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Abstract

With the development of fields like soft (micro-) robotics, wearable devices and 

internet-of-things, there is a growing demand for new materials with combinations of 

functional properties, ranging from electrical conductivity, sensing and energy 

storage/harvesting, together with mechanical properties like large elastic deformations 

and toughness. Organic thermoelectric (OTE) materials and their composites are 

excellent candidates for self-powered sensors, due to their ability to harvest waste heat 

energy in a robust and reliable manner, combined with mechanical properties (e.g. 

high strain at break) and additional functionalities.  

This thesis focuses on the application of OTE as multi-functional self-powered sensors. 

Three types of representative OTE materials have been mainly investigated to explore 

different characteristics and potential applications. Three different processing methods 

have been explored for achieving the different structures aiming at various functions 

and potential applications in fields like wearable electronics and self-powered sensors. 

Poly nickel-ethenetetrathiolates (Nax(Ni-ett)n) has been selected as the n-type OTE 

material. Highly stretchable n-type composite films are obtained by blending with 

polyurethane. When subjected to a small temperature difference (< 20 oC), the films 

generated sufficient thermopower to be used for sensing strain and visible light, 

independently of humidity.  

Poly (3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) has also been 

selected as the most widely investigated p-type OTE material. A novel self-powered 

ultrasensitive deformation sensor has been demonstrated based on PEDOT:PSS being 
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coated on Lycra® yarns. By controlling the crack induced patterns of the conductive 

PEDOT:PSS coating, the strain sensitivity could be tuned in a wide range.  

Finally, carbon nanotube (CNT) has also been studied. A self-folding method has been 

used to create 3D structures by fixing CNT veils between patterned polycarbonate and 

biaxial stretched polystyrene films. The obtained honey-comb shaped OTE device has 

been utilised as a structural composite as a self-powered integrated sensor.
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Chapter 1 Introduction 

1.1 Motivation and objective 

Waste heat is everywhere. Nearly three-quarters of all the energy produced by 

humanity is squandered as waste heat and often released to the environment, according 

to the law of thermodynamics. The thermoelectric (TE) technology could provide a 

way to reduce the energy consumption, by reusing this waste heat and converting it 

directly into electricity.  

Two hundred years after its discovery, the physical phenomenon of TE has been 

exploited to generate electricity from a temperature gradient. Only recently organic 

materials have attracted an interest as TE materials. Organic Thermoelectrics (OTE) 

are based on conducting polymers and polymer nanocomposites and could be suitable 

for low temperature (< 250 °C) waste heat harvesting. OTE are promising as they can 

overcome drawbacks of traditional inorganics TE materials like the utilisation of rare, 

expensive and/or toxic elements, the brittleness and difficult processing. OTE can be 

synthesized from abundant elements by using low cost fabrication techniques. 

Furthermore, their low thermal conductivity and flexible nature can favour new device 

architectures and applications. Nevertheless, the low energy conversion efficiency 

hindered their utilization as generators. Prime issues are the lack of good performing 

and stable n-type OTE materials, the impracticality of in-plane devices in addition to 

the low power outputs (pW to μW) under a small temperature difference (< 20oC). 

Recently, not only p-type, n-type polymers and nanocomposites have made significant 

progress, but also new strategies and prototypes have been developed to improve the 
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OTE performance. Nevertheless, there is still a giant gap to fill before OTE generators 

could become commercially available. 

On the other hand, the expected rapid development of intelligent devices and internet 

of things will increase the requirement of a robust and reliable power source, 

particularly in off-the-grid and maintenance-free applications. This will accelerate the 

demand of energy harvesting devices and the development of autonomous, self-

powered devices. Given that only small power is required for operating these 

electronics, exploiting new OTE materials for energy harvesting modules, and 

integrating additional multi-functions and the unique mechanical properties, from 

flexible to rigid, within a single device, could become a reality.  

The main objective of this doctoral research is to explore state-of-the-art OTE 

materials to be utilised as multi-functional self-powered sensors. One of the aims is to 

enhance the properties of OTE materials, including increasing TE property by doping 

or post-treatment, improving mechanical flexibility by compounding with another 

polymer matrix and boosting the sensitivity by crack engineering. The other aim is to 

develop new OTE device architectures, with excellent flexibility, capable of 

harvesting out-of-plate thermogradients while, ideally, eliminating metal electrodes 

connection between p-n legs to reduce the inner resistance. Their various applications 

such as a wireless movement sensor, a self-powered temperature/strain sensor and a 

self-powered composites health monitor, should be explored to demonstrate potential 

room temperature applications of OTE.  

1.2 Scope of the thesis  

This research project investigates three types of representative OTE materials to be 

used as self-powered multifunctional sensors, and processed by different methods. 
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The literature review presented in Chapter 2 gives a broad overview of the TE 

technology, beginning with its basic knowledge and concepts, followed by a more 

focused review of OTE materials and devices. In particular, three types of OTE 

materials, PEDOT:PSS,  Poly(M-ett), and Carbon nanotubes (CNTs), representing 

among the most promising classes of p-type conjugated polymer, n-type coordination 

materials, and carbon-based nanocomposites, respectively, have been reviewed. 

Different prototypes of OTE devices, especially flexible and stretchable designs, are 

then overviewed. Finally, two potential applications of the next-generation OTE 

devices are discussed: wearable sensor and self-powered sensors. 

The materials, experimental procedures and characterisation techniques used in this 

research are summarized in Chapter 3. A highly stretchable n-type composite film, 

obtained by combining poly nickel-ethenetetrathiolates (Nax(Ni-ett)n) with a 

commercial polyurethane (Lycra®), is presented in Chapter 4, which can generate 

sufficient thermopower to be used for sensing strain and visible light when subjected 

to a small temperature difference (< 20 oC). The prototypes of a wearable self-powered 

sensor and a magic-ball shaped device, without employing any metal connections, 

have also been demonstrated. Chapter 5 presents a stretchable TE yarn prepared by 

coating PEDOT:PSS on Lycra® yarns and cracks are introduced by pre-straining the 

yarns. Such TE yarn shows an ultrahigh and tuneable strain sensitivity together with a 

very high strain-at-break (~1000%). The same yarn can sense strain, temperature and 

can power itself thermoelectrically, eliminating the need for the use of an external 

power-supply to power the sensor. Chapter 6 presents a honeycomb structural TE 

device based on CNT veils, by utilising a Kirigami inspired self-folding process.  A 

self-powered health monitoring structural composite is demonstrated, utilising the 

electrical power generated from thermal gradient along the out-of-plane direction. 
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In Chapter 7, the results of this research are summarized and prospective for future 

research suggested. I sincerely hope this thesis could be followed up by further 

research so to be able to witness even a minimal contribution on reducing our global 

energy crises and/or improving our quality of life. 
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Chapter 2 Literature review  

With the rapid development of intelligent devices and internet of things, much effort 

has been recently put in energy harvesting technologies that can harvest various forms 

of energy from the environment and convert it to electricity. Thermoelectric (TE) is 

one of such technologies that can harvest ubiquitous waste heat (gradients). Nearly 

two hundred years after its discovery, thermoelectricity is regaining recent momentum 

also thanks to the study of new organic thermoelectric (OTE) materials. OTE promises 

to tackle open issues, which limited the wider exploitation of traditional TE materials, 

including their brittleness and manufacturing challenges as well as the use of rare, 

expensive and/or toxic elements. Utilising the unique advantages of OTE, including 

ease of manufacturing, non-toxicity and wide availability of chemical elements as well 

as flexibility, new device designs can be developed and new applications can be 

explored, including wearable sensors and self-powered devices. 

Conversely, the TE low energy conversion efficiency remains a largely unsolved 

hurdle, which is being addressed by the development of new materials.  

In this chapter, the basic knowledge of thermoelectricity is first introduced. Then, the 

most promising organic thermoelectric materials are reviewed, divided as p-type, n-

type and (nano)composite materials, with a particular emphasis on stretchable OTE 

materials. Finally, after reviewing TE device architectures, including flexible and 

stretchable device prototypes, examples of applications of new-generation OTE 

devices are also provided. 
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2.1 Basic knowledge of thermoelectricity 

During the first half of 19th century, the physical phenomenon of ‘thermoelectricity’ 

was gradually developed with the Seebeck effect first reported by Thomas J. Seebeck 

in 1821, as well as the Peltier effect and Thomson effect, which were observed by Jean 

Charles Peltier in 1834 and Lord Kelvin in 1854. Thermoelectricity is a ubiquitous 

phenomenon present in all materials, resulting from the thermal diffusion of charge 

carriers along a temperature gradient. Specifically, when a material is subjected to a 

temperature gradient, the occupation of charge carriers in the density of state (DOS) 

is different from the hot side to the cold side, leading to the charge carriers (holes or 

electrons) diffusion and accumulation at the cold side, yielding a potential difference 

along the temperature difference. Depending on whether holes or electrons are the 

dominant charge carrier type, thermoelectric materials can be divided into p- and n-

type. However, most materials present a very low thermoelectric effect which limits 

their practical use due to (i) the low electrical conductivity so that the thermodiffusion 

of charge carriers provides negligible electrical current and power; (ii) the instability 

of creating a sufficient electric potential for a considerable temperature gradient; and 

(iii) the high thermal conductivity which makes the temperature gradient difficult to 

be maintained. 

2.1.1 Figure of merit  

An ideal thermoelectric material will, therefore, not only have a large Seebeck effect, 

but also be a good electrical conductor, to transport charge carriers effectively while 

minimizing the Joule heating dissipation during the charge transport, as well as a good 

thermal insulator, to prevent heat flow through the material and maintain a large 

temperature difference. These are governed by the Seebeck coefficient, α (also 

commonly denoted by S), electrical conductivity, σ, and the thermal conductivity, κ, 
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respectively. The dimensionless thermoelectric figure of merit (zT), combining the 

above properties, is often used to evaluate the thermoelectric performance of a material, 

operated at the certain temperature, T: 

 𝑧𝑇 =
𝜎𝛼2

𝜅
𝑇 Equation 2.1 

This dimensionless parameter is also used to assess the thermoelectric efficiency of 

devices, normally capitalize all letters as ‘ZT’. The maximum efficiency of a 

thermoelectric material depends only on zT, for a given temperature gradient. 

Enhancing the zT is hence one of the main aims in TE academic research, which can 

be achieved by increasing electrical conductivity and Seebeck coefficient, or by 

reducing the thermal conductivity. The numerator in the zT equation, S2σ, is called power 

factor (PF), which is normally used for evaluating the TE properties of a class of materials 

whose κ is difficult to be determined or of secondary importance. Usually, α, κ and σ all 

vary with temperature. Hence, (zT)eng is also adopted to predict the material performance 

for accuracy[1]:  

 (𝑧𝑇)𝑒𝑛𝑔 =
∫ 𝜎(𝑇)𝑑𝑇

𝑇ℎ
𝑇𝑐

 (∫ 𝛼(𝑇)𝑑𝑇
𝑇ℎ

𝑇𝑐
)2

∫ 𝜅(𝑇)𝑑𝑇
𝑇ℎ

𝑇𝑐

𝛥𝑇 Equation 2.2 

where Th and Tc refer to the hot and cold side temperature, resulting in the temperature 

difference ΔT. Ideally, zT should be ≥1 for commercial usage. ZT values above 2 have 

previously been reported [2], but only for very few (inorganic) compounds at 

temperatures higher than 600 K [3]. Seebeck coefficient  

By measuring the voltage (ΔV) generated between hot and cold ends of a material, at 

a steady state, the Seebeck coefficient can be defined as  

 𝛼 = −
∆𝑉

∆𝑇
 Equation 2.3 
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The sign of α is positive for p-type materials, with holes accumulated at the cold end, 

and negative for n-type materials, when the majority charge carriers are electrons. The 

Seebeck coefficient, sometimes also called as thermopower, can be defined as the 

average entropy per charge carrier, weighted by the contribution of the carrier to 

conduction. Despite the Seebeck coefficient having a complex dependence on carrier 

concentration and microstructure, it can be determined by the asymmetric distribution 

of carriers around the Fermi level and energy dependence of the charge carrier mean 

free path. When the energy of the lowest unoccupied molecular orbital (LUMO) for 

the conductive band is close or lower than the Fermi level, the net charges by 

thermodiffusion in the semiconductor is negative (hence n-type material), and when 

the energy of highest occupied molecular orbital (HOMO) for valence band close or 

higher than Fermi level, it will be p-type materials with positive Seebeck coefficient. 

The greater asymmetric density of states (DOS) around Fermi level, i.e., the higher 

slope of DOS at Fermi level, leads to a higher absolute Seebeck coefficient. Therefore, 

introducing some sharp features around the Fermi level and changing either the DOS 

or the Fermi level position can increase the Seebeck coefficient. Tuning of the doping 

level is the most common strategy to move the Fermi level or change the polaron/bi-

polaron band to adjust the steepest slope located around Fermi level. The degree of 

order, such as crystallinity, will have a significant impact on the DOS. Ordered 

materials have sharp DOS features, resulting in a steep DOS at Fermi level and a high 

Seebeck coefficient. Except manipulating band structures, tuning carrier scattering 

mechanism also can improve the carrier mobility and enhance Seebeck coefficient.  

Electrons, phonons, and electron-phonon interactions all can contribute to the Seebeck 

coefficient. In semimetals and metals systems, the migration of thermally excited 

electrons dominates the contribution to the Seebeck coefficient. Under the assumption 
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of the charge transport only occurs near the Fermi energy (EF) and the transmission 

probability changes slowly in energy scale of kBT, and kBT << 𝜇 , where 𝜇 is carrier 

mobility, the Seeebeck coeffiecient changes with temperature follows the Mott formula 

[4] as: 

 𝛼 =
𝜋2𝑘𝐵

2 𝑇

3𝑞
(

1

𝑛

𝑑𝑛(𝐸)

𝑑𝐸
+

1

𝜇

𝑑𝜇(𝐸)

𝑑𝐸
)

𝐸=𝐸𝐹

 Equation 2.4 

where kB refers to the Boltzmann constant, 𝑛(𝐸)  and 𝜇(𝐸)  are the carrier 

concentration and mobility at energy E, and q is the electronic charge. In this case, the 

Seebeck coefficient is linearly proportional to the temperature. 

 

Figure 2.1 Temperature dependence of the Seebeck coefficient for different types of 

conduction mechanisms in conducting polymers [5]. When the metallic band is narrow, 

Seebeck coefficient increases linearly with the temperature in a metallic manner 

(curve a). A strong electron-phonon interaction at very low temperatures leads to the 

deviation from linearity (curve b). The electron-phonon interaction manifests in a 

characteristic hump as curve c. For lightly doped polymers, the temperature 

dependence of the Seebeck coefficient is non-linear with either increase (curve d of 

T1/2-dependence and curve e) or decrease (curve f of 1/T-dependence) with 

temperature. At higher doping levels, Seebeck coefficient becomes nearly independent 

of temperature (curve g). 
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For conductive polymers, depending on the type of transport mechanism, the Seebeck 

coefficient shows very different temperature-dependent behaviours (Figure 2.1). For 

example, the Seebeck coefficient of lightly doped conductive polymers can either 

decrease or increase non-linearly with temperature but is mostly found independent of 

temperature. Whereas, for heavily doped conductive polymers, the Seebeck 

coefficient shows linear dependence with temperature, frequency increasing with 

temperature. However, at low temperatures (< 200 K), the Seebeck coefficient of 

highly conducting polymers, especially those with a good crystalline structure, 

decreases linearly with temperature. This is caused by electron-phonon scattering, 

known as ‘phonon drag’, which becomes significant when the phonons’ mean free 

path increases at lower temperatures, until it becomes comparable to the electrons’ 

mean free path. A combination of the above behaviours is usually found 

experimentally, because of the complexity of conductive polymer systems. 

2.1.3 Electrical conductivity 

Electrical conductivity, σ, is a fundamental property of a material that represents the 

ability to conduct electric current. It is related to the charge carrier concentration (n) 

and mobility (μ). For semiconductors, both holes and electrons can be transported in 

an electric field. Therefore, the electrical conductivity is given by 

  𝜎 = 𝑒𝜇𝑛 = 𝑒(𝜇𝑒𝑛𝑒 + 𝜇ℎ𝑛ℎ)  Equation 2.5 

where 𝜇𝑒, 𝜇ℎ, 𝑛𝑒 and 𝑛ℎ refer to the electrons’ mobility, holes’ mobility, electrons’ 

concentration and holes’ concentration, respectively; and e is the unitary charge with 

a unit of Coulomb (C). Therefore, the electrical conductivity of a material can be 

improved by increasing the charge carriers’ density and/or mobility. For organic 

conductive materials, the structural order, from the molecular scale to the macroscale, 
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has the same critical influence on the electrical conductivity as the introduction of 

carriers. For instance, the charge transport within crystalline domains is highly 

anisotropic, because of the differences in the electronic coupling between molecules.  

The order-disorder balance decides the transport mechanism, like band transport, 

hopping transport or mixed filamentary current pathway description, resulting in 

different dependencies of the electrical conductivity with temperature. Some highly 

ordered and highly doped organic materials behave like metals. The charge carrier 

density increases with temperature, while the mobility decreases, due to the enhanced 

lattice vibration, which increases the scattering and collisions between electrons and 

nucleus. Therefore, electrical conductivity decreases with temperature.  

In semiconductors, electrons are only able to transport when excited into the 

conduction band. The density of these electrons increases exponentially with 

temperature; hence the conductivity is enhanced with temperature. When the 

material’s band gap is large, typically for most intrinsic organic semiconductors, the 

charge density increase with the temperature is negligible, while the charge carrier 

mobility increases because the charge carrier hopping ability is activated by 

temperature. Hence, the electrical conductivity of disordered organic material often 

shows increasing trend with temperature. 

2.1.4 Thermal conductivity 

Thermal conductivity describes the material’s ability to conduct heat. It is defined by 

the Fourier law 

 𝑞 = −𝜅 
𝑑𝑇

𝑑𝑥
 Equation 2.6 
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where q is the heat flux density, in W cm-2, meaning the heat flow rate per unit area, 

and 
𝑑𝑇

𝑑𝑥
 is the temperature gradient, in K m−1. Steady-state and transient-state 

measurements are the two basic types of methods to measure thermal conductivity. 

The former method can be used to measure in-plane thermal conductivity, but it is 

very time-consuming and seldom used in practice. Transient-state methods are much 

more well-developed for characterising thermal conduction properties of both bulk 

and film materials. Among the most widely adopted methods, three are mentioned 

herein: the laser flash, time domain thermal reflectance and differential three-omega 

(3ω) method [6]. 

Unlike inorganic materials, where electronic thermal conductivity is dominant and 

coupled with the electrical conductivity, in conductive polymers, thermal conductivity 

is contributed by both charge carriers and phonons (also called as lattice contribution). 

According to Wiedemann-Franz law, the thermal conductivity is the sum of the lattice 

thermal conductivity (κl) and the charge carrier thermal conductivity (κc):  

 𝜅 = 𝜅𝑙 + 𝜅𝑐 = 𝜅𝑙 + 𝐿𝜎𝑇 Equation 2.7 

where L is the Lorenz constant (~ 2.45 × 10−8 V2 K−2 for metals and highly doped  

semiconductors, and ~ 1.5 × 10−8 V2 K−2 for non-degenerate materials such as 

undoped semiconductors) [7]. For doped semiconductors, i.e. conducting polymers, 

(σ ≥ 100 S cm−1), 𝜅𝑐 and 𝜅𝑙 can be comparable in value, so it is important to consider 

both contributions. For materials with low electrical conductivity (σ ≤ 100 S cm−1), 

the lattice contribution (𝜅𝑙) can be the predominant one to thermal conductivity. 

 

For lattice thermal conductivity, phonons can be scattered by other phonons, defects 

(e.g. impurities, dislocations), electrons, and boundaries, consequently, slow down the 

transport of phonons and reduce lattice thermal conductivity. Polymers generally have 
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low thermal conductivities (i.e. from 0.1 W m-1 K-1 to 2.0 W m-1 K-1). Meanwhile, the 

anisotropy of polymer chains tends to form an anisotropic thermal conductivity, and 

it is more obvious when the chains are more ordered for a certain polymer, causing the 

highly anisotropic properties in-plane and out-of-plane. Therefore, it is vital to 

evaluate σ, α and κ in the same direction as the temperature gradient in order to ensure 

the accuracy of a material’s thermoelectric performance.  

2.1.5 Interrelated parameters  

As mentioned above (Equation 2.4, 2.5, 2.7), the three thermoelectric parameters σ, α 

and κ are interrelated and all dependent for instance from the carrier concentration. 

Generally, the maximum electrical conductivity is achieved when the chemical 

potential lies in the conductive band (higher charge carrier concentrations), but 

Seebeck coefficient reaches a maximum when the chemical potential sits outside but 

close to the transport band. For thermal conductivity, the higher carrier concentration 

will lead to a higher thermal conductivity due to the heat being transferred by electrons. 

The strong interrelation of these three parameters imposes restrictions on maximizing zT. 

Precisely tuning the doping level to control the carrier concentration is one of the most 

efficient strategies to optimize power factor and zT, especially for traditional inorganic 

TE materials. Modelled from Bi2Te3, Figure 2.2 shows the compromise between large 

thermo-power and high electrical conductivity [8]. The zT value reaches a maximum 

at a carrier concentrations between 1019 and 1021 cm-3, which is the concentrations 

found in heavily doped semiconductors [8].  

Reducing κ, and in particular κl, is also a common method to achieve high zT values. 

Generally, hierarchical structures including atomic-scale defects, nanoscale precipitates, 

and grain boundaries make different wavelength phonons scatter and decrease the 

phonon mean free paths [9].  The ideal material can slow down phonon transport without 
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disrupting the crystallinity of the electron-transport region is named ‘Phonon-glass 

electron-crystal’. It possesses electric properties of a good semiconductor single 

crystal but the thermal properties of an amorphous material [10]. 

It is notable that organic thermoelectrics have inherently low thermal conductivities 

(from 0.01 W m-1 K-1 to 2.0 W m-1 K-1) compared to inorganic materials owing to their 

naturally weak van-der-Waals bonding and disordered microstructures. Therefore, the 

study of organic thermoelectrics only need to focus on achieving the trade-off between 

Seebeck coefficient and electrical conductivity. Unlike inorganic thermoelectric 

materials, electrical conductivity and Seebeck coefficient of organic counterparts are not 

always in strong correlation with each other due to their inhomogeneous and complex 

structural effects [8]. 

 

Figure 2.2 Optimizing zT through carrier concentration tuning [8]. Maximizing the 

efficiency (ZT) of a TE involves a compromise of thermal conductivity (κ; plotted on 

the y axis from 0 to a top value of 10 W m–1 K–1) and Seebeck coefficient (α; 0 to 500 

μV K–1) with electrical conductivity (σ; 0 to 5,000 Ω–1cm–1). Trends shown were 

modelled from Bi2Te3.  
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2.2 Organic thermoelectric materials 

Compared with inorganic thermoelectric materials, organic thermoelectric materials 

have attracted increased attention due to several intrinsic advantages. For example, 

organic thermoelectric materials are mainly based on earth-abundant elements, i.e., 

carbon, hydrogen, and oxygen, ensuring the non-scarcity and non-toxicity of raw 

materials. Mature techniques for processing polymers exist, both via melting and 

solution, that are suitable for large scale and reduced costs production [5, 11]. Besides, 

the flexibility and light-weight properties of OTE materials are fit for new generation of 

flexible devices such as wearable electronics and soft-robotics [12-15]. Despite the 

relatively low zT values, at room temperature, state-of-the-art doped organic materials 

show TE properties approaching those of inorganic TE, as the benchmark of Bi2Te3 in 

Figure 2.3.   

 

Figure 2.3 The thermoelectric properties of OTE materials [16]. The thermoelectric 

properties of a wide range of OTE materials under room temperature follow the same 

empirical trend.  
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2.2.1 Charge Transport in Organic Semiconductors 

Different transport models have been developed to understand the thermoelectric 

properties of polymers. The earliest theory is based on the Boltzmann theory in organic 

crystal semiconductors proposed by L. Friedman [17], combining ab initio techniques 

(first-principles calculations [18, 19]). But most conducting polymers are 

heterogeneous systems, where crystalline domains, of various degree of perfections, 

coexist with amorphous domains, and charge carriers are localized by both energetic 

and spatial disorder. Therefore, hopping transport theories and Monte Carlo simulation 

were widely employed to describe the thermoelectric Seebeck effect of disordered 

organic semiconductors. Nearest neighbour hopping (NNH) is mostly used in lightly 

doped polymers, where the hopping rate is limited by spatial tunnelling distances due 

to carriers hopping to the nearest neighbour. Variable range hopping (VRH) is used in 

highly doped polymers, where the nearest available site has much high energy and the 

carrier has to hop to a distant site with a similar energy.  

In lightly doped organic materials, charge carriers behave as NNH mechanism, the 

Seebeck coefficient will show a 1/T dependence with temperature, and electrical 

conductivity is proportional to  𝑒−𝐸𝐴 𝑘𝐵𝑇⁄ , where EA is the activation energy. For 

conductive polymers with high carrier concentrations, the VRH performance of charge 

carriers emerges and the Seebeck coefficient will follow a T1/2 dependence with 

temperature, and electrical conductivity will be  proportional to 𝑒−(𝑇0 𝑇)⁄ 𝛾

, where γ is 

0.25 for 3-dimentional variable-range hopping and 0.5 for 1-dimentional variable-

range hopping, and T0 is the reference temperature [16, 20, 21]. The combination of 

the different transport models with various weighting in ordered and disordered 

regions are normally used to explain the electrical conductivity and Seebeck 

coefficient performance of the materials with heterogeneous phases. 
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2.2.2 Strategies to improve the performance of OTE 

An α-σ coupling similar to inorganic thermoelectric materials, can also be prevalent 

in hopping transport of doped polymers. So, it is essential to control the charge carrier 

density of organic semiconductors by doping/dedoping techniques to maximise the 

power factor. Chemical or electrochemical methods are commonly used to fine tune 

the doping level in polymers. Besides, as mentioned above, there are strategies to 

decouple α and σ. For example, tuning the morphology of conductive polymers can 

reduce energy independent scattering so that electrical conductivity can increase 

without affecting the Seebeck coefficient. Addition of nanoparticles, like carbon 

nanoparticles (graphene, carbon nanotubes, etc.) or inorganic TE nanoparticles 

(Bi2Te3, SiGe, etc.) to form organic-inorganic hybrid materials is another approach 

that has been used (invoking the principle of energy filtering) to enhance Seebeck 

coefficient.  

(1) Doping and dedoping 

Doping is one of the most widely used methods for increasing the electrical 

conductivity of conductive polymers. Doping introduces electrons or holes into the 

polymer chains by a dopant, resulting in the formation of solitons, polarons and bi-

polarons. Doping and dedoping can typically be obtained by either chemical or 

electrochemical methods.  

The stability of electrically doped materials is vital and relies on the ionization energy 

for the addition of holes, and electron affinity for the addition of electrons. For 

introduction of holes, the ionization energy of the material, i.e., HOMO, should be 

larger than ~ 5.0 eV [16] to form stable p-type TE materials. For example, the widely 

studied poly(3,4-ethylenedioxythiophene) (PEDOT) has an ionization energy of ~ 5.1 
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eV can be stably doped by a series of agents (e.g., iodine, ferric trichloride, benzene 

sulfonic, camphor sulfonic acid, etc. [22]). For obtaining stable n-type TE materials, 

a great electron affinity (LUMO > 4 eV) is demanded to avoid oxidation reaction by 

the water or/and oxygen in environment [23]. However, the electron affinity of many 

organic materials is relatively small, which explains the difficulty in finding air-stable 

n-type OTE materials.  

Besides, the size of the dopant can cause distortions of the polymer chains and affect 

the intermolecular charge transport between molecules. Moreover, large amounts of 

dopant can lead to phase segregation between the doped and the undoped part, 

reducing electrical conductivity [24, 25].  

(2) Tuning molecular conformations 

Conformation of polymer chains can heavily affect the semiconductor properties of 

conductive polymers. Various molecular-stacking structures, such as nanowires, 

nanorings, and nanosheets formed via the π–π interactions, can be beneficial to achieve 

a higher electrical conductivity, due to the highly oriented chain alignment, and a large 

Seebeck coefficient, due to the enhanced density of state near the conduction band 

edge [26, 27], while keeping a low thermal conductivity, due to the interface-phonon 

scattering. 

(3) (Nano)composites 

Addition of inorganic TE (nano)materials can combine the excellent TE performance 

of inorganic semiconductors with easy processability of polymers. For example, 

incorporating both n and p type Bi2Te3 ball milled powders into PEDOT:PSS, has been 

shown to hugely increase the power factor of the pure polymer [28]. In this organic-

inorganic composite systems, only high-energy carriers can pass barriers, whilst low-
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energy charge carriers will be filtered away by scattering (filtering effects). Although 

the charge carriers’ concentration decreases the electrical conductivity, the asymmetry 

of mobile carriers around the Fermi energy increases, thus boosting the Seebeck 

coefficient, which can result in a significantly improved power factor. 

Carbon nanotubes (CNTs) and graphene [29-32] are widely recognized as effective 

fillers to enhance the electrical conductivity of the polymer matrix due to their 

extremely high charge transport over long lengths. The addition of nanofillers can also 

modify the molecular conformations, with a beneficial effect on TE properties. Thus 

even the insulating graphene oxide can increase carrier mobility of conductive by 

inducing a more ordered structure, which leads to a higher electrical conductivity and 

higher Seebeck coefficient [33]. The layer-by-layer (LbL) assembling techniques to 

achieve highly ordered multilayer structures has shown very promising results [34-36]. 

LbL will be discussed in more details in Section 2.2.5. 

(4) Others 

Xavier Crispin’s research group [37-40] investigated the role of ions on the 

thermoelectric effect and found large increases (up to several hundreds of μV K-1) in 

the thermo-induced voltage at high humidity levels. The ionic effect increases the 

Seebeck and conductivity substantially, leading to a 2 to 4 orders of magnitude 

increase in PF (Figure 2.4). Although ionic Seebeck coefficient and conductivity is 

temporary [37], they are still useful. For example, combining ionic TE materials with 

supercapacitors, the ionic TE material can convert and store thousands of times higher 

energy than normal TE materials [39]. Utilising the ionic TE material for gating low-

voltage organic transistors, the amplification is thousands of times higher than the 

traditional single leg TE [40]. 
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Kar-Narayan’s research group [41] reported a compositionally graded TE material in 

order to optimize the PF of various TE materials under different working temperature 

range. This compositionally graded film was connected by a 15 wt.% Bi2Te3/ 

Poly(3,4-ethylene dioxythiophene): polystyrenesulfonic acid (PEDOT:PSS) 

composite film and a PEDOT:PSS film in series, whose length was systematically 

tuned to optimize the PF along the applied temperature gradient. The optimized film 

exhibited a power output value (13 nW) higher than either the single 15 wt% 

Bi2Te3/PEDOT:PSS film (6.5 nW) or the PEDOT:PSS film (7.5 nW), under the same 

temperature gradient (70 oC) and external load resistance (50 Ω). 

 

Figure 2.4 The ionic-Seebeck effect of PEDOT derivatives [37]. (a) Power factor for 

PEDOT derivatives at different humidities and their (b) output voltage at 80% relative 

humidity. It shows the voltage generated by ionic-Seebeck effect fades with time.  

2.2.3 P-type conjugated polymers example: PEDOT:PSS 

Among organic materials, the broad variety of p-conjugated polymers sparked interest as 

potential candidates for TE applications. The most studied conjugated polymers are 

polypyrrole (PPY), polyaniline (PANi), PEDOT, and their derivatives [42]. Amongst 

them, the derivatives of PEDOT and poly(3-hexylthiophene) (P3HT) exhibit remarkable 

TE performances for room temperature applications. PEDOT:PSS (Figure 2.5) is one of 

the most studied OTE materials and will be discussed in more detail below. 
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Figure 2.5 Microstructure and chemical structure of PEDOT:PSS. Schematic 

microstructures of (a) PEDOT synthesised on PSS template, (b) colloidal gel particles 

in dispersion, (c) PEDOT:PSS-rich (blue) and PSS-rich (grey) phases in film, and (d) 

aggregates/crystallites parts in film [43]. (e) The chemical structure of PEDOT:PSS. 

PEDOT is normally (electro-) chemically polymerized from its monomer, 

ethylenedioxythiophene (EDOT), by oxidative polymerization. The counterion, 

polystyrenesulfonic (PSS), offers charge‐balancing and colloidal dispersability in 

water to the hydrophobic PEDOT chains. Therefore PEDOT:PSS films can be easily 

formed via solution processing processed like coating, solution casting, spraying and 

printing. Commercialized PEDOT:PSS aqueous dispersions normally present excess 

of poly(4‐stynesulfonic acid) (PSSH) to form stable water suspensions (e.g., the 

weight ratio of PEDOT:PSS is 1:2.5 for Clevios® PH1000). The excess of insulating 

PSS-rich chains and the reduced chain alignments due to the hydrophilic mismatch 

between PEDOT and PSS, contribute to the inferior electrical conductivity in many 

commercial PEDOT:PSS grades. Tremendous efforts have been made to improve the 

electrical conductivity via removing the excess PSS and aligning the polymer chains 

to enhance the charge carrier transport. 

Post-treatment has been proved as one of the most convenient and effective methods 

to increase electrical conductivity by several orders of magnitude, including organic 

polar solvent treatments, acids treatments, small molecules vapour treatments, and 
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electrochemical treatments. In the aqueous dispersion, phase segregated PEDOT 

phases are surrounded by a ‘shell’ of insulating PSS. In presence of organic polar 

solvents, PEDOT and PSS are separated by stronger electrostatic interactions, leading 

to a higher degree of π–π stacking of PEDOT [44], and, in turn, to a change in polymer 

chains conformant from coiled to linear. Solvent treatments can then improve the 

charge carrier transport mobility (from 0.045 to 1.7 cm2 V−1 s−1), the electrical 

conductivity and the Seebeck coefficient. For instance, the addition of dimethyl 

sulfoxide (DMSO) or ethylene glycol (EG) into PEDOT:PSS aqueous dispersion [45], 

increased the electrical conductivities of spin-coated PEDOT:PSS films from 0.2 to ~ 

900 S cm−1, without affecting the Seebeck coefficients constant at 13-15 μV K-1. As a 

result, DMSO‐ and EG‐doped PEDOT:PSS films achieved the PF of ~ 30 and ~ 25 

µW m−1 K−2, respectively. The highest zT value of 0.42 obtained in PEDOT:PSS has 

been reported by Kim et al. [46]. EG was again used to post-treat the PEDOT:PSS 

films to dissolve excess of insulating PSS from the films. And it is worth to mention 

that the remove of the PSS also accomplished with a better water-stability of the film.  

Strong acid treatment of as-cast PEDOT:PSS films can increase the amount of PSSH 

combined by the H+ from the acids and the PSS−, facilitating the removal of insulating 

PSSH from films in aqueous solution. This resulted in a highly crystalline 

PEDOT:PSS structure, which increased the film conductivity by three orders of 

magnitude. For example, Kim et al. [47] reported a very high electrical conductivity 

of 4380 S cm-1 for PEDOT:PSS treated by H2SO4. However, the Seebeck coefficient 

slightly decreased after the acid treatment [48]. Fan et al. [49] utilized a sequential 

post-treatment with H2SO4, to improve electrical conductivity, and subsequent NaOH, 

to adjust the oxidation level of the PEDOT segments for Seebeck coefficient 

enhancement. The best properties reported for such sequential post-treatment of 



Chapter 2 Literature review 

23 

 

PEDOT:PSS films are a Seebeck coefficient of 39.2 µV K−1, an electrical conductivity 

of 2170 S cm−1 , and the corresponding power factor is 334 µW (m−1 K−2), at room 

temperature. 

Despite  the huge progress in achieving very high electrical conductivity, the main 

bottleneck for further raising the power factor is now the Seebeck coefficient of 

pristine PEDOT:PSS (~15 µV K-1). Electrochemical treatments have been reported 

that can boost the Seebeck coefficient by controlling the oxidation level of 

PEDOT:PSS [50, 51]. With the decrease of oxygen level, the electrical conductivity 

decreases gradually while the Seebeck coefficient increases significantly. Bubnova et 

al. [50] set up the PEDOT:PSS film as the gate electrode of an electrochemical 

transistor, and changed the electrode potential to control the oxidation level. The 

highest PF of 23.5 µW m-1K-2 was achieved at the oxidation level of PEDOT:PSS is 

14.5 %. Park et al. [51] used a highly conductive solution casted PEDOT film with 

addition of a polymeric surfactant as the electrode for finely tune the oxidation level 

electrochemically. A maximum PF of 1,270 μW m−1 K−2 was obtained when the 

oxidation level was 24.1% (electrical conductivity: 1355 S cm-1, Seebeck coefficient: 

~100 μV K-1).  

It is worth to mention that the incorporation of inorganic or/and carbon nanomaterials 

into PEDOT:PSS has also shown potential in optimizing their power factors (refer to 

Section 2.2.5). 

2.2.4 N-type coordination materials example: poly(M-ett) 

The n-type OTE has fallen behind the considerable progress in p-type polymers and 

their composites owing to difficulties in n-type doping of organic semiconductors. N-

type thermoelectricity has been studied in variety organic materials. The copolymers 
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of naphthalene diimide and bithiophene unit [52] or bithiazole unit [53], and 

benzodifurandione‐phenylenevinylene [24] derivatives are the most studied n-type 

conjugated polymers. The biggest obstacle for these materials is their low electrical 

conductivities (normally 4×10-3 to 48 S cm-1 [54]). Tetrathiafulvalene–

tetracyanoquinodimethane is the most reported crystalline organic OTE material, 

which possesses relatively high electrical conductivity (500 S cm-1) [55], but it is hard 

to process. New generations of small molecular organic semiconductors, such as 

polydopamine, perylene diimides, dinaphtho[2,3‐b :2′,3′‐f]thieno[3,2‐b]thiophene, 

thiophene-diketopyrrolopyrrole-based quinoidal molecules and C60 can show very 

large Seebeck coefficients (> 100 mV K-1), although their electrical conductivity is 

still lower than 10-3 S cm-1[56]. Besides, most of them require careful doping strategies 

but are easily dedoped in air over time.  

Metal-organic polymers show a relatively high electrical conductivity, stability in 

ambient conditions and facility for syntheses. Poly(metal‐1,1,2,2-ethenetetrathiolate), 

(poly(M-ett), consisting of the ethenetetrathiolate ligand coordinated to the metal 

centre with counter ions, were first investigated as OTE materials by Zhu’s group in 

2012 [57]. Poly(Ni-ett), with nickel as the coordination metal, exhibits exciting air‐

stable record‐breaking n‐type OTE performance. Its electrical conductivity and 

negative Seebeck coefficient reach 44 S cm−1 and -122 µV K−1 at room temperature, 

respectively, resulting in a peak power factor of 66 µW m−1 K−2. It is worth noting that 

poly(M-ett) can show both p-type and n-type behaviour depending on the metal centre. 

Poly(Cu‐ett), for instance, displays a positive Seebeck coefficient. Poly(Ni-ett) films 

prepared by electrochemical deposition [58] can present an improved structure 

ordering, resulting in a four to six times increases in electrical conductivity (400 S cm-
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1), compared with the amorphous powder samples, a similar Seebeck coefficient (-128 

µV K-1) and a maximum power factor of 453 µW m−1 K−2 at room temperature.  

Additionally, the thermoelectrical property of Poly(M-ett) is tunable with the multiple 

oxidation state through changing the air exposure time during the synthesis. Menon et 

al. [59] reported poly(Ni-ett)-based composite film with the electrical conductivity 

decreasing from 43 to 5 S cm-1 and Seebeck coefficient improving from 27 to 33 µV 

K-1 by changing the air exposure time during the synthesis from 30 minutes to 24 hours. 

Sheng et al. [60] optimised the TE properties of Poly(Cu-ett) by using chemical 

oxidation and reduction, obtaining  a highest power factor at room temperature of 4.17 

μW m-1 K-2, with the corresponding electrical conductivity and Seebeck coefficient of 

10.7 S cm-1, and 62.5 μV K-1 respectively. 

The insoluble nature of the Poly(M-ett) limits traditional solution-based techniques. 

The addition of an insulating polymer matrix (e.g. polyvinylidene fluoride, PVDF) is 

normally used to allow solution processability. Jiao et al. [61] reported that both n- 

and p-type poly(M-ett) ball-milled with PVDF in DMSO are able to be inkjet-printed 

on PET substrate uniformly for a flexible TE device. However, the TE performance 

of these composite films are inferior due to the presence of insulating PVDF. The best 

power factors achieved for the n-type poly[Kx(Ni-ett)]/PVDF and p-type poly[Cux(Cu-

ett)]/PVDF composite film are 0.15 μW m−1 K−2  and 0.12 μW m−1 K−2, respectively, 

at 300 K. Later, Yee’s group [62, 63] systematically studied the reaction conditions of 

Poly(M-ett) for optimizing the TE performance. The amount of nickel, varying from 

Poly(Ni0.5-ett), Poly(Ni0.75-ett), Poly(Ni1.0-ett) to Poly(Ni2.0-ett), affects both the 

electrical conductivity and Seebeck coefficient. Because the excess nickel not only 

acts as a counterion with alkali metals, but also as impurities in the final composites. 

With sub-stoichiometric nickel equivalents of 0.75, the produced Na(Ni0.75-ett)/PVDF 
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provides a high electrical conductivity of ~ 50 S cm-1 and  thus a power factor 

enhancement of up to 23 μW m-1K-2 at room temperature [62]. They also reported that 

annealing at 160 oC can simultaneously enhance the electrical conductivity and 

Seebeck coefficient of Poly(M-ett)/PVDF composite films, resulting a highest power 

factor of 23.5 μW m−1 K−2 [63]. They believe that annealing can remove residual 

solvent and impurities (i.e., water and carbonyl sulphide) from the films, and densify 

the film to improve chain packing.  

2.2.5 TE polymer nanocomposites 

Conductive polymer nanocomposites have been largely explored as thermoelectric 

materials. Combining (conductive) polymers with inorganic particles (e.g. p- and n-

type Bi2Te3 [64]) or carbon nanomaterials [65, 66] are the two most common and 

efficient strategies. Among carbon nanomaterials, carbon nanotubes (CNTs) have 

attracted the most attention, being a ‘one-dimensional material’ [26]. Specifically, the 

power factor of CNTs can be dramatically increased by enhancing the mobility along 

the tube direction. Meanwhile the thermal conductivity can be decreased by lowering 

the diameters. Theoretically, the Seebeck coefficient of semiconducting single wall 

CNTs can reach a value larger than 2000 µV K-1 at room temperature as the tube 

diameter decreases to 0.6 nm [67] (Figure 2.6). When combined with a polymer matrix, 

their intrinsically high electrical conductivity can be retained, while reducing their 

high thermal conductivity due to the presence of the polymer. Besides, with the 

development of the new technique for fabricating self-standing CNT films in a large 

scale, CNT films and their derived CNT yarns can be directly utilised as TE materials.  

In this section, we will focus specifically on CNTs and polymer nanocomposites based 

on CNT as thermoelectric materials. 
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Figure 2.6 Optimum Seebeck coefficient of the semiconducting single wall CNTs 

within the diameter range of 0.5-1.5 nm at 300 K [67].  

CNTs films can be seen as a typical p-type thermoelectric material in ambient 

conditions, with a positive Seebeck coefficient in the range of 20- 60 μV K-1. CNTs 

are liable to be doped by oxidative dopants, such as oxygen, acids, and chemical 

oxidants. Annealing, acid wash and ultraviolet/ozone treatment [68] are widely used 

for enhancing the TE property. High doping level leads to an increase in electrical 

conductivity but a decrease in Seebeck coefficient. The highest reported positive 

Seebeck coefficient for CNT films was ~ 350 μV K-1 at 670 K after 20 s Ar-plasma 

treatment, which unfortunately decreased the electrical conductivity from 3500-4800 

to 330-990 S m-1 [69].  

CNTs films can also be converted into an n-type thermoelectric material by oxygen 

and water desorption. For example [70], semiconducting single-walled CNTs films 

show a Seebeck coefficient changing from 125 μV K-1, at ambient conditions, to -133 

μV K-1, after gas desorption at room temperature. An ammonia plasma treatment at 

110 °C also induce CNTs films to show a negative Seebeck coefficient (-80 μV K-1) 
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in air. Other typical n-dopants for CNTs are electron donating compounds such as 

NaBH4, hydrazine, and poly(ethyleneimine) (PEI) [71]. For example, CNT can go 

from 22 µV K−1 to -24 µV K−1 after immersion in NaBH4 solution for 48 h [72]. 

Although it is noted that the NaBH4 reduction is not stable under air exposure. The 

amine‐rich PEI, more air-stable, physically adsorbs onto CNTs and donates electrons 

to the nanotubes. After functionalisation with PEI, single wall carbon nanotube 

(SWCNT) shows a large and stable n‐type Seebeck coefficient of -58 µV K−1 in air 

[73]. With the help of sodium dodecylbenzenesulfonate for a better CNT dispersion, 

PEI can more effective dope SWCNT, reaching a higher (in absolute value) Seebeck 

coefficient (-100 µV K−1) [74]. By utilising vacuum filtrated CNT film, a compact-

configuration flexible TE module has been fabricated by Zhou et al. [71]. As Figure 

2.7 shows, PEI has been used to n-type dope the CNT film alternatively before folding. 

The so formed TE module can generate a remarkable thermopower of 410 μV K−1 and 

exhibits a maximum power output 2.51 μW at ΔT ~ 27.5 K. 

 

Figure 2.7 Schematics of the fabrication process for a flexible CNT-based TE module 

[71]. The novel configuration, compact and efficient flexible TE module based on the 

large-area continuously synthesized CNT films and localized doping technology.  
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Table 2.1 The summary of the representative CNT- based nanocomposites and their 

thermoelectric properties. 

Composites 
κ 

(W m-1 K-1) 

σ 

(S cm-1) 

 

(μV K-1) 

PF (µW 

m-1 K-2) 

Ref-

erence 

PANI coated on a CNT network  ~ 0.5 60 28 4.7 [31] 

CNTs/PEDOT:PSS with vinyl 

acetate ethylene copolymer 
~ 0.3 400 25 25 [65] 

CNTs/PEDOT:PSS   4000 20 140 [75] 

PEDOT:PSS and meso-tetra(4-

carboxyphenyl) porphine 

stabilized MWCNT 

~ 0.12 95 40 15 [76] 

PEDOT:PSS and meso-tetra(4-

carboxyphenyl) porphine 

stabilized DWNT 

~ 0.12 960 70 470 [76] 

SWCNTs/ P3HT doped by 

FeCl3  
 1000 29 95 [77] 

MWCNT/PPy composites   72 9 2.0 [78] 

PANi/SWCNTs  
 

125 40 20 [30] 

In-situ polymerization PANi on 

SWCNT film 
 32 45 6.5 [79] 

PANi/ SWCNTs  
 

769 65 176 [81] 

SWCNTs/PANI WITH m-cresol 

solvent  
 1440 40 217 [82] 

PANI/graphene/PANI/DWCNT 

40 quad‐layered composite film  
 1080 130 1825 [84] 

80‐bilayer DWCNT‐
PEI/graphene‐PVP composites 

 300 −80 -190 [35] 

PEO/DWCNT-PAA 25 bi-

layered  composites 
 19.6 60 7.1 [85] 

 

Conducting polymers such as PANi, PEDOT and their derivatives composites with 

CNTs have also been studied (Table 2.1). Polymer (nano)composites offer a new route 

to decouple the interrelated parameters. The most directly benefit is that the polymer 

matrix can reduce the thermal conductivity of CNTs. For example, Chuizhou et al. 

[31] reported an in-situ chemically polymerised PANI layer, uniformly coated on a 

freestanding CNT network containing randomly entangled individual CNTs and CNT 
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bundles. The thermal conductivity of the 20 wt. % PANI/ CNT composites dropped 

to ~ 0. 5 W m-1 K-1 close to that of PANI (~ 0.45 W m-1 K-1) with the electrical 

conductivity of 60 S cm-1 and the Seebeck coefficient of 28 μV K-1. Kim et al. [65] 

reported a segregated network composites of CNTs/PEDOT:PSS with vinyl acetate 

ethylene copolymer. The dissimilar bonding and vibrational spectra between CNT and 

PEDOT:PSS along with the segregation by  vinyl acetate ethylene copolymer, reduced 

the thermal conductivity of the composites to 0.3 W m-1 K-1. The interconnected 

network morphology (colloidal PEDOT:PSS particles bridging CNT-CNT junctions) 

guaranteed an electrical conductivity as high as 400 S cm-1 with 35 wt.% SWCNTs. 

Moriarty et al. [75] reported SWCNT/PEDOT:PSS nanocomposites, prepared by 

liquid‐phase exfoliation, demonstrating an effective decouple between electrical 

conductivity and Seebeck coefficient. The formed barriers at the 

SWCNTs/PEDOT:PSS interface preferentially hindered the transport of low‐energy 

charge carriers, and only allowed high‐energy carriers to pass across the tube junctions, 

so to increase the mean carrier energy. This SWCNT/PEDOT:PSS showed an increase 

in electrical conductivity from 500 S cm-1 to 4000 S cm-1, with the SWCNTs content 

increasing from 20 to 95 wt. %, while the Seebeck coefficient remained relatively 

unaltered at around 20 μV K-1, resulting in a power factor as high as 140 µW m-1 K-2. 

Similar works by using multi-wall carbon nanotube (MWCNT) and double wall 

carbon nanotube (DWCNT) [76], PEDOT:PSS and additional meso-tetra(4-

carboxyphenyl) porphine also observed a decoupling between Seebeck coefficient, 

electrical conductivity and thermal conductivity. The electrical conductivity of these 

organic composites increased to approximately 95 S cm-1, in the case of MWCNTs, 

and 960 S cm-1, in the case of DWCNTs, as the concentrations of both the CNTs and 

PEDOT:PSS were increased. The Seebeck coefficient (~ 40 μV K-1 for MWCNTs and 
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70 μV K-1 for DWCNTs) and thermal conductivity (~ 0.12 W m-1 K-1), however, 

remained relatively unaffected by the increase in concentration. 

Furthermore, the π–π interactions between CNTs and polymers can affect the polymer 

structural morphology. For example, SWCNTs increased the crystallinity of P3HT 

resulting in an increase of electrical conductivity from 1.7 × 10−5 S cm−1 to 275 S cm−1 

without doping. Doped by FeCl3, the power factor of the composites reaches to 95 ± 

12 μW m−1 K−2, for filler content of 41-81 wt%[77]. Benefiting from the high electrical 

conductivity of CNTs and more ordered crystalline alignment of PPy, MWCNT/PPy 

composites reached an electrical conductivity of 72 S cm−1 at a MWCNT loading of 

15 wt%, which is much higher than that of a pure PPy control sample (2.2 S cm−1) 

[78] . 

In-situ polymerization of polymers on CNTs template is an efficient method to grow 

polymers in an ordered manner on the surface of the CNTs. The π–π interaction 

between CNT and polymer can positively influence the alignment of polymers, 

wrapped on CNTs. This hybrid structure can increase the effective carrier 

delocalisation, and thus enhance the carrier mobility in conjugated polymers. By using 

SWCNTs as the polymerisation template, Qin et al. [30] reported that the electrical 

conductivity and Seebeck coefficient of PANi/SWCNTs composites reached 125 S 

cm−1 and 40 μV K−1, respectively, and the maximum power factor was up to 20 μW 

m−1 K−2, more than 2 orders of magnitude higher than pure polyaniline. A year later, 

Jilei et al. [79] used electrochemical method for in-situ polymerization PANi on 

SWCNT film, reporting  electrical conductivity, Seebeck coefficient and maximum 

power factor of 32 S cm−1, 45 μV K−1 and 6.5 μW m−1 K−2, respectively. In addition 

to the π–π interactions between SWCNTs and PANI, Qin et al. [80, 81] found that 

tuning the molecular chain arrangement of PANI from a compacted coil to an 
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expanded coil, by using m-cresol (Figure 2.8), can further increase its power factor. 

The electrical conductivity of PANi/ SWCNTs has been highly increased to 769 S 

cm−1 thus obtaining a maximum power factor of 176 μW m−1 K−2. Combining both in-

situ polymerization with the m-cresol solvent processing, the power factor of the 

SWCNTs/PANI composite films reached a power factor of 217 μW m−1 K−2 at room 

temperature [82].  

 

Figure 2.8 Schematic representations of the formation of an ordered PANI interface 

layer. It is induced by the synergistic effects of the solvent process and the π–π 

conjugation between PANI and CNTs [81].  

Novel researches on layer‐by‐layer deposition polymer on CNTs have recently shown 

the ability to easily adjust nanotube distance, density, and film thickness [83], which 

alters the Seebeck coefficient. Besides, the layered structure seemed to improve carrier 

mobility, increasing both electrical conductivity and Seebeck coefficient. Cho et al. 

[84] reported a 40 PANI/graphene/PANI/DWCNT quad‐layered composite film 

prepared by LbL assembly (Figure 2.9), exhibiting an electrical conductivity of 1080 

S cm−1 and a Seebeck coefficient of 130 µV K−1, resulting in a remarkable power 

factor of 1825 µW m−1 K−2. The authors pointed to the continuous 3D PANI‐wrapped 

DWCNTs and connected graphene network as the reason for the exceptional 

performance. By alternately LbL depositing DWCNTs, stabilized by PEI, and 

graphene stabilized by polyvinylpyrrolidone (PVP), they also reported a high power 

factor n‐type 80‐bilayer DWCNT‐PEI/graphene‐PVP composites film. [35] In 
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addition to its remarkable power factor of -190 µW m−1 K−2 at room temperature, the 

highly ordered graphene layers also offered barrier the gas diffusion, resulting in a 

relatively air‐stable n-type composite film.  

 

Figure 2.9 Schematic representations of the layer‐by‐layer assembly of 

PANI/graphene/PANI/DWCNT multilayers. (a) The fabrication procedure and (b) 

carrier transport in the multilayers [84].  

Besides, the mixture of CNTs with polymers can bring some stretchablity to the as-

fabricated composites. For example, Cho and Son [85] fabricated a stretchable OTE 

multilayer film by alternately depositing 0.1 wt% polyethylene oxide (PEO) and 0.03 

wt% DWCNT, dispersed with 0.1 wt% polyacrylic acid (PAA). Because of the weak 

bond strength and high chain mobility between PEO and PAA layers, the 

PEO/DWCNT-PAA multi-layered composites exhibit a crack-free surface up to 30% 

strain and retain their thermoelectric performance 90% of unstretched sample. The 

resultant 25 bi-layered composite film (~ 500 nm thick) displayed an electrical 

conductivity of 19.6 S cm-1, a Seebeck coefficient of 60 µV K-1 and attributed to the 

three-dimensional conjugated network of DWCNT. 
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Figure 2.10 Schematic illustration of flexible thermoelectric generator based on CNT 

yarn [86]. 

Interestingly, the random and unsorted CNT veils produced by floating catalyst 

chemical vapour deposition (FCCVD) can obtain Seebeck coefficients greater than 

60 μV K-1, reaching even 100 μV K-1 or higher [87]. The same can be easily tuned to 

n-type, with Seebeck coefficient of around -80 μV K-1 [32], by chemical doping 

methods previously mentioned. Owing to an electrical conductivity normally 

exceeding 1000 S cm-1 [71], an ultrahigh power factor of 2482 μW m−1 K−2 and 1570 

μW m−1 K−2 at room temperature has been observed for both single-wall and multi-

wall CNT tapes by Weibin et al. [71, 88] and An et al. [89, 90]. The significantly 

longer CNTs produced by FCCVD, compared with the typical solution-processed (e.g. 

sonication) CNTs, can explain the excellent TE performance. These CNT veils open 

the possibility of fabricating flexible TE devices with high TE performance, 

comparable to inorganic TE devices. For example, Choi et al. [86] presented an all 

flexible thermoelectric generator (TEG) based on CNT yarns prepared by FCCVD 

technique as Figure 2.10 shown. A TE generator formed by 60 pairs of n‐ and p‐doped 
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CNT yarns exhibited the maximum power density of 10.85 and 697 µW g-1 at 

temperature difference of 5 and 40 K, respectively. 

2.2.6 Stretchable OTE materials 

In addition to improving the TE performance, the mechanical property (i.e. large 

deformation to break) of the new generation OTE materials has attracted particular 

attention. Especially for the wearable device application, stretchability is important, 

for instance, to conform different shapes (like the human skin) and endure various 

human motions. Although stretchable OTE films have been claimed in a lot of papers 

(Table 2.2), most of their stretchabilities are still relatively small. For example, Liang 

et al. [91] reported a ‘stretchable’ polypyrrole (PPy) /SWCNT composite film that can 

maintain a power factor of ~19 μW m-1 K-2 under a strain level of 2.6%, produced by 

in-situ polymerization of the PPy on SWCNTs. Its small stretchability (strain at break 

is 3.2%) was ascribed to strong interfacial interactions between PPy and SWCNT, 

their surface wrapping morphology, and the effective stress transferring in films. Xiao 

et al. [92] fabricated a structural composites which is a ‘lychee-like’ hydroxyl-

functionalized polystyrene (PS) core (Figure 2.11) wrapped by SWCNTs and water-

dispersible polyurethane segregated networks. The composite film could withstand the 

mechanical stress of 6 MPa up to 3.8% strain.  

 

Figure 2.11 The preparation procedure of the lychee-like hydroxyl-functionalized PS 

core [92].  
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Here, stretchable TE material is defined as: a material can withstand a strain higher 

than 30% strain with a stable TE properties. Under this definition, the stretchable OTE 

materials can be divided into the following 3 categories by the fabrication method.  

 

Figure 2.12 SEM images of WS2 film under various elongations and after 100 cycles 

[93].  

Coating the OTE materials on a stretchable substrate is an efficient technique to 

achieve stretchability. For example, Oh et al. [93] transferred a chemically exfoliated 

transition metal dichalcogenide nanosheet filtered film on a PDMS substrate. The 

sample showed a stable TE performance after 100 stretching cycles, at 50% strain, 

owing to the wrinkles on the nanocomposite film (Figure 2.12) and the nanosheets 

acting as a lubricant to release the strain by slippage. But it worth to note that during 

the strain, the electrical resistance increased with strain, leading to the power output 

reduction of 2 orders of magnitude, at 50% strain. Coating into periodic 

wrinkles/buckles or patterning into wavy lines, such as depositing a thin film of OTE 

materials on a pre-strained elastomeric substrate, can extend the TE performance to 

larger strains. As shown in Figure 2.13, samples of metal dichalcogenide 
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nanosheet/SWCNT nanocomposites film on a 0-30% pre-strained PDMS, exhibited 

stable thermoelectric properties up to the pre-strained value (0-30%), but decreased 

rapidly for strains exceeding the pre-strain range [94].   

 

Figure 2.13 Thermoelectrical properties of the wrinkled nanocomposite films under 

tensile strain [94]. (a) Resistivity, (b) Seebeck coefficient, and (c) power factor of the 

wrinkled nanocomposite films as a function of the tensile strain. 

Table 2.2 The summary of recent reported stretchable thermoelectric materials. 

Materials 
Stretch- 

ability 
σ 

(S cm-1) 

 

(μV K-1) 

PF 

(µW m-1 K-2) 

Ref-

erence 

PPy/SWCNT composite  2.60% 400 24 ~19 [91] 

PS core wrapped by 

SWCNTs 
3.80% 110 24 6.28 [92] 

WS2 nanofilm on PDMS 50% 12 ‐70 5~7 [93] 

NbSe2 nanofilm on PDMS 50% 160 13 26~34 [93] 

WS2/SWCNT on pre-

strained PDMS 
30% 105 -67 471 [94] 

PEDOT:PSS/ WPU with 

ionic liquids 
600% 140  22 6.7 [97] 

PEDOT:PSS/ionic liquids  70% 538 35 66 [98] 

PEDOT:PSS/Zonyl 50% 393 18 1.2 [99] 

PEDOT:PSS/PU 250% 79 16 2 [144] 

There are few studies of embedding conductive fillers into elastomers to achieve high 

stretchability combined with TE properties, such as PEDOT:PSS mixture with PDMS 

[95] or polyurethane (PU) [96].  One example is blending a water-borne PU (WPU) 
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with PEDOT:PSS with the introduction of ionic liquid. The as-casted free-standing 

elastomeric composite showed a strain at break of 600% [97]. The excellent 

stretchability was not only induced by the WPU, but also the ionic liquids, showing a 

46-times larger elongation at break and a 35-times lower elastic modulus, compared 

with PEDOT:PSS. At 60% strain, the electrical conductivity reduced to half of the 

original conductivity (140 S cm-1), but the Seebeck coefficient remained at around 22 

μV K-1 until 100%. 

The effect of ionic liquids on mechanical and TE properties of PEDOT:PSS has been 

reported earlier by Kee et al. [98]. They found the ionic liquids (1-Ethyl-3-

methylimidazolium 4,5-dicyanoimidazolate) induced PEDOT:PSS morphological 

transition from the amorphous structure into crystalline nanofibers surrounded with 

ionic liquids-assisted soft domains. This results in an outstanding mechanical 

deformability and fatigue resistance. Samples of PEDOT:PSS/ionic liquids coated on 

PDMS could go up to 70% quasi-static tensile strain or cycling strains of up to 30%, 

without a severe degradation in TE performance. An additional benefit of using the 

ionic liquids is to simultaneously enhance the Seebeck coefficient (from 15 to 35 μV 

K-1) and electrical conductivity (from 3 to 538 S cm–1) of PEDOT:PSS by controlling 

its oxidation level and nanostructure. This effect has also been reported with different 

surfactants. The fluorosurfactant, Zonyl, changed PEDOT:PSS morphology into an 

elongated lamellar structure so to enhance electron mobility, and increases the 

stretchability of the PEDOT:PSS as well. Spin-coating the treated PEDOT:PSS films 

onto 5% pre-stretched PDMS substrates, the sample retained TE performance (σ ~ 

393S cm-1,  ~ 18 μV K-1) enduring up to a 60% static strain and over several hundred 

cycles of 50% max strain [99]. Owning to the polymeric surfactant (Triton X‐100), a 

ternary composite film based on PEDOT:PSS was fabricated by Kee et al. [100], 
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which exhibited a viscoelastic behaviour up to 35% tensile strain, without degradation 

in electrical conductivity or Seebeck coefficient. Moreover, Triton X‐100 also acts as 

a healing agent so that after being cut completely, the composite films autonomously 

recover their thermoelectric properties in around one second.  

2.3 Organic thermoelectric device 

Thermoelectric generators convert a thermal gradient across the generator into 

electricity. Vice versa, electricity is passed through thermoelectric coolers to generate 

temperature gradient by using the cold side. 

Despite the great activity in the development of OTE materials, OTE devices are still 

at a proof-of-principle stage, even though the device geometry and the interface 

property have an equally vital influence on the final energy conversion efficiency. The 

flexible and lightweight nature of OTEs offers new opportunities, compared to the 

traditional rigid inorganic counterparts. Moreover, large scale processing techniques, 

like roll-to-roll and ink-jet printing, are promising for large-area, affordable and 

wearable applications.  

In this section, the design principle is briefly discussed, followed by a survey of recent 

progress on OTE devices. 

2.3.1 Basic architectures  

A prototypical thermoelectric device consists of many TE couples, each consisting of 

an n-type and a p-type TE element (also called ‘leg’) forming a π-shape p-n junction, 

electrically in series and thermally in parallel. When the junctions at top are heated, 

the electrons in n-type legs and holes in p-type legs diffuse to the cold side, generating 

a potential difference, and a resulting current flow when connected into a circuit. The 

opposite is true for TE coolers. 
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Figure 2.14 Schematic of three types TE modules. An element of p-n couple of (a) 

conventional inorganic TE modules and (b) film-shaped OTE modules, (c) A p-p 

element of film-shaped OTE modules without n-type leg. The arrows indicated the 

directions of electrons flow under the temperature gradient. 

Conventional inorganic thermoelectric devices consist of bulk legs tiled over a 

ceramic substrate with patterned electrical contacts, as shown in Figure 2.14a. The 

temperature gradient required for operating this TE device geometry is perpendicular 

to the substrate. However, most of OTE materials are thin films, with best TE 

properties along the plane; a characteristic more difficult to exploit in practical 

scenarios (with the temperature gradient along the film) (Figure 2.14b). This 

necessitates the development of alternative device geometries to accommodate the 

temperature gradient direction. An additional problem in OTE is the scarcity of air 

stabile n-type materials. OTE device designs based only a single p-type leg has been 

considered (Figure 2.14c).  

2.3.2 Power conversion efficiency  

The ZT for a TE device can be described by the combination of properties of both n- 

and p- type legs, when two materials have different TE performance and assumed that 

the volumes of these two components is equal to 

 
𝑍𝑇 =

(𝛼𝑝−𝛼𝑛)2

(√
𝜅𝑝

𝜎𝑝
+√

𝜅𝑛
𝜎𝑛

)
2 Equation 2.8 
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where 𝛼𝑝 , 𝜅𝑝  and 𝛼𝑛 ,  𝜅𝑛  are the p-type leg Seebeck coefficient and thermal 

conductivity, n-type leg Seebeck coefficient and thermal conductivity, respectively. 

The maximum power conversion efficiency, (ηmax), of a TE device, both generator and 

cooler, is related to the ZT and the Carnot efficiency limit η𝑐 = Δ𝑇 𝑇ℎ⁄  and can be 

given by [101] 

 𝜂𝑚𝑎𝑥 =  
∆𝑇

𝑇ℎ
 

√1+𝑍�̅�−1

√1+𝑍�̅�+
𝑇𝑐
𝑇ℎ

 Equation 2.9 

where 𝑇ℎ and 𝑇𝑐 denote to the hot-end and cold-end temperatures, respectively. ∆𝑇 is 

the difference of 𝑇𝑐 and 𝑇ℎ and �̅� is the average of the two temperatures. It is clear that 

the maximum power conversion efficiency can be optimised by a higher value of ZT 

and a large temperature difference across the materials or devices [101]. The effects 

of ZT on efficiency with varying 𝑇ℎ are plotted in Figure 2.15, with the cold end fixed 

at room temperature. The conversion efficiency is only 5-10% for ZT ~ 0.7 when the 

heat source temperature is ≥ 400 K, which is rather low compared with alternative 

established technologies. The energy-harvesting potential of TE generator is still 

promising for low power (micro- to milliwatts) applications. Considering the human body 

releases about 100 W of thermal energy (estimated from the 2000 calories energy 

requirement per day per person) under basal metabolic conditions (~ 37 °C), electricity at 

~ 0.6% efficiency would be generated from the TE generator with ZT ~ 1, under an ambient 

temperature of  20 °C and optimal harvesting conditions. Therefore, it is possible to harvest 

~ 600 mW of the total power from the entire body. And assuming the body surface area 

of ~ 1.5 m2, the flexible OTE which can conformably contact with the body and realise the 

appreciable power density of ~ 30 μW cm−2. 
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For TE generators, only when the load resistance RL is equal to the device internal 

resistance, Ri, ηmax can be achieved. And in terms of coolers, the maximum coefficient-

of-performance is obtained when the optimum current (I) is given as [101]  

 𝐼 =  
(𝛼𝑝−𝛼𝑛)(𝑇ℎ−𝑇𝑐)

2𝑅𝑖(√1+𝑍�̅�)−1)
 Equation 2.10 

As the device ZT (α, κ, σ) is not constant with temperature change, the ηeng should be 

introduced to predict reliably and accurately the practical conversion efficiency [1] 

 𝜂𝑒𝑛𝑔 =  
∆𝑇

𝑇ℎ
 

√1+(𝑍�̅�)𝑒𝑛𝑔(
â

∆𝑇/𝑇ℎ
−

1

2
)−1

â(√1+(𝑍�̅�)𝑒𝑛𝑔(
â

∆𝑇/𝑇ℎ
−

1

2
))+

𝑇𝑐
𝑇ℎ

 Equation 2.11 

where the â is a dimensionless factor and defined as σ(Tℎ)∆T/ ∫ 𝛼(𝑇)𝑑𝑇
𝑇ℎ

𝑇𝑐
 [1]. 

 

Figure 2.15 Estimate of the energy conversion efficiency [102]. Ideal relationships 

between the heat to electrical conversion efficiency by TE with different zT and the 

heat source temperature. Compared with the efficiency of ‘best practice’ mechanical 

heat engines.  
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2.3.3 Optimization of power efficiency  

Maintaining the highest sustainable ΔT is one of the most important factors, which 

needs to be considered for designing TE generator. But there are a number of other 

interconnected parameters, such as the device internal resistance and the amount of 

legs connected in series. For example, increasing the leg length or decreasing the leg 

cross-section contributes positively to maintaining a larger ΔT across the TE generator, 

but also increases legs’ resistance and intensify the Joule heating, which is generated 

by the thermoelectric current, I, and proportional to I2Ri. A smaller legs density (i.e. 

fill factor) in the TE generator allows a higher ΔT, but at the same time, reduces the 

total number of thermoelectric elements to build up power generation in the same area 

(Figure 2.16). Therefore, a certain geometry of the thermoelectric legs and the density 

of legs can be found to optimise these contrasting effects and gain the highest power 

coefficient.   

As mentioned earlier, the maximum power output power in a TE generator, Pmax, is 

achieved only when the load resistance, RL, is equal to its internal resistance, Ri. 

Experimentally, Pmax is obtained from the product of voltage and current by adjusting 

RL = Ri. For prediction, Pmax can be estimated by the expression 

 𝑃𝑚𝑎𝑥 =
𝑉𝑡

2

4𝑅𝐿

  Equation 2.12 

where Vt refers to the voltage produced within the TE device due to the temperature 

gradient and is called the thermal voltage of the TE generator.  Vt is based on not only 

the thermoelectrical properties of the TE materials (i.e. Seebeck coefficient) but also 

the numbers of legs, and ΔT across the TE generator. Meanwhile, R is determined by 

both the electrical conductivity of the TE materials, the number of legs, the dimensions 

of an individual elements and contact resistance both between legs and electrodes. 
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Figure 2.16 Various parameters for optimization of OTE performance[16]. (a) The 

thermal and electrical transport trade-offs; (b) length of the p-type and n-type legs; 

(c) the fill factor and (d) the widths (cross-section area) affect the power density of 

thermoelectric devices. 

In practise, there are a lot of issues that can affect the power coefficient of a fabricated 

TE device. For rigid TE devices, the interface between the TE legs and the substrate 

may degrade or even break down in long-term high-temperature operations mainly 

because of the mismatch of the thermal expansion. Flexible TE devices might 

circumvent this problem. But thermal and electrical contact between the metal contacts 

and the organic materials remain a fundamental issue, aggravated by the great 

difference, for instance, in stiffness and DOS structure. Moreover, as mentioned in the 

OTE materials section, there is a lack of air-stable n-type OTE materials available. 

Therefore, more promising single (p-type) leg devices should be designed to reduce 

the heat transfer through the metallic interconnect, in order to maintain the temperature 

difference across the device. Also, high heat transfer efficiency from away from the 

cold side (usually obtained with rigid and bulky heat exchanger) is crucial and non-

trivial in case of wearable flexible devices. 
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2.3.4 Prototypes of organic thermoelectric devices 

The device architecture is one of the challenges encountered in developing organic 

thermoelectric devices. The traditional π-shape design (as Figure 2.17a shows), would 

require (OTE) legs with a thickness of millimetres to centimetres, to maintain 

sufficient temperature gradients. Different device prototypes have been reported 

inspired from the traditional cross-plane geometries (Table 2.3). 

The first organic power generator in a vertical architecture consisting of 54 legs with 

~ 40 μm length has been reported by Crispin et al. [103]. Precursor solutions of 

poly(3,4-ethylenedioxythiophene):tosylate (PEDOT:Tos) and organic conducting salt 

tetrathiafulvalene-tetracyanoquinodimethane (TTF-TCNQ) were filled into epoxy-

based polymer cavities (each 1 × 1.5 mm) as p and n legs, respectively, connected by 

gold electrodes. The fabricating OTE generator (Figure 2.17b) exhibited a maximum 

power output of 0.128 µW at ∆T ~ 10 oC. Further improvement of the power was 

limited, among other things, by the low efficiency and stability of the n-type polymer 

and small ∆T caused by the limited thickness. More studies have appeared reporting 

increasing number of legs and single (p-type) devices with legs connected in-series 

with a metal like Ag. Roar et al. [104] provided an efficient way of serially connecting 

a total of 18,000 PEDOT:PSS elements by means of large-area roll-to-roll thin-film 

printing as Figure 2.17c shown. 1.2 μm thick rotary screen printing PEDOT:PSS films 

as p-type legs were interconnected serially with Ag on a polyethylene terephthalate 

foil. By considered the influence of the substrate thickness on the thermal gradient 

over a device, this demonstration emphasized the high-throughput potential for 

organic thermoelectric modules. 



Chapter 2 Literature review 

46 

 

 

Figure 2.17 Prototypes of vertical architecture organic thermoelectric devices. (a) 

Pictures of an off-the-shelf TE module [105]. (b) A vertical architecture organic 

thermoelectric power generator via casting in cavities contacts [103]. (c) Schematic 

illustrations of thin-film-based design employing only one TE material for series 

connection [104]. (d) And the thermoelectric module consisting of 35 thermocouples. 

[57] 

Zhu’s group [57] fabricated 0.9 mm thick pellets by pressing poly(M-ett) powder as 

both n-type and p-type legs. Benefiting from the increased thickness of the legs, a 

thermoelectric module consisting of 35 thermocouples generated a maximum power 

of 750 μW at ∆T ~ 82 oC, with a power output density of 1.2 μW cm-2 at 30 oC 

temperature differential (Figure 2.17d). Later, a highly integrated flexible 440 legs 

module were fabricated by Poly[Kx(Ni-ett)] as n-type and Cu(I)-ethylenetetrathiolate 

as p-type material filled in a separated cavities (1 mm × 2 mm in the cross section) by 

a 5 mm thick polydimethylsiloxane membrane [106]. The maximum power output 

exceeded 1 mW at ∆T ~ 82 oC. 
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Solution processing techniques are compatible with a future industrial and practical 

implementation. For example, Kar-Narayan’s research group reported utilization of 

the aerosol-jet printing technique for direct-write deposition of scalable TE devices. A 

variety of TE inks has been used, including Bi2Te3/PEDOT:PSS, Sb2Te3/PEDOT:PSS 

[107] and Sb2Te3/MWCNTs/PEDOT:PSS [108]. The 85 wt % Sb2Te3 with 

PEDOT:PSS nanocomposites on a polyimide substrate exhibited the PF of 28.3 μW 

m-1K-2 ( ~ 33.8 μVK-1, σ ~ 247.3 S cm-1) [107] as well as good flexibility (80% 

resistance increase and 93% Seebeck coefficient remained at bend curvature of 190 m-

1). Benefiting from the high-precision controlled deposition process, more complex 

structures can be designed, e.g., piling up more layers of the TE legs for enhancing the 

TE properties, printing TE inks on flexible or stretchable substrates for improve 

mechanical properties. Typically, solution processing techniques only produce thin 

films or coatings on a substrate. Optimising the device architecture based on thin OTE 

films is very demanding. Design architectures for which the heat transfer is in the 

plane direction of these elements is more appropriate for organic module than the 

traditional vertical architecture. A screen printed OTE module on paper by using 

conducting PEDOT:PSS and Ag paste has been reported by in 2014 [109] (Figure 

2.18a). In such design, the thermal gradient is along the length of the PEDOT:PSS leg 

and power added up by the connections resulting in about 50 μW at a ΔΤ of 100 oC. 

The thermal gradient can also develop along the width direction of PEDOT:PSS leg, 

as in the laminated architecture shown in Figure 2.18b. The printed PEDOT:PSS are 

then piled up and connected by Ni foil. The final device exhibited a power output of 

37 μW at a ΔΤ of 50 oC [110].  



Chapter 2 Literature review 

48 

 

 

Figure 2.18 Prototypes of in-plane architecture organic thermoelectric devices. 

Schematic representation of the (a) series and parallel PEDOT:PSS array, and the 

assembled PEDOT:PSS modules sandwiched between copper plates [109]. (b) 

Schematic of the fabrication of OTE devices using thermal lamination [110]. 

 

Figure 2.19 The chevron-structured OTE device [111]. 

Daegun et al. [111] designed a chevron‐structured OTE device, tactfully integrating 

the in-plane PEDOT:PSS patterned PET film into a 24-single-thermocouple OTE 

generator for harvesting a vertical heat flow, as shown in Figure 2.19. Under the 

temperature difference of 17.5 oC, the generator can output a power of ~ 1 µW. It 

worth mentioning that the generator has been encapsulated by PU foam to reduce the 

internal thermal conductivity through the device (down to 0.03 W m−1 K−1). This 

enabled a temperature difference which was twice that of the bare TEG when the 

generator was attached to a heating surface of 35 °C and exposed to air at 25 °C 

without any heat sink.  



Chapter 2 Literature review 

49 

 

Table 2.3 Different prototypes of organic thermoelectric devices with a large number 

of legs for harvesting the cross-plane thermal gradient. 

Materials Prototypes 
Leg 

Numbers  

Power 

Output 
Reference 

PEDOT:Tos/TTF-TCNQ 
Filled into 

polymer cavities 

54 p-type 

legs 

0.128 µW at 

∆T ~ 10 oC 
[103] 

PEDOT:PSS 
Large-area roll-

to-roll printing 

18,000 p-

type legs 

 
[104] 

poly(M-ett) 
Thick pellets by 

pressing 
35 couples 

750 μW at 

∆T ~ 82 oC 
[57] 

poly(M-ett) Filled in cavities 220 couples 
1 mW at ∆T 

~ 82 oC. 
[106] 

Sb2Te3/PEDOT:PSS 
Aerosol-jet 

printing 

50 p-type 

legs 

~24 μW at 

ΔT ~ 20 oC 
[107] 

PEDOT:PSS and Ag 

paste Screen printed 

OTE module on 

paper 

35 couples 
50 μW at ΔΤ 

~ 100 oC 
[109] 

PEDOT:PSS and Ni foil 

layers 
35 couples 

37 μW at ΔΤ 

~ 50 oC 
[110] 

PEDOT:PSS patterned 

PET film 
Chevron‐
structured 

24 p-type 

legs 

1 µW at ΔΤ 

~17.5 oC 
[111] 

 

The in-plane architecture can also have the additional benefit of being more easily 

compatible with surfaces of different shape and suitable for the ‘in-plane’ heat gradient. 

In particular, a TE device fabricated by directly brush-painting onto a curved surface 

(Figure 2.20a) enabled a power production of 205 μW cm−2 at a ∆T ~ 20 °C, much 

higher than the 8.6  μW  to 76.9 μW obtained by a traditional module, with thicknesses 

varying form 0.1 mm to 1 mm, respectively [112]. A radial OTE device architecture 

was proposed by Menon et al. [113, 114]. This OTE device consists of Poly(Ni-ett) 

blended with poly(vinylidene fluoride)/dimethyl sulfoxide as the n-type and 

PEDOT:PSS with tellurium (Te) nanowires as the p-type materials on paper substrates 

(Figure 2.20b). The polymer-based radial TEG was accommodated on a hot pipe as a 

heat source without any active cooling and managed to produce an open-circuit 

voltage of 85 mV and a power density of 15 nW cm-2 when ∆T ~ 45°C. Apart from 
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that, the advantage of the flexibility of the OTE provides the possibility to fabricate a 

flexible or even stretchable OTE device. The following sections will discuss in more 

details recent progress on flexible (Table 2.4) and stretchable (Table 2.5) OTE devices.  

 

Figure 2.20 In-plane TE devices conform to different shapes of surface. (a) Schematic 

of power generator of the conventional TEG and the painted TE generator on a curved 

heat source. [112] (b) Schematic of a radial TEG in which n-type polymers (red) and 

p-type polymers (blue) coat circular disks. Metal contacts (orange) are used for series 

connections, whereas separators (grey) electrically isolate adjacent disks [113, 114].  

2.3.5 Flexible OTE device 

Construction of flexible thermoelectric devices is important for practical applications 

of organic thermoelectric materials. Flexible devices could be simply fabricated by 

depositing the OTE materials on a flexible substrate. For example, composites of ball-

milled poly(Ni-ett) in PVDF as both n and p type materials have been inkjet-printed 

on PET substrate by Zhu’s group [61]. The obtained flexible TE module, consisting 

of six thermocouples (Figure 2.21a), could output a power of about 45 nW under a 

25°C temperature gradient. Electrochemical deposition on a patterned substrate can 

produce more legs simultaneously. The TEG, consisting of 108 n-type poly[Kx(Ni-ett)] 

legs (Figure 2.21b)  was fabricated by depositing materials on PET at a time [115]. 

Each row (eighteen legs connected in series) can output 0.468 μW power under a 

temperature difference of 12 oC. Solution casting polymerisation technique can be 

applied to large area film processing without the size limitation of the chamber or the 
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substrate. Teahoon et al. [51] reported a flexible OTE device based on PEDOT has 

been fabricated by solution casting polymerization techniques on PET. After a precise 

control of the oxidation level of the polymer, this one leg device can generate an open 

circuit voltage of 10 μV by the touch of fingertips (∆T ~ 0.1 oC) at room temperature 

(Figure 2.21c).  

 

Figure 2.21 Prototypes of flexible organic thermoelectric devices on substrates. (a) 

Image of a six-leg inkjet-printed composite TE device on a flexible PET substrate [61]. 

(b) Image of a 108 poly[Kx(Ni-ett)n] legs on a flexible PET substrate [115] and (c) 

images of the flexible PP-PEDOT thermoelectric film under bending, twisting, cutting, 

and the electricity generation by the touch of fingertips [51]. 

Instead of plastic flexible substrate, fabric could be a better choice for supporting the 

yarn-based TE legs, especially for e-textile applications. PEDOT:PSS dyed silk yarns 

were sewed onto a felted wool fabric to fabricate an in-plane thermoelectric module 

with 26 p-type legs, as in Figure 2.22a. The inherent flexibility of the module could 

be twisted repeatedly without changing the total resistance and yielding ~ 12.3 nW 

maximum power for an in-plane temperature difference of ΔT ~ 66 °C [116]. By using 

the same TE device architecture, the connecting metal wires were replaced by a 

nanocomposite of MWCNTs and poly(N-vinylpyrrolidone) (PVP) coated on 

commercial PET sewing threads. Combining the n-type yarns with PEDOT:PSS dyed 

silk yarns as p-type leg, the device was capable of producing a maximum power output 

of 0.3 nW (for 4-thermocouple as Figure 2.22b) and 7.1 nW (for 38-thermocouple) at 
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a temperature gradient of 80 °C [117]. With a simpler approach than embroidering 

with a coated  yarn, Yong et al. [118] directly coated PEDOT:PSS on a commercial 

fabric strip (Figure 2.22d), then attached these strips on the uncoated fabric as flexible 

substrate and connected with metal wires, for a flexible thermoelectric power 

generator (Figure 2.22c). This fabric device can generate a TE voltage output of 4.3 

mV at a temperature difference (ΔT) of 75.2 oC.  

Not all OTE devices would necessarily require a substrate.  Ya et al. [119] fabricated 

a flexible TEG with a self-standing Te-nanowire/P3HT polymer composite, with a 

positive Seebeck coefficient of 285 μV K-1. A temperature difference of 55 oC could 

provide an output voltage of 19 mV. Zaifang et al. [120] reported a highly conductive 

(~ 2500 S cm−1) structurally ordered PEDOT:PSS film (with a peak power factor of 

107 µW K−2 m−1 at room temperature) directly used as a flexible thermoelectric 

module, which can give out a maximum output power density of 99 ± 18.7 µW cm−2 

under a small temperature gradient of 29 oC.  

 

Figure 2.22 Prototypes of the in-plane textile thermoelectric device. The textile 

thermoelectric device with (a) 26 p-type legs [116] and (b) with 4 thermocouples 

comprised of n-type coated PET yarns (11 yarns per leg), p-type dyed silk yarns (2 

yarns per leg) and silver paste for contacts [117]. And image of (c) the positive face 

of the TEG device assemble by (d) coating PEDOT on polyester fabric [118]. 
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Connecting more free-standing films to form a multi-leg thermoelectric device and 

hence increase the power output is demanding. However, the technique normally used 

is still to fix free-standing films, connected with metal wires or conductive paste, back 

onto a flexible substrate. For example, a PEDOT:PSS/Te composite, fabricated via 

filtration process, was positioned onto a polyimide substrate and connected by silver 

(Ag) paste to assemble a 8 single-leg power generator [121] (Figure 2.23a). The 

requirements of the substrate pose a limit to the flexibility of the device. New 

architectures for substrate-free whole free-standing TE modules would be desirable. 

Hewitt et al. [122], designed a Z-shape (Figure 2.23b) device by using SWCNT for 

the p-type layers and polyethylenimine doped single walled carbon nanotubes for the 

n-type layers. A single thermocouple had a Seebeck coefficient of 96 ± 4 μVK-1, 

producing a total power output of 14.7 μW per thermocouple at the maximum 

temperature difference of 50 oC. 

 

Figure 2.23 Prototypes of the flexible thermoelectric device based on free-standing 

films. (a) Image of a flexible device consisting of eight (PEDOT:PSS/Te)-

Ag thermocouples on a polyimide substrate [121]. (b) Schematic for the multi-layered 

https://www.sciencedirect.com/topics/engineering/thermocouples
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TE composite, and (c) The final heat pressed multi-layered structure resulting in a 

single flexible module [122].  

Table 2.4 The summary of representative flexible organic thermoelectric devices. 

Materials Prototypes 
Leg 

numbers 

Voltage/Power 

output 

Ref-

erence 

Poly(Ni-ett)/PVDF  
Deposition on 

PET 
6 couples 45 nW at ΔT ~ 25°C  [61] 

poly[Kx(Ni-ett)]   

Electrochemical 

deposition on 

PET 

108 n-type 

legs 
468 nW at ΔT ~ 12 oC [115] 

Oxidation level 

controlled PEDOT 

Polymerisation 

on PET 
1 p-type leg  10 μV at ∆T ~ 0.1 oC [51] 

PEDOT:PSS dyed 

silk yarns  

Sewed on a 

felted wool 

fabric  

26 p-type 

legs 
12.3 nW at ΔT~ 66 °C [116] 

P-type: PEDOT:PSS 

dyed silk yarns 

N-type: MWCNT/ 

PVP coated PET 

threads 

Sewed on a 

felted wool 

fabric  

4 couples 0.3 nW at ∆T ~ 80 °C  [117] 

38 couples 7.1 nW at ∆T ~ 80 °C  [117] 

PEDOT:PSS  
Coated on fabric 

strips on a fabric  
5 p-type legs 4.3 mV at ∆T ~ 75 oC [118] 

Te-nanowire /P3HT  
Self-standing 

films 
1 p-type leg  19 mV at ∆T ~  55 oC  [119] 

PEDOT:PSS 
Structurally 

ordered films 
1 p-type leg  59 µW at ∆T ~ 29 oC [120] 

PEDOT:PSS/Te 

composite 

Filtrated films 

on a polyimide  
8 p-type legs  2.5 mV at ∆T ~ 13 oC [121] 

P-type: SWCNT 

N-type: PEI doped 

SWCNT 

Free-standing Z-

shape device 
1 couple 14.7 μW at ∆T ~ 50 oC [122] 

P-type:  

PEDOT:PSS/ Sb2Te3 

N-type: 

PEDOT:PSS/ Bi2Te3 

Thick films on a 

polyimide 
15 couples 

12.1 mV at ∆T ~ 5 oC  

19.1 mV at ∆T ~ 10 oC 
[139] 

 

2.3.6 Stretchable OTE devices  

The stretchability of TE devices not only enables engineering to widen the application 

fields, but also to optimise the distance between the hot and cold end of the TEG in 
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order to increase power generation. For example, an origami foldable thermoelectric 

nanogenerator (Figure 2.24a) [123] and a helical architecture (Figure 2.24b) [124] based 

on papers as the substrate hosting thermopiles (Bi2Te3-Sb2Te3 pairs) presented more 

than double power generation when stretched to the maximum position than it is at 

zero strain. 

 

Figure 2.24 Stretchable TE devices optimized the power output.  Stretchable TEGs 

developed (a) on paper substrates [123] and heretical structures [125] illustrate the 

advantage of adaptively increasing the distance between cold and hot sides to increase 

power generation. 

As mentioned in Section 2.3.6, stretchable thermoelectric materials are great 

candidates for fabricating stretchable TE devices. It is also important to find out 

creative strategies and designs for fabrication of a robust devices based stretchable and 

perhaps un-stretchable materials. Hereafter, three main strategies are discussed. 

(a) Geometrical effect 

Engineering the structure of devices can introduce or enhance their stretchability. For 

instance, by using geometries inspired by origami and Kirigami. Origami comes from 

the Japanese word ‘ori’, which directly translates to the word ‘folding’. Kirigami is 

similar to origami but it also allows ‘cutting’. Both origami and Kirigami methods 

have been used in studies of topography, geometry, as well as engineering, with a 

combination of arts and science. Focusing on stretchable thermoelectric materials, 
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Origami/Kirigami can not only convert 2-dimensional (2D) printed arrays of thin-film 

legs into 3-dimensional (3D) architectures (in order, for instance, to gain the thermal 

gradient parallel to the substrate), but also introduce stretchability into the designed 

system, even for original brittle materials. For example, the eight pairs BiTe-based 

TEG manufactured by the Origami method can withstand a stretching deformation of 

20% without power output change (Figure 2.25a) [126, 127]. 

 

Figure 2.25 Stretchable TE devices based on geometry. (a) Eight-pair stretchable TE  

device based on origami-like folding deformation, and its deployed state and folded 

state [126]. (b) A stretchable TE device for energy harvesting based on 3D 

thermoelectric coils. The 2D precursor structures assembly and chemically bonding 

into a 60% uniaxially pre-stretched PDMS, transform to final 3D architectures by 

release [128]. (c) The helical, highly stretchable, breathable and wearable TE devices 

based on the template of a simple screw [129].  

 

Spiral and helical shape have been used to transform 2D TE materials into 3D 

(stretchable) devices. For example, Kewang et al. [128] fabricated a 3D helical 
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structured TE device from 2D serpentines via compressive buckling, induced via 

relaxation of a pre-stretched elastomer substrate, to which the serpentines are bonded 

at selected locations (Figure 2.25Error! Reference source not found.b). Although 

the heavily doped p- and n-type silicon ribbons legs are brittle, the 3D helical structure 

could be stretched 60% in the in-plane direction and compressed 30% vertically for 

hundreds of cycles, with only minimal degradation in the electric properties (e.g., the 

resistance of an 8 × 8 array increased 22% for 200 cycles of 60% biaxial stretching). 

Xiaojie et al. [129] reported another design of the 3D helical inorganic TEG by mixing 

polyvinylidene fluoride with Bi2Te3 or bismuth selenide (Bi2Se3) as p and n legs coated 

on the opposite sides of a polyurethane substrate over a screw (Figure 2.25c). The 

peeled-off helical structured TE device had a power output invariable after stretching 

for 1000 cycles up to 60% strain. Utilising the intrinsic flexibility of some OTE 

materials, more stretchable TE devices can be fabricated. A Kirigami-engineered 

PEDOT:PSS free-sanding film could be stretched up to 200% strain (Figure 2.26), 

with an optimized power factor of 95 μW m-1 K-2 [130].  

 

Figure 2.26 Kirigami patterned freestanding PEDOT:PSS-based OTE device [130]. 

(b) Stretchable electrodes  

Stretchability of the system can also be provided or enhanced by stretchable 

interconnects and electrodes. Flexible modules were fabricated using commercial 

Bi2Te3 p-type and n-type legs connected with a gallium-based liquid alloy [131, 132]. 

https://www.sciencedirect.com/topics/engineering/gallium
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The TEG generated 40.6 μW cm-2 in power density with 20 °C temperature difference 

across the entire device at an average temperature of 25 °C. More notably, an excellent 

reliability and robustness under repeated mechanical strains of 20% was demonstrated 

[131]. A similar TEG presented no change in electrical resistance after 1000 bending 

cycles to a radius of 5 mm [132]. 

(c) Towards textiles of OTEs 

 

 

Figure 2.27 Stretchable fabric based OTE device [94]. (a) Images of the multi-axis 

stretchable knitted fabric. (b) Schematic illustration of the p and n-leg printed onto the 

textile substrate as a TEG. 

Textile thermoelectric devices have recently attracted a lot of interest due to their easy 

integration in fabrics and their (three-dimensional) deformability. A fabric based TE 

material could harvest low-grade heat generated from the human body and could be 

suitable for wearable electronic devices. Among different types of textiles, the knitted 

structures show excellent stretchability due to the number of interdependent loops 

(Figure 2.27a). The space in each loop allows such fabrics to be elongated, widened, 

or distorted by external or internal forces [133], and has therefore potential to be 

integrated into a stretchable thermoelectric device. Minhyun et al. [134]  reported a 

stretchable thermoelectric device via coating Ag nanoparticles as n-leg and 
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PEDOT:PSS as p-leg on a knitted fabric (Figure 2.27b). It exhibited excellent 

durability over 800 cyclic tensile tests with only a decrease of 7% of the initial voltage 

at 20% max strain. However, it is worth to noting that, although the fabric-based 

thermoelectric can be stretched up to 100% in both directions in plane, the output 

voltage will decrease to 50% after 100% strain. This was partially due to the non-

homogenous coating. The thicker coating, within the small gaps of the fibre bundle, 

was more prone to crack under stretching, resulting in permanent damage to the 

conductive paths of the printed materials. 

 

Figure 2.28 Stretchable OTE textile [135]. Photographs of (a) the top view, 

(b) schematic, and (c) side view Infrared thermal images after longitudinal stretching 

by 0%, 40%, and 80%. The dashed line in (c) marks the standing angle of the TE 

loops.  

Very recently, a promising stretchable thermoelectric textile has been reported [135]. 

Instead of coating on the stretchable fabric substrate, the reported TE fabric was 

produced by weaving the alternately doped carbon nanotube fibres wrapped with 

acrylic fibres (Figure 2.28). Therefore, it can be woven into various fabric 

architectures for different applications, such as sensing, energy harvesting, or thermal 

management. And utilising the elasticity originated from interlocked thermoelectric 
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modules, stretchable substrate-free TE devices could be fabricated, showing an 

excellent stretchability (~ 80% strain) with no power output degradation; under an out-

of-plane temperature difference of 44 °C by attaching to a heater, the device generated 

a peak power density of 70 m Wm-2.  

Table 2.5 The summary of representative stretchable thermoelectric devices 

Materials Methods  Stretchability Applications Reference 

Bi2Te3 
Stretchable 

electrodes 

20% strain 
Wearable 

generators 
[131] 

Commercial TE legs 
5 mm radius 

(bending) 

Wearable 

generators 
[132] 

P-type: PEDOT:PSS 

N-type: Ag  

Coating on a 

knitted fabric 

 

20% strain 
Temperature 

sensors 
[134] 

Doped CNT fibres 

wrapped with acrylic 

fibres 

Woven into fabrics 80% strain 
Fabric 

generators 
[135] 

PEDOT:PSS/PU 
Solution casting 

film 
700% strain 

Self-powered 

strain sensors 
[146] 

Graphene/ecoflex 
Solution casting 

film 
100% strain 

Self-powered 

strain sensors 
[147] 

PEDOT:PSS and 

Triton X‐100 
3D‐Printed 35% strain 

Self-healing  

generators 
[100] 

PEDOT:PSS, 

nanofibrillated 

cellulose, 

glycidoxypropyl 

trimethoxysilane. 

Aerogel 
 

Pressure-

temperature 

sensors 

[143] 

PEDOT:PSS 
LBL coated on a 

foam 

80% strain 

(compression) 

Wearable 

generators 

and pressure 

sensors 

[144] 

PEDOT:PSS 
Coated on a 

melamine foam 

80% strain 

(compression) 

Self-powered 

pressure 

sensors 

[145] 

 

2.4 Applications of OTE device  

Apart from the growing interest in improving the power factor of OTE materials and in 

new designs for flexible TE devices, increasing effort has been dedicated on exploring 
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potential applications, taking advantage of positive features like mechanical flexibility 

while offsetting drawbacks like low efficiency. The basic potential applications of a TE 

device are as a generator, a cooler, an electrical temperature controller and a temperature 

sensor. For application as generator, researchers usually tend to increase the number 

of legs to increase the voltage output, while optimising the dimensions of legs and 

architecture of devices for gaining a high-power output and high-power density. For 

example, a 220-thermocouples device based on poly(M-ett) in 1 mm × 2 mm cavities 

of a 5 mm thick PDMS can generate in excess of 1 mW under a temperature difference 

of 60 oC and able to power a liquid crystal display calculator [106]. A generator formed 

by 300 pieces of PEDOT:PSS patterned printed papers connected in parallel, produced 

a power output of over 50 mW at a ∆T of 100 oC, able to illuminate light-emitting 

diodes [109]. 

Finding the right application for OTE devices should make better use of the unique 

properties of OTE materials. In the following sections, two more promising applications 

will be reviewed. 

2.4.1 Application example: wearable electronic device  

The human body is effectively a heat engine which, as a consequence of the continuous 

metabolism, emanates more than 100 W of heat, during regular day-time activities 

[136]. Converting such heat into electrical power, for instance via a  wearable 

thermoelectric device, might allow to operate more and more common wireless and 

portable personal electrical systems [137, 138].  

A 2D shaped OTE device would have one side in contact to skin and the other side 

away from the skin, to gain a temperature gradient. For example, the 8 single-leg 

generator based on PEDOT:PSS/Te composite [121], already mentioned in Section 
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2.4.5, has been utilised by contacting one side to a forearm skin and the other side 

raised up in the air (Figure 2.29a). When the ambient temperature is 19 oC, and the 

temperature difference approximately 13.4 oC, 2.5 mV open circuit voltage and 3 mW 

maximum power output could be harvested (the maximum power output has been 

estimated by the composites electrical conductivity, ignoring contact resistance and 

Ag connections, which have not been reported in the paper). Different thermal 

insulators can be utilized between the human body and the cold side of the OTE device. 

Ju et al. [139] designed a flexible 15-thermocouples device on a fabric, with one side 

staked on the fabric and another side directly in contact with the skin (Figure 2.29b,c). 

This device, made by the incorporation of PEDOT:PSS into a screen-printed inorganic 

TE thick film, can produced 12.1 mV voltage at a 5 oC temperature difference, and 

19.1 mV open circuit voltage with 60 nW cm-2 power density at T ~ 10  oC. In another 

approach, inspired by origami, Eun et al. [140] demonstrated a flexible thermoelectric 

generator by folding into a bridge shape, as shown in Figure 2.29d,e. A device formed 

by 32 legs of printed Te-PEDOT:PSS composite showed a stable thermoelectric 

voltage of over 12 mV in response to human body heat, with a maximum power output 

of 10.59 nW at ΔT ~ 10  oC.  

There are several limiting factors for a wearable thermoelectric device. One is the 

small temperature difference between the human skin and surroundings. Although 

several prototypes to utilise low-power systems (~ 1.5 mW) have recently been shown 

[141], such as active radio-frequency identification locators, pulse oximeters, 

pedometers and heart rate monitors, the milli-watt power range is still very restrictive. 

Besides, the wearability and heat transfer from human body to device also needs to be 

improved. New architectures that can conform to different 3D shapes (i.e. skin), that 

are flexible and even stretchable are necessary for future applications. 
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Figure 2.29 Prototypes of wearable generators. (a) The wearable generator based on 

the 8 single-leg TE device [121]. (b) A 15-thermocouple wearable generator at a 

temperature difference of about 5 oC and (c) its cross section [139]. (e) The 

thermoelectric generator embedded in a glove with 32 legs arranged in two rows and 

(e) its schematic diagram of the thermoelectric generator and working principle [140].  

 

Figure 2.30 Prototypes of wearable temperature sensor [94]. (a) Schematic layout 

and (b,d) the optical images of the wearable temperature sensor array. (c,e) Voltage 

output mapping corresponding to the temperature distribution induced by the fingers 

touch on the specific areas. 
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Instead of harvesting body heat for generator, wearable OTE devices could also be 

applied as temperature sensors. Normally, one end of the sensor is in contact with a 

surface at a constant temperature (e.g. room temperature), helped by a heat sink 

module for instance. The other end is used for sensing. The voltage output 

performance of the device is correlated to the temperature difference across the ends, 

which depends on the temperature on the sensing side. A flexible thermoelectric 

composite film of Te-nanowire/P3HT was used as a temperature sensor with a 

response time of 17 s and a reset time of 9 s [119], which is dependent on the contact 

thermal conductivity between the hot surface and the active TE materials. It worth 

mentioning that the detection sensitivity of the sensor is a function of the voltage 

measurement instrument resolution and the Seebeck coefficient of the materials. In 

this work [119], the composites film had a positive Seebeck coefficient of 285 μV K-

1, so a temperature variation of 0.15 oC in ambient atmosphere can be detected as 0.08 

mV output voltage change. Minhyun et al. [94] designed a 5 by 5 sensor arrays printed 

on the knitted fabric (Figure 2.30 a) as already mentioned in the Section 2.4.6. This 

25 mm2 stretchable device responded to the temperature changes on each pixel (< 

1mm2). Therefore, a gentle finger touch to the sensor array introduced a local stimulus, 

and demonstrated in a real-time mapping (Figure 2.30 b-e). 

Because the thermoelectric temperature sensor measures the temperature difference 

with self-generated voltage, so no additional power source is required. Recently, the 

application as a self-powered sensor is emerged, combining with response to 

additional stimuli. 

2.4.2 Application example: self-powered sensors 

Self‐powered devices are those operated by harvesting ambient energy present within 

the environment of the system [142]. They can be powered by harvesting sources like 
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vibration, pressure, heat, temperature difference, magnetic fields, radiation, and so on. 

Among them, piezoelectric effect has been extensively studied in self-powered 

devices. But vibration is not always a continuous and reliable source of energy. TE 

devices, on the other hand, can be very reliable as long as operating across a regular 

temperature difference. Applied as self-powered sensors, TE devices also show the 

potential to be a dual-parameter sensor, with the ability to decouple the response to 

different stimuli like chemical, mechanical, or biological stimuli. It is worth noting 

that the power for measurement circuits are not considered for the concept of ‘self-

power’ sensors. 

 

Figure 2.31 Schematic illustration of the temperature-pressure sensor [119]. (a,b) 

Pristine device with the (c,d) a temperature gradient (ΔT), (e,f) a pressure, and (g,h) 

a coupled temperature and pressure stimuli and the corresponding I-V curve. 

Recently Zhang et al. [119] developed flexible dual-parameter temperature-pressure 

sensors by coating PEDOT:PSS onto the surface of microstructured PU frames for 

self-powered e-skin applications. Based on the thermoelectric property, the 

temperature difference between the device and an object was detected by the voltage 

output. The pressure was instead detected by piezoresistivity, probing by the change 

in device resistance. The effective transduction of temperature and pressure stimuli 
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into two independent electrical signals permitted the simultaneous detection of 

temperature and pressure stimuli with an accurate temperature resolution of 0.1 oC and 

a high-pressure-sensing sensitivity of up to 28.9 kPa-1. Due to the thermoelectric effect, 

this device self-supply power for the detection of the pressure once a small temperature 

gradient is available.  

Later, several similar dual-parameter sensors based on OTE materials have been 

reported based on thermoelectric effect and piezoresistive properties. For example, a 

temperature-pressure dual-parameter sensor was reported a year later by Shaobo et al. 

[143]. They fabricated an aerogel via freeze drying water dispersions of three organic 

materials: PEDOT:PSS, nanofibrillated cellulose, and glycidoxypropyl 

trimethoxysilane. The following DMSO vapour treatment boosted the pressure 

sensitivity by two orders of magnitude and eliminated the effect of the resistance of 

the aerogel change with temperature, to further decouple the two signals. Another 

report of wearable self-powered pressure sensor was layer-by-layer coated 

PEDOT:PSS on a foam [144]. The foam was synthesised by CNF-PEI-PEDOT:PSS 

and exhibited piezoresistive response to pressure. At an ambient temperature of 18 oC, 

and when in contact with a forearm skin (34 oC), the device could generate a voltage 

of 0.3 mV. A coaxial microstructured melamine foam was also fabricated as a self-

power pressure sensor [145]. The melamine foam core provided a compressible and 

elastic framework, while the coated intermediate PEDOT:PSS acted as a conductor 

and a thermoelectric material. A styrene-ethylene-butylene-styrene shell coated 

outside the foam ensured mechanical stability and resilience to stabilize the brittle 

PEDOT:PSS layer under high loading conditions. The assembled wearable TE device, 

containing 21 single-thermocouples of the coaxial foam, was able to generate more 



Chapter 2 Literature review 

67 

 

than 100 nW at ∆T ~ 10 oC, and demonstrated a high sensitivity to pressure without 

external power supply. 

 

Figure 2.32 Self-powered multi-channel strain sensor [146]. (a) Photographs of 

a multi-channel 3D strain sensor and (b) it under deformation, and the corresponding 

current mapping figures of orthogonal (c) x and (d) y directions from the two groups 

of graphene electrodes on top and bottom surfaces. 

Self-powered strain sensors or temperature-strain dual-parameter sensors have also 

been reported. The first self-powered TE strain sensor was reported by our group [147]. 

A blend of PEDOT:PSS with commercial elastomeric polyurethane showed a great 

stretchability, with a strain‐at‐break of ~ 700% for blends with 90 wt.% PU, and a 

Seebeck coefficient of ~ 15 μV K-1. Under a temperature difference, the self-standing 

film could supply voltage for powering itself to sense strains. A year later, a graphene-

ecoflex nanocomposite film has also been reported as a self-powered strain sensor 

[146]. A multi-channel 3D strain sensor system (Figure 2.32) manufactured based on 

the composites stripes showed the function of strain detection along various directions. 

Besides, by combining different advanced materials, more functional self-powered TE 

sensors have been developed. For example, Crispin’s group [100] fabricated a novel 

organic mixed ion-electron conducting aerogel with PEDOT:PSS and nanofibrillated 

cellulose, to form the mechanical structure of the aerogel, and crosslinked by 

glycidoxypropyl trimethoxysilane, to introduce elasticity. Except the response to 

pressure, temperature, the ionic Seebeck effect of the PEDOT:PSS was utilised to 

sense humidity. The Seebeck coefficient peak value at high humidity (> 60%) is the 
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sum of the electronic and the ionic Seebeck. Because the ionic Seebeck coefficient is 

time dependent, the electronic and ionic Seebeck coefficient could be decoupled and, 

in turn, also the temperature gradient and humidity could be distinguished. Therefore, 

as shown in Figure 2.33, three individual parameters - pressure, temperature, humidity 

- were detected in a single device configuration. 

 

Figure 2.33 Self-powered strain, temperature and humidity sensor [100]. The aerogel 

TE device applied as (a,b) pressure and (c,d) temperature sensor under relative 

humidity of 30%. And its application of (e,f) humidity sensor under ∆T ~ 10 oC. 

2.5 Summary and challenges 

OTE have seen a remarkable progress in the field of high zT value materials. Novel 

OTE device architectures, flexible and multi-functional applications have been 

explored in the past few years. OTE are becoming interesting alternatives to traditional 

inorganic thermoelectrics. 

It must be admitted that organic thermoelectrics are still in the initial development 

stage and still face a number of challenges. Since 2008, the values of the power factors 

of organic thermoelectric materials have increased by 4 orders of magnitude. zT values 
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greater than 0.2 in both p-type (PEDOT:PSS) and n-type (Poly(M-ett)) achieved at 

room temperature are comparable to those of many inorganic counterparts. But we 

have to notice that: i) the number of high TE performance OTE materials is still scarce; 

ii) after processing, especially blending with insulating polymers for high flexibility, 

both  and σ dramatically reduced. For the development of state-of-the-art organic 

thermoelectric materials, further understanding the fundamental mechanism of 

heterogonous systems are demanded, which is more complicated that in the case of 

inorganic homogeneous systems. The molecular structure of the conductive polymers 

and the morphology of their composites are also important. For example, a systematic 

investigation of the critical roles of a conjugated backbone, side chains, and polymer 

molecular weight relationship with the TE performance can guide future materials 

selection as well as processing. 

From technical side, precise measurement of key thermoelectric parameters for 

organic thermoelectric materials are different from inorganic bulk materials. Seebeck 

coefficient and in-plane thermal conductivity reported by different groups are 

measured by different home-made systems, some of which are affected by 

environment conditions, sample size and shape and substrate. Thus, the result accuracy 

and comparability need to be considered. A standard for measuring OTE device 

performance does not exist, due their various types and structures. 

Beyond the challenges in OTE materials and the measurement techniques, several 

issues also limit OTE devices. Most polymers have a limited thermal stability (<400K). 

The resulting small temperature operating window makes the temperature gradient 

across the device very limited. One could compensate by utilising OTE generators on 

larger surfaces. This is possible considering that large-scale and cost-effective 

producing techniques could be employed with organic materials. Research should also 
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focus on improving the power density, for example, by condensing the device structure 

and optimise the interfaces between materials and electrodes. An alternative way to 

go beyond current limitations is to explore new applications with low energy 

requirements. Wearable electronics for harvesting body heat and self-powering 

sensors are good examples but have not been well developed yet. 
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Chapter 3 Experimental section 

This chapter describes the materials and experimental techniques that were used to 

prepare and characterize the OTE materials and devices.  

3.1 Materials 

The Nax(Ni-ett)n nanoparticles used in Chapter 4 were synthesised in collaboration 

with the group led by Dr. Bob C. Schroeder at University College of London. Firstly, 

1,3,4,6-tetrathiapentalene-2,5-dione (TPD, 1 g, 4.8 mmol, Sigma Aldrich) was reacted 

with excess sodium methoxide (1.2 g, 22.2 mmol, Sigma Aldrich) in a refluxing 

methanol solution at 75 oC for 24 hours. Subsequently, nickel (II) chloride hexahydrate 

was prepared from nickel (II) chloride (0.63 g, 4.8 mmol, Sigma Aldrich) and water 

(300 mL, deionized) were added. After refluxing for another 24 hours, the resulting 

solution was immediately exposed to air for 30 minutes. A black polymer precipitate 

was obtained by filtering and washed with water, methanol, and diethyl ether, 

sequentially, dried under vacuum for 24 hours and ground to a fine powder. 

CNT veils were kindly provided by Dr. Weibang Lu at Chinese Academy of Sciences 

and Dr. Juan Jose Vilatela at IMDEA Materials Institute. Briefly, CNT veils were 

made by floating catalyst chemical vapor deposition (FCCVD). The feedstock, which 

contained about 96.5 wt% ethanol (carbon source), 1.9 wt% ferrocene (catalyst 

precursor) and 1.6 wt% thiophene (promoter), was injected (0.15 ml/min) into a hot 

CVD furnace (~ 1150 oC) along with the carrier gas (600 ml min-1) consisting of 

hydrogen and argon (~ 1:1 volume ratio). CNTs were formed and entangled into sock-

like aerogel in the furnace, then was pulled out and collected by a rotating roller 

continuously. Finally, the high porosity CNT sponge on the roller was densified by 

mechanical compression.  
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PEDOT:PSS (Clevios PH1000) was purchased from Heraeus GmbH. The PU films 

and fibres in this thesis were obtained from 940 dtex Lycra® yarn from Invista. DMSO 

(> 99.9 %) and EG (99.8%) were purchased from Sigma Aldrich. Multi-Walled 

Carbon Nanotubes (NC7000) were purchased from Nanocyl S.A. The commercial 

available bi-axially oriented Polystyrene film (Grafix shrink film) was obtained from 

a craft retailer, Polycarbonate (PC) films (Lexan 8010MC) with a thickness of 250 

micron were provided by Sabic. 

3.2 Preparation of thermoelectric materials 

Preparation of PU /DMSO dispersions (Chapter 4): 

Lycra® Invista yarns were washed with soap, acetone and isopropanol in sequence, in 

order to remove surface dust, oil and spinfinish. Afterwards, the Lycra® yarn was cut 

into small pieces and dispersed in anhydrous DMSO (1 wt. %) by magnetically stirring 

at 80 oC in an oil bath for 12 hours to afford dispersions with 1 wt. % solid content. 

Preparation of Nax(Ni-ett)n/ Lycra composite films (Chapter 4): 

5 wt. % Nax(Ni-ett)n was dispersed in anhydrous DMSO by bath sonication (ultrasonic 

cleaner, VWR) for 30 minutes and, subsequently, stirring for 2 hours. It was mixed 

with 1 wt. % PU /DMSO dispersion at different ratios. The content of Nax(Ni-ett)n in 

final composite films were 10 wt.%, 30 wt.%, 50 wt.%, and 70 wt.% (Figure 3.2). 

Composite films were prepared by drop casting approximately 2 ml of the mixture on 

pre-cleaned glass sides (75 mm × 25mm) and were dried at 80 ℃ in oven in an ambient 

atmosphere. Different casting temperatures were explored ranging from 40 °C to 

140 °C (Figure 3.1). Based on the electrical conductivity of the casted film, 80 °C was 

chosen as the casting temperature. The drop-casting procedure was repeated 5-8 times 

until the weight of solid was approximately 0.1g. Self-standing Nax(Ni-ett)n/ Lycra 
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(NL) films of approximately 50 µm thickness were obtained after drying at 80 °C in a 

vacuum oven for 12 hours and peeling off  (as Figure 3.3).  

 

Figure 3.1 Electrical conductivity of the 50 wt% NL film corresponding to the casting 

temperature. The error bars represent to the standard diviations calculated from 5 

specimens for each casting temperature with 5 times repeated measurements on each 

specimen.  

 

Figure 3.2 Digital pictures of the pure Lycra® film, 10 wt. %, 30 wt. %, 50 wt. %, and 

70 wt. % NL films, respectively. a) On desk, b) hold towards to the lights and c) peeled 

off from the glass slides. 
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Figure 3.3 Optical pictures of (a) pure Lycra® film, (b) 30 wt. % NL film, and (c) 50 

wt.% NL film are easily separated from the substrate glass slides by peeling off.  

Preparation of PEDOT/ Lycra composite films (Chapter 4): 

A similar procedure was used for preparing PEDOT:PSS/Lycra® (PL) films. 

Cryogenically dried PEDDOT:PSS solids were dispersed in anhydrous DMSO (1 

wt %) by a homogenisation (Heidolph SilentCrusher M set at 500 rpm for 5 minutes) 

and probe ultrasonication (Sonics VibraCellTM, amplitude 35 %, 1 sec. on, 1 sec. off, 

for 20 min) in sequence.  The obtained PEDOT:PSS/DMSO dispersion was then 

mixed with 1 wt.% Lycra®/DMSO dispersion in a volume ratio  of 1:9. Afterwards, 

the same drop-casting method and drying procedures as for NL films were used which 

resulted in films with a similar thickness and dimensions as the NL counterpart.  

Preparation of PEDOT coated yarns (Chapter 5): 

The washed Lycra® yarns were dipped into DMSO at 50 °C for 10 minutes, followed 

by dipping into a PEDOT:PSS solution in DMSO (10 wt %) for 5 minutes (Figure 3.4). 

The swelling level is controlled by the dipping time in DMSO. Optimized conditions 

were selected to infiltrate DMSO into the surface of the single filaments of the whole 

yarns by detecting the transparency change of the yarns. After the coating procedure, 

the yarns were fully dried at 120 °C in the oven for 5 hours not only to evaporate all 

the solvent, but also to anneal the yarns. The PEDOT:PSS coated yarns, named PY, 

was obtained after the as-mentioned procedures and cut into specimens with 20 mm 

length for the measurements. Cracked PEDOT:PSS coated yarn (CPY) was fabricated 
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by stretching PY to 5%, 10%, 20%, 30%, 40%, 50%, 80%, 100%, 300%, 1000% and 

named as CPY-5, CPY-10, CPY-20, CPY-30, CPY-40, CPY-50, CPY-80, CPY-100, 

CPY-300, CPY-1000, respectively. 

 

Figure 3.4 Schematic illustration of the 2-step swelling/coating fabrication procedure 

for the PEDOT:PSS coated Lycra® yarn (PY). 

Preparation of p&n doped CNT veils (Chapter 6): 

The ‘as-grown’ CNT veils were  anealed at 450 oC for an hour and then emmersed in 

hydrochloric acid (36%-38%) for 12 hours. Afterwards, the CNT veils were washed 

in deionized water for seveal times until a pH of 6-7 is reached, and then dried in the 

100oC oven for 2 hours for testing and doping.   

Poly(ethyleneimine) (PEI) and FeCl3 dissolved in ethanol were used for n- and p-type 

doping, respectively. Different concentrations of the dopant solutions were used 

ranging from 2 mM to 20 mM. For comparison, the amount of the dopant solutions 

was all kept at 50 μl and dropp-casted onto a 15mm × 15 mm squared CNT veils on 

glass slides as substrates. 

3.3 Fabrication of TE devices  

Fabrication of a stretchable OTE device (Chapter 4): 

PL and NL films were used as p-type and n-type legs, respectively. First, p-n junctions 

were prepared by pressing at 120 oC, 30 bar for 1 minutes. The p-n junctions were 
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folded along the out-of-plane direction and were insulated by polyurethane films. 

Subsequently, the device was pressed at 30 bars, 160 ℃ for 5 minutes within a mould. 

A device was fabricated by coupling 8 p-n junctions and was used for wearable self-

powered sensor demonstration at a temperature difference of 20 oC. Silver paste was 

used to adhere copper tapes on the ends of the TE device as electrodes. 

Fabrication of a ‘magic ball’-shaped generator (Chapter 4): 

 

Figure 3.5 The design of the 90-couple (a) in series (b) and parallel “magic ball” TE 

device. The pink, blue and purple colour indicate the p type, n type and the overlap 

parts of p and n type TE materials, respectively. The solid and dash lines indicated the 

peak and valley folding of origami. The red, black thick lines and lamp illustrate the 

electrical circuit the magic ball device exposed to a temperature difference. 
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A Nax(Ni-ett)n/DMSO solution and a PEDOT:PSS aqueous solution as n and p legs 

were painted on the paper. A 100 oC hot plate was underneath the paper for drying. 

After complete drying, the painted paper was folded into a ‘magic ball’ shape (Figure 

4.13a). The painting patterns and the folding designs are shown in Figure 3.5. Silver 

paste was used to adhere copper wires on the ends of the TE device as electrodes. 

Fabrication of a wearable OTE device (Chapter 5): 

The fabric device was made by sewing 10 PYs and constantan wires as p- and n-type 

legs, respectively. PYs and constantan wires were connected in series via knitting the 

constantan wire at the PY’s ends. Carbon grease was used to increase the contact 

between PYs and constantan wires. 

The smart glove was fabricated by sewing PY through the thickness and fixed both 

sides by thread. Electrodes were embedded by tying thin copper wire knots at the ends. 

The connection between the yarn and electrodes was enhanced by carbon grease and 

ethyl cyanoacrylate (Loctite®, Henkel). 

Fabrication of self-folding honeycomb structured TE devices (Chapter 6): 

Three types of the PC patches: small (8mm×1.5mm), medium (8mm × 8.5mm) and 

large (8mm ×10mm) were cut using by a Silhouette cameo. CNT veils and biaxial 

stretched Polystyrene (b-PS) were cut into the designed patterns as shown in Figure 

3.6. Subsequently, the CNT veils are densified in the presence of a few drops of 

ethanol to adhere them onto both sides of the b-PS film. Afterwards, the CNT veils 

were doped into p and n type alternatively and dried at ~ 40 oC. Cyanoacrylate glue 

(Loctite®, Henkel Ltd.) was used to adhere the CNT veils to the b-PS and PC patches. 

Afterwards, the as-assembled sample was dried at room temperature overnight, before 

putting into the 130oC oven for the self-folding procedure.  
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Figure 3.6 Schematic illustrations of the design of a 4-cell honeycomb structure TE 

module. The p & n doped CNT veils (grey) connected and attached on both sides of b-

PS, followed by the patterns of PC patches (orange) adhesion on. After self-folded in 

to the 4-cell honeycomb structure TE module, 8 couples of p-n legs are existing in the 

modules connected by 2 electrodes (yellow). 

Multi-Walled Carbon Nanotubes (MWCNTs) were dispersed in acetone and sonicated 

by probe sonication for 10 minutes and 5000 J energy at 20% of the maximum 

amplitude level. An airbrush (H4001 HP-CPLUS, Iwata Performance) with an air 

compressor (Iwata studio series) was used for spraying MWCNTs/acetone solution on 

one side of the 10 × 10 cm glass fibre prepreg (MTC510) with epoxy volume fraction 
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of 42%. 30 psi (2.07 bar) air pressure and a 10 cm distance between 

spraying nozzle and prepreg were used. Approximately 60 mg MWCNTs were 

sprayed resulting ~ 7 wt.% MWCNTs contained in the epoxy of the coated prepreg 

(Figure 3.7a).  

 

Figure 3.7 The fabrication of MWCNTs sprayed composites laminates. Images of (a) 

the sprayed MWCNTs on glass fibre prepreg, (b) with 4 piles of uncoated prepregs in 

a vacuum bag and (c) after curing. 

As Figure 3.7 shows, after drying under vacuum at room temperature for 12 hours, the 

coated prepreg was placed on top of 4 piles of uncoated prepregs, with the coated side 

face on top. After vacuum for 30 minutes to avoid trapped bubbles, a typical curing 

cycle (3 °C min-1 from room temperature to 120 °C for 2 h) was applied using a 

programmable oven under vacuum. After cutting and polishing, the glass fibre 

reinforced composite panels were adhered to both sides of the self-folded honey-comb 

structured TE module. Copper wires as electrodes were connected to both the TE 

module and the MWCNTs coated side of the composite panels with silver paste as the 

adhesion. 

3.4 Characterization of TE materials  

3.4.1 Seebeck coefficient  

An MMR Technology Seebeck Effect Measurement System was used throughout this 

research. The system consists of a programmable refrigerator chamber controller 

https://www.sciencedirect.com/topics/materials-science/nozzle
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(K20), and programmable stage heater controller (SB100) as shown in Figure 3.8a, 

and a variable temperature Dewar as Figure 3.8b shown. The Dewar contains an 

amplifier circuit board and a Joule-Thomson refrigerator (Figure 3.8c) and is 

connected to a vacuum pump and a nitrogen flow via a filter-dryer in order to regulate 

the temperature of the chamber during operation. The whole system is operated using 

Seebeck Effect Software. 

 

Figure 3.8 Pictures of the MMR system. A picture of (a) the programmable 

refrigerator chamber controller (K20), (b) the programmable stage heater controller 

(SB100), (c) the variable temperature Seebeck system (Dewar) and (d) the Seebeck 

stage. (e) Schematic of the set-up for Seebeck coefficient measurements. 
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Sample dimension of smaller than 1 mm width and 5 mm length are mounted on the 

Seebeck stage for testing. As Figure 3.8c shows, the Seebeck stage has 2 pairs of 

thermocouples including one pair for a reference sample and the other pair for the test 

sample. Each pair outputs voltages namely V1 and V2 are monitored by SB100. The 

heater is controlled by SB100 for heating one side of all samples, while the whole 

Seebeck stage are attached to the refrigerator that provides a given stable temperature 

for measurement. Therefore, when the power applied to the heater, a temperature 

difference between two ends of samples is applied. As a result, a voltage will be 

generated where 𝑉1 = 𝑎1 ∆𝑇(𝑃)  and 𝑉2 = 𝑎2 ∆𝑇(𝑃),where ∆𝑇(𝑃) is the temperature 

difference created by the power (P) to the heater, which is same at both sides. Thus 

the Seebeck for test sample (𝑎1)  can be calculated from the reference sample (𝑎2) 

using 𝑎1 = 𝑎2𝑉1/ 𝑉2 . A small ∆𝑇  (~ 1 oC) are used in order to maintain the 

temperature in the chamber, so that the measurement results are not accurate due to 

the undesired substantial offset voltages. Therefore, two measurements on different 

power setting are used to eliminate the voltage offsets, and Seebeck coefficients for 

test sample will be 𝑎1 = 𝑎2(𝑉1(𝑃1) − 𝑉1(𝑃2)/ (𝑉2(𝑃1) − 𝑉2(𝑃2))  where 𝑉1(𝑃1) and 

𝑉1(𝑃2) indicate the V1 value when the power applied to the heater the first time (P1) 

and the second time (P2), and 𝑉2(𝑃1) and 𝑉2(𝑃2) is V2 value when applied P1 and P2, 

respectively. 

In this research, all samples were cut into 1mm × 4mm size film. The self-standing 

films were cut directly, others were cut with the flexible substrate, normally 125 μm 

thick polyethylene terephthalate (PET) films. Constantan wires are used as reference 

sample and they are mounted on the test sample side with the Ag paste for connection. 

It is worth to mention that ~ 0.1mm diameter Constantan wires were chosen due to 

requirement of equal heat flow through the reference sample and test sample. As a 
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reference and for easy daily application, 27 oC was set for the chamber for all the 

Seebeck coefficient measurement. Photo-Seebeck effect, i.e., the Seebeck effect to 

which the photo-induced carriers contribute, was measured by controlling light 

irradiation through a transparent window. A white fibre light source with wavelength 

range of 400-900 nm was used. 

For Seecbeck coefficient measurements in this thesis without specific description, the 

Seecbeck coefficient is an average of 5 specimens for 20 measurements on each at 

room temperature. The Seecbeck coefficient change with time measurement is an 

average of 5 measurements results on a same specimen. 

3.4.2 Electrical conductivity  

Both 4-probe and 2-probe methods were used in this research. 4-probe method were 

used for determining the electrical conductivity of all 2D samples, which can eliminate 

the contact resistances and thus give a more accurate electrical conductivity result. 2-

probe method was chosen for 1D samples and measurement in some chambers where 

4-probe equipment cannot access.  

Therefore, 2-probe method has been used to measure the electrical resistance change 

with humidity in Chapter 4, the resistance of coated yarns in Chapter 5 and to 

compare resistance before and after folding in Chapter 6. A step voltage was applied 

by Agilent 6614 DC power supply with the current measured by a Keithley 6485 

picoammeter simultaneously. The unit resistance of 1 cm length yarn was calculated 

by the slope of the of I-V curve using least squares linear fitting. Average values were 

taken from 30 specimens. The resistivity change in a temperature sweep was also 

obtained by the 2-point probe method. A tabletop probe station (PS-100, Lakeshore) 

equipped with a semiconducting parameter analyser (Keithley, 4200SCS) were used to 
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apply a step voltage and to measure the current. The temperature of the chamber was 

controlled by Model 336, Lakeshore controller under vacuum. The resistance of the 

sample at each temperature were calculated from the slope of each I-V curves. 

4-probe method were used to measure all film-shaped samples in Chapter 4 and 

Chapter 6. A bespoke four-point probe (0.25 mm probe space) made of an Agilent 

6614 System DC power supply with Keithley 6485 picoammeter and Keithley 2000 

multimeter were used for electrical conductivity measurements. In this system, 4 

probes are linearly and equally spaced on the sample. With the voltage supplier and 

picoameter connected in the circuit with the 2 outer probes, a known current I is passed 

between the outer points of sample. Due to the sample size is much bigger than the 

probe space, the same current I can be considered to flow between the middle points. 

The voltage V between these two points is measured by the voltammeter. The sheet 

resistance can be determined from the slope of V and I directly, while the resistivity 

(𝜌) should consider the electron distribution though the thickness of the sample which 

is defined as: 

 𝜌 =
𝜋𝑡

𝑙𝑛(2)
∗

𝑉

𝐼
 Equation 3.1 

where the t is thickness of the film which was test by a Bruker Dektak Vision 64 

profilometer. The electrical conductivity is the inverse of the resistivity. In this 

research, 37.5 mm×25mm films on rigid and flat substrate glass slides, were used for 

testing, and results are averaged of at least 5 specimens with 20 measurements.  

3.4.3 Mechanical test 

Mechanical tests were performed by a tensile tester (Instron 5566). The tensile tests 

are performed according to the ASTM D882-02 standard. The strain rate was 100% 

min-1 if not specified. Films (Chapter 4) were cut by a D882-02 standard die, 40 mm 
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× 5 mm strips, and their thickness were measured by a calliper, while yarns (Chapter 

5) are used as it is. The cross-sectional area of the Lycra yarns was calculated via the 

linear density, as detailed in Section 5.2.1. 

The stress and strain are defined as the force per unit cross-sectional area of a material 

and the extension per unit length, respectively. The representative curves for tensile 

stress against strain were plotted. The Young's modulus was calculated from the slopes 

of linear stress-strain curve in the near-zero range and averaged out of 6 to 10 

individual specimens. And strain-at-break also obtained from the plots as it is the ratio 

between elongation and initial length when sample breaks.  

Three point bending test were used for composite plates in Chapter 6 are following 

the ATSM D790 standard. The samples with thickness of ~ 3 mm were cut into 

12.7mm width and the distance between two holding points was 48mm. A speed of 

1mm min-1 was used.  

3.4.4 Thermogravimetric analysis 

The thermal stability was characterized through thermogravimetric analysis (TGA) by 

TA Instruments Q500 Thermogravimetric Analyzer using a programmed procedure to 

raise temperature from 20 oC to 900oC by 10 oC min-1. Isothermal measurements were 

performed for 10-15 min at both the start and end temperature. 

3.4.5 Ultraviolet-Visible spectroscopy 

Ultraviolet-Visible (UV-vis) spectra of the NL solutions with different concentrations 

were obtained using a Perkin Elmer Lambda 35 at a wavelength between 300 nm and 

900 nm. The absorption spectra were used to detect electronic transitions at the ground 

state and the excited state. This technique was used in Chapter 4 to confirm the 

homogeneity of the Nax(Ni-ett)n/Lycra solutions using Beer-Lambert law (i.e., 
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absorptivity is in proportion to concentration of the sample) and to estimate the band 

gap of the pure Nax(Ni-ett)n using the Tauc plot method [148]. DMSO as background 

spectrum was eliminated from the sample’s spectrums. All concentration solutions 

have been diluted by DMSO for 100 times to be detectable. 

3.4.6 Scanning electron microscopy 

Scanning electron microscopy (SEM, FEI Inspect F) was used to image the 

morphology of samples. 10 kV accelerating voltage was used for composite films and 

3 kV for yarns. For the evaluation of the cross-section, samples were cryo-fractured in 

liquid nitrogen.  

3.4.7 Raman spectroscopy 

The Raman spectra were collected from an inVia Qontor confocal Raman microscope 

with a 633 nm laser source for 5% 10% power at 50X magnification.  

3.4.8 Optical microscopy  

Optical microscopy images were obtained by an Olympus BX60 microscope equipped 

with an Olympus SC100 digital camera, in reflection mode without polarizers.  

3.4.9 Infrared camera 

Thermographic images were produced using an infrared camera (FLIR E40) for 

monitoring the temperature gradient and temperature change in time.   The sample’s 

temperature change in time was measured and analysed using the FLIR software. 

3.4.10  Impedance spectroscopy 

Impedance spectra were measured using an Autolab Frequency Response Analyser 

FRA2 with a potential stat PGSTAT10 (Windsor Scientific, U.K.) for understanding 

the composite films’ electrical conductivity change with humidity in Chapter 4. It is 
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operated under an AC amplitude of 100 mV peak to peak, DC off-set potential 0 V, 

and 10 Hz to 10 MHz frequency range. A Keysight E4980A in a four-terminal pair 

configuration in the frequency range of 20 Hz to 10 MHz was used for measuring 

coated yarns in Chapter 5 to understand the mechanism of the tuneable and ultrahigh 

sensitivity to deformation. Two ends of the yarn are fixed on a frame at the start 

distance of 10 mm and connected to the copper wire electrodes with carbon grease 

paste. Impedance measurements were operated at different strains of the yarn, which 

was stepped stretched up to 300% strain by the frame. 

3.5 Characterization of TE devices  

3.5.1 Thermal voltage and power output 

The thermal voltage and power output were measured by connecting the ends of the 

materials or fabricated generator at a given temperature difference. The thermal 

voltage output was measured directly by a Keithley 2000 Multimeter. For power 

output measurements, a variable resistor (range from 0 Ω to 999 MΩ) was connected 

in the circuit. Voltage and current were recorded simultaneously with the resistor 

change from 0 Ω to 999 MΩ. The power output is the product of voltage and current, 

and maximum power output was obtained when the external resistance equals to the 

resistance of the test materials/devices. 

3.5.2 Sensor demonstration  

External strain sensor: 

For external sensor demonstration, the resistance change during stretching (Chapter 

4&5) and bending (Chapter 6) was recorded by an Agilent 34401A 6½ digital 

multimeter in 2-point resistance measurement model. The extension values were 

acquired from the tensile tester and synchronized with the resistance data. 
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Wireless strain sensor: 

For the wireless strain sensor demonstration of the coated yarns presented in Chapter 

5, the sensor is attached to the joint of index finger and the finger movements were 

detected by the resistance change of the yarn. A Bluetooth® low energy module (BLE, 

Adafruit Feather nRF52 Bluefruit LE) based on a Nordic chip (nRF52832) was used 

to read the voltage of the sensor on an analog-to-digital converter. The electrical 

resistance of the sensor (∆Rsensor) was calculated based on the reference resistor (R1) 

in BLE as Figure 3.9 by Rsensor = (3.3/U)*R1 - R1.  Where U is the voltage measured 

across R1. The data were sent to a smartphone via BLE and was plotted in real-time.  

 

Figure 3.9  The equivalent circuit of the wireless strain sensor system.  

Self-powered sensor: 

For self-powered sensor demonstration, heater mats (RS, 12 V dc, 7.5 W, item 245-556 

and RS, 12 V dc, 1.25 W, item 245-499) were applied on one side of the sensor, and 

the other end was maintained at room temperature to obtain a constant temperature 

difference at extremities.  

For the self-powered strain sensor in Chapter 4, a load resistor (100MΩ) and a 

picoammeter (Keithley 6485) was connected to the sensor in series, and a voltmeter 

(Keithley 2000 Multimeter) was connected to the load resistor in parallel to record the 

both current and voltage output change with different stimuli. For the high sensitivity 

yarn in Chapter 5 and structural composites in Chapter 6 a picoammeter (Keithley 



Chapter 3 Experimental section 

88 

 

6485) was connected to the sensor. Without the external load, the ‘short-circuit’ 

current only corresponds to the sample’s inner resistance change, thus, the current 

signal is more sensitive to deformation than that of the connection for Chapter 4. 

Apart from the mechanical stimulation, fibre optical light source (Coherent, model 1-

150) was used for visible light sensitivity tests, with irradiation intensity measured 

using a monocrystalline silicon reference cell (SRC-1000-TC-QZ, VLSI Standards, 

Inc.). For the self-powered temperature (gradient) sensor, a controllable temperature 

was applied at one side using a commercial thermoelectric module. The actual 

temperature was measured using a thermal couple. The voltage signal was collected 

using a multimeter (Keithley 2000) in real time. 

Sensitivity to humidity (Chapter 4):  

A bespoken humidity controller for testing the samples’ humidity sensitivity. 0.6 L 

min-1 of nitrogen gas with a different humidity was flown into a ~ 700 cm3 chamber 

which takes ~ 600 s for stabilization. A commercial humidity sensor (Fisher brand) 

was used for calibration (Figure 3.10).  Impedance, resistance and voltage output were 

measured using electrodes connected out of the chamber. 

 

Figure 3.10 Calibration the bespoken relative humidity chamber controlled by the 

percentage of the dry air and wet air at 20 oC.  

http://www.vlsistandards.com/
http://www.vlsistandards.com/
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Chapter 4 Nax(Ni-ett)n/polyurethane composites as self-

powered sensors 

4.1 Introduction  

As mentioned in Chapter 2, thermoelectricity is recognised as a very reliable and 

durable potential energy harvesting phenomenon for self-powered sensors [149-151], 

exploiting temperature gradients. The first work for applications of organic 

thermoelectricity (OTE) as flexible self-powered sensors is the PEDOT:PSS coated 

foam for sensing both pressure and temperature [152]. A self-powered vapour sensor, 

based on CNTs, was also reported [153]. Recently, our group has developed new 

stretchable and tough composites made of a commercial PU and PEDOT:PSS, which 

could autonomously sense strain [147]. However, reports are very limited and only p-

type OTE materials have been studied so far. In order to generate higher power outputs, 

it is essential to have an n-type OTE counterpart, so that series connected p-n junctions 

can be designed. 

The organometallic coordination polymer,  Nax(Ni-ett)n, has been reported to possess 

excellent n-type TE properties [58, 154, 155], including a Seebeck coefficient of -80 

µV K-1 and an electrical conductivity of ~ 42 S cm-1, combined which a relatively good 

air-stability and simple synthesis [154]. More recently, values of room temperature 

Seebeck coefficient of -128 µV K-1 and ZT ~ 0.3 have been reported for Poly(Ni-ett) 

prepared by electrochemical deposition [58]. A number of challenges still restrict its 

commercial exploitation, including low toughness and tear resistance, in addition to 

poor solubility and processability. Besides, another challenge is related to OTE 

devices. The typical in-plane π-shape architecture obtained by an assembly process of 

p- and n-type legs, connected in series by, typically, metal contacts. This assembly 
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process is time consuming, hardly scalable and the resulting structure, with metal 

contacts, is rigid and brittle.  

Therefore, in this chapter, a highly stretchable n-type TE composite based on PU 

(Lycra®) and Nax(Ni-ett)n) is presented to overcome all these limitations. For instance, 

a 50/50 composite has a high elongation to break of 500% (more than 5 times its initial 

length) combined with a relatively high absolute Seebeck coefficient (-40 µV K-1). 

The composites are able to harvest sufficient power, even from small temperature 

differences (< 20 oC), to autonomously sense a number of stimuli, such as strain, 

visible light and temperature. Moreover, by exploiting the enhanced processability of 

TE polymer compounds, we propose new manufacturing strategies and designs to 

overcome the shortfalls. The composites could simply be joined by hot pressing into 

a series-connected multi-leg TE flexible and stretchable devices. Origami-inspired TE 

devices with different configurations are also presented. 

4.2 Results and discussion 

4.2.1 Morphological and mechanical properties 

Pure Nax(Ni-ett)n, synthesized according to a procedure described by Menon et al. 

[155] does not dissolve in common solvents and does not form coherent films. 

However, Lycra®, a commercial PU-based synthetic fibre commonly used for elastic 

skin-tight garments and sports attires and was used as an elastomeric matrix for 

coherent, flexible, and stretchable films containing Nax(Ni-ett)n. Thus, a series of 

Nax(Ni-ett)n/PU self-standing composite films (called “NL films” from here on), with 

Nax(Ni-ett)n contents ranging from 10 to 70 wt.%, has been prepared by solution 

mixing and drop-casting.  
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Figure 4.1 Morphological studies of NL films containing different Nax(Ni-ett)n 

concentrations. (a) Optical microscopy pictures (scale bars are 500 μm), (b) scanning 

electron microscopy of top surface (scale bars are 100 μm) and cross sections (inset; 

scale bars are 10 μm) of one layer 10, 50 and 70 wt.% NL films; broken red lines 

identify the borders of the cross sections; (c) Nax(Ni-ett)n chemical structure; (d) 

digital optical pictures of multi-layer NL films on glass slides. 

A systematic study of the NL film morphology is presented for various Nax(Ni-ett)n 

loadings. Optical transmission microscopy (Figure 4.1a) of relatively thin drop-casted 

films (typical thickness of 5-8 µm) reveals that a Nax(Ni-ett)n loading higher than 50 

wt.% generates inhomogeneous and incoherent films, as a result of an extended 

agglomeration of Nax(Ni-ett)n particles. Scanning electron microscope (SEM) is used 

to further investigate the external surface morphology (Figure 4.1b) and cross-

sectional areas (insets of Figure 4.1b) of 10, 50 and 70 wt.% NL films. For low Nax(Ni-

ett)n contents (e.g. 10 wt.%), a relatively good dispersion can be observed. For loading 

above 50 wt.%, the agglomeration of Nax(Ni-ett)n particles, appearing as dark dots, is 
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evident. NL films, containing Nax(Ni-ett)n concentration higher than 70 wt.%, present 

cracks and defects throughout the whole volume of the sample, confirming the 

inability of both Nax(Ni-ett)n and PU to form a coherent matrix. SEM images of the 

cross-sectional areas show that a porous structure emerges with increasing Nax(Ni-

ett)n content. To improve the coherence of NL films at high Nax(Ni-ett)n content, the 

film thickness (typical thickness of 5-8 µm) is increased by depositing multiple drop 

casted layers. This allows even NL films with more than 70 wt.% of Nax(Ni-ett)n to be 

peeled off from the glass substrates and to be tested for their mechanical properties. 

 

Figure 4.2 Mechanical studies of NL films containing different Nax(Ni-ett)n 

concentrations. (a) Typical stress-strain curves and (b) elastic modulus and strain-at-

break of self-standing NL films. Error bars represent the standard deviation. 

Typical stress-strain curves of NL films are shown in Figure 4.2a. The strain-at-break 

monotonically decreases with increasing Nax(Ni-ett)n content (from ~ 1000% of pure 

PU films down to (18.0 ± 0.2)% for the 70 wt.% NL film) while the elastic modulus 

increases (from (6.0 ± 0.9) MPa for pure Lycra® to (23.6 ± 2.3) MPa for the 50 wt.% 

NL film) (Figure 4.2b). This is the typical behaviour of polymer composites containing 

rigid brittle particles, described by many micromechanical models [156]. Nax(Ni-ett)n 

concentrations higher than 50 wt.% results in inhomogeneous, brittle films and a 

decrease of both elastic modulus and strain-at-break. NL films with a Nax(Ni-ett)n 
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content lower than 50 wt.% are potentially excellent candidates for stretchable strain 

sensors, provided that they retain the thermoelectric properties of Nax(Ni-ett)n.  

4.2.2 Thermoelectrical properties 

In order to evaluate the thermoelectric properties of the NL films and their potential 

use in self-powered sensors, both Seebeck coefficient (, μV K-1) and electrical 

conductivity (σ, S cm-1) have been measured. The corresponding power factor (PF, 

μW m-1 K-2) have been calculated according to: 𝑃𝐹 = 2 × 𝜎 . The usual inverse 

relationship between  and σ, requiring trade-off in traditional inorganic TE materials, 

is not observed here. Figure 4.3a shows a monotonic trend for  and σ, both increasing 

with the Nax(Ni-ett)n content. The behaviour of σ with the Nax(Ni-ett)n amount is 

expected from percolation theory [157]: the conductivity increases due to a densifying 

conductive network until it reaches a plateau determined by the conductivity of 

Nax(Ni-ett)n. The trend of the Seebeck coefficient is less intuitive but not unusual for 

heterogeneous composite systems [158, 159]. This phenomenon has been explained 

by enhancement of carrier mobility as the percolated network becomes more robust 

upon densification [160].  

The PF of the NL composite films reaches 0.9×10-3 μW m-1 K-2 and 1.3×10-3 μW m-1 

K-2 for films with Nax(Ni-ett)n concentration of 50 wt. % and 70 wt. %, respectively 

(b). An accurate ZT value cannot be reported as the thermal conductivity (𝜅) of the 

films is difficult to measure in the in-plane direction. However, an upper limit of 

thermal conductivity can be predicted from the values relative to the individual phases: 

~ 0.15 W m-1 K-1 for polyurethane [161] (a polymer similar to Lycra) and ~ 0.2 W m-

1 K-1 for Nax(Ni-ett)n (at 27 oC) [154] by a simple series-model and parallel model. For 

parallel model [1], each phase is assumed to contribute independently to the overall 
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heat transfer. So the totally thermal conductivity of the NL films (𝜅𝑡) is proportionally 

to its volume fraction: 

  𝜅𝑡 =  𝜅𝑛Φ𝑛 + 𝜅𝑙Φ𝑙 Equation 4.1 

where 𝜅𝑛, 𝜅𝑙 are the thermal conductivity of Nax(Ni-ett)n, and Lycra® respectively, 

and Φ𝑛 and Φ𝑙are the volume fractions of them. The weight fractions (m) of them are 

known, the density (𝜌) of pure Nax(Ni-ett)n is 1.62 g cm-3 by calculating from the 

gravimetric measurements of NL films, and the density of Lycra® is 1.06 g cm-3. 

Therefore,  Φ𝑛and Φ𝑙can be calculated as: 

 𝛷𝑛 =
𝑚𝑛/𝜌𝑛
𝑚𝑛
𝜌𝑛

+
𝑚𝑙
𝜌𝑙

 Equation 4.2 

 𝛷𝑙 = 1 − 𝛷𝑛 Equation 4.3 

Therefore, 𝜅𝑡(50) ≈ 0.17 W m−1K−1 and 𝜅𝑡(70) ≈ 0.18 W m−1K−1. 

If assume no contact is confined to the Nax(Ni-ett)n, then the thermal conductivity can 

be predicted by a series model [1]: 

 𝜅𝑡 =
1

𝛷𝑛/𝜅𝑛+𝛷𝑙/𝜅𝑙
 Equation 4.4 

Then, 𝜅𝑡(50) ≈ 0.17 W m−1K−1 and 𝜅𝑡(70) ≈ 0.18 W m−1K−1. 

Therefore, the thermal conductivity of 50 wt. % NL film estimated is ~ 0.18 W m-1 K-

1, as a result, a ZT in the region of 3 × 10−7 can be expected. Compared to the results 

of the other poly(Ni-ett) materials [58, 154, 162], this is relative low, but it is 

comparable to polymer composites containing poly(Ni-ett) [62, 63, 163]. The low PF 

value is probably related to the low electrical conductivity. On the other hand, a low 

electrical conductivity combined with a filler content close to percolation threshold, 

can be beneficial to generate a highly sensitive resistive sensor. It is also worth to 
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mentioning that the temperature behaviour (Figure 4.3c,d) of the thermoelectric 

properties follows to the neat poly(Ni-ett) temperature behaviours.[16-17] 

Due to its high extensibility (strain at break of ~ 500%) and thermoelectric properties, 

the 50 wt.% NL composite film is selected to further study its self-powered sensing 

ability, as presented in the following sections. 

 

Figure 4.3 Thermoelectric properties of NL films. (a) Electrical conductivity, Seebeck 

coefficient and (b) Power factor with different Nax(Ni-ett)n content at room 

temperature. The (c) resistance and (d) Seebeck coefficient performance with 

temperature sweep of 50 wt% NL film. Error bars represent to the standard diviations 

calculated from 5 measuements at each temperture on the same sample. 

4.2.3 Self-powered strain sensing  

To examine the capabilities of utilising the fabricated NL films as self-powered strain 

sensors, the electrical resistance and Seebeck voltage have been monitored in-situ at 

different strains.  
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In order to evaluate the strain sensitivity of the 50 wt. % NL film, a constant external 

power has been supplied to its extremities (Figure 4.5a). The electrical resistance has 

been measured while deforming the film uniaxially, at a constant extension rate, until 

break. The resistance variation (ΔR/R0, with ΔR = R – R0 , where R is the electrical 

resistance at a given extension, and R0 is the initial resistance) increases linearly with 

the extension (Figure 4.4). The strain sensitivity of a sensor is usually represented by 

its gauge factor, GF, defined as GF = (ΔR/R0)/ε [164], where ε is the strain. Figure 4.4 

shows that the GF exceeds 20, in the range of deformation between 5% and 50%, 

which is very high compared to the values of traditional metal-based strain gauges (~ 

2) [165]. Notably, the gauge factor is also high (~ 13) at even larger strains between 

50 and 300%. To the best of our knowledge this is the highest GF value reported at 

such high strains [166, 167].  

 

Figure 4.4 Strain sensitivity of 50 wt.% NL films. Typical stress-strain curves with its 

resistance variation (ΔR/R0) and corresponding gauge factor, as a function of applied 

strain.  

The change in electrical resistance in our sample upon uniaxial deformation probably 

originates from two concurrent factors: the dimensional changes of the sample, and 

the changes in the conductive network (i.e. changes in the composite electrical 

resistivity). The geometrical contribution,  
∆𝑅𝑔

𝑅0
= 𝜀(2 + 𝜀) [168] (assuming that the 
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volume of the material remains constant), is not sufficient to explain the experimental 

resistance variation (Figure 4.5b). The percolated network formed by the conductive 

Nax(Ni-ett)n domains must be affected by the uniaxial deformation, i.e., the intrinsic 

conductivity of the NL films must change with strain.  

 

Figure 4.5 Demonstration of externally powered strain sensor. (a) The set-up and 

schematic circuits of the externally powered strain sensor. The grey rectangles refer 

to the equivalent elements of the film during measurements; Rs is the NL film’s internal 

resistance. (b) Actual and geometrical resistance change under cyclic tensile strains 

applied. 

To demonstrate the concept of self-powered (strain) sensing based on the TE effect, a 

constant temperature difference (∆T ~ 50 oC) is applied to the 50 wt.% NL film, by 

fastening a heat pad to one end of the film, via the lower clamp of the tensile testing 

set-up (Figure 4.6a, c). A thermal voltage developed along the film, in proportion to 

the temperature difference. When the sample is connected in series to a resistor, RL, a 

thermal current can also be generated. Figure 4.6b shows that both current and voltage 

change as a function of the imposed strain (applied in a sequence of different cycles 

with max strains of 5, 10, 30, 50, 80 and 100%), demonstrating the ability to sense and 

generate thermoelectric power simultaneously. The simultaneous change in voltage 

and current with strain can be explained in the equivalent circuit of Figure 4.6a. The 
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constant temperature difference along the film generates a voltage (U), which is 

assumed to be independent of the strain. However, the increase in sample resistance 

(Rs) with the strain lowers the current generated: 𝐼(𝜀) =
𝑈

𝑅𝑠(𝜀)+𝑅𝐿
. Consequently, the 

voltage measured across the resistor is smaller (𝑉(𝜀) = 𝐼(𝜀)𝑅𝐿), in agreement with 

the signal of voltage and current as shown in Figure 4.6b. Therefore, based on the 

specific application, either signal can be chosen for sensing. 

 

Figure 4.6 Demonstration of self-powered strain sensor. (a) The set-up and schematic 

circuits of the self-powered strain sensor. The grey rectangles refer to the equivalent 

elements of the film during measurements; Rs is the NL film’s internal resistance and 

RL is the external load. (b) Real-time signals change (ΔY/Y0 refers to the change 

percentage of voltage or current) with cyclic tensile strains. (c) Infrared pictures of 

the temperature difference along the film by contacting one end with a heating pad (T 

~ 70 oC), and deformed at different strains. (d) Graph of Thermo Gravimetric Analysis 

(TGA) for Nax(Ni-ett)n under 40 ml min-1 air atmosphere, from room temperature to 

1000 °C at 10 °C min-1 heating rate.  
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It should be noted that there is a limit to the maximum temperature difference that can 

be effectively employed. The lower bound of the cold side temperature is related to 

the glass transition temperature of Lycra (below -60 oC) [169]. The hot side 

temperature is limited by the softening temperature of Lycra (~180 oC [170]), well 

before reaching the degradation temperature of Nax(Ni-ett)n (~ 340 oC, Figure 4.6d). 

Even at lower temperatures, there might be some non-recoverable deformations and 

viscoelastic stress relaxation effects, as shown in Figure 4.6b (hot side: 75 oC). In the 

specific case of the NL films, the maximum temperature difference can be estimated 

to be approximately 70 oC , and the maximum voltage generated is  ~ 3 mV (for a 

single film).   

4.2.4 Self-powered visible light sensor  

The same NL films can simultaneously sense other stimuli, like visible light. A 50 wt.% 

NL film was irradiated with visible light fibre source (wavelength ranging from 400 

to 900 nm), at different radiation intensities, while maintaining a ΔT0 ~ 50 oC. 

Considering that the charge carrier density could be affected by the light, it is 

important to characterise the Seebeck coefficient and the electrical conductivity before 

and during irradiation. Figure 4.7a demonstrates that the Seebeck coefficient and 

conductivity do not change significantly at an irradiation intensity of 2 kW m-2, when 

the surrounding temperature is controlled, which excludes any photo-Seebeck effect 

or photoelectric effect. In fact, it can be seen that the main effect of light irradiation is 

a change of the sample temperature (Figure 4.7b). The experimental linear relationship 

between light intensity and sample equilibrated temperature can be used to design a 

visible light sensor. In analogy to the aforementioned strain sensing case, the 

sensitivity to visible light irradiation is first characterised using an external electrical 

power source. As shown in Figure 4.7c, the electrical resistance linearly decreases 
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with light intensity. This is related to the increase in sample temperature and 

corresponds to the typical response of organic and polymeric semiconductors. Higher 

temperatures increase the electrons’ kinetic energy and the likelihood of electrons to 

transit from the valance band to the conductive band (Figure 4.8), i.e., thermal 

excitation of carriers into the conduction band.  

 

Figure 4.7 Sensitivity to visible light irradiation of 50 wt.% NL film. (a) Seebeck 

coefficient and electrical conductivity of 50 wt.% NL film, measured in vacuum and 

under controlled temperature, with/without irradiation. (b) The sample temperature 

changes with 30 s interval of light at different intensity irradiations, and a 

representative infrared camera image. (c) Electrical resistance variation and (d) open 

circuit voltage (Voc) change with different irradiation intensities, averaged over 5 

cyclic tests (representative signal curves of these cyclic tests are shown in the insets). 

Error bars in (c, d) represent the standard deviations. 
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Figure 4.8 Ultraviolet–visible (UV-vis) spectrum of (a) NL DMSO solutions mixed by 

different ratios of 1 wt. % Lycra® and 5wt. % Nax(Ni-ett)n solutions. All the solutions 

have been diluted by 100 times. (b) Band gap of the pure Nax(Ni-ett)n is ~1.85 eV, 

calculated by Tauc plot method as direct semiconductor. 

For the evaluation of self-powered sensor, the power output as a function of the 

temperature change (∆T) was measured. The sample was irradiated whilst 

simultaneously applying a temperature difference using the same set-up as in the self-

powered strain sensing experiments. In this case, the open-circuit voltage, U suddenly 

decreases upon irradiation (insets of Figure 4.7d). Figure 4.7d shows that a linear 

correlation exists between U and the irradiation intensity, linked to the Seebeck effect: 

U =  ΔT, where the light irradiation heats the whole film including the cold side, thus 

the temperature difference (ΔT) between the ends of the film decreases and the 

generated thermal voltage U becomes smaller. We can use the measured open-circuit 

voltage to calculate the temperature difference across the film (𝛥𝑇 =
𝑈


) and sample 

temperature (and irradiation intensity using the linear relationship in Figure 4.7b) by 

𝑇 = 𝛥𝑇𝑟 −
𝑈


, where the 𝛥𝑇𝑟 is the referenced constant temperature difference which 

in this case is 70 oC. Cyclic tests also have been performed at different light intensities 

over a time interval of 30 s, followed by 30 s of light off (Figure 4.9c). Even under the 
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cyclic irradation with 2 kW m-2 intensity and 300s on and off applied, the film still 

shows a good reproducibility, stability and reversibility (Figure 4.9a,b). 

 

Figure 4.9 Demonstration of self-powered visible light sensor. (a) The normalized 

resistance and (b) Seebeck voltage change with a cyclic test under intensity of 2 kW 

m-2. (c) Signals change (ΔY/Y0 is change percentage of voltage across or current 

through the 10 kΩ load resistor), recorded while irradiated cyclically over time. 

Using the same measurement circuit as in the case of strain sensing, the normalised 

current and voltage can be recorded. We define a sensitivity factor (SF), analogous to 

strain gauge-factor, as:  

 𝑆𝐹 ≡ |
∆𝑌/𝑌0

∆𝑋
| Equation 4.5 

where ΔX, ΔY refers to the change in environment stimuli and NL films response 

signals, respectively. Y0 is the initial value of the NL films response signal. Here, the 
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resistance signal to irradiation SF is ~ 18% (kW m-2)-1 and the open circuit voltage SF 

is ~ 36% (kW m-2)-1. It is also worth to underline that it is possible to discriminate the 

signals caused by light irradiation from those caused by a mechanical strain [143]. By 

recording the I-V curve of the materials, the I-intercept changes can be used to measure 

the irradiation intensity and/or temperature (difference) change. The slope of the I-V 

curve changes (R) can be used to record the strain.  

4.2.5 Sensitivity to humidity 

In an attempt to explore sensitivity to other stimuli and, equally importantly, exclude 

problems of cross-sensitivities, the effect of relative humidity (RH) on the 

thermoelectric properties of the 50 wt. % NL film was studied. The resistance variation 

of the externally-powered sensor placed in a controlled humidity chamber is barely 

affected by the humidity, both in the case of a quasi-static (Figure 4.10a,b) and 

cyclically increasing (Figure 4.10c,d) values of humidity. A lower than 12% can be 

detected when RH increases from 5% to 90% (Figure 4.10a), which gives a SF as 

small as ~ 0.1 % (%RH)-1 (according to Equation 4.5). This small resistance variation 

can be explained by the presence of a polar solvent [171] (water), which can reduce 

the Coulombic interactions between the Na+ ions in Ni-ett and increases their mobility. 

This hypothesis is compatible with the very weak ionic behaviour that can be observed 

in our sample: Figure 4.10b shows the perfect semi-circuits. Although, electrical and 

ionic conductivity [171] are jointly present , the weak humidity dependence of the 

resistance (Figure 4.10c) indicates that electronic conductivity is dominant. At a ΔT ~ 

25 oC, the open-circuit voltage U is essentially independent from RH (Figure 4.10d), 

with very small fluctuations induced by air flow.  
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The simultaneous self-powered sensitivity to strain and temperature and insensitivity 

to humidity of our NL films might be particularly desirable in certain applications like 

in smart packaging and wearable technologies. 

 

Figure 4.10 Sensitivity of the 50 wt.% NL film in externally- and self-powered 

configurations to relative humidity (RH). (a) The AC (fitted results) resistance 

variation with RH (data collected after 1 hour at the applied RH level to allow the 

sensor to stabilise). (b) Nyquist plots and equivalent circuit fitting curves of NL film 

at different humidities. Resistance (R) contribution in parallel to the constant phase 

element (CPE). (c) Resistance variation (ΔR/R0) and (d) open-circuit voltage (Voc) 

response to RH cycles. 

4.2.6 Multi-leg device assembly 

The power harvested with a single NL film, at a ΔT of 30 oC, is in the order of few 

pW. To satisfy the power demand of an integrated self-powered system, a power 

output of at least 3-100 μW [172-174] is required. This could be achieved by (i) 

increasing the temperature difference; (ii) connecting our n-type NL material with a 
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p-type TE counterpart in series to form a p–n junction; and connecting many p-n 

junctions in series, (iii) optimise the size and shape of each leg. If the first strategy is 

constrained by the maximum temperature range, as discussed before (Section 4.2.3), 

the latter two are more flexible and viable to increase power output. Our group has 

recently developed a p-type organic TE compound, based on blends of Lycra® and 

PEDOT:PSS [147], which is an ideal candidate for such a (multi-leg) all-organic 

stretchable TE device.  

 

Figure 4.11 Fabrication of flexible OTE devices based on NL and PL films. (a) 

Illustrative sketch of the continuous assembly line, with cross-sections of p, n-legs, 

connections, a p-n junction, and a digital picture of a folded 1-couple TE device. 

Comparison with (b) traditional in plate π-shape achitecture, the assembled (c) 2-leg 

device shows flexibility to be (d) bended, (e) twisted, and (f) stretched.  

In deciding how to best connect p- and n-type legs instead of the in-plane connection 

(Figure 4.11b), one could look at the current state-of-the-art. As schematically 

illustrated in Figure 4.11a, series connections of p-n junctions have simply been 

created by hot pressing at 160 oC of the p-type (Lycra®/PEDOT:PSS [147]) and n-type 
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(Lycra®/Nax(Ni-ett)n) legs with an interposed flexible electrical insulation layer 

(polyurethane film). This process is potentially continuous, fast and scalable, which is 

critical for any future large scale industrial applications. The junction between p- and 

n-type legs created by hot pressing is robust (see SEM micrographs of the cross-

sectional area in Figure 6a), and the TE device remains flexible (Figure 4.11c-f) even 

in the case of a relatively large thickness. 

The power outputs of different TE devices, with an increasing number of p-n junctions, 

have been measured for different external load resistances (Figure 4.12a,b). As 

expected, both the thermal voltage U and the maximum power output 𝑃𝑚𝑎𝑥 increase 

with the number (n) of p-n junctions (Figure 4.12a), in accordance with the following 

equations: 

 𝑈 = 𝑛(𝛼𝑝 + 𝛼𝑛)∆𝑇 Equation 4.6 

 𝑃𝑚𝑎𝑥 =
𝑈2

4(𝑛(𝑅𝑝+𝑅𝑛)+(2𝑛−1)𝑅𝑝−𝑛)
 Equation 4.7 

where 𝛼𝑝, 𝑅𝑝, 𝛼𝑛 and 𝑅𝑛 are respectively the absolute values of Seebeck coefficient 

and resistance of the p and n legs. Rp-n refers to the contact resistance between p-type 

and n-type materials which could hinder carrier transport. These equations show that 

U∝ ∆T and when Rp-n is much smaller than 𝑅𝑝 + 𝑅𝑛, it can been simplified into Pmax∝ 

∆T2, which is in agreement with experimental data of Figure 4.12b.  Based on the film 

low thermal conductivity, it is probably also possible to increase the cross section area 

and decrease length in order to decrease the resistance (RL). Figure 4.12c,d shows, on 

a single n-type leg, that this kind of geometric optimisation can boost power output by 

at least an order of magnitude.  
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Extrapolating these results, it can be estimated that 111 k couples, with dimensions of 

1 mm × 3 mm× 3 mm, are required to reach a power output of 10 μW, for a ΔT of 10 

oC . This is calculated based on Equation 4.6 and 4.7. The resistance of each n-leg is: 

𝑅𝑛 =
𝐿

𝜎 × 𝐴
=

3𝑚𝑚

0.01𝑆 𝑐𝑚−1 × 1𝑚𝑚 × 3𝑚𝑚
 ≈ 1000Ω 

The resistance of each p-leg (the following data of P-leg are referenced from previous 

work [2] and repeated in this work) is: 

𝑅𝑝 =
𝐿

𝜎 × 𝐴
=

3𝑚𝑚

60𝑆 𝑐𝑚−1 × 1𝑚𝑚 × 3𝑚𝑚
 ≈ 0.17Ω 

The voltage output of per p-n junction couple at ∆𝑇 ~ 10 oC is  

𝑈𝑝+𝑛 = ∆𝑇 × 𝑆 = 10 K × (20 + 40)μV K−1 = 6 × 10−4 V  

Assuming that the contact resistance is 0.01 Ω, the number of the n & p couples (n) 

needed for 10 μW is: 

𝑃𝑚𝑎𝑥 =
(n × 𝑈𝑝+𝑛)2

4(𝑛(𝑅𝑝 + 𝑅𝑛) + (2𝑛 − 1)𝑅𝑝−𝑛)
 

n ≈ 111k 

The main limitation is the poor conductivity, but recent reports have presented 

improvements in both conductivity and Seebeck. Taking the best conductivity results 

(50 S cm-1) [3] of Nax(Ni-ett)n with insulating composites as example, the resistance 

of n-leg will decrease by: 

𝑅𝑛 =
3𝑚𝑚

50𝑆/𝑐𝑚 × 1𝑚𝑚 × 3𝑚𝑚
 ≈ 0.2 Ω 
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Therefore, only 44 n&p couples (n) would be needed for 10 μW when ∆T = 10 oC. 

And the total device would only be 0.4 cm3 in volume, provided by the separator is 

0.01mm thickness. 

 

Figure 4.12 Characterisation of flexible OTE devices based on NL and PL films. 

Open-circuit voltage and power output generated by (a) different couples of the OTE 

device at ΔT ~ 25 oC and (b) a 9-couples TE at different temperature differences.  

Dimension effects to open-circuit voltage and power output generated by single NL 

film, with (c) different length and (d) thickness (stacking layers of 20 mm length NL 

films) at ΔT ~ 27 oC. Empty and full symbols in all figures indicate power and voltage, 

respectively. 

4.2.7 Demonstrations of device applications 

In order to demonstrate the application of these materials as wearable sensors, an 8-

couples TE ‘bracelet’ device has been used to power a single NL stripe sensor, 

connected to the index finger, to detect its movements (Figure 4.13a). The electrical 

connections and signal acquisition system are represented by the equivalent circuit in 
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Figure 4.13a. When the index finger bends to different angles, both current and voltage 

show clear signal changes (Figure 4.13b). This shows the potential of these materials 

as self-powered sensors. 

 

Figure 4.13 Examples of applications and proof-of-concepts of flexible TE sensing 

devices. (a) Digital optical pictures, demonstrating a self-powered ‘bracelet’ TE 

device. The ‘bracelet’ is made by the 8-couples and powers a strain sensing NL stripe, 

working as an index finger motion detector. (b) The response to different positions of 

the index finger, self-powered by a ΔT of ~ 20 oC. (c) The multi-couples TE devices, 

inspired by the origami “magic ball”. (d) The power output of 6-couples TE device 

under ∆T ~ 20 oC. 

Examples of more complicated device architectures have been attempted. For instance 

an origami-inspired “magic ball” [175-177] is used here as a method to transform 2D 

in-plane structures to 3D out-of-plane shapes, constituted by p-n TE legs, connected 

in series or in parallel in order to increasing power output and reliability. A simple 6-
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couples TE device (Figure 4.13c) has been fabricated by coating Nax(Ni-ett)n and 

PEDOT:PSS on paper as the n and p leg respectively. The power output reaches 30 

pW when a temperature difference of 20 oC is applied. Larger TE devices can be 

fabricated in the same way. Following the design of ‘magic-ball’, a 90-couples TE 

device can simply be manufactured (Figure 4.13d), showing the ability to adapt to 

different shapes, geometries and applications. Among these, one could envisage 

exploitations as inflating and 3D conformable surfaces, for instance in soft robotic, 

smart packaging, wearable, automotive and Internet-of-Things applications. 

4.3 Conclusion 

This chapter demonstrates a facile strategy to develop stretchable and multifunctional 

self-powered sensors based on the thermoelectric effect in organic conductors. Greatly 

improved mechanical properties have been achieved by compounding brittle n-type 

Nax(Ni-ett)n within a flexible Lycra® matrix, while preserving the thermoelectric 

properties. For an optimised ratio, with 50 wt % Nax(Ni-ett)n, an outstanding strain-

at-break of 217 ± 37 % is achieved, in conjunction with the Seebeck coefficient of -40 

μV K-1 and electrical conductivity of 0.01 S cm-1. 

This novel compound has shown sensitivity to different stimuli, like strain and light 

irradiation. When exposed even to 10-20 oC temperature difference, the device is also 

able to generate enough power to enable autonomous sensing. 

By exploiting the enhanced processability of our polymer TE compounds, a new 

manufacturing strategy has been proposed to overcome the typical shortfalls of π-

shaped TE devices: brittleness and complex, time-consuming, and hardly scalable 

manufacturing processes. Series of p-n junctions could simply be created by hot 

pressing an n-type leg (Nax(Ni-ett)n /Lycra®) with a previously developed p-type leg 
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(PEDOT:PSS/ Lycra®), and an intermediate flexible electrical insulation layer, with a 

process which is potentially continuous, fast and scalable. The concept of the self-

powered sensors is demonstrated in the detection of an index finger motion. Projecting 

into the future, an origami inspired inflatable and 3D conformable “magic ball” TE 

device has also been demonstrated, which might be exploited for instance in soft 

robotic, smart packaging, wearable electronics, and Internet-of-Things. 
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Chapter 5 PEDOT:PSS coated Lycra yarns for highly 

sensitive self-powered sensors 

5.1 Introduction 

Flexibility and sensitivity are among the most important properties for stretchable and 

wearable sensors. Great research efforts have recently been dedicated to the selection 

of smart materials as well as the design of structures to achieve a high flexibility and 

stretchability (large deformations). Although a high flexibility [178-180] and sensing 

capability to different stimuli [181-185] was demonstrated, a number of critical 

constraints still limit the practical use of flexible sensors. One of the key challenges is 

how to retain functions (e.g. sensing ability, energy storage/harvesting, 

electrical/thermal conductivity) at large deformations. For example, strain sensors 

with either a high GF (up to 1000-16000) and a low strain at break (2%-7%) [186, 187] 

or, vice versa, with a wide working strain range (up to 280%-300%) but a low GF 

(0.06-13.1), have been reported [188-190]. Very recently, this challenge has been 

partially addressed by incorporating auxetic mechanical metamaterials in PDMS (GF 

~ 800 and a strain-at-break of 160%) [191] or by patterning Ag nanowires on 

polydimethylsiloxane films (GF ~ 150000 and a strain-at-break of 60%) [192]  

Therefore, the need still exits to develop an easy processing method to generate a high 

sensitivity and high deformability at the same time. 

Apart from the sensitivity and deformation issue described above, energy storage 

devices are typically rigid which is another critical constraint limiting the practical use 

of flexible and highly deformable sensors. Autonomous systems that are able to 

generate enough power in-situ during usage are usually based on, for instance, the 

photovoltaic [193-195], piezoelectric [196], triboelectric [197, 198], and 
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thermoelectric (TE) effect [146, 179, 199]. Thermoelectricity is intriguing as it allows 

to harvest energy from ubiquitous temperature differences, such as body temperature 

to ambient temperature, in a reliable and consistent manner. Smart textiles with TE 

properties are intriguing as they could harvest energy from ubiquitous temperature 

differences, such as body temperature to ambient temperature, in a reliable and 

consistent manner. In fact, smart yarns have already shown great capability to sense 

various stimuli including deformations [200-202], temperature [181], gas [182, 203], 

humidity [183-185] and are even utilized for energy generation or storage [204, 205]. 

However, limited research has been conducted on highly deformable and self-powered 

strain sensors using the TE effect. 

Therefore, in this chapter, an ultrasensitive self-powered smart yarn, based on the 

thermoelectric properties of PEDOT:PSS coated on commercial Lycra® yarn is 

presented for the first time. A unique combination of large deformations and ultrahigh 

sensitivity is achieved by imposing and tuning pre-cracks in the PEDOT:PSS coating 

layer. Moreover, the sensor could be autonomously powered by the thermoelectric 

response of the PEDOT:PSS coating, when subjected to a temperature gradient (e.g. 

20 oC), and detect, for instance, cyclic strains and temperature (difference). At the end 

of this chapter, some applications such as a smart glove are demonstrated which 

harvest body heat and transfer it into electricity. Moreover, autonomous sensors that 

record environmental and object temperatures are demonstrated which illustrates the 

applications as multi-functional, self-powered and high sensitivity sensors.  
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5.2 Results and Discussions 

5.2.1 Fabrication and characterization of PEDOT:PSS coating 

 

Figure 5.1 Comparison of PEDOT:PSS coated Lycra® yarns by two methods. The 

effect of (a) coating solution content with solution temperature of 40 oC and (b) 

coating temperature with 10wt% DMSO to resistivity with coating time for the simple 

dip-coating method, i.e., without swelling procedure. (c) Cross-section and (d) surface 

view SEM figures of the simple dip-coated yarn with coating condition of 1.6 wt.% 

PEDOT:PSS mixed with 10wt% DMSO in water solution, under 40 oC, coated for 1 

hour. Effect of (e) coating time and (f) coating cycle to resistivity for the PY coated by 

swell-coating method. (g) Cross-section and (h) surface view SEM figures of swell-

coated yarns, which coated for 5 minutes in 1.6 wt.% PEDOT:PSS and 1 cycle. Error 

bars in (a, b, e, f) represent the standard deviations. 

The ultra-sensitive smart yarn was fabricated by a swell-coating method, which 

involves application of a PEDOT:PSS layer over the surface of multifilament Lycra® 

yarn. Due to crosslinking of the polyurethane chains, the yarns swelled when 

immersed in DMSO solution, allowing some free volume between crosslinked 

networks of the yarn at the first step, hereafter called ‘swelling’. This swelling leads 

to an increase of the surface area of the Lycra® yarns, allowing more area to be coated 

by the PEDOT:PSS in the subsequent coating step. Consequently, it is expected to 
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have a larger amount of PEDOT:PSS coated onto the Lycra® yarn than through a 

simple dip coating process.  1.6 wt.% PEDOT:PSS mixed with different ratios of 

DMSO 5wt% to 20wt% (Figure 5.1a) and with different solution temperature (Figure 

5.1b) haven been investigated for the simple dip coating process. The electrical 

resistance decreases with immersion time, DMSO content and solution temperature, 

while the swell-coating method shows a significantly increased electrical conductivity 

even within a short coating time (in 5 minutes).  

 

Figure 5.2 The microscope pictures of swell-shrink coated Lycra® film. Hot pressed 

Lycra® film were cut into strip and coated by PEDOT:PSS in the same method as 

PLY. The images show the circle-shaped wrinkles induced by shrinkage and cracks 

induced at the different strains. 

A unique surface feature with wrinkled PEDOT:PSS coating layer was obtained 

during the drying process, due to the difference in volumetric shrinkage and the large 

mismatch in their stiffness values between PEDOT:PSS and Lycra® yarns. It was 

expected that shrinkage should take place in both longitudinal and lateral directions of 

the yarn as evidenced by the circular wrinkles on flat Lycra® films after the same 

swell-coating process (Figure 5.2).  However, lateral wrinkles, perpendicular to the 

yarn’s axial direction, are much more evident than the other direction (Figure 5.1h), 

which is believed to be due to the larger axial deformation taking place during the 
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drying and shrinkage processes as a result of yarn geometry. This is further supported 

by the smooth surface of simple coated yarns, where no shrinkage happened. The well-

connected coating layer (Figure 5.1g) is attributed to the good interfacial adhesion 

between the PEDOT:PSS layer and the polyurethane substrate. 

The interfacial shear stress can be calculated by both critical length or by Agrawal and 

Raj model. The critical length (lc) is defined as the minimum length of the PEDOT 

patches for a given thickness (t) which will allow the tensile failure of the PEDOT 

layer rather than shear failure at interface, i.e., the minimum length the patches are 

able to crack by reaching the fracture stress. As PEDOT:PSS is much stiffer than the 

Lycra® yarn, the Kelly-Tyson model can be applied, in which the matrix is simplified 

as an ideally elastic material. Also, it can be considered as an iso-strain situation, 

where the direction factor of the patches will be equal to 1. Under the given loading, 

the shear effect builds up from the patches ends where a plastic displacement zone 

exists. The stress carried increases until it reaches a constant σP in the middle part of 

the patches. With the increase of the applied load, the strains of PEDOT coated Lycra® 

yarn increases resulting in a higher stress in the PEDOT layer and which will reach 

the fracture stress at the maximum stress �̂�𝑝. PEDOT film breaks where it reaches the 

ultimate strength at Xc. If the length of any fragment is less than 2Xc, the tensile stress 

in this fragment cannot reach the ultimate strength and it does not break anymore. The 

equilibrium equation of tensile force in patches and shear force at interface is 

 𝑤𝑡(𝜎(𝑥 + 𝑑𝑥) − 𝜎(𝑥)) = 𝜏(𝑥) 𝑤𝑙𝑐𝑑𝑥 Equation 5.1 

where the w is the patches width, 𝜏 is the shear strength. And t is the thickness of the 

coated PEDOT:PSS layer. Therefore,  

 𝜏(𝑥) = 𝑡(
𝑑𝜎

𝑑𝑥
) Equation 5.2 
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the critical length 𝑙𝑐 = 2𝑋𝑐  is termed and can be calculated as  

 𝑙𝑐 = 2 �̂�𝑝 𝑡/ 𝜏 Equation 5.3 

The fragment size is convergent to 22 μm as read in Figure 5.9b. The critical length lc 

of coated PEDOT:PSS layer can be given by 𝑙𝑐= Lp/K [206]. The well-accepted value 

K = 0.75 [207] was used. So 𝑙𝑐 ≈ 29 𝜇𝑚. The �̂�𝑝 for PEDOT:PSS is 30 MPa under 

RH 40%, at the maximum strain at break ~ 3% [208]. The thickness of PEDOT layer 

is 500 nm as measured from SEM picture.  

Therefore, based on the relationship between critical length and the interfacial shear 

stress (Equation 5.3), the shear stress between the PEDOT layer and Lycra® yarn can 

be calculated as 1.4 MPa.  

As the brittle PEDOT:PSS coating on ductile Lycra substrate can be applied to 

Agrawal and Raj model [209], the maximum interfacial shear stress can be further 

estimated from: 

 𝜏 =
𝜋𝑡�̂�𝑝

1.5×�̂�𝑐
 Equation 5.4 

where the Wc is the crack width which is ~ 23 µm as can be derived from Figure 5.9f. 

And by using the same value of 𝑡 and �̂�𝑝 as calculating by critical length, the value of 

𝜏 is also 1.4 MPa. This good interfacial shear stress between the coating and the 

substrate is attributed to the formation of hydrogen bonds between the oxygen-

containing groups in the PEDOT:PSS and the N−H groups of polyurethane yarns.  

The presence of DMSO in the PEDOT:PSS water suspension is important as it 

increases the conductivity [210], and improves the water-stability of the coated yarns. 

The stability in water has been verified by the constant electrical resistance of the 

coated yarn after 42 hours submersion in water (Figure 5.3) due to the PEDOT:PSS 

microstructural changes induced by the polar solvent, DMSO. Specifically, with PSS 

extracted by DMSO, hydrophobic nature of PEDOT-rich domains has been 
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accentuated. This finding indicates the potential of utilizing current coated yarn in 

humid environments. 

 

Figure 5.3 The water stability of PLY. Unit length resistance change with water 

immersing duration of pure PEDOT:PSS and DMSO treated PEDOT:PSS films 

immersed in water. Error bars represent the standard deviations. 

 

 

Figure 5.4 The influence of the PEDOT:PSS concentration on the coating. The digital 

pictures of Lycra® yarns coated within the different concentrations PEDOT:PSS in 

water solution. The concentration is calculated by diluted the as-purchased 1.6wt% 

PEDOT:PSS solution with de-ionized water into different ratio. The higher 

concentration of PEDOT:PSS solution the darker the blue yarns indicates the more 

PEDOT:PSS is attached on the yarn. 
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In order to optimize the coating process, particularly in relation to the electrical 

properties, a number of processing parameters have been investigated, ranging from 

PEDOT:PSS concentration, to coating times and number of coating layers. The 1.6 

wt.% PEDOT:PSS solution, 5 minutes coating duration and 1-cycle coating is found 

to be the most suitable combination for current conductive yarn strain sensors. Coating 

solutions with 0.2 wt.% to 1.6 wt.% concentration have been investigated (Figure 5.4). 

Only above 0.8 wt.%, the coated yarn achieves a low enough electrical unit length 

resistance (3.2 ± 0.5 MΩ for 0.8 wt.% to 330 ± 35 Ω for 1.6 wt.%) to be measurable 

by a 2-probe test station (as described in Chapter 3) over a specimen length of 1 cm. 

Figure 5.1e presents the effect of coating time on the electrical resistivity, showing an 

decreasing trend with longer period of immersion, which is stabilized to a plateau 

above 5 minutes. This is assumed to be related to the saturation of solvent exchange 

between PEDOT:PSS/water suspension and DMSO in Lycra® yarn. When more 

cycles of coating are applied, the electrical resistivity of the yarn is further reduced, 

and is no longer limited by the solvent exchange saturation (Figure 5.1f).  

 

Figure 5.5 Morphology of different coating cycles yarns. SEM figures of the stretched 

(a) 1-coating and (b) 3-coating cycles yarns. Thickness is obtained by measuring the 

cross section of PEDOT:PSS layer on cracked parts in SEM pictures. 

It is worth noting that there is a trade-off between the electrical properties and adhesion 

between PEDOT:PSS coating and substrate due to the large mismatch in their stiffness 
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values, affecting subsequent crack patterning and electrical sensing properties. For 

example, after 3 coating cycles the yarn has a thicker PEDOT:PSS coating (~ 1.5 μm) 

compared to the 1-cycle coating yarn (approximately 300-500 nm) based on their SEM 

images (Figure 5.5a). This has also been verified by the calculation from Young’s 

modulus (as mentioned later).  As expected, an improved electrical conductivity was 

found with the thicker yarn coating (115 Ω resistance per unit length). However, 

electrical resistance is out of the measurable range when the yarn returns from 300% 

to 0% strain, due to the permanent cracks between conductive coating patches 

propagated around the whole yarn (Figure 5.5b), disconnecting the electrical pathway. 

This throughout propagation is attributed to the progressive increase in PEDOT:PSS 

stiffness with coating thickness boosting by the number of coating cycles rising. As a 

result, the stiffness mismatch between the PEDOT layer and the ductile Lycra® yarn 

is amplified, and the cracks developed on the PEDOT:PSS layer are increasing until 

they totally extend around the yarn, rendering them electrical insulating even when 

unloaded and hence, unsuitable for use as a strain sensor. Therefore, the 1-cycle coated 

yarn with 5 minutes immersion time, named PEDOT:PSS coated Lycra® yarn (PY), 

has been employed for the following investigations. 

The mechanical properties of treated Lycra® yarns have also been investigated (Figure 

5.6). After coating with PEDOT:PSS at optimized conditions, the Young’s modulus 

was doubled compared to the pure Lycra® (Table 5.1).  The cross section of the yarns 

are calculated from the 940 dtex (i.e. gram per 10 km) of the as purchased Lycra® yarn. 

The density of the Lycra® yarn is between 1.15 g cm-3 to 1.32 g cm-3, where 1.2 g cm-

3 is used to simplify calculations. The cross section has been simplified as a circle 

shape, therefore, the cross section is 
940 𝑑𝑡𝑒𝑥

1.2 𝑔 𝑐𝑚−3×10 𝑘𝑚
= 0.0783̇ 𝑚𝑚2. 
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Table 5.1 Young’s modulus of Lycra yarns, PY and CPY.  

Sample Lycra® 
Swollen 

Lycra® 
PY CPY-300 

Young’s Modulus 
7.5 ± 0.1 

MPa 
8.3 ± 0.5 MPa 16.6 ± 1.3 MPa 7.8 ± 0.6 MPa 

 

Based on the Young’s modulus difference before and after coating, the thickness of 

PEDOT:PSS layer can be estimated. The total force (FT) on the coated yarn is the sum 

of the force on Lycra® (FL) and PEDOT (FP). The total length change is same as the 

length change of Lycra® and PEDOT at low strains within the elastic region ( < 3%). 

Therefore, the PY system is equivalent to a two-component parallel system.  The PY’s 

Young’s modulus (EPY) is related to the Young’s modulus of Lycra® (EL) and PEDOT 

(EP) along with the respective cross-sectional areas (AL and AP) based on  

 𝐸𝑃𝑌 =
𝐸𝐿𝐴𝐿+𝐸𝑃𝐴𝑃

𝐴𝐿+𝐴𝑃
 Equation 5.5 

Here, the AP is given by 

 𝐴𝑃 = 2𝜋ℎ√
𝐴𝐿

𝜋
= 2ℎ√𝐴𝐿𝜋 Equation 5.6 

 If we combine the Equation 5.5&5.6 the coated PEDOT thickness (h) can be 

calculated as  

 ℎ =
√𝐴𝐿(𝐸𝑃𝑌−𝐸𝐿)

2√𝜋(𝐸𝑃−𝐸𝑃𝑌)
 Equation 5.7 

The values of EPY and EL are 16.6 MPa and 7.5 MPa as Table 5.1 shows, and the EP 

of 1.9 GPa [211]  has been used as reported at 40% RH. Therefore, the thickness of 

the PEDOT layer is 380 nm and is close to the results obtained from SEM 

measurements and observations. As the moduli of the 2-5 times coated PYs are 27.8, 

40.7, 24.5 and 25.6 MPa respectively, by using the same method, the thickness of the 
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2 and 3 times coated yarns can be calculated and are found to be increasing to 850nm 

and 1400 nm, respectively. However, for the 4 and 5 times coated layers the thickness 

decreases to 710 nm and 630 nm, while the conductivity results in Figure 5.1f verified 

the coated PEDOT amount should higher than the 3 times coating. This means when 

coatings accumulate and stack into thick layers the PY does not fit to the parallel model 

anymore.   

 

Figure 5.6 Mechanical property of Lycra yarn, PY and CPY. Representative stress-

strain curves for as-received Lycra® yarn, DMSO swollen Lycra® yarn dried in 120 

oC oven for 2 hours, PY and CPY-300 and (insert) their performance at low strain. 

The stress is calculated by estimating the cross section. The swollen Lycra® yarn 

shows a slightly higher Youngs’ modulus compared to pure Lycra®, as the swollen 

cross section area is slightly larger, while the same area value has been used for 

tensile stress calculation of both yarns.  

Based on the geometry, the amount of PEDOT:PSS coated on the yarns can be 

estimated i.e., the volume fractions can be calculated. The volume ratios of the 

PEDOT:PSS in whole coated yarn is  
𝐴𝑃

𝐴𝑃+𝐴𝐿
=  0.5 vol. % by assuming that the 

PEDOT:PSS on lycra is a double-wall cylinder and a the density of ~ 1 g cm-3 [212] 

for PEDOT:PSS (𝜌𝑃) and 1.2 g cm-3 for Lycra® (𝜌𝐿). Therefore, the weight ratios for 
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the PEDOT:PSS in whole 1-timed coated yarn is 
𝐴𝑃 𝜌𝑃

𝐴𝑃𝜌𝑃+𝐴𝐿𝜌𝐿
=  0.4 wt. %. After 

relaxation from the first cycle of 300% strain, the PEDOT:PSS coating layer was 

cracked and its Young’s modulus then was the same as for pure Lycra® yarns. This 

indicates that the PEDOT:PSS layers have cracked patches smaller than the critical 

length for reinforcement and cannot transfer the tensile stress from the yarn substrate, 

i.e., the load is mainly carried by the polyurethane after 300% strain treatment.  

5.2.2 Electrical strain sensing  

The electrical properties of flexible sensors are pivotal for their performance as strain 

gauges. Upon stretching of the PY, an exponential increase in electrical resistance is 

shown in Figure 5.7a, with a large variation in their GF values as defined by (
𝑑(

𝛥𝑅

𝑅0
)

𝑑(𝜀)
) at 

different parts of the curve. Starting with a GF value of less than 3.0×102 in the strain 

range of 80-100%, an ultrahigh GF value up to 1.8×105 was reached at strains between 

260% and 300% in the same loading cycle. This is due to the fragmentation of the 

conductive coating layer upon tensile loading. Considering the rigid nature and low 

strain-to-break of PEDOT:PSS coating, it is expected that this conductive coating 

layer will start to crack at very low strain (i.e. 5% or even below), as evidenced by the 

irreversible resistance change upon unloading.  

This PY yarn after relaxation from 300% strain is termed CPY-300 (crack-induced PY 

subject to a maximum 300% strain). To better understand the sensitivity of CPY-300, 

subsequent loading cycles with up to 200% strain were applied. Interestingly, it is 

found that the strain sensitivity of CPY-300 is much higher than that of PY, even in 

the low strain range, reaching GF of 2.1×104 between 30-40% (Figure 5.7b) compared 

to only 82 during initial stretching of the PY. This is because of the occurrence of 

PEDOT:PSS cracks upon first tensile loading, leading to a pre-defined pattern of a 
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pre-cracked conductive coating layer with a much easier disconnecting process upon 

subsequent loadings, especially at small strain range. In the strain range of 50% to 

200%, the GF of CPY-300 reaches 4.9×104, 166-fold higher compared to the original 

PY. It is worth noting that a slightly increasing trend of GF was observed from second 

to fourth tensile loadings, approaching to a stable level after the fourth cycle. This is 

attributed to subsequent crack formation and propagation upon deformation. As the 

subsequent loading is much lower than the pre-strain (300%), a saturation of new 

cracks is reached within few cycles, while the crack morphology becomes invariant 

and the resistance change with strain becomes stable and reversible (Figure 5.8a).  

 

Figure 5.7 Sensitivity to strain for PY, CPY-300 and CPY-1000. Resistance change 

and gauge factor (obtained from the linear fittings) of (a) the 1st time strain PY to 300% 

strain and (b) the 6th cyclic strain CPY-300 to 200%, with low strain figures inserted. 

(c) The summary of the maximum working strain (purple region for stretching and 

green part for compression) and GF of self-powered strain sensors in literature [100, 

144-147, 213, 214] compared with this work’s results. (d) Resistance change of 1000% 
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strain and the presentative 1st and 10th time resistance change with strain of CPY-

1000.  

The obtained CPY shows an unprecedented property combination for advanced 

deformation sensors, possessing an outstanding sensitivity to the deformation together 

with a very wide strain sensing window. CPY-300 fulfils the long existing gap in strain 

sensors possessing high sensitivity and high deformation range simultaneously (Figure 

5.8b). Compared to the sensitivity values from literature, current CPYs have shown 

the highest GF values ever reported for self-powered strain sensors (Figure 5.7c) 

together with an excellent stretchability.  

 

Figure 5.8 Ultrahigh sensitivity to strain. (a) Resistance change and gauge factor 

(linear fittings) under different strains of all 6 times repetitions. PY is the first time 

stretch until 300% strain (after relaxation, it is called CPY-300) and the following 

stretch is cyclic stain to 200%.  And the zoom in figure at low strain is inserted. (b) 

Comparable with the main performance (maximum strain range and maximum GF) 

of recently reported strain sensors, our work, especially CPY-300 shows the extremely 

high stretchability and sensitivity in the challenge region (highlighted region) [166-

168, 215-226]. The green, blue and purple shadows instead of the sensors based on 

graphene, carbon nanotube and conductive polymer, respectively. 

Furthermore, CPY can be stretched up to 1000% strain due to the high stretchability 

of Lycra® with a great strain sensitivity (Figure 5.8d). And it is worth mentioning that 
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after this higher strain value of 1000% (CPY-1000), a corresponding sensitivity of GF 

~ 3.6×105 is achieved with up to 20% strain and good reversibility. This GF is 3000-

fold higher than the CPY-300 in the same strain range, while the measurable range of 

the resistance for CPY-1000 is limited to 20% strain due to the huge resistance which 

is above the limit of the current measurement equipment. This superior sensitivity is 

attributed to the less connected conductive PEDOT:PSS patches in CPY-1000, with 

more secondary cracks induced by this very large strain comparing to CPY-300. 

Clearly, with the different pre-strains (i.e. 300% or 1000%), the sensitivity and 

measurable deformation range can be tuned for different applications.  

5.2.3 Understanding the tuneable and ultrahigh strain sensitivity 

based on pre-strain induced crack patterns 

The ultrahigh sensitivity of this smart yarn is associated with the crack patterns of the 

conductive PEDOT:PSS coating layer during the pre-straining step. Upon deformation, 

the pre-formed cracks are easily expanded so the conductive patches are separated 

from each other even at small deformations, leading to a sudden and large increase in 

electrical resistance. Additionally, the smart yarn can be easily tuned into the most 

sensitive state with an optimum range of pre-strain for applications as a strain sensor.  

To better understand the mechanism of crack patterns effects on the sensitivity of 

CPYs, a series of crack patterns have been created on the PEDOT:PSS coating by 

imposing different pre-strains onto the PY, ranging from 5% to 100% with 

abbreviations of CPY-5 to CPY-100, respectively (Figure 5.9a). By increasing the pre-

strain levels, the coating patches’ length (Lp) decreases while the crack width (Wc) 

increases. As summarized in Figure 5.9b, the Wc between coating layers increases with 
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pre-strain values, and the Lp decreases until it reaches the minimum length of ~ 22 μm, 

which is relevant to its critical length.  

 

Figure 5.9 The PY’s and CPY’s cracking distribution under different strains. (a) 

Optical microscopy images of the PYs under different pre-strains, showing the crack 

development with pre-strain. (b) PY’s crack width (Wc) and patches length (Lp) 

distribution under different pre-strains. SEM pictures show the (c) secondary cracks 

after relaxing from 300% strain and (e) main cracks under 300% strain. And (d) the 

secondary and main cracks distribution on the yarn as a presentative (strain ~ 150%) 

microscope images. (f) CPY’s Wc and Lp distribution under different strains. Error 

bars in (b, f) represent the standard deviations. 

The electrical properties under cyclic testing strain of 3% and various pre-strained 

CPYs are summarized in Figure 5.10, aiming to explore the relationship between crack 

patterns induced by pre-strains and subsequent electrical sensing properties. With an 

increased pre-strain value from 10% to 50%, both the resistance and the GF are 

significantly increased (from 8 to 302). This is likely due to the increased Wc and 

decrease in Lp from CPY-5 to CPY-50, with a much larger gap between conductive 

coatings. When further increasing the pre-strain to 100%, the GF slightly decreases to 

plateau at around 250. This is the result of the initial resistance (R’0), which refers to 

the CYPs’ resistance at 0% strain, monotonically increasing with pre-strain, and 
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surpassing the resistance variation with strain(∆R). It is worth noting that the increase 

of crack density is less pronounced when pre-strains are larger than 50%. 

 

Figure 5.10 The tuneable strain sensitivity. The effect of the pre-strain to CPY-5 to 

CPY-100’s initial resistance (R’0), resistance variation with strain (ΔR) and gauge 

factor under cyclic 3% strain with error bars representing the standard deviations. 

The electrical impedance response to a relatively wide range of frequencies can help 

to explain this mechanism. Impedance spectra of PY and CPY at different strains were 

fitted with appropriate equivalent circuits. When PY is stretched for the first time 

(Figure 5.11a&b), pure resistive behaviour is dominating at low strains (≤ 20%). 

Initially, increasing strain causes an increase in the resistance, which is composed of 

contact resistance Rc and film resistance R1 (Figure 5.11c). As cracks are developing 

at higher strains (≥ 30%), the impedance becomes dependent on frequency. With 

further increased strain level, the cracks partially disconnect the conductive from each 

other acting as capacitors. The combination of cracks and conducting paths are best 

described with a resistor R1 and a non-ideal capacitor or constant phase element (CPE1 

in the equivalent circuit, with 𝑍𝐶𝑃𝐸 = 1 (𝑇𝜔𝑃⁄ )) in parallel with the resistance of the 

contacts Rc in series (Figure 5.11c). The fitted results are presented in Table 5.2, the 

CPE with its P value close to 1 indicates a narrow distribution of the Lp and Wc values. 
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The R1 resistance increases exponentially and the capacitance decreases exponentially 

with increasing strain due to the Lp decreasing and Wc increasing.  

 

Figure 5.11 Impedance spectroscopy of PY. The frequency dependencies of the (a) 

moduli of the complex impedance (Z) and (b) phase angle (θ), Nyquist plots at (c) low 

strain and (d) high strain, with fitted results (lines) based on a pure resistor (Rc+R1) 

model for lower than 20% strain and inserted equivalent circuit model for strain of 

30% and above. 

Table 5.2 Impedance parameters of PY as a function of different strains.  

PY Strain Rc (W) R1 (W) CPE1-T (pF) CPE1-P Chi-squared Error 

0% 237 
   

0.015% 

5% 397 
   

0.029% 

10% 870 
   

0.066% 

20% 2375 
   

0.041% 

30% 2574 3478 66.6 0.95 4.06×10-4 
 

50% 3520 1.86×104 14.0 0.96 8.69×10-5 
 

100% 4768 1.25×105 11.6 0.95 7.28×10-5 
 

150% 6764 4.24×105 9.1 0.96 1.41×10-4 
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After relaxing from 300% pre-strain, CPY-300 shows a constant Lp with subsequent 

increasing testing strain, while Wc increases linearly with strain (Figure 5.9f). At lower 

strain (5%), the yarn still behaves as a pure resistor (Figure 5.12a-c) as the Wc are 

small enough to remain electrically connected. However, the impedance becomes 

dependent on frequency at the much lower testing strain value of 10% compare to PY 

which starts at 30% strain, as the pre-cracked patterns are much easier to separate. At 

10% strain, a high capacitance of 1030 pF is observed for CPY because the number of 

cracks of CPY at 10% strain is greater but its Wc is smaller than that of PY at the same 

strain. With increasing strain, the cracks become wider, a similar increase in resistance 

and decrease in capacitance as for PY are observed. It is interesting that after 50% 

strains, the behaviour of CPY is quite different from before as it is equivalent to two 

resistor and capacitor parallel combinations connected in series (Figure 5.12c). 

Looking into the cracks morphology formed upon pre-strain (Figure 5.9c-e), some 

secondary cracks (Lp and Wc smaller than 5 μm) exist between major cracks along the 

yarns, which is also valid in the case of a differently shaped substrate: a solution casted 

Lycra® film as shown in Figure 5.2. These secondary cracks develop as a result of the 

main cracks propagating into one another, particularly in thinner parts of the coating, 

as well as film edges. They act as a resistor connected in series or parallel to the main 

PEDOT:PSS cracked patches, allowing these electrically conductive pathways to 

remain connected, leading to PY and CPY remaining conductive even at high strains. 

However, above 50% strain during the second stretch, these secondary cracks are 

much easier to separate and the distance between parts of the small PEDOT:PSS 

patches are large enough to act as capacitors. Therefore, a secondary resistance-

capacitor parallel combination is added to the equivalent circuit model. With the strain 
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increasing, the secondary capacitance is increasing linearly due to the total length of 

small cracks also increasing (Table 5.3). 

 

Figure 5.12 Impedance spectroscopy of CPY-300. The frequency dependencies of the 

(a) moduli of the complex impedance (Z) and (b) phase angle (θ), Nyquist plots at (c) 

low strain, (d) medium strain and (e) high strain, with fitted results (lines) based on a 

pure resistor (Rc+R1) model for lower than 5% strain, and inserted equivalent circuit 

models for 10-30% strains and higher than 50% strains, respectively. 

Table 5.3 Impedance parameters of CPY as a function of different strains.  

CPY 

strain 

Rc (W) R1 (W) CPE1-

T 

(pF) 

CPE1-

P 

R2 (W) CPE2-

T 

(pF) 

CPE2-

P 

Chi-

squared 

Error 

0% 2467 
      

0.05% 

5% 2922 
      

0.08% 

10% 456 4739 1030 0.89 
   

2.44×10-5 
 

20% 1.36×104 3.12×104 103 0.87 
   

1.62×10-4 
 

30% 4.12×104 5.68×104 44.7 0.88 
   

1.44×10-4 
 

50% 1.29×105 1.08×105 1.28 1.00 1.52×105 18.3 0.96 2.65×10-4 
 

100% 1.92×105 8.29×105 0.78 0.97 4.76×105 36.2 0.93 1.16×10-4 
 

150% 2.35×105 2.27×106 0.86 0.94 1.09×106 55.0 0.89 2.47×10-4 
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5.2.4 Thermoelectric properties and power output 

Thermoelectric properties provide a robust and reliable energy source for self-powered 

sensors by harvesting thermal energy from the environment. As expected from the 

presence of PEDOT:PSS coating, the yarns show typical p-type thermoelectric 

properties. Within the temperature range from 210 to 360 K (Figure 5.13a), the 

Seebeck coefficient (α) shows a small increase from 11 μV K-1 to 15 μV K-1 and the 

resistivity decreases by half, which is in line with the properties of  PEDOT:PSS films 

treated by DMSO. The Seebeck coefficient of CPY remains invariant compared to PY. 

However, the induced cracks in the coating increase the resistivity 2500-folds after 

300% pre-strain.  

When the PY is connected to a variable external load resistance, the voltage and power 

output can be measured at various temperature differences (ΔT). The open-circuit 

voltage Uopen (Uopen = α ∆T) is expected to increase linearly with the temperature 

difference between the ends of the sample (Figure 5.13b). The maximum power output 

Pmax (= U2/2R = ∆T2 α2/2R, where R is the internal resistance of the yarn) should 

instead increase with the square of ΔT. It can be observed that a single yarn with a 

length of ~ 1.5 cm, at a temperature difference of 35 oC, can generate a power of 60 

pW. With the temperature difference increasing to 95 oC, 1.3 mV can be generated, 

together with a maximum power output of 480 pW. The current power output level is 

promising but only if a multi-‘leg’ fabric-like device can be produced with both p- and 

n-type yarns and low enough internal resistance. Therefore, a basic device design is 

shown in Figure 5.13c, with PY as p-type legs and constantan wires acting as both n-

type legs and electrical connections. Such a thermoelectric device, with 10 pairs of 

legs can generate a maximum power of 105 pW, and 18 mV under a temperature 

gradient of 35 oC (Figure 5.13d). 
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Figure 5.13 Thermoelectric properties of the PY. (a) Unit length (1 cm) resistance 

and Seebeck coefficient of stretched and unstretched PY under temperature sweep 

from 200 K to 360 K. Error bars represent the standard deviation of 5 times Seebeck 

coefficient measurement on the same specimen at each temperature. (b) power output 

(circle) and voltage output (triangle) of 2 cm PY under different temperature 

difference when various external loads are applied. (c) The photograph and the 

illustration of the 10 pair legs fabric-based thermoelectric device, and its (d) power 

output (circle) and voltage output (triangle) under different temperature gradients. 

5.2.5 Towards multi-functional self-powered sensor application 

The ultra-sensitive CPY smart yarns with tuneable sensitivity and strain range could 

be used in various multi-functional applications such as wireless strain sensors as well 

as self-powered strain sensors. When connected with external power, the CPY-300 

works as a strain sensor with wide sensing range of strain and ultrahigh sensitivity. A 

very clear resistance change can be observed both at large strains, i.e. 200%, tested 

100% min-1 strain rate (Figure 5.15a.i) and low strain strains, i.e. 1%, tested at 10% 

min-1 strain rate (Figure 5.15a.ii). The effect of tensile strain rate increases from 5% 
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min-1 to 150% min-1 and the sensitivity is slightly increasing from GF ~ 120 to 165, 

which is compatible with the viscoelastic response of Lycra® (Figure 5.14). The lowest 

strain, 3%, gave a 2-fold resistance changes, which corresponds to a GF of 200 as 

shown in the insert of Figure 5.15a.ii. Based on the wide sensing range, this strain 

sensor could be used in wearable devices for body motion monitoring, as demonstrated 

in Figure 5.15b for example. The sensing signal (ΔR/R0), which increases 

synchronously to the bending of the index finger, can be transmitted wirelessly and in 

real-time to a mobile phone.  

 

Figure 5.14 The strain rate effect to sensitivity. (a) The resistance change of CPY with 

the cyclic 3% strain under different strain rates and (b) their corresponding GF value. 

Error bars represent the standard deviations of 20 cyclic tests at each strain rate. 

In absence of the external power supply, current CPY sensors can also function as a 

self-powered sensor upon an ambient temperature gradient. As the CPY is connected 

in short circuit, the current output will change with the strain, as a consequence of the 

CPY’s resistance change. A thermal current is developed in the circuit at a temperature 

gradient of 20 K. This constant temperature difference along the film generates a 

thermal voltage (U), which is independent of the strain. Therefore, the current 

I(ε)=U/R(ε) is inversely proportional to its resistance (R). Figure 5.15c shows the 

output current signal change as a function of the imposed strain, demonstrating the 

ability to sense and generate thermoelectric power concurrently.  
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Figure 5.15 Demonstration of CPY working as strain sensors. As externally powered 

strain sensor (a) under i) high and ii) low strain & strain rate, showing ultrahigh 

sensitivity with a wide operation window. Demonstration of CPY working as (b) 

wireless strain sensor, and (c) self-powered strain sensor: the short circuit current 

output under small strains (with 10% mm-1 strain rate) and under constant 

temperature difference (∆T ~ 20 K).  
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Based on the intrinsic thermoelectric properties of the CPY, it can also be used as a 

temperature (gradient) sensor. A variable temperature on one end of the CPY can be 

detected by a change in voltage (Figure 5.16a) with a constant reference temperature 

(e.g. room temperature) at the other end of the yarn, so the CPY could supply the 

voltage different accordingly. Although for multi-sensorial applications in general, it 

is important to be able to discriminate the signals induced by different stimuli, thus, 

the current system can be easily accommodated to avoid multi-stimuli intervention. It 

can be decoupled easily by testing short circuit current for the strain signals and open 

circuit voltage for voltage signals. Meanwhile, strains have no effect on the thermal 

voltage output, which is also an essential requirement for multi-functional and self-

powered strain sensors. The thermal voltage output has been measured under different 

strains (Figure 5.16b). This voltage is constant, for the same temperature difference, 

for any strain between 0% and 30%. This demonstrates that, for this strain range, the 

CPY thermoelectric voltage output signal only depends on the temperature difference. 

Hence, CPY can been considered as a self-powered temperature (gradient) sensor, 

with the voltage output as the data acquired. For the proof of concept, a ‘smart’ glove 

has been fabricated by stitching the CPY half on the outer surface and the other half 

inside the thermally insulated glove (Figure 5.16c). In such configuration, the hand 

temperature is kept constant by the glove, and can then be considered as the reference 

temperature of the CPY sensor. Therefore, it can sense the ambient temperature or the 

temperature of the objects in contact with the glove. In a different embodiment, a CPY 

can harvest body heat and power a second CPY strain sensor.  

These results demonstrate that CPY could be used as multi-functional self-powered 

sensors, with both strain and temperature detection, energy harvesting, and desirable 

physical properties such as high deformability and water resistance properties. 
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Figure 5.16 Demonstration of CPY working as temperature sensors. (a) 

Demonstration of CPY working as self-powered temperature (gradient) sensor: the 

open circuit voltage output at different temperature differences with different strains. 

And (b) the influence of the different strains to thermal power output. (c) The 

demonstration of a smart glove with CPY applied as energy generator by body heat 

and self-powered temperature sensor, with the temperature of heat pad is 60 oC. 

5.3 Conclusion 

In this chapter, a novel self-powered, ultra-sensitive strain and temperature sensor is 

reported based on PEDOT:PSS coated Lycra® yarns which are prepared by a simple 

swell-coating method. The ultrahigh sensitivity to strain (GF ~ 49000 at 50 % to 200%) 

and large stretchability (up to 1000%) provide a unique combination of properties 

fulfilling the long existing challenge in strain sensors, with the highest value achieved 

in both sensitivity and stretchability simultaneously. By controlling the pre-strain 

value to induce cracks patterns of the conductive PEDOT:PSS layer on Lycra®, the 

sensitivity can be adjusted for satisfying various requirements on sensitivity. The 

Seebeck coefficient of the PEDOT:PSS was preserved at 15 μV K-1 after stretching, 
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providing temperature sensing ability regardless of deformation and/or energy 

harvesting for self-powered sensing.  

The open circuit voltage signal can be used to detect temperature variations, while the 

short circuit current can be used to sense mechanical deformations. The sensing yarns 

have great potential in various applications especially wearable electronics. A wireless 

movements’ detector and a proof-of-concept glove, which can harvest body energy 

and sense the environment and object temperature in a self-powered mode.  

Looking into further developments for the future, one challenge to further broaden the 

practical applicability will be to increase the power output. The power harvested by 

thermoelectricity (~ 60 pW under ∆T ~ 35 oC for 1 yarn) is, for instance, still 

insufficient to operate commercial data transfer systems (1-10 μW typically required). 

The development of more efficient organic thermoelectric materials, particularly n-

type, is a potential strategy for reaching high TE powers. Alternative energy harvesting 

mechanisms, like piezoelectricity and triboelectricity, perhaps in combination with 

flexible energy storage solutions, could also yield very promising results.  
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Chapter 6 Self-folded CNT veils into honeycomb structured 

TE device 

6.1 Introduction 

In Chapter 2 it was shown that carbon nanotubes (CNTs) and their composites are a 

special category of TE materials that is receiving an exponentially growing interest 

owning to their outstanding tuneable TE properties, high electrical conductivity, high 

mechanical properties and good environmental stability. Among others advantages, 

large, continuous, and self-standing ensembles of CNTs such as fibres, yarns, veils, 

and fabrics [227, 228] are at the forefront of advanced materials development. Their 

structural integrity and possibility of direct integration into composites avoid technical 

limitations (e.g. short tubes) of using conventional CNT powders (e.g. dispersion via 

ultrasonication). CNTs can show high Seebeck coefficients, both in p-type (> 60 μV 

K-1[229]) and n-type (normally larger than -58 μV K-1[73]), high electrical 

conductivity (> 1000 S cm-1[71]), and thus an ultrahigh power factor of 2482 μW 

m−1 K−2 [71, 88] and 1570 μW m−1 K−2[89, 90] at room temperature for, respectively, 

SWCNT and MWCNT continuous films.  

To achieve a high-power output from a TE device, a normally overlooked factor is 

how to connect p-type and n-type alternating legs. Zhou et al. [71] reported a compact-

configuration flexible TE module based on the vacuum filtrated CNT film, with a 

thermopower of 410 μV K−1 and maximum 2.51 μW power output achieved at ΔT ~ 

27.5 K in the in-plane direction. Choi et al. fabricated a flexible thermoelectric 

generator to harvest the thermal energy in the out-of-plane direction. By doping a 

continuous CNT yarn with alternating p-type and n-type sections, around a 

polydimethylsiloxane (PDMS) block [86], they achieved a maximum power density 
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of  697 µW g-1 at ΔT~40 oC with 90 p-n pairs. Choi et al. also demonstrated that with 

9 pairs of p-n connections, the CNT films can generate 3.4 mV by converting body 

heat directly (ΔT ~ 7 oC) [230]. 

Very limited effort has been dedicated to utilising integrated TE modules in high 

performance lightweight structural applications. The only reported work from 

literature is by George et al. in 2019 [231], where a series of p-type and n-type doped 

commercial carbon fibre tows was fabricated as bottom ply of a structural TE 

composite, with 5 pairs of p-n legs generating 19.56 mV voltage output at the ΔT ~ 75 

 °C from an in-plane thermal gradient. Although the feasibility of integrating TE 

modules into structural composites has been successfully demonstrated, it is worth 

noting that most of the thermal gradients in fibre reinforced composites might be found 

at out-of-plane (through thickness) direction rather than the in-plane direction. 

Clearly, to utilise the TE effect in nano-engineered high performance composites, two 

obvious and practical challenges remain: (i) how to best utilise the out-of-plane 

thermal gradient; (ii) how to increase the power output from TE modules, or in other 

words, how to effectively connect many alternating p-g legs; (iii) how to achieve the 

above, without compromising the original high in-plane mechanical properties. 

This chapter presents an innovative strategy to achieve high power output TE in 

structural composites, addressing all three challenges simultaneously by utilising a 

Kirigami inspired self-folding process. This process has been initially developed by 

Arnaud Kernin, a colleague in the same research group at QMUL, and adapted to the 

field of thermoelectricity and (structural) self-powered sensing, by the introduction of 

CNT veils. Arnaud’s PhD thesis, to be shortly submitted, will include more details, 

particularly on the underlying mechanism of self-folding. The well-acknowledged 



Chapter 6 Self-folded CNT veils 

141 

 

mechanically strong (i.e. bending rigidity) honeycomb structure can enable not only 

the utilisation of thermal gradient in the out-of-plane direction, but has also the 

capability of accommodating alternating p-n legs series connected for energy 

harvesting. The electrical power output obtained from this integrated TE honeycomb 

in hierarchical composites is sufficient to perform the in-situ deformation and damage 

sensing, providing added multi-functionalities such as self-powered structural health 

monitoring. This new method to integrate TE module into hierarchical composites via 

self-folding to form honeycomb structure could be used in various high performance 

composite applications in the fields of aerospace, automotive and renewable (solar) 

energy sectors, especially in remote and hard to access locations. 

6.2 Results and Discussions 

6.2.1 Thermoelectric performance of CNT films 

The thermoelectric and electrical properties of CNT films have been systematically 

characterised, with annealing and purification processes employed to improve their 

performance. The effect of subsequent folding steps on the electrical properties has 

also been examined. A large scale CNT veil (1.5 m2) manufactured by floating catalyst 

based chemical vapor deposition (FCCVD) method [232, 233]. Since the 

thermoelectric properties of CNT veils can be affected by residual impurities like 

metal catalysts and amorphous carbon from the manufacturing processes. An 

annealing process followed by a further acid washing step has also been employed to 

remove impurities. This purification procedure (particularly the acid wash) can 

introduce some defects in CNTs, which have been herein evaluated by Raman 

spectroscopy. Figure 6.1a shows characteristic peaks of D band and G band at ~ 

1,330 cm−1 and ~ 1,582 cm−1, respectively. Because the D-band refers to the 

disordered crystalline structure or defects in carbon materials, and the G-band refers 
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to the regular sp2 carbon atoms in the graphitic area [234, 235], the intensity ratios of 

D and G band (ID/IG) indicates the disordered carbon content in the materials. The 

ID/IG ratios increased slightly from 0.19 to 0.33 after the first annealing, attributed to 

the removal of amorphous carbon, particularly on the CNT surface. The ratio slightly 

decreased to 0.30 after the acid treatment ‘purified CNTs’), evidence of some induced 

defect introduced onto the graphitic structure, but necessary to eliminate the catalyst.  

 

Figure 6.1 Comparison of as-grown, annealed and purified CNT veils. (a) The 

normalized Raman spectra excited with a 633 nm laser. (b) Thermoelectric properties 

(electrical conductivities, Seebeck coefficients and power factor). Error bars 

represent the standard deviations. (c) Mass loss, and its derivative, as a function of 

temperature. (d) SEM morphological micrographs.  

Both the electrical conductivity and Seebeck coeffiecient (Figure 6.1b) were improved 

after the annealing process. The electrical conductivity trippled from 598 S cm-1 to 

1878 S cm-1, and Seeback coefficient increased from 34 μV K-1 to 43 μV K-1. This is 

attributed to the successful removal of the amorphous carbon by annealing process. 

With the further step of acid washing, both the electrical conductivity and Seeback 
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coefficient were further increased to 2315 S cm-1 and 65 μV K-1, respectively. This is 

attributed to the successful removal of also metal catalyst. Ferrum (Fe) catalyst used 

as a seed in the synthesis of CNT can act as an n-dopant and introduce some metallic 

behaviour. After acid treatment, the Fe content in the purified CNT veil reduced from 

11.5 wt.% to 2.3 wt.%, as suggested by TGA analysis (Figure 6.1c), and its Seebeck 

coefficient increase from 37 μV K-1 to 65 μV K-1. With these thermopower and 

electrical conductivity after purification process, a significantly enhanced power 

factors of 1050 μW m-1K-2 was achieved compared to only 70 μW m-1K-2 of the as-

grown CNT veils. 

 

Figure 6.2 The exposture time influence to Seebeck coefficient of CNT veils. Seebeck 

coefficient of the as-grown CNT veils changes with the function of time exposure in 

air at ambient conditions (1 atm, 25–27 °C and relative humidity of 65%). Error bars 

represent the standard deviations of 5 specimens for 20 measurements each. 

It is well acknowledged that CNT veils can absorb oxygen from the environment, 

resulting in an increasing p-type doping after several days of exposure to the 

environment (Figure 6.2), due to the formation of hole-like carriers. It is also worth 

noting that the immersing of the CNT veils in the solution might also reduce their 

oxygen contents, hence affecting the measured results. Therefore, for a fair 
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comparison, the Seebeck coefficient values shown in Figure 6.1b were all measured 

on the third day after treatment to ensure a consistent and reliable results. 

 

Figure 6.3 Thermoelectric properties and morphologies of doped CNT veils. (a) The 

electrical conductivities, (b) Seebeck coefficients and power factor of the annealed 

and doped CNT veils at room temperature. SEM figures of (c) FeCl3 doped (p-type) 

and (d) PEI doped (n-type) CNT veils. The dopant is a solution of PEI and FeCl3 in 

ethanol, with concentrations ranging from 2 mM to 20 mM. 

For the practical application of CNT veil as TE, p and n type have been obtained by 

doping with FeCl3 and PEI, respectively. Ethanol was used as solvent to promote the 
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dopant infiltration into the hydrophobic CNT network. However, it was found that the 

highly condensed nature of these purified CNT veils (Figure 6.1d) has significantly 

hindered the infiltration process of dopants, resulting in the residual positive Seebeck 

value (~ 20 μ K-1) even after the veils was immersed in the PEI ethanol solution 

overnight. In a more detailed study, different concentrations of 50 μl of dopant solution, 

ranging from 2mM to 20 mM, onto 225 mm2 square CNT veils.  

FeCl3 was used for p-doping, as the charge transfer from CNT valence band to the 

FeCl3, increasing hole concentration, without disrupting the intrinsic CNT structure 

(Figure 6.3c). At low dopant concerntration (2mM), the effect of FeCl3 doping was 

inferior to the O2 de-doping, causing a reduction in the positive Seebeck (Figure 6.3a). 

With increase in concentration, the FeCl3 dopant effect surpassed the oxygen doping, 

leading to an increase in both electrical conductivity (to 1897 S cm−1) and Seebeck 

coefficient (to 60 μV K−1). For the concetration above 10 mM, a saturation was 

observed with no further increase in Seebeck coefficient (Figure 6.3a&b). It is worth 

noting that the p-type doping process has also increased the air stability of the CNTs, 

with the Seebeck coefficient changing less than 2 μV K-1 after exposure to air for 7 

months as opposed to the neat sample (Figure 6.4a). This is attributed the saturation 

of FeCl3 doping and hence a limited number of free electrons available within the CNT 

veils, eliminating the possibility of oxygen doping from the environments to introduce 

more holes. The 10 mM FeCl3 doped p-type CNT veil with power factor of 688 μW 

m-1K-2 was selected for following researches. 

Amine-rich PEI molecules act as highly effective electron donors that adsorb on the 

surface of the CNT without disrupting the intrinsic CNT structure. However, a 

thickening of the CNT bundles was observed with increase in PEI concentration 

(Figure 6.3d). By the surface charge transfer mechanism, electrons transfer from PEI 
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to CNTs and reduce the hole concentration until electrons act as main charge carriers, 

turning the CNT  into n-type (-35 μV K−1 with 2 mM PEI). With the PEI concentration 

increasing, both the electrical conductivity and negative Seebeck coefficient increase 

(Figure 6.3a&b), resulting from more electron injection, which is consistent with 

previously reported experimental results [71, 86]. The optimumized TE property for 

n-type CNT veil is obtained at the highest concentration (20 mM), reaching an 

electrical conductivity of 1532 S cm−1 and a Seebeck value of -70 μV K-1. The power 

factor is 741 μW m-1K-2, which is higher than the most reported n-type CNT samples 

at room temperature [35, 236]. Good stability was also achieved with n-type doped 

CNT veils, with only 1 μV K-1 decrease after 7 months (Figure 6.4a). This is because 

the uniform PEI coating layer acts as an encapsulation and protect it from doping by 

oxygen in the air and keeping the n-type character. 

 

Figure 6.4 The effect of exposure time, presence of cyanoacrylate glue and folding to 

thermoelectric properties of CNT veils. (a) Effect of time (7 months) and glue on 

Seebeck coefficients of pristine, p and n doped CNT veils. (b) Effect of glue and folding 

to the electrical resistance of the CNT veils. Error bars represent the standard 

deviations of 5 specimens for 20 measurements each. 

To ensure a consistent and reliable TE performance of the CNT veils, after subsequent 

fabrication and deformation processes into structural composites, the effect of 

deformation (folding) and adhesive employed in the subsequent processes have also 
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been examined. The addition of a cyanoacrylate glue, increased the electrical 

resistance of the CNT composites by about 30%, compared to a pristine CNT veil with 

same dimensions (Figure 6.4b), but did not affect the Seebeck coefficient (Figure 6.4a). 

Interestingly, cyanoacrylate acted as a sort of encapsulation materials, protecting the 

CNT veils from oxygen absorption. The Seebeck coefficient of the ‘encapsulated’ 

undoped CNT veil only increased by 2 μV K-1 after 7 months, less than half of that for 

pristine CNTs. The ‘encapsulation’ also helped the doped CNT veils, as demonstrated 

by a Seebeck coefficient invariant for at least 7 months.  

The deformation, from 0° to 150° - 180° induced by the folding process resulted in an 

increase in electrical resistance. In particular, the resistance increased by 7% to 23%, 

i.e., 1.4 ~ 1.7 fold of the pristine resistance of the annealed CNT veils (Figure 6.4b), 

depending on the levels of deformation typical of our folding processes.  

6.2.2 Temperature induced self-folding for a honeycomb structure 

Honeycomb structures are common core layers for sandwich structural applications 

and can be manufactured in different ways. However, the direct folding 2D flat CNT 

veils into 3D honeycomb modules, with accurately connected and alternating p-n legs 

remains a complex and challenging task. A Kirigami inspired self-folding process is 

utilised herein to achieve a honeycomb thermoelectric module, which can harvest the 

thermal energy in out-of-plate direction, with a series of p-n legs connected in series. 

The self-folding principle is similar to the bending of bi-metal strips bending [237]. In 

this work, a b-PS film was used as an active layer with capability to shrink upon 

heating (negative coefficient of thermal expansion), with a polycarbonate (PC) layer 

adhered on top acting as substrates and hinges restrict the thermal shrinkage and hence 

inducing folding (acting like a hinge) at the boundary between PC-restricted and b-PS 
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only sections. Two thin layers of CNT veils (3-5μm thickness individually) were used 

to sandwich the shrinkable b-PS layer with the PC layer adhered at the outside (either 

top or bottom) of CNT/b-PS/CNT structures. By changing the location and patterns of 

PC layer, various shapes and dimensions can be programmed and achieved by the 

temperature induced self-folding processes.  

 

Figure 6.5 The three structures of self-folding.  (a) Constituent materials (CNT veils, 

b-PS and PC) and three main structures (S1, S2 and S3) utilised for the self-folded 
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honeycomb. (b) The actual samples temperature, recorded by an IR camera, as 

function of time, when the sample is placed in an oven at 130 oC; the self-folding starts 

at 112 oC. (c) Change of the folding angles with time for S1 samples, with various 

gaps. (d) Images of the self-folding procedure for a representative sample (S1, gap 

width of 1mm), showing the folding angles as a function of time, at 130 oC. (e,f) The 

folding angles change with time and gaps’ width, for (e) S2 and (f) S3 structures. 

To understand better the self-folding mechanism hence utilising this method to turn 

1D CNT veils into 3D honeycomb structure with accurate p-n leg connections, 

different designs have been examined (S1, S2 and S3 in Figure 6.5a). To establish the 

folding profile and relationship between folding angles with time and temperature, a 

simple design (S1) has been employed (Figure 6.5c&d). Two passive PC layers are 

glued on one side of b-PS, at a distance of 0.5 mm to 2 mm (the ‘hinge’ gap). After 

placing the D1 specimen into the oven preheated to 130°C, the sample started folding 

at t ~ 12s, which corresponds to the sample temperature reaching the glass transition 

temperature of b-PS of 110 oC (Figure 6.5b). The intact PC layers have constrained 

the shrinkage of PS layer and created the torque on the hinges, generating the bending 

moment for the folding process. Very short response time (between 10 and 30s) was 

required for this temperature induced self-folding process, with great programmability 

in both folding angles (ranging from 150° - 180°)  and folding speed by tuning the gap 

width between intact layers (Figure 6.5c). 

After optimising the gap width and designs with the aim of achieving the correct 

angles required for honeycomb structures (Figure 6.5e&f), S2 with a gap width of 0.5 

mm and S3 with a gap width of 1 mm were employed to create the folding angle of 

60o and 180o, respectively.  

As shown in Figure 6.6a, the p and n doping has been employed prior to the folding 

process, with the patterns designed for the honeycomb shape, in which p-n legs are 
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connected autonomously for thermoelectric energy harvesting.  According to this 

pattern, the p and n doped legs are connected in series electrically and in parallel 

thermally (Figure 6.6a). For fabrication of the self-foldable one-cell honeycomb TE 

device, a small rectangular hole was cut from the b-PS. PC films were added to  both 

sides of b-PS, recreating the design of S2 and S3 structures, with doped CNT veils in 

between. Therefore, a five layers sample was fabricated, i.e., PC/doped CNT/b-

PS/doped CNT/PC and put into an oven at 130 oC for self-folding. The single modular 

honeycomb structure consists of one-unit cell can be self-folded at 130 oC within 45 

seconds, with the sequential folding of S3 followed by S2 as demonstrated in Figure 

6.6a. This is in accordance with previous tests of S2, S3 folding, which showed that a 

180o folding was completed in 17 seconds (Figure 6.5f), much faster than S2 folding, 

which is finished after ~ 45 seconds (Figure 6.5e).  

 

Figure 6.6 Honeycomb structure via temperature induced self-folding. (a) The 

schematic illustrations of the design and patterns for the fabrication of modular one 
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unit cell honeycomb structure TE module, with circled areas of S2 and S3, and the 

images of its fabrication procedures of the TE module with 1 cell honeycomb structure. 

(b) Images of the fabrication procedures of the TE module with 4-cell honeycomb 

structure via self-folding processes. (c) The schematic illustration of the self-folded 

one-cell, four-cell and multi-cell honeycomb structured TE modules. 

To demonstrate the feasibility of utilising this self-folding process for high TE energy 

density, a honeycomb structure consisting of four cells of alternating p-n legs has been 

fabricated (Figure 6.6b). Benefitting from the formation of 4 pairs of p-n legs on each 

side of the b-PS, 8 thermocouples have been achieved in this self-folded 4-cells 

honeycomb TE module. Similar to the doping pattern of single module, the undoped 

regions were folded to the top and bottom side of the module and acted as connecting 

electrodes, to minimize the internal resistance of the fabricated TE module. By 

repeating the same pattern in an increased area, a multi-cell honeycomb structured TE 

module (Figure 6.6c) based on the doped CNT veil can be easily obtained via the self-

folding process induced by temperature. Clearly, the vertical alignment of alternating 

p-n CNT legs in these fabricated TE modules could enable energy harvesting from 

out-of-plane thermal gradients, opening up a much wider field of practical applications. 

6.2.3 Thermoelectric performance of self-folded CNT honeycomb  

To evaluate the thermoelectric performance and power output, the fabricated single-

cell modular CNT honeycomb, with one pair of p-n legs, was examined under various 

temperature difference in the out-of-plane direction. Under a ∆T ~ 20 oC, a single pair 

of the p-n legs generated a voltage of 2.5mV with a peak power output up to 115 nW 

(Figure 6.7a), which is higher than most of the values from CNT-based TE modules 

in literature [229, 238]. Theoretically, an increasing number of the p-n pairs (n) can 

increase both the voltage output U and the maximum power output 𝑃𝑚𝑎𝑥.  Therefore, 

the energy harvesting performance of the 4-cell TE module has also been examined 
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(Figure 6.7b) to demonstrate the potential of further enhancing the output power by 

increasing the number of p–n pairs in series. The maxium power output should be 

obtained when the external load resistance is equal to the sum of internal resistance 

(Ri) of the TE module and the contact resistance (Rc), and can be estimated via the 

following equations: 

 𝑈 = 𝑛(𝛼𝑝 + 𝛼𝑛)∆𝑇 Equation 6.1 

 𝑃𝑚𝑎𝑥 =
𝑈2

4(𝑅𝑖+𝑅𝑐)
 Equation 6.2 

where 𝛼𝑝 and 𝛼𝑛 refer to the absolute values of Seebeck coefficient of the p and n 

doped CNT veils, which are 60 μV K-1 and 69 μV K-1, respectively. Therefore, under 

a certain temperature difference (∆𝑇) ), U is proportional to n. Meanwhile, the internal 

resistance is also increasing linearly with the number of p-n pairs due to the increased 

amount of series connected CNT legs. Thus, for a TE module with a large number of 

the p-n pairs, Ri should be much higher than Rc and increases linearly with the number 

of p-n pairs since the average resistance per p-n pair is nearly constant. Therfore, Pmax 

should be proportional to n. The measured power output in Figure 6.7b are in good 

agreement with this relationship. The highest voltage generated by the four cells 

honeycomb structure with eight elements (thermocouples) was around 21 mV, 

together with a maximum power output of 812 nW at 17 oC. These values are around  

8 times of the energy harvesting capability of single unit cell element can generate 

under the same temperature difference. Obviously, both the voltage output and power 

output can be further increased with increasing numbers of unit cells in current 

honeycomb structured TE module. Based on the current relationship between numbers 

of connected p-n leg unit element and obtained power output, 10 μW could be 

achieved in honeycomb TE module consisting of 50 unit cell elements (100 effective 
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p-n pairs) at a temperature difference of only 17 oC, fulfilling the practical 

requirements of many electronics and devices. 

Additionally, the existence of plenty of cavities within the honeycomb structure also 

brings benefits of a low thermal diffusion coefficient at out-of-plane direction, 

maintaining a stable temperature difference without the needs of an external cooling 

system. As shown in Figure 6.7c, the temperature gradients across the 4-cell 

honeycomb TE module were very stable, regardless of a cooling system on the 

opposite surface. After reaching the thermal equilibrium of the TE module with a 

bottom heating pad set at 90 oC, the temperature of the cold side was 47 oC without 

the cooler, translating to a T ~ 43 oC across the TE module. Compared to the system 

with cooling system set at the top (T ~ 50 oC), only 14% temperature loss was 

observed, thanks to the empty spaces within these honeycomb structures. 

 

Figure 6.7 TE performance of honeycomb structure TE module. (a) The voltage and 

power output from one-cell honeycomb TE module consisting of a single thermal 

couple at various temperature differences. (b) The voltage and power output from 
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different numbers of elements, i.e., thermocouples, within the fabricated 4-cell 

honeycomb TE module when T ~ 17 oC. (c) Thermal images at cross-sectional views 

of the four-cell honeycomb TE module with a 90 oC heat pad attached on bottom (hot) 

side, confirming a stable thermal gradient regardless of a cooler at the cold side. 

6.2.4 Self-powered sensing in structural composites 

The fabricated honeycomb TE modules can be integrated into composite laminates, 

adding multifunctionalities such as in-situ sensing to the components in two different 

ways: either as a self-powered sensor by harvesting thermal energy to detect 

deformations or damages, or as a temperature sensor to monitor the external 

temperature variations by measuring the variations in power output generated.  

The fabricated four-cells CNT honeycomb TE module was integrated into a nano-

engineered hierarchical glass fibre reinforced plastics (GFRPs) as illustrated in Figure 

6.8a, in order to examine its function of self-powered sensing. The honeycomb TE 

module plays the role of a power supplier, when it is placed within a temperature 

gradient created by position a heat pad on the top side only.   

Since the electrical sensing method is utilised for deformation and damage monitoring 

in multifunctional composites, prior to examining the self-powered sensing 

capabilities based on the honeycomb TE module, the electrical sensing performance 

with an external power supply has been evaluated first with the current system. The 

nano-engineered hierarchical composites consist of glass fibre reinforced plastics 

(GFRPs) with a thin layer of percolated CNT sensory network spray coated at the top 

ply as the sensing layer, with the resistance measured throughout the test as the sensing 

signals.  

During the three-point bending test (Figure 6.8b), the CNT network is on the bottom 

side of the GFRC laminate and the resistance (R0=6kΩ) increased with deformation. 
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This resistance change originates from the partial disconnection of the nanotubes in 

the CNT network. 

 

Figure 6.8 In-situ sensing performance of the composite laminates under flexural 

loadings. (a) Schematic of the honeycomb structured TE modules applied as a self-

powered sensor. TE modules are assembled between GFRCs with a heat pad on the 

top to provide temperature gradient. The composites laminates are deformed under 

three-point bending. Its equivalent circuit are inserted, where the grey rectangle refers 

to the TE modules (a generator with inner resistance, Ri), the RL is the resistance 

change of the composites laminates, and a current meter in connected in series. (b) 

Images of the three-point bending part at different stages (from i to iii) indicated in 

both (c) and (d), with their bottom view focus on the failure part in inset. In-situ 

measurement of the (c) resistance change of the composite laminates with an external 

power supply, and (b) current output variation with bending when self-powered by TE 

modules with ∆T ~ 17 oC. 

As shown in Figure 6.8c, although matrix cracking and interfacial debonding can be 

expected at relatively low strains upon loading, the electrical sensing signals remained 
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almost unchanged at the beginning of the test, due to limited deformation and damage 

of the sensing layers at the outer layer (under tensile loading) of the laminates. With 

the damages accumulating within the laminates and propagating to delamination and 

fibre breakages, obvious changes in the load curve can be found with clear load drops 

(annotated i within Figure 6.8c), indicating an irreversible damage within the 

specimen. However, due to the relatively high amount of CNTs employed in the 

sensing layer, no obvious electrical sensing signals can be observed until the cracks 

have progressed with obvious damage at the outer sensing layer (annotated ii in Figure 

6.8c), showing obvious jumps in electrical sensing signals. Clear sensing signals can 

be found with the damage propagating within the sensing layers, with reduced loading 

levels observed from the load-displacement curve.  

Instead of relying on external power supply, the current output generated via thermal 

energy harvesting can be also utilised to develop a self-powered sensing system. Under 

a constant temperature difference, the voltage output generated from the TE module 

will remain constant. Therefore, any change in electrical resistance from the sensing 

layer will lead to a change in the current output, which can be utilised as a sensing 

signal to detect deformation and damage in composite structures.  

For the current self-powered sensing method, a stable current output of around 2.9 μA 

was achieved with a 17 oC of temperature difference (Figure 4b). Upon flexural 

loading, the electrical sensing signals remained stable at the very beginning then 

started to decrease slightly from relatively early stage of the test (around only 1 mm 

displacement). A gradual decrease in sensing signal can be found, correlating with 

increased load and deformation of the specimen. With the load continuously 

increasing, delamination and fibre breakage can be expected with clear load drop from 

the load-displacement curve (annotated i in Figure 6.8d). A further decrease in sensing 
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signals can be found at this stage, regardless of the sensing layer only presented at the 

outer layer. When the crack propagated and reached outer sensing layer (annotated ii 

in Figure 6.8d), a very large drop in sensing signals can be found due to the significant 

change in system resistance value hence the current output. No power supply is 

required for the honeycomb TE module, while the deformation and health conditions 

with internal damage propagations can be monitored in real time-based thermal energy 

harvested self-powered sensing method. 

6.3 Conclusions 

Self-powered sensing based on thermal energy harvesting has been successfully 

integrated into a high-performance composite via a temperature induced self-folding 

process, with capability to detect deformation and damage in composite laminates 

without external power supply. Two long lasting issues of using thermal electricity in 

advanced functional composites have been solved simultaneously, namely (i) 

harvesting thermal gradient at out-of-plane direction and (ii) generating high power 

output with limited temperature difference. High peak outputs of 21mV and 812nW 

at temperature difference of only 17 oC have been achieved with a CNT honeycomb 

structure consisting of accurately connected four pairs of alternating p-n legs, opening 

up new routes for self-powered structural health monitoring and thermal energy 

harvesting in high performance composite applications. 

A temperature induced self-folding process has been utilised in this work, turning 1D 

continues CNT veils into 3D honeycomb structures autonomously upon heating. 

Various designs have been developed and fabricated to achieve both the modular unit 

of CNT hexagonal structure as well as the engineered CNT honeycomb structure with 

accurately connected p-n legs. The thermoelectric properties of continuous CNT veils 

have been systematically examined and tuned for optimised energy output, with 
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limited effects observed from the self-folding process. A linear relationship between 

the power output and numbers of TE legs under a constant temperature gradient has 

been validated with the fabricated CNT honeycomb structures, indicating that the 

power output could reach 10µW with 50 unit cell elements at a temperature of 17 oC 

only, which can fulfil the practical requirements of various electronics and devices. 

The generated cavity within the honeycomb structure also enabled low thermal 

diffusion hence facilitated the stable temperature gradient across the specimen without 

the needs of any active cooling system. 

Self-powered strain and damage sensing based on thermal electric effects has been 

successfully achieved in a structural composite laminate, with energy harvested from 

out-of-plane direction without affecting original performance of the composite 

laminates. Both elastic deformation and the damage propagation have been monitored 

in real time, with sensing signals clearly correlated with various stages of damage upon 

loading, confirming its great potential to be used as self-powered structural health 

monitoring system at remote and/or hard to access locations for advanced composite 

applications. 

 



Chapter 7 Conclusion and future work 

159 

 

Chapter 7 Conclusions and future work 

7.1 Conclusions 

In this thesis, three types of OTE materials have been explored: PEDOT:PSS, Poly(M-

ett) and Carbon nanotubes (CNTs), representing an n-type coordination material, a p-

type conjugated polymer and a carbon-based nanocomposites, respectively. They have 

been evaluated with a particular focus on multi-functional self-powered sensors.  

The brittle n-type Nax(Ni-ett)n was compounded within a PU (Lycra®) matrix to create 

a stretchable TE composite material, named NL (Chapter 4). The solution-cast 

composite film with 50 wt % Nax(Ni-ett)n, exhibits an outstanding strain-at-break (~ 

510 %), an n-type Seebeck coefficient (-40 μV K-1) and electrical conductivity of 0.01 

S cm-1. This novel material can be easily produced at large scale with continuous 

processes. When subjected to a small temperature difference (< 20 oC), the material 

generated sufficient thermoelectric power to be used for sensing strain (Gauge Factor 

~ 20) and a visible light sensor with a Sensitivity Factor  of ~ 36% (kW m-2)-1 which 

is independent of humidity (Sensitivity Factor ~ 0.1 (%RH)-1) is obtained.  

To overcome the typical shortfalls of traditional π-shaped TE devices, such as 

brittleness and hardly scalable manufacturing, two prototypes have been designed. i) 

A metal-free, stretchable OTE device was fabricated by connecting n-type legs 

(Nax(Ni-ett)n/Lycra®) and p-type legs (PEDOT:PSS/Lycra®) in series via hot pressing. 

These legs were separated by a stretchable and insulating PU film before folding into 

zig-zag structure. ii) An origami inspired and 3D conformable “magic-ball” TE device 

was also demonstrated, which can be conformable to different 3D shapes. This has 

been fabricated by brush painting a Nax(Ni-ett)n/DMSO solution (n-type) and 

commercial PEDOT:PSS water suspension (p-type) patterns onto a paper.  
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To further improve the sensitivity, elastic response and power output, a novel 

PEDOT:PSS coated conductive yarn for self-powered ultrasensitive sensor was 

fabricated (Chapter 5). Ultrahigh sensitivities (gauge factor ~ 3.6×105 at a strain of 

10%-20%) together with a very high strain-at-break (~ 1000%) were obtained, with a 

stable thermoelectric behaviour (Seebeck coefficient of 15 μV K-1). The sensitivity 

could be tuned (from PF of 8 to 302 at 3% strain) by controlling the crack induced 

patterns in the conductive coating. This combination of desirable properties is 

potentially useful in multi-functional self-powered sensors, which are sensitive to 

temperature, strain and body movements, opening up great potential in many fields 

like wearable electronics and self-powered sensors at remote locations. 

The third TE material selected was CNT veil, which could be turned in a p-type or n-

type by a suitable doping. The high flexibility of the CNT veil, combined with the high 

intrinsic mechanical properties, allowed a Kirigami-inspired shape programming of 

the 2D veil directly into a 3D TE device (Chapter 6). A Kirigami approach was 

utilised to obtain the 3D structure: a hexagonal cell honeycomb. In particular, the 

honeycomb TE device structure was achieved via a temperature induced self-folding 

process. The optimised parameters for purification and p- and n-doping of the CNT 

veil have been investigated. The annealed CNT veil doped by 10mM FeCl3 and 20mM 

PEI show the best power factor of 688 μW m-1K-2 and 741 μW m-1K-2, respectively, 

and a great air-stability. The self-folded procedure at 130 oC could be controlled by 

the patterns of the b-PS and PC films patches. The metal-free self-folded honeycomb 

structure lowered the thermal conduction and maintained the temperature difference 

without any cooling system. Under a small temperature difference (~ 17 oC), the 

fabricated 4-cell honeycomb TE module could output 21mV voltage and a maximum 

power of 812 nW. This was sufficient to in-situ detect the deformation and damage of 
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a structural glass fibre composites, hence working as an embedded self-powered heath 

monitoring unit.  

Overall, different types of OTE materials have been investigated, which can be utilized 

as multi-functional self-powered sensors. This PhD research explored the potential 

applications of OTE device in the various fields. 

7.2 Future works 

The field of organic TE is relatively young and more work is required in the future 

both, from a fundamental viewpoint, to understand the underlying physical mechanics 

and, from an engineering viewpoint, to explore and commercialise practical 

applications. Several ideas were generated during the course of this PhD which are not 

included in the main body of this thesis, but that might be of use for the reader. Herein 

we present few preliminary studies which might be considered for further 

investigation in the future. 

7.2.1 The graphene oxide effect 

An initial study was performed related to nanocomposites containing Graphene Oxide 

(GO). GO was used as nano filler in both p-type PEDOT:PSS and n-type Ni-ett semi-

conductors.  

7.2.1.1 PEDOT:PSS/GO 

Upon mixing the GO with PEDOT:PSS via solution casting, the electrical conductivity 

of the as-fabricated composite increased (Figure 7.1Figure 7.1 The conductivity and 

Seebeck results of PEDOT:PSS mixed with/without DMSO and GO, before and after 

the HI treatment.), despite the electrical insulation property of GO. It can be speculated 

that some of the functional groups in GO nano sheets (such as –COOH, –OH) might 

interact via secondary bonds with PEDOT, weakening the coulombic attraction 
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between PEDOT and PSS, which, in turn, may reduce the percolation threshold of the 

conductive network. Specifically, 0.02 wt.% GO was mixed with the commercial 

PEDOT: PSS aqueous solution for the preparation of PEDOT/GO. 5 wt.% DMSO was 

then added into both pure PEDOT: PSS and PEDOT/GO aqueous solution, which was 

stirred overnight. The resulting drop casted films are named PEDOT/GO, 

PEDOT/DMSO, PEDOT/GO/DMSO, respectively.   

Afterward, all the films were emerged in 15% HI at 80 oC for 2 hours to reduce GO. 

The reduced GO increased the electrical conductivity of PEDOT:PSS above 100 S cm-

1. When DMSO was added the conductivity of both hybrid films increased 

dramatically, and the highest value around 650 S cm-1 was obtained in a ternary film 

containing PEDOT, GO and DMSO. DMSO attract PEDOT while PSS chains are 

surrounded by water leading to separation of PSS and PEDOT chains.  The coulombic 

repulsions among the PEDOT (PSS) chains making a liner conformation and limited 

the overlap of PEDOT chains, and thus, form more conductive pathways. The GO in 

the PEDOT: PSS can deplete the insulating PSS and generate larger contact areas 

between oriented PEDOT-rich grains, which add more conductive pathways for 

carriers to improve conductivity of the film. After GO being reduced, the electrical 

conductivity greatly increased except for the PEDOT: PSS/GO/DMSO ternary film, 

which decreased to the same level as the others. Reduced-GO can offer more 

conductive pathways, and the proton from hydroiodic acid is able to combine with 

PSS chains to form PSSH, which is easily rinsed in water. This theory can explain 

why conductivity increased of the films made from pure PEDOT: PSS, PEDOT: 

PSS/DMSO and PEDOT: GO. But for the ternary film, it is unclear why the electrical 

conductivity decreases. Possible explanation is because the removed functional group 

on the GO free PEDOT chains so that formed a less liner conformation. 
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For the Seebeck efficient, both the GO and DMSO have negative effect on PEDOT: 

PSS, which may because of the trade-off between the electrical conductivity and the 

Seebeck coefficient in most materials. Reduction makes the Seebeck value of all 

samples more uniform. Among all of these, the best one is the 5 % DMSO doped 

PEDOT: PSS mixed with GO, with the highest PF of 17 μW m-1K-2. 

 

Figure 7.1 The conductivity and Seebeck results of PEDOT:PSS mixed with/without 

DMSO and GO, before and after the HI treatment. 

7.2.1.2 Nax(Ni-ett)n/GO 

The addition of GO into Nax(Ni-ett)n /Lycra composites also increases the electrical 

conductivity. A systematic experiment has been performed. Different amount of GO 

were added into the Nax(Ni-ett)n /Lycra solution used for preparing 50% NL of 

Chapter 4. 2 wt.% GO in NL films generates the highest conductivity, which is 5 

times higher than pristine NL films (Figure 7.2a). It is assumed that GO helps to bond 

Nax(Ni-ett)n together and increases the conductive pathways.  Similar to the GO effect 

in PEDOT:PSS, the Seeebeck coefficient of Nax(Ni-ett)n were not influenced by GO.  

It is very intriguing that after 1 hour after casting, the electrical conductivity of NL 

films with GO are all increased (Figure 7.2b). It is assumed that GO in the composites 
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slows down the solvent evaporation and that the residual solvent is removed further in 

time. Another intriguing result was found when measuring the electrical conductivity 

after storage in air for different durations. Although, Nax(Ni-ett)n reported as an air-

stable TE material [63], the Nax(Ni-ett)n/Lycra composites show a degradation in 

electrical conductivity and the conductivity dropped to lower than 0.003 S cm-1 after 

3 months (Figure 7.2b). The possible reason for this phenomenon could a morphology 

change in time. The GO is potentially protecting the composite films from degradation 

to some extent because the electrical conductivity decrease is reduced with a higher 

GO content in the film.  

 

Figure 7.2 TE properties change with GO content. (a) The electrical conductivity and 

Seebeck coefficient of 50%NL films correlated with different GO contents. (b) The 

electrical conductivity of different GO contented 50%NL films measured at different 

times from been casted. Error bars represent for the standard deviations, which are 

calculated from 5 measurements at each specimen and at least 5 specimens for each 

content percentage.  

An initial results are shown as Figure 7.3 for understanding the electrical conductivity 

change with time at different temperatures. It is obvious that the GO retards the 

degradation. It is also amazing to observe a slight increase in conductivity of NL-2GO 

film after exposure for 20 days at room temperature, 12 days at 80 oC and 3 days under 

120oC. 
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Figure 7.3 Electrical conductivity of NL films change with time under different 

temperatures. The electrical conductivity of 50%NL film (black) and 50%NL film with 

2wt % GO (namely NL-2GO, red) change with days after exposure in air at (a) room 

temperature (b) 80 oC and 120 oC. Error bars represent for the standard deviations, 

which are calculated from 5 measurements at each specimen and at least 5 specimens 

for each content percentage. 

It is necessary to generate further fundamental understanding of the electrical 

conductivity change by the GO, time and temperature. A morphological study in 

combination with chemical element analysis of these films is recommended for the 

future research on this topic.   

7.2.2 The orientation of conducting polymer molecules  

As mentioned in Chapter 2, enhancing the orientation of the molecules of conductive 

polymers improves both Seebeck coefficient and conductivity because the charge 

carriers’ mobility increases. Except the addition of nano-sheet materials can orient the 

polymer chains, there are plenty of technique in the field of polymer engineering can 

be employed. Take the PEDOT:PSS for example, some strategies have been tried to 

increase the orientation of PEDOT:PSS chains.  

7.2.2.1 Orientated PEDOT: PSS aerogels 

The purchased 1.6 wt% PEDOT: PSS aqueous solution in a glass tube (12 mm 

diameter × 50 mm height) was slowly dipped (5 mm min−1) [239] into liquid nitrogen, 

and followed by freeze-drying for achieving oriented structures. The orientation is 
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alongside the dipping direction. Comparing the morphology of a reference sample 

(Figure 7.4 a), which was fabricated by quickly dipping in liquid nitrogen within 2 

seconds, more ordered structures can be find in slow-dipped samples (Figure 7.4 b). 

With the help of PVA, (25wt.% PVA aqueous solution was mixed with PEDOT: PSS), 

the order structure seems more stable and shown via SEM (Figure 7.4 c,d). It is worth 

to mention that different molecular weight of PVA also can influence the orientation 

structure, and the single molecular weight (Mw) of 9,000 g mol−1 can build up the most 

ordered PEDOT:PSS aerogel (Figure 7.4 d). 

 

Figure 7.4 The morphology of the PEDOT: PSS aerogels. SEM images of 

PEDOT:PSS aerogels fabricated by (a) quickly and (b) slowly (5 mm min-1) dipping. 

(c, d) SEM images of PEDOT:PSS/PVA aerogels fabricated by slowly (5 mm min-1) 

dipping. The molecular weight of PVA is Mw =85000-124000 g mol−1 for (c) and Mw 

=9,000 g mol−1 for (d). 

The as-fabricated aerogels were cut into small pieces (3mm×5mm×10mm) and cold 

pressed (2 tons for 1 min) both along with the orientation and perpendicular to the 
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orientation. By measuring the Seebeck of these thick films processed from the aerogels, 

it was found that when the temperature difference is provided along the orientation, 

the Seebeck value is slightly higher (~ 20 μV K-1) than the temperature gradient across 

the orientation (~ 15 μV K-1). However, for the PEDOT:PSS/PVA aerogels, the 

Seebeck coefficient is non-detectable by the MMR system due to the high resistances. 

These preliminary results point out the route to enhancing the TE property via oriental 

freeze-drying method. However, several parameters should be further optimized to 

gain the highest results, including the ratios of PVA to PEDOT:PSS, the post-

treatment to the aerogels and the freezing speed.   

7.2.2.2 Thermal stretched PEDOT: PSS/PVA films 

Solid state drawing is another way widely used for processing polymers to obtain 

oriented molecular chains along the stretching direction. PEDOT:PSS/PVA composite 

films have been stretched 10 mm min-1at an 80 oC oven. The sample with the solid 

ratio is 90% PVA to 10% PEDOT:PSS was stretched to 400% before it breaks. The 

Seebeck value of the stretched sample along the stretched direction is 44μV K-1 

without any other treatments, while the un-stretched PEDOT:PSS/PVA film in same 

concentration shows a Seebeck coefficient of 30μV K-1. 

These interesting results are worth to be further investigated. First, different matrix 

polymer can be tried. For instance, PVDF which can be stretched for more than 500%, 

and has unique ferroelectric properties may bring new functions to the TE property 

and its composite with PEDOT:PSS. One of the challenges is to solve the 

compatibility issues between PVDF and PEDOT:PSS. Secondly, the understanding of 

the improved Seebeck coefficient by PVA before stretching is also interesting. Thirdly, 
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the drawing parameters need to be systematically investigated to optimize for the 

highest PF. 

7.2.2.3 Other technique for conducting polymers 

Fabricating PEDOT:PSS film under an extremely high magnetic field or electrical 

field are also fascinating for achieving PEDOT chains orientation. Also, hot-pressing, 

or cold pressing procedures can introduce an in-plane orientation. These anisotropic 

samples can help researchers to gain a better understanding of the TE properties’ of 

conducting polymers. 

7.2.3 Increasing the legs of OTE device 

The relative low power output is a ubiquitous problem of the polymer-based 

thermoelectric materials. With lots of physics and chemists working on design and 

synthesis a new generation polymers with high power factor along with processable 

and air-stable, it is still worth to investigating a new strategy to fabricate a large scale 

device with more p-n legs connected, especially lowered the contact resistance 

between legs when connected in series. For example, to the results in Chapter 5, n-

type counterparts can be fabricated to connect with this p-type yarns to add up the 

output voltage and form a whole yarn based thermoelectric device. Besides, different 

sewing or weaving geography should be investigated for fabricating e-textile for real 

applications. Also, it is also very demanding to develop a TE materials suitable for 

large-scale processing methods, for example, wet-spun, melt processing and robot 

casting techniques. 

7.2.4 The stability of OTE devices 

The stability of the OTEs under different temperatures is always overlooked. Different 

from the inorganic TE materials, organic-based materials have very limited operation 
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temperature windows (normally around 0-200 oC). Besides, various parameters, 

including the glass transition temperature and soft/melting point, can significantly 

affect their TE properties. Therefore, the service life of the OTEs under a certain 

temperature should be investigated in order to satisfied real applications. When 

applying OTEs as self-powered sensors, it is also important to understand how the 

gauge factor changes with temperature. It is also important to obtain a reference curve 

in order to decode the signals. For flexible, especially stretchable OTE devices, the 

characterization of their deformation life also needs to be completed. Consideing the 

application of wearable electronics, their washability and robustness to body 

movements need to be considered.  
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