596 research outputs found

    A characterization of b-chromatic and partial Grundy numbers by induced subgraphs

    Full text link
    Gy{\'a}rf{\'a}s et al. and Zaker have proven that the Grundy number of a graph GG satisfies Γ(G)≥t\Gamma(G)\ge t if and only if GG contains an induced subgraph called a tt-atom.The family of tt-atoms has bounded order and contains a finite number of graphs.In this article, we introduce equivalents of tt-atoms for b-coloring and partial Grundy coloring.This concept is used to prove that determining if φ(G)≥t\varphi(G)\ge t and ∂Γ(G)≥t\partial\Gamma(G)\ge t (under conditions for the b-coloring), for a graph GG, is in XP with parameter tt.We illustrate the utility of the concept of tt-atoms by giving results on b-critical vertices and edges, on b-perfect graphs and on graphs of girth at least 77

    A semi-induced subgraph characterization of upper domination perfect graphs

    Get PDF
    Let β(G) and Γ(G) be the independence number and the upper domination number of a graph G, respectively. A graph G is called Γ-perfect if β(H) = Γ(H), for every induced subgraph H of G. The class of Γ-perfect graphs generalizes such well-known classes of graphs as strongly perfect graphs, absorbantly perfect graphs, and circular arc graphs. In this article, we present a characterization of Γ-perfect graphs in terms of forbidden semi-induced subgraphs. Key roles in the characterization are played by the odd prism and the even Möbius ladder, where the prism and the Möbius ladder are well-known 3-regular graphs [2]. Using the semi-induced subgraph characterization, we obtain a characterization of K 1.3-free Γ-perfect graphs in terms of forbidden induced subgraphs. © 1999 John Wiley & Sons, Inc

    Vertex colouring and forbidden subgraphs - a survey

    Get PDF
    There is a great variety of colouring concepts and results in the literature. Here our focus is to survey results on vertex colourings of graphs defined in terms of forbidden induced subgraph conditions

    Structure and coloring of (P7P_7, C5C_5, diamond)-free graphs

    Full text link
    We use PtP_t and CtC_t to denote a path and a cycle on t vertices, respectively. A diamond consists of two triangles that share exactly one edge, a kite is a graph obtained from a diamond by adding a new vertex adjacent to a vertex of degree 2 of the diamond, a paraglider is the graph that consists of a C4C_4 plus a vertex adjacent to three vertices of the C4C_4, a paw is a graph obtained from a triangle by adding a pendant edge. A comparable pair (u,v)(u, v) consists of two nonadjacent vertices uu and vv such that N(u)⊆N(v)N(u)\subseteq N(v) or N(v)⊆N(u)N(v)\subseteq N(u). A universal clique is a clique KK such that xy∈E(G)xy \in E(G) for any two vertices x∈Kx \in K and y∈V(G)∖Ky\in V (G)\setminus K. A blowup of a graph H is a graph obtained by substituting a stable set for each vertex, and correspondingly replacing each edge by a complete bipartite graph. We prove that 1) there is a unique connected imperfect (P7,C5(P_7, C_5, kite, paraglider)-free graph G with \delta(G) \geq \omega(G)+ 1 which has no clique cutsets, no comparable pairs, and no universal cliques; 2) if G is a connected imperfect (P7,C5(P_7, C_5, diamond)-free graph with \delta(G) \geq max{3, \omega(G)} and without comparable pairs, then G is isomorphic to a graph of a well defined 12 graph families; and 3) each connected imperfect (P7,C5(P_7, C_5, paw)-free graph is a blowup of C7C_7. As consequences, we show that \chi(G) \leq \omega(G)+1 if G is (P7, C5, kite, paraglider)-free, and \chi(G) \leq max{3, \omega(G)} if G is (P7,C5(P_7, C_5, H)-free with H being a diamond or a paw. We also show that \chi(G) \le

    A contribution to the evaluation and optimization of networks reliability

    Get PDF
    L’évaluation de la fiabilité des réseaux est un problème combinatoire très complexe qui nécessite des moyens de calcul très puissants. Plusieurs méthodes ont été proposées dans la littérature pour apporter des solutions. Certaines ont été programmées dont notamment les méthodes d’énumération des ensembles minimaux et la factorisation, et d’autres sont restées à l’état de simples théories. Cette thèse traite le cas de l’évaluation et l’optimisation de la fiabilité des réseaux. Plusieurs problèmes ont été abordés dont notamment la mise au point d’une méthodologie pour la modélisation des réseaux en vue de l’évaluation de leur fiabilités. Cette méthodologie a été validée dans le cadre d’un réseau de radio communication étendu implanté récemment pour couvrir les besoins de toute la province québécoise. Plusieurs algorithmes ont aussi été établis pour générer les chemins et les coupes minimales pour un réseau donné. La génération des chemins et des coupes constitue une contribution importante dans le processus d’évaluation et d’optimisation de la fiabilité. Ces algorithmes ont permis de traiter de manière rapide et efficace plusieurs réseaux tests ainsi que le réseau de radio communication provincial. Ils ont été par la suite exploités pour évaluer la fiabilité grâce à une méthode basée sur les diagrammes de décision binaire. Plusieurs contributions théoriques ont aussi permis de mettre en place une solution exacte de la fiabilité des réseaux stochastiques imparfaits dans le cadre des méthodes de factorisation. A partir de cette recherche plusieurs outils ont été programmés pour évaluer et optimiser la fiabilité des réseaux. Les résultats obtenus montrent clairement un gain significatif en temps d’exécution et en espace de mémoire utilisé par rapport à beaucoup d’autres implémentations. Mots-clés: Fiabilité, réseaux, optimisation, diagrammes de décision binaire, ensembles des chemins et coupes minimales, algorithmes, indicateur de Birnbaum, systèmes de radio télécommunication, programmes.Efficient computation of systems reliability is required in many sensitive networks. Despite the increased efficiency of computers and the proliferation of algorithms, the problem of finding good and quickly solutions in the case of large systems remains open. Recently, efficient computation techniques have been recognized as significant advances to solve the problem during a reasonable period of time. However, they are applicable to a special category of networks and more efforts still necessary to generalize a unified method giving exact solution. Assessing the reliability of networks is a very complex combinatorial problem which requires powerful computing resources. Several methods have been proposed in the literature. Some have been implemented including minimal sets enumeration and factoring methods, and others remained as simple theories. This thesis treats the case of networks reliability evaluation and optimization. Several issues were discussed including the development of a methodology for modeling networks and evaluating their reliabilities. This methodology was validated as part of a radio communication network project. In this work, some algorithms have been developed to generate minimal paths and cuts for a given network. The generation of paths and cuts is an important contribution in the process of networks reliability and optimization. These algorithms have been subsequently used to assess reliability by a method based on binary decision diagrams. Several theoretical contributions have been proposed and helped to establish an exact solution of the stochastic networks reliability in which edges and nodes are subject to failure using factoring decomposition theorem. From this research activity, several tools have been implemented and results clearly show a significant gain in time execution and memory space used by comparison to many other implementations. Key-words: Reliability, Networks, optimization, binary decision diagrams, minimal paths set and cuts set, algorithms, Birnbaum performance index, Networks, radio-telecommunication systems, programs

    Domination problems in directed graphs and inducibility of nets

    Get PDF
    In this thesis we discuss two topics: domination parameters and inducibility. In the first chapter, we introduce basic concepts, definitions, and a brief history for both types of problems. We will first inspect domination parameters in graphs, particularly independent domination in regular graphs and we answer a question of Goddard and Henning. Additionally, we provide some constructions for graphs regular graphs of small degree to provide lower bounds on the independent domination ratio of these classes of graphs. In Chapter 3 we expand our exploration of independent domination into the realm of directed graphs. We will prove several results including providing a fastest known algorithm for determining existence of an independent dominating set in directed graphs with minimum in degree at least one and period not eqeual to one. We also construct a set of counterexamples to the analogue of Vizing\u27s Conjecture for this setting. In the fourth chapter, we pivot from independent domination to split domination in directed graphs, where we introduce the split domination sequence. We will determine that almost all possible split domination sequences are realizable by some graphs, and state several open questions that would be of interest to continue on this field. In the fifth chapter we will provide a brief introduction to Flag Algebras, then determine the unique maximizer of induced net graphs in graphs of certain orders

    Perfect Graphs

    Get PDF
    This chapter is a survey on perfect graphs with an algorithmic flavor. Our emphasis is on important classes of perfect graphs for which there are fast and efficient recognition and optimization algorithms. The classes of graphs we discuss in this chapter are chordal, comparability, interval, perfectly orderable, weakly chordal, perfectly contractile, and chi-bound graphs. For each of these classes, when appropriate, we discuss the complexity of the recognition algorithm and algorithms for finding a minimum coloring, and a largest clique in the graph and its complement
    • …
    corecore