฅผ ๋†’์€ ์‹ ๋ขฐ๋„๋กœ ๊ฐ์ง€ํ•˜๊ณ  ์ฒ˜๋ฆฌํ•  ์ˆ˜ ์žˆ๋‹ค. ์‹ค์‹œ๊ฐ„์œผ๋กœ ๊ฐ์ง€ ๊ฐ€๋Šฅํ•œ ์ƒ์ฒด ์‹ ํ˜ธ์˜ ํ™•์žฅ์€ ์‚ฌ๋ฌผ์ธํ„ฐ๋„ท(Internet of Things, IoT)์˜ ์„ฑ์žฅ์„ ํš๊ธฐ์ ์œผ๋กœ ๊ฐ€์†ํ™”ํ•˜๊ณ  ํ—ฌ์Šค์ผ€์–ด, ์˜๋ฃŒ์šฉ ์ž„ํ”Œ๋ž€ํŠธ, ์†Œํ”„ํŠธ ๋กœ๋ด‡ ๋ฐ ์ƒˆ๋กœ์šด ํœด๋จผ ๋จธ์‹  ์ธํ„ฐํŽ˜์ด์Šค๋กœ์˜ ์‘์šฉ์„ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•œ๋‹ค. ์ „์žํ”ผ๋ถ€์˜ ํ•„์ˆ˜์š”์†Œ์ธ ์„ผ์„œ์™€ ์—๋„ˆ์ง€ ์†Œ์ž์—์„œ๋Š” ์‚ผ์ฐจ์› ํ‘œ๋ฉด์˜ ๊ณต๊ฐ„์‹ ํ˜ธ์™€ ์—ด์—๋„ˆ์ง€๋ฅผ ์†์‹ค ์—†์ด ์ „๋‹ฌํ•˜๋Š” ๊ฒƒ์ด ๋งค์šฐ ์ค‘์š”ํ•˜๋‹ค. ์ด๋Ÿฌํ•œ ๊ณต๊ฐ„ ์‹ ํ˜ธ์™€ ์—ด์—๋„ˆ์ง€๋Š” ๋‹ค์–‘ํ•œ ๊ธฐํ•˜ ๊ตฌ์กฐ์™€ ์ „์ž์†Œ์ž๋ฅผ ๊ฑฐ์ณ ์ฒ˜๋ฆฌ ๊ฐ€๋Šฅํ•œ ์‹ ํ˜ธ๋กœ ์ „๋‹ฌ๋œ๋‹ค. ์ด ๊ณผ์ •์—์„œ 3์ฐจ์› ํ‘œ๋ฉด์— ๋นˆํ‹ˆ์—†์ด ๋ถ™๋Š” ๊ธฐ๊ณ„์  ์ˆœ์‘์„ฑ(mechanical conformability)์€ ๊ณต๊ฐ„์‹ ํ˜ธ์™€ ์—ด์—๋„ˆ์ง€๋ฅผ ์™œ๊ณก ์—†์ด ์ „๋‹ฌํ•˜๋Š” ๊ฒƒ์„ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•œ๋‹ค. ์ „์žํ”ผ๋ถ€์˜ ๊ธฐ๊ณ„์  ์ˆœ์‘์„ฑ์„ ์ฆ๊ฐ€์‹œํ‚ค๋Š” ๋ฐฉ๋ฒ•์€ ํฌ๊ฒŒ ๋‹ค์Œ๊ณผ ๊ฐ™์ด ๋‘ ๊ฐ€์ง€๋กœ ๋‚˜๋ˆŒ ์ˆ˜ ์žˆ๋‹ค. (1) ์ „์žํ”ผ๋ถ€๋ฅผ ๋‘๊ป˜๋ฅผ ๋‚ฎ์ถ”๋Š” ์ „๋žต๊ณผ (2) ์ „์žํ”ผ๋ถ€์˜ ์˜๋ฅ (Youngs modulus)์„ ๋‚ฎ์ถ”์–ด ๊ณ ๋ฌด์™€ ๊ฐ™์ด ๋ถ€๋“œ๋Ÿฝ๊ฒŒ ๋งŒ๋“œ๋Š” ์ „๋žต์ด๋‹ค. ํ•˜์ง€๋งŒ, ๊ธฐ์กด ์„ผ์„œ ๋ฐ ์—๋„ˆ์ง€ ์†Œ์ž๋ฅผ ์œ„ํ•œ ์žฌ๋ฃŒ์™€ ๋””์ž์ธ์ด ๊ฐ ์žฅ์น˜์˜ ์„ฑ๋Šฅ์„ ํ–ฅ์ƒ์‹œํ‚ค๋Š” ๊ฒƒ์— ์ดˆ์ ์ด ๋งž์ถ”์–ด์ ธ ์žˆ๊ธฐ ๋•Œ๋ฌธ์—, ๊ณ ์„ฑ๋Šฅ์„ ์œ ์ง€ํ•˜๋ฉด์„œ ๋งค์šฐ ์–‡๊ฑฐ๋‚˜ ์—ฐ์งˆ ํ˜•ํƒœ์˜ ์†Œ์ž๋ฅผ ๊ฐœ๋ฐœํ•˜๋Š” ๊ฒƒ์€ ๋งค์šฐ ๋„์ „์ ์ด์—ˆ๋‹ค. ๋”ฐ๋ผ์„œ ๊ณ ์œ ์—ฐ์„ฑ์„ ํ™•๋ณดํ•˜์ง€ ๋ชปํ•œ ๊ธฐ์กด ์„ผ์„œ์™€ ์—๋„ˆ์ง€ ์†Œ์ž๋Š” ๊ณต๊ฐ„ ์‹ ํ˜ธ ๋ฐ ์—ด ์ „๋‹ฌ์ด ์‹ฌ๊ฐํ•˜๊ฒŒ ์ €ํ•ด๋˜๊ณ , ์ด๋กœ ์ธํ•ด ๊ณต๊ฐ„ ์••๋ ฅ์˜ ์™œ๊ณก, ์—ด์ „ ํšจ์œจ์˜ ์ €ํ•˜์™€ ๊ฐ™์€ ํ•œ๊ณ„๋ฅผ ๋ณด์—ฌ์ค€๋‹ค. ์ด ๋…ผ๋ฌธ์—์„œ๋Š” ์›จ์–ด๋Ÿฌ๋ธ” ์„ผ์„œ์™€ ์—๋„ˆ์ง€ ์†Œ์ž์˜ ๋น„์•ฝ์ ์ธ ๊ธฐ๋Šฅ ํ–ฅ์ƒ์„ ๊ถ๊ทน์ ์ธ ๋ชฉํ‘œ๋กœ, ๊ฐ ์†Œ์ž์— ์ตœ์ ํ™”๋œ ์žฌ๋ฃŒ์™€ ์ œ์ž‘๋ฐฉ์‹, ๊ตฌ์กฐ๋ฅผ ์ด์šฉํ•ด ์ด๋“ค์˜ ๊ธฐ๊ณ„์  ์ˆœ์‘์„ฑ์„ ํš๊ธฐ์ ์œผ๋กœ ๋†’์ด๊ณ , ์ด๋ฅผ ํ†ตํ•œ ๊ณต๊ฐ„ ์‹ ํ˜ธ ๋ฐ ์—ด ์ „๋‹ฌ์˜ ํ–ฅ์ƒ์„ ์‹ฌ๋„ ์žˆ๊ฒŒ ๋ถ„์„ํ•œ๋‹ค. ํŠนํžˆ, ๋‘๊ป˜๋ฅผ ๋‚ฎ์ถ”๊ฑฐ๋‚˜ ์˜๋ฅ ์„ ๋‚ฎ์ถ”๋Š” ๋‘ ๊ฐ€์ง€ ์ „๋žต ์ค‘ ๊ฐ ์†Œ์ž์— ๊ฐ€์žฅ ์ ํ•ฉํ•œ ์ „๋žต์„ ์„ ํƒํ•˜๊ณ , ์ฒด๊ณ„์ ์ธ ๋ฐฉ๋ฒ•๋ก ์„ ์ ์šฉํ•˜์—ฌ ์ด๋“ค์˜ ๊ธฐ๊ณ„์  ์ˆœ์‘์„ฑ๊ณผ ๊ณต๊ฐ„ ์‹ ํ˜ธ ๋ฐ ์—ด ์ „๋‹ฌ์„ ์ฆ์ง„์‹œํ‚จ๋‹ค. ์ด ๊ณผ์ •์—์„œ ๋‚˜๋…ธ์œต๋ณตํ•ฉ์žฌ๋ฃŒ๊ฐ€ ๊ฐ ์ „๋žต์„ ๊ตฌํ˜„ํ•˜๋Š” ํ•ต์‹ฌ ์š”์†Œ๋กœ ์ž‘์šฉํ•œ๋‹ค. ๊ฐ ์†Œ์ž์— ๋”ฐ๋ฅธ ๊ตฌ์ฒด์ ์ธ ์—ฐ๊ตฌ ๋‚ด์šฉ์€ ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค. ์ฒซ์งธ, ์••๋ ฅ ์„ผ์„œ์˜ ๊ฒฝ์šฐ ์ดˆ๋ฐ•๋ง‰ ์…€๋ฃฐ๋กœ์˜ค์Šค/๋‚˜๋…ธ์™€์ด์–ด ๋ณตํ•ฉ์ฒด๋ฅผ ์ด์šฉํ•˜์—ฌ ๊ณ ์„ฑ๋Šฅ์˜ ์ €ํ•ญ๋ฐฉ์‹ ์••๋ ฅ ์„ผ์„œ๋ฅผ ๊ฐœ๋ฐœํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ๋ณตํ•ฉ์ฒด๋Š” ํ‘œ๋ฉด์— ํ˜•์„ฑ๋œ ๊ณ ์œ ํ•œ ๋‚˜๋…ธ๊ตฌ์กฐ ๋•๋ถ„์— ๋งˆ์ดํฌ๋กœ๊ตฌ์กฐ์ฒด๋ฅผ ์ด์šฉํ•œ ๊ธฐ์กด ์••๋ ฅ ์„ผ์„œ๋ณด๋‹ค ์›”๋“ฑํ•œ ์„ฑ๋Šฅ์„ ๋ณด์—ฌ์ค€๋‹ค. ํŠนํžˆ, 1 ๋งˆ์ดํฌ๋กœ ๋ฏธํ„ฐ ์ˆ˜์ค€์˜ ๋งค์šฐ ์–‡์€ ๋‘๊ป˜๋กœ ์ธํ•ด ์ ‘์ด‰ ๋ฌผ์ฒด์˜ ๋ณต์žกํ•œ ํ˜•์ƒ์— ์™„๋ฒฝํ•˜๊ฒŒ ์ˆœ์‘ํ•  ์ˆ˜ ์žˆ๊ณ , ์ด๋กœ ์ธํ•ด ๊ณ ํ•ด์ƒ๋„ ์••๋ ฅ ๋ถ„ํฌ๋ฅผ ์™œ๊ณก ์—†์ด ์ €ํ•ญ ๋ถ„ํฌ๋กœ ์ „๋‹ฌํ•  ์ˆ˜ ์žˆ๋‹ค. ์ด๋Ÿฌํ•œ ์••๋ ฅ ์„ผ์„œ๋ฅผ ์–‘์ž ์  ๋ฐœ๊ด‘์†Œ์ž์™€ ๊ฒฐํ•ฉํ•˜์—ฌ ๊ณ ํ•ด์ƒ๋„์˜ ์••๋ ฅ๋ถ„ํฌ๋ฅผ ๋†’์€ ์ •๋ฐ€๋„๋กœ ์ด๋ฏธ์ง• ๊ฐ€๋Šฅํ•œ ๋ฐœ๊ด‘ ์†Œ์ž๋ฅผ ๋ณด๊ณ ํ•œ๋‹ค. ๋‘˜์งธ, ์—ด์ „ ์†Œ์ž์˜ ๊ฒฝ์šฐ ๊ธฐ์กด์˜ ๊ธˆ์† ์ „๊ทน์œผ๋กœ ์ธํ•œ ๋‚ฎ์€ ์œ ์—ฐ์„ฑ๊ณผ ํƒ„์„ฑ์ค‘ํ•ฉ์ฒด์˜ ๋‚ฎ์€ ์—ด ์ „๋„๋„๋ฅผ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•ด ์—ด ์ „๋‹ฌ ๋Šฅ๋ ฅ์ด ํš๊ธฐ์ ์œผ๋กœ ํ–ฅ์ƒ๋œ ๋‚ฎ์€ ์˜๋ฅ ์˜ ์†Œํ”„ํŠธ ์ „๊ทน ํ”Œ๋žซํผ์„ ๊ฐœ๋ฐœํ•œ๋‹ค. ์†Œํ”„ํŠธ ํ”Œ๋žซํผ์€ ๋‚ด๋ถ€์— ์€ ๋‚˜๋…ธ์™€์ด์–ด ๊ธฐ๋ฐ˜์˜ ์‹ ์ถ•์„ฑ ์ „๊ทน์„ ๊ฐ–๊ณ  ์žˆ์œผ๋ฉฐ, ์ž๊ธฐ์žฅ์„ ํ†ตํ•ด ์ž๊ฐ€ ์ •๋ ฌ๋œ ๊ธˆ์† ์ž…์ž๋“ค์ด ํšจ๊ณผ์ ์œผ๋กœ ์™ธ๋ถ€ ์—ด์„ ์—ด์ „ ์žฌ๋ฃŒ์— ์ „๋‹ฌํ•œ๋‹ค. ์ด๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ์ œ์ž‘๋œ ๊ณ ์œ ์—ฐ์„ฑ ์—ด์ „ ์†Œ์ž๋Š” ์‚ผ์ฐจ์› ์—ด์›์— ๋นˆํ‹ˆ์—†์ด ๋ถ™์–ด ์—ด ์†์‹ค์„ ์ตœ์†Œํ™” ํ•˜๋ฉฐ, ์ด๋กœ ์ธํ•ด ๋†’์€ ์—ด์ „ ํšจ์œจ์„ ๋‹ฌ์„ฑํ•œ๋‹ค. ์ด ๋…ผ๋ฌธ์€ ๋‹ค์–‘ํ•œ ์ „์ž์†Œ์ž์˜ ์œ ์—ฐ์„ฑ์„ ์ฆ์ง„์‹œํ‚ค๊ณ  ์ด๋ฅผ ํ†ตํ•œ ๊ณต๊ฐ„ ์‹ ํ˜ธ ๋ฐ ์—ด ์ „๋‹ฌ์˜ ํ–ฅ์ƒ์„ ๋„๋ชจํ•˜๊ณ  ๋ถ„์„ํ•˜๋Š” ์ฒด๊ณ„์ ์ด๊ณ  ์ข…ํ•ฉ์ ์ธ ๋ฐฉ๋ฒ•๋ก ์„ ์ œ์‹œํ–ˆ๋‹ค๋Š” ๋ฐ ํฐ ์˜์˜๊ฐ€ ์žˆ๋‹ค. ์ œ์•ˆ๋œ ๋ฐฉ๋ฒ•๋ก ์€ ๋ถ„์•ผ์— ๊ตญํ•œ๋˜์ง€ ์•Š๊ณ  ๋‹ค์–‘ํ•œ ์†Œ์ž์˜ ๊ฐœ๋ฐœ์— ์ ์šฉํ•  ์ˆ˜ ์žˆ์–ด ์›จ์–ด๋Ÿฌ๋ธ” ๊ธฐ๊ธฐ์™€ ์ „์žํ”ผ๋ถ€ ๋ถ„์•ผ์˜ ๊ธฐ๊ณ„์ , ๊ธฐ๋Šฅ์  ๋ฐœ์ „์— ํฌ๊ฒŒ ๊ธฐ์—ฌํ•  ๊ฒƒ์œผ๋กœ ๊ธฐ๋Œ€๋œ๋‹ค. ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ์ด ์—ฐ๊ตฌ์—์„œ ์ตœ์ดˆ๋กœ ๊ฐœ๋ฐœํ•œ ์†Œ์žฌ ๋ฐ ์†Œ์ž๋“ค์€ ๋‹ค์–‘ํ•œ ์›จ์–ด๋Ÿฌ๋ธ” ์–ดํ”Œ๋ฆฌ์ผ€์ด์…˜๊ณผ ์‚ฐ์—…์— ๊ณง๋ฐ”๋กœ ์œตํ•ฉ๋˜๊ณ  ์‘์šฉ๋  ์ˆ˜ ์žˆ๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ์‹ ์ฒด ๋ถ€์ฐฉ ๋ฐ ์‚ฝ์ž… ๊ฐ€๋Šฅํ•œ ์ƒ์ฒด ์ด๋ฏธ์ง• ์‹œ์Šคํ…œ, ์†Œํ”„ํŠธ ๋กœ๋ด‡์„ ์œ„ํ•œ ์‹ ๊ฒฝ ์ฒด๊ณ„, ์ž๊ฐ€ ๋ฐœ์ „์ด ๊ฐ€๋Šฅํ•œ ์ธ๊ณต ๊ฐ๊ฐ ๊ธฐ๊ด€, ๊ฐ€์ƒ ๋ฐ ์ฆ๊ฐ• ํ˜„์‹ค์„ ์œ„ํ•œ ์ƒˆ๋กœ์šด ์œ ์ € ์ธํ„ฐํŽ˜์ด์Šค์™€ ๊ฐ™์€ ๋ฏธ๋ž˜ ์ง€ํ–ฅ์  ์œตํ•ฉ ์–ดํ”Œ๋ฆฌ์ผ€์ด์…˜์˜ ์‹คํ˜„์„ ์•ž๋‹น๊ธธ ๊ฒƒ์œผ๋กœ ๊ธฐ๋Œ€๋œ๋‹ค.Chapter 1. Introduction 1 1.1 Wearable Electronics and Electronic Skin 1 1.2 Mechanical Conformability of Electronic Skin 6 1.2.1 Definition and Advantages 6 1.2.2 Thickness-Based Conformability 11 1.2.3 Softness-Based Conformability 15 1.3 Conformability for Enhanced Signal/Heat Transfer in Wearable Sensors and Energy Devices 19 1.3.1 Conformability for Spatial Signal Transfer in Pressure Sensors 20 1.3.2 Conformability for Heat Transfer in Thermoelectric Generators 22 1.4 Motivation and Organization of This Dissertation 24 Chapter 2. Ultrathin Cellulose Nanocomposites for High-Performance Piezoresistive Pressure Sensors 28 2.1 Introduction 28 2.2 Experimental Section 31 2.2.1 Fabrication of the CNNs and Pressure Sensors 31 2.2.2 Measurements 34 2.3 Results and Discussion 38 2.3.1 Morphology of CNNs 38 2.3.2 Piezoresistive Characteristics of CNNs 41 2.3.3 Mechanism of High Sensitivity and Great Linearity 45 2.3.4 Fast Response Time of CNN-Based Pressure Sensors 49 2.3.5 Cyclic Reliability of CNN-Based Pressure Sensors 53 2.3.6 Mechanical Reliability and Conformability 57 2.3.7 Temperature and Humidity Tolerance 63 2.4 Conclusion 66 Chapter 3. Ultraflexible Electroluminescent Skin for High-Resolution Imaging of Pressure Distribution 67 3.1 Introduction 67 3.2 Main Concept 70 3.3 Experimental Section 72 3.3.1 Fabrication of Pressure-Sensitive Photonic Skin 72 3.3.2 Characterization of Photonic Skin 74 3.4 Results and Discussion 76 3.4.1 Structure and Morphology of Photonic Skin 76 3.4.2 Pressure Response of Photonic Skin 79 3.4.3 Effect of Conformability on Spatial Resolution 85 3.4.4 Demonstration of High-Resolution Pressure Imaging 99 3.4.5 Pressure Data Acquisition 104 3.4.6 Application to Smart Touch Interfaces 106 3.5 Conclusion 109 Chapter 4. Intrinsically Soft Heat Transfer and Electrical Interconnection Platforms Using Magnetic Nanocomposites 110 4.1 Introduction 110 4.2 Experimental Section 115 4.2.1 Fabrication of SHEPs 115 4.2.2 Measurements 117 4.3 Results and Discussion 119 4.3.1 Fabrication Scheme and Morphology of SHEPs 119 4.3.2 Calculation of Particle Concentration in STCs 124 4.3.3 Enhancement of Heat Transfer Ability via Magnetic Self-Assembly 127 4.3.4 Softness of STCs 131 4.3.5 Mechanical Reliability of Stretchable Electrodes 133 4.3.6 Optimization of Magnetic Self-Assembly Process 135 4.4 Conclusion 139 Chapter 5. Highly Conformable Thermoelectric Generators with Enhanced Heat Transfer Ability 140 5.1 Introduction 140 5.2 Experimental Section 142 5.2.1 Fabrication of Compliant TEGs 142 5.2.2 Measurements 144 5.2.3 Finite Element Analysis 147 5.3 Results and Discussion 149 5.3.1 Enhancement of TE Performance via STCs 149 5.3.2 Mechanical Reliability of Compliant TEGs 157 5.3.3 Enhanced TE Performance on 3D Surfaces via Conformability 162 5.3.4 Self-Powered Wearable Applications 167 5.4 Conclusion 171 Chapter 6. Summary, Limitations, and Recommendations for Future Researches 172 6.1 Summary and Conclusion 172 6.2 Limitations and Recommendations 176 6.2.1 Pressure Sensors and Photonic Skin 176 6.2.2 Compliant TEGs 177 Bibliography 178 Publication List 186 Abstract in Korean 192Docto

    ๋ดํƒˆ์œ ๋‹ˆํŠธ์˜ ํ•ธ๋“œํ”ผ์Šค ๋ฐ ์ดˆ์ŒํŒŒ ์น˜์„ ์ œ๊ฑฐ๊ธฐ์˜ ๋ฏธ์ƒ๋ฌผ ์˜ค์—ผ์— ๊ด€ํ•œ ์—ฐ๊ตฌ

    No full text
    ํ•™์œ„๋…ผ๋ฌธ(์„์‚ฌ)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :์น˜์˜ํ•™๊ณผ ์น˜๊ณผ๋ณด์ฒ ํ•™ ์ „๊ณต,1998.Maste

    Difference of hydrogen diffusivity in between amorphous and crystalline

    No full text
    MasterAmorphous alloys, showing somewhat higher hydrogen permeance than pure crystalline Pd, are perspective candidates for replacing the current Pd-based hydrogen selective membranes. As the origin of high permeability, they usually have much higher solubilities than crystalline alloys which originate from larger available spaces. However, their diffusivities are not consistently faster - sometimes higher and sometimes lower. We clarified this difference of hydrogen diffusivity in between amorphous and its counterpart crystalline with the aid of molecular dynamics simulation technique. In order to perform a simulation about the diffusion behavior of hydrogen in Cu-Zr amorphous alloys, the interatomic potential for the Cu-Zr-H ternary system have been developed based on the second nearest-neighbor modified embedded-atom method (2NN MEAM) formalism. A few first-principles calculations of physical properties for the Cu-H sub-binary system were carried out to supplement data necessary to optimize the potential parameters. The developed potential reproduced fundamental properties (structural, thermodynamic, defect and diffusion properties) mostly well for investigating the dynamic behavior of hydrogen. Then, through a series of diffusion simulations, the calculated diffusivity of hydrogen in the amorphous lattice is turned out to be lower than that in a bcc-based lattice, and to be higher than in a fcc-based lattice
    corecore