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28.1 INTRODUCTION

This chapter is a survey on perfect graphs with an algorithmic flavor. Our emphasis is on
important classes of perfect graphs for which there are fast and efficient recognition and
optimization algorithms. The classes of graphs we discuss in this chapter are chordal, com-
parability, interval, perfectly orderable. weakly chordal, perfectly contractile, and x-bound
oraphs. For each of these classes, when appropriate we discuss the complexity of the recog-
nition algorithm and algorithms for finding a minimmmn coloring, and a ]

argest \'li(lllt‘ :LT.'I Tllr_‘
eraph and in its complement.

I the late 19508, Berge |11 started his investigation of graphs G with the following
properties: (i) o) 8(G), that is the number of vertices in a largest stable set is equal to
the smallest number of cliques that cover V(&) and (ii) w(G) = x(G)

T

, that is the number
of vertices in a largest clique is equal to the smallest number of colors needed to color . At
abont the same time, Shannon [2] in his study of the zero-error capacity of communication
chanuels asked: (iii) what are the minimal graphs that do not satisty (i)?, and (iv) what is
the zero-error capacity of the chordless cycle on five vertices? In today’s language, the graphs
G all of whose induced subgraphs satisfy (ii) are called perfect.

In 1959, it was proved |3

that chordal graphs (graphs such that everv cyele of length at
least four has a chord) satisfy (i). that is complements of chordal graphs arve perfect. In 1960,
it was proved (1] that chordal graphs are perfect. These two results led Berge to propose
two conjectures which after many years of work by the graph theory community were proved
to hold.

Theorem 28.1 (Perfect graph theorem) If a graph is perfect, then so is its complement.

=
Theorem 28.2 (Strong perfect graph theorem) A graph is perfect if and only if it does
not contain an odd chordless cycle with at least five vertices, or the complement of such ¢
cycle.

m
Perfect graphs are prototypes of min-max characterizations in combinatorics and graph the-
ory. The theory of perfect graphs can be used to prove well known theorems such as the
Dilworth’s theorem on partially ordered sets [4], or the Konig's theorem on edge coloring of
bipartite graphs [5]. On the other hand, algorithmic considerations of perfect graphs have
given rise to techniques such as clique cutset decomposition, and modular decomposition.
Question (iv) was answered completely in [6]; in the process of doing so, the so-called Lovisz’s
theta function © were introduced. Theta function satisfies w(G) < O(G) x(G) for any
graph G, Thus, a perfect graph ¢ has w(G) = O(G) = x(G). Subsequently, [7] gave a poly-
nomial time algorithm based on the ellipsoid method to compute ©(G) for any graph G. As

a consequence. a largest clique and an optimal coloring of a perfect grapl can be found in

polynomial time. Furthermore, the algorithm of |7 is zebust in the sense of [8]: given the

input graph ¢, it finds a largest clique and an optimal coloring, or says correctly that &
is not perfect; |7 is also the first important paper in the now popular field of semidefinite
programining (sec [9])

This paper is a survey on perfect graphs with an algorithmic Havor. Even though there are
now polynomial time algorithms for recognizing a perfect graph and for finding an optimal
coloring—and a largest cligne-of such a graph. they are not considered fast or efficient.
Our emphasis is on important classes of perfect graphs for which there are fast and etficient

recognition and optimization algorithms. The purpose of this survey is to discuss these classes
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of graphs, named below, together with the complexity of the recognition problem and the
optimization problems. The reader is referred to [10-12] for background on perfect graphs.
Chordal graphs form a class of graphs among the most studied in graph theory. Besides
being the impetus for the birth of perfect eraphs, chordal graphs have been studied in contexts
such as matrix computation and database design. Chordal graphs have given rise to well
known search methods such as lexicographic breadth-first search and maximum cardinality
search. We discuss chordal graphs in Section 28.3.
phs of partially order sets) are also among the earliest

Clomparability graphs (the gra
known classes of perfect graphs. The well-known Dilworth’s theorem — stating that in a par-
tially ordered set, the number of elements in a largest anti-chain is equal to the smallest
number of chains that cover the set—is equivalent to the statement that complements of com-
parability graphs are perfect. Early results of [13] and [14] imply polynomial time algorithms
for comparability graph recoguition. But despite much research, there is still no linear-time
algorithm for the recognition problem. It turns out that recognizing comparability graphs
is equivalent to testing for a triangle in a graph, via an O(n®) time reduction. We discuss
comparability graphs in Section 28.4.

Interval graphs are the intersection graphs of intervals on a line. Besides having obvious
application in scheduling, interval graphs have interesting structural properties. For example,
interval graphs are precisely the chordal graphs whose complements are comparability graphs.
We discuss interval graphs is Section 28.5.

Weakly chordal graphs are graphs without chordless cycles with at least five vertices and
their complements. This class of graphs generalizes chordal graphs in a natural way. For
wealkly chordal graphs, there are efficient, but not linear time, algorithms for the recognition
and optimization problems. We discuss weakly chordal graphs in Section 28.6.

An order on the vertices of a graph is perfect if the greedy (sequential) coloring algo-
rithrm delivers an optimal coloring on the graph and on its induced subgraphs. A graph is
perfectly orderable if it admits a perfect order. Chordal graphs and comparability graphs
admit perfect orders. Complements of chordal graphs are also perfectly orderable. Recogniz-
ing perfectly orderable graphs is NP-complete: however, there are many interesting classes of
perfectly orderable graphs with polynomial time recognition algorithms. We discuss perfectly
orderable graphs in Section 28.7.

An even-pair is a set of two nonadjacent vertices such that all chordless paths between
therm have an even number of edges. If a graph & has an even-pair, then by contracting this
even-pair we obtain a graph G satistving w((G) = w(G’) and x(G) = x(G’). Furthermore, if
(7 is perfect, then so is G, Perfectly contractile graphs are those graphs G such that, starting
with any induced subgraph of & by repeatedly contracting even-pairs we obtain a clique.
Weakly chordal graphs and perfectly orderable graphs are perfectly contractile. We discuss
perfectly contractile graphs in Section 28.8.

Recently, a polynomial time algorithm for recognizing perfect graphs was given in [15].
We give a sketch of this algorithm in Section 28.9.

A graph ¢ is x-bound if there is a function f such that x(&) < f(w(G)). Perfect graphs
are x-bound. Identifying sufficient conditions for a graph to be x-bound is an interesting
problent. It is proved in [16] that a graph is x-bound if it does not contain an even chordless
cycle. One many ask a similar question for odd cycles [17]: Is it true that a graph is x-bound
if it does not contain an odd chordless cyele with at least five vertices? In Section 28,10, we
discuss this question and related conjectures.

We give the definitions nsed in this chapter in Section 28.2.
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28.2 NOTATION

For graph G = (V. E) and « € V. Ng(x) is the neighborhood of « in G; we omit the subseript
G when the context is clear. Let d(z) denote | N

. For S € V, G|S] denotes the subgraph
of G induced by S, and G — S denotes G|V — SJ; for x € V, we use G — z for G — {x}.
w(G) is the number of vertices in a largest clique in G, «(G) is the number of vertices in a

largest stable set in G. x(G) is the chromatic number of . 8(G) is the smallest munber of
cliques that cover the vertices of G. A clique is maximal if it is not a proper subset of another
clique. For A, B € V such that G[A] and G[B] are connected, S C V' is a separator for A
and B provided A and B belong to different components of ¢ — S. Further, S is a minimal
separator for A and B if no proper subset of S is also a separator for A and B. We will also
call a set C' of vertices a cutset if C' is a separator for some sets A, B of V; C is a minimal
cutset if no proper subset, of C' is a cutset.

We use n to refer to |[V| and m to refer to |E|.

In a bipartite graph G = (X, Y, E). X and Y are the parts of the partition of the vertex-set
and F is the set of edges. A matching is a set of pairwise non-incident edges.

A set C' of V is anti-connected if C' spans a connected subgraph in the complement G of
G. For a set X C V, a vertex v is X -complete if v is adjacent to every vertex of X. An edge
is X-complete if both its endpoints are X-complete. A vertex v is X-null if v has no neighbor
in X, |

Cy denotes the chordless cycle with &k vertices. A hole is the O with k > 4. An anti-hole
is the complement of a hole. P, denotes the chordless path with &k vertices. K; denotes the
clique on  vertices. The Ky is someties called a triangle. The complement of a (4 is denoted
by 2K5. The claw is the tree on four vertices with a vertex of degree 3

For problems A and B, A < B wvia an f(m,n) time reduction means that an instance of
problem A can be reduced to an instance of problem B using an algorithm with the worst
case complexity of f(mn,n); A = B via f(m,n) time reductions means that we have 4 < B
as well as B =< A via f(m,n) time reductions.

Let O(n®) be the complexity of the current best algorithm to multiply two nx n matrices.
It is currently known that & < 2.376 [18].

28.3 CHORDAL GRAPHS

Definition 28.1 A graph is chordal (or, triangulated) if it does not contain a chordless cycle
with at least four vertices.

Chordal graphs can be used to model varions combinatorial structures. For example, thev
are the intersection graphs of subtrees of a tree as we will see later. See [19] for applications
of chordal graphs to sparse matrix computations. Chordal graphs are among the earliest

known classes of perfect graphs [3,20,21]. We will now discuss the combinatorial structures
of chordal graphs.

28.3.1 Characterization
Definition 28.2 A vertex is simplicial if its neighborhood is a clique.

Theorem 28.3 [21] A graph G is chordal if and only if cach of its induced subgraphs is a
clique or contains two nonadjacent simpliciol vertices. ]

To prove Theorem 28.3, we need the following two lemmas.

Lemma 28.1 Any minimal cutset of a chordal graph G is a clique.
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Proof. Suppose C'is a minimal cutset of G and A4, A, are two distinct components of G — C.
Further, suppose for x € (' and y € C, 2y ¢ E(G). As C' is a minimal cutset of G, each of

z. y has a neighbor in A;, i = 1.2. Let P, i = 1,2, be a shortest path connecting = and y
in G[A; U C] such that all the internal vertices of P lie in A;. Then, G[V(P) UV (R)] is a
]

hole, a contradiction.

Lemma 28.2 Let G be a graph with a clique cutset C'. Consider the induced subgraphs G, G
with G = GLUG, and GyNGy = C. Then, G is chordal if and only if Gy, Gy are both chordal.

Proof. If GG is chordal. then as G and Gy are induced subgraphs of a chordal graph, they
themselves are chordal; this proves the only if part. For the if part, suppose each of G,
(G5 is chordal, but & has a hole L. Then, L must involve a vertex from each of G| — C,
Gy — C'. Therefore, C' contains a pair of nonadjacent vertices from L, contradicting C' being

a clique.

Proof of Theorem 28.5. The if part is easy: If ¢ is a graph and z is a simplicial vertex of &,
then ¢ is chordal if and only if ¢ — z is. Now, we prove the only if part by induction on the
number of vertices. Let GG be a chordal graph. We may assume & is connected, for otherwise
by the induction hypothesis, each component of ¢ is a clique or contains two nonadjacent
simplicial vertices, and so ¢ contains two nonadjacent simplicial vertices. Let C' be a minimal
cutset of G. By Lemma 28.1, C' is a clique. Thus, ¢ has two induced subgraphs G, G with
= (G UGy and Gy MGy = CL By the induction hypothesis, each G; has a simplicial vertex
= (; — C (since (' is a clique, it cannot contain two nonadjacent simplicial vertices). The

V;

vertices vy, ve remain simplicial vertices of G, and they are nonadjacent. (1

Definition 28.3 For a graph G and an ordering vivs --- v, of its vertices, let G; denote
GHwi, -, vp}]. An ordering 6 = vivy - - vy, of vertices of G is a perfect elimination scheme

(p.e.s.) for G if each v; is simplicial in G;.
Theorem 28.4 [21,22| (7 is chordal if and only if G admits a perfect elimination scheme.

Proof. For any vertex v in a chordal graph G, G — v is also chordal; this together with
Theorem 28.3 prove the only if part. Since no hole has a simplicial vertex, the 4f part

follows.

Corollary 28.1 A chordal graph G Las al most n mazimal cligues whose sizes sum. up to at

most m.

Proof. By induction on the number of vertices of (. Let x be a simplicial vertex of G. Then,
[z} UN(z) is the only maximal clique of G containing x. By the induction hypothesis, G' —z
has at most 7 — 1 maximal cliques whose sizes sum up to at most 7 — d(z). Then, the result

follows.

Definition 28.4 Lel F be a family of nonempty sets. The intersection graph of F is the
graph obtained by identifying cach sel of F with a vertex. and joining two vertices by an edge
if and only if the two corresponding sets have a nonempty intersection.

Theorem 28.5 [23.24] A graph is chordal if and only if it is the intersection graph of subtrees

of a tree.
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Proof. By induction on the number of vertices. We prove the if part first. Let G = (V. E
be a graph that is the intersection graph of a set § of subtrees of a tree T, that is. every
vertex v of V' is a subtree T, of 7', and two vertices v, u € V' are adjacent if and only if
1, and T}, intersect. We may assume G is connected, for otherwise. we are done by the

induction hypothesis. By Lemma 28.2, and the induction hypothesis, we only need prove @
is a clique, or contains a clique cutset. We may assume G is not a clique. and let w. v be
two nonadjacent vertices of &. Then, T, 7T, — 0. Let P

crp be the path in T with
zy € Tyyxp € T, such that all interior vertices of P are not in T, U T,,. Since T'
|

e

is a tree,
P is unique; furthermore, all paths with one endpoint in 7, and the other endpoint in 7.,
must contain all vertices of . Thus, 22 is a cut-edge of T'. Let 8§’ be the set of all subtrees
of § that contains the edge zyay. Then in G, the set ' of vertices that corresponds to the
subtrees of 8 forms a clique. We claim € is a cutset of . In G, consider a path from = to
let the vertices of this path be u = ). t2, ..., v = {}. Some subtree 7, must contain the edge
x1xy (because it is the cut-edge of 7). Thus, the vertex that corresponds to T} is in €. We
have established the if part.

Now, we prove the only if part. Let G = (V| E') be a chordal graph. We will prove that
there is a tree 7' and a family 8 of subtrees of 7' such that (i) the vertices of 7' are the
maximal cliques of G, and (ii) for each v € V', the set of maximal cliques of G containing
v induces a subtree of 7. The proof is by induction on the number of vertices. Suppose
that G is disconnected. Then, the induction hypothesis implies for each component € of &
there is a tree T satisfying (i) and (ii). Construct the tree T' from the trees T} by adding a
new ool vertex r and joining r to the root of each 75, It is easy to see that T satisfies (1)
and (ii). So. G is connected. We may assume & is not a clique, for otherwise we are easily
done. Consider a simplicial vertex v of G. As v is simplicial in &, it is not a cut vertex of
G and therefore, ¢ — v is connected. By the induction hypothesis, the graph G — v is the
intersection graph of a set B of subtrees of a tree Ty satistying (i) and (ii). Let K be a
maximal clique of G — v containing Ng(v) and let #; be the vertex of T that corresponds
to K. If K = Ng(v), then we simply add v to tx to get the tree T' from Ti. Otherwise.
let K" = Ng(v) U {v}. Let T' be the tree obtained from Tx by adding a new vertex fx
and the edge tjlxr. Let Ty be the subtree formed by the single vertex tp.. We construct
S as follows. Add T to S; for each tree T, € B, if T, corresponds to a vertex in Neg(v).
then add the tree 7, U {txtx }; otherwise, add T}, to §. It is seen that (i) and (ii) hold for
T and S. =

28.3.2 Recognition

Given G, an approach to testing whether ¢ is chordal is: fivst generate an ordering o of
vertices of (¢ that is gnaranteed to be a perfect elimination scheme for G when @ is chordal:
then, verity whether o is indeed a perfect elimination scheme for . The first linear-time
algorithin to generate a perfect elimination scheme of a chordal graph is given in [25]; it uses
the lexicographic breadth-first search (LexBES). We present the maximum cardinality search
algorithm for the same purpose.

The maximum cardinality search algorithm (MCS), introduced in !',ffli. is used to construct
an ordering of vertices of a given graph; the ordering is constructed incrementally right te
left (if @ comes before b in the order, then we consider a to be to the left of b). An arbitrary
vertex is chosen to be the last in the ordering. In each remaining step, from the vertices
still not chosen (unlabeled vertices), one with the most neighbors among the already chosen
vertices (labeled vertices) is picked with the ties broken arbitrarily.
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| Algorithm 28.1 MCS

input: graph ¢
output: ordering o = v vy - - - vy, of vertices of G

v, + an arbitrary vertex of &;
for i < n — 1 downto 1 do
v; +— unlabeled vertex adjacent to the most in {viey, v

‘ end for
i =

Theorem 28.6 [26] Algorithm MCS can be implemented to run in O(m + n) time.

Proof. We keep the array set[0] .- set/n — 1] where set[j] is a doubly linked list of all the
nnlabeled vertices that are adjacent to exactly j labeled vertices. Thus, initially every vertex
belongs to set{0]. For each vertex. we maintain the array index of the set it belongs to as
well as a pointer to the node containing it in the sef[s] lists. Finally, we maintain last, the
largest index such that set[last| is nonempty. In the i*" iteration of the algorithm, a vertex in
setllast] is taken to be v; and v; is deleted from sef|last]. For every unlabeled neighbor w of v;,
if w belongs to setli|, then we move w from setli| to setfi - 1]. As each set is implemented as
a doubly linked list, a single addition or deletion can be done in constant time, and hence all
of the above operations can be done in O(d(v;)) time. Finally, in order to update the value
of last, we increment [ast once and then we repeatedly decrement the value of last until
set/last] is nonempty. As [ast is incremented at most 7 times and its value is never less than

1. the overall time spent manipulating [ast is O(n) and we have the claimed complexity. H

Definition 28.5 For vertices . y of graph G and an ordering o of vertices of G, & <g Y

denotes that @ precedes y in O,

Lemma 28.3 [26] Let o be the output of algorithm MCS on chordal graph G. Then, G does
not have a chordless path P = (z = ug)uy -+ up—(ur = y) with k > 2 such that v; <s z,

l<i<k-—1, andz <y y.

Proof. Suppose such a path existed; from all such chordless paths, pick P so that the position
of z in ¢ is as much to the right as possible. Given the logic of the algorithin MCS, as
Up—1 <o T <o Y, U1y € E(G), and 2y ¢ E(G), there must exist a vertex z such that
r <g z, 2z € E(G), and ug- 1z ¢ E(G)). Let j be the largest index less than k-1 such that
u;jz € E(G); such a j exists as xz € E(G). Let P’ be the path zu; - ug—1y. As G is chordal
and P’ has at least four vertices, zy ¢ E(G). Now, whether 2 <4 z <, yholdsor 2 <y y <¢ 2
holds, existence of the chordless path P’ violates the choice of P, a contradiction. il

L

Theorem 28.7 [26] I[f G is chordal, then the output o = vyvs - - - v, produced by the algorithm

MCS is a perfect elimination scheme for G,

Proof. Suppose not, and let 2 be the smallest such that v; is not simplicial in G;. Then, there
exist v; and vy such that v; <, v; <g v, viv; € E(G), vivg € E(G), and vyup € E(G). Then,
) .

the chordless path P = v,;v;v,. contradicts Lemma 28.3.
UiV



714 W Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

Algorithm 28.2 chordal-recognition

input: graph ¢
output: yes when G is chordal and no otherwise

Run algorithm MCS on & to get. @ = 000 - 0y

if o is a perfect elimination scheme for ¢ then
output yes

else

output no
‘ end if

Next, we discuss how to verify in 1int=;q‘ tie |25] whether 0 = vyvs - - v, is a perfect elimina-
tion scheme for G. The key idea in |25/ is that part of the work involved in checking whet her
v; is simplicial in G can be handed over to an appropriate vertex v; such that v; <, v;. In
particular, let v; be the smallest neighbor of v; such that v; <g v;. Let L(y;) = Lo | v; o
and v;u, € E(G)}. In other words. L(v;) is the set of those neighbors of v; that follow v in o.
3 5 - - . —y I A SXTA Y AT RO 3 . e - . S .

If v; is simplicial in G and v; is adjacent to every vertex in L(v;), then u; is simplicial in
(. On the other hand, if either ¢; is not simplicial in G or v; is not adjacent to some vertex
in L(v;) (making v; not simplicial in ;). then o is not a perfect elimination scheme for .
Further, part of the work involved in checking whether v; is simplicial in G can likewise be
deferred to a later vertex.

In the following, the list bba(wv;.) is the list of vertices that v, better be adjacent to: it i
the concatenation of the L(v;) lists handed over to vy by the v;'s preceding it in o.

ey

Algorithm 28.3 pes-verification
input: graph ¢ and ordering o = v vy -+ - v, of vertices of (¢
output: yes when o 1s a p.e.s. for G and no otherwise

for i « 1 to n do
nitialize bba(v;) to an empty list;
end for
for i« 1ton—1do
if v; i not adjacent to some vertex in bba(v;) then
output no;
stop
end if
Let v; be the smallest neighbor of v; such that v; <
L(vy)  {vy | v; <o v and vy € E(G)};
Append L(v;) to bba(v;)
end for

o Ujs

output yes

Theorem 28.8 [25] Algorithm pes-verification can be implemented to run in Ofm +n) time.
Proof. Assmme that the array o[l - - v[n| stores o. In order to check whether v; is adjacent
to every vertex in bba(v;): use a boolean array flag(l]--- flag[n| that is initialized in the
first step of the entire algorithm. Now, mark the neighbors of v; in the array flag. Then.
traverse the list bba(vy) and check for each member of bba(v;) whether the corresponding
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entry in flag is marked. Finally. unmark the neighbors of v; in flag. Thus, this operation
takes Of(|bba(v;)| + d(wv;)) time. As a vertex v hands over an L(vg) list at most once, the
total size of all bba lists is O(m + n) and the overall time spent on this operation is O(m +n).
The rest of the operations can easily be ftuplemented in O(m ++ n) time. ||

28.3.3 Optimization
For a chordal graph. a largest clique and an optimal coloring can be found in linear time
using the combined results in [25,27]. Even the weighted versions of these problems can be
solved efficiently. This will be discussed in the context ol the more general class of perfectly
orderable graphs in Section 28.7.

The known optimization algorithms for chordal graphs use the clique cutset property. For
a general graph, there are polynomial time algorithms [28,29] to find a clique cutset if one
exists in the graph. [28,30] discuss optimization algorithm for classes of graphs, more general
than chordal, using the clique cutset decomposition.

28.4 COMPARABILITY GRAPHS

Definition 28.6 A graph &G — (V. E') is a comparability graph if there is a partially ordered
set (P, =) such that' V' = F and two vertices of G are adjacent if and only if the corresponding

clements of P are comparable in the relation <.

Definition 28.7 An orvientation of a graph is transitive if whenever a — b, b — ¢ are arcs,

&g —» C %5 a7t 4rc:

- for vertices a, b, we

An ordered graph (7. <) correspoids to an orientation in a natural w

orient a — b if a < b. Now, we can redefine the notion of a comparability graph as follows.

Definition 28.8 A graph is o comparability graph if it adnmits an orientation that is both

acyclic and transitive.

28.4.1 Characterization
Several theorems on comparability graphs have become folklore. We start with a classical
theorem of [13] that as we will see later implies a polynomial time algorithin to recognize a

comparability graph.

Theorem 28.9 (13| If a graph admits o transitive orientation, then it admils an acyclic and
E

transitive orientation.

Definition 28.9 A subset M of vertices of a graph G = (V, E) is a module if any vertex
outside of M s cither adjacent to cvery vertex in M or adjacent to no vertex in M. Trivially,
lx} for any z € V, and V' are modules. Module M is nontrivial if |M| > 2 and M C V.

To prove Theorem 28.9. we need the following.

Theorem 28.10 [13] If a graph admits a cyclic transitive orientation, then it contains a
nontrivial module.

a3y
Proof. Let G be a graph and let (¢ be trausitive orientation of G containing a directed cycle C',
We may assume C' is a shortest cycle and thus chordless. Since ¢ is transitive, ' has length
three. We may assume G has at least four vertices, for otherwise the theorem is trivially
true. Let the vertices of ' be a. b, ¢ in the eyelic order, with a = b,b — ¢, ¢ — a. A vertex x
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outside €' cannot have exactly one neighbor in €', for otherwise = and some two vertices in €'
violate the transitivity of (7. There must be a vertex v adjacent to exactly two vertices of C
for otherwise ' is a nontrivial module of G. We may assume v is adjacent to b, ¢. Let X be
the set of vertices that are adjacent to b, ¢ such that X is anti-connected, a,v € X, and X is
maximal with respect to this property. Since X is anti-connected, and a —

rb,c — a. it follows
that every # € X has x — b, ¢ — z. We may assume X is not a module of &, for otherwise

I

we are done. Thus, there is a vertex w ¢ X such that A = N(u)N X and B = X — 4 are
not empty. As X is anti-connected, there are vertices + € A, &' € B with zg! ¢ E(G). Vertex
v, b, c} violate the transitivity of ¢4

,b, ¢y violate the transitivity of G. The
maximality of X means u cannot be adjacent to both b and c. \\(‘ may assume ub € E(G)
ue & E(G). Now, {u,b,z'} or {u, b, c} violates the transitivity of (r.

u must be adjacent to b, or ¢, for otherwise {u

Lemma 28.4 Let G be a graph with a nontrivial module X and x be a vertex in X . Let G
be the subgraph of G induced by (V(G)— X )U{x}, let Gy be the subgraph of G induced by X.
Then G is a comparability graph if and only if both Gy and Gy are.

Proof. We obviously need only (, prove the if part. Assume both (,\ and Gs admit acyelic
transitive orientations (rl and (1) An acyclic transitive orientation (r of G can be constructed

as follows. Cousider adjacent vertices a, b of G. If a — b is an arc in Gy or G, then let o — b

be an arc of ¢. Otherwise, we may assume a € G — =, be \,, A a— zis an arce uf G,.
then let @ — 6 be an arc of (r, olse let b — a be an arc of G, It is easy to verify that G is

an acyclic transitive orientation.

(=i
Lemma 28.4 implies the following.
Corollary 28.2 A minimally noncomparability graph cannotl contain a nontrivial module. W

Proof of Theorem 28.9. We prove by contradiction. Let G be a graph such that e 'ery tran
sitive orientation of G is cyclic. Therefore, G is not a comparability graph, and so @ con-
tains an induced subgraph H that is minimally noncomparability. Therefore,
orientation of H is cyclic. By Theorem 28.10
Corollary 28.2.

every transitive
H contains a proper module, contradicting

|
Definition 28.10 Let G = (V. E) be a graph. The corresponding knotting graph is given
by K|G)| = (Vi, Ex) where Vic and Ex are defined as follows. For each vertex v of G Fhety
are copies vy, vy, ..., v;, in Vi, where v, is the number of components of f”N( v)]. For eacl
edge vw of E, there is an edge viw; in Ex, where v [s contained in the jth component of
G[N(w))) and w is contained in the ith component of G N(v)].

An illustration of the knotting relation is shown in Figure 28.1. It is easy to see that if (3 is

a comparability graph, then its knotting graph K (() is bipartite. The converse is also true.

DQ

Figure 28.1 Graph and its knotting graph.
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Theorem 28.11 [14] A graph is a comparability graph if and only if its knotting graph is
]

bipartite.

A characterization of comparability graphs by forbidden induced subgraphs is given in [14]
(see [31] for an English translation of [14]).
Definition 28.11 A sequence 0 = {yiWiya. .. yon1Wan1y1} is an asteroid, more ezactly

a (2n + 1)-asteroid, if the y; are pairwise distinct vertices, each Wi is a path with endpoints
Yis Yir1, and yi has no neighbor in Wi, (subscripts are taken modulo 2n + 1),

Theorem 28.12 [14] A graph G is a comparability graph if and only if its complement G

contains no asteroid.

By characterizing all minimal asteroids, a list of all minimal non-comparability graphs can
be found.

Theorem 28.13 [14] A graph G is a comparability graph if and only if G does not contain

as induced subgraphs any of the four graphs shown in Figure 28.2 or the complements of the

14 graphs shown in Fiqure 28.3. [ |

2)1 ) 2

B v/
I2n+1b——ad1

N

Coppy (12 2)

' % 3
\

bo
A

2n'o—al |

2n—1@

Gy, (123)

(9———\i ——i

Figure 28.3 Fourteen graphs containing a 3-asteroid.
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The reader may verify that the graphs in Ficure 28.2 have nonbipartite knottine o }
; 2 131! n rapns, arne
the eraphs in Figure 28.3 contain a 3-asteroid.

Definition 28.12 Given a partial order (P, =), a chain is a sel of

pairwise comparable
elements, an anti-chain s a set of pairwise incomparable elements.

A proof of the following well-known theoremn is presented later.

Theorem 28.14 |4| In a partially ordered set (P, <), the size of a largest anti-chain is equal
to the smallest number of chains needed to cover all elements of P, w

Let (P, =) be a partial order, and let ¢ be the transitive u]H ntation of the comparability
graph G of (P, <). Because of transitivity, a directed path of G induces a ¢ lique. Thus. a chain
of P corresponds to a clique of . And, an anti-chain of P corresponds to a stable set of (3
Thus, Theorem 28.14 is equivalent to the statewent that the complements of comparability
graphs are perfect.

28.4.2 Recognition

Consider the problem of determining whether a given graph & is a comparability graph.
Equivalently, the problem asks if G can be oriented so that the resulting directed L"I;lpll te
acyclic and transitive. First, we consider an algorithun for the problem with the complexity
of O(mn). Then, we discuss a more efficient algorithim. '

Suppose G is a comparability grap h, wy is an edge of ¢, and sonle transitive orientation
G of G contains = — y. Then, reversing the direction of every arc in G also vields a transitive
orientation of G. Therefore, if we were to test whether ¢ admits a transitive orientation. i
is enough to pick an arbitrary edge zy of ¢ and determine whether there exists a transitive
orientation of ¢ that contains x — y.

Suppose xyz is a Py of G If a transitive orientation of & contains r — ¥, then it must
contain z — y also; in this situation, we say that & — y forces = — y. Now. the forced choice
of z = y might in turn force the orientation of some other edges. The implication class of

— y consists of all the arcs that are forced, in one or more steps, by the initial choice of
v — y. Clearly, for some edge uw, if the implication class of = — y contains u — ¢ as well
as v — wu, then GG cannot be a comparability graph. Conversely, it can be shown [11] that if
the implication class of x — y does not contain u — v as well as v — u, for any (;('lgp "’
then all the edges oriented thus far can be deleted from &, and the process can be repeated
on the remaining graph until it has no edges left,

Theorem 28.15 [11]| Algorithm comparability-recognition-1 is correct and it can be imple-
mented to run in O(mn) time. H

Algorithm comparability-recognition-1 produces an acyclic transitive orientation when the
input graph is a comparability graph. Since the proof of its correctness is involved, we will
not give it here. In this context. we note Theorem 28.9 already implies a simple polyno-
mial time algorithm for recognizing comparability graphs: a graph & is a comparability
— y does not contain both
u — v and v — w for some vertices u, v. Since the number of P; of a graph is O(nm
(cach edge can be extended to at most n Pq). it is not difficult
tion classes of GG can be enumerated in Of

O(nm) time.

graph if and only if for each edge ry. the implication class of »

to see that all implica-
nin) time, and so this simple algorithim runs in
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Algorithm 28.4 comparability-recognition-1

input: graph ¢
output: yes when G is a comparability graph and no otherwise

VL
while (& has edges left do
Pick edge zy and orient it = — y;
Enumerate the implication class D; of 2 — y:
if some u — v and v — u are in D; then
output no;
stop
end if
Let E; be the set of underlying edges of members of D;;
== 1
end while
output yes

Suppose we had an algorithm that can transitively orient a given comparability graph. Then,
we can combine that with an algorithm to verify whether a given orientation of a graph is
acyclic and transitive to obtain an algorithm to recognize comparability graphs. This is the

basis for the algorithm comparability-recognition-2.

| Algorithm 28.5 comparability-recognition-2

input: graph G
output: yes when G is a comparability graph and no otherwise

Run on G an algorithm for transitively orienting a comparability graph to obtain the

directed graph H;
if H is acyclic and transitive then
output yes
else
output 7o
end if

First, we consider the second step of the algorithm comparability-recognition-2, where it is

|

verified whether a given directed graph H is acyclic and transitive. The acyclicity of H can
e verified in linear time nsing standard search algorithms. Having done that, by considering
cach P3 of H, one can easily verify in O(nm) time whether H is transitive. A faster algorithm
~an be derived using multiplication of Boolean matrices. The following is folklore.

Theorem 28.16 [t can be verified in O(n®) time whether a given directed acyclic graph G
is fransitive.
Proof. Let A be the adjacency matrix of . Set each entry on the main diagonal of A to 1.

where A? is computed via multiplication of

Then, G is transitive if and only if 4 = A?
Boolean matrices.

In contrast to the verification step, a given comparability graph can be transitively oriented
in linear time [32]. Next, we discuss the ideas behind the algorithm.
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28.4.2.1 Transitive Orientation Using Modular Decomposition

The overall idea of the algorithm is to first decompose the given comparability graph using
a technigque called modular decomposition, store the result of the decomposition using a
unique tree structure, and then orient the edges of the graph via a post order traversal of
the decomposition tree. We note that modular decomposition of graphs in general has many
other applications.

Suppose M is a nontrivial module in graph & — (V| £). Then, G can be decomposed into
Gy = GV — M U {x}] and Gy GM|, where x is any vertex in M. By Lemma 28.4. G
is a comparability graph if and only it /) and G5 are. Therefore, the notion of modules is
directly relevant to the problems of recognizing comparability graphs and finding a transitive
orientation of a comparability grapli. Lemma 28.4 shows when & is a comparability graph.
it is easy to construct a fransitive orientation of & from transitive orientations of ¢, and
(. Therefore, when G is a comparability eraph that has a nontrivial module, one can find
a transitive orientation of G by recursively solving the problem on Gy and Gy; thus. the
problem essentially reduces to finding a transitive orientation of a comparability graph that
has no nontrivial modunles. In this case, the problem is solved nsing the fact [1 1] that such a
oraph admits a unique transitive orientation (i.e., the transitive orientation and its reversal
are the only possible ones). The notion of modular decomposition of a graph, described next.
is a systematic procedure to decompose a graph into modules and record the result
unique tree structure.

as a

28.4.2.2 Modular Decomposition

The graph is decomposed recursively into subsets of vertices each of which is a module of the
graph. The procedure stops when every subset has a single vertex. The result is represented
as a tree.

Definition 28.13 A module which induces a disconnected subgraph in the graph is a parallel
module. A module which induces a disconnected subgraph in the complement of the graph is
a series module. A module which induces a connected subgraph in the graph as well as in the
complement of the graph is a neighborhood module.

If the current set () of vertices induces a disconnected subgraph, @ is decomposed into its
components. A node labeled P (for parallel) is introduced, each component of ) is deconi-
posed recursively, and the roots of the resulting subtrees are made children of the PP node. If
the complement of the subgraph induced by current set () is disconnected. @ is decomposed
into the components of the complement. A node labeled S (for series) is itroduced. each
component, of the complement of () is decomposed recursively, and the roots of the resulting
subtrees are made children of the S node. Finally, if the subgraph induced by the current
set. ¢ of vertices and its complement are connected, then @ is decomposed into its maximal
proper submodules (a proper submodule M of ) is maximal if there does not exist module
M’ of Q such that M ¢ M’ < Q); it is known [14] that in this case, each vertex of ) belongs
to a unique maximal proper submodule of (). A node labeled N (for neighborhood) is intro-
duced, each maximal proper subimodule of () is decomposed recursively, and the roots of the
resulting subtrees are made children of the N node. A graph and its modular decomposition
tree are shown in Figure 28.4.

Theorem 28.17 [32] The modular decomposition tree of a graph is unique and it can
constructed in O(m + n) time.

I
L
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10 9 10
Figure 28.4 Graph and its modular decomposition tree.

28.4.2.3 From the Modular Decomposition Tree to Transitive Orientation

Definition 28.14 Lel M be the module corresponding to a node of the modular decompo-
sition tree. The quotient graph of M is the graph obtained as follows: take a representative
vertex of the graph from the subtree rooted at each child of M in the decomposition tree, and

then construct the subgraph induced by the set of chosen vertices.

We note that the choice of the representative vertex is irvelevant. The reader is referred to
Fioure 28.5 where the quotient graph of the root node of the decomposition tree in Figure 28.4
is shown. Vertex v; corresponds to the subtree containing the representative vertex i of the
!_:Ifi_].’!l.

Let us now consider the problem of transitively orienting a comparability graph, given its
modular decomposition tree T'. We do a post order traversal of T'. Suppose we are at node D
of 7" and all the subtrees of D have already been processed (and hence any edge of the graph
with both endpoints in the same subtree of D is alreacy oriented), our goal is to orient any
edge of the graph whose endpoints are in different subtrees of D. In order to accomplish this.
we construct the quotient graph A of D. We then transitively orient H. Suppose z, y are
vertices of the graph that are in different subtrees of D such that v; corresponds to the subtree
of D containing @ while v; corresponds to the subtree containing y. We add x — y to the
rransitive orientation of the graph if and only if v; — v; is in the transitive orientation of H.

For example, consider the (ransitive orientation of the quotient graph shown in
Fioure 28.5. As it contains vy — vy, cach of 4 — 2,5 — 2. 4 — 3. and 5 — 3 will be
added to the transitive orientation of the graph.

The remaining issues to be addressed are construction of the quotient graphs and finding
a transitive orientation of each of the quotient graphs. It is easily seen that the sum of the
sizes of all the quotient graphs is O(m + n). However, this does not automatically imply
that they can all be constructed efficiently. It is shown in [32] that all the required quotient
graphs can be constructed in O(m 4+ n) time. Now, let us consider the problem of transitively
orienting a quotient graph. The quotient graph of an S node is a complete graph; in this case,
we can take any permutation 7 of the vertices and orient the edges so that 7 is a topological
sort of the resulting orientation. The quotient graph of a P node has no edges.

Now, let H be the quotient graph of an N node. Clearly, H itself does not have any
nontrivial modules. Therefore, as noted eavlier, I admits a unique transitive orientation.

L 4 —0 L ¢ PO
vy vy vy Vip

Figure 28.5 (QQuotient graph of the module corresponding to the root of the tree in Figure 28.4
and its transitive orientation. v, represents {1}, vz represents {2, 3}, vy represents {4, 5},

and wvig represents {6.7,8,9,10}.
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The idea of vertex partitioning is employed in (32 to transitively orient H in linear time
and we explain this next. Suppose we are given a partition of V(H) such that for blocks X
and Y of the partition every edge of H with an endpoint in X and another in Y is already
oriented in a way consistent with some transitive orientation of H (however, an edge with
both endpoints inside a block may not yet be oriented). Now, suppose u € X is adjacent to
some vertices in ¥ and also is nonadjacent to some vertices in Y. Then, we can split ¥ into
Y] (neighbors of u) and Y5 (nonueighbors of ) and replace the block Y of the partition with
Y7 and Y. Further, for ¢ € Yy and w € Y, such that v and w are adjacent, as vvw is a P
and the edge wo is already oriented, orientation of the edge vw is forced. In other words. we
can now orient every edge of H with an endpoint each in Y] and Y5, As a vesult. we would
have more blocks in the partition satisfying the property that any edge with endpoints in two
different blocks of the partition is already oriented (and any edge with both endpoints in the
same block may not yet be oriented). Observe that if a block Y had more than one vertex.
then there must be a vertex in a block different from Y that splits Y for otherwise. ¥ will
be a nontrivial module in H. Theretore, as /' contains no nontrivial modules, the process
will terminate with each block containing exactly one vertex and all the edges in H will be
oriented. The ouly remaining issue is finding the initial partition. It is shown in [32] that a
source vertex s of a transitive orientation of H can be found in linear time. ;1g;1i11. using a
version of vertex partitioning. Once s is found, we can start with X' = {s} and ¥ = V(H)-X

as the blocks of the initial partition, with any edge incident on s oriented away from s.
Theorem 28.18 [32] A transitive orientation of a comparability graph can be found in
O(m + n) time.

Corollary 28.3 Comparability graphs can be recognized in O(n®) time.

28.4.2.4 How Quickly Can Comparability Graphs Be Recognized?

Next, we consider the feasibility of recognizing comparability graphs in better time than
O(n®).

Definition 28.15 A dag is o directed acyclic graph.

An h2dag G = (XY, Z, E) is a dag (of height two) in which {X )Y, Z} is a partition of
the set of vertices of G, E is the set of arcs of G cach of X\ Y, Z is a stable set, arcs between
X andY are oriented X to Y, arcs between'Y and Z are orviented Y to Z, and arcs between
X and Z are oriented X to Z. Further, X = {z; |1 <i<|X|} Y ={yi |1 <i < Y|}, and
Z={z|1<1<|Z|}.

In a tripartite graph G = (X,Y. Z. E), {X,Y, Z} is a partition of the set of vertices of G.
E is set of edges of G, and each of X, Y, Z is a stable set.

Consider the following problems:

Problem-Comparability

Instance: Graph G.

Question: Is G a comparability graph?
Problem-Transitivity

Instance: dag G.

Question: Is ¢ transitively oriented?
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Problem-h2Transitivity
Instance: h2dag .
Question: Is G transitively oriented?
Problem-Triangle
Instance: Graph G.
Question: Does G contain a triangle?
Problem-tripartiteTriangle
Instance: Tripartite graph G.
Question: Does ¢ contain a triangle?
Lemma 28.5 [32] Problem-Comparability = Problem-Transitivity via an O(m + n) time
reduction.
Proof. Follows from Theorem 28.18. =
Lemma 28.6 [33] Problem-Transitivity < Problem-Comparability via an O(m + n) time
reduction.

Proof. Let G = (V, E) be the given (LLU \x1th |E| = 1. Construct graph H as follows: let

X ={z;|ieV})LY ={y]ieV} and 2 | ¢ eV }. Then, V(H) = {t}JuXUYUZU{s}
and E(H) = {tz; | z; € X}U{zs | z; € /f} {111/, |t = j € E}U{yiz; | i — j € E}U{2;z; |
—= LA @

In other words, A has two special vertices ¢t and s and a copy in each of X, Y, and Z for
every vertex i € V. Corresponding to every arc i — j in G, H has three edges. Finally, ¢ is
adjacent to every vertex in X and s is adjacent to every vertex in Z. Next, we verify that G
is transitive if and ouly if A is a comparability graph.

Suppose G is U'un«iriwlv oriented. Construct an orientation of H as follows: for every w;,
add the arc x; — t. For every z;, add the arc s = z. If i — j is an arc in G, then add the
arcs T; —> Ui, ¥i — 2, and r; — ::.,v. [f the resulting orientation had a violation of transitivity,
then we must have z; — y; — 2 (as only a vertex in Y can have an incoming as well as an
outgoing arc), but no x; — z;. This would then imply that & has 4 — j — k& but no i — &,
making it 110‘r, transitive. Thus, the resulting orientation of H is transitive and therefore, H
is a comparability graph.

Now, suppose H is a comparability graph and consider a transitive orientation of H.
As the reversal of a transitive orientation is also a transitive orientation, we can assume that
for some z;, we have the arc z; — ¢. This forces the arc z; — ¢, for every 2; € X. This in
turn forces every edge between X and Y to be oriented from X to Y and also forces every
edge between X and Z to be oriented from X to Z. As [£| > 1, there must be some edge
xiz; in H and hence the arc z; — z; must be in the transitive orientation of H. This forces
the arc s — z;, which in turn forces the arc s — z;, for every z; € Z. Finally, as there cannot
be a directed path with two arcs from s to a vertex in Y, every edge between Y and Z is
oriented from Y to Z. In order to verily that & must be transitive, suppose G had i — j — k.
Then, H has the P z;y,z;, and given the discussion above, the transitive orientation of H
has z; — y; — zp, and hence has the are x; — 2z also. Therefore, H has the edge z;z;, and

siven the construction of H, G has the arc 1 — k.



724 W Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

Corollary 28.4 Problem-Comparability

Problem-Transitivity via Ofm 4
reduclions.

n,) time

Lemma 28.7 [33| Problem-Transitivity

Problem-h2Transitivity via an Ofm
reduction.

+n) time

Proof. Let G = (V. E) be the given 111

Construct h2dag H (X.,Y, Z, F) as follows:
X {z; lie VLY = {y|i

/ {‘,,':’.’_:\}A.‘l!iflll‘ {x; = [

Vi —* Y5 T —¥ b I =
EYU{yi =z |i > je E}U { — z; |1 — j € E}. It is seen that G has violation
i — § — k of transitivity il and only if H has ‘“’lf"‘“'l xrp — y; —» 2k of transitivity. L

Note that we trivially have Problem-h2Transitivity = Problem-Transitivity.

Lemma 28.8 (34| Problem-Triangle = Problem-tripartite Triangle via an Ofm + n) time

reduction,
Proof. Given G = (V, E) construct the tripartite graph H (X,Y,Z, F) as follows: X =
(e[ i€ V)Y =i |i€ V), 2= (ali€ VY, and F = (owyoam | ij € B} {uizg, 052

ij € EYU {&;zj, ;2 | ij € E}. As H is a tripartite graph, any triangle of
a vertex from each of X, Y, and Z. It is then seen that {i

ouly if {z;, y;, z;.} form a triangle in .

H must involve
..k} form a triangle in @G if and

2
Note that we trivially have Problem-tripartiteTriangle = Problem-Triangle.
Lemma 28.9

2 r £t . 7 - v (o u . ay. .3\ -
34| Problem-h2Transitivity = Problem-tripartite Triangle via an O(n=) tim:
reduction.

Proof. Let G = (X,Y, Z, E) be the given h2dag. Construct tripartite graph H = (X, Y, Z, F)
where F = {zy; | z: — ;_,- € B Uiz | i = 25 € EFU{ziz; |z — 256 SIS
seen that a; — y; — zp, Is a violation of transitivity in G if and only if {x;, y;, 25} form a
triangle in H . -

Lemma 28.10 [34] Problem-tripartite Triangle = Problem-h2Transitivity via an O(n=
reduction.

) time
Proof. Let G = (X,Y,Z, E) be the given tripartite graph. Construct the h2dag H =
(X,Y,Z,F) where F = {&; = y; |z € EYU {5i = 25 | iz; € E} U {a;
It is seen that{w;, y;, zx} form a triangle in & if and only if
transitivity in H.

— 2 | zz; € E}.
T; = Y; — 2k is a violation of

i)
Corollary 28.5 Problem-tripartite Triangle =  Problem-h2Transitivity wvia  O(n*)  time
reductions. =
Thus, we have the following theoremn.
Theorem 28.19 Problem-Comparability Problem-"Transitivity = Problem-Triangle
O(n?) time reductions. 4

We note that the current best algorithm to test for a triangle in a graph with Q(n*) edges
runs in O(n®) time.
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28.4.3 Optimization
In this section, we consider the problems of finding a largest clique, a minimum coloring, a

largest stable set, and a minimum clique cover of a comparability graph.

Theorem 28.20 A largest clique and a minimum coloring of a comparability graph G can

be computed in Olm + n) time.

' = - . . .,
Proof. Let GG be a transitive orientation of G; t

- o = .
rom Theorem 28,18, ' can be computed in
s . : o ; : g
Olm -+ 1) time. Observe that a directed path of & corvesponds to a clique of G and vice

versa.

For a vertex v of &,
height(v) = 1 + max{height(w) | v — w is an arc in G}, Now, height(v) can be computed

let height{v) = 0 if there is no arc in Z\ leaving v; otherwise,
in O(m + n) time for all the vertices in G as follows: compute a topological sort R of
G . then process the vertices of G by scanning R once from right to left (from largest to
smallest), and compute height(v) when vertex v is processed. During that computation, for
every vertex v that has an arc leaving it in G, we also record ne zt(v) = vertex w such that
height(v) = 1 + height(w).

Then, a longest directed path in . which corresponds to a largest clique of G, can be
found starting from a vertex v of largest height, following to vertex next(v), and repeating the
process. Further, by assigning color A to all the vertices with height %, a minimum coloring
of G can also be found. That the coloring found is optimal follows from the fact that the

number of colors used equals the size of a largest clique of G.

Consider the following problems:

Problem-bipartiteStable
Instance: Bipartite graph G and positive integer k.
Question: Is there a stable set of size at least £ in G7
Problem-bipartiteMatching

Instance: Bipartite graph ¢ and positive integer k.

' Question: Is there a matching of size at least & in G7

Problem-comparabilityStable

Instance: Comparability graph ¢ and positive integer k.

Question: [s there a stable set of size at least & in &7

Theorem 28.21 [5.35| In a bipartite graph, the size of a largest matching equals the size of

a smallest vertexr cover.
The proof of the following theorem is adopted from |36].

: = » . : : - .
Theorem 28.22 [37,38] Let G be a transitive orientation of the comparability graph G =
V. E). Construct bipartite graph B = (X, Y, F') where X = {a' |z e V}, YV = {2" |z € V},
and F = {z'y" | © — y is an arc in G}. Suppose M is a largest matching in B. Then,

x(G) = O0(G) =n — |M| where n = |V|.
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Proof [36,38]. For =,y € V with «'y" € M. refer to y as successor of x

c, and to x as predecessor
of y. As ‘,\,[ is a 111;1,[(1111[1;};_, every 2 € V' has at most one predecessor and at most one successor

Every u € V defines a unique sequence K, U gy ooy U0, U1, U = U, Ul U, e gl
where ;.4 is successor of w;, w; ) is predecessor of w;. u_, has no predecessor, and u, has
no successor. It then follows from transitivity of ¢ that whenever 7 < j, we have the arc
it ] (}'. This in turn implies that no two elements of A, are the same.

Clearly, every 2'y" € M appears as u;'u; " for some w;, u;y; In a specific sequence A,,.
Let the total number of such sequences be & and the length of the 7th sequence be r;. Then.
Z:f‘ r; = n and X’,",:I(/'/ —1) = |M]|. It then follows that k = n—|M|. As each K, is a chain
in (i and hence corresponds to a clique of . we have that 8(G) < k.

In order to show that 8(G) > k also holds, we construct a stable set in G of size b based
on M. From Theorem 28.21, B has a vertex cover R of size |M]. ]_.:‘_t o] eV |z &R
aud 2" ¢ R}. Note that for x.y € S. the arc » — y cannot be in G'; otherwise, as ' € R
and ',” ¢ R, x'y" € F is not covered by K. Therefore, S is a st \Me‘ set of G and lhience
0(G) = |5]. However, as cach = € R prevents only one vertex of ¢ from being a member

of b |%| > — \]ll

. and h(l:'z\[(m‘ S| > k. llul~‘ we lm\(' @\(r) = |b| > k also.
Fillﬂll‘\/, as 0(G) > «(G) (md oc(( ) = |S] also hold, we have k& > 8(G) = «(G) = |S|
and we conclude that 0(G) = «(G) = k = n — |M]. =

Theorem 28.23 Problem-bipartiteStable = Problem-bipartite Matching = Problem-compara-
bilityStable via O(m -+ n) time reductions.

Proof. That Problem-bipartiteStable = Problem-bipartiteMatching follows from Theorem
28 21. As every bipartite graph is a comparability graph, we have Problem-bipartiteStable
 Problem-comparabilityStable. That Problem-comparabilityStable < Problem-bipartite-
_\L\, tehing follows from Theorem 28.22. =

s P 2.5 N T .

Given the current best time bounds of O(n'? /i /logn) [39] and O(n*® /logn) 40| for com-
puting a largest matching in a bipartite graph, we have the following:

Corollary 28.6 A largest stable s

set and a smallest clique cover of a comparability graph ca
. . 5 1 3 .> .
be computed in O(min{n'®/m/logn, n*”/logn)) time. b7y

Now, we present a proof of Theorenn 28.14.
38]. Construct transitive orientation & of the comparability
~<) by adding arc @ — y to G if and only if © < y. As a chain of (P, <) corresponds

to a clique of G and an anti-chain of (2, <) corresponds to a stable set of G. the proof follows
I}
from Theorem 28.22. ®

Proof of Theorem 28.3
G of (P,

sTaph

28.5 INTERVAL GRAPHS

Definition 28.16 Graph G = (V. ) is an interval graph if every v € V' can be mapped
an interval I, on the real line such that xy e E if and only if I, N1, # . When G is a
interval graph, the collection {L, | v € V'} is an interval model for G. Forv € V', vr and v,
denote the left and right endpoints. respectively, of I,..

It is known that in an interval model for an interval graph, the endpoints can be assumed t
he distinct. Thus, the 2n endpoints can be represented by the integers 1 through 2n. Further.

for a cost of O(n) using bin-sort. one can assume the endpoints are given in increasing order
o < L
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28.5.1 Characterization

Theorem 28.24 (11| For a graph G = (V. E) the following statements are equivalent:

i. G is an interval graph.

ii. G is chordal and G is a comparability graph.

There is an ordering R of the maximal cliques of G such that for everyv € 'V, the

maximal cliques containing v are consecutive in K.

iii.

Pr 'r';r;f.

- (ii) Let {/, | v € V} be an interval model for &G. Suppose vjvovy -, k > 4 is a

(i) = J
chordless cycle in &7. For 1 < i < k — 1, let p; be a point in [, N7, ,. Given that
vyvg -+ - v 18 a chordless path, we can assume p; < ps < -+ < pr_y. Then, it is

impossible for [, to intersect [, . Therefore, G is chordal.

For z,y € V, xy ¢ £ if and only if either xz < yy, holds or yp < xy, holds. For ay ¢ F,
orient z — y in G if zp yr. [t is easily verified that the resulting orientation is
acyclic and transitive. Therefore, ¢ is a comparability grapl.

ii) = (iii) Suppose A and B are distinct maximal cliques of G. Then, there must exist
z € A and y € B such that xy ¢ F; otherwise, AU B is also a clique of . Now,
consider a transitive orientation of G. For w, 2 € A and y, z € B such that 2y ¢ E and
wz ¢ E, if we have  — y in G, then we must have w — z in G. Suppose not, and we
have z — y and »w in . Clearly, w ¢ x and y # z or else, there is a violation of

transitivity in . Further, as (¢ is chordal, either 2z ¢ E or wy ¢ E; say, vz ¢ E. Then,

there is no way to orient the edge zz in G to avoid a violation of transitivity. Thus, the

edges of G that go across A, B are all oriented either from A to B, or from B to A.

Now, for distinet maximal cliques A, B, and C' of G and w € A, 2,y € B, and z € C,
suppose we have w — = and y — z in G. Then, we claim wz ¢ E and w — z in G.
Suppose not. As G is transitively oriented, we can assume x # y. Further, zz € E and
wy € [ otherwise, we have @ — = or w — y. and the transitivity of G is violated.
Now, wyrz is a chordless cycle in &, So, we have wz ¢ E. Now, we must have w — z

in G or else, z — w — « is a violation of transitivity in G.

Now, consider the ordering ‘R of the maximal cliques of (¢ where A < B in R if there

exist # € A and y € B such that we have @ — v in G; from the claim above, such a
total ordering exists. In order to verify that R is the required ordering: for maximal
cliques A, 5, and C' with A < B < C'in R, suppose z € A, r € C,but t ¢ B. As B
is a maximal clique and = ¢ B, there must exist y € B such that ty ¢ E. As A < B
in R, we must have 2 — y in (. However, this contradicts 5B < €' which dictates that
we have y — z in G.

(iii) = (i) Consider an ordering R = KK, --- K, of the maximal cliques of ¢ as stated in
the theorem. For v € V. let A, Le the left most maximal clique in R that contains

v. Similarly, let /7, be the right most maximal clique in R that contains v. Set [, =

wp, vp|. It is easily verified that {f, | v € V'} is an interval model for G. i

Definition 28.17 A set {w,y. 2z} of pair-wise nonadjacent vertices of G is an asteroidal

triple if there ewists a path between any two of them that does not involve a neighbor of the
Hird.

Theorem 28.25 [42]  is an interval graph if and only if G is chordal and G does not
@

contain an asteroidal lriple.
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28.5.2 Recognition

As chordal graphs and complements of comparability graphs can be recognized in polynomial
time, a direct consequence of Theorem 28.24 is that interval graphs can be recognized in
polynomial time; further, an interval model for an interval graph can also be constructed
in polynomial time. The first O(m + n) time algorithm to recognize interval graphs was
given in [43] and we describe the ideas employed there next. Given input graph G = (V, E).
we first test whether G is chordal (recall that every interval graph is chordal). If G is chordal.
then we use the algorithms in [25.27| to generate all the maximal cliques of G; by Corol-
lary 28.1 G has at most n maximal cliques whose sizes sum up to at most m. The remaining
task is to determine whether an ordering of all the maximal cliques of G, as stipulated in
Theorem 28.24, exists. In [43] the data structure PQ-tree was used to solve the following
problem in O(m + n) time: given a finite set X with [ X| = n and a collection Sy, - -, Sg of
subsets of X with |Si| + -+ + |Sg| = m, determine if there is an ordering of members of X
such that for each 9; the members of 5, occur consecutively in the ordering. In order to use
this algorithm for the recognition of interval graphs. we just have to let X = V and let the
set of maximal cliques of the chordal graph &' to be the collection S; of subsets.
Subsequently, several linear-time algorithins have been designed to recognize interval
graphs; some of these algorithms employ some variation of PQ-tices where as the rest avoid
the use of such data structures. In [44], the algorithmn from [43] is simplified with the use of
modified PQ-trees. An algorithm that relies on modular decomposition of chordal graphs is
given in [45]. We remarked in the section on chordal eraphs that the algorithm LexBES [25]
can be used to generate a perfect elimination scheme of a chordal graph. An algorithm to
recognize interval graphs using LexBES is given in 16|. The final algorithm that we comment
on relies on the following characterization of inferval oraphs which has been observed by
multiple researchers.

Theorem 28.26 [47-49] G = (V. E) is an interval graph if and only if vertices of G can b
ordered vivy - - - vy, such that for v;, vy, vp with i < j <k, if vivp € E then vju, € E.

Proof. For an interval graph ¢ with an interval mnodel where the endpoints are distinet, an
ordering of vertices of G according to the right endpoints of their intervals gives the desired
ordering. Conversely, given such an ordering, one can derive an interval model for G by taking
the interval for v; to be [‘Ui,,--, v;] where v;, is the left most neighbor of v; in the ordering. M
In [50], a (very complicated) linear-time algorithm is given which employs six passes of
LexBES with various rules for breaking ties when choices have to be made. When the input is
an interval graph, the algorithm is guaranteed to produce an ordering satisfying the conditions
of Theorem 28.26. In order to test whether a given graph is an interval graph. we run the

conditions of Theorem 28.26.

algorithm in [50] to get an ordering of vertices, and then verify if the ordering satisfies the

28.5.3 Optimization

As interval graphs are chordal, given the adjacency lists for an interval graph, each of a
largest clique, a largest stable set, an optimal vertex coloring, and a smallest vertex cover.
as will be discussed in Section 28.7, can be computed in O(m + n) time. However, when the
interval model for an interval graph is given as input, it is possible to solve the problems
more efficiently. Next, we illustrate this with algorithms for computing a largest clique and
an optimal vertex coloring.

We will assume that the 2n endpoints in the interval model of the given interval graph
G = (V. E) are distinct and they are given in sorted order; recall that the endpoints can be
sorted in O(n) time. The algorithms scan the endpoints of the intervals from left to right
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(i.e.. from the smallest to the largest). We open an interval when its left endpoint is scanned
and we close it when its right endpoint is scanned. Further, an interval itself is open if its
left endpoint has been scanned and its right endpoint is vet to be scanned.

First, we consider the problemn of computing a largest cliqgue. As a set of pair-wise
intersecting intervals must share a common point, the problem reduces to considering each
endpoint and computing how many intervals contain that endpoint. In order to do this effi-
ciently, we scan the endpoints from left to right keeping track of the set K of intervals open
at any point. The set A can be recorded in a boolean vector of size n. For a vertex v, when
we scan vyg,. 1, is added to A and it is deleted from A" when vp is scanned. This provides the
set up to compute w(() in O(n) time. One can then scan the endpoints again from left to
right stopping when |K| = w(G). The set K at this point corresponds to a maximum clique
of (. Thus, a maximum clique of &G can be found in O(n) time.

Next, we consider the problem of optimal vertex coloring. We scan the endpoints from
left to right and color a vertex ¢ when v, is scanned. Let &, initially set to zero, record the
number of colors used at any point. The list freed-colors contains colors assigned to intervals
that have already closed, that is, those whose right endpoints have already been scanned;
initially, freed-colors is empty. For a vertex v, when vy, is scanned, if freed-colors is nonempty,
then we remove any color ¢ from freed-colors and assign it to v. If freed-colors is empty, then
we increase k by 1 and assign the color £ to v (i.e., v is given a new color). When vp is
scanned, the color assigned to v is added to freed-colors.

It is easily seen that the coloring is proper and that the algorithm can be implemented
to run in O(n) time. In order to verify that the coloring is optimal, observe that every time
a new color k is assigned to a vertex v, as freed-colors is empty, each of the colors 1 through
/- — 1 has been assigned to an interval that is currently open. Hence each of those £ — 1 open
intervals contains vy, and v belongs to a clique of size & in the graph.

The reader is referred to [51] for a detailed exposition on interplay between representation

of graphs and complexity of algorithms.

28.6 WEAKLY CHORDAL GRAPHS

A long hole is a chordless cycle with at least five vertices and a long anti-hole is the comple-
ment of a long hole.

Definition 28.18 A graph is weakly chordal (also called weakly triangulated) if it does not
contain any long holes or long anti-holes.

It is seen from the definition that the complement of a weakly chordal graph is also weakly
chordal. Further, the class of weakly chordal graphs is a proper generalization of the class of

chordal graphs.

28.6.1 Characterization

Definition 28.19 Let G be a graph and x, y be nonadjacent vertices of G. {x,y} is a two-
pair of G if either every induced path between x and y has cxactly two edges or x and y belong
to different components of G'. A co-pair of a graph is a lwo-pair of the complement of the
qraph.

Weakly chordal graphs were characterized [52] via the presence of two-pairs. As weakly
chordal graphs are closed under complementation, the presence of a co-pair also characterizes
weakly chordal graphs.

Theorem 28.27 [52| G is a weakly chordal graph if and only if for every induced subgraph
H of G, either H induces a stable set or H has a co-pair. i
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To prove Theorem 28.27, we will need to establish a preliminary

result. We first start with
a definition.

Definition 28.20 A handle in a graph G is a proper vertez-subset H with size at least two
such that G[H)| is connected, some component J # H of G — N(H) satisfies N(J) = N(H).
and cach vertex of N(H ) is adjacent to at least an endpoint of each edge of ( Y H|. J
a co-handle of H.

is called
i
Note that N(H) is a minimal separator of H and /.

Theorem 28.28 [53.54] A graph has a handle if and only if the graph has a Py

and a handle
and its co-handle can be found in polynoaiial timne.

3]
When vertex-subset H of G' with |H| > 2 induces a component of G, as N(H) = 0. H is
trivially a handle of G any other component of & can be considered a co-handle of H. In
this case, it is easily seen that when & is a weakly chiordal graph, any co-pair of G[H] is a
co-pair of G also. Next, we prove that this holds for any handle H of G when ¢ is a weakls
chordal graph. |

Lemma 28.11 _57)] Suppose H is a handle of a weakly chordal graph G and {l y} is a

co-pair of G H\|. Then, {x, y} is a co-puir of .

Proof. Let J be a co-handle of H in &, [ = N(H)

{x,y} 18 a co-pair of G[H] but not a co-pair of .
Then, there exists an induced path P =

vertex in R is adjacent to both z and y in &, P does not involve any vertex in R: therefore.

P has at least a vertex from /. Now. P cannot have a segment uvw such that v and w are in

oy e -

N(J),and R =V(G)—-H —T. Suppose
.y with at least four vertices in @. As each
H but v is in I, for otherwise, vertex v of I is not adjacent in G' to any endpoint of the edet

ww of G[H], contradicting H beiug a handle tﬂ' G. Thus, at least two consecutive vertices of
P are in [ and P involves at least an edge of & with both endpoints in .

In G, consider a segment P’ = pgagry ... x, of P with r > 4 such that Ty and z, are in

H but xy through @, are in . Observe that ry is not adjacent to z4 In G. Since [ is a
minimal separator for A and J in &, and & has no long holes, in G every two nonadjacent
vertices of I must have a connmon neighbor in J. In particular, ry and 24 are adjacent in G

to some vertex @y of /. Thus in & @y is adjacent to ry, @y is not adjacent to - @ 18 not

z after x4 such that a,
18 '(\‘(.l;]'rl('/(’llt. 1o I i G- such an A exists as Na 18 i\(l\i:l(‘(‘llf to s in (. 'Fll(‘l-l‘ {J']. o l“‘-l
induces a long hole in ¢, contradicting & being weakly chordal.

adjacent to wy, and zyzorsxy is a Py, Let @y be the first vertex in P/

K

Proof of Theorem 28.27. For one direction, if (7 is not we akly chordal, then it contains induced
subgraph A such that H induces either a long hole or a long anti-hole. It is seen that neither
does H induce a stable set nor it contains a co-pair of H.

For the other direction, as an induced subgraph of a weakly chordal graph is also weakly
chordal, it suffices to prove the theorem for the given weakly chordal graph G. Let G be I
weakly chordal graph with at least one edge. Lot ¢ = Hy, Hy, -+, Hp, p = 0, be a sequence of
m}bset,s ()l'rV((;,'\) such that H, is a 11'(111(111-_91' G|H; 4|, for 1 <i < p, and G[H,] has no handle.
Then, by Theorem 28.28. G H, has no Py, and is a complete multipartite graph. Therefore
every edge of G[H,| induces a co-pair of G|H,|. Then. by Lemma 28.11, every edge of G|H
induces a co-pair of (—r'[/'/[, ], since M), is a handle of G\, (. Continuing this 2'1!',‘;'11111-!_‘]1.'-._
every edge of GIH | induces a co-pair of (.

The current best recognition and optimization algorithms for weakly chordal graphs ex
ploit the presence of two-pairs and co-pairs.
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28.6.2 Recognition

An algorithm to test for the presence of a long hole in a graph is to check whether a Py of a
sraph extends into a long hole. As all the Ps’s of a graph can be generated in O(nm) time,
this can be implemented to run in O(nm?) time. By running this algorithm on the graph
and then on the complement, weakly chordal graphs can be recognized in O(n®) time. Later,
we discuss more efficient algorithms for the same problem.

More generally, whether a P, & = 2, of a graph extends into a hole of size at least
k -+ 3 can be tested in O(n®) time [56], where O(n%) refers to the current best complexity of
multiplying two n x n Boolean matrices, by testing whether an auxiliary directed graph in
transitive. The algorithm is as follows: given the P, T = vy -- - v of G, first we discard from
¢ all the neighbors of vy through vy that are not on 7. Now, let A = N(v;)—N(v)—V(T),
B = N(v;) — N(vy) = V(T), and Dy, ---, D, be the components of G — (AU BUV(T})). Let
M be the set formed by adding a vertex m; corresponding to each D;. Now, construct the
directed graph H on the vertex-set AU M U B. For z € A, add the directed edge z — m;
provided z is adjacent in & to some vertex in D;. Similarly, for x € B, add the directed edge
m: — x provided x is adjacent in G to some vertex in D;. Finally, for z € A and y € B,
add the directed edge & — y provided z and y are adjacent in G. It can be seen that &
has a hole of size at least & + 3 through 7" if and only if H is not transitive. As whether a
directed acyclic graph is transitive can be tested in O(n®) time (cf. Theorem 28.16) we get
the desired result. Thus, as the number of P.’s in a graph is O(n*), we can check whether a
graph has a hole of size at least t, t > 3, in time O(n'™%"%),

Using the above mentioned algorithm on the graph and then on the complement of the
oraph, weakly chordal graphs can be recognized in O(n**%) time which is currently O(n*376)
'18]. For the specific case of finding long holes in a graph, an O(m?) time algorithm is known
57). By using this on the graph and then on the complement, weakly chordal graphs can be
recognized in O(n') time. The current best algorithms to recognize weakly chordal graphs
run in O(m?) time [55,58]. However, one of them requires O(m?) space [38] while the other
'55] uses linear amount of space.

Lemma 28.12 [59] Suppose {x,y} is a co-pair of graph G Let H be the graph obtained from
' by deleting the edge xy but not its endpoints. Then, G is weakly chordal if and only if H
]

is weakly ehordal.

Algorithm 28.6 wc-recognition

‘ input: graph G
| output: yes when & is weakly chordal and no otherwise

found + true;
while found and ¢ has at least one edge do
if G has co-pair {z,y} then
Delete edge zy from &
else
found + false
end if
end while
if G has no edges then
output yes
else
output no
end if
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Theorem 28.29 |55 Algorithm we-recognition can be implemented to run in O(m?2) time
using Olm -+ n) space.

28.6.3 Optimization

Definition 28.21 For a graph G and a pair {x.y} of nonadjacent vertices in G, the graph
G/xy is obtained from G by contracting the pair {x.y} as follows: delete vertices + and
and introduce verter (xy) and edges (ry)u for all w in Ne:(o) U Ne(y).

Definition 28.22 Two nonadjacent vertices x,y in a graph G form an even-pair if every

induced path between them has an cven number of edges.

Our interest in even-pairs is motivated by the following two observations.

Lemma 28.13 [60| Let G be any graph with an cven-pair {x,yt. Then

L w(G/zy) = w(G):
. x(G/ry) = x(G).

Proof. We will establish (i) first. Let K be clique in &/xy. For simplicity, write = = (2y). If
z ¢ K, then K is also a clique in . Suppose = € K. Then, either © or y must be adjacent
in G to every vertex in K — {z}. Otherwise, there exist u,v € K such that 2u & E(G
xo ¢ BE(G), yu ¢ E(G), and yv € E(G) so that zuvy is a Py in G; this contradicts {z. y

1
|
I

being an even-pair of G. Thus, G also has a clique of size || and w(G/zy) < w(@G). Now
suppose I is a clique in G. Clearly. at most one of x € K, y € K holds. Further. if = & &

(y € K), then K—{z}u{z} (K—{y}U{z}) is a clique in G /xy. Therefore, w(G) < w(G/zy
also holds and w(G) = w(G/xy).

To prove (ii), consider a coloring of G/ry. It gives a coloring of (¢ by assigning to . y the
color of (ay). So, we have x(G/zy) > x(G). Now, we will prove x(G/xy) < x(@). Conside
a coloring of G. If &,y have the same color, then this color can be assigned to (2y). and
we are done. So, assume x has color 1 and y has color 2. Let B be the bipartite graph
induced by vertices of colors 1 and 2. r and y must belong to different components of 5.
for otherwise there is an induced odd path in 13 between the two vertices, a contradiction to
the assmmption that {z,y} is an even-pair. Interchange colors 1 and 2 in the component of
B containing z. In the new coloring, « and y have the same color, implying as above. that

X(Glay) < x(G). u

The proof of Lemma 28.13 gives a simple algorithm that given a largest clique of ¢
produces a largest clique of G, and given a coloring of G/zy with &k colors, produces a
coloring of & with & colors. If, on subsequent graphs, we can always find an even-pair t
contract until we obtain a clique. we could produce a largest clique and an optimal coloring
of the original graph. The following lemma shows this is indeed the case for weakly chordal
eraphs.
Lemma 28.14 [52| Suppose G is a weakly chordal graph and {z, y} is a two-pair of G. Ther
G/xy is weakly chordal. Further, w(G) = w(G/xy) and X(G) = x(G/xy).

Proof. We show that if G/xzy is not weakly chordal, then & is not weakly chordal. Clear]y.
G//xzy cannot have a long hole or long anti-hole that does not involve z = (ry). Suppos:
29 -y, for k> 5, is a long hole in G/zy. Then, as G is weakly chordal and given the
construction of G¢/ry, neither z nor y is adjacent in ¢ to each of vy, vg. Also, each of vg.
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is adjacent in & to at least one of =, y. Without loss of generality, assume that zvy € E(G),
cvp & E(G), yur, € E(G), and yus ¢ L( (7). Then, wvy - vey is chordless path in G with at
least, five edges, contradicting {x, y} being a two-pair of G.

Suppose zug - - vy, is a long anti-hole in G /2y where the ordering of the vertices corre-
sponds to the cyclic ordering of the vertices along the long hole in the complement. As C
is isomorphic to (%5, we can assume & > 6. One of x, y must be adjacent in & to cach of

vg. 1y, Otherwise, given the construc I'l(ﬂl ni G /xy, we can assume xvg € E(G), zvg € E(G),

yoy £ E(G), and yvg & E(G). Then, rvzvguyy a chordless path in G with four edges, con-
radicting {ir.y} being a two-pair of G. Assume = is adjacent in G to each of v3, vy and let
r be the smallest index such that » = 5 and wv, ¢ E(G); such an r exists as axv, € E(G).
Then, zvovgvy --- v, is a long anti-hole in ¢, a ('()111,1';1(11(711011. Since two-pairs are even-pairs,
the rest of the lemma follows from Lemma 28.13. @

Algorithm 28.7 wc-optimization

input: weakly chordal graph &
output: x(G) and w(G)

while ¢ is not a complete graph do
find two-pair {z,y} of G;
replace G by G /ey
end while
x(G) = |V(G)|;
w(G) = |V(G);
output x(G) and w(G) |

Theorem 28.30 [55] Algorithm we-optimization can be implemented to run in O(mn) time

using Olm +n) space. B
For a weakly chordal graph G, «(() and 8(G) can be computed by running the algorithm

- ()/J'f’/«l‘l/‘zfjuf?’/,(')‘[/‘ on (.

28.6.4 Remarks

An O(m?) time algorithm to find a long hole in a given graph is given in [57]. An O(m?)
time algorithm to recognize weakly chordal graphs using O(m?) space is given in [58]; nnlike
the algorithm described here, the one in [58] does not use the idea of a two-pair at all. The
weighted versions of the clique, coloring, stable set, and clique cover problems can be solved
on weakly chordal graphs in ()(_nﬁl) tite [52,] ‘)J A cousequence of algorithm we-recognition
is that graph G is a weakly chordal if .uul only if an empty graph can be derived from G
by repeatedly removing a co-pair. As an 11111(\1'(‘&‘.17111;),' contrast, it is proved in [61] that graph
¢/ is chordal if and only if G can be derived from an empty graph by repeatedly adding an
edge between vertices that form a two-pair. Efficient algorithms for finding a two-pair in a
sraph are given in [62] and [63]. The fact that weakly chordal graphs are perfect was first

established in [647'.

28.7 PERFECTLY ORDERABLE GRAPHS

A natural way to color a graph is to impose an order < on its vertices and then scan the
vertices in this order, assigning to each vertex v; the smallest positive integer not assigned
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to a neighbor v; of v; with v; < v;. This method, referred to as the greedy algorithm, does

not necessarily produce an optimal coloring of the grapl (i.e., one using the smallest possible
number of colors). However, on a perfectly ordered grapl, the algorithm does produce azx

optimal coloring.

Definition 28.23 Given an ordered graph (G, <), the ordering < is called perfect if for
each induced ordered subgraph (H, <) the greedy algorithm produces an optimal coloring of
H. The graphs admitting a perfect ordering are called perfectly orderable. An obstruction i
an ordered graph is a chordless path with vertices a, b, ¢, d, edges ab, be, cd with a < b and
d < c.
Several well known classes of graphs (in particular, chordal and comparability graphs) are per-
fectly orderable. It is easy to see that a perfectly ordered graph cannot contain an obstruction.
[t was shown [65] that this condition is also sufficient.

Theorem 28.31 [65] A graph is perfectly orderable if and only if it admits an obstruction-

free ordering.
We will need the following lemma.

Lemma 28.15 Let G be a graph and let C° be a clique of G such that each w & €' has
neighbor p(w) & C' such that the set S consisting of the vertices p(w) form a stable set of G
If there is an obstruction-free order < such that p(w) <

w for all w € C, then some plw) &s
C'-complete.

Proof. By induction on the number of vertices in *. The induction hypothesis implies that.
for each w € C', there is a vertex f(w) € €' such that the vertex p(f(w)) is adjacent to all of
C', except possibly w. In fact, we may assume p(f(w)) is not adjacent to w, for otherwise we
are done. Thus, the mapping f is one-to-one and therefore onto, that is f is a bijection. Let
v be the smallest vertex in ¢ in the ovder <. There are vertices a, b such that v = f(b) and
b= f(a). Now, p(v),a,b, p(b) form an obstruction, a contradiction. W

Proof of Thearem 28.31. The ‘only if’ part is trivial. We will prove the ‘if” part by induction on
the number of vertices. Let G be a graph with an obstruction-free order <. By the induction
hypothesis, we only need to prove the greedy algorithm delivers an optimal coloring on ¢
Let & be the number of colors used on . We will prove & contaius a cligune on b vertices.
This obviously shows the coloring produced by the greedy algorithm is optimal. Let ¢ be the
smallest integer such that there is a clique 7 on vertices v, 1, ..., v such that each v; has
color j, for j =i+ 1,..., k. We may assume ¢ > 0, for otherwise we are done. Properties of
the greedy algorithm imply that each v; has a neighbor plv;) with eolor i with ‘l)(t'j\r < V5,
for each v; € C'. But Lemma 28.15 implies some p(v;) is C-complete, a contradiction to our

choice of 1. v

The proof of Theorem 28.31 shows that perfectly orderable graphs are perfect. In studyv-
ing perfectly orderable graphs, the following two probleins arise naturally: to decide on the
complexity of recognizing perfectly orderable graphs and to find a subgraph characteriza-
tion of perfectly orderable eraphs (by subgraph characterization, we mean characterization
by minimal forbidden induced subgraphs). The subgraph characterization problem is open
but appears to be very difficult. It was proved in |66, that the problem of recognizing per-
fectly orderable graph is NP-cowmplete. However, many classes of perfectly orderable graphs,
together with their polynomial recognition algorithuns, have been found. We will discuss some
of these classes in this chapter. For a survey on perfectly orderable graphs, see [67].
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28.7.1 Characterization

A s mentioned before, there is no known characterization by forbidden induced subgraphs of
perfectly orderable graphs. We will discuss several subclasses of perfectly orderable graphs

that have been much studied.

Definition 28.24 For a Py with vertices a, b, c,d, edges ab. be, cd, the vertices a,d are end-
points, ¢, d are midpoints of the Py. A vertes is soft if it is not a midpoint or an endpoint of
a Pi. A graph G is brittle if each of its induced subgraphs contains a soft vertex.

O bservation 28.1 Brittle graphs are perfectly orderable.

Proof. By induction on the number of vertices. Let G be a brittle graph with a soft vertex

Let v < vy < ... < v, 1 be a perfect order of G — v. If v is not the endpoint of a Py,
then v < vp < vs < ... < v, is a perfect order of G. If v is not a midpoint of a Py, then
e < Vg < ... < U < v is a perfect order of G. @

Corollary 28.7 Chordal graphs, their complements, and comparability graphs are perfectly

orderable.

Proof. Observe that a simplicial vertex is soft and that a soft vertex of a graph remains soft
in the complement. Thus, chordal graphs are brittle; by Observation 28.1, they and their
complements are perfectly orderable. Since a transitive orientation of a graph contains no
obstruction, comparability graphs are perfectly orderable. [ |

28.7.2 Recognition

[t is proved in [66] that the problem of recognizing perfectly orderable graphs is NP-complete.
We have seen that chordal graphs and their complements are perfectly orderable. Since weakly
chordal graphs are a generalization of these two classes, it is of interest to investigate the
complexities of recognizing weakly chordal perfectly orderable graphs. In [68], it is shown that
i his problem is NP-complete by modifying the argument of [66]. Since [68] is an unpublished

technical report, we will reproduce the proof here.

Theorem 28.32 It is NP-complete to determine if a weakly chordal graph is perfectly

orderable.

Proof. We will reduce the 3SAT problem to our problem. Given a 3SAT formula £ with
clauses Cq, C, ..., Ch—y and variables vy, vy, ..., v, where each clause C; contains literals
o0y i1 Cig, We construct a weakly chordal graph G(E) such that F is satisfiable if and only
f G(F) is perfectly orderable.

For each clause C; = (cjo,¢ji1,¢j2), we define the clause graph G(C5) as in shown in
Figure 28.6. For each variable v;, we define the wariable graph G(v;) as shown in Figure
28.7. In the graph G(v;), the chordless path between A; and B; has 2m vertices v(1, j, 1) for
=R 2 — 1.

Next, we obtain the graph G'(v;) (see Figure 28.8) from G(v;) by

contains v;, adding vertices v(7,2j,2),v(4,25,3) and edges v(, 27, 1)v(i, 27, 2),

o If C ,
(i, 24, 2)v(i, 2], 3).

e If C’; contains 7, adding vertices v(i,2j + 1,2),v(i,2j + 1,3) and edges v(i,2j +
1, 1)v(i, 25 +1,2), v(i, 25 + 1,2)u(i, 25 + 1, 3).
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Figure 28.7 Graph G/(v;).
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Figure 28.8 Graph G'(v;).

The graph G(E) is obtained by
i. Taking m disjoint G(C;).0 < j < m — L
ii. Taking n disjoint G'(v;).0 < i < n — 1.

i, For kb =1,2,3,

identifying v(i, 2. k) with c(j.1, k) if ¢j = vy

identifying v(i, 25 + 1, k) with o(j, 1, k) if ¢;; = 73,

for each ¢(5,1,0),0 < 5 < m — 1.1 = 0,1,2, adding the edge ze(j,1,0) for all
vertices @ not in G(C5).

A vertex is of type & if it is of the form ¢(j./, k) for some j and some /. We denote by Vi the
set of vertices of type k, 0 < & < 3. Our construction is similar to [66]. except that G(v

is a chordless cycle in [66]. Figure 28.9 shows the interaction between a clause graph and a
variable graph; for clarity we do not show all edges coming out of the vertices of tyvpe ().

Remark 28.1 A wvertezx ¢(j,1,0) (of type 0) is nonadjacent to exactly four vertices of G(E ).
they are e(j,L, k), 1 < k <3 and (4,1 + 1 mod 3, 2).
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\4
[l Sy =l

Figure 28.9 A portion of the graph G(E).
G e e

Figure 28.10 Obstruction.

[t is a routine but tedious matter to prove that G(FE) is weakly chordal. For detail, see [68].

For the rest of the proof, we will show that G(FE) is perfectly orderable if and only if £
is satisfiable. It will be more convenient to work with orientations instead of orders. For an
ordered graph, we may construct an oriented graph on the same vertex set as follows: If ab
is an edge and a < b, then we add the arc @ — h. Thus, an obstruction is a £ with vertices
a.b,c,d and arcs a — b,b — ¢, d — ¢ (see Figure 28.10). An orientation G of a graph G is

perfect if it is acyclic and does not contain an induced obstruction. It is a routine matter to

verify the following observation.

Observation 28.2 The graph G(v;) admils a perfect orientation, but any perfect orientation
of G(uv;) is alternating on the path from A; to B;. [ |

From now on, the argument of (66| carries through, for the sake of completeness we will

complete the proof.
Claim 28.1 If G(F) admils a perfect orientation, then E is satisfiable.

Proof. For each 7,0 <4 < n — 1, if the vertex v(i,0, 1) is a source in G(v;), then the variable
u; is assigned value true; otherwise, it is assigned value false. Note that, by Observation 28.2,
u(i.0,1) being a source (resp., sink) in G(v;) implies all v(4,24,1) are sources (resp., sink)
in Cr'!/'f',').

Consider the graph G(C;) with C'; = (¢;o, ¢j1, ¢j2). If all three vertices ¢(4,/,1),0 <1 < 2,

then we have

are sinks in the three corresponding graphs G/(v;) where ¢ = vy, or ¢;; = T

A \ Pl el . . P . - — . = i
e(7,0,2) = ¢(j,1,3), and thus ¢(j,1,0) — ¢(j, [+ 1 mod 3,0) for 0 < [ < 2; but then G is not
acyclic, a contradiction. Thus, some ¢(7,/,1) is a source in G(v;) with ¢; = v; or ¢;; = V;.
If cji = vy, then ¢(j,1,1) = v(4,2j,1) implying v(4,0,1) is a source in G(v;), and thus v; is
true. Similarly, if ¢;; = 7;, then (7,0, 1) is a sink, and thus v; is false. In both cases, C; is

satisfied. -

Claim 28.2 If E is satisfiable, then G(E) admits a perfect orientation.

Proof. Suppose there is a truth assignment of the variables vy, vy, ..., v,—; that satisfies £.
For each variable graph G/(v;), we assign a perfect orientation such that v(i, 0, 1) is a source
if and only if v; is true. Such orientation exists by Observation 28.2.

Comnsider a clause graph G(C;) with C; = (¢jo, ¢j1, ¢j2). Suppose ¢j; is the ith variable,
that is ¢;; = v; or U; (0 < 7 < 2). Then ¢{j,1,1) = v(4,25,1) or v(3,27 + 1,1). If ¢(4,{,1)
is a source in G(v;), then direct ¢(j,(,3) — ¢(7,(,2); otherwise, direct ¢(j,1,2) — ¢(4,1,3),
and e(j,l —1 mod 3,0) — ¢(7,1,0). Since € contains a true literal, some ¢(j,{,0) is a source,
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and it follows that Vi contains no direct
an acyclic orientation.

Now,

'l eyele

Extend {

he partial orientation of Vo into

for cach edge ab, we direct a bifae Vb & Vo orif a € Vi,b € Va. Every
edge of G hias been directed. Call the resulting directed graph G It is easy to see that & is

acyclic.

Suppose (, contains an obstruction 2 with vertices a. b,

c,dand ares a —= b h —

83 ot C.

Because V4 is a clique, P contains at most two vertices of type 0.

[f /7 contains no vertex of type |
is a cutset of G(#). But, the orientation of

Suppose P contains one vertex of type 0.

then P onust
clearly

The ares a —

construction. So, we may assume that a € Vg (for

on the direction of the arc b — ¢). This means a = ¢, 1, (
edge, we have {¢,d} € {e(j.lLk) | 1 < &k < 3}. Therefore,
or U; is a literal of the clause C;. Thus, b is

or r = 2j + 1) on the path from A; to B; of &

But our construction implies (.17, 1

Now, we may assume t
the two middle vertices of P must 1
be in V. From Remark 28.1, P is the Py (1) ;. 1,
c(7,0,0)e(j, L — 1 mod 3.0)¢(5,1,3
¢(j,1,2), a contradiction. In case (ii),

())((/ [—

the arc ¢(j,1,2) — ¢

7(v;) (for some appropriate i), and our construction implies ¢(j, 1 —

a contradiction.

28.7.3 Optimization

In this section, we consider the problems of finding a lar

¢

a largest stable set, and a minimum clique-cover ol perfec

lie entirely
every G'(v;) is perfect,

the rest of t

‘lu‘ \'m‘t x next toe(y,f,1) = u(x,
t follows that ¢ = e(j, 1, 1), f =l
) — o )./. .)..‘. a t'ulm':uh('tlun

Je(4,1,2). In case (i)_ our

in some G'(v;) because Vi

a contradiction.

h.d c imply b,e &

Vo by our
he proof, we will not argue

0) for some j and [. Since cd is an

b e

1(4

i
1) for some 7 such that
T

)

that P contains two vertices of type 0. Since V4 is a clique, one o f
e of type 0. We may assume b € V. Since g — b. a must

L mod 3,0)c(j,4, 1)e(5, 1, 2), or (ii
construction implies e(7.7,1) —

g0, 3) implies (4,7, 1) is a sink in

y — (g, 0.0)

1
i

1 mod 3.0

gest clique, a minimum coloring
t

ly ordered graphs. We note that

these four problems (even in their weighted versions) for perfect graphs have been solved in

[7]. T

it uses deep properties of the ellipsoid method. Thus, it is

discussed in this chapter by using combinatorial structures.

Theorem 28.33 [69] Given a graph G and a perfect orde

time a minimum coloring and a largest clique of G.

Proof. Let the vertices of G be vy

he perfect
show that the greed

LUy and t

are colored in the <>rd<‘r given by <.

smallest integer # such that no neighbor = of

; has color ¢,

‘his algorithin does not exploit the combinatorial structure of a perfect graph, instead

of interest to optimize the graphs
ron G, one can find in Ofn+m

order be . We will

V] <

y coloring dl“()llflllll can be implemented in linear time on (T Vertices
~. Suppose we are about

to process vertex vy

. We find the
The

aud assign color t to v;

index ¢ can be computed by traversing the 11(1‘](1‘(/‘.‘11( v list of v; and computing the number

of neighbors of v; with color ¢; 1 is the smallest index such that a,
the a; are initially set to 0). At most d(v;) number a; are moditied in computing t.

- 0 (we may assume all
After

is colored, we reset these a; to 0. So, the cost of coloring v; is O(d(v;)). Thus, we can color

G in time O(n +m).
From the proot of Theorem 28.31

1, we can extract a largest clique of G in linear time. Let

k be the number of colors nsed by the greedy algorithm. We will show how to find a c¢lique
C with k vertices. Start with a vertex = of color k, put = in . We go backward in < to
<‘111;11'g0 @ %uppmo C contains vertices w;, wj . uf;,. with ¢ 1 and w; having color

J .. Let S;_; be the set of vertices of color 1 —

found by scanning the adjacency list of every vertex = in S

. The proof of lhoolom 28
l;horo is a wrl,(\x s € ;1 that is C-complete and so can be added to C'

.31 implies
. Such vertex can be
i and computing the number ol




Perfect Graphs M 739

neighbors of 2 in . The adjacency list of each vertex of GG is scanned at most once, so the

aleorithm runs in linear time. &

Theorem 28.34 |69 Given a graph G and a perfect order on its complement G, one can
find in O(n + m) time a largest stable set and a minimuwm clique cover of G.

Proof. Let the vertices of ¢ be vy, ..., v, and the perfect order on the complement of G' be
0y < ... < vy, To stay within the linear-time bound, we will obviously not construct G. We
process the vertices in this order and produce a coloring of G. Let the variable b; count the
nummber of vertices of color 7. Suppose we are processing vertex v;. Then v; can be colored i
if in G, v; is not adjacent to any vertex of color i. that is, in G, v; is adjacent to b; vertices
of color 2. This condition can be tested by scanning the adjacency list of v;. If such color
i exist, then we would choose the smallest such i for v;; otherwise, we color v; with a new
color. The cost of coloring v; is O(d(v;)), so we can color G in O(n + m) time. This coloring
is a partition of & with a minimum number of cliques.

Now we show how to find a largest stable set of G, Let & be the number of colors used
on G by the greedy algorithm. We will show how to find a stable set S of G' with k vertices.
Start with a vertex x of color £, put = in . We go backward in < to enlarge S. Suppose
S contains vertices wy, wiyy, ..., wy with ¢ > 1 and w; having color j, j =1,..., k. Let 5,
be the set of vertices of color i — 1. The proof of Theorem 28.31 implies there is a vertex
s = 5;_; that is S-null and so can be added to S. Such vertex s can be found by scanning
the adjacency list of every vertex s in S; ;. The adjacency list of each vertex of G is scanned
at most once, so the algorithm runs in linear time. &3]
Several classes C of perfectly orderable graphs have the property that if G is in C then not
only that G is perfectly orderable, but its complement G also is (for example, brittle graphs,
and therefore chordal graphs). Theorem 28.34 is useful for optimizing these graphs.

Corollary 28.8 (27| There is a linear-time algorithm for finding a largest clique, a minimum
coloring. o largest stable set, and a minimum clique cover for a chordal graph.

Proof. Let (¢ be a chordal graph with a perfect elimination scheme <. Then < is a perfect order
on (. and the reverse of < is a perfect order on G. The result follows from Theorems 28.33
and 28.34. E ]
A linear-time algorithm to recognize a co-chordal graph (complement of a chordal graph)
and to construct a perfect order of such a graph is given in [70]. Thus, we have the following

corollary.

Corollary 28.9 [70] There is a hinear-time algorithm for finding a largest clique, a minimum
caloring, a largest stable set, and a minimum cligue cover for a co-chordal graph. &

Actually, for a perfectly ordered graph, there are algorithms to solve more general optimiza-

tion problems. Consider the following.

Minimum weighted coloring. Given a weighted graph G such that each vertex x has a
weight w(z) which is a positive integer. Find stable sets S|, Ss, ..., 5 and integers
I(S1), ..., L(Sk) such that for each vertex z we have w(z) < X,.¢ I(5;) and that the
sum of the numbers 7(.5;) is minimized. This sum is called the weighted chromatic
number and denoted by x,,(G).

Mazimum weighted cliqgue. Given a weighted graph G such that each vertex x has a weight
w(z) which is a positive integer. Find a clique €' such that ¥,cow(a) is maximized.
This sum is called the weighted clique munber and denoted by w,, (G).




740 MW Handbook of Graph Theory, Combinatorial Optimization, and Algorithms

Definition 28.25 A stable set of a graph G is strong if it meets all mazimal eliques of
(Here, as usual, Maximal is meant with respect to sel-inclusion, and not size. In particular,!
mazimal cligue may not be a largest clique.) A graph is strongly perfect if each of its induct
subgraphs contains a strong stable set.

Theorem 28.35 [65] Perfectly orderable graphs are strongly perfect. And if a perfect ord!
on G is given, then a strong stable set of G can be found in linear time.

Proof. By induction on the number of vertices. We only need to prove that a graph G wib
a perfect order < contains a strong stable set. Let S be the set of vertices colored with colf
1 by the greedy algorithm. Assume that S is not a strong stable set, for otherwise we #f
done. So, consider a maximal clique ' such that no vertex in €' has color 1. Properties of t¢
greedy algorithm implies each vertex w € €' has a neighbor p(w) of color 1 with plw) < ¥
But then Lemma 28.15 implies some p(w) is C-complete, a coutradiction. The fact that?
can be found in linear time follows from Theoren 28.33.

Theorem 28.36 [71] If there is a polynomial time algorithm A to find a strong stable it
of a strongly perfect graph then there is a polynomial time algorithm B to find a minimi
weighted coloring and mazimum weighted clique of a strongly perfect graph. If algorithm?
runs in time O(f(n)) then algorvithm B runs in time O(nf(n)). Moreover if algorithm A#
strongly polynomial then so is algorithm D.

Proof. For a perfect graph G, it is known that x.,(G) = w,(G). Let G be a strongly perfi
(and therefore, perfect) graph with a weight function w on its vertices. We will show ¢

problem on G can be transformed to the problem on a smaller graph G with an ('.){_.f'(nf'w'

time reduction. Suppose we can find a strong stable set S of G in O(f(n)) time. Let?
be a vertex in S with the smallest weight among all vertices of S. Define a new wed

function w'(v) = w(v) — w(x) for each v € S, and w'(v) w(v) for each v € G =5
Let X = {v|w'(v) = 0}. Since z € X, X is not empty. Consider the graph G' = @ s
Since every maximal clique of G meets 5, we have w,(G) = ww(G') + w(x), and th#

XuwlG) = Xuw (G') + w(x). Suppose Si,....5 is a minimum weighted coloring of G wi
weights [(S9;). Then Si,..., Sk, S is a minimun weighted coloring of G with weights “7':-‘.
for i =1,... &k, and I(S) = w(z). Similarly, if € is a maximum weighted clique of G, (1
a maximum weighted clique of G can be found as follows. If €7 N (S — X) #4 @, then ¢ — A
otherwise, C' = C" U {y} where y is a vertex in X that is (C”)-complete, y exists lu‘(‘;mslﬁ‘
is a strong stable set (note that for €', we use the original weight lunction w).

We may recursively apply the above reduction until we get a trivial graph in at
n steps. Since the complexity of our procedure does not depend on the size of the num
w(v), the reduction is strongly polynomial.

Theorems 28.35 and 28.36 implies the following.
Corollary 28.10 Given a graph G and a perfect order on G, maximum weighted cligue o
manimum weighted coloring can be solved in O{nm) time.
For comparability and chordal graphs, these two problems can be solved even faster.

« I r e 7 T = i
Theorem 28.37 [71] If G is a comparability graph or a chordal graph, then mazip

weighted clique and minimum weighted coloring can be solved in O(n?) time.

Space-efficient algorithms for maximum weighted clique and minimum weighted coloring J
: e 90 9 o 3 S
co-chordal graphs are given in [70]. Theorem 28.36 shows that the problem of findin;’
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strong stable set of a strongly perfect graph is of some consequence. However, no polynomial
algorithm for solving this problem is known. Finding a strong stable set of an arbitrary graph

is NP-hard [71].

28.8 PERFECTLY CONTRACTILE GRAPHS

Recall the definition of an even-pair in Section 28.6. Even-pairs play a central role in the
stucly of perfect graphs, as illustrated by the following two results.

Lemma 28.16 [60| Let G be a perfect graph with an even-pair {x,y}. Then G/xzy is
perfect. |
Lemma 28.17 [72| No minimal imperfect graph contains an even-pair. 5]
From the above, it is of interest to know which perfect graphs contain even-pairs.
Definition 28.26 A graph (& is even-contractile if there is a sequence Gy = G, Gy, ..., Gy
such that Gy is a clique, and for i < k — 1, G, is obtained from G; by a contraction of
sornee even-pair of ;.

An even-contractile graph G has x(G) = w(G) by Lemma 28.13. But this class seems to
be difficult to characterize; perhaps because the class is not hereditary. Now, consider the
iyl
i

fbllowing definition from |

Definition 28.27 A graph is perfectly contractile if each of its induced subgraphs is cven-
contractile.

By Lemma 28.13, perfectly contractile graphs are perfect. Most classes of graphs discussed
in this chapter are perfectly contractile. Lemma 28.14 implies the following.

Theorem 28.38 [52] Weakly chordal graphs are perfectly contractile. i
A graph is called a Meyniel graph if each of its odd cycle with at least five vertices has two
thords. Perfection of Meyniel graphs was established in [74]. Note that chordal graphs are
K[e_-},’nipl graphs.

Theorem 28.39 [75] Meyniel graphs are perfectly contractile. N
Theorem 28.40 [76] Perfectly orderable graphs perfectly contractile. |
Definition 28.28 A prism is a graph that consists of two vertea-disjoint triangles (cliques of
Sizg three) and three vertea-disjoint paths, each of length at least one and having an endpoint
i each triangle, with no other edge than those in the two triangles and in the three paths. A
brismn s odd if all three paths are odd.

Mhe following beautiful and challenging conjecture was proposed in [77].

A graph is perfectly contractile if and only if it contains no odd hole,

Conjecture 28.1 [77]
g anti-hole, and no odd prism.

Vefinition 28.29 A graph is an Artemis graph if it contains no odd hole, no anti-hole, and
gy ;{;’I"L'...'v"ll'l,.

\’ali,(_lit.y of Conjecture 28.1 was partially established by the following remarkable result.
Mheorem 28.41 [78] Artemis graphs are perfectly contractile. [ |

\ 0 : : : : : f o
Yy O(nm) time algorithm to color an Artemis graph is given in [79]. Note that weakly
| » . C . .
U%e,relal graphs and perfectly orderable graphs are Artemis graphs. An O(n?) time algorithm
Op recognizing an Artemis graph is given in [80)].
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28.9 RECOGNITION OF PERFECT GRAPHS

In this section, we give a sketch of a polynomial time algorithm to recognize a perfect graph.
By the strong perfect graph theorem, the problem is equivalent to determining if a graph
is Berge (graphs with no odd holes and no odd anti-holes). A polynomial time aleorithm to
solve this problem is given in [15]. The algorithm can be divided into three phases. In the
first phase, given a graph &, the algorithm looks for one of five conficurations, Each of these
five configurations can be detected in time O(n?) or faster. If G contains one of these. then €3
is not Berge; otherwise, every shortest odd hole of (¢ has a special property called amenable
Given an odd hole C' of length at least seven, a set X of vertices is a near-cleaner if it contains
all vertices that have two neighbors of distance at least three in ' and X N ' is a subset of
the vertex set of some path of length three of €. Amenable odd holes are those odd holes
such that all near-cleaners have some special adjacency property (definitions not given here
will be given later). If the first phase does not produce an odd hole or odd antihole. the
second phase will generate O(n”) sets that are guaranteed to contain all near-cleaners of
some amenable odd hole if one exists. Finally, the third phase provides an O(n') algorithm
that given a graph and a near-cleaner for a shortest odd hole finds an odd hole. Now. we
describe the algorithm in more detail.

Definition 28.30 A pyramid is an induced subgraph formed the union of a triangle
{b1, bs, by}, a fourth vertex a, and three induced paths Py. P, Py, satisfying:

o [ori—1.2.3, the endpoints of P; are a,b;.

o Fori <i<j<3,aisthe only vertex in both P, P;, and bib; is the only edge between
P —a and P; — a.

e o is adjacent to at most one of by, bo, by

Definition 28.31 A jewel is the graph formed by a cycle with vertices vy, vy, . . ., vs and edges
Vi1 (with the subscript taken modulo 5) and an induced path P such that vyvs, vevy. Uy
are nonedges, vy, vy are the endpoints of P, and there is no edges between {vg, vz, v5} and the
miterior vertices of P.

Definition 28.32 A configuration of type Ty is the hole on five vertices.

Definition 28.33 A configuration of type Ty is a sequence vy, va, vy, vy, P, X such that
e Uy, Uy, U3, vy tnduce a Py owith endpoinls vy, vy,
o X is an anticomponent of the set of all {vy, vo, vy }-complete vertices.

o P is an induced path in G\ (X U {ve,v3}) belween vy, vy, and no interior vertex of P
is X -complete or adjacent to vy or adjacent to vy.

Definition 28.34 A configuration of type Ty is a sequence vy, . ... vg. P, X such that
e uy.... v are distinct vertices

= A

® 11Uy, D3y, VIV, Va3, Ugls, Valg are edges, and vy 03, Uavy, V1Us, Vals, VLU, Uallg, Vgl
nonedges

o X is an anticomponent of the set of all {vy, vy, vs}-complete vertices, and vy, vy are not
X -complete
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e P is an induced }'HH// U‘f' G (X U {:"] , U, U,y [l] hetween V5. Ug. and no interior vertex

of P is X -complete or adjacent to vy or adjacent to vy
e [fwsvg is an edge, then vg is not X-complelc

In [15], it is shown that a pyramid can be detected in O(nY) time, a jewel in O(n%) time, a
configuration of type 77 in O(n®) time (obviously), a configuration of type 73 or T3 in O(n®)
time.

Theorem 28.42 (15| If G or G contains a pyramid, a jewel, or a configuration of type T,
To, or Ts. then G is not Berge. m

Given a hole C' of length at least seven, a vertex z is C-major if 2 has two neighbors in '
whose distance in (' is at least three. A hole (" of G is amenable if (i) C is a shortest odd
hole of length at least seven of &, and (ii) for every anticonnected set X of C-major vertices,

there is an X-complete edge in C.

Theorem 28.43 [15] If G contains no pyramid, and no configuration of type Ty, T2, or Ts,
and both G, G contains no jewel, then every shortest odd hole of G is amenable. |

Recall that a set X of vertices is a near-cleaner for an odd hole €' of length at least seven
if it contains all C-major vertices, and X 1 (' is a subset of the vertex set of some path of
length three of C'.

Theorem 28.44 [15] There is an O(n®) algorithm which given a graph G outputs O(n®)
subsets of V(G) such that if C' is an amenable odd hole of G, then one of the subsets is a

near-cleaner for C. u

Theorem 28.45 [15] There is an O(n') algorithm which given a graph G containing no
pyramid or jewel. and a subsel X of V(G) outputs an odd hole, or determines that there is
no shortest odd hole C' of G such that X is a near-cleaner for C'. [

The steps needed to recognize a perfect graph are described in Algorithm 28.8. There are
two bottlenecks to making the algorithm run faster than O(n?) time.

Algorithm 28.8 perfect graph recognition

input: graph ¢
output: a determination that ' is Berge or not

(1) Determine if G or G contains a pyramid. or a jewel, or a configuration of type 71,
7>, or Tz. If it does, output ¢ is not Berge, and stop

(2) Praduce O(n”) subsets X of V(@) using Theorem 28.44. These subsets contain all
near-cleaners of some odd hole of &, if such an odd hole exists

(3) For each subset X of (2), run the algorithm of Theorem 28.45. If an odd hole is
produced, output & is not Berge. and stop

(4) Run (2) and (3) with G replaced by G

(5) Output G is Berge J

The first one is that as of present, there is no algorithm to detect a pyramid in time faster
than O(n?). The second involves the near-cleaners. It is not known if given a near-cleaner,
one can find an odd hole in time faster than O(n'). It is also not known if a graph can have

fewer than O(n®) near-cleaners.
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28.10 x-BOUNDED GRAPHS

Definition 28.35 A graph G is x-bounded if there is a function [ such that x(G)
Hlw(G)).

<

We have seen that perfect graphs are x-bounded. One may wonder about sufficient conditions
on the holes of a graph for it to be x-bounded. Some interesting conditions have been found.

Theorem 28.46 [16] If a graph G is even hole-free. then G contains a vertex whose neigh-
borhood can be partitioned into two cliques. In particulor, G satisfies x(G) < 2w(G) — 1. W

References [81 83] give two different polynomial time algorithms (of high complexity) for
finding an even hole in a graph.

It is reasonable to expect that graphs without odd holes have bounded chromatic number.
Before discussing this matter, we will need a definition.

) into
k sets Vi, ..., Vi such that no V; contains o clique with w(G) vertices. A graph ds k-divisible

if each tnduced subgraph of G with ot least one edge admits a k-division.

Definition 28.36 A k-division of a graph G with at least one edge is a partition of V(G

It is easy to see the following.

Lemma 28.18 A k-divisible graph G has x(G) < k@) -1

Consider the following conjectures.

Conjecture 28.2 [84| A graph is 2-divisible if and only if it is odd hole-free.
The above conjecture implies that an odd hole-free graph G has x(G) < 290 =1 and thus is
x-bounded. The conjecture is known to hold for claw-free graphs [84], 2Ky-free graphs [17

and Ky-free graphs [85]. The problem of recognizing odd hole-free graphs is open.

We now meuntion a number of conjectures related to x-bouuded graphs and forbidden
subgraphs.

Conjecture 28.3 [84] Let F' be any forest on k wvertices. Then any graph G that does not
contain I as induced subgraph is k-divisible.

It is not known if Conjecture 28.3 holds for claw-free graphs.

Definition 28.37 Lel G be a graph with at least one hole. The hole number h(G) of G
the length of the longest hole in G.

1S5

Conjecture 28.4 [84] Let (¢ be a graph with at least one hole. Then G is (h(G) —2)-divisible
The following special case of Conjecture 28.4 is still open.

Conjecture 28.5 (84| If G is a triangle-free graph with at least one hole, then x(G) <
MG —2.
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