10 research outputs found

    Using autoreducibility to separate complexity classes

    Get PDF

    Non-autoreducible Sets for NEXP

    Get PDF
    We investigate autoreducibility properties of complete sets for NEXP under different polynomial-time reductions. Specifically, we show that under some polynomial-time reductions there are complete sets for NEXP that are not autoreducible. We show that settling the question whether every complete set for NEXP under non-adaptative reduction is autoreducible under NOR-truth-table reduction either positively or negatively would lead to major results about the exponential time complexity classes

    Diagonalizations over polynomial time computable sets

    Get PDF
    AbstractA formal notion of diagonalization is developed which allows to enforce properties that are related to the class of polynomial time computable sets (the class of polynomial time computable functions respectively), like, e.g., p-immunity. It is shown that there are sets—called p-generic— which have all properties enforceable by such diagonalizations. We study the behaviour and the complexity of p-generic sets. In particular, we show that the existence of p-generic sets in NP is oracle dependent, even if we assume P ≠ NP

    Autoreducibility of NP-Complete Sets

    Get PDF
    We study the polynomial-time autoreducibility of NP-complete sets and obtain separations under strong hypotheses for NP. Assuming there is a p-generic set in NP, we show the following: - For every k≄2k \geq 2, there is a kk-T-complete set for NP that is kk-T autoreducible, but is not kk-tt autoreducible or (k−1)(k-1)-T autoreducible. - For every k≄3k \geq 3, there is a kk-tt-complete set for NP that is kk-tt autoreducible, but is not (k−1)(k-1)-tt autoreducible or (k−2)(k-2)-T autoreducible. - There is a tt-complete set for NP that is tt-autoreducible, but is not btt-autoreducible. Under the stronger assumption that there is a p-generic set in NP ∩\cap coNP, we show: - For every k≄2k \geq 2, there is a kk-tt-complete set for NP that is kk-tt autoreducible, but is not (k−1)(k-1)-T autoreducible. Our proofs are based on constructions from separating NP-completeness notions. For example, the construction of a 2-T-complete set for NP that is not 2-tt-complete also separates 2-T-autoreducibility from 2-tt-autoreducibility

    Splittings, robustness, and structure of complete sets

    Get PDF

    Separating complexity classes using autoreducibility

    Get PDF

    Space-efficient informational redundancy

    Get PDF
    AbstractWe study the relation of autoreducibility and mitoticity for polylog-space many-one reductions and log-space many-one reductions. For polylog-space these notions coincide, while proving the same for log-space is out of reach. More precisely, we show the following results with respect to nontrivial sets and many-one reductions:1.polylog-space autoreducible ⇔ polylog-space mitotic,2.log-space mitotic ⇒ log-space autoreducible ⇒ (logn⋅loglogn)-space mitotic,3.relative to an oracle, log-space autoreducible ⇏ log-space mitotic. The oracle is an infinite family of graphs whose construction combines arguments from Ramsey theory and Kolmogorov complexity

    P-mitotic sets

    No full text
    SIGLETIB: RN 4237 (167) / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekDEGerman
    corecore