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Résumé 

L’évaluation de la fiabilité des réseaux est un problème combinatoire très complexe qui 

nécessite des moyens de calcul très puissants. Plusieurs méthodes ont été proposées  dans la 

littérature pour apporter des solutions. Certaines ont été programmées dont notamment les 

méthodes d’énumération des ensembles minimaux et la factorisation, et d’autres sont 

restées à l’état de simples théories.  

Cette thèse traite le cas de l’évaluation et l’optimisation de la fiabilité des réseaux. Plusieurs 

problèmes ont été abordés dont notamment la mise au point d’une méthodologie pour la 

modélisation des réseaux en vue de l’évaluation de leur fiabilités. Cette méthodologie a été 

validée dans le cadre d’un réseau de radio communication étendu implanté récemment pour 

couvrir les besoins de toute la province québécoise. Plusieurs algorithmes ont aussi été 

établis pour générer les chemins et les coupes minimales pour un réseau donné. La 

génération des chemins et des coupes constitue une contribution importante dans le 

processus d’évaluation et d’optimisation de la fiabilité. Ces algorithmes ont permis de 

traiter de manière rapide et efficace plusieurs réseaux tests ainsi que le réseau de radio 

communication provincial. Ils ont été par la suite exploités pour évaluer la fiabilité grâce à 

une méthode basée sur  les diagrammes de décision binaire. Plusieurs contributions 

théoriques ont aussi permis de mettre en place une solution exacte de la fiabilité des réseaux 

stochastiques imparfaits dans le cadre des méthodes de factorisation. A partir de cette 

recherche plusieurs outils ont été programmés pour évaluer et optimiser la fiabilité des 

réseaux. Les résultats obtenus montrent clairement un gain significatif en temps d’exécution 

et en espace de mémoire utilisé par rapport à  beaucoup d’autres implémentations.  

Mots-clés: Fiabilité, réseaux, optimisation, diagrammes de décision binaire, ensembles des 

chemins et coupes minimales, algorithmes, indicateur de Birnbaum, systèmes de radio 

télécommunication, programmes. 
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Abstract 

Efficient computation of systems reliability is required in many sensitive networks. Despite 

the increased efficiency of computers and the proliferation of algorithms, the problem of 

finding good and quickly solutions in the case of large systems remains open. Recently, 

efficient computation techniques have been recognized as significant advances to solve the 

problem during a reasonable period of time. However, they are applicable to a special 

category of networks and more efforts still necessary to generalize a unified method giving 

exact solution. 

Assessing the reliability of networks is a very complex combinatorial problem which 

requires powerful computing resources. Several methods have been proposed in the 

literature. Some have been implemented including minimal sets enumeration and factoring 

methods, and others remained as simple theories. 

This thesis treats the case of networks reliability evaluation and optimization. Several issues 

were discussed including the development of a methodology for modeling networks and 

evaluating their reliabilities. This methodology was validated as part of a radio 

communication network project. In this work, some algorithms have been developed to 

generate minimal paths and cuts for a given network. The generation of paths and cuts is an 

important contribution in the process of networks reliability and optimization. These 

algorithms have been subsequently used to assess reliability by a method based on binary 

decision diagrams. Several theoretical contributions have been proposed and helped to 

establish an exact solution of the stochastic networks reliability in which edges and nodes 

are subject to failure using factoring decomposition theorem. From this research activity, 

several tools have been implemented and results clearly show a significant gain in time 

execution and memory space used by comparison to many other implementations. 

  

Key-words: Reliability, Networks, optimization, binary decision diagrams, minimal paths 

set and cuts set, algorithms, Birnbaum performance index, Networks, radio-

telecommunication systems, programs. 
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1.1   INTRODUCTION 

Nowadays, sensitive areas are designed into systems, sometimes homogeneous and 

sometimes heterogeneous, so more complexities. It appears clear that, at the design phase of 

the life cycle, the study should precisely focus on the system survivability aspects. In other 

words, the system must be robust, reliable, secure, and especially extensible, open and must 

survive to crash.  

Many social, economic, services and manufacturing systems can be modeled by a network. 

In many such networks, the physical problem has sources and sinks nodes and a network of 

links connecting all the nodes. In other words, given a stochastic network N modeling a 

physical system in which each edge and/or each node can fail statistically independently, 

with a known probability. The network reliability analysis problem consists of measuring 

network reliability given failure probabilities for the edges/nodes. Typical reliability 

measures could be presented as the probability Pr{there exist operating paths from a node s 

to each node in a subset K} or more simply the probability Pr{there exist at least an 

operating path from a source node s to a sink node t in the network}. Computing such 

measure has been proved to be NP-hard. Rosenthal (1973) was the first to show that the 

recognition problem of determining if a network contains reliable Steiner Tree of given 

cardinality is NP-Complete. In practical cases, network reliability algorithms belong to the 

class of NP-hard problems, and in the theory they have been classified as #P-complete by 

Valiant (Valian, 1979).  

When addressing the problem of evaluating networks reliability for a given system whose 

topological structure is known, we are quickly confronted with two issues requiring 

answers beforehand and which are to ask: 1- is the reliability of all components available, 

2- what are the appropriate tools for computing the reliability in accordance to network 

dimensions.    

In this thesis, we provide clear and practical answers to the earlier problems. Indeed in this 

presentation, several solutions have been introduced. The first answer detailed in chapter 2, 

is to propose a framework and a unified approach to determine all parameters that calculate 

the reliability whatever the component characteristics (electric, electronic, mechanical or 

simply software). The second answer is recorded in all the rest of this dissertation from 
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chapter 3 to chapter 7, in which we have proposed algorithms based solution and data 

structures based coding and manipulation solution. The principle of the algorithms is to 

give flexible solutions. It is noted  that chapter 1 to chapter 7 reflect the contents of articles 

proposed for publication where two of them have been already appeared. 

The following sections of the present chapter are as follows: 

Section 2 introduces some important definitions and methods for computing the reliability. 

Section 3 proposes a concise state-of-the-art. The thesis objectives and a review of the 

literature are presented in section 4 and section 5. In section 6, we review the contributions 

and details of each one of the following chapters. Chapter 1 concludes in section 7. 

1.2 Background Preliminaries 

1.2.1 Definitions 

1.2.1.1  Stochastic graph 

A stochastic graph  is a finite set V of nodes and a finite set E of incidence 

relations on the nodes called edges. The edges are considered as transferring a commodity 

between nodes with a probability . They may be directed or undirected and are weighted 

by their existence probabilities. The graph in such case, models a physical network, which 

represents a linked set of components providing services. In this work, other terms are used 

to define stochastic graphs such as reliability model or simply network. They give exactly 

the same meaning.  

 

1.2.1.2  Subgraph and partial graph 

A subgraph of a given graph  is a graph   such that   and  

. 

A partial graph of a given graph  is a graph  such that . 

 

1.2.1.3 Graph state, associated probability and associated partial graph 
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As each element of the network during system operations may be up (operating) or may be 

down (failure), thus a state Boolean cardinality . 

There are possible states for a network, with  and . 

1.2.1.4  Network Reliability 

There are different notions of network reliability, i.e, deterministic and stochastic (Frank 

and Friech, 1971), (Hwang, Tillman and Lee, 1981). Networks can be defined as a physical 

or organisational infrastructure that can be modeled as a graph composed of nodes and links 

(directed or undirected) in which each edge has associated value which corresponds to the 

probability that such component is functioning. Because each edge and each node can fail 

with a probability value, the reliability of a network   is defined as the 

probability that the system (network) will perform its intended functions without failure 

over a given period of time and under specific conditions.  

1. 2.1.5  Paths, chains, connected graph, cuts, minimal paths, minimal cuts 

1- A path is a chain  in which the terminal endpoint of arc i  is the initial 

endpoint of arc 1i  for all .qi   Hence, we often write , where k is the number 

of edges and k is considered as the length of the path (chain).  

2- A graph G is said to be connected if between any two nodes  there exists a 

chain . 

3- A path P in a graph G is said to be a 1-path if any two nodes  they are 

linked by only one edge. Any path in a graph G which is a 1-path is said to be a 

branch. 

4- Minpath: A subset of a path with minimal number of elements that still make the 

system functioning. 

5- Minpath set (MPS): The set of all minpaths of a network.    

6- A cut C is a set of elements such that if all of them are true then the system is failed.  

7- Mincut: A subset of a cut with minimal number of components that still make the 

system fail. 

8- Mincut set (MCS): The set of all mincuts. 
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Let  be the state component and  the state vector, they can define what follows: 

•  

 

•  a state vector of the system S of order m such that                  

the state space of the system. 

 

The system is then represented by its structure function   defined as follows : 

  

 

 

After specifying the structure function , a probabilistic structure is defined. The usual 

framework is to assume that the state of the  component is a random binary variable and 

that the state vectors are independent.. 

      If a system contains P minpath set  and C mincut set   its 

structure function can be represented by : 

 

 

The basic expression of the reliability R of a network  is presented in the following form : 

 

where  is the mathematical expectation, and  and                     

. 

Note that  is called elementary reliability. We can observe that this is a static problem, 

because time is not explicitly used in the analysis. 

However in case the network where nodes are also prone to failure it is possible to replace 

nodes by arcs and thus we return to a network without imperfect nodes. In such case the 

reliability is expressed by: 
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where  is the graph   with perfect terminal nodes and K is the set of perfect nodes of 

the network.  

 

1.2.2  Survey of some existing methods for networks reliability evaluation 

Network reliability evaluation is a difficult problem. There are several approaches to tackle 

it. For any practical problem of significant size, one must use a computational program. In 

the literature many articles talk about exact methods such as enumeration methods which 

are divided into 2 classes: enumeration of states and enumeration of paths and cuts and 

approximating methods such as simulation. Generally, these methods are used as a pre-

computation for others methods such as the Sum of Disjoint Product (SDP) methods. In the 

following we present some of them. 

1.2.2.1 Enumeration methods  

1.2.2.1.1  State-Space Enumeration 

State-space enumeration method is the most direct brute force approach for computing the 

reliability of a network. It proceeds simply by determining the whole set of state vectors, 

checking for each one if the network is operational or not. The whole set of state vectors 

represents all the combinations where each of the m edges can be good or bad, resulting in 

2
m
 combinations. Each of these combinations is considered as an event . These events are 

all mutually exclusive (disjoint) and the reliability expression is simply the probability of 

the union of the subset of events that contain a path between s and t which is expressed as 

follows: 

 

where        

(1.1) 

Suppose we want to use state enumeration method to evaluate the reliability between node 

a and node c of the network presented in figure 1.1. First, we adopt some conventional 

terms. Let the term good means that there is at least one path from a to c for the given 

combination of good and failed edges. The term bad, on the other hand, means that there 
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are no paths from a to c for the given combination of good and failed edges. The result-

good or bad is determined by inspection of the graph, they are reported in table 1.1. 

 

                                                Figure 1.1 A simple network 

 

The reliability is deduced from the addition of the good events. It is as follows : 

 

 

1.2.2.1.2 Path enumeration – Cut enumeration 

This method is executed in two steps. First step consists of enumerating MPS or MCS. In 

second step the reliability evaluation needs the development of the symbolic expression in 

terms of the probability of various components being operational/non operational. If 

MPS/MCS are mutually exclusive, the probability of the union of m events (corresponding 

to components state; working/failed) can be written if MPS = { } and MCS = 

{  where   represents the event ―the components of the  j
th

 minimal cut are  

not functioning‖, thus  
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For the same example presented earlier (figure 1.1.), the algorithm generates two minpaths,   

 : {1,3};   : {2}. 

The structure function is equal to:  

and the reliability is :  

 

Note that state enumeration and path enumeration methods give the same expression thus 

the same value of network reliability. 

 

1.2.2.2  Sum of Disjoint Product Methods  

1.2.2.2.1 Introduction 

The starting point of an analysis is Boolean polynomial expression B for system success as 

a logical sum of the MPS. Dually, the polynomial for failure is a sum of MCS. 

Let the system have m MPS , each minpath is a term of the minimized for of B. 

Due to the s-coherence properties (Barlow and Proschan, 1975), every MPS has all 1-

valued variable. The minimal expression for success is: 

 (1.3) 

The statement is simple to be proved by induction on the Boolean terms due to the 

following Boolean equality: 

 

1.2.2.2.2  Inclusion-exclusion formula 

The inclusion-inclusion formula also called Poincaré-formula or Poincaré theorem can be 

used for generating directly the expression of the reliability. It is as follows: 
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The structure function relative to the early network is :  :   are the 

paths. Thus, the reliability is,  

 

 

Note that Poincaré formula generates the same expression as earlier. 

It is adequate for the calculus to derive from Poincaré formula a recursive function. It is as 

follows: 

 

 

 : is the term of the reliability at  step. 

 

1.2.2.2.3  Recursive Disjoint Product (Abraham method) 

Recursive disjoint product has been introduced by Abraham (Abraham, 1979). It 

accomplishes the same objective as Poincaré method but results in a different form of the 

probability polynomial (Locks, 1980). Given the list of MPSs corresponding to a network. 

The algorithm builds recursively the expression of the reliability by accumulating the 

probability of the MPS P, one MPS at a time. The recursion formula of Abraham is : 

 

For the network in figure 1.1, the method of Abraham is used as follows: 

 : {1,3} = ;   : {2}=  

The first term corresponds to the first path :  Term 1 :  ;   

Outer loop 1: 

Term 2:  ;    

Term 3:  
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Stop. 

 

Simple checking : 

The substitution of the complemented variable in , gives : 

 

 

and the reliability is : 

 

 

Proof of the equivalence of Recursive disjoint products and Recursive inclusion-exclusion: 

 

 

The accumulated probability is exactly the sum of the probability of the terms. 

 

1.2.2.2.4  Disjoint Products (Heidtmann method, 1989) 

This algorithm is a modification of the algorithm given earlier by Abraham. The inversion 

use multiple-variable. It is simpler and more efficient than Abraham’s. On the example of 

figure 1.1, it proceeds as follows: 

First term is :   ; 

Second term is :  
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1.2.2.3  Reduction and factorisation 

1.2.2.3.1  Reduction rules 

In order to reduce the size of network which leads to minimizing the computing cost of the 

network reliability, it is needed to apply some reduction techniques. The idea behind the 

reduction is to transform each graph partition into a simplified form, while preserving its 

reliability. They are (reductions) similar to those of the factoring theorem, which consist of 

the replacement of a particular structure (e.g. a polygon) embedded in the graph within the 

abstraction of the rest of the graph. The demonstration of such procedure uses the following 

reduction rules which are resumed in what follows: 

Let ea = (u, v) and eb = (u, w) be two series edges in GK  such that degree(v) = 2 and Kv . 

Applying reduction procedure leads to obtain the sub-graph G’ by replacing ea and eb with a 

single edge ec = (u, w) and the corresponding reliability is computed by 
bac ppp  , and it 

defines Ω = 1 and K’ = K. 

 

 

                                                                                                          

             u                 w                v                                                u                               v                                                           

 

Figure 1.2. Series reduction 

 

Parallel reduction.  Let ea = (u, v) and eb = (u, v) be two parallel edges in GK (the network graph) and 

suppose that pi = 1 - qi ( i = a or b). A parallel reduction obtains G’ by replacing ea and eb with single 

edge ec = (u, v) with reliability )1( bac qqp  , and it defines Ω = 1 and K’ = K. We note that Ω is a 

multiplicative operator derived from  R(GK) = Ω.R(G’K’) 

. 

                                 

 

                                                                                                                   

               u                             v                                                         u                                   v 

 

Figure 1.3. Parallel reduction  
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Let ea = (u, v) and eb = (u, w) be two series edges in GK such that degree(v) = 2 and u, v, Kw . A 

degree-two reduction obtains G’ by replacing ea and eb with single edge ec = (u, w) with reliability          , 

and it defines Ω = 1 and . 

 

 

                                                                                                      

 

Figure 1.4. Degree two reduction  

 

For directed networks, some additional reduction rules have been introduced (see Deo and Medidi, 

1992). They can be presented as follows: 

1. All edges going into the source and all edges going out of the sink can be removed. of the 

sink can be removed. These edges do not lie on any simple source-to-sink path and are thus 

irrelevant. 

2. Every vertex, except the source and the sink, with 0 in-degree or 0 out-degree can be 

removed. 

3. If a single edge is directed into or out of a vertex, its anti-parallel edge can be removed. 

Since any simple path through this vertex has to use this single edge, the anti-parallel edge 

is irrelevant. 

4. If there is a single edge out of the source or into the sink, then this edge can be 

contracted. To get the reliability of the original network, the reliability of the reduced 

network is multiplied by the success probability of the contracted edge. 

5. Series edges can be reduced as shown in figure l.2. (Exceptionally the edges are directed 

from u to v) 

6. Parallel edges can be reduced as shown in figure l.3. (edges are directed from u to v). 

7. Generalized series reduction, analogous to the elimination of degree-2 vertex in 

undirected networks, can be performed as shown in the following figure. 
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Figure 1.5. Generalized series reduction 

 

Delta-to star reduction. Delta-to star reduction consists of replacing a topological delta structure by 

a star structure. Nodes of the delta structure must all be K-nodes. The added node is not a K-node 

and its probability is computed as follows : 

  

  and     

 

Avec    and   ,  ,  

 
 Figure 1.6. Delta-to star reduction 

1.2.2.3.2  Generalized factoring theorem 

The factoring theorem consists of pivoting on every edge  in the graph and decomposing the 

original problem with respect to two possible states of edge :  

)()()( failseSRqworkseSRpSR iiii   

where )(SR  is the reliability of the system S and )( workseSR i  is the reliability of the 

system S when the edge ie is in operation and )( failseSR i  is the reliability of the system S 

when the edge ie is not in operation and each probability ip is asserted to the edge i and 

)1( ii pq   the opposite of ip . The earlier equation can be recursively applied to the 
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induced graph, until the generated subgraph contains just one edge. Generally, the factoring 

theorem and reduction rules work together for obtaining the minimal reliability expression 

possible. Figure 1.6, gives an overview of the application of factoring decomposition using 

the graph in figure 1.1. In this example, edge 1 has been picked for generating two state-

subgraph at left where it has been supposed that edge 1 is working, and subgraph at right 

the opposite case (edge 1 fails).   

 

 

Figure 1.7. First step performing the factoring decomposition. 

1.2.3  Binary Decision Diagram (BDD) 

Binary Decision Diagrams (BDDs for short) is a clever and simple representation of 

Boolean expressions. It can be considered as a flexible and dynamic notation of directed 

acyclic graphs (DAG for short). The idea behind BDDs is their transformation from a 

DAGs to a more reduced one called ROBDD for Reduced Binary Decision Diagrams( 

Bryant (1986)). They have received a lot of attention in different fields like computational 

logics,  hardware/software verification and in VLSI design. The implementation and 

manipulation of BDD algorithms is composed by three procedures introduced in Bryant 

(1986): restrict, apply and If-Then-Else (ITE). 

 The representation and the simplification of a Boolean expression proceeds in 4-steps: 

- Construct the binary decision tree (BDT) associated with the graph formula. 

- Transform the BDT to a BDD by applying the following rules by : 

a- Merging equivalent leaves of a binary decision tree. 

b- Merging isomorphic nodes.  
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c- Elimination of redundant tests. 

 

Figure 1.8 gives an overview of BDDs representation and the transformation from a DAG 

to a ROBDD. 

 

Steps BDD at the beginning of 

reduction steps 

Reduction rules 

 

 

 

Step 1 

 

 

Step 2 

 
 

Step 3 

  
 

 

 

 

Figure 1.8. A logic expression and its transformation from a DAG until Normal form 

(ROBDD). 

Network reliability is calculated using the following relation and algorithm and figure 1.9 

shows how the algorithm proceeds: 
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Algorithm Reliability_Evaluation(F, G) 

       if ( F == 0) 

               return 1     //***  Boolean value 1 (one)  ***// 

            else  if  (F == 1) 

                         return 0     //***  Boolean value 0 (zero)  ***// 

                         else  if (computed-table has entry {F, P_F}) 

                                      return  P_F 

                                  else   

                                  P_F = Prob(F1)  +  P(x) * (Prob(F2)-  Prob(F1)  ) 

                                  end 

                     end 

              Insert_computed_table ({F, P_F}) 

              return  P_F 

         end 

  end 
 

 

Figure 1.9. Solution given by the earlier algorithm 

1.2.4  Reliability optimization 

Modern systems are by nature very complex. To remain competitive, the guarantee of high 

system reliability at low cost is essential. Computing system reliability is usually not 

sufficient because it would also provide mechanisms to optimize the reliability taking into 

account budgetary constraints and parameters which could vary in real-time. Several 
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solutions have been published in the literature (see Kuo et al., 2000). Thus, one solution for 

improving the reliability of a system is to add identical components which can be chosen as 

design alternatives or by giving more capacity to those that already exist. This model 

reflects precisely the problem of redundancy allocation. Another method consists of using 

Binary Decision Diagrams which provides a solution to compute the reliability of a system. 

The algorithm generates the BDD corresponding to constraints and objective function. The 

manipulation using APPLY procedure (already cited) consists of composing all the 

constraints with the objective function. The last BDD will represent the solution of the 

problem. Another alternative solution to optimizing the reliability of networks is precisely 

to act on the most important component which can bring some improvements to the 

reliability. The method is called: the Birnbaum’s importance index (Birnbaum, 1969). The 

solution is simple to be evaluated; it suffices to differentiate the expression of the reliability 

for each pivoting component. The choice is then fixed on the component which has the 

highest reliability value. The process is iterated until the expected network reliability is 

approached.  

The discussed three models are presented in what follows: 

1.2.4.1  Series-parallel configuration  

Consider the following redundancy allocation problem in m-stage series system and where 

in each stage (subsystem) there is a number of components in parallel. The problem can be 

presented as follows: 
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Figure 1.10. A series-parallel system 

 

It can be noted that this problem is non-linear, so it becomes quickly intractable. This is due 

to the size of the system which grows with the number of components in each subsystem. 

Thus, making it linear can creates a way to get a solution without fear of the size of the 

model. The processing method is simple and intuitive (see Coit and Konak, 2006 for 

details) it is explained in what follows:    

Maximizing the problem is equivalent to minimizing a separable function by introducing 

the logarithm of the original problem and this is due to the fact that the function is 

monotonic and positive. The transformation steps are as follows: 

 

The generalization for all the terms of the objective function and by considering the 

properties of the logarithm function the following expression is obtained: 

 

 

If we suppose that   , the problem of minimization is transformed again 

to a maximization one, but which can be solved more easily because we get a function 

composed of separable linear terms as shown in what follow: 

 
 

Finally the problem becomes :  
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Solution to such problem is now affordable; it suffices to use any optimizing tool such as 

CPLEX. 

 

1.2.4.2  Binary decision Diagrams 

Binary decision diagrams (BDDs) have been discussed earlier. The following example 

explains how to applied the BDDs to represent the solution relative to the optimization 

problem. First, we represent the constrains domain, the objective function and both of them. 

Suppose a mathematical model composed by a constraint and an objective function are 

presented as follows: 

 

 

The corresponding ROBDD of the constraint and the function are depicted using the 

graphic representation as shown in figure 1.11. 
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Figure 1.11. Reduced BDD for the constraint  (left) and for the 

objective function  (right). 

 

We can add others constraints without any problem and augmenting the dimension of the 

system of constraints because it suffices to apply the procedure ITE using the logical AND 

to the BDD structure of the constraints. The conjunction of the BDD’s gives a new BDD 

which represents the system. For example: Suppose that  is another 

constraint. The new BDD built from the conjunction of  and 

  is represented in figure 1.12. 

 

Figure 1.12: Composition of BDD’s 

 

Example : The bridge network 

Suppose that the corresponding individual reliabilities of each component and the cost are 

given by the following two vectors: 

 and  
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The intersection of the BDDs generates a new BDD and from which it is shown that the 

reliability of the system grows from 0,72 if  to 0.99 if 

. 

 

1.2.4.3 Reliability Importance Measures 

 

The Birnbaum reliability importance measure of a component i, denoted by 

 

  

 

where    

 

Thus, the Birnbaum structural importance measure is defined as follows: 

 

 

 

Where | . | denotes the cardinality of a set. 

 

The Birnbaum measure may be interpreted as the probability of the system being in a 

functioning state with the i
th

 component being the critical one (the failure of this component 

which is assumed functioning coincides with failure of the system) (Xie and Shen, 1989). It 

can be remarked that Birnbaum’s measure is independent of the i
th

 component. 

The following elements will show what type of action to improve the system reliability. 

1.2.4.3.1 Definition (from Xie and Shen, 1989) 

The -importance of the i
th

 component, , is defined as the increase of the system 

reliability due to an improvement of the i
th

 component. That is 
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where  is the reliability for the improved component and  is the system reliability 

after the improvement on the i
th 

component. 

Using the above equation it can be easily demonstrated that: 

                                                           

It expected that -importance measure is another equivalent model of Birnbaum important 

measure. 

1.2.4.3.2  Reliable improvement 

Another quality of improvement is to fix the new value of the probability of the i
th

 

component by a reliable one such as . Thus, 

        

 

1.2.4.3.3  Active redundancy 

 

As discussed in section 1, redundancy provision is one effective solution which can 

improve the reliability of a system. However this type of improvement action can be 

indentified using the earlier -importance measure and such as the ith component is 

organized in parallel with another identical. In such case we get : 

 

 

 

Then the improvement action gives : 

 

 

Example : 

Call back the undirected bridge network. Let : 

 are state variables and 

. 
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The function structure is  

 

 

From the earlier equation we can compute what follows: 

 

1- Birnbaum structural importance: 

 

2- -importance measure: 

 

1.3  State-of-the-Art 

Today’s, systems are more and more complex, so critical, it appears clear, they must to 

pursue performing their intended functions without failures over a given period of time. 

However, as the systems consist of a set of components interconnected by links and 

subjected to failure, it is more appropriate to use networks for modeling them and one 

essential aspect of this, is network reliability. Nodes in some cases could also be subjected 

to failure with a probability value. Networks having both nodes and edges considered as 

possibly defaulting are simply called imperfect networks. These probabilities are supposed 

to be statistically independent. Network reliability is a quality which is involved in 

evaluating the performance of systems. 

The primary network reliability consists of evaluating three measures for probabilistic 

networks. They are: 

- Two- terminal. Probability that communication is enabled between a source s and a 

destination t,  

- K-terminal. Probability that every node in K (a subset of nodes) can communicate 

with every other node in K, and, 

- All-terminal. Probability that every node can communicate with every other nodes in 

the network.  
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Several methods to solve the problem of reliability evaluation have been proposed in the 

literature. There are those that have been implemented and those who remained in the state 

of simple theories. There are exact and approximate methods. One major class of exact 

methods is based on topological methods such as those based on the factoring theorem, the 

reduction or decomposition (Rosenthal, 1977), (Satyanarayana, 1982), (Wood, 1985). They 

are more recent and more effective. The reduction operations reduce the size of the network 

while preserving reliability. They are used to evaluate the reliability of particular networks 

such as series-parallel graphs in polynomial time (Corinne Lucet, 1993). Factoring methods 

proceeds by decomposing the network into smaller networks from which the network 

reliability is deduced by composing small parts reliabilities. For the most complex 

networks, reduction and decomposition must be combined with the factoring methods to 

give a very effective tool. A second major class is called enumeration methods. They are 

two-fold: state enumeration methods and cut/path set enumeration methods. The most basic 

state based method is complete state enumeration, requiring the generation of  states of a 

network with m arcs. Cut/path set require enumerating all minimal cut/path set in the graph. 

These methods involve a substantial research because they are classics in reliability of 

systems. In these methods, minimal cuts/paths are first determined, and the calculation of 

reliability is based on them and consists of making the corresponding events disjoint. Three 

well-known algorithms are used for making them disjoint. They are: Abraham (Abraham, 

1979), Heidtmann (Heidtmann, 1989) and recursive-exclusive-exclusion (IE) also known as 

Poincaré’s theorem algorithms (Riordan, 1985). Other similar techniques have been 

published in many papers, just to name few, they are : GKG ((Veeraraghavan, (1988), 

(Veeraraghavan, and Trivedi, 1991)), and CAREL (Soh and Rai (1991)). It is simple to note 

that reliability problems are NP-complete and generating an exact solution is very 

problematic (Bal, 1986), (Valian, 1979). The desire for fast computation with great 

accuracy have led to a varied of clever techniques for estimating networks reliability 

(Colbourn and Harms, 1985). There are two main investigation areas: the estimation of 

reliability by Monte Carlo sampling techniques, and the bounding of reliability. In the first, 

simulation consists of generating independent samples and estimating the unknown 

parameter corresponding to the reliability by an unbiased estimator along with the 

confidence intervals for the estimate. The relevance of this estimate is related to the number 
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of samples, and their generation. If this number is high, the cost of simulation methods 

approach or exceed that of the exact methods. In the second, bounding methods attempt to 

produce absolute upper and lower bounds on the reliability measures from the algebraic 

structure of the problem. Other intuitive methods use cutsets derivatives instead of pathsets, 

because in any networks of m edges and n nodes, the order of the number of cutsets is 
 

and the order of the number of paths is , and for a class of networks having nodes of 

average degree greater than four, as m > 2n and > thus such networks have a 

larger number of paths than cutsets (Rubino, 1988). Example of such networks, fully dense 

complete network that for n = 10, the number of minimal paths is equal to 109601 and 

minimal cuts is equal to 256 (Rebaiaia and Ait Kadi, 2011). Also for the 2x100 lattice 

network, minimal paths number is equal to 2
99

 and minimal cutsets is equal to 10000. Yet, 

the use of cutsets is much more advantageous than pathsets. 

Recently, BDDs as a new formalisms have been developed to minimize the size of 

networks reliability expressions. They have been overused in different domains, such as 

electronics and theoretical models in computer sciences called verifiers or simply model-

checking. Coudert & Madre  (1992) and Rauzy (1993) are the first to introduce BDDs for 

evaluating networks reliability and since that date a lot of algorithms based on BDDs have 

been implemented in different tools. Unhappily, realistic tools still away from giving 

solutions in a reasonable amount of duration-time because the problem has been 

demonstrated NP-hard (Bal 1980, 1986). So, it still open and can be announced as: ―What is 

the efficient method that can generates a solution for evaluating and thus optimizing the 

reliability in case of large networks?‖ The problem is very complex and any method can not 

by itself give adequate solutions. That is why we propose several algorithms to cover the 

problematic. 

The following objectives can lighten solution we recommend.  

1.4  Thesis Objectives 

The objectives of the thesis are summarized as follows: 

 To classify, test, evaluate and improve techniques and algorithms already published 

in the literature and those implemented in existing tools. 
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 To propose, develop and test new approaches and algorithms that are concise, fast 

and robust for evaluating and optimizing networks reliability. 

 To develop techniques for efficient data representation and manipulation during the 

programming phase. 

 To analyse, develop and write programs for testing the proposed algorithms. 

 To design a portable tool that supports the functions mentioned earlier and can be 

also used as a programming platform. 

1.5  Literature Review 

1.5.1 Minimal Paths set (MPS), Minimal Cuts set (MCS), Sum of Disjoint Products 

(SDP) 

Several algorithms have been developed to enumerate MPS/MCS, most of them require 

advanced mathematics or can only be applied to either directed or undirected graphs and 

alternative solutions have been proposed by different authors (Soh and Rai (1993), Jasmon 

and Kai (1985), Yeh (2009), Al-Ghanim (1999)). Some are specific to the determination of 

MCS (Patvardhan and Prasad (1996), Lin et al. (2003)) and others to MPS (Yeh (2007), 

Jasmon and Kai (1985)). Some MCS methods are highly related to the MPS so that they are 

derived from them. Shier and Whited (1985), have proposed a technique for generating the 

minimal cuts from the minimal paths, or vice-versa. The process is a recursive 2-stage 

expansion based upon De Morgan's theorems and Quine-type minimization.  

Awosope and Akinbulire (1991), present a simple method based on input-reduction 

programming technique that automates the deduction of MPS/MCS. The method has been 

applied to a power-system structure in the form of power-arms (termination busbars, branch 

and protective devices) is the only initial input data needed. The authors argue that the 

results obtained, in terms of minimal paths and minimal cut-set are similar of those of the 

literature. In  Fotuhi et al. (2004), a method called  ―Path Tracing Algorithm‖ has been 

introduced, which can handle both simple and complex networks, and considers both uni-

directional and bi-directional branches. As a demonstrating proof the authors explained the 

procedure using a bridge-network and illustrated by application to a more complicated 

system. Sandkar et al (1991) propose an algorithm to obtain all path sets that give the 
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required flow at the DC terminal in a power system. By multiplying these path sets, using 

Boolean algebra, all minimal cut sets that do not transmit the required flow are obtained. 

From these minimal cut sets, the expression for the probability of failure of transmission of 

required flow at the DC terminal can be obtained.  

Buzacott noted in (Buzacott, 1980) that it is important to well determine the order of the 

cuts before using the disjoint products version of the cut-based methods. He proposed that 

the usual approach is to order them in a descending order in terms of the number of arcs in 

the cut. In Veeraraghavan and Trivedi, 1991, authors describe an efficient Boolean 

algebraic algorithm to compute the probability of a union of non disjoint sets. The 

algorithm uses the concept of multiple variable inversions. The paper of Mishra and 

Chaturvedi (2008) presents an algorithm to enumerate global and 2-terminal cutsets for 

directed networks. Several benchmark networks have been used to evaluate directed 

networks with sum-of-disjoint-product (SDP) based multi-variable inversion (MVI) 

technique without any requirement of complex mathematics or graph-theory concepts.  

Author in Yeh (2009) introduces a simple algorithm for finding all MPs before calculating 

the binary-state network reliability between the source node and the sink node (i.e., one-to-

one reliability). It is based on the universal generating function method (UGFM) and a 

generalized composition operator. The computational complexity of the proposed algorithm 

is also detailed and an example illustrates generation of all minimal paths. Lin and 

Donaghey (1993), describe an approach using Monte Carlo simulation to generate minimal 

path sets by tracing through the system from the input to the output components of the 

reliability diagram in a random manner. The frequencies’ distribution of the minimal cut 

sets are also determined during the simulation. The paper of Malinowski (2010) presents a 

new efficient method of enumerating all minimal MPSs connecting selected nodes in a 

mesh-structured network. This task is fulfilled in two steps. In the first step, the algorithm 

tries to find all loop-free paths. In the second step, a recursive procedure gradually merges 

the paths belonging to different paths sets. The authors argue the efficiency of this method 

by a series of tests. The problem of this method is id due to the backtracking procedure used 

to deduce all spanning trees. It has shown that it grows exponentially.  

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=Authors:.QT.Wei-Chang%20Yeh.QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=Authors:.QT.Lin,%20J.Y..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=Authors:.QT.%20Donaghey,%20C.E..QT.&newsearch=partialPref
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The paper (Balan and Traldi, 2003) extends the work of Abraham and Heidtmann by 

introducing a new preprocessing strategy which works well for SDP algorithms with single-

variable inversion (SVI). The authors have observed that optimal preprocessing for SVI-

SDP can be different from optimal preprocessing for SDP algorithms which use multiple-

variable inversion; one reason for this is that MVI-SDP algorithms handle disjoint minpaths 

much more effectively than SVI-SDP algorithms do. Both kinds of SDP algorithms profit 

from prior reduction of elements and of subsystems ---which are in parallel or in series. In 

Soh and Rai (1991), experimental results are presented showing the number of disjoint 

products and computer time involved in generating sum of disjoint product (SDP) terms. 

The authors have considered 19 benchmark networks containing paths (cuts) varying from 

4 (4) to 780 (7376). Several SDP techniques are reviewed and are generalized into three 

propositions to find their inherent merits and demerits. An efficient SDP technique is, then, 

utilized to run input files of paths/cuts preprocessed using (1) cardinality, (2) lexicographic, 

and (3) Hamming distance ordering methods and their combinations.  

In the study of Yeh (2005), a new algorithm based on some intuitive properties that 

characterize the structure of MPs, and the relationships between MPs and subpaths are 

developed to improved SDP techniques. The proposed algorithm is not only easier to 

understand and implement, but is also better than the existing best-known SDP based 

algorithm. Based on disjointed algebra and BDD algorithm, Yufang (2010), introduces an 

improved and simplified algorithm used to solute disjointed MPS. According to the 

different path length of MPS, he proposes two to disjoint MPSs. He processed for the MP 

whose length is n-1, keep the original arcs unchanged and add the inversion of those arcs 

which are not included in the network and get the disjointed result; disjoin the left MP set 

based on BDD algorithm and realize it through programming. It is shown that the method is 

efficient and accurate. It provides a new approach for reliability analysis of large scale 

network system. The application of Binary Decision Diagrams (BDDs) as an efficient 

approach for the minimization of Disjoint Sums-of-Products (DSOPs) is discussed in Fey 

and Drechler (2002). The authors tell that the use of BDDs has the advantage of an implicit 

representation of terms. Due to this scheme the algorithm is faster than techniques working 

on explicit representations and the application to large circuits that could not be handled so 

far becomes possible. They showed that the results with respect to the size of the resulting 

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=Authors:.QT.Wei-Chang%20Yeh.QT.&newsearch=partialPref
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DSOP are as good or better as those of the other techniques. Locks (1987) describes a 

minimizing version of the Abraham SDP algorithm, called the Abraham-Locks-Revised 

(ALR) method, as an improved technique for obtaining a disjoint system-reliability 

formula. The principal changes are: 1) Boolean minimization and rapid inversion are 

substituted for time-consuming search operations of the inner loop. 2) Paths and terms are 

ordered both according to size and alphanumerically. ALR reduces the computing cost and 

data processing effort required to generate the disjoint system formula compared to the 

seminal Abraham paper, and obtains a shorter formula than any other known SDP method. 

Very substantial savings are achieved in processing large paths of complex networks.   

More recently, Rebaiaia and Ait-Kadi (2010), propose an elegant and fast algorithm to 

enumerate MPSs using a modified DFS technique (Tarjan (1972)). The procedure uses each 

discovered path to generate new MPS from sub-paths. The above procedure is repeated 

until all MPSs are found. The algorithm didn’t at all produce any redundant MPS. More, 

they extended their work with theoretical proofs and the usage of sophisticated techniques 

for dynamic data structures manipulation of complex networks.  

1.5.2 Reduction and factoring based methods 

Factoring algorithm decompositions have been proved to be effective in case the networks 

are irreducible. It can proceeds on perfect and imperfect networks (Rebaiaia et al., 1989), 

Theologou and Carlier (1991), Simard (1996). They can be applied for directed (Wang and 

Zhang, 1997)  or undirected network, but they have been more worked intensively for the 

undirected graphs (Satyanarayana and Wood, 1985), (Wood, 1982, 1986), Satynarayana 

(1980, 1982), Satynarayana and Wood (1985). Moskovitz (1958) is one of the pioneers 

which has used factoring theorem for undirected networks introduced informally first for 

minimizing electronic circuits by Moore and Shannon (1956). The principle of factoring 

theorem is exactly the same as those of Moore and Shannon and the well-known Bayes 

theorem. All these theorems are a version of the probability total theorem, also known as 

the conditional probability theorem.  Readers are invited to consult books on probability 

theory. A number of other papers review factoring theorem beginning in the 1970s (Misra 

,1970), Murchland (1973), Rosenthal (1974, 1977), Nakazawa (1976). The application of 
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factoring theorem has been cited as a worst case computational complexity and the 

optimality of classes are NP-hard (Ball (1986), Valian (1977) Chang (1981), Satyanarayana 

and Chang (1983), and Johnson (1982)). Satyanarayana (1985), proposes a unified formula 

for analysis of some reliability networks based on Inclusion-Exclusion Poincaré’s theorem. 

The idea is to derive a formula from Poincaré reliability expression that involves the 

noncancelling terms. He established two theorems for that. In the first he enounces that the 

domination of a cyclic K-graph is always zero and in second, that, the domination of an 

acyclic K-graph with m links and n vertices is . He gives a demonstrating 

example using 4-nodes bridge network, where he details all the K-trees of the network. 

Satyanarayana and Wood (1985) introduce a new scheme to derive polygon-to chains by 

reduction on the structure of the network. They proposed seven polygon-to chains 

reductions. A polygon-to chain reductions is a successive application of factoring theorem 

on polygons, which must exist as substructures in the graph. Chang (1981) and  

Satyanarayana and Chang (1983), use a graph invariant D(GK), called domination, to 

analyze the complexity of computing K-terminal reliability using a factoring algorithm with 

series and parallel reductions. D(GK) is equivalent to the number of certain rooted acyclic 

orientations of G (see Tarjan, 1972). Johnson (1982) discusses other relationships. 

Satyanarayana (1980) first introduces the concept of minimum domination,                    

L(G) = min D(GK) and shows that the lack of a factoring theorem is that directed networks 

can only be handled in a limited way ((Agrawal, 1974), (Nakazawa, 1976)). Until now, it 

has discussed the ideal case where network are perfect, in other words, networks subjected 

to only edges’ failure. The problem is so difficult and become more complex if we suppose 

that also nodes could fail randomly. Such networks are called imperfect networks. 

Unhappily just few works have been dedicated to the problem. One of the precursors of 

doing research in this direction is Theologou and Carlier (1991). They have showed using a 

clever artefact that it is possible to apply factoring theorem with some minor modifications. 

The problem still opened until a demonstration done by Simard under the supervision of 

Ait-Kadi (1996) concerning the good way to reduce polygon-to chains in case that both 

nodes may fail as well as edges. In Rebaiaia et al. (2011), a table similar to those of 

Satyanarayana and Wood (1985) have been established with all the transformation formulas 

for seven polygons-to chain reductions. Resende (1986) have discusses the design and 
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implementation of PolyChain, a FORTRAN program for reliability evaluation of undirected 

networks of a special structure via polygon-to-chain reductions. The author presents a small 

problem and tested it, illustrating the code's output. Theologou (1990) in her dissertation 

proposes another representation of data structures to optimize the execution time and space 

memory. 

1.5.3  Binary Decision Diagrams Methods 

Bryant (1986) was the first to use the work of Akers (Akers, 1978) on the application of 

binary decision diagrams for symbolic verification of integrated circuits. BDDs have been 

investigated and implemented first by Bryant (1986, 1992). The problem with BDD 

representation despite their effectiveness is that, their exponential growing size due to a 

wrong order declaration between variables. Ruddell (1993) first used an algorithm based on 

dynamic programming techniques to reduce the size of the BDD and Bollig et al. (1996), 

demonstrate that improving the variable ordering of OBDD is NP-Complete. Coudert and 

Madre  (1992) and Rauzy (1993) applied first, BDDs for evaluating networks reliability. 

Kuo et al. (1999) used a methodology to evaluate the terminal-pair reliability, based on 

edge expansion diagrams using OBDD. The algorithm proceeds by traversing the network 

with diagram-based edge expansion and the reliability is obtained by directly evaluating it 

on this OBDD recursively.  A simple and systematic recursive algorithm has been 

introduced by Lin et al. (2003) that guarantees the generated MCS with ease. This 

algorithm is combined with OBDD to calculate the reliability of networks. Chang et al. 

(2004) propose an efficient approach based on OBDD to evaluate the reliability of a 

nonrepairable system and the availability of a repairable system with imperfect fault-

coverage mechanisms. Various approaches have been used for the analysis of multi-state 

systems; examples the BDD-based method (Xing and Dugan, 2002-a), (Tangand and 

Dugan,2006). (Xing and Dugan, 2002-b). Zang et al. (1999), also proposed efficient 

approaches based on multi-state BDD (MBDD), and Phased-missions systems analysed 

using BDD. 

 

http://dx.doi.org/10.1109/12.537122


32 

 

 1.5.4  Reliability optimization 

Many papers have been published to solve the reliability optimization problem and more 

precisely those addressing the optimal redundancy allocation (Coit et al., Kuo et al. (2000), 

Misra (1991)). Chern shows that the problem of redundancy allocation is NP-hard (Chern, 

1992). There are several approaches that provide solutions to such problems. For example, 

Fyffe et al. (1968) use dynamic programming while limiting the problem by considering a 

single type of component available for each subsystem. To tackle the problem, others 

models have been used as genetic programming (Coit and Smith, 1996), heuristics (Coit 

and Konak, 2006)(Coit and Wattanapongsakorn, 2004) and Ant Colony (Kuo et al., 2000). 

For a useful bibliography the reader is referred to Kuo et al. (2000). Recently, Coit et al. 

(2006) used multi-objective programming for the series-parallel systems (figure 1.10) and 

makes some transformations to translate the problem that is initially non-linear to a linear 

model whose solution is accessible using CPLEX tool. Also Coit and Konak (2006) present 

a multi-criteria approach for optimizing the system where the components reliability are 

estimated with uncertainty. The problem is to maximize the estimated reliability of the 

system while minimizing the variance associated with it. Another interesting work was 

published by Ha et al. (2006). It solves the problem of optimizing the redundancy by 

applying heuristics, called as tree-heuristic. This heuristic allows multiple local optimal 

solutions. Rebaiaia and Ait-Kadi (2010) proposed a solution based on BDDs representation 

and composition. This approach proceeds first by generating the BDD corresponding to the 

objective function. A second BDD representing one constraint is associated to the first one. 

A third BDD is then generated by the composition of earlier BDDs. The algorithm iterates 

until to cover all the constraints. From the last BDD a solution is generated and the 

reliability is computed. 

One other alternative solution to optimizing the reliability of networks is precisely to act on 

components which can bring some improvements to the reliability, practically like the 

redundancy allocation process but the solution is presented differently. It is known that 

some components are more important than others to the functioning of the system in term 

of their contribution to the whole system. They are termed measure by component 

importance or redundancy importance or simply structural importance interchangeable with 
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Birnbaum’s importance index (Birnbaum, 1969). There are other importance indices that 

have been intensively studied in the literature as Vesel-Fussel importance measure (Meng, 

1996) (vasely, 1970). Despite that they are interesting source of information; the problem 

with such importance indices is they cannot be determined automatically in case the 

network is complex.  

1.6 Outline of the thesis 

This thesis considers the problem of modeling, evaluating and optimizing networks 

reliability. Components and systems are first estimated. Thus, the estimating process is 

applied in case components failure rate are not available. Two techniques are used based on 

statistical and historical failure data for the first and the utilization of some guides and 

norms for the second techniques. Once all data are collected, the network is then drawn in 

the form of an RBD for Reliability Block Diagrams, which is the basic element on which 

the algorithms will act. 

This thesis includes six contributions presented as articles. Each following chapter 

represents exactly the content of an article.  

In chapter 2, a methodology for modeling and evaluating components and system reliability 

is introduced. The methodological basis consists of modeling and computing the reliability 

and the availability of a radio-communication network that meets provincial 

communication needs. A generic multi-components system is postulated to cover the study 

followed by some models and rules used to evaluate the reliability of each component, 

subsystems and the whole system. 

Chapter 3 presents an intuitive algorithm to enumerate all MPSs. The algorithm proceeds 

recursively on the structure of the graph. The presentation treats the problem from both 

theoretical and practical side. Some theorems have been enounced to cover the algorithm 

construction which has been implemented and proved sound, complete, simple, compact, 

modular and easy to be plugged with any software which evaluates the reliability. 

Experienced using several networks of varied complexities has been tested. The comparison 
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test demonstrated the efficiency of the algorithm in terms of execution time and memory 

space used by the program. 

In chapter 4, a new algorithm is added to enumerate all MCSs of a network. More, it is 

proved that it is an efficient tool used as input for determining the most relevant 

components to be augmented for optimizing the reliability of networks.  

Chapter 5 clearly shows the efficiency of ROBDD to compute network reliability. For that, 

an algorithm has been proposed to cover the evaluation of networks reliability. It is a simple 

data structure representation which can compete with many other solutions. The algorithm 

takes its input data from the instantaneous paths or cuts generators and gives the value of 

the reliability. 

Chapter 6 proposes a theoretical approach which use factoring theorem to reduce the size of 

networks, this leads the problem to be of polynomial complexity while it was of 

exponential complexity. The algorithm proceeds by polygon-to-chain reduction rules and 

considers the case where network components- vertices and edges could fail randomly. 

Chapter 7 presents an extension of chapter 6 to cover other aspects of polygon-to chain 

reductions. An algorithm is presented and some opportunistic descriptions are described 

clearly. 

The logical link between contributions is showed in the following figure (Figure 1.13.)  
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Figure 1.13. Tool Flowchart and thesis contributions 

1.7  Conclusion 

 

In this chapter, we introduced the problem of network reliability giving the basic definitions 

and methods. We presented a concise state-of-the art and a detailed literature review in 

which it has enumerated the most interesting papers and subjects of network reliability 

since the first works. Also we presented an outlined which explains the contents of each 

chapter. 

The following chapters contain the results of the thesis research. 
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Chapter 2 

 

A Methodology for Modeling and evaluating the 

Reliability of a Radio communication Network 
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2.1   ABSTRACT 

Evaluating the performance of a radio communication network needs to check that 

communications between users are working normally and that hardware/software system 

components are up and remain ensuring their mission. The methodological basis of this 

work consists of modeling and computing the reliability and the availability of a radio-

communication network that meets the communication needs of an entire province. A 

generic multi-components system is postulated to cover the study. This chapter presents an 

exhaustive description of a regional radio communication system followed by some models 

and rules used to evaluate the reliability of each component, subsystems and the system. 

2.2  INTRODUCTION 

When defining the performance of complex and critical systems like radio communication 

networks, it is important to specify system performance across different concepts. Some of 

these concepts are commonly named dependability, fault-tolerance, reliability, availability, 

security and survivability. They are defined as indicators from which it is possible to 

measure the performance of a system. In our study we consider the couple reliability and 

availability as performance indicators. Note that the IEEE 90 standard (1990) defines the 

reliability as the ability or the probability of a system to perform its required functions 

under stated conditions for a specified period of time and availability may be interpreted as 

the probability that a system is operational at a given point in time. Maintainability is 

defined as the probability of performing a successful repair action within a given time. 

Most frequent mathematical expressions of these probabilities are well-known. The reader 

is invited to consult Ebeling (2005) for precise details. 

Nowadays, the analysis of system performance is a crucial test, rough and with major 

difficulties. This complexity has become indispensable because of the integration of the 

products of diverse manufactures and technologies (e.g. Motorola, Cisco). Computing the 

reliability of a system depends of the specification of the reliability of each piece of 

equipment being powered. Missing one piece will generate false values in computing the 

system performance and can have dramatic consequences. For instance, a manufacturer of 
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equipment may specify the failure rate estimated using an accelerated degrading testing 

when no failures statistics are available. 

In this chapter, we present some of the results recorded in the report of a research project 

realized by our team as consultants. The project has been entrusted by the 

telecommunication services of the Quebec government (Canada). The main objective was 

to assess the reliability of the radio communication network covering the entire province of 

Quebec. This requirement condition was an essential request of public and private users for 

the renewal of their service contracts. As the system is a new network that has just been 

installed in several stages since early 2000, therefore, the first finding is to be sure that the 

network as such, does not suffer from breakage of certain materials which have not had a 

disastrous consequence on the functioning of the network. That said, at first sight, it is 

assumed that the system is correct and one could roughly estimate the reliability of the 

network on the basis of this assumption. Thus, this information is not a concrete proof to be 

given to customers such that to testify that the network is highly reliable without giving 

them an exact value such as 95%. For this purpose, our assessment made sense of 

quantifying the reliability of the network as a value, the most precise possible.  

Following our experience in the conduct of the project, it has shown that network failures 

can occur for a variety of reasons. In most cases, the causes are accidental, inexperienced 

technicians, natural (wind, frost, ice) and shortage of spare parts. A preliminary description 

has been published in Rebaiaia et al (2009) and Ait-Kadi et al. (2009). 

The approach presented herein is comparable with the study done by Willett et al. (1988). 

The difference between the two works is that, their methodology is applied to a shortwave 

broadcast relay station and is evaluated in term of the number of broadcast hours delivered 

to the assigned coverage areas. The authors present three models: one for covering the 

reliability, another for the availability and a third one for the maintenability. However the 

availability was a culminating parameter. Our work is broader and considers a network 

consisting of 156 receiving and transmitting stations in addition to a modern technology 

using digital hardware and software components connected using TCP/IP communication 
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protocol links. Contrary to their objective our project considers reliability as being essential 

to the definition of the performance of the network. 

Other interesting work have influenced our study for conceptualising the network as 

separate subsystems working together Moubray (1977) and Noll, M (www.columbia.edu). 

The separation supposes that each subsystem is itself a network and thus the radio 

communication network becomes a network of networks. Although, this decomposition 

increase security and efficiency but provides a simplified calculation of the reliability and 

the availability and consequently the maintenability becomes intuitive. 

Many others research helped in doing the project as an other side of the work for 

developing tools for maintaining the network using standard and guidelines as those 

described by Moubray (1977), Agrawal et al. (1996) and Michelin et al. (1988). These 

insights have been of great help.   

The present document also describes some characteristic of a digital radio communicating 

system which uses dynamic assignment of frequency (ADF). The system offers a set of 

roaming functions. It allows any user to communicate with his group or another group, 

whatever the area provided it is covered in a limited space where he can be detected by 

receiver’s sites.  

The lack of data that can determine the reliability or availability of a product requires the us

e of models and standards for determining the failure rate or for checking the Mean Time B

etween Failures (MTBF) value under an exponential distribution. This study also concerns t

he design of a model to describe and evaluate the reliability of a radio telecommunication s

ystem using standard for assessing the reliability prediction of electronic equipments and co

ntains formulae for modeling and computing the failure rate of a component under some co

nditions as in Ait-Kadi et al. (2009). 

The organization of this chapter is as follow. In the next section readers are briefed on the 

architecture of the radio communication network. We give an approximate description of 

the system and some useful definitions. Section 3, presents the main lines to model the 

components of the system and calculate their reliabilities. Finally concluding remarks are 

given in section 4. 
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2.3   ARCHITECTURE OF THE RADIO NETWORK 

This section presents the architecture of the radio communication system. It details the 

most important components and introduces their characteristics which can be used to 

determine the reliability. First of all, we introduce a methodology to describe the system 

element by element and computes the reliability of each of these products and finally it help 

to build the RBD for reliability block diagram to determine the reliability of each 

subsystem and thus the reliability of the system. In the following we present the notion of 

generic system instead of system in any way.  

2.3.1   Definition of radio communication system    

A conceptual design for a generic radio system provides a convenient mean for people to 

communicate instantaneously engaged in various public safety-related services. The generic 

radio system is usually expected to transmit and receive to its coverage areas radio signals 

that are used to carry voice and data on a daily basis throughout the year and whatever the 

atmospheric conditions. An example of a radio communication system is presented in 

Figure 2.1. This figure gives a simplified description of the network. We can see that each 

node of the network represents a radio communication station called site. There are 

standard sites and master sites. They are described below. Any two sites communicate 

using a system of microwave data transport. 

 
Figure 2.1. Radio communication network 

 

The network is composed by the following necessary elements: 
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 Radios (portable and mobile). 

 Sites (master sites, secondary Radio Frequency (UHF/VHF sites)).  

 Zones (in a zone or zones there is one or more UHF/VHF sites). 

 System (single zone or multiple zones with one or more UHF/VHF sites)  

 

In the radio system, a zone is responsible for managing its own elements (sites, repeaters, 

subscribers, UHF-VHF and microwave carriers) interconnected using a high-speed 

transport network to form a Wide Area Network (WAN). This WAN system is composed 

by hardware/software devices and routers allowing users configuration information, call 

processing information, and audio to be conveyed throughout the system. Each zone 

framework includes a physical infrastructure, managing mobility and processing calls 

transported using IP (Internet Protocol) packet technology through the network.  

 

2.3.2   Standard and master sites 

A basic radio system consists of equipment for transmitting and receiving radio signals that 

are used to carry voice (audio) or data. 

The radio sites is equipped with one or two antennas for broadband coverage on which is 

terminated 4 to 8 transmitter-receiver transponders (Tx/Rx). The transponders are 

connected to each antenna via filtration equipment of type Multicoupler. The multicouplers 

form a chain of multicoupling able to accept others transponders in expansion (see Figure 

2.2, and Figure 2,5.). Figure 2.2, gives an overview of a standard radio site which consists 

of the following subsystems: 

 

1- Outdoor subsystem 

 

   A tower  

   UHF-VHF antennas 

   Microwave antennas 

   Connectors 

   Power electric energy Resources deserved by a public network. 

 

2- Indoor subsystem 

 

 Cable RG-393 
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 Switch 

 Inside connector 

 

3- Batteries used to secure power alimentation in case the power network fails to deliver 

electric energy. 

4- Communicating control system which is the heart of communication coordination 

between user’s solicitations, radio control manager and call processing mobility systems. 

Figure 3 shows the most important devices and their line connections. You can see that 

the system is fully redundant. There are site controllers; Ethernet switches, remote 

routers and a repeater which is an RF station that serves as the RF link between the 

system and the mobile and portable units. In a site there are a minimum of two and a 

maximum of 28 repeaters which have each one of them, (1) a receiver to pick up the RF 

signal from the subscribers, (2) a transmitter to send RF signals to the subscribers and 

(3) a wireline interface to send audio to a centrally located device used for dispatching 

functions. 

 

A master site consists of core and exit routers, WAN and LAN switches, controllers and 

some operative computers plus others monitoring and dispatching hardware/software 

systems such as core, exit and gateway routers, AEB, PBX, dispatching consoles Elite and 

others. 

For more precision the reader is invited to see Ait-Kadi et al. (2009). Note that the main 

objective being to develop an analysis methodology for Reliability, Availability and 

Maintainability (RAM) and thus to optimize the performance of the system. 

                       

Based on the RAM requirement it is expected to determine: 

 Reliability of the critical components and subsystems. 

 Overall reliability of the radio-communication system. 

 Availability of the critical components and subsystem. 

 The sensitivity of the RAM parameters. 

 The maintenance time and budget for corrective actions. 
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 The maintenance time and budget for preventive operation as a function of 

subsystem. 

The approach used in this work is based on the well-known standard STD-MIL 217-F 

(1995), which specifies that reliability prediction utilizes a series model for system 

reliability evaluation for one or more components. It is permitted in case of critical 

components or according to the structure of a subsystem to use hot-standby and the 

redundancy items are modelled in parallel.  

The reliability of the overall system is critically dependent upon the time duration each 

component is operating. The MTBF of each component is used if it is available otherwise 

failure statistical data are used for determining the failure rate. The reliability of each 

component for a time duration T can be expressed as an exponential function depending on 

the relative MTBF. Table 2.1 to table 2.6 give the expected reliability, the Mean Time 

Between Failures and the failure rate. 

 

 
 

Figure 2.2. A standard radio communication station 
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                                    Figure 2.3. Communicating system inside a radio system. 

 

2.4  MODELLING OF A RADIO COMMUNICATION SYSTEM 

Information about the electric system was provided using service of 43 between               

134 stations (32%) over a period of approximately of two years. The reliability for the 

battery system was calculated using data from a fixed proportion of a sample of 990 cells of 

78 operational batteries in 71 stations (53%), for a period approximately equal to two years 

and a half.  There was no data on the preventive and corrective maintenance, no more 

records of electrical and mechanical failures of some elements like the DC-AC converter 

and the AC Distribution Panel. For that, we developed an electric model to approximate the 

AC Distribution Panel and DC-AC converter, based on the predictive model MIL-HDBK-

217F-2. Also. it was supposed that the failure rate of each electronic or electric element is 

constant according to the norm MIL-HDBK-217 F. In what follows we will show how to 

model the different components and especially those who cannot be determined by 

statistical methods. As all the components are electric or electronic types, using an 

exponential probability distribution would be better representative for the failure rate 

approximation.  
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2.4.1  Modeling the antennas 

The antennas have been developed on a specific request with redundant features and sound 

quality according to the following characteristics: 

- Anodizing Type II according to MIL-A-8625F,-  Standard ISO 9002, 

W47.2FM1987 (c1998), 

- CAN/CSA-S37-01, 

- Wind Zone D (600p), 

- Zone III glass (40mm), 

- Reliability class 1 (factor of importance 1), 

 

and respecting the following standards: 

- MIL-C-39010 

- MIL-C-83446 

- MIL-HDBK-217F Notice 2 (11.2) 

 

 

Figure 2.4.  Electric model for the antennas 

 

Antenna failure rate is derived from the following model: 

 

Where : 

     (basic failure rate corresponding to the variable coil) 

               (Temperature: THP 50C
0
-60

0
) 
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                  (Quality: Between military and standard qualities) 

               (Environmental factor) 

 = 0.00005  1.4  2  12 = 0.00168 (failure/10
6
 hours) 

 

The corresponding reliability using exponential distribution is reported in the following 

table: 

                                 Table 2.1. Antenna reliability value 

 

Reliability 0.99999999832 

Failure rate 0.00000000168 

MTBF(h) 595238095.2381 

FITS 1.68 

 

 

2.4.2  Modeling the Outdoor Connectors  

 

The parameters identified are : 

 

p = Failure rate 

b = Basic failure rate 

k    = Degradation factor due to plugging and unplugging connectors 

p = Active pines factor 

E   = Environnemental factor 

 

The expressions of the outdoor connectors failure rate is : 

 

p =b  K  P  E 

p =0.0040 (material C 30C
0
 – 40C

0
)  1.5 (0.5 – 5 in 1000 hours)  1.4 (two active 

elements)  14 (GM elements subjects to random movements) 

p = 0.1176 (failures/10
6
 hours) 

 

                               Table 2.2. Outdoor connectors’ reliability value 

Reliability 0.99999988240001 

Failure rate 0.0000001176 

MTBF(h) 8503401.3605442 

FITS 117.6 
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2.4.3  Modeling the Filters (Multicouplers) 

 

The multicouplers are used to connect multiple receivers or radio antennas. They consist of 

coaxial cavities resonating at ¼ wavelength loop coupling input/output and coaxial cables 

whose lengths can be calculated based on the used frequencies. They isolate each Tx / Rx 

(Transmission-reception) on channel to reduce the interference problems (noise transmitter 

and inter modulation disturbance) on the radio site.  

As the technical data are not available, the only obvious solution is to use guidelines 

contained in the standards outlined in what follows :  

 

- MIL-C-92 

- MIL-R-12934 

- MIL-C-3607-83517 

- MIL-HDBK-217F Notice 2(9.1-10.1-15.1) 

 

The schematic representative of the filtering system is given in Figure 2.5, and the electric 

model simulating its features is shown in Figure 2.6.  

 

 

 
 

 

Figure 2.5. Filtering system 

 

 
                                  Figure 2.6.  Electric model to simulate filtering system 
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The following model gives the failure rate of each multicoupler where (CT) is the 

parameters of the capacitor and (RT) is those of the resistance. The coupling of capacitor 

and resistor generate the reliability of the multicoupler devices. The failure rate expression 

is as follows:  

 

p = Failure rate of the capacitor 

b = Basic failure rate 

T    = Temperature factor 

C = Capacitor factor 

 V = Voltage stress factor 

SR = Series resistance factor 

Q = Quality factor 

E   = Environmental factor 

 

So to calculate the failure rate of a capacitor we use what follows : 

 

p =b  T  C   V  SR  Q  E 

 

p = 0.0000072  2  1  5  1  1.25  1 

p = 0.000009 (Failure/10
6
hours) 

 

The reliability of the capacitor is : 

 

Rx = e
-0.00000000009

 = 0.99999999991 

 

The parameters of the Resistance  

 

p =b  T  p  S  Q  E 

p = 0.0024 (variable Resistance)  2  1  1.1 

(table MIL-HDBK 217F9.1)  1 (between military and Standard quality)  1 (easy control 

of the maintenance) 
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p = 0.0024  2  1  1.1  1  1 

 

The failure rate of the resistance is : 

p = 0.00528 (failure / 10
6
 hours). 

And the reliability of the resistance is : 

Ry = 0.99999999472 

 

As  the capacitor and the resistance operate in series, their reliabilities composition is : 

RCR = RxRy =  0.999999999917  0.99999999472 

RCR =0.999999994637 

 

The following table resumes the values of the reliability, the failure rate, the mean time 

between failure and the FITS (= 10
9
 Failure rate). 

 

                    Table 2.3. Filtering system reliability 

Reliability 0.999999884637 

Failure rate 0.00000000536300001438 

MTBF(h) 186462800.17127 

FITS 5.36300001438 

 

2.4.4  Modeling the indoor connectors 

Using the same model as for the outdoor connectors, we find the value of the parameters as 

in the following table:  

                    Table 2.4. Indoor connectors’ reliability 

Reliability 0.99999977587203 

Failure rate 0.0000000126 

MTBF(h) 79365079.365079 

FITS 12.6 

 

 

2.4.5  Modeling the Radios (QUANTAR) 

 

The MTBF of the radio Quanta has been provided by the manufacturer. Thus, if we use the 

value of the MTBF we can deduce the failure rate and the reliability as follows: 

MTBF = 110000 hours 
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                  Table 2.5.  Quantar reliability value 

Reliability 0.99999740260078 

Failure rate 0.0000025974025 

MTBF(h) 385000 

FITS 2597.4025974026 

 

2.4.6  Modeling the power electric station 

To find the reliability we have used the management information system to retrieve faults 

information of each radio communication station. This is another way by which to find the 

failure rate relative to each electric power station. Figure 2.6 presents information 

representing fault warnings and their durations. They are given by the followings statistics:  

- Sample of 43 stations over a period of 11,520 hours 

- Total Number of failures 512 hours  

- Total Idle Time: 937 hours 12 minutes and 11 seconds 

- Average length of inactivity by default: 1 hours, 49 minutes and 50 seconds 

- Average length of inactivity per station: 21 hours, 47 minutes and 44 seconds. 

 From these data, we determine the value of the reliability as depicted in the following 

table: 

                                     Table 2.6. Electric station reliability 

Reliability 0.95652874 

Failure rate 0.04444444 

MTBF(h) 22.50 

FITS 4444444 

 

At the end, we evaluate the reliability of the global electric installation system as detailed in 

the figure 2.7. 

Note that figures 2.8, 2.9 and figure 2.10 give the reliability of other parts of the system. 
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Figure 2.7. Reliability evaluation of the electric power system 

 

 

 

Figure 2.8. Reliability evaluation of the RF communication system 
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          Figure 2.9. Reliability evaluation of the microwave transmission/reception system 

 

 

                                   Fig 2.10. Reliability evaluation of a Master site system 
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2.5  CONCLUSION 

This chapter describes a methodology for developing a reliability model which is 

applicable to evaluating the performance of a radio-communication system. A generic 

multi-components system is postulated to cover our study. We present in this document 

some parts of the system and we give details for just a few ones. We note that in most 

cases, a lack of statistics disrupt the fact to obtain highly representative parameters. Despite 

this, it is possible at each time to find a method to compute the reliability of a system; it 

suffices to use MIL-HDBK-217 F. Next soon, we planned to compute the reliability of the 

global system using the model developed here. 
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3.1  ABSTRACT 

Operation of a system can be modelled by a network whose components can be represented 

by nodes and their functional relationships by arcs. The reliability of complex networks is a 

very sensitive issue which requires implementing powerful methods for its evaluation. 

Many algorithms have been proposed to solve networks reliability problem. Among them 

minimal pathsets and minimal cutsets are techniques which have been used intensively last 

decades and implemented in different tools. The enumeration of minimal pathsets can be 

obtained for example by a simple application of the well-known Diskjtra algorithm. The 

problem of enumerating minimal paths and cuts set is not easy for large systems, so  

efficient techniques are needed because the generating process time grows with the 

dimensions of the network. This paper presents an efficient algorithm to enumerate all the 

minimal paths of a network. The algorithm proceeds recursively using a depth first search 

procedure. The major theoretical bases have been demonstrated sound and complete and 

the program is simple, compact, modular and easy to be plugged with any software which 

evaluates the reliability. It has been implemented and experienced using several networks 

of varied complexities. The comparison test demonstrated the efficiency of the algorithm in 

terms of execution time and memory space occupied by the program.  

 

 

ACRONYM 
 

MPS/MCS Minimal pathsets/cusets.  

DFS Depth first search algorithm. 

 

NOTATION 

 

 Network with node set  and the edge 

set , where t and s are respectively the 

source node and the sink node.  may 

be directed or undirected.  

 

 

Number of nodes of the network. 

Number of nodes of the network. 

variable a variable represents  an edge or a node. 

  is a directed edge from node i to 

node j. 

 Functioning probability of  
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 Functioning probability of the edge 

taken between node i and node j 

 

 

3.2  INTRODUCTION 

The concept of MPS/MCS is a very effective tool to determine the reliability of a system 

from the disjoint form of its terms. A path P is defined as a set of adjacent nodes connected 

using edges (network components) so that if all the components are failure-free, the path is 

considered as up and leads the network to be up. A path P is minimal if it has no proper 

subpaths.  Conversely, a cut C is a set of edges such that their removal leads the network to 

fail. A cuts C set is minimal if no proper cut exists. Technically, this means that the failure 

of the cutset components ensures that the entire system fails and the failure of a minimal 

path component discard the expression path from computing network reliability. 

Enumerating all the MCS may be a feasible way to evaluate the reliability if the number of 

MPS is too huge to be enumerated practically. One example of this kind of networks is the 

complete network (10 x 10) which contains 45 edges and 109601 MPS and 2x100 lattice 

networks contains 2
99

 MPS and 10000 MCS (Lin et al. (2003)). Several algorithms have 

been developed to enumerate MPS/MCS, most of them require advanced mathematics or 

can only be applied to either directed or undirected graphs and alternative solutions have 

been proposed by different authors (Soh and Rai (1993), Jasmon and Kai (1985), Yeh 

(2009), Al-Ghanim (199)). Some are specific to the determination of MCS (Patvardhan and 

Prasad (1996), Lin et al. (2003)) and others to MPS (Yeh (2007), Jasmon and Kai (1985)). 

Some MCS methods are highly related to the MPS so that they are derived from them. 

Shier and Whited (1985), have proposed a technique for generating the minimal cuts from 

the minimal paths, or vice versa. The process is a recursive 2-stage expansion based upon 

De Morgan's theorems and Quine-type minimization. Jasmon and Kai (1885) used an 

algorithm which proceeds in two steps. The first step concerns the deduction of link cutsets 

from node cutsets and the second deduce the basic minimal paths using network 

decomposition. So, in addition to the enumeration of cutsets directly, it is possible to obtain 

them from the inversion of minimal paths (Shier and Whited (1995)). Al-Ghanim (1999) 

presents a heuristic programming algorithm to generate all MPS. The algorithm proceeds 

by creating a path, then iterates back from an explored node in the current path using 
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unexplored nodes until to reach the source node. The procedure uses each discovered path 

to generate new MPS from subpaths. The above procedure is repeated until all MP are 

found. The problem with Al-Ghanim’s algorithm that it produces redundant MPS, which 

needs a tool to avoid them using extensive comparisons. Recently, Yeh (2009) presents a 

simple algorithm for enumerating all MPS between source and the sink nodes. It is based 

on the universal generating function. Before that, Yeh (2007) proposes a simple heuristic 

algorithm for generating all minimal paths. The algorithm proceeds by adding a path, or an 

edge into a network repeatedly until the network is equal to the original network. Also, Liu 

et al. in (1993) and Shier and Whited (1985) have used two different algorithms showing 

that a 2×100 lattice network has 2
99 

paths but contains 10,000 minimal cutsets. 

 

3.3   NETWORKS MODELING 

Let ),( EXG  be an arbitrary graph in term of direction and let P be an arbitrary family of 

(source-sink) pairs of nodes of It is assumed that ii ts 

for all ].[ki  Consider that each edge and each node could be subjected to random s-

independent failure occurrences and are weighted with a probability pi. For a specified set 

XK  of G, we denote the K-terminal reliability of G by )( KGR . When the cardinality of K 

is 2 , it is called 2-terminal (or terminal-pair) reliability which defines the 

probability of connecting the source node with a target node. In the most cases, it suffices 

to have a 2-terminal relation to evaluate the reliability of networks. The generalisation of 

the problem is called the K-terminal reliability, and considers the subset K
 

 

differently from the 2-terminal reliability. A success set, is a minimal set of the edges of G 

such that the nodes in K are connected; the set is minimal so that deletion of any edges 

causes the nodes in K to be disconnected. Topologically, a success set is a minimal tree of 

G covering all nodes in K. In the same way, by using the conjunction of all of minimal 

paths we can evaluate the reliability of the network. There is another way to compute the 

reliability by considering minimal cuts. They can be derived by inverting the terms of 

minimal paths or by determining them using algorithms or heuristics (Abraham (1979), 

Heitdtmann (1989)).  
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Some definitions are necessary to introduce the problem of MPS/MCS. Let that: 

 Each node and each edge have two states: working or failed. The states of edges are 

s-independents. 

 The graph is connected and free-loops. 

 In case of parallel edges, they are systematically replaced by one edge whose 

reliability is obtained using parallel relation, see (Rebaiaia et al. (2009)) for more 

details. 

 

        

 

 If two edges are in series, the second is deleted and the reliability of the first one is 

replaced by the product of the two edges reliabilities. 

 

       

 

In the following we introduce preliminaries, definitions, lemmas and theorems. They are 

presented as follows: 

 

3.3.1 Definitions 

1- A path of length q is a chain  in which the terminal endpoint of arc i  is 

the initial endpoint of arc 1i  for all .qi   Hence, we often write , where 

k is the number of edges. 

2- The dimension of a path P = ( (we note dim(P)) is equal to the number of 

edges which is k. Nodes 1x  is called the initial endpoint and node 1kx  is called the 

terminal endpoint. 

3- A graph G is said to be connected if between any two nodes Xyx , there exists a 

chain . 

4- A graph G is said to be quasi-strongly connected, if for all Xyx , , there exists a path 

 or a path  
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5- A path P in a graph G is said to be a 1-path if any two nodes Xyx ,  of the path, they 

are linked by only one edge. Any path in a graph G which is a 1-path is said to be a 

branch. 

6- A 1-path P is said to be maximal, if and only, if it connects the n nodes of the graph. 

Thus, the dimension is .11||)dim(  nXP  

7- An arborescence is defined as a tree that has a root. In other words see Corollary 1. 

8- Node 
ix  is a brother of node  if node 

ix  and node 
jx  have the same parent. 

9- A partial graph of  is the graph  whose node set is X and edge set is 

V such that the graph  without the edges   

10- Let , a co-edge is another edge . In other words, 

, they are parallel and form a cycle. 

11-  PathSet (PS): PS is the set of 1-paths in a graph  connecting the source s and the 

sink t. 

 

The following Lemma explains how to evolve in a branch. 

  

Lemma 3.1. At any node in the generation tree T, if T, a) contains a vertex v that is marked 

(has been visited), and b) does not have an edge to any children node in X that it is not 

marked, then the branch need not be expanded further and it is needed to backtrack to 

proceed the research from another brother node if it exist. 

 

The proof of this Lemma is trivial because the above paragraph explains the procedure. 

 

Corollary 3.1. ((Berge (1973)) page 35). A graph  has a partial graph that is an 

arborescence if, and only if,  is quasi-strongly connected. 

Property 3.1. A graph  with at least two nodes and an edge, the deletion of the edge 

separates s from t, and thus discard this link from computing the reliability. 

Theorem 3.2. (Let H be a graph of order n > 1.) The following properties are equivalent 

(and each characterizes the arborescence): 
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(1) H is a quasi-strongly connected graph and this property is destroyed if we add to H, 

an arc of G not included in H, thus we create a cycle. 

(2) If each arc of G not included in H can be added to H and creates a cycle, this arc is a 

cocycle and the set of such arcs constitutes a basis of independent cocycles of dimension n-

1. Thus we can create  cycles. 

(3) H is quasi-strongly connected and if we can create  cycles, thus we 

generate  different minimal paths. 

   

Let us demonstrate just a part of this theorem so that (1) => (2) and (2) => (3). 

Proof: 

(1)=> (2), is simple to be demonstrated, it follows theorem 13 ((Berge (1973), page 30)) 

and the above definition 4. From property (1), H is quasi-strongly connected graph and thus 

it is connected and without cycles. Thus H is a tree. Therefore H has   arcs. 

(2)=> (3). If we can create one cycle by connecting any two node of H using an edge of X 

not included in H, then we can travel through H using such edge belonging to a new path. 

Thus if the set of possible created cycles is equal to  then we create  

different paths. 

Theorem 3.3. In a (directed or undirected) graph with n nodes, if there is a 1-path from 

node to node , then the dimension of such path is maximal and equal to n-1, 

thus the path is also minimal and the graph contains only one MPS. 

 

Proof:  if we suppose that the 1-path uses all the nodes of the graph, such that no node 

occurs more than once, it is normal that two nodes are used as terminal ends of an edge and 

for linking three nodes it is needed a sequence of two edges. Recursively we deduce that n-

1 edges are necessary for linking n nodes. Thus the path is maximal. Also, suppose that the 

path is of dimension n-1 and it is not minimal then if we add another edge to the path, then 

necessary such edge will link two nodes of the path which are already linked by an edge. 

Thus we create a cycle and the path loses its properties. We conclude that the path is 

minimal. 
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Theorem 3.4.  In a (directed or undirected) graph with n nodes, if there is at least one 

minimal path (MPS) from node  to node , then the dimension of such path is 

maximal and equal to  where  n-1 edges.  In other words, the maximal 

length of an MPS is equal to n-1. 

Proof : The demonstration of theorem 4 is a consequence of theorem 3, and thus it can be 

deduced easily because if we suppose that the path is of   then it uses  

edges and if we add another edge to such path, either we create a cycle and thus the MPS 

forget its properties or we get another path of dimension , which is not minimal 

because we have linked the terminal node with another node of the graph. 

Theorem 3.5. Given a graph . Suppose that  contains a path such that  = n. The 

following properties are equivalents: 

(1) Path MPS is a branch of  of  dimension q, and by adding a new edge to the 

branch we create a new cycle. Necessary the edge  is a co-edge of the existing one. 

(2) If such cycle exist and is of dimension 2, the deletion of the corresponding co-edge 

of  creates a new MPS, 

(3) The set of all the MPS constitutes an arborescence whose node root is s and the 

leaves are all t. 

Proof:  (1)=>(2). Path MPS is a 1-path and thus it is a branch by definition 7. Its dimension 

is equal to q by theorem 4, so by adding any edge   in  so that 

to link any two successive nodes we create a co-edge and thus a cycle (not a circuit in case 

of directed graph). So, if we delete the edge  from the cycle we create a new MPS exactly 

the same of the first one but with a new edge replacing  Thus we have created a new 

MPS from s to t.  

(2)=>(3). If the deletion of each co-edge create an MPS and thus a branch, thus all the 

branches constitutes the ramifications of a graph tree and thus an arborescence with s as 

root and the occurrence of t are the terminal nodes of the branches which are the leaves. 

(3)=>(1). As each ramification from root s to leave t constitutes a path and by the properties 

of arborescence, each path is a minimal path and thus a branch. 

The following theorems assure that MPSs are unique and the set of MPSs is complete. 
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Theorem 3.6. The algorithm generates the MPSs without repetition. 

Theorem 3.7. The algorithm does not miss any MPS. 

Theorem 3.8. All the generated MPSs form a basis of independent paths, so that each 

element of the vector corresponds to an edge. If the graph is undirected the sign of the 

vector element is not represented and if the graph is directed, the sign must be positive. 

Thus, the demonstration of theorem 3.6 and theorem 3.7 is simple due to the theorems 3.1 

to 3.5 and lemmas 1.  This is explained by the fact that the algorithm constructs the 1-path 

step by step without missing any edge not marked. For theorem 3.8, the MPSs are 

independent because each MPS is different from the immediate past-generated one by at 

least one edge component, and this is recursively unrolled on the successive MPSs, which 

constitutes a basis of independent vectors. 

  

3.4  A PROCEDURE FOR MINIMAL PATHSETS ENUMERATION 

To enumerate MPSs it is important to look over nodes and edges composing a path from 

the source until reaching the sink nodes. There are different ways of doing that. Several 

algorithms, heuristics and metaheuristics have been proposed to determine MPS. One of the 

recent works is due to Yeh (Yeh, (2009)). It is based on a simple Universal Generating 

Function method to search for all MPS in a Network. The algorithm involves simple 

recursive procedure combined with simplification. Another good algorithm is presented by 

Colbourn (1987). The problem of evaluation the network reliability is an NP-hard problem 

and enumerating MPS is also NP-hard (Ball (1980), Ball (1986)).  

In the following we present a fast procedure for deducing minimal pathsets. The kernel of 

the procedure uses a recursive function based on the depth first search algorithm (Tarjan 

(1972)).  

Note : The complexity of the depth first search algorithm is O(|V| + |E|). 

For more precision, minimal paths are generated directly from the graph structure by 

traversing the graph using depth first search algorithm. To perform the research, the 

algorithm uses dynamic data structures for memorizing the intermediary values of three 

stacks. Each execution cycle corresponds to a minimal path. This algorithm is called 
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recursively as many times as there is a possibility to reach the terminal node by a new 

branch. 

Suppose that G is the graph model and s and t are respectively initial and terminal nodes. S 

is a stack data structure used to memorize successive edges forming a minimal path. Note 

that stack S works dependently of two others stacks (they are not appeared in the following 

algorithm).  A stack S1 is used to mark the explored nodes during the research in each 

branch of the graph. The marking of S1 is a function to avoid the redundancy and assures 

the condition so that each path is minimal. Stack S2, contains the MPS and another stack 

called S3, is used to memorise the position of an edge in the successive list of edges. This 

helps to trace the minimal path. For looking for the MPSs in graph branches, the algorithm 

unrolls a tree which has its root in the first edge of the MPS. . 

The algorithm proceeds recursively and always begins using the initial node. The procedure 

explores one of the adjacent edges and continues until the terminal node is found so that 

one MPS has been discovered. Then by backtracking action the last node is used to get onto 

another branch.  

The following pseudo-algorithm gives an overview of the procedure. 

It is clear that a recursive call is present in the body of the main program and inside the 

procedure PathDFS. The calls assure the fact to find a minimal path and then to go back to 

try to find another one. The algorithm stops when the operation of backtracking and 

forwarding didn’t find any edge not marked. 

 

3.5  ALGORITHM  

The algorithm has been programmed in the last versions of MatLab and Java. Note that 

each state is illustrated using the well-known Bridge Network. Table 1, details the 

execution steps of the algorithm and Figure 3.2, shows the minimal pathsets generated by 

the algorithm.  

Note that, the stack S is a generic data structure which replaces the stack S1, S2 and S3.  

The following pseudo-Algorithm formally presents the MPS generator and illustrates it 

with two examples. The first one with precision and the second gives all-MPS. The 
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program generates each MPS exactly once, without missing any MPS, and without 

duplication.  

 

Algorithm stack S = pathDFS(G, v, z)   

    setLabel(v, VISITED)    

    S.push(v)                       

    if   v = z   

      return S.elements()  

    for all e in G.incidentEdges(v)  

      if getLabel(e) = UNVISITED 

            w ← opposite(v,e)  

      if getLabel(w) = UNVISITED 

           S.push(e) 

           pathDFS(G, w, z) 

           S.pop(e)   

      else 

       S.pop(v) 

end 

 

Program Main() 

      Input: A connected graph with node set, edge set, a  source node, and a sink 

node . 

 

  Declaring dynamics vectors and stacks (put in them zeros) 

  Declaring initial and terminal nodes (v, z) 

   Do While .true. 

     pathDFS(G, v, z) 

  if ―the last minimal path have been encountered‖ 

     return .false. 

   enddo 

Output: All MPS in the graph.    

 

 

3.6  DETAILED DESCRIPTION OF THE ALGORITHM 

Based on the discussions presented in section II and  the present section in accordance of 

the above pseudo-algorithm and theorem 8 which insures the construction of the MPSs, 

such that no duplicate MPS is generated and all the MPSs are minimal, we propose the 

following heuristic algorithm. The heuristic gives more details than those presented in the 

above pseudo-algorithm. 
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1. Assign node numbers sequentially from 1 (source node) to N the sink node (e.g. bridge 

network: node 1:  1, node 2:  2, node 3:  3 and node 4:  4). 

2. Create automatically the adjacency matrix representation of the network (Figure 3.1 

(b)), and a dynamic empty pathsets matrix so that its dimension is null.  

3. Start from the initial node 1 (mark it using stack S1) and generate the next nodes call 

them Next (Next = children(node 1)). Note that Next is a dynamic vector and its size is 

the number of children. At the beginning it is a null vector. 

4. Check if the encountered node is different from the sink node. If so, check if all the 

elements of S1 have been marked. If so, go to 8, otherwise go to 5. 

5. For each element of the vector check if the node has been marked, if it is so, go to 6, 

otherwise mark it  and put the edge (node parent-node children) in the stack S2 and 

mark the position of the relative edge in the stack S3 and go to 7. 

6. If the element has been marked, backtrack to return to another brother node. If it exists 

go to 5, otherwise go to 4. 

7. Go forwarding until the sink node has been encountered. If so, copy S2 in the pathsets 

matrix, backtrack and go to 5. 

8. Print the pathsets matrix and Stop.  

 

Note that the application of the algorithm using Bridge network (Figure 3.1) is illustrated in 

Table 3.1 as explained in the following illustration. 

. 

3.6.1  Illustration Step-by-Step Example 

Consider a 4-node, 5-edges bridge network with its adjacent matrix enumerated by the 

order of edges taken from 1 to 5 (Figure 3.1 (b)) (step 2). Note that we have numbered 1 the 

source node and 4 the sink node (step 1). 

Step 3. Mark the node 1, so the S1(1) = 1, go to  step 4. 

Step 4. Node 1  Node 4 go to step 5. 

Step 5. Determine children(node 1): children(1) = {2,3}. Node 2 is the first node and it is 

not marked because S1(2)  1. Then, we mark Node 2, and S2(1) = 1 (edge between node 1 

and node 2) and the position of edge 1 in the stack S3 is marked (S3(1) = 1). Go to step 7. 
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Step 6 and Step 7. We determine the children of node 2 etc. We continue alternating steps 

4, 5 and 6 until the sink node is encountered. If so backtrack (see figure 3.1 (a), then (b) and 

(c)).  

Step 8. Print MPS matrix and STOP. 

 

The results of the above illustration are detailed in table 3.1. We can see that at the 

beginning, the stacks are empty and their dimensions are null. They receive at each step of 

the algorithm certain value numbered by 1 if a new node is added to the path. A position in 

stack S2 corresponds to the encountered edge where all the edges of a path are represented.  

Stack S3 is an indicator of the edge position. When a MPS is built and the terminal node is 

compared, the algorithm decrements the last position of the stack and continues to do so 

until a non marked edge is found. Then a new MPS is generated and followed by a third 

one.  

 

3.6.2  Example 3.1: 

 

 

 
 

                  (a) 

 

Nodes 1   2   3   4 

 

1 

2 

3 

4 

 

0   1   2   0  

0   0   3   4 

0   0   0   5 

0   0   0   0 

                 (b)    

 

Figure 3.1. Bridge network (a) and its relative adjacency matrix 

 

 

 

 

 

 

Table 3.1. Minimal paths set enumeration of the bridge network  

 

Operations   Stack S1 Stack S2 Stack S3 

 Nodes  i Edges  j Edge position 
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Top(push(i,s)) = i 1            0      

Top(push(i,s)) = i 1     1                    1     -     1     -     - 

Top(push(i,s)) = i 1     1     1                     1     -     1     -     1 

    

Remove(i, s) = s 1     1                     - 1     -     1     -     - 

Remove(i, s) = s 1      - 1     -     -      -     - 

Top(push(i,s)) = i 1     1                1     -     -     1      - 

Remove(i, s) = s 1                - 1     -     -     -      -     

Remove(i, s) = s - - -      -     -     -      - 

Top(push(i,s)) = i 1       -     1     -     -      - 

Top(push(i,s)) = i 1     -      1        

Remove(i, s) = s             -     1     -     -     1 

Remove(i, s) = s 1     -     1           - -     1     -     -      - 

Isempty(s) = true 

Stop. 

 - -     -      -     -      - 

 

 

The minimal pathsets are : 

  

MPS = { }; { }; { }}. 

 

The structure function of the network is: 

 

   

 

which corresponds to a new representation of the network where the MPSs are considered 

in parallel. Thus, the reliability of the network is equal to the mathematical expectation of 

the structure function . It is computed after using Boolean simplification rules: 

 = .  

and if  (the individual reliabilities corresponding to each edge), then  

. 
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Figure 3.2. (a) The bridge network. (b) the 1
st
 first MPS. (c) the 2

nd
 MPS and (d) the 3

rd
 

MPS. 

 

3.6.3. Example 3.2:  

 

a. Directed graph 

 
Figure 3.3.  A 6-node, 9-link example network (directed) 

 

# Minimal Pathset 

1 1, 3, 5, 7, 9 

2 1, 3, 5, 8 

3 1, 3, 6, 9 

4 1, 4, 7, 9 

5 1, 4, 8 

6 2, 5, 7, 9 

7 2, 5, 8 

8 2, 6, 9 

 

b. Undirected graph 

 

 

 

 

 

 

 

Figure 3.4.  A 6-node, 9-link example network (undirected) 

 

 

Table 3.2.  Adjacent matrix of the network in Figure 3.4. 

 

 

 

nodes 1 2 3 4 5 6 

 1  1 2    

 2 3  4 5   

G = 3 6 7  8 9  

1 

3 5 

4 2 

6 
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 4  10 11  12 13 

 5   14 15  16 

 6    17 18  

 

All the MPSs generated from the network in Figure 3.4 are: 

 

# Minimal Pathset 

1 1,  4,  8,  12,  16 

2 1,  4,  8, 13 

3 1, 4,  9, 15, 13 

4 1, 4, 9, 16 

5 1, 5, 11, 9, 16 

6 1, 5, 12, 16 

7 1, 5, 13 

8 2, 7, 5, 12, 16 

9 2, 7, 5, 13 

10 2, 8, 12, 16 

11 2, 8, 13 

12 2, 9, 15,13 

13 2, 9, 16 

 

3.7   EXPERIMENTAL EXAMPLES 

The examples are all taken from the literature. We have compiled examples which have 

been used as benchmarks for demonstrating the implementation of our algorithm. The run 

times shown in the examples are determined by the execution of the algorithm. For our 

results the host computer was a simple laptop personal microcomputer and the 

implementation was compiled by Java 1.6.1 and MatLab 2009. 

The times required for the execution of the algorithm using the benchmark of the figure 3.5 

are presented in table 3.3. This table gives the number of MPS and the corresponding 

execution time. We can notice that the time is in seconds and so it is the smallest amount by 

comparison with those found in the literature. We have used some others networks with 

density variants. The results are shown in figure 6 and figure 7. Figure 9 represents the 

execution time per one path for a complete graph of dimension 10 nodes with a variation of 

density equal to [0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9. 1]. We can notice that despite the number 

of MPS which grows exponentially, the time per one path falls to a small value. Note that 

all the times values are in seconds/1000 and are the effective execution times and do not 
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include the time required to perform I/O operations. Our program solves the 2-terminal 

minimal pathset enumeration problem and thus it can be used as input procedure for 

evaluating networks reliability. The program can also be extended to be used for the case of 

K-terminal networks. So the implementation uses dynamic data structures such that each 

effective representation is performed by dynamic lists and queues structures. So at each 

time of the execution processing, the system keeps only one cell to represent physically any 

element used to memorize or to compute a part of the calculus. However, it is preferable to 

use a computer system with a processor and a memory manager that runs under 64-bit.  

 

 

 
Figure 3.5. Benchmark Networks 

 

 

 

 

 

 

Table 3.3. Detailed experimental results. 

Graph # Nodes # Edges/Arcs # MPS Time (sec) 

a 17 23/46 136 0.106287 

b 16 30 36 0.043412 

c 13 30/60 3972 1.577472 

d 20 29/58  432 0.274192 

e 20 29/58 516 0,265083 
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f 16 24/48 184 0.209079 

g 8 13/26 29 0,033207 

h 8 12/24 24 0.021653 

i 14 36/72 42036 248.21824 

 

 

 
 

Figure 3.6. Exponential growth nature of MPS enumeration. 

 

 

 
 

Figure 3.7. Exponential growth nature of MPS enumeration. 
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Figure 3.8. A complete network with # of nodes equal to 10. 

 
Figure 3.9.  Time per 1-path for the graph of figure 3.8. 

 

3.8  Conclusion 

In this paper, we have proposed a depth first search-based algorithm to enumerate all 

minimal pathsets of a network. The program can be used as an input to some tools provided 

for network reliability measures. The research considers the source-sink problem and can 

be extended to solve all-reliability and K-reliability cases. The algorithm is finite and the 

execution time for enumerating MPS of all the networks is very small comparing to some 

implementations published in the literature. The testing networks are not elementary 
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because the edges are replaced by double arcs which generate a large number of paths. 

According to the properties of the depth first search we can demonstrate that all the MPS 

are independents and didn’t contain redundant subsections so that to ensure that the MPS 

are minimal. The comparison with others techniques and others benchmarks gives us an 

advantage due to the time and space consuming computer capacities.  It can be noted from 

figure 3.9 that the algorithm is robust because computing time by 1-path for dense networks 

approaches the value zero despite the generated minimal paths number which increases 

rapidly.       

.  
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Chapter 4 

 

Algorithms for Generating Minimal Cutsets from Binary 

Decision Diagrams 
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4.1   ABSTRACT 

 

Network reliability is an important factor which must be evaluated in the design and 

operation of systems life cycle. This paper presents an efficient method for enumerating 

minimal cuts of networks. The algorithm proceeds by determining minimal paths set using 

a fast DFS algorithm and generating minimal cuts set by manipulating binary decision 

diagrams data structure. The manipulation process consists of a series of transformations, 

reductions and filtering actions. The correctness of the proposed algorithm is intuitive and 

easy to be proven. Illustrated examples are proposed to show how to enumerate the network 

minimal cuts set using the proposed algorithm and an implementation is experienced using 

a benchmark of many networks.  

 

NOTATION 

 

 Graph network 

 Set of nodes in  

 Set of edges in  

 Number of nodes in  ( ) 

 Number of edges in  ( ) 

 Logical-exclusive or 

 Individual edges (Boolean variable) in  

 Initial and terminal nodes in  

 Boolean formulas 

 Complement of  

 Complement of the variable  (Boolean)                                  

 

 

ACRONYM 

 

 

 =  

 =  

PS Paths set 

CS Cuts set 

BDD Binary decision diagram  

OBDD Ordered BDD 

ROBDD Reduced OBDD 

RBD Reliability block diagram 

DFS Depth first search algorithm. 

 Boolean expression (function) 

 



85 

 

 

 

NOMENCLATURE 

 

 Functioning probability of an individual item i (e.g. : a component) 

 Reliability of an item i is the probability of such item to perform its 

intended function in a specified interval of time . 

 Reliability of a system or a network represented by a graph . 

2-terminal 

reliability 

Reliability that 2 nodes can communicate. 

 Graphical representation of the functioning of a system  and its 

components 

MPS A path P is minimal (MP) if it has no proper sub-paths. MPS is the set of 

all MP in a graph.  

MCS A cut C is a set of edges such that their removal leads the network to fail. 

A cuts C set is minimal (MC)if no proper cut exists. A MCS is the set of 

all MC in a graph. 

 

DEFINITIONS 

 

Shannon 

decomposition 
 

BDD A BDD is a directed acyclic graph 

based on Shannon decomposition 

  

 

4.2 INTRODUCTION 

Techniques relative to networks reliability evaluation have been discussed in many 

publications research and concern a large number of physical systems such as electric 

power systems, telecommunication networks, traffic and transportation systems, just to 

name a few (Abraham (1979), Dotson and Gobien (1979), Jasmon and Kai (1985), 

Heidtmann (1991), Locks and Wilson (1992)). Generally, reliability engineers model the 

functioning and the physical connectivity of system components by a network. 

Mathematically, a network is a graph  in which the edges  represent the 

components (e.g. devices, computers, routers, etc.) and the nodes  represent the 

interconnections. Another representation called RBD is used in theory and has been 

implemented in some commercial reliability tools in which the components are the nodes 

and the links are the edges (Figure 4.1 (a)).  

Network reliability analysis problem has been the center of many scientific productions. It 

consists of evaluating the 2-terminal reliability of networks (K and all-terminal) (Hardy et 
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al. (2007), Wood (1986)). General theory, has discussed extensively two techniques; exact 

(Kuo et al. (2007)) and approximate methods (Lomonosov (1994)). The exact methods 

employ the concept of MPS/MCS (Yan et al., (1994), Hariri and Raghavendra (1987)). 

Determining MCS is essential not only to evaluate the reliability indices but also to 

investigate the different scenarios to find for instance the redundant components which 

could be replaced to improve the load point reliability. Enumerating all MCS may be a 

preferable way if the number of paths is too huge to be practically enumerated than the 

number of cuts. Examples of this kind of preferences is the 2x100 lattice which has 2
99  

paths and just 10000 cuts (Lin et al (2003)), and complete network with 10 nodes from 

which it can be generated 109601 minimal paths and 256 cuts. In existing algorithms (Yeh 

(2007)), minimal paths are deduced from the graph using simple and systematic recursive 

algorithms that guarantee the generated paths set to be minimal. The enumeration of MCS 

is more problematic because they need advanced mathematics, set theory and matrices 

manipulation. Many algorithms have been published in the literature. Some of them are 

implemented in commercial tools. Enumeration appears to be the most computationally 

efficient. An initiative of solution has been proposed in (Locks (1978)). In this paper Locks 

presented a method for generating MPS directly from MCS, or vice-versa, for s-coherent 

systems (Barlow and Proschan (1969)). It starts with the inversion of the reliability 

expression accomplished by a recursive method combining a 2-step application of De-

Morgan's theorems. Yan et al. (1994) presented a recursive labelling algorithm for 

determining all MCS in a directed network, using an approach adapted from dynamic 

programming algorithms. The algorithm produces all MCS, and uses comparison logic to 

eliminate any redundant cutsets. This algorithm is an enumeration technique derived from 

the approach of Jensen & Bellmore (1969) and follows an extension of Tsukiyama et. al to 

improve the computational efficiency and space requirements of the algorithm. Jasmon and 

Kai (1985) use an algorithm which proceeds by deducting first, the link cutsets from node 

cutsets and, second the basic minimal paths using network decomposition. So, in addition 

to the enumeration of cutsets directly, it is possible to obtain them from the inversion of 

minimal paths (Locks (1978), Shier and Whited (1985)). In such topic, one of the best 

algorithm is due to Al-Ghanim (Al-Ghanim (1999)) which is based on a heuristic 

programming algorithm to generate all MPS and Cutsets. The algorithm proceeds by 
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creating a path, then iterates back from an explored node in the current path using 

unexplored nodes until the source node is reached. Recently, Yeh (Yeh (2007)) presents a 

simple algorithm for finding all MPS between the source and the sink nodes. It is based on 

the universal generating function and from which it can be possible to generate MCS. More 

recently, Rebaiaia and Ait-Kadi (2010), propose an elegant and fast algorithm to enumerate 

MPS using a modified DFS technique (Tarjan (1992)). The procedure uses each discovered 

path to generate new MPS from sub-paths. The above procedure is repeated until all MP 

are found. The algorithm didn’t at all produce any redundant MPS. More, they extended 

their work with theoretical proofs and the usage of sophisticated techniques for dynamic 

data structures manipulation of complex networks.  

This paper presents an efficient technique for determining all MCS of a given directed or 

undirected graph network using an approach based on BDD’s representation. The algorithm 

proceeds in two stages. First action consists of determining MPS using a fast DFS 

algorithm. The second action consists of obtaining MCS by manipulating the ROBDD of 

the MPS. The manipulation process consists of a series of transformations, reductions and 

filtering actions. 

The paper is structured as follows. Section 2 presents some related preliminaries. Section 3 

details the principle of BDD manipulations. Section 4 and section 5 give the algorithm and 

its computational efficiency illustrated using some benchmark networks. The paper 

concludes the presentation in section 6. 

4.3  PRELIMINARIES 

Consider a system consisting of m components numbered from 1 to m. Each of these 

components may be in functioning or failed. Let  be the state component and  the state 

vector, they can be defined as follows : 

 

•  
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•  state vector of the system S of order m such that 

 the state space of the system; 

 

The system is then represented by its structure function   

  

 

 

Systems for which  is a non-decreasing function are called coherent systems [25]. 

 

Definition 1.  If a system contains P MPS  and C MCS   its 

structure function can be represented by : 

 

 

 

The reliability R of a system is computed using the following relation : 

 

Consider   the mathematical expectation, then :  

 

 

and 

 

   

  

 

After enumerating the MPS/MCS, the reliability evaluation needs the development of the 

symbolic expression in terms of the probability of the various components being 

operational/non operational. If the MPS/MCS are mutually exclusive, the probability of the 

union of m events (corresponding to components state; working/failed) can be written if 
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MPS = { } and MCS = {  where   represents the event ―the 

components of the  j
ith

 minimal cut are not functioning‖, thus  

 

 

 

 

Note that, the last expression is easier to evaluate since it involves a sum of products. 

Therefore the reliability evaluation is easier if we manage to express the MPS/MCS in a 

disjunctive form. Knowledge of MPS or MCS allows determining the structure function of 

any coherent system equivalent to that of the original system, such that the configuration is 

strictly series or parallel. 

For the case of complex system  are not necessary to be expressed in 

disjunctive form. They can be transformed using the following relation : 

 

 

 

4.3.1  Illustrative example 

 

Consider a directed bridge network represented in Figure 4.1 (b). The MPS and MCS are : 

 

MPS : {P1 = {x1, x4}; P2 = {x2, x5} and P3 = {x1, x3, x5}}. 

MCS: {C1 = {x1, x2}; et C2 = {x1, x5}; C3 = {x4, x5};  and C4 = {x2, x3, x4}}. 

 

The structure function of the system is equivalent to the series-parallel graph (Figure 4.1 

(c)). It can be written as follows : 

 

- Case MPS (Figure 4.1.c): 

         

 

and the reliability is : 
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- Case MCS (Figure 4.1. D): 

 

 

 

 

 

 
 

 

 

 

Figure 4.1. a) System structure  b) Reliability network c) Reliability structure based on (a): 

MPS.  d) Reliability structure based on (a): MCS. 

 

4.4  BINARY DECISION DIAGRAMS SIMPLIFICATION APPROACH 

Boolean algebra reduction is not sufficient when the structure function is complex. Many 

techniques have been found since the sixties but also they still not adequate for simplifying 

the combination of MPS/MSC equations. Solution of such problem has been solved 
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partially by discovering new representations of Boolean relations based on the theorem of 

Shannon. Bryant (1986) was the first to use the work of Akers (Akers, 1978) on the use of 

binary decision diagrams for symbolic verification of integrated circuits. The 

implementation and manipulation of BDD algorithms is composed by three procedures, 

restrict, apply and ite. They have been first investigated and implemented by Bryant 

(Bryant, 1986), (Bryant, 1992). The problem with BDD representation despite their 

effectiveness is that, their exponential growing size due to a wrong order declaration 

between variables. Ruddell (Rudell, 1993) first used an algorithm based on dynamic 

programming techniques to reduce the size of the BDD and Bollig et al. (1996), 

demonstrate that improving the Variable Ordering of OBDD is NP-Complete. BDD 

principle has been used in many fields for simplifying Boolean expression like electronic 

circuits design, formal methods for model-checking. Coudert and Madre  (1992) and Rauzy 

(1993) applied first, BDDs for evaluating networks reliability.  

The representation and the simplification of a Boolean expression proceeds in 4-steps: 

- Construct the binary decision tree (BDT) associated with the graph formula. 

- Transform the BDT to a BDD by applying the following rules (see Figure 4.2) by : 

a- Merging equivalent leaves of a binary decision tree. 

b- Merging isomorphic nodes.  

c- Elimination of redundant tests 

- Transform the BDD to OBDD by just a wise choice on variables (see Fgure 4.2 for an 

example of a good decision). 

 
 
 

 
 

 

 

 

 

 

        

 

Figure 4.2. Two ordering of the same expression 

 

 

 

http://dx.doi.org/10.1109/12.537122
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- OBDD can be reduced to a ROBDD by repeatedly eliminating in a bottom-up fashion, 

any instances of duplicate and redundant nodes. If two nodes are duplicates, one of them is 

removed and all of its incoming pointers are redirected to its duplicate. If a node is 

redundant, it is removed and all incoming pointers are redirected to its just one child (see 

figure 4.3).  

       

 

    

 

 

 

 

 

                                                Figure 4.3. BDD reduction steps 

To overcome this deficiency, Bryant (1986) suggested a new way to represent the 

decomposition procedure of Shannon (Lee , 1959), called ite  for (If _ Then _ Else), which 

in turn is expressed by 

 

; with  and . 

 

ite procedure receives OBDDs for two Boolean formulas and  for  such as 

every Boolean expression could be written using the ite function and 

. Figure 4.4, show some elementary formulas with their 

corresponding ite expressions. The ite algorithm maintains a computed table (Figure 4.4. 

(left)), which memorize the intermediary calculus to avoid determining the same expression 

repeatedly and a unique table (Figure 4.4 (right)). The unique table is a dynamic matrix 

which assigns a line to represent a node and the columns represent the node identifier, the 

name of the associated variable, left son identifier and right son identifier. 
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 Boolean formulas Ite form 

0 0 

1 1 

  
  

  

  
  

  

  
  

  

  
 

 0 - 
 

 1   

               2 a 3 4 

               3 b 5 6 

               4 b 7 8 

               5 c 0 0 

               6 c 0 1 

               7 c 1 0 

               8 c 0 1 
 

 

Figure 4.4. Left: Table of the simplified Boolean functions presented as an ite relation.      

Right : Representation of BDD in computer. 

 

The following pseudo-code gives the ite function. 

 
Function  

    if  = 0 then 

         Return ; 

    else if  = 1 then 

              Return ; 

          else if (  = 1) ∧ (  = 0) then 

              Return ; 

               else if  =  then 

                  Return ; 

                     else if ∃ computed-table entry ( , , ,H) then 

                        Return H; 

                            end if 

                      xk ←top variable of , , ; 

                      H ← new non-terminal node with label xk; 

                    then H ←  (  |xk=1,  |xk=1,  |xk=1); 

                       else H ←  (  |xk=0,  |xk=0,  |xk=0); 

          Reduce  H; 

  Add entry ( , , ,H) to computed-table; 

          Return  H; 

  end. 

 

Figure 4.5. ITE algorithm 

 

APPLY procedure is an efficient tool to combine functions using binary operators like the 

conjunction and disjunction Boolean operators. It is the major core of our algorithm. It can 

also be used to complement a function; it suffices in such case to complementing the values 

of terminal vertices.  
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According to Bryant, the APPLY procedure takes graphs representing functions f1 and f2, a 

binary operator (say OP) and produces a reduced graph representing the function 

.  It proceeds as follows:  

Consider graph trees of two functions f1 and f2 (e.g.  f1 = ac and f2 = bc (see figure 6)), and 

suppose that v1 and v2 are respectively their roots. The Apply algorithm composes two 

Boolean formulas as follows : 

 

Procedure Apply( ) 

If both v1 and v2 are terminal vertices, then the resulted graph consists of a terminal vertex having  value (v1) 

<op> value (v2);  else  If v1 or v2 non terminal vertex, then 

      if index (v1) = index (v2) = i 

           create a vertex u having index i 

           apply the algorithm recursively on low (v1) and low (v2) then  

           generate the subgraph whose root becomes low (u),  

           apply the algorithm recursively on high (v1) and high (v2)  

           generate the subgraph whose root becomes high (u) 

else  

If index (v1) = i, then 

     if v2 is a terminal vertex or index (v2) > i then  

     create a vertex u having index i,  

     apply the algorithm recursively on low (v1) and v2  

     generate the subgraph whose root becomes low (u) 

     apply the algorithm recursively on high (v1) and v2  

     generate the subgraph whose root becomes high (u).  

end_procedure 

Figure 4.6. Apply procedure for composing two formulas. 
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Figure 4.7. Composition Example. 

4.5  GENERATION OF ROBDD FROM MPS 

 

Consider the bridge graph (figure 4.1 (a)) and its generated minimal paths such as: 

 

MPS : {P1 = {x1, x4}; P2 = {x2, x5}; P3 = {x1, x3, x5}}. 

We use the procedure Apply for composing the above three minimal paths. Thus, the 

algorithm proceeds as follows: 

 

Algorithm Compose (MPS, matrice_container) 

 Construct the BDD of MP P1  (Figure 4.9 (a)). 

1- Construct the BDD of MP P2  (Figure 4.9 (b)). 

2- Compose the BDD of MP P1 and the BDD of MP P2 (Apply procedure). Let P such 

BDD. 

3- Construct the BDD of MP P3  (Figure 4.9 (d)). 

4- Compose the BDD of MP P and the BDD of MP P3. Let PP such BDD (Apply 

procedure). 

5- Recover the structure information’s of the BDD resultant and put it in matrix 

container (Figure 4.9 (b)). 

6- end_procedure 

Figure 4.8. Algorithm Compose 

 

The following graphs give the composition based-BDD of bridge network MPS.  

        

 
Figure 4.9.  Application of the composition procedure (Apply) using MPS of bridge 

Network 
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Figure 4,10. (a) : ROBDD network of figure 1.(a) and (b) : its representation code in 

memory similar to table in figure 5 (right). 

 

4.6  GENERATION OF MCS FROM MPS ROBDD 

As described by Locks (Locks, 1978) and, Shier and Whited (1985), an inverse polynomial 

to the path polynomial can be obtained by complementing the given polynomial and using 

DeMorgen’s laws. The complementation of the above MPS for the bridge network (Figure 

4.1 (a)) results in : 

 

 

 

If we transpose the idea of generating MCS by inversion as introduced by Locks (1978) but 

not directly on Boolean formulas polynomial, we can use the model generated by the 

graphical representation of BDD (e.g. Figure 4.8. (a)) instead of working directly on 

formulas manipulation.  

The new idea is explained first using the bridge network to show how one can generate 

minimal cuts by just using a DFS procedure (Tarjan, 1972)), which visits BDD graph nodes 

representing the Boolean decision variables and edges.   

Consider the bridge network given in Figure 4.1. (a), its corresponding ROBDD 

constructed from the MPS is shown in Figure 4.8. (a). The cuts set are found from branches 

on this tree by tracing in a reverse sense from button to top that is to say from square      
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node 0 to the variable on the root. The second phase proceeds by removing from the 

branches cuts. In the third phase, the algorithm deletes all redundant cuts to build the MCS. 

The procedure to deduce the MCS is a depth first search algorithm. It works on the graph 

using data information’s taken from matrix of the Figure 4.8. (b). Il can be presented as 

follows: 

Procedure Generation_of  MCS 

- Place the squared node on top of a stack 1  //* records DFS visits to ROBDD nodes 

*//. 

- Place the squared node on top of a stack 2  //* records cut’s nodes. 

- Place on the top of the stack 1 all the ascending nodes of the top variable in the 

stack. 

- Place the node top of the stack 1 on top of the stack 2, if the edge (link) is dotted. 

- Continue until the variable reach the root node. 

- If so, a cut has been found. Write the content of the stack 2 as a line of a matrix. 

Remove top variable from stack 1 and from stack 2. 

- Continue the procedure until stack 1 is empty. 

- Apply the filtering process by removing all the redundant paths (cuts) using the 

matrix of paths (cuts) 

- Display MSC Matrix. 

end_procedure 

Figure 4.11. Procedure to generate MCS 

 The filtering procedure removes redundant cuts from the set of all the cuts. It proceeds as 

follows: 

1- Sort the matrix CS in an ascending order according to the size of each vector 

(number of variables); 

2- Take the first vector and compare it with each of the others vectors; 

3- If the members of the intersection are equal to the first vector then remove the actual 

vector from CS matrix; 

4- Iterate using the others vectors of the matrix.  

 



98 

 

 

The following pseudo-description shows the processing of the filtering procedure as 

explained bellow: 

 

Procedure filtering(CS, MCS) 

    n = length(CS); /* size of matrix vector */ 

    m = size(CS);  /* size of matrix vector 

   for i = 1,m-1 

       v(k) = CS(i,k) (k=1,...,n)(CS(i,k) 0) 

      for j = i+1,m 

          w(k) = v(k)  CS(j,k) (k=1,...,n)(CS(i,k) 0) 

          if w(k) = v(k) (CS(j,k) is a redundant vector) 

             remove vector  CS(j,k); 

         end_if 

     end_for 

 end_for 

    MPS = CS 

    display MPS   

end_procedure  

Figure 4.12. Filtering algorithm for MCS generation 

6.6.1 Illustrative example. (ROBDD of the bridge network MPS) 

Consider the graph illustrated in figure 4.10.(a). 

Let’s start the search from the leaf squared with the value 0. We’ll go from node to node 

via dotted edge (value of the immediate node variable = 0).  If we take any branch from the 

leaf-0 to the root node, we construct a path with the concatenation of the variables on the 

nodes. Thus, all the branches will generate all cuts set CS. We remark that cuts and paths 

are complementary. Table 4.1 shows the results when applying the procedure 

Generation_of  MCS. Note that the intermediary results on the stack have been omitted 

from their presentation in the following tables. 
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Table 4.1. Deduction of all paths from graph in Figure 4.7. 

 

Cuts Branches All   CS 

1
st
   leaf 0- dotted edge - x2- dotted edge – x1 (stop). x1, x2 

2
nd

  leaf 0- dotted edge -x4- dotted edge-x3-dotted edge-x2- solid edge x1 

(stop). 

x2, x3, x4 

3
nd

  leaf 0- dotted edge -x5- solid edge-x2- dotted edge-x1 (stop). x1, x5 

4
nd

  leaf 0- dotted edge -x5- dotted edge-x4- solid edge-x3-dotted edge-x2- 

solid edge x1 (stop) 

x2, x4, x5 

5
nd

  leaf 0- dotted edge -x5- dotted edge-x4- solid edge-x2-solid edge- x1 

(stop). 

x4, x5 

 

The filtering procedure is explained using the results of table 4.1. The procedure compares 

the MCS vectors and removes those who contain duplicated variable as shown in table 4.2 

(dashed variable are redundant variable). Vector which contains redundant variables is 

removed from the MCS list (set).  

Table 4.2. All CS and MCS after filtering 

All CS All CS sorted Not minimal MCS 

x1, x2 x1, x2  x1, x2 

x2, x3, x4 x1, x5  x1, x5 

x1, x5 x4, x5  x4, x5 

x2, x4, x5 x2, x3, x4  x2, x3, x4 

x4, x5 x2, x4, x5 x2, x4, x5  

 

6.7   EXPERIMENTAL RESULTS 

The proposed algorithms and procedures have been implemented in MatLab 8 and Java Jdk 

1.6. A communicating interface has been written to render easy data and results transfer 

between MatLab system and Java packages running under jGrasp a graphical tool written in 

Java JDK. The operating system is 32 bits and 2038 MO of Windows Vista of Microsoft. 

The machine is an HP notebook PC with an Intel(R) core (TM) 2 Duo processor of 1.67. 

The benchmark networks in figure 9 were used and the results are shown in table 4. All the 

networks are 2-terminal and they have been used in different publication papers. We can 

remark from table 4, that the value of execution time is interesting despite the fact that the 
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performance of the machine characteristics is not high. The importance of this work shows 

the efficiency of the algorithms. Note that no comparison was made with another 

implementation but they can be compared for example with the results of Lin et al. (2003). 

It is certain that if the CPU was more powerful and memory space was wider one can easily 

handle more complex networks. 

 

A 

 

B 

 

                     
C 

                                  
D E F 

G 
H I 

 
J 

                      
K L 

M  
N                                           O 

   
P Q 

 

 

Figure 4.13. Benchmark networks 

 

Table 4.3. Benchmark results for 2-terminal networks 

 
Networks MPS MCS Time(s) 

A 8 12 0.075591 

B 18 110 0.282727 

C 115 85 313.17 

D 33 72 11.29 

E 35 3 0.046 

F 114 562 21236.06 

G 10 959 818.80 

H 29 29 0.708676 

I 25 20 0.332611 

J 13 21 4.059842 

K 44 528 2572.03   

L 6 23 0.226500 

M 36 96 11.166 

N 100 16 8.3297 

O 98 105 283.38 

P 5 16 0.768533 
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Q 13 9 0.945836 
 

 

 

6.8  CONCLUSION 

Enumerating minimal cut sets constitutes an important element for evaluating the load 

point reliability indices but also it is used to investigate solutions for optimizing networks 

performance based on indications showing the components which can be improved by 

redundancy for augmenting the network reliability. 

This paper introduces a simple approach based on binary decision diagrams representation 

and Booleans simplification. The paper shows by the application of a series of algorithms 

and procedures all the phases of transformation to get at the end a Matrix representing 

minimal cut set. The method is similar to those of Locks technique but its efficiency is that 

it works on large networks.  
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5.1  ABSTRACT 
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The reliability of networks is defined as the probability that a network will perform its 

intended function without failure over a given period of time. Computing the reliability of 

networks is an NP-hard problem, which need efficient techniques to be evaluated. This 

paper presents a network reliability evaluation algorithm using Binary Decision Diagrams 

(BDD). The solution considers the 2-terminal reliability measure and proceeds first by 

enumerating the minimal paths set using a recursive depth first search procedure from 

which a BDD is obtained. The algorithm has been implemented on a Personnel computer 

and didn’t require large memory size and time requirement for average size graphs. 

 

5.2  INTRODUCTION 

A probabilistic graph  is a finite set V of nodes and a finite set E of incidence relations on 

the nodes called edges. The edges are considered as transferring a commodity between nodes with a 

probability  called reliability. They may be directed or undirected and are weighted by their 

existence probabilities. The graph in such case, models a physical network, which represents a 

linked set of components giving services. The reliability of networks is defined as the probability 

that systems (networks) will perform their intended functions without failure over a given period of 

time. Figure 5.1 shows an example of an undirected graph.  

 

Figure 5.1. A probabilistic weighted graph with six nodes (1, 2, 3, 4, 5 and 6) and nine 

undirected edges (a, b,...,i).  

 

This chapter presents an algorithm for determining the reliability of a given network  

when one node is identified as the source user s and another as the terminal user t. The 

terminal reliability , is defined as the probability that at least one path will exist from s 

to l.  
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Techniques for determining the reliability of networks are classified as enumerative 

techniques, inclusion/ exclusion, and SDP for sum of disjoints products (Locks  et al. 

(1992)), and those based on the well-known network decomposition (Dotson et al. (1979), 

Theologou et al.(1991), and Wood (1986). Others techniques like simulation for example 

are considered as approximate methods (Fishman (1986)). In the former techniques, the 

problem consists of determining minimal paths (respectively Cuts) between s and t given 

the probability of success for each communication link (edge) in the network. By 

definition, a MPS (resp. MCS) is a path (respectively a cut) from which it is impossible to 

extract another path (respectively a Cut). Figure 2 shows MPS and MCS and the relative 

matrices of a directed graph.  

 

 

; 

 

 

Figure 5.2. Network with its 3 MPS (right) and 4 MCS (down at left). 

 

The concept of using minimal paths set (MPS) and minimal cuts set (MCS) to analyze 

probabilistic graphs appears to have been first explored by several authors (Abraham 

(1979), Jasmon et al (1985), Locks (1992)). Many algorithms have been proposed to 
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generate MPS/MCS for directed or undirected graphs. Some of the algorithms need special 

data preparations and require advanced mathematics (Yan et al. (1994)). In Shier et al. 

(1985), Locks proposed a simple method to generate MCS directly by inverting MPS. Such 

solution has been soon discarded because it may be impractical for generating MCS in the 

presence of large network. Hariri et al. (1987) give a simple and efficient algorithm, 

SYREL, to obtain compact terminal reliability expressions. This algorithm incorporates 

conditional probability, set theory, and Boolean algebra. As the evaluation of the reliability 

is an NP-hard problem, so approximation becomes a good solution for large systems. 

Another approach uses BDDs (binary Decision Diagrams) Bryant (1986) and Bryant 

(1992). Because BDDs and reliability factoring representation are formalized from the 

well-known Shannon decomposition theorem, they are more convenient to derive an 

algorithm to compute the reliability especially for networks with topologies that contains 

isomorphic subgraphs. Their application in the reliability analysis framework has been 

introduced by Coudert (1992) and extended to fault trees by Rauzy (1992). Recently, many 

papers published in reliability literature propose new algorithms based on Reduced ordered 

BDD (ROBDD). Hardy et al. (2007) and Lin et al. use ROBDD to derive interesting fast 

solutions for computing reliability of large systems such the 2×100 lattice network which 

has 2
99 

paths (Lin et al. (2003), and Shier (1985)). 

In the following, we propose an efficient algorithm to evaluate the 2-terminal network 

reliability. The algorithm utilizes minimal paths set generated using one of the best and fast 

methods developed by us. The method uses a simple technique similar to the depth first 

search algorithm of Tarjan (1972), which explores the graph by crossing nodes and edges 

from the top to the bottom and backtracks until all the nodes are marked. Each time a 

minimal path is found a symbolic reliability function is generated by composing the last 

BDD with the actual one corresponding to the generated path. A new BDD is memorized 

for the next iteration until no path is generated. At each composition, some operations are 

applied to reduce considerably the size of BDD by merging graphs and structure 

reductions.  

The chapter is organized as follows: Section 2 presents some preliminaries concepts such as 

network and s-t terminal reliability evaluation. Section 3, gives the description of minimal 
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paths set and presents an algorithm to enumerate them. In section 4, we present theorems 

relative to binary decision diagrams representation and theirs extensions to cover network 

reliability class of problems. In section 5 we detail some experiment benchmarks to check 

the efficiency of BDD formalism. Finally some concluding remarks are given in section 6.  

5.3  NETWORKS MODELING 

Consider a network  as discussed below. For a specified set of nodes VK  of G, 

we denote the K-terminal reliability of G by )( KGR . When 2K , )( KGR  is called 2-terminal 

(or terminal-pair) reliability which defines the probability of connecting the source node 

with a target node. A success set, is a minimal set of the edges of G such that the vertices in 

K are connected; the set is minimal so that deletion of any edges causes the vertices in K to 

be disconnected and this will invalidate the evaluation of the reliability. Topologically, a 

success set is a minimal tree of G covering all vertices in K. The computation of the K-

terminal reliability of a graph may require efficient algorithms. One such solution can be 

derived directly from the topology of the network by constructing a new parallel-series 

network using MPS of the original network such that each minimal path constitutes a 

branch of the parallel-series graph. Then, a characteristic expression is derived 

from the disjoint expressions of paths terms, and from which the reliability is evaluated 

after applying Boolean simplification processing. Figure 5.3, gives an example and the 

expression of its reliability. Note that  is Boolean state variables vector and each  is 

the value of the reliability of the component (edge) i which replaces the state variable  

after the reductions. 
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Figure 5.3. Simple Model for the evaluation of network reliability 

 

 

5.4  PROCEDURE FOR MINIMAL PATHS SET ENUMERATION 

Many algorithms have been proposed to generate MPS for directed and undirected graphs. 

Some algorithms are more difficult to be implemented because they require the 

manipulation of mathematical operations on large matrices.  

 

In the following we present a fast procedure to deduce minimal paths set. The kernel of the 

procedure uses a recursive function similar to the depth first search algorithm of Tarjan 

(Tarjan (1972)).  

 

Note: The complexity of the depth first search algorithm is O(|V| + |E|). 

 

The following algorithm will be executed to find minimal paths, so that each execution 

cycle will correspond to a minimal path. This procedure is called recursively as many times 

as all the nodes have not been visited and the edges not marked. The algorithm is shown in 

the pseudo-code form in figure 5.4 and it is invoked inside the main program in which 

Stacks, initial and terminal nodes are initialised with values equal to zero.  

 

 

Algorithm stack S = pathDFS(G, v, z)       

setLabel(v, VISITED)    

S.push(v)                       

 if   v = z   

 return S.elements()  

 for all e in G.incidentEdges(v)  

if getLabel(e) = UNVISITED 

w ← opposite(v,e)  

 if getLabel(w) = UNVISITED 
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S.push(e) 

pathDFS(G, w, z) 

S.pop(e)   

 Else 

S.pop(v) 

end 

Program Main() 

Input G     // Reading the matrix of the graph G as link by link (link : initial 

node; terminal node) 

Declaring dynamics vectors and stacks (put in them zeros) 

Declaring initial and terminal nodes (v, z) 

Do While .true. 

pathDFS(G, v, z) 

if ―the last minimal path have been encountered‖ 

return .false. 

enddo 

 

Figure 5.4. Minimal paths set enumeration algorithm. 

 

The algorithm sets the three stacks to zero, one is used for memorizing the minimal path, 

the second keeps the traces of the encountered nodes and the third marks the edge position 

in the path. Then the algorithm begins by iterating. First it determines the children of the 

initial node, and at each time the comparison of the actual node with the terminal permits to 

decide if a minimal path has been generated. If so, the stack memorizing the path is 

transferred to the BDD module and the algorithm backtracks using the other node son. If it 

exists, it forwards until to reach the terminal node. The algorithm continues by 

backtracking and forwarding operations until no node is present in the corresponding stack. 

At the end, all the paths have been passed to the BDD module and a general expression 

ROBDD of the reliability is generated from which the reliability of the network is 

computed. 
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5.4.1  Step-by-Step Example: Bridge network  

In the following, a simplified example shows the application of the algorithm for 

enumerating all the MPS of the network presented in Figure 5.2. 

The computing program begins first by reading the matrix associated to the graph. Value 1, 

represents the existence of an edge (arc) between two nodes and zero the opposite case. 

In the first step, the algorithm gives a series of successive numbers in an increasing order 

for labelling the edges. Then it initialises the stacks S1, S2 and S3 to zeros and the initial 

and terminal nodes are assigned to v and z. Note that vprime is a variable positioning the 

courant node in the list. Gate is the matrix of results that contains all the MPS and Elapsed 

time is the duration of the execution. 

The execution results are as follows: 

 

G = 

     0     1     1     0 

     0     0     1     1 

     0     0     0     1 

     0     0     0     0 

 

G = 

     0     1     2     0 

     0     0     3     4 

     0     0     0     5 

     0     0     0     0 

 

S1 =     0     0     0     0 

 

S2 =     0     0     0     0 

 

vprime =     1 

 

S1 =      1     0     0     0 

 

S3 =      1     0     0     0     0 

 

S2 =     1     0     0     0 

 

vprime =     2 

 

S1 =     1     1     0     0 
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S3 =     1     0     1     0     0 

 

S2 =     1     3     0     0 

 

vprime =     3 

 

S1 =     1     1     1     0 

 

S3 =     1     0     1     0     1 

 

S2 =     1     3     5     0 

 

S3 =     1     0     1     1     0 

 

S2 =     1     4     0     0 

 

S3 =     1     1     0     0     0 

 

S2 =     2     0     0     0 

 

vprime =     3 

 

S1 =     1     0     1     0 

 

S3 =     1     1     0     0     1 

 

S2 =     2     5     0     0 

 

Gate = 

     1     3     5     0 

     1     4     0     0 

     2     5     0     0 

 

The program generates 3 MPS as showed in the matrix Gate. 

 

5.5  BINARY DECISION DIAGRAMS 

Binary decision diagram (BDD) is a data structure for the symbolic representation of a 

given Boolean formula and an associated set of decomposition and reduction rules (Lee, 

(1959)), (Akers (1978)), (Bryant (1986) and (1992)). Boolean formulas are represented 

using directed acyclic graphs. The mathematical form of a BDD can be written using the 
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decomposition theorem of Shannon or the If-Then-Else function of Bryant. The theorem of 

Shannon is as follows: 

 

Theorem 5.1 (Shannon)  

 

where x is one of the decision variables, and  Fx=i is the Boolean function evaluated at x = i. 

Based on theorem 5.1, Bryant obtains the ITE function as shown in the following: 

 

5.5.1  ITE function manipulation 

Suppose that A and B are Boolean functions. If x and y are two variables with an ordering 

operator (<) on variable, such as, . Applying now the ITE function for the 

conjunction and the disjunction operators, we obtain: 

 

 

 

 

and   

 

By choosing a total order over the variables, and applying recursively Shannon theorem, it 

is possible to replace the Boolean variable  by a Boolean function  as follows : 

 

Where are Boolean functions and  is the complement of  

In addition to calculating the recursive function ite, we use identities relation to avoid the 

fact to calculate them again at each time when they occur in a term. These identities are 

defined as follows: 

 

ite(f, 1, 0) = f ; ite(1, g , h) = g ; ite(0, g, h) = h ; ite(f, g , g) = g ; ite(f, 0, 1) = f’ 

 

Others basic identities are presented in figure 6 (table in left). 
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BDD algorithm proceeds by manipulating the binary decision tree using the RP procedure, 

then the restrict procedure to transform it to a BDD and then to an OBDD (figure 5.5). 

Finally the ITE (if then else) is applied to get a Reduced BDD. The first decomposition and 

reduction operations are as follows:  

 

(1) Merging equivalent leaves of a binary decision tree.  

 

(2) Merging isomorphic nodes.  

 

(3) Elimination of redundant tests 

 

The example discussed in the following figure explains the above three steps. 

 

 

 

 

 

 

 

 

 

               Figure 5.5. Binary Decision Tree and its successive reduction graphs. 

 



115 

 

 

 

5.5.2  Variable orderings 

A BDD is said to be ordered if there is a total ordering of the variables such that every path 

through the BDD visits nodes according to the ordering. In an ordered BDD (OBDD), each 

child of a non-terminal node must therefore either be terminal, or non-terminal. The 

variable orderings is very important to avoid exponential growing of the BDD size. Many 

publications try to give techniques for simplifying the branches number (Bollig et al. 

(1996).  

 

5.5.3  From OBDD to ROBDD transformation 

Any OBDD can be reduced to an ROBDD by repeatedly eliminating in a bottom-up 

fashion, any instances of duplicate and redundant nodes. If two nodes are duplicates, one of 

them is removed and all of its incoming pointers are redirected to its duplicate. If a node is 

redundant, it is removed and all incoming pointers are redirected to its just one child (see 

Figure 5.2).  

 

 

 

                        
 0 - - 

 1   

2 a 3 4 

3 b 5 6 

4 b 7 8 

5 c 0 0 

6 c 0 1 

7 c 1 0 

8 c 0 1 
 

 

Figure 5.6. Left: Table of the simplified Boolean functions presented as an ite relation.  

Right Representation of BDDs in computer. 
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5.5.4  APPLY Procedure 

The APPLY procedure is an efficient tool to combine functions using binary operators like 

the conjunction and disjunction Boolean operators. It is the major core of our algorithm. It 

can also be used to complement a function; it suffices in such case to complementing the 

values of the terminal vertices.  

According to Bryant (1992), the APPLY procedure takes graphs representing functions f1 

and f2, a binary operator (say OP) and produces a reduced graph representing the function 

.  It proceeds as follows: 

 

 

The APPLY procedure also called the compose procedure is based on the recursion derived 

from  theorem 5.1. It could be presented as follow: 

 

 

where   is the complement of the Boolean variable .  

Let consider two functions f1 and f2 representing two Booleans expressions represented by 

graphs with roots v1 and v2. Several cases are to be considered. The simplest case is 

defined by the way when both v1 and v2 are terminal vertices. Then the resulted graph 

consists of a terminal vertex having value (v1) <op> value (v2). Consider now the case 

where at least one of the two is a non terminal vertex. If index (v1) = index (v2) = i, we 

create a vertex u having index i, and apply the algorithm recursively on low (v1) and low 

(v2) to generate the subgraph whose root becomes low (u), and on high (v1) and high (v2) 

to generate the subgraph whose root becomes high (u). Suppose, on the other hand, that 

index (v1) = i, but either v2 is a terminal vertex or index (v2) > i, Then the function 

represented by the graph with root v2 is independent of xi.. Hence we create a vertex u 

having index i, but recursively apply the algorithm on low (v1) and v2 to generate the 

subgraph whose root becomes low (u), and on high (v1) and v2 to generate the subgraph 

whose root becomes high (u). A similar situation holds when the roles of the two vertices in 
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the previous case are reversed. In general the graph produced by this process will not be 

reduced. Hence we apply the reduction algorithm before returning the result (for more 

details read Bryant (Bryan (1992)). The complexity of the APPLY algorithm is exponential 

in n, but by using some refinements this complexity can be reduced to the product of the 

two graph sizes. This structure of APPLY procedure is presented in Figure 5.7. A similar 

presented can be found in Bryant (1992). An example showing how APPLY proceeds to 

compose 2 Booleans expressions is depicted in Figure 8. 

 

Procedure APPLY (OP,f1,f2) 

     init_cache(C) // cache table be initialised 

    APP_STEP(f1,f2) 

    If    C(OP,f1,f2) = hit then return C(OP,f1,f2) 

      else   if f1 and f2 are terminal then  

                  either u = f1 OP f2 

              else either u = (if var(f1) < var(f2)  then  place_if_absent T( var(f1), 

                                        APP_STEP(low(f1),f2), 

                                                                      else if var(f1) > var(f2) then 

/* idem for the node f2 */ 

                                   else place_if_absent T( var(f1), 

                                         APP_STEP(low(f1),low(f2)), 

                                         APP_STEP(high(f1),high(f2)) 

                                                 insert u = (OP,f1,f2) in C 

                                                 return u 

              return APP_STEP(f1,f2) 

end. 

 

                    Figure 5.7. Algorithm for composing 2 booleans expressions. 
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5.5.5  Reliability Evaluation using BDD 

From the programming side, using BDDs to compute the reliability is not a difficult way. 

For that, it suffices to use ITE and APPLY procedures. Generally, the algorithm proceeds 

as follows : 

 

Algorithm Reliability_evaluation (G, v, z) 

- Define the BDD relative to the Boolean 1, call the BDD_ONE 

- Define the BDD relative to the Boolean 0, call the BDD_ZERO 

- Initialise BDD_ALL = BDD_ZERO 

-  Apply the procedure ITE to get the BDD of  Boolean TERM, say 

BDD_TERM 

-  Make BDD_AND = BDD_1 

 Do while .true. 

 TERM = pathDFS(G, v, z) 

   BDD_AND = BDD_AND .and. BDD_TERM   

   BDD_OR = BDD_OR .or. BDD_AND  

        If last TERM has been encountered  

            Return .F. 

        else  BDD_AND = BDD_1            

        endif 

  enddo 

end. 

 

                       Figure 5.8. Reliability evaluation algorithm based BDD. 

 

5.5.6  Test example  

Suppose after the reduction steps, we get the following ROBDD expression 

. Figure 5.9 shows the initial network (at left) and its ROBDD (at 

right). Let that the reliability of each component is equal to 0.9. If we apply the algorithm 

shown the Figure 5.8, its reliability evaluation is computed recursively from the bottom to 

the top (root) as depicted in the graph 10 (at the right). 
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Figure 5.9. A network, its the corresponding BDD and the process for computing the 

reliability. 

5.6. Experimental Results 

The proposed algorithm was implemented in Matlab 8 and Java Jdk 1.6. The reference 

section presents some of them.  The program runs on a PC using Vista operating system of 

Microsoft. We have demonstrated the efficiency of the implementation on some well-

known benchmark. There are directed and undirected graphs with variable size (see figure 

11 and figure 12) as illustrated in many papers relative to the reliability evaluation. Table 

5.1 lists the computational effort providing the number of minimal paths, run time for 

reliability evaluation and the reliability of each case network. We have compared the 

performance of the program with the runtime of many others applications and we 

concluded that for the most cases our algorithm is more efficient.  

                 Table 5.1. Computational results of experimental networks. 

Networks Nodes Links Minimal 
Paths 

Runtime 
Seconds 

Reliability 
value 

A 18 29 44 0.060 0.991852559 

B 11 18 36 0.031 0.870460090 

C 16 30 36 0.95 0.997186290 

D 36 60 252 0.368 0.886537674 

E 20 60 432 38.062 0.963020072 
F 20 60 780 >60 0.99712 

G 13 56 1808 1.029 0.989899679 
H 17 50 136 >60 0.99806 

I 16 48 98 0.063 0.987816744 

J 6 20 65 0.117 0.999989960 
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                             Figure 5.10. A set of directed complex networks 
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                                       I                                           J 

 

Figure 5.11. A set of undirected complex networks 

 

5.7   CASE STUDY- A RADIO COMMUNICATION NETWORK  

To illustrate the performance of the algorithms presented in sections 3 and 4, we propose a 

practical application to a case study problem of undirected regional radio communication 

network showed in Figure 5.13. It is radio communication system which is composed of 

equipments scattered across a wide geographic area. It consists of a set of mobile and 

portable transmitter-receivers deserved by a, network of fixed equipments located in 

Quebec province. There are two master site in operation 24 hours a day and a standby third 

one used in case of urgency, and more than 150 base stations used to transmit the signal 

generated through the microphone to portable and mobile equipment. A master site consists 

of core and exit routers, WAN and LAN switches, controllers and some operative 

computers plus others monitoring and dispatching hardware/software systems such as 

gateway routers, AEB, PBX, dispatching consoles Elite, and so. The radio sites is equipped 

with one or two antennas for broadband coverage on which is terminated 4 to 8 transmitter-

receiver transponders (Tx / Rx). The transponders are connected to each antenna via 

filtration equipment of type Multicoupler. The multicouplers form a chain of multicoupling 

able to accept other transponders in expansion. The range of the base station depends on its 

power, antenna system, terrain, carrier transporter (e.g. T1 or E1) and environmental 

conditions.  
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Figure 5.12. A regional radio communication network 

 

The graph in Figure 5.12, presents the radio communication network. Each node is a 

standard site or a master site. The link between sites from one side is insured using a 

microwave system and from the other side, between user portables, vehicles and base 

stations using HF/THF system. The reliability values presented in table 5.2 have been 

obtained using the calculus system presented in chapter 2. It consists of determining the 

physical and functional characteristics of each element and from which the reliability is 

derived using some well-known models (see chapter 2).  Please read for example         

 which correspond to the value of reliability of the station (A,I). Table 

5.3, gives the reliability of the microwave link taken between 2 stations. I is determined 

using the availability value generated by an electronic system. The reliability in such case is 

considered equivalent to the availability because the mean time to repair is negligible. The 

application of the program using the radio-communication system gives the results depicted 

in table 5.4. The reliability values in table 5.4 correspondent to the 2-terminal reliability 

(see chapter 1 for details).   
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Table 5.2. The reliability values on each node of the network 

 
 I II III IV V VI 

A 0,9999217518 0,9999214639 0,9999226453 0,9999035488 0,9999072594 0,9999676048 

B 0,9999312620 0,9998767606 0,9999668616 0,9991865009 0,9998967082 0,9998065989 

C 0,9998759277 0,9999355968 0,9999668638 0,9999218563 0,9999215934 0,9999361491 

D 0,9999921132 0,9999749248 0,9999522850 0,9998774011 0,9997067831 0,9999356854 

E 0,9999814372 0,9999219391 0,9999074941 0,9999670840 0,9999672287 0,9999218934 

F 0,999921718 0,999935912 0,9998763 0,99996313 0,9998895 0,9999628 

G 0,99992195 0,99992188 0,99995258 0,99986165 0,99987582 0,99987641 

H 0,99992253 0,99987673 0,99996689 0,99987692 0,99992182 0,99996659 

I 0,99993650 0,99992203 0,99984370 0,99996280 0,99993590 0,99987685 

J 0,99993526 0,99990738 0,99996696 0,99986175 0,99992139 0,99996312 

K 0,99997443 0,99992150 0,99987681 0,99998115 0,99993612 0,99996659 

L 0,99992262 0,99993574 0,99992195 0,99993556 0,99975818 0,99996356 

M 0,99992252 0,99987664 0,99992160 0,99988880 0,99986166 0,99990733 

N 0,99991806 0,99987706 0,99992142 0,99984402 0,99993629 0,99992187 

O 0,99992161 0,99992188 0,99992194 0,99997688 0,99992223 0,99999657 

P 0,99997547 0,99996720 0,99937161 0,99996757 0,99987634 0,99999657 

Q 0,99945893 0,99980616 0,99990358 0,99980685 0,99992241 0,99999669 

R 0,99987688 0,99992187 0,99980593 0,99960116 0,99993537 0,99987610 

S 0,99993613 0,99987655 0,99987640 0,99987689 0,99992139 0,99993623 

T 0,99992548 0,99996688 0,99990713 0,99986244 0,99988479 0,99998103 

 

 

 

 

Table 5.3. The reliability of each microwave link between two nodes. 

 
                            I II III IV V VI 

A 0,999987 0,999996 0,999998 0,999997 0,999992 0,999994 

B 0,999992 0,999999 0,999996 0,999998 0,999999 0,999990 

C 0,999986 0,999995 0,999989 0,999998 0,999998 0,999997 

D 0,999999 0,999988 0,999985 0,999989 0,999993 0,999990 

E 0,999996 0,999986 0,999988 0,999990 0,999982 0,999984 

F 0,999970 0,999976 0,999997 0,999982 0,999997 0,999974 

G 0,999999 0,999993 0,999998 0,999995 0,999997 0,999988 

H 0,999995 0,999991 0,999998 0,999990 0,999999 0,999996 

I 0,999999 0,999983 0,999987 0,999995 0,999996 0,999998 

J 0,999987 0,999992 0,999990 0,999987 0,999998 0,999982 

K 0,999985 0,999995 0,999986 0,999996 0,999997 1 

L 0,999994 0,999994 0,999980 0,999993 0,999997 0,999991 

M 0,999988 0,999991 0,999984 0,999998 0,999976 0,999998 

N 0,999992 0,999992 0,999985 0,999985 0,999974 0,999999 

O 0,999996 0,999982 0,999998 0,999999 0,999995 0,999999 

P 0,999966 0,999997 0,999996 0,999988 0,999977 0,999979 

Q 0,999994 0,999989 0,999999 0,999999 0,999990 0,999989 

R 0,999996 0,999997 0,999985 0,999994 0,999997 0,999981 

S 0,999998 0,999991 0,999996 0,999977 0,999992 0,999997 

T 0,999999 0,999995 0,999999 0,999981 0,999998 0,999998 

v 0,999999 0,999999 0,999993 0,999997 0,999987 0,999997 
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Table 5.4. The reliability joining any two nodes (dimension = 156 x 156 links). 

 

  I II III IV V VI 
A 0,9998530 0,9997959 0,9999233 0,999843 0,99984429 0,9998582658 

B  0,9998054 0,9997880 0,999853 0,99985380 0,9998677754 

C   0,9999312 0,999717 0,99971846 0,9997324326 

D    0,999914 0,99991464 0,9999286228 

E    0,999697 0,99969812 0,9997120964 

F    0,999841 0,99984247 0,9998564536 

G     0,99984449 0,9998584678 

H      0,9998590481 

 

5.8  CONCLUSION 

 

A method for evaluating the 2-terminal reliability has been proposed in this paper. We have 

used depth first search (DFS) algorithm for minimal paths set discovering and Binary 

Decision Diagrams (BDD) for reduction and evaluation of networks reliability. The 

program runs on some well-known benchmarks and gives good execution time. We remain 

convinced that the program will operate on more complex instances of hundreds of nodes 

and links and even more. We have applied the program to a regional radio communication 

network. Despite that the evaluation of the reliability is a big problem in our case, the 

program have computed the reliability of any path taken between any two nodes of the 

network and finally by composing all these reliabilities we compute the reliability of the 

network. We confirm that all the computing procedures are executed in a finite time not 

exceeding some seconds.    
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Chapter 6 

 

A Practical Algorithm for Network Reliability 

Evaluation Based on the Factoring Theorem – A Case 

Study of a Generic Radio communication System 
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6.1  ABSTRACT 

The evaluation of complex systems reliability is a crucial test to secure operations and 

infrastructure against failures. This paper presents the network decomposition method and 

compares some results to solve network reliability problem. The algorithm proceeds 

recursively according to the factoring theorem in conjunction with simplification and 

polygon-to-chain reduction rules and considers the case where network components- 

vertices and edges could fail randomly. The implementation of the algorithm is efficient 

and proceeds in less time comparing with the best examples found in the literature.  

 

6.2  INTRODUCTION 

Checking the reliability of distributed finite-state systems is a big challenge due to the state 

explosion problem, which occurs in practice for realistic systems with complex data and 

structure. Network reliability has received full attention from designers for the validation of 

systems like those of telecommunication, electric and water networks. The IEEE 90 

standard (IEEE, 1990) defines the reliability as the ability of a system to perform its 

required functions under stated conditions for a specified period of time. In the most case, 

system network is modeled using a particular data structure defined as a graph. Generally, 

the graph components are vertices (nodes) and arcs (edges), and a chain P in a graph is an 

alternating sequence of distinct vertices and edges, such that the internal vertices are of 

degree greater than 2. A cut C is a minimal set of edges whose removal breaks all directed 

paths between the source s and the sink t. A chain P and a cut C are minimal if they have 

no proper sub-paths and sub-cuts. If two chains P1 and P2 have common vertices u and v, 

ie, the chains are parallel, then 
 
is a polygon. Two chains are series if they have a 

common vertex. A k-tree of a graph Gk is any minimal sub-graph that connects all the K-

vertices of Gk. Gk is connected if its k-vertices are connected and a formation of a k-graph is 

a set of k-trees of the graph whose union yields the graph. The problem of finding all 

minimal sets (minpaths and mincuts) could be enumerated using the Tarjan’s depth first 

search procedure (for minimal paths) (Tarjan, 1972) or the algorithm of Yan and Taha (for 

minimal cutsets) (Yan, et al., 1994). For example, Lin et al. (2002) have used an interesting 
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algorithm showing that a 2×100 lattice network (Figure 4) has 2
99 

paths but contains 10,000 

minimal cutsets.  

Technically, there are two main families of algorithms called: (1) SDP for sum of disjoints 

products (Abraham, 1979; Fratta and Montanari, 1973; Heidtmann, 1989; Liu, et al., 1993; 

Locks and Wilson, 1992), and (2) those based on the well-known factoring problem 

(Bryant, 1986; Theolougou and Carlier, 1991; Wood, 1986). In the former techniques, 

Abraham in (Abraham, 1979), following the work of Frotta and Montanari (Fratta and 

Montanari, 1973) determines first, minmal paths between a pair of nodes (e.g source and 

sink), where paths terms correspond to a sum of disjoint products (mutually exclusive) 

from which the reliability expression can be directly computed. Several authors have given 

different procedures and the aim has always been to reduce the number of terms in the SDP 

(Liu, et al., 1993). Despite these improvements in case of complex networks, the problem 

becomes drastically unsolved and the needs of methods and formalisms to diminish the size 

of Boolean product terms still a welcome way. It is known in the practical cases that the 

network reliability algorithms belong to the class of NP-hard problems, and in the theory 

they have been classified as #P-complete by Valiant (Valian, 1979). Generally, Boolean 

algebra and probability theory are used to modify additive minsets to an equivalent set of 

mutually exclusive minsets (Fratta and Montanari, 1973). Heidtmann gives in (Heidtmann, 

1989) an elegant algorithm which reduces considerably the size of formula. Among the 

later techniques based on the factoring theorem, the algorithm due to Dotson and Gobien 

(1979) is considered by Yoo et al. (Resende, 1986) as the most efficient one among four 

tested algorithms. Wood has presented in (Wood, 1986) some elegant methods that reduce 

the graph using eight rules, called: parallel reduction, series reduction, degree-2 reduction, 

polygon-to-chain reduction, bridge contraction, irrelevant component deletion, degree-3 

reduction and trivial reduction. Theologou and Carlier (1991) give an interesting heuristic 

which consider the case of imperfect nodes (nodes subject to failure) without replacing 

each imperfect node by two perfect ones and adding between them an arc with reliability 

equal to that of the node. In Yoo and Deo (1988), the authors compare four algorithms for 

the terminal-pair reliability problem and show that the algorithm due to Dotson and Gobien 

is the most efficient, which algorithm is presented in Dotson and Gobien (1979). Other 
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solutions have been found using BDDs (binary Decision Diagrams) (Brace, et al., 1990; 

Bryant, 1986), and their extended ROBDD (Reduced Ordered BDD) (Rudell, 1993). It has 

been shown in (Hardy, et al., 2007; Kuo, et al., 2007; Lin, et al., 2003), that reliability can 

be computed by constructing the symbolic reliability function with BBD. 

This paper presents an algorithm that guarantees the evaluation of networks reliability in 

case of imperfect nodes without computing minsets. It is based on the work of Carl Simard 

(Simard, 1996) and Wood et al. (1986). This operation has reduced considerably the size of 

benchmark networks. Thus, a series of tests and comparisons have been applied using some 

well-known benchmarks. The algorithms developed in this paper are efficient and take less 

time than others demonstrations.  

The organization of the paper is as follows. In the next section readers are briefed on 

preliminaries. Section 3, presents the factoring theorem and its extension to cover network 

reliability class of problems.  In Section 4, the derivation of reduction rules is established. 

We detail algorithms, tests and comparisons in Sections 5 and 6. Section 7 introduces a 

radio-communication system and its reliability evaluation. Finally, concluding remarks are 

given in Section 8. 

 

6.3  PRELIMINARIES  

A network is a graph G = (V, E) where V is a finite set of vertex (nodes) and E is a finite set 

of edges or arcs for directed graphs. Each edge and each node of the graph can be weighted 

with a real value pi corresponding to the probability that a component (the edge) does not 

fail (is good), and called reliability. The nodes are numbered from 1 to n, and edges from 1 

to m. We denote the K-terminal reliability of G by Rk(G), where K is a specified subset of 

V with |K| > 2 (2: means one source and one sink). In the most cases, it suffices to have a 2-

terminal relation to compute the reliability evaluation. A success set, is a minimal set of the 

edges of G such that the vertices in K are connected; the set is minimal so that deletion of 

any edges causes the vertices in K to be disconnected. Topologically, a success set is a 

minimal tree of G covering all vertices in K. It is defined that parallel edges are edges with 

the same end vertices and non parallel edges are adjacent if they are incident on a common 

node. Two adjacent edges are series edges if their common node is of degree 2 and is not in 
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K. It is noted that replacing a pair of series (parallel) edges by a single edge is called series 

(parallel) reduction. So, if e is an edge with end vertices u and v, then )( eG   is a sub-

graph of G obtained by deleting e from G and )*( eG  is a sub-graph of G obtained by 

contracting edge e from G. Edge e is known as the keystone edge, which cannot be chosen 

arbitrarily. 

  

6.4  THE PRINCIPLE OF FACTORING DECOMPOSITION 

Network factoring theorem is the basis for a class of algorithms for computing K-terminal 

reliability (Page and Perry, 1988; Bryant, 1986; Wood, 1986; Choi and Jun, 1995; Deo and 

Medidi, 1992; Hardy, et al., 2007; Page and Perry, 1989). The topological interpretation of 

the simple conditional reliability formula for a general binary system S with component ei 

is, 

)()()( failseSRqworkseSRpSR iiii   (6.1) 

where )(SR  is the reliability of the system S and )( workseSR i  is the reliability of the 

system S when the edge ie is in operation and )( failseSR i  is the reliability of the system S 

when the edge ie is not in operation and each probability ip is asserted to the edge i and 

)1( ii pq   the opposite of 
ip . Figure 6.1 details the application of the factoring 

decomposition process on the bridge network. 

Techniques using factoring theorem are well-suited for evaluating network reliability 

because they can be combined with other techniques. The association of different 

techniques depends on some conditional constraints. For example, in case of undirected 

graphs, an edge is replaced by two anti-parallel directed edges (arcs), having the same 

reliability but functioning statistically independent from each others. More problems arise 

in such transformation which needs more attention than for the undirected networks.  

According to the following development, we assume that a network could be (1) directed or 

undirected, (2) the edges may be in operation or not, (3) in case of failure, vertices and 

edges are statistically independents and their probabilities are known, (4) the problem of 

estimating the network reliability means to determine the existence of a path linking the 
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node s (sink) to the node t (target), or to transform the network by a successive reductions 

until an irreducible form is reached, which could be used to compute its reliability. An 

imperfect network is defined in the case that at least the probability assigned to a vertex is 

different from the value 1. In the opposite, the network is perfect when the probability 

assigned to each node is equal to 1. 

 

 

Figure 6.1.  A demonstration of factoring series-parallel reductions 

Thus, we summarize that the factoring theorem establishes the validity of the following 

conditional reliability relation: 

)()1()*()( eGRpeGRpGR ee   (6.2)  

  

where G is a graph with edge e labelled by the probability pe, and )( eG  and )*( eG  as 

defined in preliminaries. Factoring consists of picking an edge of the graph and 

decomposing the original problem with respect to the possible state of the edge. 

6.5. IMPLEMENTING NETWORK RELIABILITY CALCULUS 

6.5.1. Decomposition strategy 

To be more precise in the case of an undirected network, the solution is given by 

decomposing each edge into two opposite directed arcs, which are labelled with the same 

reliability value. Thus, both arcs maintain the same status (success or fail). The choice of a 

global decomposition strategy can improve the complexity of a factoring algorithm. Such 
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concept has been used by many authors as in (Kuo, et al., 2007; Theolougou and Carlier, 

1991). As we consider that the nodes could fail, the decomposition strategy proceeds on the 

edge and its extremities to avoid the complexity. The problem in such case is to find a 

complete algorithm which could reproduce exactly the form of graph structure, as in (Choi 

and Jun, 1995; Wood, 1986). To deal with the problem we have written a procedure using 

the incoming and outgoing degrees corresponding to each node according to the following 

definitions.    

 

6.5.2. Reduction rules and partitions transformation 

In order to reduce the size of the network which leads to diminish the computing cost of the 

network reliability, we need to apply some reduction techniques. The idea behind the 

reduction is to transform each graph partition into a simplified form, while preserving its 

reliability. They are (reductions) similar to those of the factoring theorem, which consist of 

the replacement of a particular structure (e.g. a polygon) embedded in the graph within the 

abstraction of the rest of the graph. To demonstrate such procedure we introduce the 

following reduction rules: 

 

1. Let ea = (u, v) and eb = (u, v) be two parallel edges in GK (the network graph) and 

suppose that pi = 1 - qi ( i = a or b). A parallel reduction obtains G’ by replacing ea and eb 

with single edge ec = (u, v) with reliability )1( bac qqp  , and it defines Ω = 1 and K’ = K. 

We note that Ω is a multiplicative operator derived from  R(GK) = Ω.R(G’K’) 

 

2. Let ea = (u, v) and eb = (u, w) be two series edges in GK  such that degree(v) = 2 and 

Kv . Applying reduction procedure leads to the sub-graph G’ by replacing ea and eb with 

a single edge ec = (u, w) and the corresponding reliability is computed by bac ppp  , and it 

defines Ω = 1 and K’ = K. 
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3. Let ea = (u, v) and eb = (u, w) be two series edges in GK such that degree(v) = 2 and 

u, v, Kw . A degree-two reduction obtains G’ by replacing ea and eb with single edge ec 

= (u, w) with reliability  Kv
ba

ba
a

qq

pp
p




1
 , and it defines Ω = 1 and K’ = K. 

4. Two parallel chains between two vertices are replaced by a new chain. Such 

operation is called polygon-to-chain reduction. 

 

To demonstrate the results of these transformation steps, let us consider the case of the 

reduction polygon-to-chain of type1 with imperfect nodes (Figure 2-- presents a simple 

polygon-to-chain reduction). For that, we suppose that nodes a and b have status ―good‖ 

and their respective reliabilities are pa and pb, and consider the edges e1, e2 and e3 linking 

the nodes s, a and b. The application of the factoring theorem using the link (S, e1, a) gives 

the reduced subgraphs  (as it is shown in Figure 6.2). Thus, the 

reliability of the graph G is given by equation (3), 

 

)()1()*()( 1111 eGRppeGRppGR aa   (6.3) 

 

and the symbolic expression of the reliability of the node a is given by (6.4).  

1

1'

qpq

qp
p

aa

a
a


  

(6.4) 

 

The following figures demonstrate the successive transformations (step 1) of the factoring 

theorem (see Figure 6.2). 

 

 

Figure 6.2.  Graphs induced by the decomposition on the link 1e  
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We continue the decomposing of the graph using the link (S, e2, b). The new expression of 

the reliability is given by equation (6.5). 

 

 
 

 

and the reliability corresponding to the node b changes to : 

  

2

2'

qpq

qp
p

bb

b
b


  

 

(6.6) 

 

Now, using the link (S, e3, b), the algorithm generates the graphs 21 )*( eeG   and 

21 *)( eeG  . 

 

Finally after that, the reliability of the graph is evaluated by the following expression: 

 

 

 

 

From this result, we deduce the new reliabilities corresponding to the nodes a and b as 

follows: 

 

31

31''

qqpq

qqp
p

aa

a
a


  

 

(6.8) 

 

32

32''

qqpq

qqp
p

bb

b
b


  

 

(6.9) 

 

After arranging and suppressing identical expressions, the equation (6.7) is reduced to 

(6.10). 
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Now, the expression of the reliability relative to the graph G’ is obtained by transforming G 

in which two new edges '

1e  and '

2e  have been created (see Figure 6.3). Such reliability is 

expressed by: 

 

)''().''1()''*(.'')'( 1111 eGRppeGRppGR aa   (6.11) 

 

 

Figure 6.3.  A polygon-to-chain reduction of type 1 

 

and the reliability expression of the node a in the graph )''( 1eG  is : 

 

'''

'
1

'
''

1

)(
qpq

qp
p

a

a
a

a


  
 

(6.12) 

 

Now, we identify the reliability of the graph G’ using the expression (6.13), 

 

 

 

 

and, the new expression of the reliability of the node b becomes:   
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'''

'

2

'

''

2

)(
qpq

qp
p

b

b

b

b


  

 

(6.14) 

 

As the graph G and G’ are identical, thus we can write that : 

 

 

The last expression is valid if and only if 

 

 

Finally from the equivalence of the relation )(.)( 'GRGR  , and from the last equalities, 

we deduce the following system of equations :  

 

 

 

After solving the system (6.15) for the five unknown parameters '''

2

'

1 ,,,, ba pppp  , we 

obtain the expressions of , A, B, C and D according to (6.17) : 
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Finally, we note that we can derive successive reduction steps to transform a complex 

topology embedded in a network to a simple edge relaying two nodes. For example 

concerning the graph structure of the Figure 6.2, the last transformation is shown in the 

Figure 6.3. We note again that the problem in the case of the factoring theorem is to find an 

automatic way to recognize the topologies (polygons). The idea is much fruitful and need to 

be worked well. In our case, we have developed an algebraic way to derive formulae 

according to each transformation topology. These results have been included in a whole 

algorithm giving effective results which could be compared with those of many authors. 

 

6.6  ALGORITHMS 

To compute the reliability of a network, the algorithm proceeds by successive steps using 

an iterative procedure (Cleaning(.)) to avoid all particular situations which could stop the 

computation (e.g. false sources or false sinks). After that, a reduction function is called to 

eliminate redundancy parts using simple reduction rules (Reduction (.)). The main process 

is accomplished by looking for complex sub-structures and if one is found, the program 

proceeds recursively by separating the structure into two parts using the factoring 

implementation and continue to do so until no reduction occurs. At the end, the reliability is 

computed on the fly according to the following algorithm. 

 

Algorithm Facto(Adj(G))  /** Adj(G) : adgacency matrix of the network G  **/  

Omega = 1; Bool = 0 ;       

Do while .T. 
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   Do while no-reduction can be applied do   

      begin 

        Cleaning(G);/ *** remove edges incoming to the node source or outgoing from the   

                     sink ***/ 

        Reduction(G); /apply the reduction rules whenever it is possible.   

      enddo; 

         if s = t then return (Omega) endif 

         if out-Degree(s) = 0  .or.  in-Degree(t) = 0 then return(0) 

             else  if s and t are connected, 

                   bool =  1    /*** there is a path between s and t ***/ 

              else return(0)  endif 

       endif 

         if bool = 1  

            KeyStoneChoise() /*** picking an edge e as defined  ***/  

         endif  

Construct G1 = G-ei and G2 = G*ei ;  

            R = Omega. (pei.R(G1) + (1- pei).R(G2)) 

  endwhile  

endwhile   

Return (R) 

end (Facto) 

 

Function Cleaning(G) 

 Rule 1: All edges going into the source and all edges going out of the sink are removed; 

 Rule 2: Every node, except the source and the sink, with 0 in-degree or 0 out-of-degree can 

be removed 

end(Cleaning) 

 

Function Reduction(G) 

      Do case 
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         case type 1  do  reduction type-1 

                           

         case type i  do    reduction type-i 

       endcase 

end (Reduction) 

 

/****           Body of main program     ****/ 

 read the network G from data file 

 Facto(Adj(G),R, s, t) 

end.    

 

6.7  IMPLEMENTATION AND COMPARISON 

We compared the performance of the program written out in MatLab code according to the 

logic of the algorithm developed in this work and supporting all the factoring phases with 

some best implementations found in the literature. The program runs on a Personal 

computer under Microsoft Windows XP operating system. We have applied a procedure 

which uses respectively simple reductions and polygon-to-chain reductions and tested them 

by using the benchmarks of the Figures 6.4 and 6.6. The performance of the procedure is 

presented in the Figure 6.5 and the number of reduction operations in the Table 6.1. We 

noticed that the efficiency of such reductions are executed faster and diminish the number 

of decompositions required to compute the reliability. The evaluation of the reliability of 

each network is given for perfect and imperfect nodes, and this, is based on an initial 

probability value equal to 0.9 assigned to the imperfect nodes and to each edge. We note 

that the execution times are very interesting compared with others implementations such as 

those of the paper (Choi and Jun, 1995) (see Table 6.1).  

 

                                         Figure 6.4.  Topology of the (3 x m) networks. 



141 

 

 

 

 

 

Figure 6.5.  Performance of the algorithm using the (3 x m) network 

 

 

Figure 6.6.  A set of networks used as a benchmark. 

 

Table 6.1.  Comparison between Choi and Jun (1995) and our algorithm performance.  

 

Reference/Networks  (a)  (b) (c) (d) (e) (f) 

Choi and Jun, 1995 473 ??? 2620 ??? 6286 1484937 

0ur procedure 318 29 1131 618 4446 370139 

Reliability value 0.998059 0.997186 0.99979 0.963020 0.99712 0.999795 
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Note that the values in Table 6.1 represent the number of the reduction operations for each 

network and ―???‖ means that the relative network have not been considered by Choi and 

Jun.  

 

6.8. MODELING A RADIO COMMUNICATION  

A conceptual design for a generic radio system provides a convenient mean for people to 

communicate instantaneously engaged in various public safety-related services. 

The generic radio system is usually expected to transmit and receive to its coverage areas 

radio signals that are used to carry voice and data on a daily basis throughout the year and 

whatever the critical conditions. An example of a radio communication system is depicted 

in Figure 7.  

 

 

 

Figure 6.7.  A star network topology 

 

A radio system consists of equipment scattered across a wide geographic area. Radio 

equipment can be classified as either fixed, mobile, or portable and includes at least a 

transmitter, a receiver, and antenna system (e.g. in Figure 6.8). Fixed equipment is located 

at a central site such as a headquarters (Figure 6.7), and usually consists (at least) of a base 

station, microphone, and antenna. The base station is used to transmit the signal generated 

through the microphone to portable and mobile equipment in a wide area deserved by the 

system. The range of the base station depends on its power, antenna system, terrain, carrier 

transporter (e.g. T1 or E1) and environmental conditions.  
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In a radio infrastructure, system may perform three types of communication: simplex, half-

duplex, and duplex. The communication type used depends on the number of users and the 

type of equipment available. 

 

 

Figure 6.8.  A linear network topology 

 

The basic components of the radio system are interconnected forming a network. Such 

network may contain the following elements: 

 

    • Radios (portable and mobile radios) 

• Sites (master sites, secondary Radio Frequency (RF) sites) 

• Zones (a zone or zones containing one or more RF sites) 

• System (single zone or multiple zones containing one or more RF sites)  

 

In the radio system, a zone is responsible for managing its own elements (sites, repeaters, 

subscribers, UHF-VHF and microwave carriers) interconnected using a Local Area 

Network (LAN) (Figures 6.8 and 6.9). The LANs are interconnected though a high-speed 

transport network to form a Wide Area Network (WAN). The WAN allows user 

configuration information, call processing information, and audio to be conveyed 

throughout the system. 
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Figure 6.9.  A communicating radio network 

 

Each zone framework includes a physical infrastructure, managing mobility and processing 

calls transported using IP (Internet Protocol) packet technology through the network. 

  

An ordinary radio site consists of the following subsystems (see Figure 6.10):  

 A tower  

 UHF-VHF antennas 

 Microwave antennas 

 Connectors 

   Power electric energy Resources deserved by a public network and batteries 

used to secure power alimentation in case that the power network fail to deliver 

energy. 

 Repeaters resources stations (communicating channels) 

A master site consists of core and exit routers, WAN and LAN switches, controllers and 

some operative computers plus others monitoring and dispatching hardware/software 

systems.  

 

The generic radio communication system is developed to support the development of an 

analysis methodology for Reliability, Availability and Maintainability (RAM) and thus to 

optimize the performance of the system. 
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Figure 6.10.  A standard radio communication site 

 

Based on the RAM requirement it is expected to determine: 

 Reliability of the critical components and subsystems. 

 Overall reliability of the radio communication system. 

 Availability of the critical components and subsystem. 

 The sensitivity of the RAM parameters. 

 The maintenance time and budget for corrective actions. 

 The maintenance time and budget for preventive operation as a function of 

subsystem. 

Note that only the tree first points have been worked in this paper. 

The approach used in this work is based on the well-known standards STD-MIL which 

specify that reliability prediction utilizes a series model for system reliability evaluation for 

one or more components. It is permitted in case of critical components or according to the 

structure of a subsystem to use hot-standby and the redundancy items are modelled in 

parallel.  
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The reliability of the overall system is critically dependent upon the number of hours each 

component still functioning and given according of the Mean-Time Between Failures 

parameters (MTBF). The reliability of each component for a time duration t can be 

expressed as an exponential function depending on the relative MTBF. Tables 6.2 to 6.6 

give the expected reliability and availability of each subsystem. Because the major parts of 

the system components are electronics, we note that both the availability and the reliability 

are similar due to negligible value of the MTTR (mean time to repair).  

In the following tables, time is evaluated using one hour unit.  

Table 6.2.  Reliability of the microwave system 

Time(h) R(t) (1 – R(t)) 

1000 0.8965 0.1035 

2000 0.7987 0.2013 

3000 0.713 0.287 

4000 0.6422 0.3578 

5000 0.5744 0.4256 

6000 0.5136 0.4864 

7000 0.4609 0.5391 

8000 0.4187 0.5813 

9000 0.3765 0.6235 

10000 0.3343 0.6657 

Table 6.3.  Reliability of the radio constellation 

Time(h) R(t) (1 – R(t)) 

2000 0.9339 0.0661 

4000 0.8743 0.1257 

6000 0.813 0.187 

8000 0.7575 0.2425 

10000 0.7087 0.2913 

12000 0.66 0.34 

14000 0.6136 0.3864 

16000 0.5716 0.4284 

18000 0.5322 0.4678 

20000 0.4949 0.5021 
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Table 6.4.  Reliability of the Ethernet System 

Time(h) R(t) (1 – R(t)) 

13140 0.9575 0.0425 

26280 0.9167 0.0833 

39420 0.8811 0.1189 

52560 0.8464 0.1536 

65700 0.8114 0.1886 

78840 0.777 0.223 

91980 0.7471 0.2529 

105120 0.7208 0.2792 

118260 0.6928 0.3072 

131400 0.8874 0.3326 

Table 6.5.  Reliability of the power system 

Time(h) R(t) (1 – R(t)) 

13140 0.9999 0.0001 

26280 0.9999 0.0001 

39420 0.9998 0.0002 

52560 0.9997 0.0003 

65700 0.9994 0.0006 

78840 0.9989 0.011 

91980 0.9988 0.0012 

105120 0.9986 0.0014 

118260 0.9984 0.0016 

131400 0.9984 0.0016 

Table 6.6.  Reliability of the VHF-THF system 

Time(h) R(t) (1 – R(t)) 

13140 0.9999 0.0001 

26280 0.9997 0.0003 

39420 0.9994 0.0006 

52560 0.9991 0.0009 

65700 0.9989 0.0011 

78840 0.9989 0.0011 

91980 0.9988 0.0012 

105120 0.9984 0.0016 

118260 0.9982 0.0018 
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131400 0.9981 0.0019 

 

Table 6.7.  Reliability of the standard system 

Time(h) R(t) (1 – R(t)) 

1000 0.8904 0.1096 

2000 0.7944 0.2056 

3000 0.7092 0.2908 

4000 0.6353 0.3647 

5000 0.565 0.435 

6000 0.503 0.497 

7000 0.4473 0.5527 

8000 0.4001 0.5999 

9000 0.3586 0.6414 

10000 0.317 0.683 

 

It is agreed that a site is modelled using a series of structures composed by the above five 

sub-systems.  

The final table (Table 6.7) gives the overall reliability of the radio-communication network. 

Note that the detailed results cannot be included in the paper because the size of the final 

matrix is 156x156 nodes, while each node is composed by at least 20 components. 

6.9  CONCLUSION 

In this paper we have presented an efficient algorithm to evaluate network reliability 

whatever the complexity of the corresponding graph. This approach makes distinction 

between perfect and imperfect nodes and works according to the reality and exactitude of 

distributed complex systems and this avoids the doubt. The idea behind our development is 

to diminish the number of reduction and decomposition rules and thus the execution time. 

For that, we have shown that polygon-to-chain reductions are well-suited for computing 

network reliability. This feature gives a significant improvement in the execution time. We 

think that to be more accurate and to render the program faster, it is necessary to develop 

more efficient algorithms and tools to extract substructures like polygons and other 

topologies embedded in networks. This will be our next research. More, we have shown 
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that radio communication systems can be modelling using Reliability block diagram and its 

reliability is evaluated using the algorithm which was introduced in this paper.  
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Chapter 7 
 

 

Méthode de factorisation polygone-à chaine pour 

l’évaluation exacte de la fiabilité des réseaux dont les 

nœuds et les liens sont imparfaits 
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7.1 Résumé 

Dans ce chapitre, nous proposons un modèle analytique pour l’évaluation exacte de la 

fiabilité des réseaux. L’algorithme suggère d’effectuer des remplacements de sous-

structures topologiques identifiables dans le réseau par des sous-structures plus simples. 

Dans le cas général, ce processus s’appelle réduction polygone-à chaine. Le principe utilise  

les techniques de décomposition et de réduction basées sur le théorème de factorisation de 

Moore et Shannon. L’objectif est de montrer que même dans le cas ou les nœuds et les liens 

d’un réseau peuvent être sujets à des défaillances, l’évaluation de la fiabilité devient aisée 

une fois le réseau est prouvé décomposable. Pour cela, nous proposons des outils 

mathématiques et un algorithme qui  permettent de calculer la fiabilité en temps linéaire. 

7.2 Introduction 

Dans ce chapitre, nous nous intéressons au développement d’un modèle analytique pour 

l’évaluation de la fiabilité des réseaux. Nous utilisons le concept de réseau pour modéliser 

la structure de fonctionnement d’un système. Pour évaluer la fiabilité du système, il est 

nécessaire de connaitre la fiabilité de chacun de ses composants ainsi que sa structure. Dans 

la pratique, il n’existe pas une forme générale et unificatrice pour un tel calcul, sauf lorsque 

les structures sont des cas particuliers de type-- parallèle, série, série-parallèle, standby, k-

parmi-n, etc. (voir table 7.1). Pour les réseaux, les méthodes principales d’évaluation de la 

fiabilité sont fondamentalement basées sur l’exploitation des chemins et des coupes 

minimales (Lin et al., 2003), les méthodes de réduction, des sommes de produit-disjoints 

((Abraham, 1979), (Heidtmann, 1989),  (Locks, and Wilson, 1992), des diagrammes binaires 

de décision (Liu et al. 1993), (Bryant, 1986) et le concept d’inclusion-exclusion. Le 

problème d’évaluation de la fiabilité dans ces cas, est un problème NP-difficile (Valian, 

1979) d’où la nécessité de développer de nouveaux outils de calcul pour à la fois évaluer la 

fiabilité du réseau et optimiser sa conception. Cependant, les méthodes proposées dans la 

littérature traitent de configurations particulières d’où leur performance a été évaluée pour 

de cas simples dont la valeur de la fiabilité est connue ou simple à évaluer. 
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En face de la complexité des réseaux modernes, il devient important de proposer de 

nouvelles techniques plus efficaces. Tout au long de ces dernières décennies, certaines 

méthodes ont été élaborées, comme celle de Moskowitz (1958), qui a introduit une solution 

qui utilise le théorème de décomposition par factorisation basée sur le théorème de Moore 

et Shannon (1956). Depuis lors, de nombreux articles ont été consacrés à ces idées comme 

ceux de Misra (1970), Murchland (1973), Rusenthal (1974), et Nakazawa (1976). D’autres 

travaux plus intéressants  ont été publiés par Satyanarana  and Chang (1983), Satyanarana 

and Wood (85), Wood (86), et dans lesquels leurs auteurs  proposent un cadre unifié sur la 

base du théorème de factorisation permettant d’évaluer la fiabilité des réseaux dont les 

nœuds sont totalement fiables. Il est bien connu que dans la pratique, les réseaux 

deviennent très sensibles et imposent le fait de considérer non seulement les liens mais 

aussi les nœuds comme possiblement défaillants, c’est le cas par exemple des réseaux de 

télécommunications. Le but de ce chapitre est précisément d’élargir les travaux de 

Satyanarana et Wood. (1985) et ceux de Theologou et Carlier (1991), pour le cas de 

réseaux dont les nœuds et les liens peuvent être défaillants. Quelques chercheurs ont repris 

l’idée de réduction par factorisation polygone-à chaine  (Choi., 1995), (Frattaand and 

Montanari, 1973), mais sans aller loin dans leur développement. Dans Theologou et Carlier 

(1991), les auteurs ont fait valoir que la décomposition polygone-à chaine ne peut être 

appliquée lorsque les nœuds d’un réseau sont défaillants. Nous allons à travers ce chapitre 

montrer comme  l’a fait Wood (1986) pour les cas des réseaux avec des nœuds fiables, qu’il 

est possible d’obtenir un algorithme polynomial pour les cas ou les liens et les nœuds sont 

imparfaits. Ce dernier simplifie les graphes de type-1, de type-2 jusqu’au type-7  (voir de 

plus prés Satyanarana et Wood (1985), (Simard, 1996), (Rebaiaia et al., 2009) pour 

comprendre cette notion de types) et ceci juste en appliquant le théorème de factorisation. 

Dans ce papier, il est question que les développements mathématiques prendrons en charge 

d’un coté les réductions polygone-à chaine de type 1 et de type 6 pour le cas ou seuls les 

liens sont défaillants et de type 1 et de type 7 lorsque les liens et les nœuds sont imparfaits. 

Cependant, il est utilise de savoir que pour le cas parfait Satyanarana et Wood (1985) ont 

présenté une démonstration qui traite uniquement la réduction polygone-à chaine du type 7 

sans passer par le type 1. Nous nous sommes appliqués dans cette thèse à démontrer de 

deux façons différentes la validité de quelques théorèmes en rapport avec la factorisation et 
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les travaux de Satyanarana and Wood que nous énoncerons par la suite. Pour le cas de la 

transformation polygone-à chaine des réseaux imparfaits, à notre connaissance, c’est le 

premier travail qui aborde de façon unique et claire cette problématique. Nous résumons 

dans la table 7.6 toutes les décompositions polygone-à chaine dans le cas des réseaux 

imparfaits. 

 Le contenu de ce chapitre est structuré comme suit : la section 2 présente les bases 

théoriques du principe de réduction, du théorème de factorisation et de la décomposition 

polygone-à chaine.  A la section 3, les modèles traitant la factorisation polygone-chaine de 

type-1 et de type 6 sont détaillés, dans le cas ou seuls les liens sont sujets aux défaillances. 

La section 4, traite l’application du principe de la factorisation dans le cas ou les nœuds et 

les liens sont imparfaits. L’algorithme et un exemple pratique sont résumés dans la section 

5 et une conclusion est présentée dans la section 6. 

 

Table 7.1. Structures simples, fonctions de structures et fonctions de fiabilités 

 
Structures Fonction de structure Forme mathématique 

 
A =  

 

  
      A1       A2             An               

  

 
  

 

 

 

 

                                            

 

 

 

 

 

                                        

                                                                         

 

 

 

 

 

K parmi n 
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7.3 Préliminaires 

 

7.3.1 Notions de base 

 

Un réseau est un graphe où  est un ensemble fini de n nœuds (sommets) et  

un ensemble fini de m arêtes qui sont les liens permettant de rendre possible la 

communication entre les nœuds. Si le graphe est orienté, on parlera d’arcs au lieu d’arêtes. 

On associe à chaque arc et à chaque nœud une probabilité de bon fonctionnement et on 

considère que ces dernières sont statistiquement indépendantes. Nous adoptons la notation s 

et t pour définir le choix du sommet source et du sommet de destination et l’on parlera alors 

d’un problème 2-terminaux, dit aussi terminal-paire (Deo and Medidi, 1992), (Yoo and 

Deo, 1988), (Dotson, and Gobien, 1979). Pour certains réseaux, on peut s’intéresser à 

l’évaluation de la probabilité que K- nœuds soient reliés entre eux, on parlera alors de la 

fiabilité K-terminaux notée  qui représente la probabilité que tous les K-nœuds soient 

reliés entre eux par une arborescence (noter que les K-nœuds sont dessinés par des rond 

pleins). La généralisation d’une telle notion parait nécessaire pour certaines classes de 

problèmes, dits tous-terminaux.  Notez qu’un 2-terminaux suffit amplement à définir la 

fiabilité du réseau.  

Dans la pratique deux situations peuvent se produire lorsqu’il est question de calculer la 

fiabilité d’un réseau. Soit que ce réseau est réductible et qu’on lui applique successivement 

une série de règle de réductions simples du type série, série-parallèle, réduction de degré-2, 

delta-étoile et vice-versa, ou bien, dans le cas contraire le graphe est alors irréductible (voir 

figure 7.1), on procède alors par l’application d’une série de réductions dites polygones-

chaines (Theolougou and Carlier, 1991), (Wood, 1986). 

 

 

 

 

 

 

 

 

     Figure 7.1.  Gauche : Graphe réductible             Droite : Graphe irréductible 
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Pour mieux expliquer la problématique de la factorisation, nous présentons dans ce qui suit, 

certaines définitions et formalismes qui seront utilisés comme éléments de base à notre 

contribution. Toute fois, il est important de noter que les opérations de réductions série-

parallèle sur un graphe réductible peuvent être calculées en un temps linéaire et ceci 

dépendamment de la taille du graphe (Wood. 1985). 

7.3.1.1  Principe du Théorème de Factorisation 

Les méthodes de factorisation dites aussi de réduction, utilisent le théorème de factorisation 

de Moore & Shannon. Elles consistent essentiellement à décomposer un graphe en faisant 

des hypothèses sur l’état d’un composant, jusqu'à ce que l’on obtienne des graphes à 

configurations simples. Le théorème des probabilités totales permet alors de calculer la 

fiabilité du graphe à partir de sous-graphes obtenus. L’idée derrière ce processus étant de 

postuler dans un graphe qu’un arc e est bon (   revient à dire que la 

communication à travers cet arc est assurée. Le cas contraire s’écrit 

. Dans un graphe orienté, une communication parfaite entre deux nœuds est équivalente à 

les fusionner en un seul nœud, et l’impossibilité de communiquer à travers un arc entraine 

sa suppression.  

Considérons un graphe G dans lequel on choisi un composant j aléatoirement. Le théorème 

des probabilités totales permet pour ce composant j, d’exprimer la fiabilité du graphe G 

par : 

 

 

Si l’on substitue la probabilité  par  et  par  qui sont 

respectivement les probabilités de bon fonctionnement et de défaillance, Il s’ensuit, que : 

 

(7.0) 



157 

 

 

Ce processus de décomposition se poursuit autant de fois qu’il est nécessaire, autrement dit, 

jusqu'à ce qu’une structure simple soit trouvée (si elle existe) et dont la fiabilité est facile à 

évaluer. Il est à noter que le choix de certains composants peut parfois faciliter le nombre 

de décompositions, ce qui nécessite d’utiliser une heuristique pour le choix. Cette façon de 

raisonner permet de postuler qu’un lien entre deux nœuds est équivalent à fusionner ces 

deux nœuds en un seul. Le contraire, conduit à supprimer ce lien.  

Notons que l’équation (7.0) peut aussi s’écrire sous la forme de l’équation (7.1) en 

supposant que si ),( vuei   est un lien du graphe KG  et, 
iF  et iF  dénotent respectivement 

que l’événement ie  (le composant) soit qu’il fonctionne, soit qu’il est défaillant.  

)'()'()()()( '' KiKiiKiiKiK GRqGRpFGRqFGRpGR   (7.1) 

A partir du théorème des probabilités totales, certains auteurs ont énoncé simplement le 

théorème de factorisation, qui permet d’écrire que pour un composant e, choisi 

arbitrairement, la fiabilité du réseau  est exprimée par : 

)().1()*(.)( eGRpeGRpGR ee   (7.2) 

où 

 

        :  la fiabilité du réseau . 

   : la probabilité que le système fonctionne lorsque le composant e fonctionne 

(l’arc e est contracté). 

 : la probabilité que le système fonctionne lorsque le composant e est 

défaillant (l’arc e est éliminé). 

Et tel que : 

 
Pour illustrer le théorème de factorisation nous présentons un graphe simple dit Bridge 

network ou Pont de Königsberg (figure 7.2). Pour cela, supposons que le composant 3 étant 

l’élément pivot. Les différentes étapes de décomposition sont illustrées dans la figure 

suivante. 
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Figure 7.2. Décomposition du réseau Pont de Königsberg. 

 

Connaissant la fiabilité  de chaque composant ainsi que le composant 

pivot (ici le composant 3), la fiabilité du système peut être facilement évaluée à partir de 

relations résultantes identifiées par les feuilles de l’arbre de décomposition. 

 

 

Remarque 1: Pour identifier l’expression équivalente, nous avons procédé par séparation du 

graphe en deux parties, puis de proche en proche nous avons effectué des compositions 

parallèles et séries (voir figure 7.2). Le but est de ramener le réseau vers une structure 

simple à identifier. Le processus s’arrêtera lorsqu’il ne sera plus possible de faire des 

réductions simples.  

 

Remarque 2 : Compte tenu de la complexité de cette méthode qui est de nature 

exponentielle, il est souhaitable de réduire au maximum la taille du graphe avant 

d’appliquer le théorème de factorisation. Pour cela les réductions suivantes sont 

nécessaires. 

Le principe du théorème de factorisation permet de calculer la fiabilité de n’importe quel 

type de réseau, à condition qu’il soit décomposable. Donc, à chaque application du 

théorème de factorisation, on décompose le graphe en deux parties de tailles légèrement 

réduites, à savoir,  qui est le graphe  avec un nœud et une liaison en moins, et   
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avec une liaison en moins (arc, arête). Si n est le nombre de liaisons dans un réseau , alors 

dans le pire des cas, on utilisera le théorème de factorisation (   

Nous constatons que l’application du théorème de factorisation engendre une complexité 

exponentielle, dans ce cas de figure, il est important pour l’accélération des calculs de 

procéder à des réductions sur la taille du graphe.  

 

7.3.2 Réductions et factorisation 

Le principe de la réduction d’un graphe de fiabilité avant l’application du théorème de 

factorisation est de diminuer autant que possible le nombre des nœuds et des arêtes à 

condition que la valeur de la fiabilité reste invariable. Cela, conduit à générer un nouveau 

graphe  équivalent en termes de fiabilité au graphe initial . Donc, il s’agit de remplacer 

une structure topologique complexe par une autre plus simple qui préserve les mêmes 

propriétés de fiabilité. C’est-à-dire que si   est une constante de transformation propre à 

chaque formule de transformation. Dans le cas général nous définissons alors la relation 

suivante : 

 

 (7.3) 

 

Il est important de noter que le processus de réduction est d’une complexité polynomiale 

contrairement à la décomposition qui est exponentielle. Ce processus doit procéder dans un 

premier temps, par une succession de réductions simples appliquées à des graphes dits 

série-parallèles. Elles se définissent comme suit : 

7.3.2.1 Réductions séries-parallèles  

Le processus de réduction tient compte précisément des données relatives aux fiabilités et 

celle des K-nœuds du graphe, alors le remplacement parallèle et le remplacement série ne 

font que modifier la structure topologique du graphe d’une forme complexe vers une forme 

simple à partir de  laquelle, la fiabilité du graphe est déduite avec moins d’effort de calcul. 

Les réductions simples les plus fréquentes se résument comme suit :   
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Réduction série. Soient  et   deux arêtes en série définies dans   et, 

tel que le  et ∉ . Une réduction série obtient  par le remplacement de 

et  par une seule arête    de fiabilité , et qui définit  Ω = 1 et K’ 

= K, et où . 

 

 

                                                                série                                  

             u                 w                v                                                u                               v                                                           

 

Figure 7.3. Réduction série 

 

Réduction parallèle.  Soient   et   deux arêtes parallèles dans  et 

supposons que   (i = a or b), la fiabilité associée à l’arête i. Une réduction 

parallèle permet de remplacer et  par une seule et unique arête    de 

fiabilité , et qui définit Ω = 1 et K’ = K et où . 

 

                                 

 

                                                                        parallèle                               

               u                             v                                               u                                   v 

 

Figure 7.4. Réduction parallèle 

 

Réduction de Degré-deux.  Soient  et    deux arêtes en série dans  

, telles que ,   et . Une réduction de degré-deux crée  

par le remplacement de et  par une seule et unique arête   de fiabilité  

 , avec , et . 

 

 

                                                           degré 2                                 

 

Figure 7.5. Réduction de degré deux 

 

Réduction delta-à étoile. La réduction delta-à étoile consiste à remplacer une structure 

topologique delta par une structure étoile. Les sommets de la structure delta doivent être 
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tous de même type : tous des K-nœuds ou tous des non-K-nœuds. Le sommet ainsi rajouté 

pour le besoin de la transformation vers la structure étoile n’appartient pas à K et sa 

probabilité est calculée comme suit (figure 7.6): 

 

 

 

    

 

 

Avec   

 

 ,  ,  

 
 

 Figure 7.6. Réduction delta-à étoile 

 

Réductions polygone-à chaine. Dans un graphe , une chaine  est une séquence alternée 

entre les nœuds et les arêtes du graphe. Sa longueur est le nombre d’arêtes qui la compose 

et elle est au moins égale à 1. Aussi, les sommets internes sont tous de degré 2, et les 

sommets aux extrêmes sont de degré supérieur à 2. Si le graphe admet au moins deux 

chaines  de longueur , et si ces deux chaines ont en commun 

deux nœuds en terminaux u et v, alors  est un polygone de longueur . 

Autrement dit, le polygone forme un cycle dont deux sommets sont de degré supérieur à 2. 

Il est aussi vrai que deux chaines parallèles délimitées entre deux nœuds peuvent être 

substituées et donc remplacées par une nouvelle chaine. Cette opération est dite réduction 

polygone-à chaine. Ce qui suggère qu’une transformation polygone-à chaine, consiste à 

remplacer un polygone par une chaine. Aussi, comme les polygones se diversifient par la 

forme de leur structure, c’est-à-dire le nombre d’arêtes les composant, Satyanarayana et 
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Wood (1985), ont énuméré 7 types de polygones pouvant être remplacés par une chaine. 

C’est ainsi, que par une série de transformations polygone-à chaine qui peuvent être 

entrecoupées par des réductions série, parallèle, delta-étoile et étoile-delta que tout réseau 

qui admet des sous structures de type polygone, dans le meilleur des cas, peut être 

transformé en une structure très simple (par exemple une chaine) et par la même, sa fiabilité 

est réduite par application des formules ainsi obtenues.    

Notons que la table 7.1 (page 823) publiée par Satyanarayana et Wood (1985) et reprise 

dans Wood (1986) présente les réductions polygone-à chaine pour les réseaux parfaits. 

Néanmoins, les auteurs ont présenté les rudiments du calcul basé sur le théorème 1, donné à 

la page 823 et sa démonstration. Ce théorème fournit un cadre général sur lequel nous 

pouvons déduire les transformations polygones-chaine des 7 figures. Il est utile de constater 

que le processus de transformation n’est pas aussi aisé que les auteurs pensent sans la 

reproduction de toutes les étapes de transformation. Ce travail va être fait par nous dans le 

cadre de cet article. Il constitue un apport très important pour montrer que sans passer par 

les détails de l’application du théorème de factorisation, l’on serait incapable de trouver 

toutes les formules de transformation énoncées dans la table 1 de Satyanarayana et Wood 

(1985). Notons aussi que les travaux de Satyanarayana et Wood prennent en charge 

uniquement les réseaux non-orientés dont seules les arêtes sont susceptibles de représenter 

les défaillances et le bon fonctionnement. La réalité est toute autre, car les systèmes actuels 

sont plus complexes et donc les nœuds peuvent aussi subir des défaillances. Plusieurs 

travaux ont été réalisés dans ce sens et des algorithmes énoncés. Parmi ceux-là, Théologou 

et Carlier dans (1991) ont présenté un algorithme qui prend en charge cette problématique. 

Nous y reviendrons un peu plus tard sur ce cas en proposant un schéma de démonstration 

qui ne se trouve dans aucun travail (à notre connaissance) fait en dehors des travaux de 

Simard (1996) et Rebaiaia et al. (2009),  

Dans ce qui suit,  nous présentons une dynamique de transformation qui détaille 

contrairement à Satyanarayana et Wood toutes les opérations de réduction. Pour cela, nous 

commencerons par le cas polygone-à chaine de type 1 et nous énoncerons le théorème 1. 

Nous ferrons aussi le parallèle en considérant le cas de polygone-à chaine lorsque les 

nœuds et les arêtes peuvent être sujets à des défaillances. On dira alors que les arêtes et les 



163 

 

 

nœuds sont imparfaits. Pour cela nous énoncerons le théorème 7.2 pour le cas de la 

transformation de polygone-à chaine de type 6. 

 

7.4 Factorisation polygone-à chaine- Cas des liens imparfaits et nœuds parfaits   

7.4.1 Réduction polygone-à chaine de type 1  

Pour démontrer les résultats d’une telle transformation, considérons le cas d’une réduction 

polygone-à chaine de type 1 (il est conseillé de voir Satyanarayana et Wood (1985) ou 

Rebaiaia et al., (2009).  Dans ce cas, le graphe  qui est l’équivalent du graphe , est 

obtenu en remplaçant le polygone de type 1 (triangle) par la chaine qui possède deux arcs 

 et  avec les fiabilités respectives  et  (voir figure 7.7). La relation générale qui 

relie la fiabilité du graphe et  est donnée par . Le problème dans ce cas 

est de déterminer le triplet (Ω, , ). 

 
Figure 7.7.  Réduction polygone-chaine de type 1 

 

Pour le faire, nous énonçons le théorème suivant : 

 

Théorème 7.1.  

Supposons qu’un graphe   contienne un polygone de type-1 tel que présenté dans la figure 

7.7 (Gauche). Soit  le graphe obtenu par transformation du graphe  par remplacement 

des arêtes  et  de probabilités  et  par les arêtes  et  de fiabilité   et  et soit 

 un facteur de multiplication. Alors 

 

 

où  , ,  , , 

 et  . 
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Preuve : 

La première étape consiste à appliquer successivement la procédure de factorisation sur les 

arcs pivots , et .  Nous procédons comme suit :  

Pivotons tout d’abord sur l’arc  (voir la figure 7.8) tout en appliquant l’équation (1), la 

fiabilité du graphe devient : 

(  * )  (7.4) 

  

 
Figure 7.8.  Première étape du processus de factorisation 

Puis, décomposons sur l’arc , nous obtenons la relation (7.5): 

 

 

 

Nous pouvons remarquer que la fiabilité du graphe  est nulle. En effet, en 

retirant les arcs   de G, le K-nœud se trouve complètement isolé, par conséquent 

cette opération génère une fiabilité nulle. La relation (7.5) précédente devient :  

 (7.6) 

 

Appliquons de nouveau le théorème de factorisation aux graphes réduits  et 

 en considérant l’arc   La relation (7.6) est en transformée en (7.7) : 

 

 

 

(7.7

) 
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Notons que nous n’avons pas pu éliminer l’arc par décomposition du graphe 

, puisque cet arc ne fait plus partie du graphe correspondant à la contraction des arcs et 

. 

L’équation précédente (7.7) est l’expression de la fiabilité du graphe  en fonction de 

graphes réduits n’ayant plus les arcs du polygone. Comme les graphes correspondant à, 

sont identiques, il en résulte que 

les fiabilité de ces graphes sont aussi identiques. Donc l’expression (7.7) devient : 

 

 

 

Par une démarche identique, on peut exprimer la fiabilité du graphe  en pivotant 

successivement sur les arcs   et donc la fiabilité du graphe s’écrit : 

 
 

 

Il est nécessaire dans le cas actuel d’exprimer la relation permettant de relier la fiabilité de 

 à celle de . Nous pouvons remarquer qu’il existe une similitude entre les formules et il 

en découle que:  

 

Comme la formule générale de réduction est donnée par , on obtient un 

système de trois équations à trois inconnues (Ω, , ) et qui est : 

 

 

 

En résolvant ce système on obtient une formule de réduction qui permet de remplacer un 

polygone de type 1 par une chaine de longueur deux.  Les fiabilités relatives aux arcs de la 

chaine sont : 
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Finalement, nous notons qu’il est possible de dériver une topologie simplifiée à partir d’une 

autre plus complexe tout en préservant l’expression de la fiabilité en tant que telle, et ceci 

après l’application d’une série de réductions. Le problème qui risque de surgir étant, 

l’automatisation de la reconnaissance d’une certaine topologie dont les calculs se déduisent 

très facilement. L’idée est très bénéfique à condition de concevoir des algorithmes 

puissants qui permettent de sauter facilement une telle phase critique du processus de 

calcul, ou du moins de déterminer les moyens nécessaires de chercher les équivalences 

entre structures.  

 

7.5 Réduction polygone-à chaine de type 6  

Nous pouvons à présent énoncer le théorème de Satyanarayana et Wood (1985) qui 

généralise le calcul uniquement pour le cas ou seules les arêtes sont imparfaites. 

Théorème 7.2.  

Supposons que GK contienne un polygône de type J (1≤J≤7). Soit, G’K’, le graphe obtenu 

après le remplacement du polygône ∆j de GK de chaine χj, et soit j le facteur de 

multiplication. Alors, . 

 

La démonstration du théorème se trouve dans Satyanarayana et Wood (1985) aux pages 

824-825.  
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 A partir du théorème 7.2 et en cheminant de la même manière que pour le cas de 

réduction-à chaine de type 1 lorsque seuls les liens sont sujets à des défaillances, nous 

énonçons le théorème  suivant : 

 

Théorème 7.3. 

Supposons qu’un graphe   contienne un polygone de type-6 tel que présenté dans la figure 

8 (a). Soit  le graphe obtenu par transformation du graphe  par remplacement des arêtes 

 et  de probabilités  et   par les arêtes ,  et  de fiabilité  

,  et  et soit  un facteur de multiplication. Alors 

 et 
D

D
pr





 ;  
D

D
sp





 ;  
D

D
tp



  

 ;  
2

))()((

D

DCDBDA 
             

tsr ppqA .  ;   tsr qppC .  ;  tsr pqpB .  ;  tsr pppD .                             

 
Figure 7.9. Factorisation polygone-à chaine de type-6 

Preuve : 

     Adoptons une démarche différente que pour le cas polygone-à chaine de type 1. Au lieu 

de rappeler tous les graphes induits suite aux décompositions ainsi que l’expression de leurs 

fiabilités, nous résumerons le processus de factorisation en fournissant les graphes non-

défaillants (les autres provoquant la nullité de la fiabilité sont écartés), les événements et la 

valeur des fiabilités relatives. La table 7.2, résume les résultats de la décomposition 

polygone-à chaine de type 6. Il est simple de constater que le nombre de combinaisons des 

événements qui forment l’état du système est égal à 52 . Cependant, nous constatons que 

chaque état non-défaillant induira un nouveau graphe constitué du nombre correspondant 

de K-nœuds. Il y en aura dans ce cas 4 graphes comme dans la figure 7.10 avec les états et 

les probabilités dans chaque cas. 
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        Figure 7.10. Graphe G renfermant un polygone de type-6 (A) et ces 4 sous-graphes 

induits non-défaillants (B, C, D et E) 

  

A partir des graphes de la figure 7.10, nous déterminons les états et les probabilités 

correspondant à chaque graphe induit. Nous supposons toujours que iF  et iF  dénotent 

respectivement que l’événement ie  (le composant) soit qu’il fonctionne, soit qu’il est 

défaillant et chaque ip  (resp. ) étant la probabilité de non-défaillance (resp. 

défaillance). Toutes les formules sont reportées dans la table suivante : 

Table 7.2. États de non-défaillants et les probabilités des graphes ainsi déduits.  

Graphe États Probabilités 

B 
54321 FFFFF  54321 pqppq  

C 
54321 FFFFF  54321 qpqpp  

D ;54321 FFFFF ;54321 FFFFF  
;54321 FFFFF 54321 FFFFF  

54321543215432154321 qpppqpqqppqppqppqpqp 
 

)()( 5431543125454321 pqqpqppqpqppqpqp   

E 

5432154321

5432154321

5432154321

;

;;

;;

FFFFFFFFFF

FFFFFFFFFF

FFFFFFFFFF

 

)1(
5

5

4

4

3

3

2

2

1

1
54321

543215432154321

543215432154321

p

q

p

q

p

q

p

q

p

q
ppppp

qpppppqpppppqpp

pppqpppppqppppp






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   Finalement, en regroupant les expressions similaires et en supprimant d’autres qui 

induisent la nullité, l’expression de fiabilité du polygone de type 6 ainsi réduite est comme 

suit : 

),(.),(.),(.),(.)(
E

KEGR
D

KDGR
C

KCGR
B

KBGRKGR    

   Le pivotage successif sur les liens 
4321 ,,, eeee et 

5e , transforme le graphe KG  à une 

chaine ''KG (voir figure 7.9). Cependant lorsqu’on utilise le théorème de factorisation sur 

''KG pour déterminer les formules d’équivalences des termes, nous identifions sur ''KG

quatre graphes non-défaillants, les états ainsi que les probabilités correspondants. En 

supposant toujours que 
sr FF ,  and 

tF  sont les événements relatifs aux liens sr,  et t  

(figure 7.9. (b)), les résultats sont résumés dans la table  7.3. 

Table 7.3. États non-défaillants et les probabilités des graphes induits ''KG . 

 

Graphe States Probabilités 

B’ 
tsr FFF  tsr ppq'  

C’ 
tsr FFF  tsr qpp'  

D’ 
tsr FFF  tsr pqp'  

E’ tsr FFF  tsr ppp'  

 

En regroupant les termes équivalents, la fiabilité du graphe ainsi réduit est : 

 
)'(.)'(.)'(.)'(.

)'('.)'('.)'('.)'('.)'(

'','','','','

'','','','',''

'''

'''

EKEtsrKDtsrKCtsrKBtsr

EKEKDKCKBK

GRpppGRpqpGRqppGRppq

GRGRGRGRGR

DCB

DCB



 
 

Utilisons présentement la relation )'()( 'KK GRGR  , nous pouvons alors identifier les 

coefficients  ,,  et   comme suit :   

     
)]'(.)'(.)'(.

)'(..[)(.)(.)(..)(.

'','','','

',',,,,

''

'

EKEtsrKDtsrKCtsr

KBtsrKEKDKCKB

GRpppGRpqpGRqpp

GRppqGRGRGRGR

DC

BEDCB



 
 

Égalisons les termes des deux cotés de l’équation )'()( 'KK GRGR  , il s’ensuit 

l’expression des égalités suivantes : 

  tsr ppq.  ;   tsr pqp.  ;  tsr qpp.  ;  tsr ppp.                             

Finalement après résolution du système d’équations nous obtenons : 

 





rp  ;  






sp  ;  






tp

 
 ;  

2

))()((



 
  , 

et tel que les expressions réelles de  ,,  et   sont tirées de la table 2 (troisième colonne). 
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7.6 Factorisation polygone-à chaine- Cas des liens et nœuds imparfaits   

 

7.6.1 Principes de la décomposition en présence de nœuds imparfaits  

Les hypothèses suivantes ont été retenues : 

 Les arêtes et les nœuds sont sujets à des défaillances 

 Les défaillances sont s-indépendantes avec des probabilités connues 

 Tous les K-nœuds du graphe sont parfaitement fiables. 

 

Notons que dans le cas des réseaux imparfaits, certaines modifications doivent être 

apportées au sens même de la factorisation compte-tenu du principe d’indépendance qui 

doit impérativement être respecté. Cependant les réductions suivantes doivent prévaloir : 

Réduction série. Soient ) et ) deux arêtes en série définies dans   et, 

tel que le  et ∉ . Une réduction série obtient  par un remplacement de  

et  par une seule arête  )  de fiabilité . 

 

Réduction parallèle. La réduction parallèle reste inchangée. 

 

Réduction de Degré-un. Quand un sommet imparfait v est adjoint à un K-nœud de degré 1 

suivi du lien  on a : . 

 

Réduction de Degré-deux. La réduction deux ne concerne que les K-nœuds. 

 

Réduction polygone-à chaine. La réduction polygone-à chaine considère en général que le 

polygone soit indépendant du graphe par le fait qu’il soit relié au reste du graphe que par 

ses K-nœuds. Autrement dit, s’il se trouve qu’il soit lié par des nœuds autres que les cas K-

nœuds et comme ces nœuds sont imparfaits une solution est alors à envisagée. Theologou et 

Carlier (1991) ont proposé la construction suivante : 

Considérons un lien , où u et v sont des nœuds imparfaits de probabilités respectives up  

et vp . Nous constatons que le lien l fonctionne avec une probabilité lp  lorsque e, u and v 

fonctionnent avec une probabilité   et est telle que :       
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vuel pppp   (7.13) 

 

Le fait de pivoter sur le lien l en appliquant le théorème de factorisation, entrainera d’un 

coté la contraction de l’arrête e et le fusionnement des nœuds u et v pour former un 

nouveau nœud parfait. Par contre si le lien l arrête de fonctionner, la cause de cet arrêt ne 

peut être connue a priori du fait qu’il se pourrait que ce soit l’arrête ou les deux nœuds en 

même temps qui soient défaillants. De toute façon et dans tous les cas, ce lien sera perdu et 

donc supprimé.  

Après cette opération de pivotage, les fiabilités de u et de v auront de nouvelles valeurs et 

leurs expressions sont comme suit :  

 

 

(7.14) 

 

 

(7.15) 

Nous pouvons remarquer que ces deux derrières équations montrent clairement que u et v 

sont intimement liés. Pour éviter une telle situation compte-tenu des conditions de départ, 

Théologou et Carlier ont apporté une nouvelle construction de u et de v. L’idée est comme 

suit : 





Kv

kvk GRpGR )'()(  (7.16) 

Supposons que les K-nœuds sont tous connectés et parfaits, autrement dit si ce n’est pas le 

cas la fiabilité du réseau original s’écrit : où kG'  et kG sont construits avec des K-nœuds 

parfaits. 

Il existe alors au moins deux K-nœuds dans le graphe et qu’il est toujours possible de 

trouver une arête dans le graphe avec une extrémité parfaite. Soit e une telle arête 

d’extrémités u parfait et v imparfait. Le fait de remplacer dans (14) 1up  et comme 1vp , 

on obtient :  

eqvpvq
eqvp

vp


'  
(7.17) 
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Nous remarquons que dans l’état actuel, la défaillance de v ne dépend que de l’arrête e et 

donc, u et v sont rendus indépendants et par conséquent avec une telle construction tous les 

nœuds sont forcés d’être indépendants. 

Comme le nœud v reste dans le graphe ou le lien l est défaillant, alors les autres liens qui 

ont pour l’une de leurs extrémités v peuvent être factorisés et que la défaillance de v 

dépendra alors de la défaillance de ces arêtes. Par conséquent, il s’agit de construire la 

formulation générale qui permet de représenter la fiabilité relative au nœud imparfait v à 

une étape quelconque de la factorisation lorsque les arêtes ( ) incidentes à v sont 

factorisées. Cette fiabilité est donnée par (18) après l’application du théorème de 

factorisation:  

 

 

 

 

(7.18) 

 

 

7.7 Réduction polygone-à chaine de type 1  

Nous énonçons à présent le théorème 4 qui permet d’avancer les résultats de la réduction 

polygone-à chaine de type 1 dans le cadre des graphes qui admettent une la structure d’un 

polygone de type 1. 

 

Théorème 7.4.  

Supposons qu’un graphe  contienne un polygone de type 1 et soit  le graphe obtenu par 

transformation du graphe  par le remplacement des arêtes  et  de fiabilités originales 

 et   par  et  de fiabilités   et  et les nœuds a et b de fiabilités originales  et 

  par les fiabilités   et  (figure 6, ci-dessus) et soit  un facteur de multiplication. 

Alors :   

Avec ,  , , 

 ,  et : 
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Preuve : 

En appliquant le théorème de factorisation sur le lien (s, , on obtient les graphes 

réduits  et  (voir figure 7.7). L’expression de la fiabilité de graphe G 

devient : 

 

 (7.19) 

 

Par application des résultats introduits par Theologou and Carlier (1991), et comme le 

nœud a est un nœud imparfait, il devient lors de la décomposition un nœud pivot. Par 

conséquent la fiabilité du nœud a dans le graphe qui correspond à , est modifiée et 

sera remplacée par la relation suivante : 

 

 
(7.20) 

             

En décomposant sur le lien (s, , des graphes réduits  et . L’expression de 

la fiabilité de graphe G devient : 

 

 

  

 

(7.21) 

 

De la même manière que le nœud a, la fiabilité du nœud b dans le graphe correspondant à  

est modifiée et sera égale a : 

 
(7.22) 
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Figure 7.11. Graphes générés par la décomposition sur le lien (s, . 

      

En décomposant maintenant sur le lien  (s,  du graphe réduit   et sur le 

lien (s,  du graphe réduit   (voir figure 8), on obtient finalement :  

  

 

 

  

Dans le graphe  la nouvelle fiabilité du nœud est donnée par : 

 

 

(7.24) 

Avec le graphe  , la nouvelle fiabilité du nœud b est donnée par : 

 

 

(7.25) 

Comme on peut le remarquer, plusieurs états peuvent induire un graphe identique. On peut 

donc établir l’égalité suivante : 

 =  =   

 

(7.26) 

En groupant et en éliminant des termes, l’expression de la fiabilité du graphe devient : 

 

 

 

Procédons maintenant sur le graphe . L’application du théorème de factorisation sur le 

lien  du graphe G’, conduit à : 

 

 

(7.28) 

La fiabilité du nœud a dans le graphe correspondant à  a été modifiée selon (29) :  
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(7.29) 

Finalement l’expression de la fiabilité du graphe G’ est obtenue comme suit : 

 

 

Par contre la nouvelle expression de la fiabilité relative au nœud b devient : 

 

 

 

(7.31) 

Comme les graphe G and G’ sont identiques, nous obtenons :  

    et     

 

Cette dernière expression est valide si et seulement si : 

  

et l’égalité    est valide si et seulement si : 

  

 

Finalement, suite à la relation d’équivalence , et la dernière formule, nous 

déduisons le système suivant :  

                                                 

    

 

 

 

 

(7.32) 

 

La résolution du système (7.32) nous donne les expressions des paramètres 

  et qui se résument comme suit : 
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(7.33) 

avec   A, B, C et D tels que : 

 

                                      

 

 

(7.34) 

 

 

Nous venons de démontrer le théorème 7.4, passons maintenant au cas de la réduction 

polygone-à chaine de type 7. 

 

7.8 Réduction polygone-à chaine de type 7  

 

Théorème 7.5.  

Supposons qu’un graphe  contienne un polygone de type 7 et soit  le graphe obtenu par 

transformation du graphe  par le remplacement des arêtes 54321 ,,,, eeeee  et 6e    de fiabilités 

originales 54321 ,,,, ppppp  et 6p  par  et  de fiabilités   et  et les nœuds a et b de 

fiabilités originales  et   par les fiabilités   et  (figure 7.11, ci-dessous) et soit  un 

facteur de multiplication. Alors    et, 
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Preuve : 

Considérons à présent un graphe contenant un polygone de type 7 comme montré à la 

figure 7.11(G) et dont les nœuds a et b peuvent être sujets à des défaillances avec des 

fiabilités de bon fonctionnement respectives 
ap  et 

bp . 

 
Figure 7.12. Réduction polygone-à chaine de type 7 

 

En pivotant successivement sur 54321 ,,,, eeeee  et 6e   on obtient les graphes reportés dans la 

figure 7.12 et la table 7.4 :  
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.  
Figure 7.13. Graphes non-défaillants induits suite à la réduction polygone-à chaine de type 7. 

 

Table 7.4. États de non-défaillants et les probabilités des graphes ainsi déduits. 

  

GA États Probabilités 

B1 
654321 FFFFFFFF aa  

]
4141

1[
6532

)]41)(11[(6532

a
ppp

a
pp

a
pp

b
ppppp

appappbppppp




 

C1 
654321 FFFFFFFF bb  

]1[

)]1)(1[(

63635421

635421

bbba

bba

pppppppppppp

ppppppppp




 

D1 

ba

baba

baba

baba

FFFFFFFF

FFFFFFFFFFFFFFFF

FFFFFFFFFFFFFFFF

FFFFFFFFFFFFFFFF

654321

654321654321

654321654321

654321654321

;;

;;

;;

 
]

[

)

654321(

61

61

51

51

62

62

53

53

43

43

52

52

42

42
654321

654321

654321654321654321

654321654321

pp

qq

pp

qq

pp

qq
pp

qq

pp

qq

pp

qq

pp

qq
pppppppp

ppqppppq
pqpppqqpppqppqpqpp

ppqqpppqppqpppqpqp

ba

ba









 

E1 

baba

baba

baba

FFFFFFFFFFFFFFFF

FFFFFFFFFFFFFFFF

FFFFFFFFFFFFFFFF

654321654321

654321654321

654321654321

;

;;

;;

 
)

6

6

5

5

4

4

3

3

2

2

1

1
1(654321

)654321

654321654321654321

654321654321654321(

p

q

p

q

p

q

p

q

p

q

p

q

b
p

a
ppppppp

b
p

a
pqppppp

pqppppppqppppppqpp

ppppqppppppqpppppp






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Comme la décomposition s’effectue sur 1e  et sur 
4

e  sur le graphe réduit B1 et sur 
3

e  et 
6

e  

sur le graphe réduit C1, il s’en vient que les nouvelles valeurs des fiabilités des nœuds a et 

b donnée par l’équation (20) et (21), sont : 

41

41''
qqpq

qqp
p

aa

a
a


   

63

63''
qqpq

qqp
p

bb

b
b


  

 

 

Reprenons l’application du théorème de factorisation sur le graphe réduit G’ de G 

(polygone de type 7) et soient  les arêtes de G’ de fiabilités 

respectives . La table 7.5 nous donne les graphes induits suite à la 

décomposition de G’, les états et les probabilités relatives.  

 

Table 7.5. États non-défaillants et les probabilités des graphes induits par le processus de 

factorisation du graphe ''KG . 

 

Graphe States Probabilités 

B’ 
ba FFFFF 321  ''

3
'
2

''
1 )1(' ba ppppp  

C’ 
321 FFFFF ba  ''

2
'
1

''
3 )1(' ab ppppp  

D’ 
ba FFFFF 321  '''

3
'
2

'
1' ba pppqp  

E’ ba FFFFF 321  '''
3

'
2

'
1' ba ppppp  

 

Les graphes suivants (figure 7.13), expliquent les formules des états et les probabilités 

correspondantes de la table 7.5. Notez que pour le graphe B’ et C’ respectivement les 

probabilités conditionnelles sur le nœud a et l’arête  (graphe B’) et l’arête  et le nœud 

b (graphe B’) conduisent aux relations sur les nouvelles valeurs des fiabilités sur les nœuds 

a et b. 

1

1

'''

''
)''(''

qpq

qp
pp

aa

a
aa


  

3

3

'''

''
)''(''

qpq

qp
pp

bb

b
bb



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Figure 7.14. Transformation du graphe réduit G’ par application de la factorisation 

 

 

Utilisons présentement la relation )'()( 'KK GRGR  , nous pouvons alors identifier les 

coefficients  ,,  et   comme suit :   

 

     
)]'()'()'()1(

)'()1.[()(.)(.)(..)(.

'','
'''

3
'
2

'
1','

'''
3

'
2

'
1','

''
2

'
1

''
3

','
''

3
'
2

''
1,,,,

''

'

EKEbaKDbaKCab

KBbaKEKDKCKB

GRpppppGRpppqpGRppppp

GRpppppGRGRGRBGRA

DC

BEDCB



 

 

et :      

3

3

63

63

1

1

41

41

'''

''

'''

''

qpq

qp

qqpq

qqp

qpq

qp

qqpq

qqp

bb

b

bb

b

aa

a

aa

a










 

 

Égalisons les termes des deux cotés de l’équation )'()( 'KK GRGR  , il s’ensuit l’expression 

des égalités suivantes : 





































3

3

63

63

1

1

41

41

132414165321

32163635421

321
62

62

53

53

61

61

51

51

42

42

52

52

43

43
654321

321
6

6

5

5

4

4

3

3

2

2

1

1
654321

'''

''
'''

''

)]''1('''[]1[
)]''1('''[]1[

]'''''[][

]'''''[]1[

qpq

qp

qqpq

qqp
qpq

qp

qqpq

qqp

pppppppppppppppppp
ppppppppppppppppp

pppqp
pp

qq

pp

qq

pp

qq

pp

qq

pp

qq

pp

qq

pp

qq
pppppppp

ppppp
p

q

p

q

p

q

p

q

p

q

p

q
pppppppp

bb

b

bb

b

aa

a

aa

a

abaaab

babbba

baba

baba

 

 

 

 

 

 

(7.35) 

 

En résolvant le système on obtient les relations (7.36) et (7.37) suivantes : 
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
































)(

)(

]1[

]1[

][

]1[

63

63

41

41

63635421

414165321

62

62

53

53

61

61

51

51

42

42

52

52

43

43
654321

6

6

5

5

4

4

3

3

2

2

1

1
654321

qqpq

qqp
D

qqpq

qqp
C

pppppppppppp

pppppppppppppA
pp

qq

pp

qq

pp

qq

pp

qq

pp

qq

pp

qq

pp

qq
ppppppppB

p

q

p

q

p

q

p

q

p

q

p

q
pppppppp

bb

b

aa

a

bbba

aaab

ba

ba





 

 

 

 

 

(7.36) 

 
   

2

 


BA     
 AC

p





'

1
     

 B
p






'

2
      

 



D
p


'

3
      

 A

AC
pa








'       

 
 








D
pb

'                                                                                                                      

(7.37) 

 

Algorithme 

Début 

Lecture des données d’entrées: 

G : le graphe connexe non divisible (1 seule composante connexe) 

      = ( ) : Matrice associée construite à partir des arêtes du graphe 

    

 
Tant que qu’il existe une réduction simple des 3 types suivants : 

     Appel procédures :  

         -  Réduction Séries :  , Supprimer le lien  ( )  et mettre à jour le 

vecteur des   probabilité et la matrice associée au graphe. 

          -  Réduction parallèle : ; supprimer l’un des liens et 

mettre à jour la vecteur des probabilités et la matrice associée au graphe. 

          -   Réduction degré 2. Soit  pour chaque réduction. 

Fin Tant que. 

Commencer par explorer les structures complexes. 

Soit S un tel sommet de départ. 

Déterminer les sommets ascendants (et les sommets ascendants de deuxième niveau et de 

niveaux plus bas, selon le type de polygone) 

  Tant qu’un polygone existe faire 

     Si un polygone de type T existe appliquez la réduction de ce type. On commence   

toujours par chercher celui de type 1, puis de type 2, etc. 

- Mémoriser dans une pile les liens à supprimer. 

- Supprimer les liens dans la matrice associée au graphe. 

- Reconstruire les nouvelles chaines à partir des liens mémorisés en tissant les liens 

dans la matrice relative au graphe. 

- Mettre à jour le vecteur des probabilités avec les nouvelles valeurs relatives à 

chaque type T. 

- Appliquer les réductions série, parallèle et de degré 2. 

- Mettre à jour le vecteur des probabilités. 
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- Mettre à jour la matrice relative au graphe. 

  Fin-Si 

Fin tant que 

Construire le graphe à partir de la matrice résultante. 

- Si c’est une matrice simple qui mettez en relief une chaine 

Calculer la fiabilité comme le produit des probabilités des liens 

Sinon  

    Imprimer matrice n’est plus décomposable 

    Appliquer un algorithme quelconque qui calcule la fiabilité (SDP, BDD, …) 

               Fin-si 

Imprimez la fiabilité 

Fin algorithme 

 

7.8.1 Exemples d’application 

Exemple 7.1. 

 

Reprenons l’exemple de la figure 7.6 tout en supposant que tous les nœuds sont imparfaits. 

Considérons que les valeurs de bon fonctionnement de chaque nœuds et de chaque lien est 

égal à 0.9. Le graphe suivant nous donne les étapes de calcul. 

 
 

  ;     ;  

Etape 1: 

Node_inital = S; Pile = Node_inital 

Liste-succ(S) = (a, b) 

Pile = Pile  Liste-succ(S)   ( donc Pile = (S, a, b)) 

X = dépiler(Pile) = (b) 
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Y = Liste-succ(X) = (a, t) 

Si Y  1_sommet_Terminal 

    Z = X  Pile = (b)  (S, a) = (a) 

   Donc Polygone de type 1 a été trouvé 

Mise-à-jour des vecteurs et de la matrice 

 

Mise-à-jour des vecteurs et de la matrice 

Prob = 1 

Liste-succ(S) = (b) 

Pile = Pile  Liste-succ(S)   ( donc Pile = (S, b)) 

X = dépiler(Pile) = (b) 

Y = Liste-succ(X) = (t) 

Si Y  1_sommet_Terminal 

   NON 

   Prob = Prob  Prob(X, t) = 1   =  

   Pile = dépiler(Pile) = (S) 

   Prob = Prob  Prob(Pile, X) =  
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Mise-à-jour des vecteurs et de la matrice 

Fin-si 

Fin Algorithm 

 

Calcul : 

function imperfect() 

  p1 = .9 

  p2 = .9 

  p3 =.9  

  pa = .9 

  pb = .9 

  A = p2*pb*(1-p1*pa-p3*pa+p1*p3*pa) 

  B = p1*pa*(1-p2*pb-p3*pb+p2*p3*pb) 

  delta = pa*pb*(p1*p2+p1*p3+p2*p3-2*p1*p3*pa) 

  C=(pa*(1-p1)*(1-p3))/((1-pa) +pa*(1-p1)*(1-p3)) 

  D=(pb*(1-p2)*(1-p3))/((1-pb) +pb*(1-p2)*(1-p3)) 

  omega = (delta + A)*( delta + B)/ delta 

  p1p = delta /( delta + A*C) 

  p2p = delta /( delta + B*D) 

  pap = (delta + A*C)/( delta + A) 

  pbp = (delta + B*D)/( delta + B) 

  x = 1-(1-p1p*pbp*.9)*(1-p2p*pap*.9) 

  y = x*.81*omega 

end 

A = B = 0.08829; eta = 0.78732; C = D = 0.0825688073394495; p1p = p2p = 

0.990825688073394;  pap = pbp = 0.907493061979649; omega = 0.9738008333333333. 
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Comme le graphe s’est transformé en deux chaines parallèles. La fiabilité est : 

R = 1 – (1 - p2p * pbp * p4)*(1 - p1p * pap * p4) = 0.963614702184995 

R(G) = R * omega * Ps * Pt = 0.963614702184995 * 0.9738008333333333 * 0.9 * 0.9 * = 

0.760078728 

 

Exemple 7.2. 

 
 

Figure 7.15. Réduction polygone-à chaine de type 1, série et parallèle 

 

 

 

 

 

 

 

 

 

 



186 

 

 

Table 7.6. Réduction polygone-à chaine de type 1 à 7 pour les réseaux imparfaits 
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7.9 Conclusion 

La factorisation et la réduction sont des méthodes efficaces qui permettent l’évaluation de 

la fiabilité des réseaux indépendamment de leurs tailles et du nombre de nœuds terminaux. 

Nous avons démontré que même si les réseaux sont imparfaits ils peuvent aussi être 

décomposés tout autant que ceux qui possèdent des nœuds non-défaillants. L’algorithme 

développé dans le cadre de ce travail permet de calculer la fiabilité des réseaux après avoir 

appliqué des réductions simples et des réductions polygone-à chaine. Nous avons montré 

par des manipulations élémentaires des probabilités conditionnelles sur les nœuds et les 

arêtes, comment construire une solution dont le temps d’exécution est à moindre coût. 

L’idée étant de choisir les arêtes dont l’une de leurs extrémités soit non-défaillante et 

l’ensemble des transformations nous conduit vers une structure simplifiée d’où l’on peut 

facilement calculer la fiabilité du réseau. Nous pouvons remarquer sans démonstration 

préalable que l’algorithme de calcul est polynomial et le nombre de réductions est fini.  

L’algorithme général et les calculs sur des benchmarks non pu être présentés dans ce 

travail, cela nécessite une programmation plus poussée pour une implémentation efficace. 

Aussi, comme perspective, nous envisageons d’étendre ce modèle vers d’autres structures 

plus complexes et d’écrire un programme plus efficace que celui déjà implémenté sous 

MatLab qui utilise des structures de données simples pour la mémorisation des calculs 

intermédiaires et des structures en décomposition. 
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General Conclusion 

 

The content of this thesis follows from a real problem of an existing radio-communication 

network called RENIR. This feature was relevant because the mission of the network was 

to enable various network users to communicate even if failures could have serious 

consequences. To address this problem, we conducted a detailed analysis of all components 

of the system and running simulations to identify communicating path’s link which allow 

two or more users to communicate. This analysis allowed us to generate a model that 

describes the operations of the network and the reliability of each component. Once the 

reliabilities are known, we used classical algorithms for determining minimal paths set 

(MPS) and minimal cuts set (MCS). Despite that these methods are conceptually simple to 

understand, they are very difficult to exploit, especially for a large network. Therefore we 

have developped intelligent programs that generate the MPS and MCS for the evaluation of 

network reliability using binary decision diagrams (BDD). The performance of these 

programs has been evaluated from a series of tests on networks published in the literature. 

We were able to find the same results as those published in such papers with less 

computing time being with a smaller number of iterations. 

This contribution allows us to say that the programs developed in this thesis could be used 

to estimate the reliability of more complex networks. New programs were also developed 

to assess the reliability of networks using the factoring methods. Again, the developed 

programs are a significant contribution in the field of evaluation and optimization of 

network reliability. Having access to these computational tools, we have addressed the 

problem of optimizing the network reliability. Two important issues were addressed: 

Maximizing reliability without any constraints and that should be optimized in a specific 

area. This is the case when we used an approach based on the performance index of 

Birnbaum, which acts on the most important component for deriving the number of 

redundant components. On the other hand other indexes have been used to tackle the 

optimization problem under constraints. 

In this thesis, we considered only the case where the components are not repairable and that 

can have one of two states (up, down). For the network RENIR, it had also to consider the 
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repair of components and the assessment of network availability. It had also to put in place 

strategies for preventive inspection and replacement of certain components of the network. 

Note that access to facilities is still not possible because of cold weather and terrain 

topology. It should be noted that the problem of communication trafic was not considered 

because data are not available. In addition we have assumed that the software that manages 

the trafic was cent percent reliable. Also, we note that the problem of common cause 

failures by far has not been addressed in this thesis, it will be the subject of future works. 

Several studies are currently underway to address the issues above. Also, other research 

directions would be developed by considering the following points : 

- The stochastic dependency of hardware and software failure that causes links and 

nodes failure. 

- Availability, maintenance and inspection of repairable systems.    

- Create database of network structures to render the reliability evaluation process 

more automatic when dealing with factoring methods. 

- Create database for binary decision diagram models to integrating the reliability 

evaluation and to facilitate its optimization. 

- Integrating more techniques for optimizing network reliability as those of 

Birnbaum’s indices by considering constraints domains. 

- Extending the software tool for possible sales for interested users.    

 

 

 

 


