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SPLITTINGS, ROBUSTNESS, AND STRUCTURE 
OF COMPLETE SETS* 

HARRY BUHRMANt, ALBRECHT HOENEt, AND LEEN TORENVLIET§ 

Abstract. We investigate the structure of EXP-complete and hard sets under various kinds 
of reductions. In particular, we are interested in the way in which information that makes the set 
complete is stored in the set. We study for various types of reductions the question of whether the 
set difference A - S for a hard set A and a sparse set S is still hard. We also address the question 
of which complete sets A can be split into sets A1 and Az such that A =f A1 =f Az for reduction 
type r, i.e., which complete sets are mitotic. We obtain both positive and negative answers to these 
questions depending on the reduction type and the structure of the sparse set. 
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1. Introduction. The structure of complete sets under various types of reduc
tions is a well-studied subject in complexity theory. The question "Which sets can be 
complete under which type of reductions?" has been posed many times and answered 
for many complexity classes. (See (9] for an overview.) 

A complete set represents, through the reduction under which it is complete, an 
entire complexity class. A membership algorithm for the complete set combined with 
a reduction (of the appropriate type) gives a membership algorithm for a set in the 
class. Viewed as such, the complete set contains the information of any particular set 
in the class. 

In this paper we investigate the structure of the information that makes the set 
complete for deterministic exponential time and for various types of reductions. We 
take an approach pioneered by Schoning [21]. To investigate the structure of a com
plete set we compare this set with another set. SchOning in particular showed that 
for a :::;;:-complete set A in EXP and a polynomial time computable set D, the set 
At:..D is of exponential density. Tang, Fu, and Liu took in [23] the approach of taking 
the difference of sets complete in exponential time with a sparse subexponential time 
computable (sub)set and asked the question of whether the resulting set is complete. 
In section 3, we extend their work by studying analogous questions for other types of 
completeness. We obtain similar results and show that for several types of reductions 
and arbitrary sparseness conditions there exists a single subexponential time com
putable set S that meets this sparseness condition and, furthermore, has the property 
that for any set A, complete under the reduction for which this S is constructed, the 
set A - S is no longer complete. In addition, it seems possible to make S "almost 
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polynomial time computable." It follows from the constructio~s that, by ~aking a 
sufficiently slow enumeration of reductions, we can lower the time complexity of S 
to any reasonably behaved superpolynomial function. We also address the flip ques
tion in this section: "For which reductions and which sparse sets is it the case that 
the set A - Sis complete?" We study sparse sets S of simple structure rather than 
computationally simple sets. Selman [22] introduced p-selective sets as a resource 
bounded analog of semirecursive sets introduced by Jockusch [13]. For any tally set, a 
polynomial time Turing equivalent p-selective set can be found. Therefore p-selective 
sets can be computationally very complex. Nonetheless, p-selective sets are intuitively 
easy to compute since, for any two strings x and y, it can be decided in polynomial 
time which of the two is more likely (or actually no less likely) to be in the set. It 
turns out that for most of the reductions studied in subsection 3.1 the set A - S 
remains complete if S is a p-selective set. We prove this theorem for disjunctive, 
conjunctive, and 2-truth-table (2-tt) reductions. One might expect that, as is the 
case with many results on reductions, our 2-truth-table theorem can be extended to 
at least bounded truth-table reductions. From a recent result of Buhrman, Fortnow, 
and Torenvliet [6] it follows, however, that the 2-tt result cannot be extended even to 
3-tt. 

In section 4 we study sets that remain complete even when another complete set 
is removed, i.e., we study sets that can be "split" into two or more sets that are again 
complete. Such sets have been studied in recursion theory and are called mitotic sets. 
We follow the line of Ambos-Spies [l] and prove that ::::;;1;:-complete sets for EXP indeed 
are (weakly p-m) mitotic. In contrast, we show that there exists a :s:;fu-complete set 
that is not weakly p-m mitotic. Finally, we show a counterpart to Ladner's splitting 
theorems [16], i.e., we construct a set that can be split into two parts that are strictly 
below the degree of complete sets and that are ==.;1;: instead of incomparable. 

2. Definitions and notation. We assume that the reader is familiar with stan
dard notions in structural complexity theory as they are defined, e.g., in [2]. All 
kinds of polynomial-time bounded reductions-many-one, (disjunctive and conjunc
tive) truth-table and Turing-are frequently used without explanation. We use the 
following notation for the (polynomial-time computable versions) of the different types 
of reductions: :5:;;, for many-one reductions, :s:;f for one-one reductions, :s:;fu for k
truth-table reductions, $ftt for bounded truth-table reductions, $ft for truth-table 
reductions, :5:[ for conjunctive truth-table reductions, :5::; for disjunctive truth-table 
reductions, $f:_d for k-disjunctive truth-table reductions, and ::::;~ for Turing reduc
tions. The symbols :5:m and $T also appear in the paper, without the superscript P, 
to indicate the version of these reductions without time bound. 

Various definitions for these types of reductions can be found in the literature, 
e.g., in [17, 7, 5, 8]. We think of polynomial-time bounded reductions as being modeled 
by adaptive and nonadaptive oracle machines. We use various enumerations {Mi}i of 
(oracle) Turing machine programs with varying properties. If the type of machine is 
not clear from the context, we explicitly mention the machine type. An enumeration 
{M;}; can thus stand for an enumeration of all polynomial-time bounded machines 
in one theorem and an enumeration of all bounded truth-table reductions in the 
next. In the case of enumeration of many-one reductions, i.e., where the machines are 
transducers, we also use {fi}i to emphasize this fact. For polynomial-time bounded 
~ac~ines we al':ays assume machi~e Mi in such an enumeration to be time bounded by 
n '. i, where n 1s the length of the mput. Usually, we denote the set of strings queried 
on mput x by machine i with oracle A by Qf (x), or by Qi(x) if Mi is non-adaptive. 
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The result of the computation (accept/reject or the value computed) of machine Mi 
on input :r (relative to oracle A) is sometimes denoted as M;(x) (MiA(x)), where 
Mi(x) = 0 or 1 means that the computation rejects or accepts, respectively. 

Sets of strings are denoted by capital letters and are subsets of E*, where E = 
{O, l}. Strings are denoted as small letters x, y, u, v, .. .. The length of a string x is 
denoted by Ix!. 

We assume pairing and projection functions that are easy to compute. For strings, 
the pairing of X1, ... , Xn is denoted by <x1 , ... , Xn >, and rr; (y) is the projection of y 
onto its ith coordinate. We assume all kinds of convenient properties of these pairing 
functions, e.g., pairing functions can be designed such that <x, y> < <x, z> whenever 
y < z or such that l<x, z>I = l<x, z'>I for a large (exponential in this length) number 
of pairs z and z'. In fact, the specific properties of different pairing functions may 
depend on the context of the proof in which they are used. Integer numbers can 
also appear as arguments to pairing functions. If so, the integer is identified with its 
binary representation. 

An ordering on E* is assumed where :r: < y if lxl < IYI and that coincides with 
the lexicographical ordering if Ix I = I y I· The cardinality of a set A is denoted as 
llAll· The value of the characteristic function of a set A on a string x is denoted by 
XA(x), i.e., XA(:i:) = 1 if x E A and 0 otherwise. Following Kelly [14], we let the 
notation LJ{ S : S meets condition } stand for the union of all sets S that meet the 
given condition. For sets A and B the notation A© B stands for the disjoint union 
of A and B, i.e., {Ox: x EA} U {lx: :r E B}. 

For a set A 
• for n E w, we let the notation A~n stand for the set consisting of all strings 

in A of length :S n; and 
• for a string :r, we let A[x] stand for the x section of A, i.e., the set { <y, z> : 

y = x and <y, z> EA}. 
• in order to measure the density of A, we say that A is g(n) sparse for some 

nondecreasing total function g: w---+ w, if for all n, llA:<::;nll < g(n). 
The main complexity classes considered in this paper are P (polynomial time), 

EXP (exponential time), and NEXP (nondeterministic exponential time). For the 
latter classes, we allow polynomials to act as exponents in the time bounds, e.g., 
EXP= LJ{DTIME(2n') : i E w }. For EXP, the set K is the universal complete set. 
K = { «i, x, l> : Mi accepts x in :0::: l steps }. 

3. The robustness of completeness notions for exponential time. In this 
section we study the question of which sparse sets can be removed from exponential
time complete sets of different types without disturbing the completeness of these 
sets. The question originates from work of Schoning [21], who showed that for every 
:S:;',-hard set A for EXP and every set D in P, the set AD.D is of exponential density. 
In [23], Tang, Fu, and Liu showed, as a corollary to an analogous result on parity 
reductions, that even for subexponential time computable D, the difference AD.D 
remains :O:::~-hard for exponential time. 

They further show that for an arbitrary sparseness condition, there exists a single 
subexponential time computable set S, such that for any exponential time complete 
set A, the set A - S is no longer exponential time hard. Their proof hinges on the fact 
that for any exponential time computable set B and any exponential time complete 
set A, there exists a length ·increasing reduction from B to A. Subsequently, the 
subexponential time computable set is constructed by choosing a sufficiently sparse 
polynomial-time computable subset of {O}* and defining S as the image of this set 
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varying over all polynomial-time computable functions, i.e., S ={Obi: lfi(Obi)I > b;}, 
where b; are chosen sufficiently far apart. 

A closer look at the proof shows although the theorem just states that S is subex
ponential time computable, that there are various ways of making S come arbitrarily 
close to polynomial time. It therefore seems reasonable to ask whether we can also 
choose S to be polynomial-time computable. The answer to this question is negative, 
as observed in [23]. From the sf-reduction of K' = K x I;* to the EXP complete 
set A, we can easily construct a s~-reduction to A - S for any polynomial-time 
computable sparse set S. In this section we will investigate, for different types of 
reductions, which sparse sets can destroy the completeness of a given set, and for 
which sparse sets completeness is preserved. 

3.1. Sparse sets that destroy completeness. The set K' defined above is, 
of course, s~-complete for EXP. In fact it is s:-complete for EXP in a special 
way. For a given string x either all strings <x, y> are in this set, or all are out 
depending on x E K. Therefore, as long as S is p(n) sparse, the set K' - S remains 
~:-complete for EXP. The reduction from K to K' on input x queries just the set 
{ <x, y>IO ~ y S p(2n) + l}. Since all of these strings have length:::; 2lxl, at least one 
of them is not in S and it is in K' iff x E K. This explains why the theorem "there 
exists a sparse set S, such that for any sf-complete set A for EXP, the set A - S is 
not s: -complete for EXP" cannot exist. 

The best we can hope for is a theorem for reductions that can query at most llS~nll 
strings for each length n. Since we want the construction of S to meet any given 
sparseness condition, this implies that the number of queries cannot be a function 
of n that grows to infinity with n. In other words, the number of queries must be 
some fixed constant. Such reductions are called bounded truth-table reductions, and 
for these reductions we can obtain the theorem. In fact, since the proof method of 
our theorem is not dependent on the reductions being nonadaptive, we can obtain the 
theorem for bounded Turing reductions (SbT ). 

THEOREM 3.1. Let g be a recursively comp·utable nondecreasing function with 
limw-•oo g(n) = oo, and let f be a function that is superpolynomial, subexponential, 
and time constructible. There exists a g( n )-sparse O(j( n) )-time comp·utable set S such 
that for any Sbtt-complete set A for EXP, the set A - S is no longer :::;fit-complete. 

Proof. For a given set A, we demonstrate the existence of a set LA such that 
LA Sbtt A iff there exists a reduction M; that queries at least one string y E A with 
IYI > b(i) on input Qb(i). Next, we let all such strings be elements of S, thereby pre
venting the existence of such a reduction from LA-S to A- S and hence completeness 
of A - S. This technique was borrowed from Watanabe [25]. 

Let { M;}i be an enumeration of all Sbtt-reductions. Without loss of generality, 
we may assume that machine M; generates Si queries on any input. First we define 
a set of numbers {b( i)} sufficiently far apart and sufficiently easy to recognize, i.e., we 
want that, for each n, the question "3i : n = b(i)?" can be answered in time O(n), 
and furthermore we want for each i that g(b(i)) > i 2 . This means that we can define 
at least i 2 strings in 3$b(i) without disturbing the sparseness condition on S. In fact, 
we will put just S i strings in each interval 3$b(i+l) - S9(i). Finally, we wish to 
compute Q;(Ob(i)) to define strings in S. To be able to do this in time f(b(i)), we 
need that 2b(i) > f(b(i)) > (b(i))i + i, for all i. 

We let S = {y: :Ji[y E Q;(Ob(i)) /\ IYI > b(i)]} and claim that Sis the set searched 
for. First, llS$nll S g(n) for each n, since for each n the only strings that are in 3:5.n 
are in LJ{Qj(Ob(j)) : j S i} for i maximal such that b(i) ~ n. Hence, there are at 
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most i 2 s~rings in S'.5:.~, and b( i) was chosen such that g( n) ~ g( b( i)) > i2 as required. 
Nex~j is O(J(n))-t1me con:putable by the choic~ of b(i). Finally, the set A - Sis 
not -btt-complete. To see this, assume that A- S is :Sbtt·complete and define the set 
L _ { b(i) . (A-s) 9 <•l b(i) . . . 

1·)s - o. · Mi (0 ) = O}. LA-Sis exponential time computable since 
2b ' > b( i)' + i and since both A and S are exponential time computable and are onlv 
queried on inputs of length :S b(i) on input Ob(i). It follows that L .. t-s :Sbtt A - S'. 
Let Mj be t~e reduction from LA-S to A- S. Then Q1(obUl) n (A- S) ~ E9Ul and 
therefore Ob(J) E LA-S iff Mf- 8 (0b(j)) rejects, which is a contradiction. O 

If we change Sin the construction above to {min{y: y E Q;(Ob,) /\ \y\ > b;}: i E 
w }, we get the following corollary from the same construction. 

COROLLARY 3.2. Given a recursively computable nondecreasing function g(n) 
with limn~oo g(n) = oo, there exists a g(n)-sparse subexponential time computable 
set S such that for any :.=:;;;-complete set A for EXP the set A - S is no longer -s:.r 
complete. 

Conjunctive truth-table ( c-tt) reducibilities form an exception in yet another way. 
For these reductions we can even Jet the set A be EXP hard instead of EXP complete. 
We use the fact that for conjunctive truth-table reductions we can get a kind of 1-1 
behavior for the query sets. A similar result for :.=;;:-hard sets that uses the fact that 
these sets are also hard under ~f-reductions appears in [23). We isolate and prove 
this property in the following lemma. 

LEMMA 3.3. If A is :S[ -hard for EXP, then for any set B in EXP there exists a 
5:[-reduction M1 from B to A such that Q1(x) <t. LJ{Q1(Y): y E B /\ y < x}. 

Proof. Let { M;}; be an enumeration of s;;-reductions We construct a set VV 
as follows. On input <i, x> compute Q;( <i, x> ). If Q;( <i, x>) ~ LJ{ Qi( <i, y>) : 
<i, y> < <i, x> /\ <i, y> E W}, then we let <i, x> (j. W; otherwise <i, x> E W iff 
xE B. 

It is easy to see that W is in EXP, so there exists a :S~ -reduction from W 
to A, say, M 1. For this reduction it follows that Q1(<j,x>) <t. LJ{QJ(<j,y>) : 
<j, y> E W /\<j, y> < <j, x> }. By assumption on the pairing function that <i, x> < 
<i,y> +-> x < y the function M'(x) = M1(<j,x>) computes a :.:;;;-reduction with 
the required property. D 
From this lemma we get the following theorem. 

THEOREM 3.4. Let g(n) be a recursively computable nondecreasing function with 
limn>->oo g(n) = oo. There exists a g(n)-sparse set S in EXP such that for any :S~ -
hard set A for EXP the set A - S is no longer :S~ -hard. 

Proof. Again, we let the numbers b(i) be sufficiently far apart to guarantee g(n) 
sparseness of S if we put one string in S for each b(i) and such that Ob(i) is again easy 
to recognize. Furthermore, we let 2 x (b(i- l))(i-l) < b(i) to avoid confusion l~ter on. 
Then we put the least string in LJ{ Q;( <Ob(i), y>) : \y\ :S b(i)} of length? b(i)/2 - 1 
in S. (If no such string exists we do nothing.) . . . 

Sis exponential time computable since, to decide membership of a strmg :J.: m S, 
we search for a Ob(i) such that b(i) 5: 2 x Ix\ and lxl < (b(i))'. (There can be only 
one. candidate.) Now compute the query sets on the, at most, 22lxl diff~rent Y iI: time 
5: 22Jxl x (2\x\)i + i, and see if x is the least string of the right length m the umon of 

these sets. p . , f D -
A _ S is not <P-hard. If it were, then one of the :Sc -reductions rom -

{ <x y> · x E {O}* -; E :B*} to A would behave as predicted by Lemma 3.3. 
Let M· be such a reduction. It follows that llLJ{Q1(<0bU),y>): \yl :S ~(j)}I\? 

2b(j) from temma 3.3. Hence there is one string in this set of length ~ b(J) /2 - 1. 
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The least of these strings zo is not in A - S by construction, and lvlj must reject any 
input <Ob(j), y> for which zo is in Qj ( <Ob(j), y> ). Yet <Ob(J), y> E D, so MJ cannot 
be a reduction from D to A - S. D 

Conjunctive and disjunctive truth-table reducibilities are kind of each other's com
plement. If a set is conjunctive truth-~ble reducible to a set A, then its complement 
is disjunctive truth-table reducible to A. So we find the following. 

COROLLARY 3.5. Let g(n) be a recurs·ively computable nondecreasing function 
with limm--+oo g(n) = oo. There exists a g(n)-sparse subexponential time computable 
set S such that for any sf -complete set A for EXP the set A U S is no longer sf -
complete. 
In addition we have the following. 

COROLLARY 3.6. Let g(n) be a recursively computable nondecreasing function 
with limm _ _, 00 g(n) = oo. There exists a g(n)-sparse set Sin EXP such that for any 
sf-hard set A for EXP the set AUS is no longer sf -hard. 

Proof If K s[ A via Mi, then 

x EK q. Qi(x) C A, 
or x (j. K q. Qi ( x) n A -I- 0. 

Now KE EXP so K s;;, K, say, via f. 
So x EK q. f(x) EK q. Q;(f (;i:)) c A, 
or x (j. K q. f(x) (j. K q. Q;(f(x)) n A-::/- i/J, 
or x EK q. f(x) (j. K q. Qi(f(x)) n A -I- 0, 

so A is sf-hard via M;(f(x)). Along tE_e same lines, if A is sf-hard then A is s[
hard. So A is sf-complete (hard) iff A is s~-complete (hard) for EXP. But if A 
is s~ -complete (hard), then there exists a g(n )-sparse subexponential (exponential) 
time computable set s such that A - s is no longer sf' -complete (hard), and then 
Au Sis no longer sf-complete (hard). D 

3.2. Easy sparse sets. As in the case of st,:-complete sets, we can let the 
time complexity of the set S in the previous subsection come arbitrarily close to 
polynomial time. For some-but surprisingly not all- reductions, a polynomial-time 
computable sparse set that destroys completeness does not exist. To show this we 
take a slightly more general view of the complexity of the set S. Instead of taking S 
polynomial-time computable, we let S be p-selective. p-selective sets were introduced 
by Selman [22] as a resource bounded analogue of semirecursive sets, which were 
introduced by Jockusch [13]. 

DEFINITION 3.7. A set A is called p-selective 'iff there e:r:ist8 a polynomial-time 
computable function f : ~· x ~· 1-+ ~·, called a p-selector, s·uch that for any x, y E l:* 

1. f(x,y) E {x,y}, and 
2. XA(i(x,y)) =max{xA(x),XA(y)}. 

The following "ordering lemma" is used in the proofs of the theorems in this 
section and can be found (in various forms) in, e.g., [24, 10, 11]. 

LEMMA 3.8. Let V = { v1 , .. ., vn} be a finite set of strings, and let A be a p
selective set with p-selector f. The strings in V can be ordered "according to f" as 
V;1 , •.. , v;n such that v;J EA 1-+ 'Ui:i+i E A in t'irne polynomial in !v1 I + · · · + lvnl. 

As only polynomial time is involved, we sometimes assume a finite Het "ordered 
according to a p-selector," without loss of generality. 

For any (nonfinite) sparseness condition a p-selective set (which may be infinite) 
that meets this condition can be constructed. For polynomially sparse p-selective 
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sets we can show counterparts to the theorems of subsection 3.1. For conjunctive, 
disjunctive, and 2-tt reductions, for a set A that is complete under this reduction, 
and for a set S that is polynomially sparse and p-selective, the set A - S remains 
complete under the same reduction. Since all sets in P are p-selective, the same 
results follow for sparse polynomial-time computable sets. 

It might be instructive here to compare our results to those of Tang, Fu, and 
Liu [23, Theorems 3.6 and 3.7]. They show that sets complete under conjunctive and 
disjunctive reductions stay complete when a sparse subexponential-time computable 
subset is removed. Our sparse set may be any set. 

THEOREM 3.9. For any set A that is S:~ -hard for EXP and any p(n)-sparse 
p-selective set S, the set A - S remains s~ -hard for EXP. 

Proof. Let f be a p-selector for S. We construct an exponential time-computable 
set W such that, for some index w of a conjunctive truth-table reduction Mw from W 
to A, it holds that the universal set K is many-one reducible to W[w] and w!wJ is in 
turn conjunctive truth-table reducible to A - S. This then establishes completeness 
of A- S. 

The set W consists of strings <i, x, z> for i E w, x E 'E*, and z ranging from olxl 
through ilxl. Fix i and x and let n = l<i,x,x>I. By appropriate assumptions on the 
pairing function, all of the pairs <i, x, z> are of the same length. So, since S is p(n) 
sparse, there exists some polynomial q such that at most q(n) of the different strings 
queried on such an input can be in S. Let Z be the set of the lexicographically first 
q(n) + 1 strings in the interval olxl through 1lxl. We describe membership of <i,x, z> 
in W. If z (j. Z, then <i, x, z> (j. W. Let U = U{ Qi( <i, x, z>) : z E Z}. Assume that 
U = {u1, u2, ... , Um} such that ui ES-+ Ui+I ES and let U' = {um-q(n)+l> ... , Um}· 
If U = 0 or time 2n is insufficient to compute U and sort U according to the p-selector, 
then no string <i, x, z> is in W. It will follow from the construction that the first 
case cannot occur if i is a program that computes a c-tt reduction from W to A. The 
latter case can only occur for finitely many different x. 

Now there are two cases. 
Case 1. There is a z E Z such that Qi(<i,x,z>) ~ LJ{Qi(<i,x,z'>): z' E 

Z /\ z' =f. z}. Let z0 be the least such z. We let <i,x, z> E W {::=? z =f. zo. 
Case 2. There is no suchz. Then llQi(<i,x,z>)-LJ{Qi(<i,x,z'>): z' E Z/\z' < 

z }II ::::: 1 for all z E Z and hence, there is a z such that Qi ( <i, x, z>) - U' =/. 0 and 
Qi( <i, x, z>) n U' ~ LJ{ Qi( <i, x, z'>) : z' E Z /\ z' < z}. Let zo be the least such z. 
We let <i,x,zo> E W +-+ x EK. We let <i,x,z> E W for all z < zo in Zand let 
<i, x, z> \t W for all z > z0 in Z. 

This ends the construction of W. 
Since W is computable in exponential time, there is a conjunctive truth-table 

reduction from W to A. Let Mw be such a reduction. We show a reduction from 
w!wJ to A - S. Let <w, x, z> be some input. 

1. As mentioned above, there is a finite number of cases for which the string 
<w, x, z> is not in W because of insufficient computation time. In these 
cases, or in the case where z is not among the first q(l<w, x, x>I) + 1 strings, 
our reduction rejects. (Or, equivalently, produces some fixed string not in 
A-S.) 

2. Otherwise, compute the set U = {u1 , ... ,um} as described above. (Since w 
is a fixed constant, this can be done in polynomial time in l<w, x, z>I.) Since 
Mw is a reduction from W to A it follows that the construction falls in Case 2. 
If z is the least string in Z satisfying Case 2, then produce Qw( <w, x, z> )-U'. 
Otherwise accept or reject according to Case 2. 
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This reduction accepts <w, x, z> iff <w, x, z> E w!wJ and queries only strings in 
A-S. 

The reduction from K to w!wJ is the following. If x belongs to the finite number 
of exceptional cases, then we find out by table-lookup if x E K and accept or reject 
accordingly. Otherwise, we compute U for this w and x and the least z satisfying 
Case 2 and let f(x) = <w, x, z>. D 

In the proof of this theorem we defined a set W such that the reduction of W 
to A must query strings that are in A on certain inputs. We did this by defining 
certain strings in W (hence a conjunctive reduction must get the answer yes on queries 
produced on this input). On the other hand, the reduction of W to A must query some 
strings outside Son some inputs. We did this by diagonalizing against reductions for 
which the cardinality of the union of the query sets on the inputs <i, x, z> was small 
enough to "fit" inside S. Then a reduction from any exponential time-computable set 
to A - S can be constructed, using W, by assuming that queries that may be in S 
are answered yes, and querying the remaining ones. 

For S:f-hard sets, we can change the strategy of the proof to construct a set W 
such that we know that queries that may be in S are answered negatively (by leaving 
enough strings out of W). A completely analogous proof then yields the following. 

THEOREM 3.10. For any set A that is ~f-hard for EXP and any p(n)-sparse 
p-selective set S, the set A - S remains 5:f -hard for EXP. 

By complementation Theorems 3.9 and 3.10 yield the following corollaries, re
spectively. 

COROLLARY 3.11. For any set A that is sf-hard for EXP and any p(n)-sparse 
p-selective set S, the set AUS remains sf -hard for EXP. 

COROLLARY 3.12. For any set A that is S~ -hard for EXP and any p(n)-sparse 
p-selective set S, the set AUS remains ~~-hard for EXP. 

We can also prove the same theorem for ~f-tt-hard sets. 
THEOREM 3.13. Let A be sf_u-hard for EXP and let S a p-selective p(n)-sparse 

set. The set A - S is still Sf.tt-hard for EXP. 
Proof We will construct an exponential time-computable set W that is used in 

defining a S:fu-reduction from K to A- S. Let f be the p-selector for S. W consists 
of strings <i, x, z>, where izl = lxJ. 

Fix some i and x. Let n = l<i, x, x>I- We will define membership of <i, x, z> in 
W for all z. For this proof we will assume that llQi(x)ll = 2 for all i and all x. 

There exists some polynomial q' such that S can contain at most q' ( n) of the 
strings in LJ{Q;(<i,x,z>): lzl = jxj}. There exists some polynomial q" such that S 
can contain at most q"(n) different pairs of strings in LJ{Q;(<i,x,z>): lzl =Ix!}. 
We let q(n) = q'(n) + q"(n) + 1. It holds for all but finitely many x that li{z:izl = 
lxl}IJ > q(n) and q"(lxl) > 2q'(lxl) + 1. (Note that q" is quadratic in q'.) 

In the remainder of this proof we will consider only strings for which both in
equalities hold. (We will use tabular lookup in the reduction for other strings.) Let 
Z consist of the lexicographically first 3 x q(n) strings of length jxj. Only strings 
<i,x,z> with z E Z may enter W. Let U = LJ{Q;(<i,x,z>): z E Z}. Assume 
U = {u1, ... ,um}, where u; ES-> u;+l ES, and let U' = {um-q'(n)+1 , .•. ,um}· 
Note that Un S ~ U'. 

There are two cases. 
Case 1. llUll < q"(n). 

As there are more than 3 x q"(n) strings in Z it must hold that there are 
z1 =f. z2 =f. zs in Z such that Q;( <i, x, z1 >) = Qi( <i, x, z2>) = Q;( <i, x, Z3> ). 

Consider the truth table(s) produced on this input. By setting <i, x, z> in 
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<i,x, zo> <i, x, z1> 

Y2 Y1 Yo 

U' 

FIG. 3.1. Possible query sets. 

or out of W we can eliminate at least half of the possible settings (element 
of A or not) of the two queries in Q;(<i,x,z1>). As there are only four 
possible settings for these two strings, repeating this procedure for z2 and z3 , 

we eliminate all possible settings, thereby forcing the fact that M; is not a 
reduction from W to A. 

Case 2. l\Ull 2 q"(n). (It then follows that llUll ;::=: 2 x q'(n) + 1.) 
Either of the following holds (see also Figure 3.1): 
Case 2a. There is a z in Z such that Q; ( <i, x, z>) n U' = 0. Let the least 

such z be zo. We let <i, x, z0 > be in W iff x EK and let <i, x, z> ~ W 
for all other z. 

Case 2b: There is no such z. Then for each of the 2 q'(n) + 1 strings Uj 

in U - U' there is a z(uj) in Z such that JIQ;(<i,x,z(uj)>) n U'll = 
llQi(<i,x,z(uj)>) nu - U'll = 1. It follows that there is a pair Zj,zj 
such that llQ;(<i,x,zj>) n Q;(<i,x,zj>) n U'll = 1. Without loss of 
generality, we assume that z1 and z2 are minimal with this property and 
z1 < z2. Let 

{Yo}= Q;( <i, x, z1>) n Q;( <i, x, z2>) n U', 
{yi} =Qi( <i, x, z1>) n U - U', 
{Y2} = Q;( <i, x, z2>) n U - U'. 

Then we know that {y1 , Y2} n S = 0. In the following we will set, 
depending on the truth table computed by Mi on input <i, x, z1 >, the 
string <i, x, z1> in W such that <i, x, z2> E W can be computed from 
the queries y1 and y2 and hence from queries to A - S. 
We let <i, x, z2> E W ..-. x E K. In the case we are considering here, 
only the strings <i, x, z1> and <i, x, z2> may enter W. So <i, x, z> (/. 
W for all z E Z - {z1, z2}. 
Let a be the truth table computed by M; on input <i, x, z1>. There 
are sixteen possible truth tables that fall into four cases. 

i. If a= 1, we let <i, x, z1 > rf. Wand if a= 0, we let <i, x, z1> E W. 
This prohibits M; from being a 2-truth-table reduction of W to A. 
This covers two of the sixteen cases. 

ii. If there is only one combination of a, b E { 0, 1} for which a( a, b) = 1, 
then <i, x, z1 > E W, and if there is only one such combination 
where a(a, b) = 0, then <i, x, z1 > rf. W. If this M; is a 2-truth-
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table reduction from W to A, then for this particular input we can 
compute XA (Yo) and XA (Y1) in polynomial time. This covers eight 
of the sixteen cases. 

iii. If a is in fact a 1 truth table then the value of a depends on either 
Yo or Y1. In the first case we put <i, x, z1 > in W if and only if a 
takes on true if the entry for Yo is fixed to false. Otherwise we let 
<i,x,z1> E W iff x EK. 

iv. In the remaining two cases, a is either XA(Yo) = XA(Y1) (equality) 
or XA(Yo) EBXA(Y1) (parity). In the first case we let <i,x,z1> E W 
and in the second case we let <i, x, z1> (/. W (then in both cases 
Yo E A ~ Y1 E A.) 

This completes the construction of W. 
We will now show that we can use W to compute a :$fu-reduction for any set in 

EXP to A-S. Since W is exponential-time computable there is some :$fu-reduction 
of W to A. Let Mw be the machine that computes this reduction. For any set B in 
EXP let fB be the many-one reduction of B to K. The :::;ftt-reduction from B to 
A - S works as follows. 

On input y, first compute fB(y). Let x = fB(y). Now use wand x to compute 
the set Z as above. Compute U, sort it according to the p-selector, find U', and find 
out which of the two cases (Case 2a or Case 2b) holds. (We have already argued that 
Case 1 cannot occur if w is the reduction from W to A.) In Case 2a, find the least 
z such that Qw(w,x,z) n U' = 0 and produce Qw(w,x,z) as a query set. In Case 2b 
find z1 and z2. We are in one of the subcases ii-iv. In subcases ii and iii we have 
either fixed the value of XA (yo) or this value doesn't influence the value of the truth 
table, so we need only query y1. Then we can compute membership of x E K from 
either the truth table produced by Mw on input <i, x, z1 > or <i, x, z2>, respectively. 
In subcase iv we fixed things such that XA(Yo) = XA(Y1). We can query Y1 and Y2 
and use these values as XA(Yo) and XA(Y2) in the truth table computed by Mw on 
input <w,x, z2>. D 

As every set in P is p-selective, we note the following corollary. 
COROLLARY 3.14. Theorems 3.9, 3.10, and 3.13 also hold when "p-selective" is 

replaced by "polynomial-time computable." 
We notice an interesting phenomenon here. In a recent paper, Buhrman, Fortnow, 

and Torenvliet [6] proved the existence of a 3-tt complete set in EXP that is not b-tt 
autoreducible. (Recall that a set A is r autoreducible if A :::;;.' A via a reduction that 
does not query its input.) Inspection of the proof shows that the set is constructed by 
diagonalizing against autoreductions on inputs in the set {Ob(n) : n E w }, where b(n) 
is some suitably chosen gap function. They prove that a 3-tt complete set A can be 
constructed such that every b-tt reduction (from A to A) that does not query its input 
must, for some n, incorrectly compute membership of Qb(n) in A. Without essentially 
changing the proof, b(n) can be chosen such that {Ob(n) : n E w} is a polynomial-time 
computable sparse set. The following corollary follows immediately from their proof. 

COROLLARY 3.15 (see [6]). There exists a 3-tt complete set A in EXP and a 
sparse set S in P such that A - S is not b-tt hard for EXP. 

So Theorem 3.13 states an optimal result. A set that is not b-tt hard may of 
course still be Turing hard. Hence the corollary above hence does not rule out that 
every Turing-complete set may remain Turing complete when a sparse set is removed. 
However, we can show that such a result can only be obtained by nonrelativizing 
methods. We show that there exists an oracle set A relative to which EXP has a 
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::;ft-complete tally set T. Then T- {O}* = 0, which cannot be complete. We suspect 
the following to be a folk theorem. We prove it here just for completeness. 

LEMMA 3.16. If EXP £;; P /poly, then there exists a tally set T that is :=;ft-complete 
for EXP. 

Proof. It is well known that A is in P /poly iff A ::;ft T for some tally set T. So 
from our hypothesis this gives us a tally set T, that is, truth-table hard for EXP. We 
will show how to construct a tally set T' (from T) that is complete for EXP. 

The fact that there exists a tally set T that is hard for EXP gives us a truth-table 
reduction, say, by machine Mi from K to T. Now fix n and consider all strings of 
length n. Without loss of generality, we may assume that Mi queries on input x of 
length n, always the same strings to T, namely, Yi, ... ,yn;, where Yi= Qi. The idea 
is to find the minimal (in some way) setting of they/sin T such that x EK iff Mi(x) 
accepts with this setting. Let x1 indicate the jth string of length n in lexicographic 
order. Let Pj = { <ai, ... , an'> : when ai used as answer to query Yi then Mi ( x j) 
accepts iff x1 EK}. 

P1 codes exactly those tally sets T' that, when used as an oracle for Mi(x1), let 
Mi compute the correct answer for x1 EK. Note here that l/P1 11 S 2n' for 0 S j < 2n. 

Set P' = n::i Pi and let Pi be the ith projection of the tuple y, where y is the minimal 
y E P'. Put o<n,i> in T' iff Pi = 1. Obviously, T' is tally and from the construction 
it is clear that T' is computable in exponential time. From the fact that T exists we 
get that T' exists and that K :=;ft T'. 0 

THEOREM 3.17. There exists an oracle A, such that there exists a :=;ftA -complete 
set B for EXPA and a polynomial-time computable, sparse set S, such that B - S is 
not ::;ftA -hard for EXPA. 

Proof Wilson [26] showed the existence of an oracle A where EXPA ~ pA /poly. 
Using this oracle, together with Lemma 3.16, we get that there exists a tally set T 
that is complete for EXPA. Setting B = T and S = {O}*, we get that B-S = 0 and 
0 is not sftA -complete for EXPA. D 

4. Splittings of EXP complete sets. In this section we want to investigate 
to what extent one can split EXP-complete sets. A splitting of an r.e. (EXP) set 
is the construction of two r.e. (EXP) sets Ao, Ai £;; A, such that Aon Ai = 0 and 
Ao U Ai = A. One of the questions to look at is: "Can this splitting be done so that 
both subsets have the same information as A?" For complete sets this would mean 
that the complete set can be split into subsets that are themselves again complete. 
This type of question has been studied in a recursion theoretical setting by Ladner [15]. 
He observed that there exist sets that are nonsplittable, or non-mitotic, as he called 
them. The recursion theoretical definition is as follows. 

DEFINITION 4.1. An r.e. set A is called mitotic iff there exist r.e. sets Ai and 
Ao such that 

1. Ai £;; A, Ao ~ A, Ai n Ao = 0, Ai U Ao = A. 
2. A =T Ai =T Ao. 

If additionally A =m Ai =m Ao, then A is called m-mitotic. 
Note here that point 2 in the definition can be weakened, in the case of ST 

reductions, to Ai =T A 0 . To see this note that A ST Ai EB Ao and Ai ffi Ao 5T Ai. 
To reduce Ai to A, the reduction queries on input x whether or not x is in A. If this 
is not the case, it rejects straight out. Otherwise, it starts enumerating Ai and Ao, 
since x must be in one of them. 
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Ambos-Spies [1] studied the complexity theoretical variant of mitotic sets and 
introduced the term p-mitotic sets. It is not clear how to define mitoticity in the 
complexity theoretical setting. Ambos-Spies introduced four definitions; two for the 
Turing reductions and two for the many-one reductions. One option is to change 
point 2 in Definition 4.1 into demanding A =~ A1 =~ Ao. Since we are interested 
in complete sets for complexity classes, we could demand that Ao and A1 should be 
in the complexity class under consideration. A problem is that this definition cannot 
be weakened to Ar =t Ao. (Take, for example, E* = A LJ A for some EXP Turing
complete set A. Now both A and A are in EXP, split E*, and are Turing equivalent 
but obviously do not Turing reduce to E*.) 

Ambos-Spies chose a Breidbart-Owings [4, 19] type of splitting (by another set). 
DEFINITION 4.2 (see [l]). A recursive set A is p-m(T) mitotic if there is a set 

B E P such that A =:=t:,(T) An B =.;:,(T) An B. 
When using this definition, the problem of reducing A1 to A is settled for the 

Turing case. Namely, x is in Ai iff x is in B and x is in A. A disadvantage of this 
definition, however, is that the requirement that the splitting has to be polynomial
time computable seems too strong. In order to capture this feeling, we also want to 
look at the definition discussed above. Note here also that since our main interest is 
in complete sets, we will not have the trouble that Ao (or A1 ) does not reduce to A. 
(This is because A is complete.) 

DEFINITION 4.3. An r.e. set A is called weakly p-T mitotic iff there exist r.e. 
sets A1 and Ao, such that 

1. A1 s;;; A, Ao s;;; A, Ar n Ao = 0, Ai LJ Ao = A. 
2. A =t A1 =~ Ao. 

If additionally A=~ A1 ::::;;. A0 , then A is called weakly p-m mitotic. 
One of the questions that arise is: "Are $;',-complete sets for EXP (weakly) 

p-m mitotic?" In order to answer this question, we first take a look at the r.e.
complete sets. There it is known, due to Myhill [18], that all of the :::;m-complete sets 
are isomorphic. Now, using the fact that K, the standard r.e. Sm-complete set, is m 
mitotic and that this property is preserved under isomorphisms, it follows that all Sm
complete sets are m mitotic. Unfortunately it is not known whether the :::;;;,-complete 
sets for EXP are p isomorphic, but it is known that they are all 1-1 length increasing 
equivalent [3, 12, 25]. This is sufficient to prove that they are weakly p-m mitotic. 

THEOREM 4.4. All :::;;:,-complete sets for EXP are weakly p-m mitotic. 
Proof. Let A be a $~-complete set for EXP. Let A ffi A :::::;;', A via f that is 

1-1 and length increasing. Set Ao = {y : 30x[x E A /\ y = f(Ox)]}. Since f is 
1-1 and length increasing, Ao is in EXP. It is also $~-complete, because x E A 
iff f(Ox) E Ao. Now set A1 = A - Ao. Then Ao LJA1 = A and Aon A1 = 0. It 
remains to show that A1 is also :::;;;.-complete. Let A1 = {lx : x E A}. Note that 
A1 s;;; A ffi A and is $~-complete. Because f is 1-1, lx E A1 :::} f(lx) EA - A0 , and 
lx (j. A 1 :::? lx ~ Affi A:::? f(lx) (j. A:::? f(lx) r:/. A- Ao. D 

For EXP, the 1-1 length increasing property is enough to get weak p-m mitoticity. 
For NEXP the situation is somewhat different, because we do not know whether 
we have the length increasing property for complete sets. We do however have the 
1-1 property and the fact that the reductions are not more than exponential length 
decreasing, i.e., 2IJ(x)I > Ix!. (The precise term here is "exponentially honest" [12].) 
The main problem, however, is that when applying the same proof as above, the 
set difference used to define A1 = A - Ao is not known to be in NEXP, because it 
is not known whether NEXP is closed under complementation (and thus under set 
difference). We can prove something that at first glance looks hopeful in order to 
prove weakly p-m mitoticity for NEXP-complete sets. 
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THEOREM 4.5. Every $!;.-complete set A for NEXP can be split into infinitely 
many disjoint subsets A1, A2, ... such that U:o A;= A, S'uch that for all i, A; ~A 
and Ai is complete for NEXP. 

Proof. We start the same way as in the EXP case. Let A EB A s,t;. A via f that 
is 1-1 and exponentially honest. Set Ao = {y : :3 Ox[y = f(Ox) A y E A]}. Note 
that it is equivalent, in the definition of A0, to say that x E A or y E A, because 
f is a many-one reduction. Now Ao is in NEXP : on input y guess Ox such that 
f(Ox) = y. This can be done in nondeterministic exponential time because lxl < 2IYI, 
by the exponential honesty of f. Now accept y iffy EA. We define A1 in a similar 
way. A1 = {y : 3 lx[y = f(lx) A y E A]}. We now have two complete sets Ao and 
Ai and some leftover of A, namely, To= A- (Ao LJA1 ). At this point we repeat this 
procedure with Ao resulting in Aoo and Ao1 and again have some leftover T1 . The 
process of repeatedly splitting the set A0e thus results in an infinite sequence of sets 
(Aoe1)£Ew and a set T = U:o T; so that (LJ~0 A0t 1 ) U T = A. Since T is countable 
(it is a subset of w), we can add the ith element of T to Ao• 1 resulting in a sequence 
A~, 1 satisfying the properties of the theorem. O 

Although this looks hopeful, the following example shows that the infinite version 
of mitoticity can be independent of mitoticity. Ladner [15] showed the existence of 
nonmitotic sets. Together with the following observation this yields the somewhat 
bizarre existence of a set that cannot be split into two parts but can be split into 
infinitely many parts of the same complexity. 

OBSERVATION 4.6. Every infinite r.e. set A can be split into infinitely many 
disjoint r.e. subsets A 1 , A2 , ..• of A such that they remain in the same Turing degree 
as A. 

Proof It is well known that every infinite r.e. set A has an infinite subset B that 
is recursive. Let B be such an infinite recursive subset of A. Since Bis recursive and 
infinite, it is (recursively) isomorphic to E*. So we can code A into B, i.e., let f be 
the isomorphism between E* and B and define A' = {f(x) I x E A}. Obviously A' 
is an infinite r.e. set and A' =r (A - B). Furthermore there exists a Ti such that 
A = (A - B) U A' U T1 . Now using the same "divide and split" trick as in the 
previous theorem, we get the desired sequence of subsets. 0 

We follow the same line as Ladner [15] and try to prove that there exist non
( weakly p-m) mitotic sets in EXP. We succeed in this and can also prove that those 
sets can be :Sf-wcomplete. (Note that this also proves that the same result is true 
for p-m mitoticity.) 

THEOREM 4. 7. There exists a set A in EXP that is not weakly p-m mitotic and 
'.Sf-tt-complete. 

Proof. In order to prove this, we prove the following: there exists a set A so that 
for all sets Ao, A1 E EXP that split A, Ao t;';, Ai. First note that if A; r/- EXP, then 
Ai t:':i, A so, in the construction, we may assume that both Ao and A1 are recognized 
by exponential-time bounded machines. Or, equivalently, only pairs of exponential
time bounded machines represent candidate splittings of A against which we have to 
diagonalize. , 

Let {Mi}; be an enumeration of exponential-time machines that run in time 2n , 
and let {fk} k be an enumeration of polynomial-time many-one reductions computable 
in time nk. 

To construct A we have requirements for all n = <i,j,k,f>: if L(M;) and L(Mj) 
' p . 

split A, then either L(Mj) i;;, L(Mi) via ft or L(Mi) im L(Mj) via fk. 
We introduce a function b having a set of strings to diagonalize on. Let b(O) = 1 

and b(i) = b(i - l)i-l + 1. At each stage n we will a~so ?efine ~ num~er dn+I 

such that if n + 1 = <i', j', k', £' >, i.e., the next stage will diagonalize agamst ma-
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chines I\f,, and MJ' and functions fkr and f e, then dn+l is some number satisfying 

b(n + 1)1/m,.x{i',j'} > dn+l > max{k', l'} x logb(n + 1). We will assume appropriate 

properties on the pairing function such that the interval from dn to dn+l is suitable 
for the construction. All strings in A with length between dn and dn+ i will be defined 

at stage n. 
The idea is to put three copies of K into A and make sure that at least one of 

the pairs <i,:r> (i = 1,2,3) is in A. A is then ::;ftt(in fact ::;{d)-complete by the 
following reduction from K to A: x E K iff <i, x>(i = 1, 2, 3) in A. On the other 
hand we can leave out at most two of the pairs <i, x> to prevent A from becoming a 

mitotic set. 
Construction: 
stage 0: A = { <i, x> I i = 1, 2, 3 and x E K}. This is the "base set A." At any 
subsequent stage n of the construction, at most two strings y0 and Y1, respectively, 
with d,,::; ly0 j, /y1/ < dn+l and the string Qb(n) will be added to or removed from A. 
A will be decided for all strings of length ::; dn+l after stage n. 

\Vithout loss of generality, we assume for this proof that the pairing function does 
not output strings that start with a 0. Then, we can define strings of the form Qb(i) 

in or outside .4 without disturbing the completeness. 
stage n: 

Let n = <i, j, k, b. This stage will diagonalize against the possibility that 
A = L(M;) U L(M1) and/or that L(Mi) =f:. L(Mj) via the functions fk and fe 
Consider fk(Ob(n)) =Yo and f1,(0b(n)) =Yi· 

\Ve have several cases to consider. 
1. Yo = Qblnl or Y1 = Ob(n) in this case we put Qb(n) into A. 
2. Yo = Y1. and not case l. We have two subcases: 

(a) !Yo! > dn. Leave Yo out of A and put Ob(n) in A. 
(b) IYol 5 dn. Put Ob(n) in A iff Yo ~A 

3. Yo i= Yi, and not case l. We have three subcases: 
(a) !Yo!> dn and IY1! > dn. Leave both Yo and y1 out of A and put Qb(n) in 

A. 

(b) !Yo!> dn and IY1! 5 dn. (IYol::; dn and IY1! > dn is treated analogously.) 
We leave Yo out of A and have two subcases: 

i. Yi ~ A. Put Ob(n) in A. 
ii. Y1 E A. Ob(n) E A iff Mj (Y1) accepts. 

(c) IYol 5 dn and IY1l 5 dn. We have three subcases: 
i. Y1 ~ A and Yo ~ A. Put Ob(n) in A. 

ii. Y1 EA and Yo rf_ A. (The other way around is symmetric) ()6(n) E A 
iff Alj (y1) accepts. 

iii. 
end of stage n 

Y1 EA and Yo EA. Ob(n) EA iff Mi(Yo) accepts and Mj(yi) accepts. 

End of Construction 

This ends the construction of A. The proof of correctness of the construction is 
an analysis of the cases in the construction. First, A is exponential-tirne computable. 
A consists of. strings <i, x> where ::z; E K. Possible membership of these strings in 

A. can be d~c1ded ~ecause K is exponential-time computable. To decide membership 
of otl~er s~rmgs y m A, we need to compute fg(Ob(n)) where dn :::; IYI· This can be 
done m (lmear) exponential time since IYI;:::: max{C, k} x logb(n). Finally to decide 
memb~rship of Obln) in A we sometimes need to compute Mj(y) and/or'Mk(Y) on 

some mput Y of length ::; dn. This can be done in linear exponential time since 
b(n) :'.::: d~ax{i,J}. 
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Next, if A were m mitotic, then there exists a pair k,f such that A is split into 
Ao and Ai and Ao s,;;, Ai via fk and Ai $!:i Ao via fe. Moreover, Ao E EXP as is 
witnessed by machine Mi and Ai E EXP as is witnessed by machine Mj. 

The cases of the construction can be split into two types, namely, the type where 
both Yo and Yi are free, i.e., > dn, and the type where either y0 or Yi is forced($ dn)· 
In the "free" cases we diagonalize by putting Ob(n) in A and leaving both Yi and y0 out 
of A. Since Ob(n) E A, it has to be in either Ao or Ai, but if it is in either one then the 
corresponding reduction fails since its image is not in A (and therefore certainly not 
in the other part of A). In these cases we diagonalize directly against the many-one 
reductions. In the other cases we are forced to leave Yi and y0 in A in order not to 
destroy the work done at previous stages. But in these cases we are able to compute 
in exponential time the splittings we want to diagonalize against. We will show the 
correctness of case 3c(iii) in the construction. The other cases have a similar proof. 
In this case, both Yo and Yi are fixed and in A. By putting Ob(n) in A, we force y0 and 
Yi for any possible correct splitting both to be in either Ao or Ai. Yet, the machines 
Mi and Mj witness that Yo and Yi are in Ao and Ai, respectively. On the other hand, 
by leaving Ob(n) out of A, Yi has to be in Ap and and y0 in Ai-p (p = 0, 1). Since one 
of the machines rejects in this case, the other machine has to witness that y0 and Yi 
are both in Ao or Ai. If, for instance, Mi witnesses that both strings are in Ao, then, 
since Ob(n) €/.Ai, reduction h fails to be a reduction from Ai to Ao. 0 

The next logical step would be to prove this result for Turing-complete sets and 
T mitoticity. This question remains open for further research. 

Another line of splittings in recursion theory is the existence of a splitting of 
an r.e. set A in Ao and Ai that are incomparable. Examples of this are the splitting 
theorem of Sacks [20] and the time bounded versions by Ladner [16]. The next theorem 
is in a way a counterpart to this. 

In the original splittings one gets the following structure: Ao and Ai are Turing 
(or many one) incomparable but do reduce to A, thus achieving that A does not 
reduce to Ao or Ai, i.e., Ao and Ai are strictly below A. In the next theorem the 
sets Ao and Ai are strictly below A, but are in the same many-one degree. Seen in 
another light, this theorem can be seen as a generalization of the fact that there exists 
Sf_d-complete sets for EXP that are not ::;:;:-complete [25, 12]. 

THEOREM 4.8. If A is S:t:i-complete for EXP, then A can be split into Ao and 
Ai, such that 

• Ao =t:i A1. 
• Ao and Ai are ::;:_d-complete for EXP but not ~t:i-complete. 

Proof Let A be st:i-complete and K be the standard ::;;;:-complete set. Since 
the s;;,-complete sets for EXP are 1-1 length increasing equivalent, we can construct 
the following length increasing 1-1 function h from A to A. Let f be the 1-1, length 
increasing reduction from A to K, and let g be the one from K to A. Let h(x) = 
f(g(x)). We say that x is a root if h-i(x) is undefined and x is on a chain if h-i(x) 
is defined. 

One possible way to construct Ao and Ai is as follows (the real construction 
follows later): Ao = {x Ix E A and x is a root} LJ{x Ix EA and x is o~ a chain a~d 
hi(xr) = x and Xr is a root and i is even} and Ai= {x Ix EA and x is on a cham 
and hi(xr) = x and Xr is a root and i is odd}. 

Clearly Ao and Ai split A, are in EXP, and Ao =t:i Ai via h. Ao and Ai are S:f-d
complete: x EA{::=:::?- (x E Ao or x E Ai)~ (x E Ao or h(x) E Ao). The only thmg 
to do now is to show that Ao and Ai are not S:;'..-complete. Note here that in order 
to get the above properties (i.e., splitting of A, the=:;;:, and the S:{d-completeness) 
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it doesn't matter if the roots are in Ao or Ai as long as it holds that x E Ai, then 
h(x) E Ai-i· This gives enough freedom to diagonalize against ::;;'.-reductions. We 
are going to construct a set W E EXP so that W ~~Ao. Note that then Ai cannot be 
::;;;',-complete either. Again let {fih be an enumeration of ::;;'.-reductions such that 
f; runs in time ni +i. We also need a function b(n) to denote the set of strings to 
diagonalize on. Let b(O) = 1 and b(i + 1) = b(i)i + 1. W is going to be a subset of O*. 

We construct W, A0 , and A1 in stages such that elements of Ao and A1 are either 
roots or successive elements on a chain and W is exponential-time computable, but 
reducible to neither Ao nor A1. 

At stage 0, W = Ao = Ai = 0. 
stage n: 

We have constructed W, A0 , and A1 up to strings of length::; b(n - l)n- 1 . We 
simulate fn(Ob(n)) = y. We now have three cases for the construction of W: 

1. IYI ::; b(n - l)n-l. Put ob(n) in w iffy (j. Ao. 
2. 3 y' ::; b(n - l)n-i such that hi(y') = y. Put Ob(n) in W iffy' (j. Ai mod 2-

3. Otherwise put Qb(n) in W. 
This ends the construction of W. 
Construction of Ao and A1. 

Let b(n - 1r-1 < lxl < b(n)n + 1 and x EA. 
1. x =!= y. 

(a) x is a root. 
• 3 i such that hi(x) = y 

- put x in Ao iff i is odd. 
- put x in A1 iff i is even. 

• put x in Ao. 
(b) x is on a chain, Xr is the root of x, Xr E Aj, and hi(xr) = x. Put x in 

A(i+j) mod 2· 

2. x = y. Put x in Ao iff Ob(n) ~ W. 
end of stage n 

It is not hard to see that W, A0 , and A1 are all in EXP. Furthermore Ao and 
A1 split A and Ao =~ A1 . It remains to be shown that W~~Ao. Suppose it is 
via reduction fj; then fj(Ob(j)) = y. For cases 1 and 2 in the above construction, 
Qb(j) E W iff y 1t Ao, and from the construction of Ao and case 3, Ob(j) E W and 
y (j. Ao. D 
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