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Abstract: The conductive polymer complex poly (3,4-ethylene dioxythiophene):polystyrene sulfonate
(PEDOT:PSS) is the most explored conductive polymer for conductive textiles applications. Since
PEDOT:PSS is readily available in water dispersion form, it is convenient for roll-to-roll processing
which is compatible with the current textile processing applications. In this work, we have made
a comprehensive review on the PEDOT:PSS-based conductive textiles, methods of application onto
textiles and their applications. The conductivity of PEDOT:PSS can be enhanced by several orders of
magnitude using processing agents. However, neat PEDOT:PSS lacks flexibility and strechability
for wearable electronics applications. One way to improve the mechanical flexibility of conductive
polymers is making a composite with commodity polymers such as polyurethane which have high
flexibility and stretchability. The conductive polymer composites also increase attachment of the
conductive polymer to the textile, thereby increasing durability to washing and mechanical actions.
Pure PEDOT:PSS conductive fibers have been produced by solution spinning or electrospinning
methods. Application of PEDOT:PSS can be carried out by polymerization of the monomer on the
fabric, coating/dyeing and printing methods. PEDOT:PSS-based conductive textiles have been used
for the development of sensors, actuators, antenna, interconnections, energy harvesting, and storage
devices. In this review, the application methods of PEDOT:SS-based conductive polymers in/on to
a textile substrate structure and their application thereof are discussed.
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1. Introduction

With the emergence of new fibers, fabrics and innovative processing technologies, the growth of
the textile market has increased in recent years and has been instrumental in bringing about significant
technological advances. Starting with groundbreaking research on how to integrate conductive lines
and circuits into textiles in the late 1990s, rigorous researches resulted in sensor additions, actuators,
user interfaces, and complicated textile circuits that could provide extra functionality to make smart
textiles. Smart textiles can be defined as textiles capable of sensing and responding to changes in their
environment by external factors. In response to stimuli, they are able to show significant changes in
their mechanical and/or chemical properties (such as shape, color, and stiffness), or in their thermal,
optical, or electromagnetic properties. Examples include fabrics that change their color with changes
in temperature and fabrics that regulate garments’ surface temperature to achieve physiological
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comfort. Smart materials can be incorporated into the textile structure by different technologies such
as embroidering [1], non-woven textile [2], knitting [3], weaving [4], braiding [5], yarn spinning [6],
fiber spinning [7], polymerizing [8], coating [9], plating [10] and printing [11].

Societal needs such as new functionality, comfort, and aesthetic values from daily use to critical
health-related applications are the driving forces for the development of smart textile materials.
The recent developments in the fields of textiles, electronics, information technology, advanced
materials and polymers are paving the way for the development of smart textile materials and their
application [12–19]. The fact that textiles are an interface between the wearer and the surrounding
with large and permanent surface contact make them ideally suitable for large scale and long-term
health monitoring. In addition, textile is easily accessible anywhere and has versatile applications from
dressing to household products and coverings.

The primary step in smart textiles is making conductive textiles. From a textile perspective, it is
suggested that the overall objective of smart textiles would be to convert all related components, such
as sensors, actuators, transmission lines, etc., into 100% textile materials [20]. However, conventional
textiles are intrinsically non-conductive so they need to be converted to become conductive in some
way. The earlier method of making textiles conductive was inserting thin metal fibers/yarns in the
textile/garment which primarily was developed for antistatic treatment. A later development and
more convenient way to make conductive textiles is to treat them with conductive inks at the polymer
(man-made fibers), fiber, yarn, fabric or readymade garment stage. Conductive textiles can be classified
into bulk and surface conductive textiles [21]. Bulk conductive textiles include intrinsically conductive
polymer textiles, textiles twisted/embedded with metallic filaments and textiles filled with conductive
additives such as carbon blacks (CBs), carbon nano-tubes (CNTs), or conductive polymers. Surface
conductive textiles are the textiles coated with conductive layers. The conductive coatings may
consist of metals, conductive polymers, or other conductive materials such as CNTs or CBs. From
a technological point of view, the challenge is to develop a method suitable for the current textile
processing, with high conductivity, durability and maintaining the desired textile properties such as
flexibility. Coating with metal nanoparticles/nanowires could give high conductivity; however, it may
come at the expense of flexibility and lack of durability. The focus will therefore be on enhancing
durability, textile character, and conductivity. The use of electrically conductive polymeric materials
have recently attracted considerable interest from academic and industrial researchers to explore
their potential in sensors [22], biomedical [23], wireless communication patch antenna [24], energy
harvesting [25] and energy storage [26] applications. Conductive polymers are light weight and flexible
and can be applied on the textile without affecting its flexibility. Solution-based conductive polymers
are especially convenient for the roll-to-roll processing which can easily be integrated with the current
textile processing technologies like dyeing and printing. There are several reports [27–29] on the use of
conductive polymers for conductive textile for different applications. Recently reported conductivities
of over 6000 S/cm [30] are signaling their practical potential use in the smart textiles applications.

For this review, we made a comprehensive electronic document search according to the preferred
reporting items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines from the web of
science database and the Google search engine. ’Conductive + textiles’, ’textile + sensor’, ’textile
+ antenna’, ‘textile + energy harvesting’, ‘textile + energy storage’, ’textile + interconnections’,
‘conductive + polymers’, ‘conductive + polymer + composites’, ‘e-textile’, ’PEDOT’, ‘PEDOT:PSS’,
‘EDOT’, ‘poly(3,4-ethylenedioxythiophene)’, ’poly(3,4-ethylene dioxythiophene):polystyrene sulfonate’,
have all been used as primal keywords for the search.

2. Conductive Polymers

Traditional commodity polymers are intrinsically insulators. The discovery of conductive polymers
started with the path breaking discovery that halogen doped polyacetylene (-CH=CH-)n show high
electrical conductivity, which led to the 2000 Nobel Prize in Chemistry award [31]. Since then, there
have been several fundamental studies and applications of conductive polymers. The carbon atom
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in saturated polymers, such as polyethylene, form four covalent σ-bonds (saturated sp3-carbon).
Whereas the carbon atom in conjugated polymers has sp2pz (π) orbitals which form three σ-bonds
and the remaining pz orbitals engage in the π system. The common feature in conductive polymers is
conjugation, i.e., the alternation of single and double bonds, and hence the synthesis of π-conjugated
chains is central to the science and technology of conductive polymers. The charge carriers are
delocalized in conjugated systems and provide the “highway” for charge mobility along the backbone
of the polymer chain. The conductivities of conjugated polymers can be enhanced by doping, which
is basically either reduction or oxidation [32]. The conductivity of doped polyacetylene can reach
105 S/cm which is comparable to that of copper [33]. However, polyacetylene is difficult to synthesize
and is unstable in air which prevented its commercialization. The most important conductive polymer
candidates currently are polypyrrole (PPy), polyaniline (PANI), and polythiophenes (PTh) whose
chemical structures are shown in Figure 1. Poly(3,4-ethylenedioxythiophene) (PEDOT), which is the
main topic of this article, is the most studied and successful PTh derivative polymer due to its higher
electrical conductivity and chemical stability which make it suitable in the development of smart
textiles [34]. In contrast to PPy and PANI, the exploration on PEDOT is comparatively recent.
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Figure 1. Chemical structure of the most common conductive polymers: (a) Polypyrrole; (b) Polyaniline;
(c) Polythiophene.

Conductive polymers exhibit novel properties such as solution processability, high elasticity,
toughness, and low-temperature synthetic routes. Some examples conductive polymers and their
properties are presented in Table 1. Due to these interesting properties, conductive polymers are used
for several applications such as photovoltaic devices [35], organic light-emitting diodes [36], organic
field-effect transistors [37], sensors [38], antennas [39], conductive textiles [40], supercapacitors [41]
and many more.

Table 1. Non-exhaustive conductivity and properties of common conductive polymers.

Polymer Conductivity
(S/cm) Doping Properties Limitations Ref.

PPy 2000 P
High electrical conductivity,

ease of preparation and ease of
surface modification

Rigid, brittle and insoluble [42]

PANI 112 P Diverse structural forms,
environmentally stable, low cost

Hard to process,
non-biodegradable,
limited solubility

[43]

PTh 560 P
High electrical conductivity,

ease of preparation, good
optical property

Hard to process [29]

PEDOT:PSS 4700 P High electrical conductivity
used as transparent electrode

Needs additional steps to
process [44]

3. PEDOT

Among conductive polymers, PEDOT is the most extensively explored, successful and widely
used for many applications due to its high conductivity, its stability in air up to high temperatures and
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resistance to humidity including moist air, and because it is also processable in water. PEDOT can
be polymerized from 3,4-ethylenedioxythiophene (EDOT) chemically or electrochemically. However,
PEDOT synthesized this way and doped with small molecule counter ions is insoluble in any solvent
and large size sample preparations are a challenge [32].When polymerization is carried out in the
presence of aqueous polyelectrolyte poly(styrenesulfonate) (PSS), it becomes water dispersible which
is stable, easy to process, with good film forming properties, and with high visible light transmittance.
PSS acts as a template during polymerization and charge balancing counter ion hence keeping the
cationic PEDOT segments dispersed in aqueous medium. The molecular weight of PEDOT and PSS is
about 1000–2500 g/mol (around 10 to 20 monomer units) and 400,000 g/mol, respectively. PEDOT:PSS
in the aqueous media (and the as-prepared film too) has core-shell structure (Figure 2) where the
core is conductive PEDOT-rich and the shell is insulator PSS-rich. The hydrophobic PEDOT and
hydrophilic PSS nature led to the core shell structure [45]. PEDOT:PSS films prepared from aqueous
dispersions have lower conductivity (<1 S/cm) than PEDOT films prepared by oxidative and vapor
phase polymerization and stabilized with small molecule counter ions. The main reason for the low
conductivity is the core-shell structure which leads to an increase in the energy barrier for charge
transport across PEDOT chains by the insulator PSS-rich shell and charge localization due to the coiled
PEDOT-rich core [46].

The conductivity can be enhanced up to four orders of magnitude by treatment with polar solvents
like dimethyl sulfoxide, ethylene glycol, acids and alcohols called “secondary dopants”. Secondary
dopants are different from primary dopants in that they are apparently “inert” and the newly enhanced
property persists even upon complete removal of the secondary dopants. Generally, the treatment
methods can be grouped into three types: mixing secondary dopant in to the aqueous PEDOT:PSS
dispersion, film treatment after drying with secondary dopant or a combination of both methods.
The exact mechanism of conductivity enhancement is still a topic of intense investigation. Shi et al.
have nicely reviewed treatment methods for conductivity enhancement and mechanism of conductivity
enhancement [28]. The additives bring about charge screening between PEDOT and PSS due to their
high dielectric constant leading to phase separation. The PEDOT chains will be free to be linearly
oriented (from coiled structure), and hence, have a more compact structure (smaller π–π stacking
distance), leading to stronger inter chain coupling and better crystallinity with larger crystal size [47].
In the case of post treatment, the excess PSS will also be removed [48]. All these combined effects will
lead to increases in carrier concentration and mobility [49,50].

There are different grades of PEDOT:PSS commercially available with different conductivities,
may be due to the molecular weight difference of PEDOT. Recently, the most extensively used high
conductivity grade is Clevios PH1000. Rigorous work has shown very high conductivities of 4700 S/cm
for PEDOT:PSS [44] and 7619 S/cm for single crystal PEDOT nanowires [51]. With such improved
conductivities, further advancements in different applications are expected.
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4. PEDOT:PSS Based Conductive Polymer Composites

4.1. Conductive Polymer Composites

Metal-based interconnects have been reported to have the highest conductivity, but are not
stretchable enough, while elastomeric interconnects are not conductive enough. Conventional
conductive polymers such as PPy and PEDOT show promising conductivity for these applications;
however, their mechanical properties, biocompatibility and processability still needs improvement [34].
This has led to more attention being directed towards conductive polymeric composites at improved
electrical conductivity and mechanical stability. One way to increase the mechanical robustness of
conductive polymers is by making a composite with commodity polymers. Composite materials
based on conjugated conducting polymers and non-conducting polymers often show a low percolation
threshold and improved environmental stability with respect to the conjugated polymer. For instance,
compounding techniques used for processing of conventional thermoplastics have been applied to
prepare composites of PPy with certain thermoplastics which provided a drastic increase in oxidation
stability [53]. In particular, composite of conductive polymer with elastomers have been demonstrated
for stretchable/elastic conductive materials/devices. Typical examples of conductive polymer
composites for different applications include an electrically conductive PEDOT:PSS-polyurethane
(PU) [54]. Table 2 presents non-exhaustive lists of common conductive polymer composites with their
suggested application areas.

Table 2. Properties of common conductive polymer composites.

Conductive Polymer
Composite

Conductivity
(S/cm) Properties Suggested

Application Ref.

PPy/Hyaluronic Acid 3.1 × 10−3 Can support tissue growth and
stimulate specific cell functions

Tissue engineering and
wound-healing [55]

PANI
Nanofibers/Collagen 0.27 Well suited for cell culture Scaffold Materials for

biomedical [56]

PPy/Chitosan 10−3–10−7 Radical scavenger Food packaging and
biomedical [57]

PEDOT:Tos/Glycol 1486 Soft, flexible and biocompatible Implantable devices [58]

PPy/Cellulose Acetate 6.9 × 10−4–360 Soft and flexible and Wearable electronics [59]

PANI
Nanoparticles/Polyacrylic
Acid/Polyvinyl Alcohol

0.04–0.06
Hydrogel, biocompatible, good
mechanical strength and good

swelling properties
Strain sensor [60]

Polythiophene
derivative/PU 2.2 × 10−5 Suitable for supporting electrically

stimulated cell growth Tissue engineering [23]

PEDOT:PSS/PU/Ionic
liquid 8.8 × 10−5 Mechanically flexible and

stretchable Actuating devices [61]

PPy/poly(D,L-Lactic
Acid)

5.7 × 10−3–15.7 ×
10−3

Nerve tissue regeneration,
biocompatibility

Synthetic nerve
conduits [62]

PPy nanoparticles/PU 2.3 × 10−6 Cytocompatible, elastomeric
properties Tissue engineering [63]

4.2. PEDOT:PSS Based Conductive Polymer Composites

PEDOT:PSS is well known for its high conductivity and applications in conductive textiles and
has been used with encouraging results for different applications. Unfortunately, the use of pure
PEDOT:PSS is currently constrained by its brittleness. As outlined earlier, one way to improve its
mechanical flexibility is to make a composite with traditional commodity polymers. Giuri et al. reported
are GGO-PEDOT composites with thermal stability up to 270

◦

C for super capacitors [41], Hilal and
Han developed a graphene (G) and PEDOT:PSS composites with improved electrical conductivity by
63% of a pristine PEDOT:PSS for solar cells [64]. Taroni et al. reported a thermoelectric PEDOT:PSS/PU
blend [38] with improved ductility while maintain reasonable conductivity. A polyvinyl alcohol (PVA)
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combined with phosphoric acid and PEDOT:PSS and silver flakes that withstands about 230% strain
before fracture was reported by Houghton et al. [65]. Furthermore, a PEDOT:PSS-based multi-layer
bacterial composite was developed by embedding an electro-active bacterium inside a conductive
three-dimensional PEDOT:PSS matrix to increase the electron transfer through the PEDOT:PSS [66].
Table 3 presents non-exhaustive lists of PEDOT:PSS composites with their preparation technique,
properties and proposed applications.

Table 3. Properties of common PEDOT:PSS based conductive polymer composites.

Conductive Polymer
Composite

Resistivity, Ω

cm (Resistance,
Ω/sq)

Properties Manufacturing Technique Proposed Application Ref.

GO/rGO filled
PVA/PEDOT:PSS 107 Highly flexible free-standing Solvent casting Strain sensor [67]

PEDOT:PSS/PU (35−240) Highly flexible, stretchable Electrospinning Strain sensor [2]

PEDOT:PSS/Bacteria 103a

20 times more steady-state
current than native biofilms
baseline with signal level of

6.31 µA/cm3

Embedding bacteria into
electro-polymerized

PEDOT:PSS on carbon felt
anodes

Bioelectronics [66]

PEDOT:PSS/PU 1.26 × 10−2

Sensitivity to different stimuli
including strain, ambient

temperature and/or air flow
high electrical conductivity

Dispersion mixing Stretchable self-powered
sensors [38]

PEDOT:PSS/graphene (25)
Strong resistance against

fatigue upon repeated
folding-unfolding

Spray coating
Data storage and

transmission, biosensors
and actuators

[68]

3D
Graphene/PEDOT:PSS 4.1 × 10−2 Good resistance retention

capability under deformations
Graphene networks coated

by PEDOT:PSS
Next-generation

stretchable electronics [69]

CNT/PEDOT:PSS 3 × 10−3 Good thermoelectric
performance

Vacuum assisted filtration
method and H2SO4

treatment

Flexible thermoelectric
generator [70]

a The unit for the value of Ref. [66] is Ω.

5. Methods of Treating Textiles with PEDOT:PSS

PEDOT:PSS can be applied on textile materials by carrying out an in-situ polymerization of
3,4-ethylenedioxythiophene (EDOT) on the textile substrate in the presence of PPS or by applying the
polymer PEDOT:PSS dispersion onto a textile substrate. In general, adding the polymer into a polymer
solution during fiber spinning, coating/dyeing textile substrates (fibers, yarns, fabrics) and/or printing
textile fabrics, can be used to produce PEDOT based conductive textiles.

5.1. Conductive Fiber Spinning

In this technique, PEDOT:PSS is added to a conventional polymer solution during fiber wet
spinning or electrospinning (Figure 3a) in order to produce a conductive fiber or filament, or the
PEDOT:PSS alone can be spun in to a fiber. In 2003, Okuzaki and Ishihara presented their first study on
the manufacture of 4.6 to 16 µm PEDOT:PSS microfibers using wet-spinning technique with an electrical
conductivity of 0.1 S/cm [7]. The Young’s modulus, tensile strength, and elongation at break for the
resulting microfibers were 1.1 GPa, 17.2 MPa, and 4.3%, respectively. Jalili et al. reported a simplified
wet-spinning process for continuous PEDOT:PSS fibers which showed a conductivity up to 223 S/cm by
post treatment of the fibers with ethylene glycol [71]. In another approach, they used an aqueous blend
of PEDOT:PSS and poly(ethlylene glycol) and the conductivity of the fibers increased by a 30-fold (from
9 to 264 S/cm) without the need of a post treatment. Okuzaki et al. developed PEDOT:PSS microfibers
with diameter of ca. 5 µm by wet-spinning [72]. They improved the electrical conductivity of the fibers
from 74 S/cm to 467 S/cm by subsequent dip-treatment of the fibers in ethylene glycol. The mechanical
properties of the microfibers were also improved by the dip-treatment; the Young’s modulus and
tensile strength increased from 3.2 GPa and 94 MPa to 4.0 GPa and 130 MPa, respectively. Zhou
et al. further enhanced the electrical conductivity of wet spun PEDOT:PSS microfibers to 2804 S/cm
via wet-spinning followed by post treatment with ethylene glycol and hot-drawing [73]. This high
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conductivity is due to the combined effects of the vertical hot-drawing process and doping/de-doping
of the microfibers with ethylene glycol. Moreover, they had a semiconductor metal transition at 313 K
with superior mechanical properties with a Young’s modulus up to 8.3 GPa, a tensile strength reaching
of 409.8 MPa and a large elongation before failure (21%). J. Zhang et al. also carried out a wet spinning
of PEDOT:PSS fiber and obtained better conductivity of PEDOT:PSS fiber, 3828 S/cm, by decreasing
the fiber diameter using a fine gauge needle [74]. The wet-spinning set-up was modified as shown in
Figure 4a. Liu et al. also reported composite conductive fibers based on PEDOT:PSS blended with
polyacrylonitrile [75] by wet spinning. Fibers with 1.83 wt% of PEDOT:PSS showed a conductivity
of 5.0 S/cm. Seyedin et al. demonstrated a scaled-up fiber wet-spinning production of electrically
conductive and highly stretchable PU/PEDOT:PSS fibers which were then used in knitting for a knee
sleeve prototype with application in personal training and rehabilitation following injury [3]. The fiber
showed a conductivity of 166 S/cm very close to pristine PEDOT:PSS film with a wide strain sensing
capability up to a 260 % strain.

Jin et al. employed an electrospinning and in-situ synthesis process to fabricate silver nanoparticles
coated PEDOT:PSS/PVA flexible self-supporting nanofibers with greatly improved electrical conductivity [76].
Q. Zhang et al. also used an electrospinning to fabricate a PVA/PEDOT:PSS nanofiber with an average
diameter of 68 nm for a gas sensor (Figure 3b) [77].Sensors 2020, 20, x FOR PEER REVIEW 8 of 20 
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5.2. Polymerization of PEDOT on the Textile Substrate

The PEDOT monomer can be polymerized on the textile substrate (fiber, yarn, fabric or garment
form) by in situ, vapor phase or electrochemical polymerization by using EDOT and appropriate
chemicals like oxidants [78]. This method combines polymerization of the PEDOT and coating of
the textile.

The attachment of PEDOT on the fabric surface depends on the chemistry of the fiber as well
as the surface roughness of the fiber. Though direct polymerization of PEDOT on the textile seems
straight forward, it is difficult to control the parameters. Moreover, it is used for small sample size and
a challenge for industrial requirements. Hong et al. carried out five cycles of in-situ polymerization of
PEDOT on poly(trimethylene terephthalate) fabrics in the presence of ferric p-toluenesulfonic acid
and ferric chloride as oxidants followed by butane treatment and obtained an electrical conductivity
of 3.6 S/cm [79]. Bashir et al. reported an electrically conductive polyester fabric with an electrical
resistance of ~2000 Ω, coated by PEDOT through oxidative vapor phase polymerization (VPP) in the
presence of Fe (III) chloride hexahydrate oxidant [80]. They also obtained electro-conductive aramid,
viscose and nylon fabrics by the same approach. In another work, they produced a conductive viscose
yarn with electrical resistance 6 kΩ by oxidative chemical vapor deposition, by removing the impurities
like acetone and ethyl acetate, prior to the oxidant enrichment and polymerization steps [81]. Trindade
et al. also coated a polyester fabric by PEDOT through VPP and obtained a lower sheet resistance
of~20 Ω/sq by increasing the concentration of the oxidant, Fe (III) chloride hexahydrate [82]. L. Zhang
et al. coated textile fabrics (silk, linen, wool, pineapple, bamboo rayon) by PEDOT through VPP and
obtained a sheet resistance from 200 to 9.46 kΩ depending on the porosity of the fabric; porous fabric
gives higher sheet resistance than tight-fabric [83]. Overall, the electrical and mechanical properties
of conductive textiles are determined by the concentration of oxidants, pretreatment of the original
pristine fabric and post-treatments of the conductive fabric, type and form of textile substrate and the
polymerization conditions. The illustration of vapor deposition system is shown in Figure 4.
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5.3. Coating/Dyeing of Textiles with PEDOT:PSS

In the coating/dyeing method, the appropriate form of textile is treated by immersing/dipping in
PEDOT:PSS dispersion with appropriate auxiliary chemicals. This is method mimics either the exhaust
or continuous dyeing method of commercial textile processing. It is the most popular method practiced
for making conductive textiles with PEDOT:PSS. The uniformity as well depth of dyeing/coating
depends on the functional group of the textile. Ding et al. treated cotton, cotton/polyester, polyester and
nylon/spandex fabrics by impregnating with PEDOT:PSS and showed that conductivity is higher for
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fabrics which swell well in water [84]. Ryan et al. dyed up to 40 m long silk yarn with PEDOT:PSS with
conductivity of ~14 S/cm which was durable to machine washing [85]. The reason to wash durability of
PEDOT:PSS on silk is due to the dyeing effect and the presence of a fluorosurfactant Zonyl FS-300 used
during dyeing. When cotton was dyed by the same method, it was too fragile due to hydrolysis of the
cellulose by the strong acidic PEDOT:PSS. The same group further demonstrated a continuous dyeing
process to produce more than 100 m of silk thread dyed with PEDOT:PSS for a wash and wear resistant
functional thread with a conductivity of about 70 S/cm [86]. Ding et al. produced PU fibrous nonwoven
and treated it with PEDOT:PSS by dip-coating [2]. The PEDOT:PSS@PU nonwovens showed sheet
resistance of 35–240 Ω/sq (electrical conductivity of 30–200 S/m) by varying the number of dip-coating
times. This conductive nonwoven maintained its surface resistance up to 50% strain, promising for
wearable application. Tadesse et al. also treated polyamide/lycra elastic fabric with PEDOT:PSS by
dipping only once and showed a sheet resistance of ~ 1.7 Ω/sq [87]. The fabric was stretchable up
to ~650% and maintained reasonable conductivity up to washing cycles. The durability to washing
in this case is also due to dyeing effect where there is some kind of chemical interaction between
the fiber and PEDOT:PSS. A schematic representation of discontinuous and continuous PEDOT:PSS
dip-coating/dyeing on a textile fabric are shown in Figure 5.
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5.4. Printing of PEDOT:PSS on Textile

Printing is a well-developed textile processing method used industrially is also used to apply the
PEDOT:PSS to the textile structure in the presence of thickening agents to obtain an adequate paste
or ink viscosity. Guo et al. demonstrated a fabrication of all-organic conductive wires by utilizing
patterning techniques such as inkjet printing and sponge stencil to apply PEDOT:PSS onto a nonwoven
polyethylene terephthalate (PET) providing a wide range of resistance, i.e., tens of kΩ/sq to less than
2 Ω/sq that allows the resistance to be tailored to a specific application [88]. Sinha et al. demonstrated
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the integration of screen-printed PEDOT:PSS electrocardiography (ECG) circuitry on finished textiles
and recorded an ECG signal comparable to Ag/AgCl connected to copper wires [89]. Zhao et al. also
used screen-printing to produce a PEDOT:PSS and carbon-based disposable electrochemical sensor
for sensitive and selective determination of carmine [90]. Tseghai et al. used a flat screen printing to
coat a PEDOT:PSS conductive polymer composite on to a knitted cotton fabric and obtained a sheet
resistance of 24.8 kΩ/sq [91]. The conductive textile fabric stays conductive until its infliction point of
stretching. The schematic illustration of screen printing is shown in Figure 6.
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6. Applications of PEDOT:PSS-based Conductive Textiles

As outlined earlier, PEDOT:PSS has high electrical conductivity, thermal stability, decent
biocompatibility, and is solution processable. These interesting properties make it attractive for
different textile-based applications including sensors, energy harvesting, and storage devices.

6.1. Sensors

The demand of textile-based sensors is increasing because of their lightweight, flexiblity, and
possibility of washing. PEDOT:PSS-based textiles have been widely used as a sensing component
for strain, pH, humidity, biopotential, and temperature. Zahid et al. applied graphene nanoplatelets
dispersed in PEDOT:PSS solutions for producing a conductive, breathable and lightweight mercerized
cotton fabrics by spray coating which showed a highly repeatable and stable response to cyclic
deformation tests at 5% and 10% strain rates for up to 1000 cycles with ~90% viscoelastic recovery levels
after cessation [68]. Kang reported a resistive memory graphane-PEDOT:PSS coated nylon thread
with a strain response for wearable applications as an example of bio-potential sensors (Figure 7) [92].
Seyedin et al. developed a strain sensor from a PU/PEDOT:PSS fibers with conductivity of 9.4 S/cm [3].
The resistance of this textile sensor stays stable up to 160% strain and up to 500 cycles. The high
conductive textile-based hybrid showed high stability during stretching. Pani et al. developed a new
textile ECG electrode based on woven fabrics treated with PEDOT:PSS for bio-potential recordings
tested on human, both in terms of skin contact impedance and quality of ECG signals recorded at
rest and during physical activity [93]. The electrode was found to be capable of operating under both
wet and dry conditions, which could be an important milestone in wearable monitoring of heart.
Ankhili et al. developed an ECG sensor electrode from a PEDOT:PSS screen-printed cotton fabric and
obtained a clear ECG wave amplitudes up to 50 washing cycles [94]. The same group also produced
washable screen-printed cotton textile electrodes with and without lycra of different PEDOT:PSS
concentration, providing a medical quality ECG signal to be used for long-term ECG measurements
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with a similar result to silver-plated cotton fabric at 12.8 wt% of PEDOT:PSS to pure cotton [95]. Niijima
et al. produced “hitoeCap” from PEDOT:PSS textile electrodes for securing electromyography of the
masticating muscles [96].
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Figure 7. A graphene-PEDOT:PSS coated nylon thread: (a) schematic of the simple two-step dip-and-dry
solution process for the fabrication (right) and the actual picture of the sample with the length reduction
from 80 to 29.48 mm after dip-and-dry; (b) resistive memory strain sensor thread at many stretch and
release cycle under applied a fixed ε = 7.1%. Adopted from [92]

Furthermore, Abbasi et al. worked on the use of PEDOT:PSS material for the implementation
of high sensitivity moisture sensor devices, which showed significant frequency shifts [97]. They
demonstrated sensing capacity even for small moisture variations. Smith et al. developed a wearable
pH sensor cotton yarn in PEDOT:PSS and multi-walled carbon nanotubes followed by PANI deposition
that produced electrodes with significant biocompatibility and antibacterial properties that could be
manufactured (alongside quasi-reference electrodes) into wearable solid-state pH sensors and achieved
wearable pH sensors [98].

6.2. Energy Harvesting and Storage

Textiles coated with PEDOT:PSS have been used to manufacture flexible and lightweight energy
harvesting and storage devices. This is quite interesting to power from wearable electronics to medical
implantable devices. PEDOT:PSS is a promising organic thermoelectric material, materials which
change temperature difference into electricity or vice versa [52]. PEDOT:PSS coated textiles have been
studied for wearable thermoelectric applications to harvest the temperature difference between the body
and outer surrounding. Du et al. coated polyester fabric strips with PEDOT:PSS where the flexibility
and air permeability was not affected and attached them on non-coated [99]. The treated fabric showed
electrical conductivity of ~1.5 S/cm and generated thermoelectric voltage of 4.3 mV at a temperature
difference of 75.2 ◦K. Ryan et al. dyed silk yarn with PEDOT:PSS and made 26 thermoelectric legs by
embroidering on felted wool fabric which showed a thermoelectric voltage output of ~351 µV/K [85].
These PEDOT:PSS dyed silk yarns were stable to machine washing and up to thousand bending cycles.
Recently, Jia et al. coated textile with PEDOT via VPP which combined thermoelectric generation and
strain sensing application [100]. Allison et al. used vapor printing method on commercial cotton fabric
to make all textile wearable band which generated thermovoltages as high as 20 mV when worn on the
hand (Figure 8) [101].

Supercapacitors are alternative energy storage devices for fast charge discharge applications.
Textile based supercapacitors have attracted attention due to their inherent flexibility and their potential
use in wearable electronics. Nuramdhani et al. demonstrated that PEDOT:PSS sandwiched between
two stainless steel conductive yarns showed capacitive behavior as an energy storage device [26].
Ma et al. reported flexible stainless steel/cotton blend yarn coated with PEDOT:PSS and PPy which can
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be cycles up to 5000 cycles [102]. Yuan et al. reported fiber shaped yarn supercapacitors by twisting
wet spun PEDOT:PSS which showed a high areal capacitance of 119 mF/cm2 [103]. Li et al. prepared
flexible textile supercapacitors by spray coating of graphene nanosheets and PEDOT:PSS which exhibit
an enhanced specific areal capacitance of 245.5 mF/cm2 [104]. Yuksel et al. reported cotton fabric
coated with MnO2/SWNT/PEDOT:PSS ternary nanocomposite supercapacitors that gives a specific
capacitance up to 246 F/g and areal capacitance of 64.5 mF/cm2 [105].Sensors 2020, 20, x FOR PEER REVIEW 13 of 20 
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voltage outputs for a tobacco cotton thermopile at 25 ◦C. Adapted from [101].

6.3. Other Applications

There is a strong need in flexible and wearable actuators, organic light-emitting diode (OLED)
and antenna. The inherent properties of PEDOT:PSS make it ideal to fabricate these devices on textiles.
For instance, Li et al. developed a screen-printed textile patch antenna capable of operating at 2.4 GHz
by using PEDOT:PSS as a patch and ground on polyester fabric [106]. The antenna is flexible and
breathable which make it well-fit for wearable applications.

Actuation is another application area of smart textiles. Miura et al. developed a foldable
PEDOT:PSS/PVA fiber by wet spinning that exhibits a repeatable contraction motion at air by applying
alternating square-wave voltages between 0 and 8 V [107]. Verboven et al. reported an OLED with
maintained textile properties by screen printing of silver as a bottom electrode, barium titanate as
a dielectric, copper-dopped zinc-oxide as an active layer and PEDOT:PSS as a top electrode on polyester
fabric that requires 3–5 V power supply [108]. The thickness of the OLED on the textile fabric was only
0.5 µm which is a good platform for wearable application; the schematic illustration and actual OLED
are shown in Figure 9.
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7. Conclusions and Outlook

Current advances in textile technology, new materials, nanotechnology, and miniaturized
electronics make wearable systems more feasible, but fit comfort is the ultimate key factor for
wearable device user acceptance. It is convincing that this objective can only be achieved by addressing
mechanical robustness and material durability in what is recognized as a harsh electronic environment:
the human body and society. Thus, the use of conductive polymer composites for smart textiles
could possibly be the primal solution. Composites of conductive polymers have been explored to
overcome their brittleness and processability, while retaining their electrical conductivity and desirable
biological properties such as cell adhesion. Enhanced mechanical properties of conductive composites
usually come at the expense of desirable electrical conductivity of conductive polymers. On the
other hand, fundamental understanding of the interaction between the conductive polymer filler
and the non-conductive commodity polymer matrix will lead to get synergistic effect in mechanical
performance and electrical properties of the composites. There is a need to achieve reasonable electrical
conductivity with the lowest possible amount of conductive filler, while retaining the properties of the
host polymer. The major challenges thus lie in selection of conductive filler achieving low percolation
threshold and retaining biocompatibility for biomedical applications. PEDOT:PSS-based conductive
polymer composites are promising for the manufacturing of smart textiles with better biocompatibility,
flexibility, conductivity, printability, miscibility and weight, and as such much better suited for wearable
applications compared to the common electrodes such as metallic coatings and others. As a result,
tremendous PEDOT:PSS-based conductive textiles have been developed by different approaches
as sensor, energy harvesting devices, antennas, OLEDs etc. However, the conductivity stability of
PEDOT:PSS conductive polymer composites after being applied on textile substrates still needs an
improvement. This improvement could be on the synthesis of PEDOT:PSS itself, on the combination
and proportion of the polymers in the composite or by seeking new approaches of integration.
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