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28.1 INTRODUCTION 

This chapter is a survey on perfect graphs with an algorithmic flavor. Our empha is i on 
important classes of perfect graphs for which there are fast and efficient recognition and 
optimization algorithms. The classes of gTaphs we discuss in this chapter are chordal, com­
parability, interval, perfectly orderable, weakly chordal, perfectly contractile, and x -bound 
graphs. For each of these classes, when appropriate we discuss the complexity of the recog­
nition algorithm and algorithms for finding a minimum coloring, and a largest clique in the 
graph and in its complement. 

In the late 1950s, Berge [1 J started his investigation of graph. G with the following 
properties: (i) cx(G) = 8(G), that is the number of vertices in a largest stable set is equal to 
the smallest number of cliques that cover V(G) and (ii) w(G) = X(G), that is the number 
of vertices in a largest clique is equal to th smallest number of colors needed to color G. At 
about the same time, Shannon [2J in his study of the zero-error capacity of communication 
channels asked: (iii) what are the minimal graphs that do not satisfy (i)?, and (iv) what i 
the zero-en ol' capacity of the chordless cycle on five vertices? In today's language, the graphs 
G all of whose induced subgraphs satisfy (ii) are called perfect. 

In 1959, it was proved [3J that chordal graphs (graphs such that ev ry cycle of length at 
least four has a chord) satisfy (i), that is complements of chordal graphs are p rfect. In 1960. 
it was proved [1 J that chordal graphs are perfect. These two results led Berge to propo e 
two conjectures which after many years of work by the graph theory community were proyed 

to hold . 

Theorem 28.1 (Perfect graph theorem) rr a graph is perfect, then so is its complement . 

• 
Theorem 28 .2 (Strong perfect graph theorem) A graph is perfect if and only if it doe 
not contain an odd chord less cycle with at least five vertices, or the complement of uch a 
cycle. • 

Perfect graphs are prototypes of min-max characterizations in combinatorics and graph the­
ory. The theory of perfect graphs can be used to prove well known theorems uch as the 
Dilworth's theorem on partially ordered sets [4J, or the Konig's theorem on edge coloring of 
bipart ite graphs [5J. On the other hand, algorithmic considerations of perfect graphs have 
given rise to techniques such as clique cutset decomposition, and modular decompo ition. 
Question (iv) was answered completely in [6]; in the process of doing so, the so-called LOYI:\ z's 
theta function e were introduced. Theta function satisfies w( G) ::; 8( G) ~ X( G) for any 
graph G. Thus, a perfect graph G has w(G) = 8(G) = X(G). Subsequently, [7] gave a poly­
nomial t ime algorithm based on the ellipsoid method to compute 8(G) for any graph G. A~ 
a consequence, a largest clique and an optimal coloring of a perfect graph can be found in 
polynomial time. Furthermore, the algorithm of [7] is robust in the ense of [8]: given th 
input graph G, it finds a largest clique and an optimal coloring, or says correctly that G 
is not perfect; [7J is also the first important paper in the now popular field of semidefinite 
programming (see [9]). 

This paper is a survey on perfect graphs with an algorithmic flavor. Even though there are 
now polynomial time algorithms for recognizing a perfect graph and for finding an optimal 
coloring- and a largest clique- of such a graph, they are not considered fast or effici nt. 
Our emphasis is on important classes of perfect graphs for which there are fast and efficient 
recognition and optimization algorithms. The purpose of this survey is to discuss the e cla" es 
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of graphs, named below, together with the complexity of the recognition problem and the 
optimization problems. The reader is referred to [10- 12J for background on perfect graphs. 

Chordal graphs form a class of graphs among the most studied in graph theory. Besides 
being the impetus for the birth of perfect graphs, chordal gTaphs have been studied in contexts 
such as matrix computation and database design . Chordal graphs have given rise to well 
known search methods such as lexicographic breadth-first search and maximum cardinality 
search. We discuss chordal gTaphs in Section 28.3. 

Comparability graphs (the graphs of partially order sets) are also among the earliest 
known classes of perfect graphs. The well-known Dilworth's theorem- stating that in a par­
tially ordered set, the number of elements in a largest anti-chain is equal to the smallest 
number of chains that cover the set- is equivalent to the statement that complements of com­
parability graphs are perfect. Early results of [13J and [14J imply polynomial time algorithms 
for comparability graph recognition. But despite much research, there is still no linear-time 
algorithm for the recognition problem. It turns out that recognizing comparability graphs 
is equivalent to testing for a triangle in a graph, via an O(n2) time reduction. We discuss 
comparability graphs in Section 28.4. 

Interval graphs are the intersection graphs of intervals on a line. Besides having obvious 
application in scheduling, interval graphs have interesting structural properties. For example, 
interval graphs are precisely the chordal graphs whose complements are comparability graphs. 
We discuss interval graphs is Section 28.5. 

Weakly chordal graphs are graphs without chordless cycles with at least five vertices and 
their complements. This class of graphs generalizes chordal graphs in a natural way. For 
weakly chordal graphs, there are efficient, but not linear t ime, algorithms for the recognition 
and optimization problems. We discuss weakly chordal graphs in Section 28.6. 

An order on the vertices of a graph is perfect if t he greedy (sequential) coloring algo­
rithm delivers an optimal coloring on the graph and on its induced subgraphs. A graph is 
perfectly orderable if it admits a perfect order. Chordal graphs and comparability graphs 
admit perfect orders. Complements of chordal graphs are also perfectly orderable. Recogniz­
ing perfectly orderable graphs is NP-complete; however, there are many interesting classes of 
perfectly orderable graphs with polynomial time recognition algorithms. We discuss perfectly 
orderable graphs in Section 28.7. 

An even-pair is a set of two nonadjacent vertices such that all chordless paths between 
them have an even number of edges. If a graph G has an even-pair, then by contracting this 
even-pair we obtain a graph G' satisfying w(G) = w(G' ) and X(G) = X(G' ). Furthermore, if 
G is perfect, then so is G'. Perfectly contractile graphs are those graphs G such that, starting 
with any induced subgraph of G by repeatedly contracting even-pairs we obtain a clique. 
Weakly chordal graphs and perfectly orderable graphs are perfectly contractile. We discuss 
perfectly contractile graphs in Section 28.8. 

Recently, a polynomial time algorithm for recognizing perfect graphs was given in [15J. 
We give a sketch of this algorithm in Section 28.9. 

A gTaph G is x-bound if there is a function f such that X(G) :::; f(w(G)) . Perfect graphs 
are x-bound. Identifying sufficient conditions for a graph to be x-bound is an interesting 
problem. It is proved in [16J that a graph is x-bound if it does not contain an even chOl'dless 
cycle. One many ask a similar question for odd cycles [17J : Is it true that a graph is x-bound 
if it does not contain an odd chordless cycle with at least five vertices? In Section 28.10, we 
discuss this question and related conjectures. 

We give the definitions used in this chapter in Section 28.2. 
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28.2 NOTATION 

For graph 0 = (V, E) and x E V, Nc(x) is the neighborhood of x in G; we omit the subscript 
o when the context is clear. Let d(x) denote IN(x)l. For S ~ V, G[S] denotes the subgraph 
of 0 induced by S, and 0 - S denotes O[V - S]; for x E V, we use G - x for G - {x}. 
w (0) is the number of vertices in a largest clique in O. ex. ( G) is the number of vertices in a 
largest stable set in G. X (0) is the chromatic number of G. e (G) is the smallest number of 
cliques that cover the vertices of O. A clique is maximal if it is not a proper subset of another 
clique. For A, B ~ V such that OrAl and G[B] are connected, S ~ V is a separator for A 
and B provided A and B belong to different components of G - S. Further, S is a minimal 
separator for A and B if no proper subset of S is also a separator for A and B. We will al 0 

call a set C of vertices a cutset if C is a separator for some sets A, B of V; C is a minimal 
cutset if no proper subset of C is a cutset. 

We use n to refer to \VI and m to refer to lEI. 
In a bipartite graph 0 = (X, Y, E), X and Yare the parts of the partition of the vertex-set 

and E is the set of edges. A matching is a set of pairwise non-incident edges. 
A set C of V is anti-connected if C spans a connected subgraph in the complement G of 

O. For a set X C V, a vertex v is X -complete if v is adjacent to every vertex of X. An edge 
is X-complete if both its endpoints are X-complete. A vertex v is X-null if v has no neighbor 
in X. 

Ck denotes the chordless cycle with k vertices. A hole is the Ck with k ~ 4. An anti-hole 
is the complement of a hole. Pk denotes the chordless path with k vertices. K t denotes the 
clique on t vertices. The K3 is sometimes called a triangle. The complement of a C4 is denoted 
by 2K2 . The claw is the tree on four vertices with a vertex of degree 3. 

For problems A and B, A ::; B via an f(m, n) time reduction means that an instance of 
problem A can be reduced to an instance of problem B using an algorithm with the worst 
case complexity of f (m, n); A == B via f(m, n) time reductions means that we have A -< B 
as well as B ::; A via f(m , n) time reductions. 

Let 0 (n OC) be the complexity of the current best algorithm to multiply two n x n matrice . 
It is currently known that ex. < 2.376 [18] . 

28.3 CHORDAL GRAPHS 

Definition 28.1 A graph is chordal (or, triangulated) if it does not contain a chord less cycle 
with at least four vertices. 

Chordal graphs can be used to model various combinatorial structures. For example, they 
are the intersection graphs of subtrees of a tree as we will see later. See [19] for application 
of chordal graphs to sparse matrix computations. Chordal graphs are among the earliest 
known classes of perfect gTaphs [3,20,21]. We will now discuss the combinatorial structure 
of chordal graphs. 

28.3.1 Characterization 

Definition 28.2 A vertex is simplicial if its neighborhood is a clique. 

Theorem 28.3 [21] A graph 0 is chordal if and only if each of its induced subgraphs is a 
clique or contains two nonadjacent simplicial vertices. • 

To prove Theorem 28.3, we need the following two lemmas. 

Lemma 28.1 Any minimal cutset of a chordal graph G is a clique. 
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Proof Suppose C is a minimal cutset of G and AI, A2 are two distinct components of G - C. 
Further, suppose for x E C and y E C, xy tJ. E(G). As C is a minimal cutset of G, each of 
x, y has a neighbor in Ai, i = 1,2. Let Pi, i = 1, 2, be a shortest path connecting x and y 
in G[Ai U CJ such that all the internal vertices of Pi lie in Ai · Then, G[V(PI ) U V(P2 )] is a 
hole, a contradiction. • 

Lemma 28.2 Let G be a graph with a clique cutset C. Consider the induced subgraphs G I , G2 
with G = GIUG2 and Gl nG2 = C. Then, G is chordal if and onlyifGI,G2 are both chordal. 

Proof If G is chordal, then as GI and G2 are induced subgraphs of a chordal graph, they 
themselves are chordal; this proves the only if part . For the if part, suppose each of G I , 

G 2 is chordal, but G has a hole L. Then, L must involve a vertex from each of G I - C, 
G 2 - C. Therefore, C contains a pair of nonadjacent vertices from L, contradicting C being 
a clique. • 

Proof of Theorem 28.3. The if part is easy: If G is a graph and x is a simplicial vertex of G, 
then G is chordal if and only if G - x is. Now, we prove the only if part by induction on the 
number of vertices. Let G be a chordal graph. We may assume G is connected, for otherwise 
by the induction hypothesis, each component of G is a clique or contains two nonadjacent 
simplicial vertices, and so G contains two nonadjacent simplicial vertices. Let C be a minimal 
cutset of G. By Lemma 28.1 , C is a clique. Thus, G has two induced subgraphs GI , G2 with 
G = G I U G2 and G I n G2 = C. By the induction hypothesis, each Gi has a simplicial vertex 
Vi E G i - C (since C is a clique, it cannot contain two nonadjacent simplicial vertices). The 
vertices VI, v2 remain simplicial vertices of G, and they are nonadjacent. • 

Definition 28.3 For a graph G and an ordering VI V2 .. . Vn of its vertices, let Gi denote 
G[{ Vi, .. " vn}J· An ordering (J' = VI V2 ... Vn of vertices of G is a perfect elimination scheme 
(p. e. s.) for G if each Vi is simplicial in G i · 

Theorem 28.4 [21 ,22J G is chordal if and only if G admits a perfect elimination scheme. 

Proof For any vertex v in a chordal graph G, G - V is also chordal; this together with 
Theorem 28.3 prove the only if part. Since no hole has a simplicial vertex, the if part 
follows . • 

Corollary 28.1 A chordal graph G has at most n maximal cliques whose sizes sum up to at 
most m. 

Proof By induction on the number of vertices of G. Let x be a simplicial vertex of G. Then, 
{x} UN (x) is the only maximal clique of G containing x. By the induction hypothesis, G - x 
has at most n -1 maximal cliques whose sizes sum up to at most m - d(x). Then, the result 
follows. • 

Definition 28.4 Let F be a family of nonempty sets . The intersection graph of F is the 
graph obtained by identifying each set of F with a vertex, and joining two vertices by an edge 
if and only if the two corresponding sets have a nonempty intersection. 

Theorem 28.5 [23,24J A graph is chordal if and only if it is the intersection graph of subtrees 
of a tree . 
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Proof. By induction on the number of vertices. We prove the if part first. Let G = (V. E) 
be a graph that is the intersection graph of a set 5 of subtrees of a tree T that is every 
vertex v of V is a subtree Tv of T, and two vertices 11, u E V are adjacent if and only if 
Tv and Tu intersect . We may assume G is connected, for otherwise, we are done by vthe 
induction hypothesis. By Lemma 28.2, and the induction hypothesis, we only need prove G 
is a clique, or contains a clique cutset . We may assume G is not a clique and let u v be 
two nonadjacent vertices of G. Then, Tu n Tv = 0. Let P = Xl,· .. , xp be the path in T with 
Xl E Tu , xp E Tv such that all interior vertices of P are not in Tu U Tv. Since T is a tree. 
P is unique; furthermore, all paths with one endpoint in Tu and the other endpoint in Tv 
must contain all vertices of P. Thus, XIX2 is a cut-edge of T. Let S' be the set of all subtree 
of 5 that contains the edge XIX2. Then in G, the set C of vertices that corresponds to the 
subtrees of 5' forms a clique. We claim C is a cutset of G. In G, consider a path from uta t'; 
let the vertices of this path be u = tl, t2 , ... , v = tk· Some subtree Tti must contain the edge 
Xl X 2 (because it is the cut-edge of T). Thus, the vertex that corresponds to Tti is in C. \Ye 
have established the if part. 

Now, we prove the only if part. Let G = (V, E) be a chordal graph. We will prove that 
there is a tree T and a family 5 of subtrees of T such that (i) the vertices of T are the 
maximal cliques of G, and (ii) for each v E V, the set of maximal cliques of G containing 
v induces a subtree of T. The proof is by induction on the number of vertices. Suppa e 
that G is disconnected. Then, the induction hypothesis implies for each component Ci of G. 
there is a tree Ti satisfying (i) and (ii). Construct the tree T from the trees Ti by adding a 
new root vertex r and joining l' to the root of each Ti · It is easy to see that T satisfie (i) 
and (ii) . So, G is connected . We may assume G is not a clique, for otherwise we are ea ily 
done. Consider a simplicial vertex v of G . As v is simplicial in G, it is not a cut vertex of 
G and therefore, G - v is connected. By the induction hypothesis, the graph G - 11 is the 
intersection graph of a set B of subtrees of a tree Ta satisfying (i) and (ii) . Let J( be a 
maximal clique of G - v containing Ne(v) and let tk be the vertex of Ta that correspond 
to K . If K = Ne(v), then we simply add v to tK to get the tree T from Ta. Otherwi e. 
let K' = Ne(v) U {v}. Let T be the tree obtained from Ta by adding a new vertex tK' 
and the edge t ktK" Let TK be the subtree formed by the single vertex tK', We can truct 
5 as follows. Add TJ( to 5; for each tree Tv, E B, if Tu corresponds to a vertex in N G ( u), 
then add the tree Tu U {tJ(tKI}; otherwise, add Tu to 5. It is seen that (i) and (ii) hold for 
T and 5. • 

28.3.2 Recognition 

Given G, an approach to testing whether G is chordal is: first generate an ordering IT of 
vertices of G that is guaranteed to be a perfect elimination scheme for G when G is chordal: 
then, verify whether 0" is indeed a perfect elimination scheme for G. The first linear-time 
algorithm to generate a perfect elimination scheme of a chordal graph is given in [25] ' it u e 
the lexicographic breadth-first search (LexBFS). We present the maximum cardinality earch 
algorithm for the same purpose. 

The maximum cardinality search algorithm (MCS), introduced in [26], is used to con truct 
an ordering of vertices of a given graph; the ordering is constructed increm ntally right to 
left (if a comes before b in the order, then we consider a to be to the left of b). An arbitrary 
vertex is chosen to be the last in the ordering. In each remaining step, from the vertice' 
still not chosen (unlabeled vertices), one with the most neighbors among the alrcad cho en 
vertices (labeled vertices) is picked with the ties broken arbitrarily. 



Algorithm 28.1 MCS 

input: graph G 
output: ordering (J" = VI V2 ... Vn of vertices of G 

Vn f- an arbitrary vertex of G; 
for i f- n - 1 downto 1 do 

Vi f- unlabeled vertex adjacent to the most in {Vi+I' .. " vn }; 
end for 

Theorem 28.6 [26J Algorithm MCS can be implemented to run in O(m + n) time. 

Perfect Graphs • 71 : 

Proof We keep the array set [OJ ... set[n - 1] where set[j] is a doubly linked list of all the 
unlabeled vertices that are adjacent to exactly j labeled vertices. Thus, initially every vertex 
belongs to set[O]. For each vertex, we maintain the array index of the set it belongs to as 
well as a pointer to the node containing it in the set[i] lists. Finally, we maintain last, the 
largest index such that set[last] is nonempty. In the ith iteration of the algorithm, a vertex in 
set[lastJ is taken to be Vi and Vi is deleted from set[last]. For every unlabeled neighbor w of Vi, 

if w belongs to set[i], then we move w from set[i] to set[i + 1]. As each set is implemented as 
a doubly linked list , a single addition or deletion can be done in constant time, and hence all 
of the above operations can be done in O( d( Vi)) time. Finally, in order to update the value 
of last, we increment last once and then we repeatedly decrement the value of last until 
set[lastJ is nonempty. As last is incremented at most n times and its value is never less than 
-1, the overall time spent manipulating last is O(n) and we have the claimed complexity .• 

Definition 28.5 For vertices x , V of graph G and an ordering (J of vertices of G, x <()" V 
denotes that x precedes V in (J. 

Lemma 28.3 [26J Let (J" be the output of algorithm MCS on chordal graph G. Then, G does 
not have a chordless path P = (x = UO)U1 ... Uk-l(Uk = V) with k ~ 2 such that Ui <()" x, 
1 5 i 5 k - 1, and x < ()" V· 

Proof Suppose such a path existed; from all such chordless paths , pick P so that the position 
of x in (J" is as much to the right as possible. Given the logic of the algorithm MCS, as 
Uk-I <cr x <cr V, Uk-IV E E(G), and xV (j. E(G) , there must exist a vertex z such that 
x <cr z, xz E E(G), and Uk-IZ (j. E(G)). Let j be the largest index less than k-1 such that 
UjZ E E(G); such a j exists as xz E E(G). Let pi be the path ZUj'" Uk-IV. As G is chordal 
and pI has at least four vertices, zv (j. E(G). Now, whether x < ()" z <()" V holds or x <()" V <()" Z 

holds, existence of the chordless path pi violates the choice of P , a contradiction. • 

Theorem 28.7 [26J If G is chordal, then the output (J" = VI V2 ... Vn produced by the algorithm 
MOS is a perfect elimination scheme for G. 

Proof Suppose not, and let i be the smallest such that Vi is not simplicial in G i . Then, there 
exist Vj and Vk such that Vi <cr Vj <()" Vk, ViVj E E(G), ViVk E E(G), and VjVk (j. E(G). Then, 
the chordless path P = VjViVk contradicts Lemma 28.3. • 
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Algorithm 28.2 chordal-recognition 

input: graph G 
output: yes when G is chordal and no otherwise 

Run algorithm MCS on G to get (J = VIV2' " Vn ; 

if (J is a perfect elimination scheme for G then 
output yes 

else 
output no 

end if 

Next, we discuss how to verify in linear time [25] whether (J = VI V2 ... Vn is a perfect elimina­
tion scheme for G. The key idea in [25] is that part of t he work involved in checking whether 
Vi is simplicial in Gi can be handed over to an appropriate vertex Vj such that Vi <0" Vj' In 
particular , let Vj be the smallest neighbor of Vi such that Vi <0" Vj ' Let L( Vi) = {Vk I Vj <0" Uk 

and ViVk E E( G)}. In other words , L( Vi) is the set of those neighbors of Vi that follow Vj in cr. 
If Vj is simplicial in Gj and Vj is adjacent to every vertex in L(Vi), then Vi is simplicial in 

Gi . On the other hand , if either Vj is not simplicial in G j or Vj is not adjacent to some vertex: 
in L(Vi) (making Vi not simplicial in Gi ), then (J is not a perfect elimination scheme for G. 
Further , part of the work involved in checking whether Vj is simplicial in G j can like wi e be 
deferred to a later vertex. 

In the following, the list bba(vk) is the list of vertices that Vk better be adjacent to; it i 
the concatenation of the L(Vi) lists handed over to Vk by the Vi'S preceding it in cr. 

Algorithm 28.3 pes-verification 

input: graph G and ordering (J = VI V2 ... Vn of vertices of G 
output: yes when (J is a p.e.s. for G and no otherwise 

for i ~ I to n do 
Initialize bba( Vi) to an empty list; 

end for 
for i ~ I to n - I do 

if Vi is not adjacent to some vertex in bba( Vi) then 
output no; 
stop 

end if 
Let Vj be the smallest neighbor of Vi such that Vi <CT Vj; 
L(Vi) ~ {Vk I Vj <CT Vk and ViVk E E(G)}; 
Append L( Vi) to bba( Vj) 

end for 
output yes 

Theorem 28.8 [25] Algorithm pes-verification can be implemented to run in O(m + n} time. 

Proof. Assume that the array v[I]· .. v[n] stores (J. In order to ch ck whether Vi is adjacent 
to every vertex in bba(vi) : use a boolean array flag [I ]· ·· flag[n] that is initialized in th 
first step of t he entire algorithm. Now, mark the neighbors of Vi in the array flag. Then. 
traverse the list bba( Vi) and check for each member of bba( Vi) whether the corre ponding 
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entry in flag is marked. Finally, unmark the neighbors of Vi in flag. Thus, this operation 
takes O(jbba(vi)j + d(vi)) time. As a vertex Vk hands over an L(Vk) list at most once, the 
total size of all bba lists is O( m + n) and the overall time spent on this operation is O( m + n). 
The rest of the operations can easily be implemented in O( m + n) time. • 

28.3.3 Optimization 

For a chordal graph, a largest clique and an optimal coloring can be found in linear t ime 
using the combined results in [25,27J. Even the weighted versions of these problems can be 
solved efficiently. This will be discussed in the context of the more general class of perfectly 
orderable graphs in Section 28.7. 

The known optimization algorithms for chordal graphs use the clique cutset property. For 
a general graph, there are polynomial time algorithms [28,29J to find a clique cutset if one 
exists in the graph. [28,30J discuss optimization algorithm for classes of graphs, more general 
than chordal, using the clique cutset decomposition. 

28.4 COMPARABILITY GRAPHS 

Definition 28.6 A graph G = (V. E) is a comparability graph if there is a partially ordered 
set (P, --<) such that V = P and two vertices of G are adjacent if and only if the corresponding 
elements of P are comparable in the relation -<. 

Definition 28.7 An orientation of a graph is transitive if whenever a -t b, b -t c are arcs, 
a -+ c is an arc. 

An ordered graph (G, --<) corresponds to an orientation in a natural way: for vertices a, b, we 
orient a -+ b if a -< b. Now, we can redefine the notion of a comparability graph as follows. 

Definition 28.8 A graph is a comparability graph if it admits an orientation that is both 
acyclic and transitive. 

28.4.1 Characterization 

Several theorems on comparability graphs have become folklore. We start with a classical 
theorem of [13J that as we will see later implies a polynomial time algorithm to recognize a 
comparability graph. 

Theorem 28.9 [13J If a graph admits a transitive orientation, then it admits an acyclic and 
transitive orientation. • 

Definition 28.9 A subset M of vertices of a graph G = (V, E) is a module if any vertex 
outside of M is either adjacent to every vertex in M or adjacent to no vertex in M. Trivially, 
{x} for any x E V, and V are modules. Module M is nontrivial if jMj 2: 2 and MeV. 

To prove Theorem 28.9, we need the following. 

Theorem 28.10 [13J If a graph admits a cyclic transitive orientation, then it contains a 
nontrivial module. 

Proof Let G be a graph and let G be transitive orientation of G containing a directed cycle C . 
We may assume C is a shortest cycle and thus chordless. Since G is transitive, C has length 
three. We may assume G has at least four vertices, for otherwise the theorem is trivially 
true. Let the vertices of C be a, b, c in the cyclic order , with a -t b, b -t C, C -t a. A vertex x 



716 • Handbook of Graph Theory, Combinatorial Optimization, and Algorithms 

outside C cannot have exactly one neighbor in C , for otherwise x and some two vertices in C 
violate the transitivity of C. There must be a vertex v adjacent to exactly two vertices of C. 
for otherwise C is a nontrivial module of G. We may assume v is adjacent to b c. Let X be 
the set of vertices that are adjacent to b, c such that X is anti-connected, a, v EX, and X i 
maximal with respect to this property. Since X is anti-connected, and a -+ b c -+ a, it follow 
that every x E X has x -+ b, c -+ x . We may assume X is not a module of G, for otherwi e 
we are done. Thus, there is a vertex u r:J. X such that A = N('u) n X and B = X - A are 
not empty. As X is anti-connected, there are vertices x E A, x' E B with XXi rt. E( G). Vertex 
u must be adjacent to b, or c, for otherwise {u, x , b, c} violate the transitivity of -a. The 
maximality of X means u cannot be adjacent to both band c. We may assume ub E E(G). 
uc r:J. E(G). Now, {u, b,x'} or {u ,b,c} violates the transitivity of C. • 
Lemma 28.4 Let G be a graph with a nontrivial module X and x be a vertex in X. Let G 1 
be the subgraph of G induced by (V (G) - X) u {x}, let G2 be the subgraph of G induced by X. 
Then G is a comparability graph if and only if both G1 and G2 are. 

Proof. We obviously need only to prove the if part. Assume both G I and G 2 admit acyclic 
~ ~ -::t 

transitive orientations G1 and G2 . An acyclic transitive orientation C; of G can be constructed 
as follows. Consider adjacent vertices a, b of G. If a -+ b is an arc in G 1 or G2, then let a -4 b 

be an arc of C. Otherwise, we may assume a E G I - x, bE X-x. If a -+ x is an arc of G I . 

then let a -+ b be an arc of C, else let b -+ a be an arc of G. It is easy to verify that -a i 
an acyclic transitive orientation. • 

Lemma 28.4 implies the following. 

Corollary 28.2 A minimally noncomparability graph cannot contain a nontrivial module . • 

Proof of Theorem 28.9. We prove by contradiction. Let G be a graph such that every tran­
sitive orientation of G is cyclic. Therefore, G is not a comparability graph, and so G con­
tains an induced subgraph H that is minimally noncomparability. Therefore, every tran itiw' 
orientation of H is cyclic. By Theorem 28.10, H contains a proper module, contradicting 
Corollary 28.2. • 

Definition 28.10 Let G = (V, E) be a graph. The corresponding knotting gmph is g'iven 
by K[G] = (VI(, EK) where VI( and EK are defined as follows. For each vertex v of G there 
are copies VI, V2, . .. , Vi" in VI(, where iv is the number of components of G[N( v)]. For each 
edg e vw of E, there is an edge ViWj in E K, where v is contained in the j th component of 
G[N(w)]) and W is contained in the ith component of G[N(v)]. 

An illustration of the knotting relation is shown in Figure 28.1. It is easy to see that if G L 
a comparability graph, then its knotting graph K (G) is bipartite. The converse is also true. 

Figure 28.1 Graph and its knotting graph. 



Perfect Graphs • 717 

Theorem 28.11 [14J A graph is a comparability graph if and only if its knotting graph is 
bipartite. • 

A characterization of comparability gTaphs by forbidden induced subgraphs is given in [14] 
(see [31J for an English translation of [14]). 

Definition 28.11 A sequence IT = {YI W 1Y2 ... Y2n+l W2n+1yd is an asteroid, more exactly 
a (2n + I)-asteroid, if the Yi are pairwise distinct vertices, each Wi is a path with endpoints 
Yi, Yi+l, and Yi has no neighbor in Wi+n (subscripts are taken modulo 2n + 1). 

Theorem 28.12 [14J A graph G is a comparability graph if and only if its complement G 
contains no asteroid. • 

By characterizing all minimal asteroids, a list of all minimal non-comparability graphs can 
be found. 

Theorem 28.13 [14J A graph G is a comparability graph if and only if G does not contain 
as induced subgraphs any of the four graphs shown in Figure 28.2 or the complements of the 
14 graphs shown in Figure 28.3. • 

2n 2 2 2n-l 2 

0----<11 

C2n+1 (n ~ 2) ;1,,+1 (n ~ 2) ;~n+l (n ~ 2) 

Figure 28.2 Four graphs with non-bipartite knotting graphs. 

0' LAA 2n-l 2 

2n 1 
1 2 n 1 2 n 1 2 n 

~n (n ~ 3) Dn (n ~ 2) En (n ~ 1) En (n ~ 1) 

~ tt cb ck 

Figure 28.3 Fourteen graphs containing a 3-asteroid. 
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The reader may verify that the graphs in Figure 28.2 have nonbipartite knotting graphs . and 
the graphs in Figure 28.3 contain a 3-asteroid. 

Definition 28.12 Given a partial order (P, ~), a chain is a set of pairwise comparable 
elements, an anti-chain is a set of pairwise incomparable elements. 

A proof of the following well-known theorem is presented later. 

Theorem 28.14 [4] In a partially ordered set (P, -<), the size of a largest anti-chain is equal 
to the smallest n'umber of chains needed to cover all elements of P. • 

Let (P, -<) be a partial order, and let G be the transitive orientation of the comparability 

graph G of (P, -<). Because of transitivity, a directed path of G induces a clique. Thus a chai~l 
of P corresponds to a clique of G. And, an anti-chain of P corresponds to a stable set of G. 
Thus, Theorem 28.14 is equivalent to the statement that the complements of comparability 
graphs are perfect. ~ 

28.4.2 Recognition 

Consider the problem of determining whether a given graph G is a comparability graph. 
Equivalently, the problem asks if G can be oriented so that the resulting directed graph i 
acyclic and transitive. First , we consider an algorithm for the problem with the complexity 
of O(mn). Then, we discuss a more efficient algorithm. 

Suppose G is a comparability graph, xy is an edge of G, and some transitive orientation 
G of G contains x ---+ y. Then, reversing the direction of every arc in G also yields a transitiYe 
orientation of G. Therefore, if we were to test whether G admits a transitive orientation. it 
is enough to pick an arbitrary edge xy of G and determine whether there exists a tran itiYe 
orientation of G that contains x ---+ y. 

Suppose xyz is a P3 of G. If a transitive orientation of G contains x -t y then it mu t 
contain z ---+ y also; in this situation, we say that x ---+ y forces z ---+ y. Now, the forced choic 
of z ---+ y might in turn force the orientation of some other edges. Th implication das of 
x ---+ y consists of all the arcs that are forced , in one or more steps, by the initial choice of 
x ---+ y. Clearly, for some edge uv, if the implication class of x ---+ y contains u -t v a well 
as v ---+ 'U , then G cannot be a comparability graph. Conversely, it can be shown [11] that if 
the implication class of x ---+ y does not contain u ---+ v as well as v -t u, for any edge in" 
then all the edges oriented thus far can be deleted from G, and the process can be repeat d 
on the remaining graph until it has no edges left. 

Theorem 28.15 [11] Algorithm comparability-recognition-l is correct and it can be imple­
mented to run in O( mn) time. • 

Algorithm comparability-recognition-1 produces an acyclic transitive orientation when th(" 
input graph is a comparability graph. Since the proof of its correctness is involved we will 
not give it here. In this context, we note Theorem 28.9 already implies a simple polyno­
mial time algorithm for recognizing comparability graphs: a graph G is a comparabilit~­

graph if and only if for each edge xy, the implication class of x -t y does not contain both 
u ---+ v and v ---+ 'U for some vertices u, v. Since the number of P3 of a graph is O(nm 
(each edge can be extended to at most n P3 ) , it is not difficult to see that all impli a­
tion classes of G can be enumerated in O(nm) time, and so this simple algorithm run~ in 
O(nm) time. 



Algorithm 28.4 comparability-recognition-l 

input: graph G 
output: yes when G is a comparability graph and no otherwise 

i = 1; 
while G has edges left do 

Pick edge xy and orient it x -r y; 
Enumerate the implication class Di of x -r y; 
if some u -+ v and v -r u are in Di then 

output no; 
stop 

end if 
Let Ei be the set of underlying edges of members of Di ; 

G=G-Ei; 
i = i + 1 

end while 
output yes 
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Suppose we had an algorithm that can transitively orient a given comparability graph. Then, 
we can combine that with an algorithm to verify whether a given orientation of a graph is 
acyclic and transitive to obtain an algorithm to recognize comparability graphs. This is the 
basis for the algorithm comparability-recognition-2. 

Algorithm 28.5 comparability-recognition-2 

input: graph G 
output: yes when G is a comparability graph and no otherwise 

Run on G an algorithm for transitively orienting a comparability graph to obtain the 
directed graph H; 
if H is acyclic and transitive then 

output yes 
else 

output no 
end if 

First, we consider the second step of the algorithm comparability-recognition-2, where it is 
verified whether a given directed graph H is acyclic and transitive. The acyclicity of H can 
be verified in linear time using standard search algorithms. Having done that, by considering 
each P3 of H, one can easily verify in O(nm) time whether H is transitive. A faster algorithm 
can be derived using multiplication of Boolean matrices. The following is folklore. 

Theorem 28.16 It can be verified in O(nC<) time whetheT a given directed acyclic graph G 
i.'3 transitive. 

Proof Let A be the adjacency matrix of G. Set each entry on the main diagonal of A to 1. 
Then, G is transitive if and only if A = A2 , where A2 is computed via multiplication of 
Boolean matrices. • 

In contrast to the verification step, a given comparability graph can be transitively oriented 
in Jjnear time [32J. Next, we discuss the ideas behind the algorithm. 
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28.4.2.1 Transitive Orientation Using Modular Decomposition 

The overall idea of the algorithm is to first decompose the given comparability graph using 
a technique called modular decomposition, store the result of the decomposition using a 
unique tree structure, and then orient the edges of the graph via a post order traver al of 
the decomposition tree. We note that modular decomposition of graphs in general has many 
other applications. 

Suppose lVI is a nontrivial module in graph G = (V, E). Then, G can be decomposed into 
G1 = G[V - lVI U {x}] and G2 = G[M], where x is any vertex in M. By Lemma 2 .4 G 
is a comparability gl'aph if and only if G1 and G2 are. Therefore, the notion of modules i 
directly relevant to the problems of recognizing comparability gl'aphs and finding a transitiYe 
orientation of a comparability graph. Lemma 28.4 shows when G is a comparability graph. 
it is easy to construct a transitive orientation of G from transitive orientations of G 1 and 
G2 . Therefore , when G is a comparability graph that has a nontrivial module one can find 
a transitive orientation of G by recursively solving the problem on G1 and G 2 ; thus, the 
problem essentially reduces to finding a transit ive orientation of a comparability graph that 
has no nontrivial modules. In this case , the problem is solved using the fact [14] that such a 
graph admits a unique transitive orientation (i. e., the transitive orientation and its rever~al 
are the only possible ones). The notion of modular decomposition of a graph, described next. 
is a systematic procedure to decompose a graph into modules and record the result as a 
unique tree structure. 

28.4.2.2 Modular Decomposition 

The graph is decomposed recursively into subsets of vertices each of which is a module of the 
graph. The procedure stops when every subset has a single vertex. The result is represented 

as a tree. 

Definition 28.13 A module which induces a disconnected subgraph in the graph is a parallel 
module. A mod1Lle which induces a disconnected subgraph in the complement of the graph i 
a series module. A module which induces a connected subgraph in the graph as well as in th 
complement of the graph is a neighborhood module. 

If the current set Q of vertices induces a disconnected subgraph, Q is decomposed into it 
components. A node labeled P (for parallel) is introduced, each component of Q is decom­
posed recursively, and t he roots of the resulting subtrees are made children of the P node. If 
the complement of the subgraph induced by current set Q is disconnected, Q is decompo...,ed 
into the components of the complement. A node labeled 5 (for series) is introduced, ea h 
component of the complement of Q is decomposed recursively, and the roots of the re ulting 
subtrees are made children of the 5 node. Finally, if the subgraph induced by the current 
set Q of vertices and its complement are connected, then Q is decomposed into its ma..'cim.al 
proper submodules (a proper submodule lVI of Q is maximal if there does not exist modul 
lVI' of Q such that lVI c lVI' c Q); it is known [14] that in this case, each vertex of Q belong.:­
to a unique maximal proper submodule of Q. A node labeled N (for neighborhood) is intro­
duced, each maximal proper submodule of Q is decomposed recursively, and the roots of the 
resulting subtrees are made children of the N node. A graph and its modular decompo ition 
tree are shown in Figure 28.4. 

Theorem 28.17 [32] The modular decomposition tree of a graph is 'unique and it can b 
constructed in O( m + n) time. • 
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Figure 28.4 Graph and its modular decomposit ion tree. 

28.4.2 .3 From the Modular Decomposition Tree to Transitive Orientation 

Definition 28.14 Let M be the module corresponding to a node of the modular decompo­
sition tree. The quotient graph of M is the graph obtained as fo llows: take a representative 
vertex of the graph from the subtree rooted at each child of M in the decomposition tree, and 
then construct the subgraph induced by the set of chosen vertices. 

We note t hat t he choice of the representative vertex is irrelevant . The reader is referred to 
Figure 28.5 where the quotient graph of the root node of the decomposit ion tree in Figure 28.4 
is shown. Vertex Vi corresponds to t he subtree containing the representative vertex i of the 
graph. 

Let us now consider t he problem of transitively orient ing a comparability graph, given its 
modular decomposition tree T. We do a post order t raversal of T. Suppose we are at node D 
of T and all the subtrees of D have already been processed (and hence any edge of the graph 
with both endpoints in the same subtree of D is already oriented), our goal is to orient any 
edge of t he graph whose endpoints are in different subt rees of D. In order to accomplish this, 
we construct the quotient graph H of D . We t hen transit ively orient H . Suppose x, y are 
vertices of t he graph that are in different subtrees of D such that Vi corresponds to the subtree 
of D containing x while Vj corresponds to the subtree containing y. We add x --+ y to the 
transit ive orientation of the graph if and only if Vi --+ Vj is in the transitive orientation of H. 

For example, consider the transitive orientation of the quotient graph shown in 
Figure 28.5. As it contains V4 --+ V3, each of 4 --+ 2, 5 --+ 2, 4 --+ 3, and 5 --+ 3 will be 
added to t he transitive orientation of the graph. 

The remaining issues to be addressed are construction of the quotient graphs and finding 
a transitive orientation of each of the quotient graphs. It is easily seen that the sum of the 
sizes of all t he quotient graphs is O(m + n) . However , this does not automatically imply 
that t hey can all be constructed efficiently. It is shown in [32] that all the required quotient 
graphs can be constructed in O(m+n) t ime. Now, let us consider the problem of transitively 
orienting a quotient graph . T he quotient graph of an S node is a complete graph; in this case, 
we can take any permutation R of t he vert ices and orient the edges so that R is a topological 
sort of t he result ing orientation. T he quotient graph of a P node has no edges. 

Now, let H be t he quotient graph of an N node. Clearly, H itself does not have any 
nontrivial modules. Therefore, as noted earlier, H admits a unique transitive orientation . 

.... .. . 

Figure 28.5 Quotient graph of the module corresponding to the root of the tree in Figure 28.4 
and its transit ive orientation. V 1 represents {l} , V3 represents {2, 3}, V4 represents {4, 5}, 
and VlO represents {6, 7, 8, 9, lO}. 
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The idea of vertex partitioning is employed in [32J to transitively orient H in linear time 
and we explain this next. Suppose we are given a partition of V(H) such that for blocks X 
and Y of the partition every edge of H with an endpoint in X and another in Y is already 
oriented in a way consistent with some transitive orientation of H (however, an edge with 
both endpoints inside a block may not yet be oriented). Now, suppose u E X is adjacent to 
some vertices in Y and also is nonadjacent to some vertices in Y. Then, we can split Y into 
Y1 (neighbors of u) and Y2 (nonneighbors of u) and replace the block Y of the partition with 
Y1 and Y2 . Further, for v E Y1 and w E Y2 such that v and w ar adjacent, as uV'W is a P3 
and the edge uv is already oriented, orientation of the edge vw is forced. In other word , we 
can now orient every edge of H with an endpoint each in Y1 and Y2 . As a result, we would 
have more blocks in the partition satisfying the property that any edge with endpoints in two 
different blocks of the partition is already oriented (and any edge with both endpoints in the 
same block may not yet be oriented). Observe that if a block Y had more than one vertex 
then there must be a vertex in a block different from Y that splits Y; for otherwise, Y \\ill 
be a nontrivial module in H. Therefore, as H contains no nontrivial modules, the proces 
will terminate with each block containing exactly one vertex and all the edges in H will be 
oriented. The only remaining issue is finding the initial partition. It is shown in [32] that a 
source vertex s of a transitive orientation of H can be found in linear time again, using a 
version of vertex partitioning. Once s is found , w can start with X = {s} and Y = V(H)-X 
as the blocks of the initial partition, with any edge incident on s oriented away from s. 

Theorem 28.18 [32] A transitive orientation of a comparability graph can be found in 

Oem + n) time. • 

Corollary 28.3 Comparability graphs can be recognized in O(nCX) time. 

28.4.2.4 How Quickly Can Comparability Graphs Be Recognized? 

Next, we consider the feasibility of recognizing comparability graphs in better time than 
O(nCX). 

Definition 28.15 A dag is a directed acyclic graph. 
An h2dag G = (X, Y, Z, E) is a dag (of height two) in which {X, Y, Z} is a partition of 

the set of vertices of G, E is the set of arcs of G, each of X, Y , Z is a stable set, arcs between 
X and Yare oriented X to Y, arcs between Y and Z are oriented Y to Z, and arc between 
X and Z are oriented X to Z. Furthe1', X = {Xi 11 ~ i ~ IXI}, Y = {Yi 11 ::; i ::; IYI}, and 

Z = {Zi I 1 ~ i ~ I Z I} . 
In a tripartite graph G = (X, Y, Z, E), {X, Y, Z} is a partition of the set of vertices of G. 

E is set of edges of G, and each of X, Y , Z is a stable set. 

Consider the following problems: 

Problem-Comparability 

Instance: Graph G. 

Question: Is G a comparability gTaph? 

Problem-Transitivity 

Instance: dag G. 

Question: Is G transitively oriented? 



Pro blem-h2Transitivity 

Instance: h2dag G. 

Question: Is G transitively oriented? 

Problem-Triangle 

Instance: Graph G. 

Question: Does G contain a triangle? 

Problem-tripartiteTriangle 

Instance: Tripartite graph G. 

Question: Does G contain a triangle? 
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Lemma 28.5 [32J Problem-Comparability ~ Problem-Transitivity via an O(m + n) time 
reduction. 

Proof Follows from Theorem 28.18. • 
Lemma 28.6 [33J Problem-Transitivity ~ Problem-Comparability via an O(m + n) time 
reduction. 

Proof Let G = (V, E) be the given dag with lEI ~ 1. Construct graph H as follows: let 
X = {Xi liE V}, Y = {Vi liE V}, and Z = { Zi liE V}. Then, V(H) = {t}UXUYUZU{s} 

and E(H) = {txi I Xi E X}U{ZiS I Zi E Z}U{XiYj I i -+ j E E}U{Yizj Ii -+ j E E}U{XiZj I 
i -t j E E}. • 

In other words, H has two special vertices t and s and a copy in each of X, Y, and Z for 
every vertex i E V. Corresponding to every arc i -+ j in G, H has three edges. Finally, t is 
adjacent to every vertex in X and s is adjacent to every vertex in Z. Next, we verify that G 
is transitive if and only if H is a comparability graph. 

Suppose G is transitively oriented. Construct an orientation of H as follows: for every Xi, 

add the arc Xi -+ t. For every Zi, add the arc s -+ Zi . If i -+ j is an arc in G, then add the 
arcs Xi -+ Yj, Yi -+ Zj, and Xi -+ Zj . If the resulting orientation had a violation of transitivity, 
then we must have Xi -+ Yj -+ Zk (as only a vertex in Y can have an incoming as well as an 
outgoing arc), but no Xi -+ Zk. This would then imply that G has i -+ j -+ k but no i -+ k, 
making it not transitive. Thus, the resulting orientation of H is transitive and therefore, H 
is a comparability graph. 

Now, suppose H is a comparability graph and consider a transitive orientation of H. 
As the reversal of a transitive orientation is also a transitive orientation, we can assume that 
for some Xi, we have the arc Xi -+ t. This forces the arc Xj -+ t, for every Xj E X. This in 
turn forces every edge between X and Y to be oriented from X to Y and also forces every 
edge between X and Z to be oriented from X to Z. As lEI ~ 1, there must be some edge 
XiZj in H and hence the arc Xi -+ Zj must be in the transitive orientation of H. This forces 
the arc s -+ Zj, which in turn forces the arc s -+ Zi, for every Zi E Z. Finally, as there cannot 
be a directed path with two arcs from s to a vertex in Y, every edge between Y and Z is 
oriented from Y to Z. In order to verify that G must be transitive, suppose G had i -+ j -+ k. 
Then, H has the P3 XiYjZk and given the discussion above, the transitive orientation of H 
has Xi -+ Yj -+ Zk, and hence has the arc Xi -+ Zk also. Therefore, H has the edge Xi Zk, and 
given the construction of H, G has the arc i -+ k. 
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Corollary 28.4 Problem-Comparability == Problem-Transitivity via O(m + n) time 
reductions. • 

Lemma 28.7 [33] Pmblem-Transitivity :S Problem-h2Transitivity via an O(m + n) tim e 
reduction. 

Pmof. Let G = (V, E) be the given dag. Construct h2dag H = (X, Y, Z, F) as follow,, : 
X = {Xi l iE V} , Y = {Yi l iE V}, Z = {Zi liE V}, and F = { Xi -* Yj I i -* j E 

E} U {Yi -t Zj I i -t j E E} U { Xi -t Zj I i -* j E E}. It is seen that G has violation 
i -t j -t k of transitivity if and only if H has violation Xi -* Yj -* Zk of transitivity. • 

Note that we trivially have Problem-h2Transitivity :S Problem-Transitivity. 

Lemma 28.8 [34] Pmblem-Triangle :S Problem-tripartite Triangle via an O(m + n) time 
reduction. 

Proof. Given G = (V, E) construct the tripartite graph H = (X, Y, Z, F) as follows: X = 
{Xi liE V} , Y = {Yi liE V}, Z = {Zi liE V}, and F = {XiYj, XjYi I ij E E} U {YiZj, Yj:;i I 
ij E E} U { XiZj, XjZi I ij E E}. As H is a tripartite graph, any triangle of H must involve 
a vertex from each of X, Y, and Z. It is then seen that {i, j, k} form a triangle in G if and 
only if { Xi, Yj , zd form a triangle in H. • 

Note that we trivially have Problem-tripartite1hangle :S Problem-Triangle. 

Lemma 28.9 [34J Problem-h2Transitivity :S Problem-tripartite Triangle via an 0(n2 ) time 
reduction. 

Proof. Let G = (X, Y, Z , E) be the given h2dag. Construct tripartite graph H = (X, Y Z, F) 
where F = { XiYj I Xi -t Yj E E} U {YiZj I Yi -t Zj E E} U {XiZj I Xi -* Zj tt. E}. It i.~ 
seen that Xi -t Yj -t Zk is a violation of transitivity in G if and only if { Xi, Yj, Zk } form a 
triangle in H. • 

Lemma 28.10 [34] Problem-tripartite Triangle :S Problem-h2Transitivity via an 0(71 2 ) tim 
reduction. 

Proof. Let G = (X, Y, Z , E) be the given tripartite graph. Construct the h2dag H = 

(X ,Y,Z,F) where F = { Xi -t Yj I XiYj E E} U {Yi -* Zj I YiZj E E} U { Xi -* Zj I Xi:;j tt. E}. 
It is seen that{xi, Y j, Zk } form a triangle in G if and only if Xi -* Yj -* Zk is a violation of 
transitivity in H . • 

Corollary 28.5 Problem-tripartite Triangle _ Problem-h2Transitivity via O(n2 ) time 
reductions. • 

Thus, we have the following theorem. 

Theorem 28.19 Problem-Comparability = Problem-Transitivity _ Problem-Triangle via 
O(n2

) time reductions. • 

We note that the current best algorithm to test for a triangle in a graph with 0(n2 ) edg '" 
runs in O(nCX) time. 
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28.4.3 Optimization 

In this section, we consider the problems of finding a largest clique, a minimum coloring, a 
largest stable set, and a minimum clique cover of a comparability graph. 

Theorem 28.20 A largest clique and a minimum coloring of a comparability graph G can 
be computed in Oem + n) time. 

Proof Let G be a transitive orientation of G; from Theorem 28. 18, 0 can be computed in 
Oem + n) time. Observe that a directed path of 0 corresponds to a clique of G and vice 
versa. 

For a vertex v of 0, let height(v) = 0 if there is no arc in 0 leaving v; otherwise, 
-t 

height(v) = 1 + max{height(w) I v -+ w is an arc in G}. Now, height(v) can be computed 

in Oem + n) time for all the vertices in 0 as follows: compute a topological sort R of 

G, then process the vertices of 0 by scanning R once from right to left (from largest to 
smallest), and compute height( v) when vertex v is processed. During that computation, for 

every vertex v that has an arc leaving it in 0, we also record next( v) = vertex w such that 
height(v) = 1 + height(w). 

Then, a longest directed path in 0, which corresponds to a largest clique of G, can be 
found starting from a vertex v of largest height, following to vertex next( v), and repeating the 
process. Further, by assigning color h to all the vertices with height h, a minimum coloring 
of G can also be found. That the coloring found is optimal follows from the fact that the 
number of colors used equals the size of a largest clique of G. • 

Consider the following problems: 

Problem-bipartiteStable 

Instance: Bipartite graph G and positive integer k. 

Question: Is there a stable set of size at least k in G? 

Problem-bipartiteMatching 

Instance: Bipartite graph G and positive integer k. 

Question: Is there a matching of size at least k in G? 

Problem-comparabilityStable 

Instance: Comparability graph G and positive integer k. 

Question: Is there a stable set of size at least k in G? 

Theorem 28.21 [5,35J In a bipartite graph, the size of a largest matching equals the size of 
a smallest vertex cover. • 

The proof of the following theorem is adopted from [36J . 

Theorem 28.22 [37,38J Let 0 be a transitive orientation of the comparability graph G = 

(V, E). Construct bipartite graph B = (X, Y, F) where X = {xii x E V}, Y = {x" I x E V}, 
-t 

and F = {X'y" I x -+ y is an arc in G}. Suppose M is a largest matching in B. Then, 
a:(G) = 8(G) = n - IMI where n = IVI. 
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Proof [36,38] . For x, y E V with x'y" E lvI , refer to y as successor of x, and to x as predecessor 
of y. As lvI is a matching, every x E V has at most one predecessor and at most one successor. 

Every U E V defines a unique sequence Ku = u_p , ... ,U- 2,U- l,U = Uo Ul,U2,·.·,Us 

where Ui+l is successor of Ui, Ui- l is predecessor of Ui , 'u _p has no predec ssor, and Us ha 
no successor. It then follows from transitivity of G that whenever i < j, we have the arc 
'Ui -+ Uj in G. This in turn implies that no two elements of Ku are the saIne. 

Clearly, every x' y" E M appears as U/Ui+ l " for some U i, Ui+l in a specific sequence nu. 
Let the total number of such sequences be k and the length of the ith sequ nce be ri. Then. 
I:~:=} r i = n and I:7=1(ri - 1) = IMI· It then follows that k = n -IMI · As each Ku is a chain 
in G, and hence corresponds to a clique of G , we have that S(G) ~ k. 

In order to show that S (G) ~ k also holds, we construct a stable set in G of size k ba ed 
on M. From Theorem 28.21, B has a vertex cover R of size IMI· Let S = {x E V I x' tt. R 
and x" 1. R} . Note that for x , yES, the arc x -+ y cannot be in G; othenvise as x' ~ R 
and y" 1. R, x'y" E F is not covered by R. Therefore , S is a stable set of G and hence 
S(G) ~ lSI . However, as each x E R prevents only one vertex of G from being a member 
of S, lSI ~ n - IRI = n - 1M\, and therefore lSI ~ k. Thus, we have S(G) ~ lSI ~ k al o. 
Finally, as S(G) ~ ex(G) and ex(G) ~ lSI also hold, we have k ~ S(G) ~ ex(G) ~ lSI > k. 
and we conclude that S(G) = ex(G) = k = n - IMI· • 

Theorem 28.23 Problem-bipartiteStable == Pr-oblem-bipartiteMatching - Problem-compara­
bilityStable via D( m + n) time reductions. 

Pr-oof. That Problem-bipartiteStable == Problem-bipartiteMatching follows from Theoren1. 
28.2l. As every bipartite graph is a comparability graph , we have Problem-bipartiteStable 
:5 Problem-comparabilityStable. That Problem-comparabilityStable :::S Problem-bipartite­
Matching follows from Theorem 28.22. • 

Given the current best time bounds of O(n1.5 Jm/log n) [39] and O(n2
.5 /logn) [40] for com­

puting a largest matching in a bipartite graph, we have the following: 

Corollary 28.6 A largest stable set and a smallest clique cover of a comparabi lity graph can 
be comp1ited in D(min(n1.5 Jm/logn, n2

.5 / logn)) time. • 

Now, we present a proof of Theorem 28.14. 

Pr-oof of Theorem 28.3 [38] . Construct transitive orientation G of the cOl11.parability graph 

G of (P, -<) by adding arc x -+ y to G if and only if x -< y. As a chain of (P, -<) correspond 
to a clique of G and an anti-chain of (P, -<) corresponds to a stable set of G, the proof follo,,-
from Theorem 28.22. • 

28.5 INTERVAL GRAPHS 

Definition 28.16 Graph G = (V, E) is an interval graph if every v E V can be mapped to 
an inter'val Iv on the real line such that x y E E if and only if Ix n Iy =1= 0. When G is an 
interval graph, the collection {Iv I v E V} is an interval model for G. For v E V VL and l'R 

denote the left and right endpoints, respectively, of Iv· 

It is known that in an interval model for an interval graph , the endpoints can be assumed to 
be distinct . Thus, the 2n endpoints can be represented by the integ rs 1 through 2n . Further, 
for a cost of D(n) using bin-sort , one can assume the endpoints are given in increasing ord r. 



Perfect Graphs • 727 

28.5.1 Characterization 

Theorem 28.24 [41J For a graph G = (V, E) the following statements are equivalent: 

i. G is an interval graph. 

Proof 

ii. G is chordal and G is a comparability graph. 

iii. There is an ordering n of the maximal cliques of G such that for every v E v} the 
maximal cliques containing v are consec1dive in n. 

(i) => (ii) Let {Iv I v E V} be an interval model for G. Suppose VIV2V3' .. Vk, k 2:: 4 is a 
chord less cycle in G. For 1 :S i :S k - 1, let Pi be a point in Iv, n IVi+l ' Given that 
VI V2 ... Vk-l is a chordless path, we can assume PI < P2 < .. . < Pk-l . Then, it is 
impossible for IVl to intersect Ivk . Therefore, G is chordal. 

For x, y E V, xy ~ E if and only if either 'XR < YL holds or YR < XL holds. For xy ~ E, 
orient x -+ y in G if .XR < YL. It is easily verified that the resulting orientation is 
acyclic and transitive. Therefore, G is a comparability graph. 

(ii) => (iii) Suppose A and B are distinct maximal cliques of G. Then, there must exist 
x E A and y E B such that xy ~ E; otherwise, AU B is also a clique of G. Now, 
consider a transitive orientation of G. For w, x E A and y, z E B such that xy ~ E and 
wz ~ E, if we have x -+ yin G, then we must have w -+ z in G. Suppose not , and we 
have x -+ y and z -+ w in G. Clearly, w =F x and y =F z or else, there is a violation of 
transitivity in G. Further, as G is chordal, either xz ~ E or wy ~ E; say, xz ~ E. Then, 
there is no way to orient the edge xz in G to avoid a violation of transitivity. Thus, the 
edges of G that go across A, B are all oriented either from A to B, or from B to A. 

Now, for distinct maximal cliques A, B, and C of G and w E A, x, Y E B, and z E C, 
suppose we have w -+ x and y -t z in G. Then, we claim wz ~ E and w -+ z in G. 
Suppose not. As G is transitively oriented, we can assume x =F y. Further, xz E E and 
wy E E; otherwise, we have x -+ z or w -+ y , and the transitivity of G is violated. 
Now, wyxz is a chordless cycle in G. So, we have wz ~ E. Now, we must have w -+ z 
in G or else, Z -+ w -+ x is a violation of transitivity in G. 

Now, consider the ordering n of the maximal cliques of G where A < B in R if there 
exist x E A and y E B such that we have x -+ Y in G; from the claim above, such a 
total ordering exists. In order to verify that R is the required ordering: for maximal 
cliques A, B , and C with A < B < C in R , suppose x E A, x E C, but x ~ B. As B 
is a maximal clique and x ~ B, there must exist y E B such that .xy ~ E . As A < B 
in n , we must have x -t y in G. However , this contradicts B < C which dictates that 
we have y -+ x in G. 

(iii) => (i) Consider an ordering R = K1K2 . .. Kp of the maximal cliques of G as stated in 
the theorem. For v E V, let J(VL be the left most maximal clique in R that contains 
v. Similarly, let Kvn be the right most maximal clique in R that contains v. Set Iv = 

[VL' VRJ. It is easily verified that {Iv I v E V} is an interval model for G. • 

Definition 28.17 A set {x, y, z} of pair-wise nonadjacent ver-tices of G is an asteroidal 
triple if there exists a path between any two of them that does not involve a neighbor- of the 
third. 

Theorem 28.25 [42J G is an interval graph if and only if G is chordal and G does not 
contain an asteroidal triple. • 



728 • Handbook of Graph Theory, Combinatorial Optimization, and Algorithms 

28.5.2 Recognition 

As chordal graphs and complements of comparability graphs can be recognized in polynomial 
time, a direct consequence of Theorem 28.24 is that interval graphs can be recognized in 
polynomial time; further, an interval model for an interval graph can also be constructed 
in polynomial time. The first O( m + n) time algorithm to recognize interval graphs was 
given in [43] and we describe the ideas employed there next. Given input graph G = (V E). 
we first test whether G is chordal (recall that every interval graph is chordal). If G is chordal. 
then we use the algorithms in [25,27] to generate all the maximal cliques of G; by Corol­
lary 28.1 G has at most n maximal cliques whose sizes sum up to at most m. The remaining 
task is to determine whether an ordering of all the maximal cliques of G, as stipulated in 
Theorem 28.24, exists. In [43] the data structure PQ-tree was used to solve the following 
problem in Oem + n) time: given a finite set X with IXI = n and a collection 8l,' .. 8 k of 
subsets of X with ISll + ... + ISkl = m, determine if there is an ordering of members of X 
such that for each Si the members of Si occur consecutively in the ordering. In order to u e 
this algorithm for t he recognition of interval graphs, we just have to let X = V and let the 
set of maximal cliques of the chordal graph G to be the collection Si of subsets. 

Subsequently, several linear-time algorithms have been designed to recognize interval 
graphs; some of these algorithms employ some variation of PQ-trees where as the rest avoid 
the use of such data structures. In [44], the algorithm from [43] is simplified with the u e of 
modified PQ-trees. An algorithm that relies on modular decomposition of chordal graphs i 
given in [45]. We remarked in the section on chordal graphs that the algorithm LexBFS [25] 
can be used to generate a perfect elimination scheme of a chordal graph. An algorithm to 
recognize interval graphs using LexBFS is given in [46]. The final algorithm that we comment 
on relies on the following characterization of interval graphs which has been observed by 
multiple researchers. 

Theorem 28.26 [47- 49] G = (V, E) is an interval graph if and only if vertices of G can be 
ordered VI V2 ... Vn such that for Vi , Vj, Vk with i < j < k, if ViVk E E then VjVk E E. 

Proof. For an interval graph G with an interval model where the endpoints are distinct, an 
ordering of vertices of G according to the right endpoints of their intervals gives the desired 
ordering. Conversely, given such an ordering, one can derive an interval model for G by taking 
the interval for Vi to be [Vi!, Vi] where Vi! is the left most neighbor of Vi in the ordering. • 

In [50], a (very complicated) linear-time algorithm is given which employs six passes of 
LexBFS with various rules for breaking ties when choices have to be made. When the input i 
an interval graph, the algorithm is guaranteed to produce an ordering satisfying the conditions 
of Theorem 28.26. In order to test whether a given graph is an interval gTaph, we run the 
algorithm in [50] to get an ordering of vertices, and then verify if the ordering satisfies the 
conditions of Theorem 28.26. 

28.5.3 Optimization 

As interval graphs are chordal, given the adjacency lists for an interval graph, each of a 
largest clique, a largest stable set, an optimal vertex coloring, and a smallest vertex cover. 
as will be discussed in Section 28.7, can be computed in Oem + n) time. However, when the 
interval model for an interval graph is given as input, it is possible to solve the problem 
more efficiently. Next, we illustrate this with algorithms for computing a largest clique and 
an optimal vertex coloring. 

We will assume that the 2n endpoints in the interval model of t he given interval graph 
G = (V, E) are distinct and they are given in sorted order; recall that t he endpoints can be 
sorted in O( n) time. The algorithms scan the endpoints of the intervals from left to right 
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(i.e., from the smallest to the largest). We open an interval when its left endpoint is scanned 
and we close it when its right endpoint is scanned. Further, an interval itself is open if its 
left endpoint has been scanned and its right endpoint is yet to be scanned. 

First, we consider the problem of computing a largest clique. As a set of pair-wise 
intersecting intervals must share a common point, the problem reduces to considering each 
endpoint and computing how many intervals contain that endpoint. In order to do this effi­
ciently, we scan the endpoints from left to right keeping track of the set K of intervals open 
at any point. The set K can be recorded in a boolean vector of size n. For a vertex v, when 
we scan VL, Iv is added to K and it is deleted from K when VR is scanned. This provides the 
set up to compute w(G) in O(n) time. One can then scan the endpoints again from left to 
right stopping when IKI = w(G). The set K at this point corresponds to a maximum clique 
of G. Thus, a maximum clique of G can be found in O(n) time. 

Next, we consider the problem of optimal vertex coloring. We scan the endpoints from 
left to right and color a vertex v when VL is scanned. Let k, initially set to zero, record the 
number of colors used at any point. The list freed-colors contains colors assigned to intervals 
that have already closed, that is, those whose right endpoints have ah'eady been scanned; 
initially, freed-colors is empty. For a vertex v, when VL is scanned, if freed-colors is nonempty, 
then we remove any color c from freed-colors and assign it to v . If freed-colors is empty, then 
we increase k by 1 and assign the color k to v (i .e., v is given a new color) . When VR is 
scanned, the color assigned to v is added to freed-colors. 

It is easily seen that the coloring is proper and that the algorithm can be implemented 
to run in O(n) time. In order to verify that the coloring is optimal, observe that every time 
a new color k is assigned to a vertex v, as freed-colors is empty, each of the colors 1 through 
k - 1 has been assigned to an interval that is currently open. Hence each of those k - 1 open 
intervals contains v L and v belongs to a clique of size k in the graph. 

The reader is referred to [51] for a detailed exposition on interplay between representation 
of graphs and complexity of algorithms. 

28.6 WEAKLY CHORDAL GRAPHS 

A long hole is a chordless cycle with at least five vertices and a long anti-hole is the comple­
ment of a long hole. 

Definition 28.18 A graph is weakly chordal (also called weakly triangulated) if it does not 
contain any long holes or long anti-holes. 

It is seen from the definition that the complement of a weakly chordal graph is also weakly 
chordal. Further, the class of weakly chordal graphs is a proper generalization of the class of 
chordal graphs. 

28.6.1 Characterization 

Definition 28.19 Let G be a graph and x, y be nonadjacent vertices of G. {x, y} is a two­
pair of G if either every induced path between x and y has exactly two edges or x and y belong 
to different components of G. A co-pair of a graph is a two-pair of the complement of the 
graph. 

Weakly chordal graphs were characterized [52] via the presence of two-pairs . As weakly 
chordal graphs are closed under complementation, the presence of a co-pair also characterizes 
weakly chordal graphs. 

Theorem 28.27 [52] G is a weakly chordal graph if and only if for every induced subgraph 
H of G, either H induces a stable set or H has a co-pair. • 
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To prove Theorem 28.27, we will need to establish a preliminary result. We fir t start \,'ith 
a definition. 

Definition 28.20 A handle in a graph G is a proper vertex-subset H with size at least two 
such that G[H] is connected, some component J i= H of G - N(H) satisfies N(J) = N(H). 
and each vertex of N(H) is adjacent to at least an endpoint of each edge of G[H]. J is called 
a co-handle of H . • 

Note that N (H) is a minimal separator of Hand J. 

Theorem 28.28 [53,54] A graph has a handle if and only if the graph has a P3J and a handle 
and its co-handle can be found in polynomial time. • 

When vertex-subset H of G with jHj ~ 2 induces a component of G, as N(H) = 0, H i 
trivially a handle of G; any other component of G can be considered a co-handle of H. In 
this case, it is easily seen that when G is a weakly chordal graph, any co-pair of G[H] i a 
co-pair of G also. Next, we prove that this holds for any handle H of G when G is a weakly 
chordal graph. 

Lemma 28.11 [55] Suppose H is a handle of a weakly chordal graph G and {x,y} i a 
co-pair ofG[H]. Then, {x,y} is a co-pair ofG. 

Proof. Let J be a co-handle of H in G, f = N(H) = N(J), and R = V(G) - H - f. Suppo e 
{x , y} is a co-pair of G[H] but not a co-pair of G. 

Then, there exists an induced path P = x ... y with at least four vertices in G. As each 
vertex in R is adjacent to both x and y in G, P does not involve any vertex in R; therefore. 
P has at least a vertex from f . Now, P cannot have a segment uvw such that u and ware in 
H but v is in f, for otherwise, vertex v of f is not adjacent in G to any endpoint of the edge 
uw of G[H], contradicting H being a handle of G. Thus, at least two consecutive vertice of 
P are in f and P involves at least an edge of G with both endpoints in f. 

In G, consider a segment pi = X2X3X4 ... X r· of P with r ~ 4 such that X2 and Xl' are in 
H but X3 through Xr-l are in f. Observe that X3 is not adjacent to X4 in G. Since f i a 
minimal separator for Hand J in G, and G has no long holes, in G every two nonadjacent 
vertices of f must have a common neighbor in J. In particular, X3 and X4 are adjacent in G 
to some vertex Xl of J. Thus in G Xl is adjacent to X2, Xl is not adjacent to X3, Xl is not 
adjacent to XLI, and XIX2X3X4 is a P4· Let Xk be the first vertex in pi after X4 such that .1:1 

is adjacent to Xk in G; such an Xk exists as Xl is adjacent to Xr in G. Th n, {Xl X2 ... , :r,J 
induces a long hole in G, contradicting G being weakly chordal. • 

Proof of Theorem 28.27. For one direction, if G is not weakly chordal, then it contains induced 
subgraph H such that H induces either a long hole or a long anti-hole. It is seen that neither 
does H induce a stable set nor it contains a co-pair of H. 

For the other direction, as an induced subgraph of a weakly chordal graph is also we- kly 
chordal, it suffices to prove the theorem for the given weakly chordal graph G . Let G be a 
weakly chordal graph with at least one edge. Let G = Ho, HI,"', H p , P ~ 0, be a sequence of 
subsets of V(G) such that Hi is a handle of G[Hi - l ], for 1 ::; i ::; p, and G[Hp] has no handle. 
Then, by Theorem 28.28, G[Hp] has no P3 , and is a complete multipartite graph. Therefore, 
every edge of G[Hp] induces a co-pair of G[Hp]. Then, by Lemma 28.11, very edge of G[Hp] 
induces a co-pair of G[Hp_1], since Hp is a handle of G[Hp_1]. Continuing this argument. 
every edge of G[Hp] induces a co-pair of G. 

The current best recognition and optimization algorithms for weakly chordal graph~ ex­
ploit the presence of two-pairs and co-pairs. 
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28.6.2 Recognition 

An algorithm to test for the presence of a long hole in a graph is to check whether a P3 of a 
graph extends into a long hole. As all the P3 's of a graph can be generated in O(nm) time, 
this can be implemented to run in O(nm2

) time. By running this algorithm on the graph 
and then on the complement, weakly chordal graphs can be recognized in O(n5 ) time. Later, 
we discuss more efficient algorithms for the same problem. 

More generally, whether a Pk, k 2: 2, of a graph extends into a hole of size at least 
k + 3 can be tested in O(nCX) time [56], where O(nCX) refers to the current best complexity of 
multiplying two n x n Boolean matrices, by testing whether an auxiliary directed graph in 
transitive. The algorithm is as follows: given the Pk T = VI ' .. Vk of G, first we discard from 
G all the neighbors of V2 through Vk-I that are not on T. Now, let A = N(VI) -N(Vk) - V(T), 
B = N(Vk) - N(VI) - V(T), and D I, ···, D 7• be the components of G - (A U B U V(T)). Let 
M be the set formed by adding a vertex mi corresponding to each Di . Now, construct the 
directed gTaph H on the vertex-set A U !VI U B. For x E A, add the directed edge x --+ mi 

provided x is adjacent in G to some vertex in Di . Similarly, for x E B , add the directed edge 
mi -t x provided x is adjacent in G to some vertex in Di . Finally, for x E A and y E B , 
add the directed edge x -t y provided x and yare adjacent in G. It can be seen that G 
has a hole of size at least k + 3 through T if and only if H is not transitive. As whether a 
directed acyclic graph is transitive can be tested in O(nCX) time (cf. Theorem 28.16) we get 
the desired result. Thus, as the number of Pk'S in a graph is O(nk), we can check whether a 
graph has a hole of size at least t , t 2: 5, in time O(nt - 3+cx ). 

Using the above mentioned algorithm on the graph and then on the complement of the 
graph, weakly chordal graphs can be recognized in O(n2+CX) time which is currently O(n4.376 ) 

[18J. For the specific case of finding long holes in a graph, an O(m2) time algorithm is known 
:57J . By using this on the graph and then on the complement, weakly chordal graphs can be 
recognized in O(n4) time. The current best algorithms to recognize weakly chordal graphs 
run in O(m2 ) time [55,58J. However, one of them requires O(m2) space [58J while the other 
[55] uses linear amount of space. 

Lemma 28.12 [59J Suppose {x, y} is a co-pair of graph G. Let H be the graph obtained from 
G by deleting the edge xy but not its endpoints. Then} G is weakly chordal if and only if H 
is weakly chordal. • 

Algorithm 28.6 we-recognition 

input: graph G 
output: yes when G is weakly chordal and no otherwise 

found ~ true; 
while found and G has at least one edge do 

if G has co-pair {x, y} then 
Delete edge xy from G 

else 
found ~ false 

end if 
end while 
if G has no edges then 

output yes 
else 

output no 
end if 
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Theorem 28.29 [55] Algorithm we-recognition can be implemented to run in O(m2 ) time 
using Oem + 11,) space. • 

28.6.3 Optimization 

Definition 28.21 For a graph G and a pair {x, y} of nonadjacent vertices in G , the graph 
G / xy is obtained from G by contracting the pair {x, y } as follows: delete vertices x an d y 
and introduce vertex (xy) and edges (xy)u for all u in Nc(x) U Nc(y). 

Definition 28.22 Two nonadjacent vertices x, y in a graph G form an even-pair if every 
induced path between them has an even number of edges. 

Our interest in even-pairs is motivated by the following two observations. 

Lemma 28.13 [60] Let G be any graph with an even-pair { x,y}. Then 

i. w(G /x y ) = w (G); 

ii. x(G/xy) = x(G). 

Proof We will establish (i) first. Let ]( be clique in G/xy. For simpliCity, write z = (xy). If 
Z tj:. ](, then ]( is also a clique in G. Suppose Z E ](. Then, either x or y must be adjacent 
in G to every vertex in ]( - {z } . Otherwise, t here exist u, v E K such that xu E E( G). 
xv tj:. E(G) , yu tj:. E(G) , and yv E E(G) so that xuvy is a P4 in G ; this contradict { :r.y} 
being an even-pair of G. Thus, G also has a clique of size 1]( I and w ( G / xy) ::; w ( G). _'ow 
suppose ]( is a clique in G. Clearly, at most one of x E ](, Y E K holds. Further if x E K 
(y E K) , then K - { x } U { z} (K - {y} U { Z } ) is a clique in G / xy . Therefore, w (G) ::; w ( G / xy) 
also holds and w (G) = w (G/xy). 

To prove (ii), consider a coloring of G/xy. It gives a coloring of G by assigning to x y the 
color of (xy). So, we have X(G /xy) ~ X(G) . Now, we will prove X(G/xy) ::; X(G). Con ider 
a coloring of G. If x, y have the same color , then this color can be assigned to (xy), and 
we are done. So, assume x has color 1 and y has color 2. Let B be the bipartite graph 
induced by vertices of colors 1 and 2. x and y must belong to different component of B. 
for otherwise there is an induced odd path in B between the two v rtices , a contradiction to 
the assumption that {x , y} is an even-pail'. Interchange colors 1 and 2 in the component of 
B containing x. In the new coloring, x and y have t he same color, implying as abov . that 
X(G/ x y) ::; X(G) . • 

The proof of Lemma 28.13 gives a simple algorithm that given a largest clique of G / .ry 
produces a largest clique of G, and given a coloring of G/xy with k colors produce n 
coloring of G with k colors. If, on subsequent graphs, we can always find an even-pair to 
contract until we obtain a clique, we could produce a largest clique and an optimal coloring 
of the original graph. The following lemma shows this is indeed the case for weakly chordal 
graphs. 

Lemma 28.14 [52] Suppose G is a weakly chordal graph and {x, y} is a two-pair of G. Then. 
G/x y is weakly chordal. Further, w (G) = w (G/xy) and X(G) = x(G/xy). 

Proof We show that if G / x y is not weakly chordal, then G is not weakly chordal. Clearly. 
G/xy cannot have a long hole 01' long anti-hole that does not involve z = (xy). Suppo e 
ZV2'" Vk, for k ~ 5, is a long hole in G/xy . Then, as G is weakly chordal and given the 
construction of G / x y, neither x nor y is adjacent in G to each of V2, Vk. Also, ach of V2, t'k 
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is adjacent in G to at least one of x, y. Without loss of generality, assume that XV2 E E(G), 
XVk r:j. E(G), yVk E E(G) , and yV2 ~ E(G). Then, XV2··· VkY is chordless path in G with at 
least five edges, contradicting {x, y} being a two-pair of G. 

Suppose ZV2· ·· Vk, is a long anti-hole in G/xy where the ordering of the vertices corre­
sponds to the cyclic ordering of the vertices along the long hole in the complement. As C5 

is isomorphic to C5 , we can assume k ~ 6. One of x, y must be adjacent in G to each of 
V3, V4· Otherwise, given the construction of G/xy, we can assume XV3 E E(G), XV4 ~ E(G), 
yV4 E E( G), and yV3 ~ E( G). Then, XV3VkV4Y a chordless path in G with four edges, con­
tradicting {x, y} being a two-pair of G. Assume x is adjacent in G to each of V3, V4 and let 
T be the smallest index such that r ~ 5 and XVr ~ E(G); such an r exists as XVk ~ E(G). 
Then, XV2V3V4 ... Vr is a long anti-hole in G, a contradiction. Since two-pairs are even-pairs, 
the rest of the lemma follows from Lemma 28.13. • 

Algorithm 28.7 wc-optimization 

input: weakly chordal graph G 
output: X(G) and w(G) 

while G is not a complete graph do 
find two-pair {x, y} of G; 
replace G by G / xy 

end while 
X(G) = IV(G)I; 
w(G) = IV(G)I; 
output X(G) and w(G) 

Theorem 28.30 [55J Algorithm we-optimization can be implemented to run in O(mn) time 
using O( m + n) space. • 

For a weakly chordal graph G, cx(G) and B(G) can be computed by running the algorithm 
we-optimization on G. 

28.6.4 Remarks 

An O(m2 ) time algorithm to find a long hole in a given graph is given in [57]. An O(m2
) 

time algorithm to recognize weakly chordal graphs using O( m 2) space is given in [58]; unlike 
the algorithm described here, the one in [58] does not use the idea of a two-pair at all. The 
weighted versions of the clique, coloring, stable set, and clique cover problems can be solved 
on weakly chordal graphs in O(n4) time [52,59]. A consequence of algorithm wc-recognition 
is that graph G is a weakly chordal if and only if an empty graph can be derived from G 
by repeatedly removing a co-pair. As an interesting contrast, it is proved in [61] that graph 
G is chordal if and only if G can be derived from an empty graph by repeatedly adding an 
edge between vertices that form a two-pair. Efficient algorithms for finding a two-pair in a 
graph are given in [62] and [63]. The fact that weakly chordal graphs are perfect was first 
established in [64]. 

28.7 PERFECTLY ORDERABLE GRAPHS 

A natural way to color a graph is to impose an order < on its vertices and then scan the 
vertices in this order, assigning to each vertex Vi the smallest positive integer not assigned 
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to a neighbor Vj of Vi with Vj < Vi. This method, referred to as the greedy algorithm doe 
not necessarily produce an optimal coloring of the graph (i.e., one using the smallest possible 
number of colors). However, on a perfectly ordered graph, the algorithm does produce an 
optimal coloring. 

Definition 28.23 Given an ordered graph (G, <), the ordering < is called perfect if for 
each induced ordered subgraph (H , <) the greedy algorithm produces an optimal coloring of 
H. The graphs admitting a perfect ordering are called perfectly orderable. An obstruction in 
an ordered graph is a chordless path with vertices a, b, c, d, edges ab, bc, cd with a < band 
d < c. 

Several well known classes of graphs (in particular, chordal and comparability graphs) are per­
fectly orderable. It is easy to see that a perfectly ordered graph cannot contain an obstruction. 
It was shown [65J that this condition is also sufficient. 

Theorem 28.31 [65J A graph is perfectly orderable if and only if it admits an obstruction­
free ordering. • 

We will need the following lemma. 

Lemma 28.15 Let G be a graph and let C be a clique of G such that each WEe ha a 
neighbor p( w) cj. C such that the set S consisting of the vertices p( w) form a stable set of G. 
If there is an obstruction-free order < such that p( w) < w for all w E C, then some p( w) 
C -complete. 

Proof. By induction on the number of vertices in C. The induction hypothesis implies that. 
for each WEe, there is a vertex f ( w) E C such that the vertex p(J ( w)) is adjacent to all of 
C, except possibly w. In fact, we may assume p(J(w)) is not adjacent to w, for oth n',i ewe 
are done. Thus, the mapping f is one-to-one and therefore onto, that is f is a bijection. Let 
v be the smallest vertex in C in the order <. There are vertices a, b such that v = feb) and 
b = f(a). Now, p(v) , a, b,p(b) form an obstruction, a contradiction. • 

Proof of Theorem 28.31. The 'only if' part is trivial. We will prove the 'if' part by induction on 
the number of vertices. Let G be a graph with an obstruction-free order <. By the induction 
hypothesis , we only need to prove the greedy algorithm delivers an optimal coloring on G. 
Let k be the number of colors used on G. We will prove G contains a clique on k vert ice . 
This obviously shows the coloring produced by the greedy algorithm is optimal. Let i be the 
smallest integer such that there is a clique C on vertices Vi+l, ... , Vk such that each Vj ha ~ 
color j , for j = i + 1, ... , k. We may assume i > 0, for otherwise we are done. Propertie of 
the greedy algorithm imply that each Vj has a neighbor p( Vj) with color i with p(Vj) < t'j' 

for each Vj E C. But Lemma 28.15 implies some p(Vj) is C-complete, a contradiction to our 
choice of i. • 

The proof of Theorem 28.31 shows that perfectly orderablc graphs are perfect. In tudy­
ing perfectly orderable graphs, the following two problems arise naturally: to decide on the 
complexity of recognizing perfectly orderable graphs and to find a subgraph characteriz -
tion of perfectly orderable graphs (by subgraph characterization, we mean characterization 
by minimal forbidden induced subgraphs). The subgraph characterization problem is open 
but appears to be very difficult. It was proved in [66J t hat the problem of recognizing per­
fectly orderable graph is NP-complete. However , many classes of perfectly orderable graph, 
together with their polynomial recognition algorithms, have been found. We will discus om 
of these classes in this chapter. For a survey on perfectly orderable graphs, see [67J. 



- ------------------------------

Perfect Graphs • 735 

28.7.1 Characterization 

As mentioned before, there is no known characterization by forbidden induced subgraphs of 
perfectly orderable graphs. We will discuss several subclasses of perfectly orderable graphs 
that have been much studied. 

Definition 28.24 For a P4 with vertices a, b, c, d, edges ab, bc, cd, the vertices a, d are end­
points, c, d are midpoints of the P4 · A vertex is soft if it is not a midpoint or an endpoint of 
a P4. A graph G is brittle if each of its induced subgraphs contains a soft vertex. 

Observation 28.1 Brittle graphs are perfectly orderable. 

Proof By induction on the number of vertices. Let G be a brittle graph with a soft vertex 
v. Let V1 < V2 < ... < Vn- l be a perfect order of G - v. If v is not the endpoint of a P4 , 

then v < Vl < V2 < ... < Vn- l is a perfect order of G. If v is not a midpoint of a P4 , then 
VI < V2 < ... < Vn-l < v is a perfect order of G. • 

Corollary 28.7 Chordal graphs, their complements, and comparability graphs are perfectly 
orderable. 

Proof Observe that a simplicial vertex is soft and that a soft vertex of a graph remains soft 
in the complement. Thus, chordal graphs are brittle; by Observation 28 .1 , they and their 
complements are perfectly orderable. Since a transitive orientation of a graph contains no 
obstruction, comparability graphs are perfectly orderable. • 

28.7.2 Recognition 

It is proved in [66] that the problem of recognizing perfectly orderable graphs is NP-complete. 
We have seen that chordal graphs and their complements are perfectly orderable. Since weakly 
chordal graphs are a generalization of these two classes, it is of interest to investigate the 
complexities of recognizing weakly chordal perfectly orderable graphs. In [68], it is shown that 
this problem is NP-complete by modifying the argument of [66]. Since [68] is an unpublished 
technical report, we will reproduce the proof here. 

Theorem 28.32 It is NP-complete to determine if a weakly chordal graph is perfectly 
orderable. 

Proof We will reduce the 3SAT problem to our problem. Given a 3SAT formula E wit h 
clauses Co, C1 , . .. , Cm - l and variables va, Vl, .. . , Vn-l where each clause Ci contains literals 
CiO, Gil, Gi2, we construct a weakly chordal gTaph G(E) such that E is satisfiable if and only 
if G(E) is perfectly orderable. 

For each clause Cj = (CjD' Cj 1, Cj2), we define the clause graph G (Cj ) as in shown in 
Figure 28.6. For each variable Vi, we define the variable graph G( Vi) as shown in Figure 
28.7. In the graph G(Vi), the chordless path between Ai and Bi has 2m vert ices v(i, j , 1) for 
j = 0,1,2, ... , 2m - 1. 

Next, we obtain the graph G'(Vi) (see Figure 28.8) from G(Vi) by 

• If C j contains Vi, adding vertices v(i, 2j, 2), v(i, 2j, 3) and edges v(i, 2j, l )v(i, 2j, 2), 
v(i, 2j, 2)v(i, 2j, 3) . 

• If Cj contains Vi, adding vertices v(i,2j + 1,2), v(i, 2j + 1,3) and edges v(i,2j + 
1, 1)v(i, 2j + 1,2), v(i,2j + 1, 2)v(i, 2j + 1,3). 
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C(j,2,l) 

Figure 28.6 Clause graph G ( Cj ). 

I I 1 • • .-- . · I I I v(i,2,l) v(i,2m - 2,1) v(i,2m - 1,1) v(i,O, 1) v(i,l,1l 

Figure 28.7 Graph G(Vi) . 

v(i,l,3) vU,2m - 1,3) 

v(i,l,2) v(i,2m - 1,2) 

v(i,O,l) v(i,l,l) v(i,2,l) v(i,2m - 2,1) v(i,2m - 1,1) 

Figure 28.8 Graph G' (Vi)' 

The graph G(E) is obtained by 

i. Taking m disjoint G(Cj),O ~ j ~ m - 1; 

ii. Taking n disjoint G'(Vi), 0 ~ i ~ n - 1; 

iii. For k = 1,2,3, 

identifying v(i, 2j , k) with c(j, l , k) if Cjl = Vi; 

identifying v(i, 2j + 1, k) with c(j, l, k) if Cjl = Vi; 

for each c(j, l , 0), 0 ~ j ~ m - 1, l = 0,1 ,2, adding the edge xc(j, l, 0) for all 
vertices x not in G ( Cj ) . 

A vertex is of type k if it is of the form c(j, l , k) for some j and some l. We denote by 1 k th 
set of vertices of type k, 0 ~ k ~ 3. Our construction is similar to [66], except that Gl,.v· ) 
is a chordless cycle in [66] . Figure 28.9 shows the interaction between a clause graph and a 
variable graph; for clarity we do not show all edges coming out of the vertices of type O. 

R emark 28 .1 A vertex c(j, l , 0) (of type 0) is nonadjacent to exactly four vertices of G(£l: 
they are cU, l , k), 1 ~ k ~ 3 and c(j, l + 1 mod 3,2). 
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---ttl 
Figure 28.9 A portion of the graph G(E). 

e >e----7ef--e 

Figure 28.10 Obstruction. 

It is a routine but tedious matter to prove that G(E) is weakly chordal. For detail, see [68]. 
For the rest of the proof, we will show that G(E) is perfectly orderable if and only if E 

is satisfiable. It will be more convenient to work with orientations instead of orders. For an 
ordered graph, we may construct an oriented graph on the same vertex set as follows: If ab 
is an edge and a < b, then we add the arc a -7 b. Thus, an obstruction is a P4 with vertices 
a, b, c, d and arcs a -7 b, b -7 C, d -7 C (see Figure 28.10). An orientation G of a graph G is 
perfect if it is acyclic and does not contain an induced obstruction. It is a routine matter to 
verify the following observation. 

Observation 28.2 The graph G( Vj) admits a pe-rfect oTientation, but any pe-rfect o-rientation 
of G( Vj) is alternating on the path fmm Aj to B j . • 

From now on, the argument of [66] carries through, for the sake of completeness we will 
complete the proof. 

Claim 28.1 If G(E) admits a pe-rfect oTientation, then E is satisfiable. 

Proof For each i, ° ~ i ~ n - 1, if the vertex v(i, 0,1) is a source in G(Vi)' then the variable 
Vi is assigned value true; otherwise, it is assigned value false. Note that, by Observation 28.2, 
v(i, 0,1) being a source (resp ., sink) in G(Vi) implies all v(i, 2j, 1) are sources (resp., sink) 
in G(Vi)' 

Consider the graph G(Oj) with OJ = (CjO, Cjl, Cj2). If all three vertices c(j, l , 1), ° ~ l ~ 2, 
are sinks in the three corresponding graphs G(Vi) where Cjl = Vi, or Cjl = Vi, then we have 

cU, l, 2) --t c(j, l, 3), and thus c(j, l, 0) -7 c(j, l + 1 mod 3,0) for ° ~ l ~ 2; but then G is not 
acyclic, a contradiction. Thus , some c(j, l, 1) is a source in G(Vi) with Cjl = Vi or Cjl = Vi. 

If Cjl = Vi, then c(j, l, 1) = v(i, 2j, 1) implying v(i, 0,1) is a source in G(Vi), and thus Vi is 
true. Similarly, if Cjl = Vi, then v(i, 0,1) is a sink, and thus Vi is false. In both cases, Cj is 
satisfied. • 

Claim 28.2 If E is satisfiable, then G(E) admits a perfect oTientation. 

Proof Suppose there is a truth assignment of the variables vo, VI, . .. , Vn- l that satisfies E. 
For each variable graph G(Vi), we assign a perfect orientation such that v(i,O, 1) is a source 
if and only if Vi is true. Such orientation exists by Observation 28.2. 

Consider a clause graph G(Oj) with Cj = (CjO, Cjl, Cj2). Suppose Cjl is the ith variable, 
that is Cjl = Vi or Vi (0 ~ j ~ 2). Then c(j, l, 1) = v(i, 2j, 1) or v(i, 2j + 1, 1) . If c(j, l, 1) 
is a source in G(Vi), then direct c(j,l,3) -7 c(j,l,2); otherwise, direct c(j, l ,2) -7 c(j, l,3), 
and c(j, l - 1 mod 3,0) -7 c(j, l, 0). Since Cj contains a true literal, some c(j, l, 0) is a source, 
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and it follows that Vo contains no directed cycle. Extend the partial orientation of Va into 
an acyclic orientation. 

Now, for each edge ab, we direct a ----+ b if a E Vo, b tf. Vo; or if a E VI, b E V2. E,"ery 
edge of G has been directed. Call the resulting directed graph G. It is easy to ee that G i 
acyclic. 

Suppose G contains an obstruction P with vertices a, b, c, d and arcs a -t b, b -t c d -t c. 
Because Vo is a clique, P contains at most two vertices of type O. 

If P contains no vertex of type 0, then P must lie entirely in some G'(Vi) because Vo 
is a cutset of G(E) . But, clearly the orientation of every G'(Vi) is perfect, a contradiction. 
Suppose P contains one vertex of type O. The arcs a ----+ b, d -t c imply b, c tf. Vo by our 
construction. So, we may assume that a E Va (for the rest of the proof, w will not argue 
on the direction of the arc b ----+ c). This means a = c(j, " 0) for some j and l. Since cd is an 
edge, we have {c,d} C {c(j,l , k) 11 S k S 3}. Therefore, bE G(Vi) for some i such that Pi 

or lh is a literal of the clause Cj. Thus, b is the vertex next to c(j, l, 1) = v(i, r 1) (r = 2j. 
or r- = 2j + 1) on the path from Ai to Bi of G(Vi). It follows that c = c(j, l, I), d = c(j.l, 2) . 
But our construction implies c(j, " 1) ----+ c(j, " 2) , a contradiction. 

Now, we may assume that P contains two vertices of type O. Since Vo is a clique one of 
the two middle vertices of P must be of type O. We may assume b E Vo. Since a -t b a mu t 

be in Vo. From Remark 28.1, P is the P4 (i) c(j, l, O)c(j, l-1 mod 3, O)c(j, l, l)c(j, l, 2), or (ii 
c(j, " O)c(j, 1 - 1 mod 3, O)c(j, " 3)c(j, l, 2). In case (i), our construction implies c(j l,l) -4 

c(j, " 2), a contradiction. In case (ii), the arc c(j, " 2) ----+ c(j, l, 3) implies c(j, l, 1) is a sink in 
G'(Vi) (for some appropriate i), and our construction implies c(j,l-1 mod 3,0) -t c(j l.O). 
a contradiction. • 

28.7.3 Optimization 

In this section, we consider the problems of finding a largest clique, a minimum colorino·• 

a largest stable set, and a minimum clique-cover of perfectly ord red graphs. We note that 
these four problems (even in their weighted versions) for perfect graphs have been solved in 
[7]. This algorithm does not exploit the combinatorial structure of a perfect graph, in tead 
it uses deep properties of the ellipsoid method. Thus, it is of interest to optimize the graph: 
discussed in this chapter by using combinatorial structures. 

Theorem 28.33 [69] Given a gmph G and a per-fect order on G, one can find in O(n+m) 
time a minimum coloring and a largest clique of G. 

Proof. Let the vertices of G be VI, ... , Vn and the perfect order be VI < '" < Vn- \Ve will 
show that the greedy coloring algorithm can be implemented in linear time on G. ertices 
are colored in the order given by <. Suppose we are about to process vertex Vj. We find the 
smallest integer t such that no neighbor x of Vj has color t, and assign color t to Vj. The 
index t can be computed by traversing the adjacency list of Vj and computing the number Qj 

of neighbors of Vj with color i; t is the smallest index such that at = 0 (we may assume all 
the ai are initially set to 0) . At most d(vj) number ai are modified in computing t. After t'j 

is colored, we reset these ai to O. So, the cost of coloring Vj is O(d(vj)). Thus, we can color 
G in time O(n + m). 

From the proof of Theorem 28.31 , we can extract a largest clique of G in linear time. Let 
k be the number of colors used by the greedy algorithm. \lve will show how to find a clique 
C with k vertices. Start with a vertex x of color k, put x in C. We go backward in < to 
enlarge C. Suppose C contains vertices Wi, wHl, . ", Wk with i > 1 and Wj having color i. 
j = i, ... , k. Let Si-l be the set of vertices of color i - 1. The proof of Theorem 2 .31 implie, 
there is a vertex s E Si-l that is C-complete and so can be added to C. Such vertex can be 
found by scanning the adjacency list of every vertex x in Si-l and computing the numb r of 
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neighbors of x in C. The adjacency list of each vertex of G is scanned at most once, so the 
algorithm runs in linear time. • 

Theorem 28.34 [69J Given a graph G and a perfect order on its complement G, one can 
find in O(n + m) time a largest stable set and a minimum clique cover of G. 

Proof Let the vertices of G be VI, ... , Vn and the perfect order on the complement of G be 
VI < ... < V n · To stay within the linear-time bound, we will obviously not construct G. We 
process the vertices in this order and produce a coloring of G. Let the variable bi count the 
number of vertices of color i. Suppose we are processing vertex Vj' Then Vj can be colored i 
if in G, Vj is not adjacent to any vertex of color i, that is, in G, Vj is adjacent to bi vertices 
of color i. This condition can be tested by scanning the adjacency list of Vj ' If such color 
i exist, then we would choose the smallest such i for Vj; otherwise, we color Vj with a new 
color. The cost of coloring Vj is 0 (d( Vj)), so we can color G in 0 (n + m) time. This coloring 
is a partition of G with a minimum number of cliques. 

Now we show how to find a largest stable set of G. Let k be the number of colors used 
on G by the greedy algorithm. We will show how to find a stable set S of G with k vertices . 
Start with a vertex x of color k, put x in S. We go backward in < to enlarge S. Suppose 
8 contains vertices Wi,wHl,.· .,Wk with i > 1 and Wj having color j, j = i, ... ,k. Let Si-l 

be the set of vertices of color i - 1. The proof of Theorem 28.31 implies there is a vertex 
s E 8 i -1 that is S-null and so can be added to S. Such vertex s can be found by scanning 
the adjacency list of every vertex s in Si-l' The adjacency list of each vertex of G is scanned 
at most once, so the algorithm runs in linear time. • 

Several classes C of perfectly orderable graphs have the property that if G is in C then not 
only that G is perfectly orderable, but its complement G also is (for example, brittle graphs , 
and therefore chordal graphs). Theorem 28.34 is useful for optimizing these graphs. 

Corollary 28.8 [27J There is a linear-time algorithm for finding a largest clique, a minimum 
coloring, a largest stable set, and a minimum clique cover for a chordal graph. 

Proof Let G be a chordal graph with a perfect elimination scheme <. Then < is a perfect order 
on G, and the reverse of < is a perfect order on G. The result follows from Theorems 28.33 
and 28.34. • 

A linear-time algorithm to recognize a co-chordal graph (complement of a chordal graph) 
and to construct a perfect order of such a graph is given in [70J. Thus, we have the following 
corollary. 

Corollary 28.9 [70J Ther-e is a linear-time algorithm for finding a lm-gest clique, a minimum 
coloring, a largest stable set, and a minimum clique cover for a co-chordal graph. • 

Actually, for a perfectly ordered graph, there are algorithms to solve more general optimiza­
tion problems. Consider the following. 

Minimum weighted coloring. Given a weighted graph G such that each vertex x has a 
weight w(x) which is a positive integer. Find stable sets SI, S2,' .. , Sk and integers 
1(81 ), ... , 1(Sk) such that for each vertex x we have w(x) ~ L,xESJ(Si) and that the 
sum of the numbers 1(Si) is minimized. This sum is called the weighted chromatic 
number and denoted by Xw (G). 

Maximum weighted clique. Given a weighted graph G such that each vertex x has a weight 
w(x) which is a positive integer. Find a clique C such that L,XECW(X) is maximized. 
This sum is called the weighted clique number alld denoted by W w (G) . 
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Definition 28.25 A stable set of a graph G is strong if it meets all maximal clique of C· 
(Here, as usual, Maximal is meant with respect to set-inclusion, and not size. In particular,~ 
maximal clique may not be a largest clique.) A graph is strongly perfect if each of its indued 
subgraphs contains a strong stable set. 

Theorem 28.35 [65] Perfectly orderable graphs are strongly perfect. And if a perfect oni)' 
on G is given, then a strong stable set of G can be found in linear time. 

Proof By induction on the number of vertices. We only need to prove that a graph G wib 
a perfect order < contains a strong stable set. Let S be the set of vertices colored with copf 
1 by the greedy algorithm. Assume that S is not a strong stable et, for otherwis we ere 
done. So, consider a maximal clique C such that no vertex in C has color 1. Properties of tJe 

greedy algorithm implies each vertex w E C has a neighbor p( w) of color 1 with p(w) < p. 

But then Lemma 28.15 implies some p(w) is C-complete, a contradiction. The fact that5 
can be found in linear time follows from Theorem 28.33. _ 

Theorem 28.36 [71] If there is a polynomial time algorithm A to find a strong stable let 
of a strongly perfect graph then there is a polynomial time algorithm B to find a minim1~1 
weighted coloring and maximum weighted clique of a strongly perfect graph. If algOrithm" 
runs in time O(f(n)) then algorithm B ntns in time O(nf(n)). Moreover if algorithm Ais 
strongly polynomial then so is algorithm B. 

Proof For a perfect graph G, it is known that Xw(G) = ww(G) . Let G be a strongly perf(Ct 
(and therefore, perfect) graph with a weight function w on its vertices. We will how ~le 

problem on G can be transformed to the problem on a smaller graph G' with an O(!(riJ)' 
time reduction. Suppose we can find a strong stable set S of G in 0(/( n)) time. Lei ~ 
be a vertex in S with the smallest weight among all vertices of S. Define a new wegl1 

function w' (v) = w(v) - w(x) for each v E 5, and w' (v) = w(v) for each v E G -5· 
Let X = {v lw'(v) = O}. Since x E X, X is not empty. Consider the graph G' = G _to 
Since every maximal clique of G meets 5, we have ww(G) = ww,(G') + w(x), and thJ$, 
Xw(G) = XWI(G' ) + w(x). Suppose 51," " 5k is a minimum weighted coloring of G' ",itl! 
weights I(5i ). Then 51, .. . , Sk, 5 is a minimum weighted coloring of G with weights I ()i) 
for i = 1, ... , k, and 1(5) = w(x) . Similarly, if C' is a maximum weighted clique of G' tleP 
a maximum weighted clique of G can be found as follows. If C' n (5 - X) 1= 0, then C = ')'; 
otherwise, C = C' u {y} where y is a vertex in X that is (C')-complete, y exists becausI5 
is a strong stable set (note that for C, we use the original weight function w). 

We may recursively apply the above reduction until we get a trivial graph in at n])5t 

n steps. Since the complexity of our procedure does not depend on the size of the nUll1JeJ' 

w( v) , the reduction is strongly polynomial. -

Theorems 28.35 and 28.36 implies the following. 

Corollary 28.10 Given a graph G and a perfect order on G, maximum weighted clique ~f1J 
minim1£m weighted coloring can be solved in O(nm) time. -

For comparability and chordal graphs, these two problems can be solv d even faster. 

Theorem 28.37 [71] If G is a comparability graph or a chordal graph, then maximj~ 
weighted clique and minimum weighted coloring can be solved in 0(n2 ) time. ,. 

Space-efficient algorithms for maximum weighted clique and minimum weighted colorin§ of 
co-chordal graphs are given in [70]. Theorem 28.36 shows that the problem of findin~ 8 
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strong stable set of a strongly perfect graph is of some consequence. However, no polynomial 
algorithm for solving this problem is known. Finding a strong stable set of an arbitrary graph 
is P-hard [71]. 

28.8 PERFECTLY CONTRACTILE GRAPHS 

ltecall the definition of an even-pair in Section 28.6. Even-pairs playa central role in the 
study of perfect graphs, as illustrated by the following two results. 

Lemma 28.16 [60] Let G be a perfect graph with an even-pair {x,y}. Then G/xy is 
perfect. • 

Lemma 28.17 [72] No minimal imperfect graph contains an even-pair. • 
From the above, it is of interest to know which perfect graphs contain even-pairs . 

Definition 28.26 A graph G is even-contractile if there is a sequence Go = G, GI ,· .. , Gk 
such that Gk is a clique, and for i ::; k - 1, GHI is obtained from Gi by a contraction of 
some even-pair of Gi · 

An even-contractile graph G has X(G) = w(G) by Lemma 28.13. But this class seems to 
be difficult to characterize; perhaps because the class is not hereditary. Now, consider the 
following definition from [73]. 

Definition 28.27 A graph is perfectly contractile if each of its induced subgraphs is even­
contractile. 

By Lemma 28.13, perfectly contractile gTaphs are perfect. Most classes of graphs discussed 
ill. this chapter are perfectly contractile. Lenuna 28.14 implies the following. 

1'heorem 28.38 [52] Weakly chordal graphs are perfectly contractile. • 

A graph is called a Meyniel graph if each of its odd cycle with at least five vertices has two 
ch.ords. Perfection of Meyniel graphs was established in [74]. Note that chordal graphs are 
~eyniel graphs. 

'theorem 28.39 [75] Meyniel graphs are perfectly contractile. 

'theorem 28.40 [76] Perfectly orderable graphs perfectly contractile. 

• 
• 

tefinition 28.28 A prism is a graph that consists of two vertex-disjoint triangles (cliques of 
Size three) and three vertex-disjoint paths, each of length at least one and having an endpoint 
il). each triangle, with no other edge than those in the two triangles and in the three paths. A 
Prism is odd if all three paths are odd. 

~he following beautiful and challenging conjecture was proposed in [77]. 

~onjecture 28.1 [77] A graph is perfectly contractile if and only if it contains no odd hole, 
~o anti-hole, and no odd prism. 

tefinition 28.29 A graph is an Artemis graph if it contains no odd hole, no anti-hole, and 
~o prism. 

Va,lidity of Conjecture 28.1 was partially established by the following remarkable result. 

~heorem 28.41 [78] Artemis graphs are perfectly contractile. • 

~Q O(n2m) time algorithm to color an Artemis graph is given in [79]. Note that weakly 
eQordal graphs and perfectly orderable graphs are Artemis graphs. An O(n9 ) t ime algorithm 
far recognizing an Artemis graph is given in [80]. 
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28.9 RECOGNITION OF PERFECT GRAPHS 

In this section, we give a sketch of a polynomial time algorithm to recognize a perfect graph. 
By the strong perfect graph theorem, the problem is equivalent to determining if a graph 
is Berge (graphs with no odd holes and no odd anti-holes). A polynomial time algorithm to 
solve this problem is given in [15]. The algorithm can be divided into three phases. In the 
first phase, given a graph G, the algorithm looks for one of five configurations. Each of the e 
five configurations can be detected in time O(n9

) or faster. If G contains one of these, then G 
is not Berge; otherwise, every shortest odd hole of G has a special property called amenable. 
Given an odd hole C of length at least seven, a set X of vertices is a near-cleaner if it contain 
all vertices that have two neighbors of distance at least three in C and X n C is a subset of 
the vertex set of some path of length three of C. Amenable odd holes are those odd hole 
such that all near-cleaners have some special adjacency property (definitions not given here 
will be given later) . If the first phase does not produce an odd hole or odd antihole, the 
second phase will generate O(n5

) sets that are guaranteed to contain a ll near-cleaners of 
some amenable odd hole if one exists . Finally, the third phase provides an O(n4) algorithm 
that given a graph and a near-cleaner for a shortest odd hole finds an odd hole. ow, we 
describe the algorithm in more detail. 

Definition 28.30 A pyramid is an induced subgraph Jormed the union oj a triangle 
{b l , b2, b3}, a JouTth veTtex a, and three induced paths H, P2, P3 , satisJying: 

• For i = 1,2,3, the endpoints oj Pi are a, bi · 

• For i :s; i < j :s; 3, a is the only vertex in both Pi, P j , and bibj is the only edge between 
Pi - a and Pj - a. 

• a is adjacent to at most one oj bl , b2, b3· 

Definition 28.31 A jewel is the graph Jormed by a cycle with vertices VI, V2, ... , V5 and edge 
ViVi+1 (with the subscript taken modulo 5) and an induced path P such that VI V3, V2V4 VI V-l 

are nonedges, VI, V4 are the endpoints oj P , and there is no edges between {V2, v3, V5} and the 
interior vertices of P. 

Definition 28.32 A config1lration oj type Ti is the hole on five vertices. 

Definition 28.33 A configur·ation oj type T2 is a sequence VI, V2, V3, V4, P, X such that 

• X is an anticomponent of the set oj all {VI, V2, v4}-complete vertices, 

• P is an induced path in G \ (X u {V2 ' V3}) between VI, V4, and no interior vertex of P 
is X -complete or adjacent to V2 or adjacent to V3· 

Definition 28.34 A configuration oj type 73 is a sequence VI, ... , V6, P, X such that 

• VI, ... , V6 are distinct vertices 

• VIV2,V3V'1,VIV4 , V2V3,V3V5,V4V6 are edges, andvIv3,V2V4, VIV5, V2V5,vIV6, V2V6,V4V5 are 
nonedges 

• X is an anticomponent oj the set oj all {VI , V2, V5} -complete vertices, and V3 V4 an not 
X -complete 
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• P is an induced path of G \ (X U {VI, V2, V3, V4}) between Vs, V6, and no interior verte.'C 
of P is X -complete or adjacent to VI or adjacent to V2 

• If VSV6 is an edge, then V6 is not X -complete 

In [15], it is shown that a pyramid can be detected in O(n9 ) time, a jewel in O(n6 ) time, a 
configuration of type Ti in O(nS) time (obviously), a configuration of type ~ or T3 in O(n6 ) 

time. 

Theorem 28.42 [15] If G or G contains a pyramid, a jewel, or a configuration of type 'Ti, 
72, or 13, then G is not Berge. • 

Given a hole C of length at least seven, a vertex x is C-major if x has two neighbors in C 
whose distance in C is at least three. A hole C of G is amenable if (i) C is a shortest odd 
hole of length at least seven of G, and (ii) for every anticonnected set X of C-major vertices, 
there is an X -complete edge in C. 

Theorem 28.43 [15] If G contains no pyramid, and no configuration of type Ti , ~, or T3, 
and both G, G contains no jewel, then every shortest odd hole of G is amenable. • 

Recall that a set X of vertices is a near-cleaner for an odd hole C of length at least seven 
if it contains all C-major vertices, and X n C is a subset of the vertex set of some path of 
length three of C. 

Theorem 28.44 [15] There is an O(nS) algorithm which given a graph G outputs O(nS) 
subsets of V( G) such that if C is an amenable odd hole of G, then one of the subsets is a 
near-cleaner for C. • 

Theorem 28.45 [15] There is an O( n4
) algorithm which given a graph G containing no 

pyramid or jewel, and a subset X of V( G) outputs an odd hole, or determines that there is 
no shortest odd hole C of G such that X is a near-cleaner for C. • 

The steps needed to recognize a perfect graph are described in Algorithm 28.8. There are 
two bottlenecks to making the algorithm run faster than O(n9 ) time. 

Algorithm 28.8 perfect graph recognition 

input: graph G 
output: a determination that G is Berge or not 

(1) Determine if G or G contains a pyramid, or a jewel, or a configuration of type 'Ti, 
72, or 13· If it does, output G is not Berge, and stop 
(2) Produce O(nS) subsets X of V(G) using Theorem 28.44. These subsets contain all 
near-cleaners of some odd hole of G, if such an odd hole exists 
(3) For each subset X of (2), run the algorithm of Theorem 28.45. If an odd hole is 
produced, output G is not Berge, and stop 
(4) Run (2) and (3) with G replaced by G 
(5) Output G is Berge 

The first one is that as of present , there is no algorithm to detect a pyramid in time faster 
than O(n9 ). The second involves the near-cleaners. It is not known if given a near-cleaner, 
one can find an odd hole in time faster than O(n4 ). It is also not known if a graph can have 
fewer than O(nS) near-cleaners. 
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28.10 X-BOUNDED GRAPHS 

Definition 28.35 A gmph G is x-bounded if there is a function f such that xC G) < 
f(w(G)). 

We have seen that perfect graphs are x-bounded. One may wonder about sufficient condition 
on t he holes of a graph for it to be x-bounded. Some interesting conditions have been found. 

Theorem 28.46 [16] If a gmph G is even hole-free, then G contains a vertex whose neigh­
borhood can be partitioned into two cliques. In particular, G satisfies xC G) S 2wC G) - l. • 

References [81- 83] give two different polynomial time algorithms (of high complexity) for 
finding an even hole in a graph. 

It is reasonable to expect that graphs without odd holes have bounded chromatic number. 
Before discussing this matter, we will need a definition. 

Definition 28.36 A k-division of a graph G with at least one edge is a partition oJV( G) into 
k sets VI, ... , Vk such that no Vi contains a clique with w (G) vertices. A graph is k -divisible 
if each induced subgraph of G with at least one edge admits a k-division. 

It is easy to see the following. 

Lemma 28.18 A k-divisible gmph G has X( G) S kw(G)-l. • 
Consider t he following conjectures. 

Conjecture 28.2 [84] A gmph is 2-divisible if and only if it is odd hole-free. 

The above conjecture implies that an odd hole-free graph G has X( G) S 2W (G)-1, and thu i 
x-bounded. The conjecture is known to hold for claw-free graphs [84], 2K2-free graphs [17]. 
and K4-free graphs [85]. The problem of recognizing odd hole-free graphs is open. 

We now mention a number of conjectures related to x-bounded graphs and forbidden 
subgraphs. 

Conjecture 28.3 [84] Let F be any forest on k vertices. Then any graph G that doe not 
contain F as induced subgmph is k-divisible. 

It is not known if Conjecture 28.3 holds for claw-free graphs . 

Definition 28.37 Let G be a graph with at least one hole . The hole number h( G) oj G i 
the length of the longest hole in G. 

Conjecture 28.4 [84] Let G be a graph with at least one hole. Then G is (h( G) - 2) -divisible. 

The following special case of Conjecture 28.4 is still open. 

Conjecture 28.5 [84] If G is a triangle-free graph with at least one hole, then X(G) < 
h(G) - 2. 



Perfect Graphs • 745 

References 

[1] C. Berge. Les problemes de colorations en theOl·ie des graphes. Publications de l 'Institut 
de Statistique de l'Universite de Paris, IX (1960), 123- 160. 

[2] C. E. Shannon. The zero-error capacity of a noisy channel. IRE Trans. Inform. Th, 2 
(1956), 8- 19. 

[3J A. Hajnal and J. Suninyi. Uber die auflosung von graphen in vollstiindige teilgraphen. 
Ann. Univ. Sci. Budapest Eotvos. Sect. Math, 1 (1958), 113- 12l. 

[4] R. P. Dilworth. A decomposition theorem for partially ordered sets. Annals of Mathe­
matics, 51 (1950), 161- 166. 

[5J D. Konig. Graphs and matrices. Mat. Lapok, 38 (1931), 116- 119. 

[6J L. Lovasz. On the shannon capacity of a graph. IEEE Trans . Inform. Th. IT, 25 (1979), 
1-7. 

[7J M. Grotschel, L. Lovasz, and A. Schrijver. Polynomial algorithms for perfect graphs. In 
Berge and Chvatal, editors, Topics on Perfect Graphs, pages 325- 356. North-Holland 
Mathematics Studies, 1984. 

[8J V. Raghavan and J. Spinrad. Robust algorithms for restricted domains. Journal of 
Algorithms, 48 (2003), 160- 172. 

[9J B. A. Reed. A gentle introduction to semi-definite programming. In Perfect Graphs, 
pages 67- 92. 

[10] A. Brandstadt, V. B. Le, and J. P. Spinrad. Gmph Classes: A Survey. SIAM Mono­
graphs on Discrete Mathematics and Applications, Society for Industrial and Applied 
Mathematics, 1999. 

[11] M. C. Golumbic. Algorithmic Graph Theory and Perfect Graphs. Academic Press, New 
York, 1980. 

[12J J. L. Ramirez-Alfonsin and B. A. Reed, editors. Perfect Graphs. Wiley, 200l. 

[13J A. Ghouila-Houri. Caracterisation des graphes non orientes dont on peut orienter les 
aretes de maruere a obtenir Ie graphe d'une relation d 'ordre. C. R. Acad. Sci. Paris, 
254 (1962), 1370- 137l. 

[14J T. Gallai. Transitiv orientierbare graphen. Acta Math. Acad. Sci. HungaT, 18 (1967), 
25- 66. 

~ 15J M. Chudnovsky, G. Cornuejols, X. Liu, P. Seymour, and K. Vuskovic. Recognizing berge 
graphs. Combinatorica, 25 (2005) , 143- 186. 

;16J L. Addario-Berry, M. Chudnovsky, F. Havet, B. Reed, and P. Seymour. Bisimplicial 
vertices in even-hole-free graphs. Journal of Combininatorial Theory Series B, 98 (2008), 
1119- 1164. 

[17J C. T. Hoang and C. McDiarmid. A note on the divisibility of graphs. In Congressus 
Numerantium 136, pages 215- 219. Proceedings of the 30th Smdheastern International 
Conference on Combinator"ics, Graph Theory, and Computing, 1999. 



746 • Handbook of Graph Theory, Combinatorial Optimization, and Algorithms 

[18] D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic progression. 
Journal of Symbolic Computation, 9 (1990) , 251- 280. 

[19] J. R. S. Blair and B. W. Peyton. An introduction to chordal graphs and clique trees. In 
Gmph Theory and Sparse Matrix Computation, pages 1- 29. Springer, New York, 1993. 

[20] P. Buneman. A charactarization of rigid circuit graphs. Discrete Mathematics, 9 (1990), 
205- 212. 

[21] G. A. Dirac. On rigid circuit graphs. Abh. Math. Sem. Univ. Hamburg, 25 (1961),71-76. 

[22] D. R. Fulkerson and O. A. Gross. Incidence matrices and interval graphs. Pacific Journal 
of Mathematics, 15 (1965), 835- 855. 

[23] F. Gavril. The intersection graphs of subtrees in trees are exactly the chordal graph. 
Journal of Combinatorial Theory Series B , 16 (1974),47- 56. 

[24] J. R. Walter. Representations of chordal graphs as subtrees of a tree. Journal of Graph 
Theory, 2 (1978), 265- 267. 

[25] D. J. Rose, R. E. Tarjan, and G. S. Leuker. Algorithmic aspects of vertex elimination 
on graphs. SIAM Journal on Computing, 5 (1976), 266- 283. 

[26] R. E. Tarjan and M. Yannakakis. Simple linear-time algorithms to test chordality of 
graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs. Sf A!! 
Journal on Computing, 13 (1984), 566- 579. 

[27] F. Gavril. Algorithms for minimum coloring, maximum clique, minimum cover by clique 
and maximum independent set of a chordal graphs. SIAM Journal on Computing. 1 
(1972), 180- 187. 

[28] R. E. Tarjan. Decomposition by clique separators. Discrete Mathematics, 55(2) (19 5). 
221- 232. 

[29] S. H. Whiteside. An algorithm for finding clique cut-sets. Information Processing Letters, 
12(1) (1981), 31- 32. 

[30] S. H. Whitesides. A method for solving certain graph recognition and optimization 
problems, with applications to perfect graphs. In Topics on Perfect Graphs. Annals of 
Discrete Mathematics, pages 281- 297. 

[31] F. Maffray and M. Preissmann. A translation of gallai's paper:'transitiv orientierbare 
graphen'. In Perfect Gmphs, pages 25- 66. 

[32] R. M. McConnell and J. P. Spinrad. Modular decomposition and transitive orientation. 
Discrete Mathematics, 201 (1999), 189- 241. 

[33] J. P. Spinrad. On comparability and permutation graphs. SIAM Journal on Computin.g. 
14 (1985), 658- 670. 

[34] J . P. Spinrad. Problems (14a) and (14b). In Efficient Graph Representations. 2003. 

[35] E. Egervary. On combinatorial properties of matrices. Mat. Lapok, 38 (1931) 16-2 

[36] V. Chvatal. Linear progmmming. W. H. Freeman and Company, New York, 19 3. 



Perfect Graphs • 747 

[37J G. B. Dantzig and D. R. Fulkerson. Minimizing the number of tankers to meet a fixed 
schedule. Naval Research Logistics Quarterly, 1 (1954), 217-222. 

[38J D. R. Fulkerson. Note on dilworth 's decomposition theorem for partially ordered sets. 

[39J 

In Proceedings of the American Mathematical Society, pages 701- 702, 1956. 

H. Alt, N. Blum, K. Mehlhorn, and M. Paul. Computing a maximum cardinality match­
ing in a bipartite graph in time 0(n1.5 Vlo";n). Information Processing Letters, 37 (1991), 

237-240. 

[40J T. Feder and R. Motwani. Clique partitions, graph compression, and speeding up algo­
rithms. In Proceedings of the 23rd Annual ACM Symposium on Theory of Computing, 
pages 123- 133, 1991. 

[41J P. C. Gilmore and A. J. Hoffman. A characterization of comparability graphs and interval 
graphs. Canadian Journal of Mathematics, 16 (1964), 539- 548. 

[42J C. G. Lekkerkerker and J. Boland. Representation of a finite graph by a set of intervals 
on the real line. Fund. Math, 51 (1962),45- 64. 

[43J K. S. Booth and G. Lueker. Testing for the consecutive ones property, interval graphs, 
and graph planarity using pq-tree algorithms. Journal of Computer and System Science, 
13 (1976), 335- 379. 

[44J N. Korte and R. H. Mohring. An incremental linear-time algorithm for recognizing 
interval graphs. SIAM Journal on Computing, 18 (1989), 68-81. 

[45J W. L. Hsu and T. H. Ma. Fast and simple algorithms for recognizing chordal compara­
bility graphs and interval graphs. SIAM Journal on Computing, 28 (1999), 1004- 1020. 

[46J M. Habib, R. McConnell, C. Paul, and L. Viennot. LEX_BFS and partition refinement, 
with applications to transitive orientation, interval graph recognition, and consecutive 
ones testing. Theoretical Computer Science, 234 (2000), 59- 84. 

[47J S. Olariu. An optimal greedy heuristic to color interval graphs. Information Processing 
Letters, 37 (1991), 65- 80. 

[48J G. Ramalingam and C. Pandurangan. A uniform approach to domination problems on 
interval graphs. Information Processing Letters, 27 (1988), 271- 274. 

[49J A. Raychaudhuri. On powers of interval and unit interval graphs. Congressus Numer­
antium, 59 (1987), 235- 242. 

[50J D. G. Corneil, S. Oladu, and L. Stewart. The LBFS structure and recognition of interval 
graphs. SIAM Journal on Discrete Mathematics, 23 (2009/10), 1905- 1953. 

(51J J. P. Spinrad. Efficient Graph Representations. Fields Institute Monographs, American 
Mathematical Society, 2003 . 

)2J R. B. Hayward, C. T. Hoang, and F. Maffray. Optimizing weakly triangulated graphs. 
Graphs and Combinatorics, 5 (1989), 339-349. 

~53J R. B. Hayward. Meyniol weakly triangulated graphs i. Co-perfect orderability. Discrete 
Applied Mathematics, 73 (1997), 199-210. 



748 • Handbook of Graph Theory, Combinatorial Optimization, and Algorithms 

[54] R. B. Hayward. Meyniel weakly triangulated graphs ii: A theorem of dirac . Discrete 
Applied Mathematics, 78 (1997) , 283- 289. 

[55] R. B. Hayward, J. P. Spinrad, and R. Sritharan. Improved algorithms for weakly chordal 
graphs. ACM Transact'ions on Algorithms, 3(2) (2007). 

[56] J. P. Spinrad. Finding large holes. Information Processing Letters, 39 (1991), 227-229. 

[57] S. D. Nikolopoulos and 1. Palios. Hole and antihole detection in graphs. In Proceedings of 
the 15th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 843-852, 200-1. 

[58] A. Berry, J. P. Bordat , and P. Heggernes. Recognizing weakly triangulated graphs by 
edge separability. Nordic Journal on Computing, 7 (2000),164- 177. 

[59] J . P. Spinrad and R. Sritharan. Algorithms for weakly triangulated graphs. Discrete 
Applied Mathematics, 19 (1995), 181- 191. 

[60] J. Fonlupt and J. P. Uhry. Transformations which preserve perfectness and h-perfectne 
of graphs. Annals of Discrete Mathematics, 16 (1982), 83- 85. 

[61] A. Berry, A. Sigayret, and C. Sinoquet. Maximal sub-triangulation as improving phylo­
genetic data. Technical report, RR-02-02 , LIMOS , Clermont-Ferrand, France, 2002. 

[62] S. Arikati and C. Rangan. An efficient algorithm for finding a two-pair, and its appli­
cations. Discrete Applied Mathematics, 31 (1991), 71- 74. 

[63] D. Kratsch and J . P. Spinrad. Between o(mn) and o(nCX} In Proceedings of the 14th 
Annual ACM-SIAM Symposium on Discrete Algorithms, pages 158- 167, 2003. 

[64] R. B. Hayward. Weakly triangulated graphs. Journal of Combinatorial Theory Serie 
B, 39 (1985), 200- 209. 

[65] V. Chvatal. Perfectly ordered graphs. In C. Berge and V. Chvatal, editors, Topics on 
Perfect Graphs, pages 63- 65, Annals of Discrete Mathematics, Vol. 21, 1984. 

[66] M. Middendorf and F. Pfeiffer. On the complexity of recognizing perfectly orderable 
graphs. Discrete Mathematics, 80 (1990), 327- 333. 

[67] C. T . Hoang. Perfectly orderable graphs: a survey. In J . L. Ramirez Alfonsin and 
B. A. Reed, editors, Perfect Graphs, pages 139- 166. John Wiley & Sons, 200l. 

[68] C. T. Hoang. The complexity of recognizing weakly triangulated graphs that are per­
fectly orderable. Technical Report Report No. 90638, Institute for Discrete Mathematic, 
University of Bonn, Germany, 1990. 

[69] V. Chvatal, C. T . Hoang, N. V. R. Mahadev, and D. deWerra. Four classes of perfectly 
orderable graphs. Journal of Graph Theory, 11 (1987), 481- 495. 

[70] C. T. Hoang. Recognition and optimization algorithms for co-triangulated gTaphs. Tech­
nical report, Institute for Discrete Mathematics , UniverSity of Bonn, Germany Report 
No . 90637, 1990. 

[71] C. T . Hoang. Efficient algorithms for minimum weighted colouring of some classe of 
perfect graphs. Discrete Applied Mathematics, 55 (1994), 133- 143. 

[72] H. Meyniel. A new property of critical imperfect graphs and some consequences. Euro­
pean Journal of Combinatorics, 8 (1987), 313-316. 



Perfect Graphs • 749 

[73] M. E. Bertschi. Perfectly contractile graphs. Journal of Combinatorial Theory Series B, 
50 (1990), 222- 230. 

[74] H. Meyniel. On the perfect graph conjecture. Discrete Mathematics, 16(4) (1976),339-
342. 

[75] A. Hertz. A fast algorithm for coloring meyniel graphs. Journal of Combinatorial Theory 
Series B, 50 (1990), 231- 240. 

[76] A. Hertz and D. de Werra. Perfectly orderable graphs are quasi-parity graphs: A short 
proof. Discrete Mathematics, 68 (1988), 111- 113. 

[77] H . Everett, C. M. H. de Figueiredo, C. Linhares-Sales, F. Maffray, O. Porto, and B. 
Reed. Even pairs. In Perfect Graphs, pages 67 92. 

(78) F. Maffray and N. Trotignon. A class of perfectly contractile graphs. Journal of Combi­
natorial Theory Series B , 96 (2006), 1- 19. 

:79] B. Leveque, F. Maffray, B. Reed, and N. 'frotignon. Coloring artemis graphs. Theoretical 
Computer Science, 410 (2009), 2234- 2240. 

[80] F. Maffray and N. TI:otignon. Algorithm for perfectly contractile graphs. SIAM Journal 
on Discrete Mathematics, 19 (2005), 553- 574. 

[81) M. Chudnovsky, K. Kawarabayashi, and P. Seymour. Detecting even holes. Journal of 
Graph Theory, 48 (2005), 85- 111. 

:82] M. Conforti, G. Cornuejols, A. Kapoor, and K. VUSkOVlc. Even-hale-free graphs, part i: 
Decomposition theorem. Journal of Graph Theory, 39 (2002), 6- 49. 

83} M. Conforti, G. Cornuejols, A. Kapoor, and K. VUSkOVlc. Even-hole-free graphs, part ii : 
Recognition algorithm. Journal of Graph Theory, 40 (2002), 238- 266. 

[84J C . T. Hoang and C. McDiarmid. On the divisibility of graphs. Discrete Mathematics, 
24 2 (2002), 145- 156. 

~85] M. Chudnovsky, N. Robertson, P. Seymour, and R. Thomas. I<4-free graphs with no 
odd holes. Journal of Combinatorial Theory Series B, 100 (2010), 313- 331. 

:86] C. Berge and V. Chvatal, editors. Topics on Perfect Graphs. Annals of Discrete Math­
ematics, Vol. 21. North Holland, Amsterdam, the Netherlands, 1984. 

(87) M. Chudnovsky, N. Robertson, P. Seymour, and R. Thomas. The strong perfect graph 
theorem. Annals of Mathematics, 64 (2006), 51- 229. 

[881 L. Lovasz. Normal hypergraphs and the perfect graph conjecture. Discrete Math, 2 
(1972), 253- 267. 


	University of Dayton
	eCommons
	2015

	Perfect Graphs
	Chinh T. Hoang
	R. Sritharan
	eCommons Citation


	tmp.1497560468.pdf.fE3lP

