
Journal of Computer and System Sciences 76 (2010) 792–811

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector
Contents lists available at ScienceDirect

Journal of Computer and System Sciences

www.elsevier.com/locate/jcss

Space-efficient informational redundancy

Christian Glaßer

Theoretische Informatik, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany

a r t i c l e i n f o a b s t r a c t

Article history:
Received 10 September 2009
Received in revised form 9 March 2010
Available online 16 March 2010

Keywords:
Computational complexity
Log-space reductions
Autoreducibility
Mitoticity

We study the relation of autoreducibility and mitoticity for polylog-space many-one
reductions and log-space many-one reductions. For polylog-space these notions coincide,
while proving the same for log-space is out of reach. More precisely, we show the following
results with respect to nontrivial sets and many-one reductions:

1. polylog-space autoreducible ⇔ polylog-space mitotic,
2. log-space mitotic ⇒ log-space autoreducible ⇒ (log n · log log n)-space mitotic,
3. relative to an oracle, log-space autoreducible � log-space mitotic.

The oracle is an infinite family of graphs whose construction combines arguments from
Ramsey theory and Kolmogorov complexity.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

Our investigations are motivated by the question of whether the ability to reformulate membership questions for a set
implies that the set is redundant in the sense that it can be split into two equivalent parts. This question depends on
the resources available for reformulation and for splitting. In this paper we focus on notions of redundancy that have low
space complexity. Suppose we are given a set A such that in log-space we can reformulate a given question x ∈ A into an
equivalent question y ∈ A. Is this enough to split A in log-space into disjoint parts A1 and A2 such that A, A1, and A2 are
log-space many-one equivalent? We study this question also with respect to polylog-space.

The reformulation of questions is made precise by the notion of autoreducibility. The idea of splitting a set into two parts
that are equivalent to the original set is formalized by the notion of mitoticity. Hence our main questions can be formulated
as follows:

Q1 Does log-space many-one autoreducibility imply log-space many-one mitoticity?
Q2 Does polylog-space many-one autoreducibility imply polylog-space many-one mitoticity?

Trakhtenbrot [14] defined a set A to be autoreducible if there is an oracle Turing machine M such that A = L(M A)

and M on input x never queries x. Lachlan [7] introduced the notion of mitoticity which was studied comprehensively by
Ladner [9,8]. A set A is mitotic if there exists a recursive set S such that A, A ∩ S , and A ∩ S are Turing equivalent. Ambos-
Spies [1] transferred autoreducibility and mitoticity to complexity theory and studied several versions of polynomial-time
autoreducibility and polynomial-time mitoticity. A set A is polynomial-time many-one autoreducible if A is polynomial-time
many-one reducible to A via a function f such that f (x) �= x for every x. Many-one autoreducible sets contain a local
redundancy of information, since x and f (x) contain the same information with respect to membership in A. A set A

E-mail address: glasser@informatik.uni-wuerzburg.de.
0022-0000/$ – see front matter © 2010 Elsevier Inc. All rights reserved.
doi:10.1016/j.jcss.2010.03.005

https://core.ac.uk/display/82332916?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcss
mailto:glasser@informatik.uni-wuerzburg.de
http://dx.doi.org/10.1016/j.jcss.2010.03.005

C. Glaßer / Journal of Computer and System Sciences 76 (2010) 792–811 793
is polynomial-time many-one mitotic if there exists S ∈ P such that A, A ∩ S , and A ∩ S are polynomial-time many-one
equivalent. Many-one mitoticity formalizes the aspect of informational redundancy in sets. Hence our questions Q1 and Q2
ask whether local (poly)log-space redundancy implies informational (poly)log-space redundancy. The converse implication
holds in general, since mitoticity implies autoreducibility.

The question of whether local redundancy implies informational redundancy was first studied by Ladner [9,8] who
showed that with respect to r.e. sets, autoreducibility and mitoticity coincide. Ambos-Spies [1] introduced the men-
tioned resource-bounded notions of redundancy and proved that polynomial-time Turing autoreducibility does not imply
polynomial-time Turing mitoticity. Glaßer et al. [5,6] showed the same for all reducibility notions between polynomial-time
2-truth-table reducibility and polynomial-time Turing reducibility. In contrast, polynomial-time many-one autoreducibil-
ity and polynomial-time many-one mitoticity coincide [5]. The same holds for polynomial-time 1-truth-table reducibil-
ity.

In the present paper we shift the focus to logarithmic and polylogarithmic space, which brings us to the study of
(poly)log-space autoreducibility and (poly)log-space mitoticity. We prove that polylog-space many-one autoreducibility and
polylog-space many-one mitoticity coincide. This shows that even very restricted computational devices can exploit local
redundancy and can transform it into informational redundancy. For log-space we show a similar, but weaker connection:
Log-space many-one autoreducibility implies (log n · log logn)-space many-one mitoticity. The latter space bound can be even
improved to (log n · log(c) n) for any fixed constant c, where log(c) n denotes the c-times composition of the log operation.
On the technical side we obtain these results by developing a combination of the construction used for polynomial-time
many-one reductions [5] and the repeated deterministic coin tossing by Cole and Vishkin [3].

So far we know that autoreducibility and mitoticity are equivalent with respect to unbounded Turing reductions [9,8],
polynomial-time many-one reductions [5], and polylog-space many-one reductions (Corollary 3.9). Motivated by these equiv-
alences, one could hope to turn the implications

log-space many-one mitotic

⇓
log-space many-one autoreducible

⇓
(logn · log logn)-space many-one mitotic

into a full equivalence, by replacing (log n · log log n)-space with log-space. We show that such an improvement is hard
to obtain. In Section 4 we discuss in detail the reason for this and we make this precise with the construction of an
oracle relative to which the equivalence does not hold. The oracle construction combines arguments from Ramsey theory
and Kolmogorov complexity to make sure that log-space computable functions get lost in infinite graphs. Moreover, the
constructed oracle separates log-space many-one autoreducibility and log-space many-one mitoticity with respect to all
common models of log-space oracle machines. These include weak models like the ones by Ladner and Lynch [10] and
Ruzzo, Simon, and Tompa [13], but also strong models like the model by Gottlob [4]. A discussion of all considered models
is given in the preliminaries section.

Roughly speaking the oracle is a family of graphs whose existence follows from Ramsey theory. Each of these graphs is a
cycle (i.e., a connected graph with indegree and outdegree 1) where the nodes are numbers whose lengths are polynomially
bounded in the size of the graph. Our witness language L is the set of all nodes that appear in some cycle of the graph
family. The cycles are such that the successor of a given node can be computed in log-space which shows that L is log-
space many-one autoreducible. In contrast, for every unbounded function t , the t(n)-th successor cannot be computed in
log-space (where n is the size of the graph). So log-space functions can determine at most constantly many successors of
a given node. Hence they see at most a constant-size part of the graph and act on the graph like a relation of constant
arity. By the Ramsey theorem, we can choose our cycles such that log-space machines show the same acceptance behavior
on several consecutive nodes v1, . . . , vc . So a log-space separator S puts all these nodes to the same side, either S or S .
For a given log-space function f we can ensure that c is large enough such that f on input v1 can determine at most the
nodes v1, . . . , vc . The latter are all on the same side of S . So f cannot be a reduction from L ∩ S to L ∩ S . In this way we
diagonalize against all f and obtain that L is not log-space many-one mitotic.

2. Preliminaries

In the paper, all variables represent natural numbers, unless they are explicitly defined in a different way. We use the
following abbreviations for intervals of natural numbers: [n,m] = {n,n + 1, . . . ,m}, [n,m) = {n,n + 1, . . . ,m − 1}, (n,m] =
{n + 1,n + 2, . . . ,m}, (n,m) = {n + 1,n + 2, . . . ,m − 1}. For n ∈ N let logn be the logarithm of n to base 2. For k ∈ Z and
n � 1 let (k mod n) be the uniquely determined m ∈ [0,n) such that m ≡ k (mod n). Moreover, sgn(k) denotes the sign
of k, abs(k) denotes the absolute value of k, and |k| denotes the length of the binary representation of k. For a function f ,
f (i) denotes the i-th superposition of f , i.e., f (0)(x) = x and f (i+1)(x) = f (f (i)(x)). For a fixed function f , the sequence
f (0)(x), f (1)(x), . . . is called the trajectory of x. The complement of a set A is denoted by A. A set A is called nontrivial if
|A| � 2 and |A| � 2.

794 C. Glaßer / Journal of Computer and System Sciences 76 (2010) 792–811
We distinguish between Turing machines and Turing transducers. Turing machines (TM for short) are used for accepting
languages and so they output 0 or 1. Turing transducers (TT for short) are machines that compute functions and hence can
output arbitrary words. OTM (resp., OTT) is an abbreviation for oracle Turing machine (resp., oracle Turing transducer). If M
is a TM or TT, then M(x) denotes the output of M on input x. Similarly, if M is an OTM or an OTT, then MT (x) denotes the
output of M on input x where T is used as oracle. If M is a TM (resp., OTM), then L(M) (resp., L(MT)) denotes the set of
words accepted by M .

2.1. Models of log-space oracle machines

There is a canonical way to define oracle access for time-bounded machines. However, for space-bounded machines there
is no such distinguished way. We briefly discuss several models of log-space oracle machines; for a detailed comparison we
refer to Buss [2]. The following properties are desirable for such models: The machine should not be able to use the query
tape as additional storage, but it should be able to write long strings to the query tape (e.g., its own input). Moreover, we
would like that log-space computable functions are closed under composition. Not all of the presented models satisfy these
conditions.

LL-model by Ladner and Lynch [10]: The machine has one additional, one-way, write-only oracle tape which is not
subject to the space bound and which is erased after asking a query.

RST-model by Ruzzo, Simon, and Tompa [13]: Like the model by Ladner and Lynch, but additionally it is required that
the machine acts deterministically while anything is written on the oracle tape. So for deterministic machines, both models
are equivalent.

L-model by Lynch [11]: The machine has an arbitrary, but fixed number of one-way, write-only oracle tapes. These tapes
are not subject to the space bound and after asking a query, the corresponding tape is erased.

B-model by Buss [2]: The machine has many one-way, write-only query tapes and a single read-write index tape which
is logarithmically bounded. If i is written on the index tape, then all query operations (writing to a query tape, querying
the oracle, erasing the query on the tape, and obtaining the answer) are with respect to tape i. If there are k active queries
of maximum length m, then this is considered as space k log m which must be of order O (log n).

W-model by Wilson [15]: The machine has a one-way, write-only oracle stack which we consider to write from left to
right. The machine can write several (partial) queries to the stack such that neighboring queries are separated by #. If the
machine enters the query state, then the characters after the right-most # are considered to be query. After querying, the
and the query itself are erased so that the machine can continue to write the previous query at the stack. This nesting of
queries may continue to any depth, but the stack contributes to the computation space as follows. If q1 # q2 # · · · # qk is the
content of the stack, then this is considered as space

∑
i∈[1,k] max{log |qi|,1} which must be of order O (log n).

G-model by Gottlob [4]: The machine has O (log n) one-way, write-only query tapes and a single read-write index tape
which is logarithmically bounded. The query tapes are not subject to the space bound. If i is written on the index tape, then
all relativized operations are with respect to tape i.

For deterministic machines, the presented models compare as follows, where the strengths increase from bottom to top.

Throughout the paper (if not stated otherwise) we use the most powerful G-model for log-space OTMs and OTTs. More-
over, we assume the machines to have tape alphabet Σ = {0,1} (which does not restrict the computational power). If we
talk about the space used by such a machine, then this contains the space used by the working tape and the space used by
the index tape. Recall that it does not contain the space used by query tapes. We may assume that a machine with space
bound d log n has at most d log n query tapes. This latter assumption is motivated by the observation that each query tape
can be used as a one-bit storage cell: For an oracle O , fix words x0 /∈ O and x1 ∈ O . A bit b can be stored in the oracle tape
by writing xb to the tape. We can read the bit b by querying the tape and writing again xb to the tape (which was emptied
by the query mechanism).

C. Glaßer / Journal of Computer and System Sciences 76 (2010) 792–811 795
2.2. Complexity classes, reductions, autoreducibility, and mitoticity

For s : N → N, let FSPACE(s) be the class of functions computable in deterministic space O (s(n)) and let DSPACE(s) be
the class of languages that are decidable in deterministic space O (s(n)). Let FPLOG be the class of functions computable
in deterministic polylog-space, i.e., FPLOG = ⋃

k�1 FSPACE(logk n). Let PLOG be the class of languages that are decidable

in deterministic polylog-space, i.e., PLOG = ⋃
k�1 DSPACE(logk n). Moreover, let FL = FSPACE(log n) and L = DSPACE(logn).

Observe that FPLOG and FL are closed under composition.
A set A is polylog-space many-one reducible to a set B , in notation A �plog

m B , if there exists a total f ∈ FPLOG such
that x ∈ A ⇔ f (x) ∈ B . Similarly, A is log-space many-one reducible to B , in notation A �log

m B , if there exists a total
f ∈ FL such that x ∈ A ⇔ f (x) ∈ B . From FL’s and FPLOG’s closure under composition it follows that �log

m and �plog
m are

transitive. For integers k � 1 we write A �logk

m B , if there exists a total f ∈ FSPACE(logk n) such that x ∈ A ⇔ f (x) ∈ B . We
write A �log · log log

m B , if there exists a total f ∈ FSPACE((log n) · log log n) such that x ∈ A ⇔ f (x) ∈ B . By lengths reasons,
the function classes FSPACE((log n) · log log n) and FSPACE(logk n) for k � 2 are not closed under composition. Hence, the

reductions �log · log log
m and �logk

m for k � 2 are not transitive.

Let �r
m be a reduction from {�log

m ,�plog
m ,�log · log log

m ,�logk

m }. We say A and B are �r
m-equivalent, in notation A ≡r

m B , if
A �r

m B and B �r
m A. A is �r

m-autoreducible, if A �r
m A via a reduction f such that f (x) �= x.

A is �log
m -mitotic (resp., �plog

m -mitotic), if there exists a separator S ∈ L (resp., S ∈ PLOG) such that A, A ∩ S , and A ∩ S are

pairwise �log
m -equivalent (resp., �plog

m -equivalent).1 A is �logk

m -mitotic (resp., �logk·log log
m -mitotic), if there exists a separator

S ∈ DSPACE(logk n) (resp., S ∈ DSPACE((logk n) · log log n)) such that A, A ∩ S , and A ∩ S are pairwise �logk

m -equivalent (resp.,

�logk · log log
m -equivalent).

For an oracle O , let LO be the class of sets decidable by a log-space OTM that has access to oracle O . Similarly, FLO is
the class of functions computable by a log-space OTT that has access to oracle O . We also need the following relativized
versions of log-space reducibilities, autoreducibility, and mitoticity.

Definition 2.1. Let O be an oracle and let A, B be sets of words.

A �log,O
m B

df⇐⇒ there exists f ∈ FLO such that for all x,(
x ∈ A ⇔ f (x) ∈ B

)
,

A �log-lin,O
m B

df⇐⇒ there exist c > 0 and f ∈ FLO such that
for all x,

∣∣ f (x)
∣∣ � c|x| and(

x ∈ A ⇔ f (x) ∈ B
)
,

A is �log,O
m -autoreducible

df⇐⇒ A �log,O
m A via a reduction f such that

f (x) �= x,

A is �log-lin,O
m -autoreducible

df⇐⇒ A �log-lin,O
m A via a reduction f such that

f (x) �= x,

A is �log,O
m -mitotic

df⇐⇒ there exists S ∈ LO such that
A ≡log,O

m A ∩ S ≡log,O
m A ∩ S .

Proposition 2.2. If L is �log
m -mitotic such that |L| � 2, then L is �log

m -autoreducible.

Proof. If L is �log
m -mitotic, then there exist S ∈ L and f1, f2 ∈ FL such that L ∩ S �log

m L ∩ S via f1 and L ∩ S �log
m L ∩ S via f2.

By assumption, there exist different words v, w ∈ L. The following function is an �log
m -autoreduction for L (where min refers

to quasi-lexicographic order).

f ′(x)
df=

⎧⎨
⎩

f1(x) if x ∈ S and f1(x) /∈ S,

f2(x) if x /∈ S and f2(x) ∈ S,

min({v, w} − {x}) otherwise. �
1 This pairwise equivalence can be written as A ≡log

m A ∩ S ≡log
m A ∩ S (resp., A ≡plog

m A ∩ S ≡plog
m A ∩ S), since �log

m (resp., �plog
m) is transitive. This is not

possible in the definitions of �logk

m -mitoticity and �log · log log
m -mitoticity.

796 C. Glaßer / Journal of Computer and System Sciences 76 (2010) 792–811
3. The equivalence (���plog
m -autoreducible ⇔ ���plog

m -mitotic)

This section establishes tight connections between autoreducibility and mitoticity in the (poly)log-space setting. With
respect to nontrivial sets it holds that:

1. �plog
m -autoreducible ⇔ �plog

m -mitotic;
2. �log

m -autoreducible ⇒ �log·log log
m -mitotic.

So for polylog-space many-one reductions we can prove an equivalence similar to the one that is known for polynomial-time
many-one reductions [5]. However, for log-space many-one reductions we obtain mitoticity only if we grant the reduction a
little more space than O (log n). Log-space many-one autoreducibility even implies (log n · log(c) n)-space many-one mitoticity
for every constant c. To obtain these results, we apply a combination of the construction used in the polynomial-time many-
one setting [5] and the repeated deterministic coin tossing by Cole and Vishkin [3].

In the polynomial-time many-one setting, for a given set L with polynomial-time many-one autoreduction f (for sim-
plicity we assume that f is length-preserving) one has to show that L is polynomial-time many-one mitotic. This is done
by considering trajectories of the form x, f (x), f (f (x)), Since f is an autoreduction, the elements of a trajectory either
all belong to L or all belong to L. One constructs a separator S such that among the first O (|x|) elements of an arbitrary
trajectory x, f (x), f (f (x)), . . . there are elements from S as well as elements from S . Therefore, if one follows the trajectory
of x for O (|x|) steps, one finds an element y such that (x ∈ L ⇔ y ∈ L) and (x ∈ S ⇔ y /∈ S). This is used to establish the
polynomial-time many-one mitoticity of L.

For space-bounded many-one reductions a new difficulty comes up: In the log-space setting we can follow the trajectory
only for constantly-many steps, but not for O (|x|) steps. So if f ∈ FL and c is constant, then we can compute f (c) in log-
space, but we cannot compute f (|x|)(x) (since the intermediate results f (x), f 2(x), . . . cannot be stored in log-space). Here
the repeated deterministic coin tossing [3] comes into play. With this technique it is possible to construct a well-balanced
separator (which is used to establish mitoticity) such that instead of |x| steps we only have to follow the trajectory for
log log |x| steps. This number can actually be dropped to any fixed number of repeated log operations, i.e., log(c) |x| where c
is constant.

We cannot prove that log-space many-one autoreducibility is equivalent to log-space many-one mitoticity. The lack of
this equivalence is not due to our particular technique. In Section 4 we discuss in detail the deeper reason for the missing
equivalence and we make this precise with the construction of an oracle relative to which the equivalence does not hold.

Theorem 3.1. Let k � 1 be an integer and let L be a �logk

m -autoreducible set such that |L| � 2. Then there exist a total g ∈
FSPACE((logk7

n) · log logn) and a set S ∈ DSPACE(logk4
n) such that for all x,

1. x ∈ L ⇔ g(x) ∈ L, and
2. x ∈ S ⇔ g(x) /∈ S.

Proof. Let f ∈ FSPACE(logk n) be a �logk

m -autoreduction for L. Choose c � 2 such that f can be computed in space c logk n

and time l(n)
df= 2c logk n . According to this time bound we now define a tower function.

t(i)
df=

{
2 for i = 0,

l(l(t(i − 1))) for i � 1.

Observe that the inverse tower function t−1(n)
df= min{i | t(i) � n} is computable in log-space in n (i.e., linear space in the

input length). Note that for all n,

t−1(l
(
l(n)

)) = t−1(n) + 1. (1)

So from f ’s time bound we obtain for all x,

t−1(∣∣ f (x)
∣∣) � t−1(|x|) + 1 and t−1(∣∣ f

(
f (x)

)∣∣) � t−1(|x|) + 1. (2)

We partition the set of all words as follows.

S0
df= {

x
∣∣ t−1(|x|) ≡ 0 (mod 2)

}
,

S1
df= {

x
∣∣ t−1(|x|) ≡ 1 (mod 2)

}
.

Note that S0, S1 ∈ L.

C. Glaßer / Journal of Computer and System Sciences 76 (2010) 792–811 797
We use the following distance function for integers.

d(x, y)
df=

{
0 if x = y,

sgn(y − x) · �log(2abs(y − x)) otherwise.

This function is computable in log-space. Note that d(x, y) = 0 if and only if x = y.

Claim 3.2. If z1 , z2 , and z3 are integers such that d(z1, z2) = d(z2, z3) �= 0, then there exist i, j ∈ [1,3] such that for r
df= d(z1, z2),⌊

zi/2abs(r)⌋ is even ⇔ ⌊
z j/2abs(r)⌋ is odd.

Proof. Assume that the claim does not hold and let z1, z2, and z3 be counter examples. Let r
df= d(z1, z2) = d(z2, z3), a1

df=
�z1/2abs(r), a2

df= �z2/2abs(r), and a3
df= �z3/2abs(r). So by assumption, either a1, a2, and a3 are all even or a1, a2, and a3 are

all odd. Without loss of generality let us assume that a1, a2, and a3 are even (the other case is analogous).

Case 1: Assume r > 0. So z1 < z2 < z3 and hence a1 � a2 � a3.

Assume a1 = a3. From d(z1, z2) = r it follows that log(2abs(z2 − z1)) � r and hence z2 − z1 � 2r−1. The same ar-
gument shows z3 − z2 � 2r−1. So z3 � z1 + 2r = z1 + 2abs(r) and hence a3 � a1 + 1 which contradicts the assumption
a1 = a3.

So it holds that a1 < a3. This implies a3 − a1 � 2, since both values are even. Since a2 is even as well, we obtain
a2 − a1 � 2 or a3 − a2 � 2. If a2 − a1 � 2, then z2 − z1 > 2r and so d(z1, z2) � r + 1. If a3 − a2 � 2, then z3 − z2 > 2r and so
d(z2, z3) � r + 1. Both conclusions contradict the definition of r.

Case 2: Assume r < 0. So z1 > z2 > z3 and hence a1 � a2 � a3.

Assume a1 = a3. From d(z1, z2) = r it follows that log(2abs(z2 − z1)) � abs(r) and hence z1 − z2 � 2abs(r)−1. The
same argument shows z2 − z3 � 2abs(r)−1. So z1 � z3 + 2abs(r) and hence a1 � a3 + 1 which contradicts the assumption
a1 = a3.

So it holds that a1 > a3. This implies a1 − a3 � 2, since both values are even. Since a2 is even as well, we obtain
a1 − a2 � 2 or a2 − a3 � 2. If a1 − a2 � 2, then z1 − z2 > 2abs(r) and so d(z1, z2) � −abs(r) − 1 < r. If a2 − a3 � 2, then
z2 − z3 > 2abs(r) and so d(z2, z3) � −abs(r)− 1 < r. Both conclusions contradict the definition of r. This proves Claim 3.2. �

We define the separator S by the following algorithm which works on input x.

0 // Algorithm for the set S
1 y := f(x), z := f(2)(x), u := f(3)(x), v := f(4)(x)

2 x′ := d(x,y), y′ := d(y,z), z′ := d(z,u), u′ := d(u,v)

3 x′′ := d(x′,y′), y′′ := d(y′,z′), z′′ := d(z′,u′)
4 if |x| < |y| and (x ∈ S0⇔y ∈ S1) then accept
5 if |y| < |z| and (y ∈ S0⇔z ∈ S1) then reject
6 // Phase 1
7 if d(x′′,y′′) > d(y′′,z′′) then accept
8 if d(x′′,y′′) < d(y′′,z′′) then reject
9 // Phase 2
10 if d(x′′,y′′) �= 0 then
11 r′′ := d(x′′,y′′)
12 accept iff �x′′/2abs(r′′) is even
13 endif
14 // Phase 3
15 if d(x′,y′) �= 0 then
16 r′ := d(x′,y′)
17 accept iff �x′/2abs(r′) is even
18 endif
19 // Phase 4
20 r := d(x,y)

21 accept iff �x/2abs(r) is even

We argue that S ∈ DSPACE(logk4
n). By assumption, f ∈ FSPACE(logk n). It follows that f (2) ∈ FSPACE(logk2

n), f (3) ∈
FSPACE(logk3

n), and f (4) ∈ FSPACE(logk4
n). So x, y, z, u, and v can be computed in space O (logk4

n) (although these values

are too large to be stored in space O (logk4
n)). The distance function d is computable in log-space. Therefore, x′ , y′ , z′ , and

798 C. Glaßer / Journal of Computer and System Sciences 76 (2010) 792–811
u′ can be computed in space O (logk4
n). Note that the lengths of these values are of order O (logk4

n). Hence x′ , y′ , z′ , and

u′ can be even stored in space O (logk4
n). So also x′′ , y′′ , z′′ , d(x′′, y′′), and d(y′′, z′′) can be computed and stored in space

O (logk4
n). The tests for membership in S0 and S1 (lines 4 and 5) are possible in space O (logk4

n), since S0, S1 ∈ L. All

remaining steps can be carried out in space O (logk4
n), since they work on variables that are either stored on the working

tape or (in case of x) are written on the input tape. This shows S ∈ DSPACE(logk4
n).

Let e
df= 43k2�log c�. The function g is defined by the following algorithm working on input x.

0 // Algorithm for function g
1 n := |x|, m := e+ 6k3�log logn�
2 for i := 1 to m
3 // here |f(i)(x)| � l(3)(n)

4 if x ∈ S⇔ f(i)(x) /∈ S then return f(i)(x)

5 next i
6 // this line is never reached

Claim 3.3. In the algorithm for g, the invariant in line 3 holds.

Proof. Assume there exists an i ∈ [1,m] such that the algorithm reaches the i-th instance of the loop and there it holds
that | f (i)(x)| > l(3)(n). Choose the smallest such i and let s = t−1(n). Note that i � 4, since f ’s computation time is bounded
by l(n). Observe that by (1), t−1(| f (i)(x)|) � t−1(l(l(n))) = s + 1. From (1) we also obtain that either

t−1(l(n)
) = s and t−1(l

(
l(n)

)) = s + 1 (3)

or

t−1(l(n)
) = t−1(l

(
l(n)

)) = s + 1 and t−1(l(3)(n)
) = s + 2. (4)

Recall that by (2), if j0 < j2 such that t−1(| f (j0)(x)|) = s and t−1(| f (j2)(x)|) = s + 2, then there exists j1 ∈ (j0, j2 − 2] such
that t−1(| f (j1)(x)|) = s + 1 and t−1(| f (j1+1)(x)|) = s + 1. If (3) holds, then t−1(| f (x)|) � s and so there exists j ∈ [2, i] such
that for u = f (j−2)(x), v = f (j−1)(x) and w = f (j)(x) it holds that t−1(|u|) = t−1(|v|) = s and t−1(|w|) = s + 1. If (4) holds,
then there exists j ∈ [2, i] such that for u = f (j−2)(x), v = f (j−1)(x) and w = f (j)(x) it holds that t−1(|u|) = t−1(|v|) = s + 1
and t−1(|w|) = s + 2. In both cases we have (u ∈ S0 ⇔ v ∈ S0) and (v ∈ S0 ⇔ w ∈ S1). If we consider the algorithm for S ,
then we see that u /∈ S and v ∈ S . Therefore, in the algorithm for g , the condition in line 4 is either satisfied for i = j−2 or is
satisfied for i = j − 1. This contradicts our assumption that we reach the i-th instance of the loop. This proves Claim 3.3. �
Claim 3.4. g ∈ FSPACE((logk7

n) · log log n).

Proof. Let n = |x| and m = e + 6k3�log log |x|�. Choose m′ ∈ [1,m] such that the computation g(x) stops after the m′-th
instance of the loop. We describe how to compute the values f (1)(x), f (2)(x), . . . , f (m′)(x) in space 2 · c logk(l(3)(n)) · m. For
this, we use m blocks of space 2 · c logk(l(3)(n)). The right (resp., left) part of a block are the first (resp., last) c logk(l(3)(n))

storage cells in the block. The i-th block is used to compute single bits of f (i)(x). More precisely, block i interprets its left
part as a number j and it uses its right part to compute the j-th bit of f (i)(x). The latter computation uses the block i −1 to
compute single bits of f (i−1)(x) (if i = 0, then these bits can be directly read on the input tape). By Claim 3.3, for i ∈ [1,m′] it
holds that | f (i)(x)| � l(3)(n). Hence, f (i+1)(x) is computable in space c logk(l(3)(n)) if we have access to f (i)(x). So the space
in the right part of the i-th block suffices to compute f (i)(x). This shows that we can compute f (1)(x), f (2)(x), . . . , f (m′)(x)

in space 2 · c logk(l(3)(n)) · m. Moreover, for the test f (i)(x) /∈ S in line 4 we need space O (logk4
(l(3)(n))). Observe that

log
(
l(3)(n)

) = ck2+k+1 · logk3
n.

So the space needed to compute g(x) can be estimated by

2 · c logk(l(3)(n)
) · m + O

(
logk4(

l(3)(n)
)) = O

(
m · logk4

n
) + O

(
logk7

n
)

� O
((

logk7
n
) · log logn

)
.

Note that the factor log log n is needed only for k = 1. This proves Claim 3.4. �
Claim 3.5. The algorithm for g never reaches line 6.

C. Glaßer / Journal of Computer and System Sciences 76 (2010) 792–811 799
Proof. Assume that for some input x, the algorithm reaches line 6. Let n = |x|, m = e + 6k3�log log |x|�, and xi = f (i)(x)
for i � 0. Hence, for i ∈ [1,m] it holds that x ∈ S ⇔ xi ∈ S . Without loss of generality let us assume that xi ∈ S for all
i ∈ [0,m].

All remaining arguments refer to the algorithm for S . For i ∈ [1,m] it holds that the algorithm on input xi does not stop
in line 4, since otherwise xi−1 stops in line 5 which contradicts the assumption xi−1 ∈ S . (Here one has to note that if xi
stops in line 4, then by (2), xi−1 cannot stop in line 4 as well.) So for all i ∈ [1,m], the algorithm on input xi reaches phase 1
(line 6).

Phase 1: For i � 0 define yi to be the value of the program variable y when the algorithm for S works on input xi . In
the same way we define zi , ui , vi , x′

i , y′
i , z′

i , u′
i , x′′

i , y′′
i , and z′′

i . Note that yi = xi+1, zi = yi+1, ui = zi+1, vi = ui+1, y′
i = x′

i+1,
z′

i = y′
i+1, u′

i = z′
i+1, y′′

i = x′′
i+1, and z′′

i = y′′
i+1.

We show that there are not too many elements i ∈ [1,m] such that the algorithm on input xi stops in line 7. By Claim 3.3,
for i ∈ [1,m], |xi | � l(3)(n). So the following holds for i ∈ [1,m−4]: The lengths of xi , yi , zi , ui , and vi are bounded by l(3)(n).
By the definition of the distance function d, the values abs(x′

i), abs(y′
i), abs(z′

i), and abs(u′
i) are bounded by 1+ log(2l(3)(n)) =

1 + l(3)(n) � 2 · l(3)(n). So the values abs(x′′
i), abs(y′′

i), and abs(z′′
i) are bounded by 3 + log l(3)(n) � 2 · log l(3)(n). Hence the

values abs(d(x′′
i , y′′

i)) and abs(d(y′′
i , z′′

i)) are bounded as follows where c′ df= 6k2 log c:

3 + log log l(3)(n) = 3 + log log
(
2ck2+k+1·logk3

n)
= 3 + log

(
ck2+k+1 · logk3

n
)

= 3 + (
k2 + k + 1

)
(log c) + k3 log log n

� c′ + k3 log logn.

We now consider the sequence of d(x′′
i , y′′

i) for i ∈ [1,m − 4]. This sequence is not decreasing, since otherwise we
stop in line 8 which contradicts the assumption xi ∈ S . We have seen that the values in this sequence are integers in
[−c′ − k3 log log n, c′ + k3 log logn]. So the number of positions where the sequence increases is at most

2
(
c′ + k3 log logn

)
�

(
12k2 log c

) + 2k3 log logn � m − 7

3
.

This shows that the number of i ∈ [1,m − 4] such that the algorithm on input xi stops in line 7 is at most (m − 7)/3. By a
pigeon hole argument, there exists a j ∈ [1,m − 4] such that the algorithm reaches phase 2 (line 9) for the inputs x j , x j+1,
and x j+2.

Phase 2: For i ∈ [j, j + 2] it holds that d(x′′
i , y′′

i) = d(y′′
i , z′′

i). Let r′′ df= d(x′′
j , y′′

j). It follows that

r′′ = d
(
x′′

j , x′′
j+1

) = d
(
x′′

j+1, x′′
j+2

) = d
(
x′′

j+2, x′′
j+3

) = d
(
x′′

j+3, x′′
j+4

)
.

Assume r′′ �= 0. So the algorithm stops in line 12, if the input is x j , x j+1, or x j+2 (since d(x′′
j+1, y′′

j+1) = d(y′′
j+1, z′′

j+1) �= 0
and d(x′′

j+2, y′′
j+2) = d(y′′

j+2, z′′
j+2) �= 0). We apply Claim 3.2 to x′′

j , x′′
j+1, and x′′

j+2. We obtain i1, i2 ∈ [j, j + 2] such that

⌊
x′′

i1
/2abs(r′′)⌋ is even ⇔ ⌊

x′′
i2
/2abs(r′′)⌋ is odd.

So on both inputs, xi1 and xi2 , the algorithm stops in line 12, but one input is accepted and the other one is rejected. This
contradicts our assumption xi1 ∈ S ⇔ xi2 ∈ S . So it must hold that r′′ = 0. Hence the algorithm reaches phase 3 (line 14) for
the inputs x j , x j+1, and x j+2.

Phase 3: From r′′ = 0 it follows that x′′
j = x′′

j+1 = x′′
j+2. Let r′ df= x′′

j . It follows that

r′ = d
(
x′

j, x′
j+1

) = d
(
x′

j+1, x′
j+2

) = d
(
x′

j+2, x′
j+3

)
.

Assume r′ �= 0. So the algorithm stops in line 17, if the input is x j , x j+1, or x j+2. We apply Claim 3.2 to x′
j , x′

j+1, and x′
j+2.

We obtain i1, i2 ∈ [j, j + 2] such that⌊
x′

i1
/2abs(r′)⌋ is even ⇔ ⌊

x′
i2
/2abs(r′)⌋ is odd.

So on both inputs, xi1 and xi2 , the algorithm stops in line 17, but one input is accepted and the other one is rejected. This
contradicts our assumption xi1 ∈ S ⇔ xi2 ∈ S . So it must hold that r′ = 0. Hence the algorithm reaches phase 4 (line 19) for
the inputs x j , x j+1, and x j+2.

Phase 4: From r′ = 0 it follows that x′
j = x′

j+1 = x′
j+2. Let r

df= x′
j . It follows that

r = d(x j, x j+1) = d(x j+1, x j+2) = d(x j+2, x j+3).

800 C. Glaßer / Journal of Computer and System Sciences 76 (2010) 792–811
If r = 0, then x j = x j+1 = f (x j) which contradicts the assumption f (x) �= x. So r �= 0 and we can apply Claim 3.2 to x j , x j+1,
and x j+2. We obtain i1, i2 ∈ [j, j + 2] such that

⌊
xi1/2abs(r)⌋ is even ⇔ ⌊

xi2/2abs(r)⌋ is odd.

So on both inputs, xi1 and xi2 , the algorithm stops in line 21, but one input is accepted and the other one is rejected. This
contradicts our assumption xi1 ∈ S ⇔ xi2 ∈ S and finishes the proof of Claim 3.5. �

With Claim 3.5 at hand we can easily finish the proof of the theorem. Let x be the input to the algorithm for g . Since
we do not reach line 6, we must stop in line 4 and therefore (x ∈ S ⇔ g(x) /∈ S). Also, it holds that g(x) = f (i)(x) for some
i � 1. So (x ∈ L ⇔ g(x) ∈ L), since f is an autoreduction for L. This proves Theorem 3.1. �

Corollary 3.6. Let k � 1 be an integer and let L be a �logk

m -autoreducible set such that |L| � 1. Then L is �logk7 ·log log
m -mitotic.

Proof. Note that if L is �logk

m -autoreducible and |L| � 1, then |L| � 2. From Theorem 3.1 we obtain g ∈ FSPACE((logk7
n) ·

log log n) and S ∈ DSPACE(logk4
n) such that (x ∈ L ⇔ g(x) ∈ L) and (x ∈ S ⇔ g(x) /∈ S). Thus L ∩ S �logk7 ·log log

m L ∩ S and

L ∩ S �logk7 ·log log
m L ∩ S , both via g . This shows L ∩ S ≡logk7 · log log

m L ∩ S .

The following function g′ witnesses L �logk7 · log log
m L ∩ S: If x ∈ S , then g′(x) = x else g′(x) = g(x). Moreover, the following

function g′′ witnesses L ∩ S �logk7 · log log
m L: If x ∈ S , then g′′(x) = x else g′′(x) = w1, where w1 is a fixed word in L. This

shows L ≡logk7 · log log
m L ∩ S and analogously we obtain L ≡logk7 · log log

m L ∩ S . �
Corollary 3.7. Let L be any set such that |L| � 1. If L is �log

m -autoreducible, then L is �log · log log
m -mitotic.

Remark 3.8. Corollary 3.7 can be improved in the sense that for every k � 1, if L is �log
m -autoreducible and |L| � 1, then L

is mitotic with respect to many-one reductions that belong to

FSPACE
(
(log n) · log log · · · log︸ ︷︷ ︸

k times

n
)
.

This is achieved by the following modification of the algorithm for S (Theorem 3.1). Compute values x′′′, x′′′′, . . . and
y′′′, y′′′′, . . . and z′′′, z′′′′, . . . until one arrives at variables with k primes. Change phase 1 to consider these latter variables
instead of x′′ , y′′ , and z′′ . Proceed with phases that consider variables with k − 1 primes, then with k − 2 primes, and so on.
So the notions �log

m -autoreducibility and �log
m -mitoticity are even closer than stated in Corollary 3.7.

Corollary 3.9. Let L be any set such that |L| � 2. L is �plog
m -autoreducible if and only if L is �plog

m -mitotic.

Proof. If L is �plog
m -mitotic, then there exist S ∈ PLOG and f1, f2 ∈ FPLOG such that L ∩ S �plog

m L ∩ S via f1 and L ∩ S �plog
m

L ∩ S via f2. By assumption, there exist different words v, w ∈ L. The following function f ′ is a �plog
m -autoreduction for L:

If x ∈ S and f1(x) /∈ S , then f ′(x) = f1(x). If x /∈ S and f2(x) ∈ S , then f ′(x) = f2(x). Otherwise, f ′(x) = min({v, w} − {x}).
The other direction follows from Corollary 3.6. �

4. The difficulty of (���log
m -autoreducible ⇒ ���log

m -mitotic)

We know that the notions of �p
m-autoreducibility and �p

m-mitoticity are equivalent [5]. In the preceding section we
showed that with respect to log-space many-one reductions, these notions are almost equivalent:

�log
m -mitotic ⇒ �log

m -autoreducible;
�log

m -autoreducible ⇒ �log · log log
m -mitotic.

In this section we explain in detail the reason why it is difficult to establish the full equivalence. This is done in three
steps. First, in Section 4.1 we describe this difficulty on an intuitive level. Then, in Section 4.2 we sketch the construction of
a relativized world where this difficulty becomes provable. Finally, in Section 4.3 we give the detailed oracle construction.
Relative to our oracle, �log

m -autoreducibility and �log
m -mitoticity are not equivalent. This result holds with respect to all

models of log-space oracle machines that were discussed in the preliminaries section.

C. Glaßer / Journal of Computer and System Sciences 76 (2010) 792–811 801
It is difficult to show unconditionally that �log
m -autoreducibility does not imply �log

m -mitoticity, since such a proof sepa-
rates L from P.

L = P ⇒ �log
m -autoreducibility and �log

m -mitoticity are equivalent.

This is seen as follows: L = P implies FL = FP. If A is �log
m -autoreducible, then it is �p

m-autoreducible and hence �p
m-

mitotic [5]. So there exists a separator S ∈ P = L such that A ≡p
m A ∩ S ≡p

m A ∩ S . From FL = FP it follows that A ≡log
m

A ∩ S ≡log
m A ∩ S and hence A is �log

m -mitotic.
So in the case of log-space reductions we observe a behavior that differs from the experience we had with polynomial-

time reductions. For the latter, either autoreducibility and mitoticity coincide (i.e., for �p
m) or it is possible to separate

the notions unconditionally (i.e., for all reductions between �p
2−tt and �p

T). In contrast, with respect to log-space many-
one reductions, it appears as a plausible possibility that autoreducibility and mitoticity are different, but we cannot prove
this, unless we separate L from P. This is consistent with our suspicion that �log

m -autoreducibility and �log
m -mitoticity are

inequivalent, but very similar notions.

4.1. Explanation on an intuitive level

We give an intuitive explanation of the difficulty of transforming �log
m -autoreducibility into �log

m -mitoticity. It is in the
nature of such explanations that our arguments will be simplified and informal. For the exact and detailed construction we
refer to Section 4.3.

We say that a function f ∈ FL has difficult, detached cycles if for every g ∈ FL there exists a constant c > 0 such that for
infinitely many x:

1. Tx
df= { f (0)(x), f (1)(x), . . . , f (|x|−1)(x)} has cardinality |x| and it holds that f (|x|)(x) = x;

2. f −1(Tx) ⊆ Tx;
3. ∀y ∈ Tx , [g(y) ∈ Tx ⇒ g(y) ∈ { f (0)(y), f (1)(y), . . . , f (c)(y)}].

Item 1 states that the trajectory of x is a cycle of length |x|. Item 2 says that no other arguments are mapped to Tx and
therefore, the trajectory of x is not connected to other trajectories. Item 3 describes a certain hardness of f : For a given
element in the trajectory, a log-space machine can only compute constantly-many successors. This is consistent with the
fact that f (c)(x) ∈ FL for all f ∈ FL and all constants c, and it is also consistent with our impression that f (t(x))(x) is not
necessarily in FL if t is not constant.

At first glance, the property of having difficult, detached cycles might appear artificial and very strong. However, there is
no reason to exclude the existence of functions f ∈ FL that have this property and that satisfy f (x) �= x. For example, with
our construction below we demonstrate a relativized world in which such functions exist.

Suppose f has difficult, detached cycles. We use f for the construction of a set L that is �log
m -autoreducible via f , but

not �log
m -mitotic. By item 3 (the hardness condition), every log-space machine can only compute a constant-size preview

of f ’s trajectory. Therefore, every log-space computable separator S that claims to establish the �log
m -mitoticity of L can

only compute such a constant-size preview of f ’s trajectory. This implies that with respect to the trajectory of f , every
separator S of L acts like a relation of constant arity, since it depends only on constantly-many successors of the input x.
From Ramsey theory (more precisely, the existence of the generalized Ramsey numbers) it follows that for every c � 0 there
exists an x such that x, f (x), . . . , f (c)(x) have the same membership with respect to S (i.e., either all belong to S or all
belong to S). Again by item 3, every log-space computable function g that claims to establish L ∩ S �log

m L ∩ S (which is
needed for �log

m -mitoticity) can only compute a constant-size preview of f ’s trajectory. So by choosing c large enough we
can enforce that either g(x) ∈ {x, f (x), . . . , f (c)(x)} and hence

x ∈ S ⇔ f (x) ∈ S

or g(x) does not belong to x’s trajectory with respect to f in which case we can (by diagonalization) construct L such that

x ∈ L ⇔ g(x) /∈ L.

So g is not a �log
m -reduction from L ∩ S to L ∩ S . In this way we diagonalize against all pairs (S, g) and obtain a set L that

is not �log
m -mitotic. More precisely, our diagonalization is in such a way that we put whole trajectories inside or outside L.

This implies that L is �log
m -autoreducible via f .

In Section 4.3 below we make the described scenario precise and construct an oracle relative to which there exists a set
L that is �log

m -autoreducible, but not �log
m -mitotic.

802 C. Glaßer / Journal of Computer and System Sciences 76 (2010) 792–811
4.2. Road map for the oracle construction

While neglecting technical details we sketch the main arguments of the construction. In the first part, with the stagewise
construction of an oracle O we create a suitable relativized environment. Then, in the second part, we use this environment
and construct a language L that is �log

m -autoreducible, but not �log
m -mitotic.

We start with the description of stage s of the construction of O . There we diagonalize against two log-space machines
M1 (a possible log-space separator) and M2 (a possible log-space reduction function). At the beginning we choose n large
enough such that changing the oracle with respect to words of length � n2 does not affect separations made in earlier
stages. Then we choose a set S ⊆ Σn2

such that |S| = n and S has maximal Kolmogorov complexity. In particular, all subsets
of S have high Kolmogorov complexity.

Now let us observe that each T ⊆ S of cardinality � 2 induces a particular set 〈T 〉 ⊆ Σn2
which can be used to define

the oracle with respect to words of length n2. This set 〈T 〉 is defined as follows: If w0, . . . , wk−1 are the words in T in

ascending order, then the characteristic sequence of 〈T 〉 (considered as a subset of Σn2
) is

0 · · · 0 1w1 0 · · · 0 1w2 0 · · · 0 1wk−1 0 · · · 0 1w0 0 · · · 0

where the factor 1wi+1 starts after the wi -th letter and the factor 1w0 starts after the wk−1-th letter. Thus a word w of
length n2 belongs to 〈T 〉 if and only if in the sequence above there is a 1 at position w .

This encoding of T has the advantage that for a given wi , the successor wi+1 can be computed by a log-space machine
that has access to the oracle 〈T 〉. For this, the machine just has to query the words wi + 1, wi + 2, . . . , wi + n2 and has
to interpret the vector of answers as the word wi+1. This property results in the �log

m -autoreducibility of T and finally this
will translate into the �log

m -autoreducibility of L.
Since log-space computable functions are closed under composition, for every constant c > 1, there exists a log-space

machine with oracle 〈T 〉 that on input wi computes the c-th next word wi+c . We show that for log-space machines this
c-times composition of the successor function is expensive: No log-space machine can compute successors that are farther
away than a constant. Hence, there exists a constant c such that on input wi and with access to the oracle 〈T 〉 the machines
M1 and M2 can only gain knowledge about the words wi, wi+1, . . . , wi+c , but not about the words w0, w1, . . . , wi−1 and
wi+c+1, wi+c+2, . . . , wk−1.2 In particular, the machines will not notice if we change the oracle with respect to the latter
words. Therefore, if we consider M1 on input wi and with oracle 〈T 〉, then this computation will not change if we replace
the oracle by {wi, wi+1, . . . , wi+c}. In this sense, M〈T 〉

1 (wi) computes exactly the (c + 1)-ary relation

R(wi, wi+1, . . . , wi+c)
df= M

〈{wi ,wi+1,...,wi+c}〉
1 (wi).

We now apply Ramsey theory and obtain a set Ts = {w0, . . . , w3c−1} such that Ts ⊆ S and all words w0, . . . , w2c−1 are
equivalent with respect to the relation, i.e., are all inside or all outside the relation. Note that this property of Ts is very
strong. It means that either

w0, . . . , w2c−1 ∈ L
(
M〈Ts〉

1

)
or

w0, . . . , w2c−1 ∈ L
(
M〈Ts〉

1

)
.

We let O s
df= 〈Ts〉 which defines our oracle with respect to words of length n2. This finishes stage s of our construction. The

final oracle O is the union of all O s .
We enter the second part, i.e., the construction of L. All remaining arguments are now relative to the oracle O . We have

to construct L such that it is �log
m -autoreducible, but not �log

m -mitotic. On the one hand, L will be the union of sets Ts

for certain s which immediately results in L’s �log
m -autoreducibility. On the other hand, we diagonalize against all possible

log-space-computable separators S = L(M1) and all log-space-computable functions f (x) = M2(x) that claim to reduce L ∩ S

to L ∩ S . The latter destroys �log
m -mitoticity.

We sketch the diagonalization argument. Let s be the stage of O ’s construction in which we diagonalized against M1
and M2. In this stage we constructed the set Ts = {w0, . . . , w3c−1}. We already observed that M2(w0) cannot gain knowl-
edge about the words wc+1, wc+2, . . . , w3c−1. If M2(w0) /∈ Ts , then by putting Ts inside or outside L, we can enforce that
f does not reduce L to L. Otherwise, M2(w0) ∈ Ts and hence M2(w0) ∈ {w0, . . . , wc}, since it cannot gain knowledge about
the other words. However, as seen above, either w0, . . . , w2c−1 ∈ L(M1) or w0, . . . , w2c−1 ∈ L(M1). So in this case, f does
not reduce S to S . Therefore, in any case, f does not reduce L ∩ S to L ∩ S . This shows that L is not �log

m -mitotic.

2 This is the point where we need S and hence T to have high Kolmogorov complexity, since otherwise some information about the latter words could
be contained in wi , wi+1, . . . , wi+c which would allow M1 and M2 to obtain this information.

C. Glaßer / Journal of Computer and System Sciences 76 (2010) 792–811 803
4.3. The detailed construction

This section contains the detailed construction of an oracle relative to which �log
m -autoreducibility and �log

m -mitoticity
are not equivalent.

Fix a universal Turing transducer U . For a finite set S = {w1, . . . , wm} ⊆ Σ∗ where w1 < · · · < wm , let code(S) be the
quasi-lexicographically smallest word w ∈ Σ∗ such that U (w) outputs the string w1 # w2 # · · · # wm and stops. So |code(S)|
is the Kolmogorov complexity of the set S .

Suppose we have to encode two nonempty words w1 and w2 into one word. For this it is not enough to just concatenate
both words, since then it is not clear where w1 ends. An easy way to mark the border between both words is to use the
repetition code for w1. More precisely, all bits of w1 (except the last one) are stored twice such that 0 becomes 00 and 1
becomes 11. If the last bit is 0, then this is encoded by 01, otherwise this is encoded by 10. In this way, the concatenation
of the repetition code of w1 and the normal code of w2 completely describes both strings.

For our construction we need to consider sets S ⊆ Σn2
such that |S| = n. We start with a proposition that gives an upper

bound for the Kolmogorov complexity of such sets. Moreover, it guarantees the existence of sets having a high Kolmogorov
complexity.

Proposition 4.1.

1. There exists c � 0 such that for all n � 1 and all S ⊆ Σn2
,∣∣code(S)

∣∣ � n2|S| + 2 logn + c.

2. There exists c � 0 such that for all n � 1 and all S ⊆ Σn2
where |S| � n,

∣∣code(S)
∣∣ � n

(
n2 − logn

2

)
+ c.

3. For all n � 4 there exists S ⊆ Σn2
such that |S| = n and∣∣code(S)

∣∣ � n
(
n2 − logn

)
.

4. There exists c � 0 such that for all n � 4 there exists S ⊆ Σn2
such that |S| = n and

n
(
n2 − logn

)
�

∣∣code(S)
∣∣ � n

(
n2 − logn

2

)
+ c.

Proof. For statement 1, use c bits for encoding a constant size decoding program (via repetition code), use the 2 log n bits
for encoding n (via repetition code), and use n2|S| bits for the concatenation of all words in S .

For statement 2, first observe that for n � 10,

n! � 4n/2
(

n

2

)n/2

= (2n)n/2.

For n � 10, we estimate an upper bound for the number of sets S ⊆ Σn2
such that |S| � n.

n∑
i=0

(
2n2

i

)
� n

(
2n2

n

)
= n · 2n2

(2n2 − 1) · · · (2n2 − n + 1)

n!

� n · 2n3

(2n)n/2
� 2n3

nn/2
= 2n(n2− log n

2).

So for n � 10, each S ⊆ Σn2
where |S| � n can be encoded by a constant size decoding program (via repetition code)

followed by n(n2 − logn
2) bits. This shows statement 2, since the inequality also holds for n < 10, if we choose c large

enough.
For the third statement, we start with the following estimation for n � 4.

2n2 � 4n � n

1 − 2−1/2
,

2n2(
1 − 2−1/2) � n,

2n2 − n � 2n2−(1/2). (5)

With help of (5), we can show the following lower bound for the number of S ⊆ Σn2
such that |S| = n where n � 4.

804 C. Glaßer / Journal of Computer and System Sciences 76 (2010) 792–811
(
2n2

n

)
= 2n2

(2n2 − 1) · · · (2n2 − n + 1)

1 · 2 · · · · · n
� (2n2 − n)n

1
2 · (n

2)n/2 · nn/2

� 2n3−(n/2)

1
2 · nn · 2−n/2

= 2n3

2(n logn)−1
= 2n(n2−log n)+1.

However, there exist less than 2n(n2−logn)+1 words over {0,1} whose length is � n(n2 − log n). Therefore, for at least one S ,
|code(S)| � n(n2 − log n). This shows the third statement.

Statement 4 is an immediate consequence of the statements 2 and 3. �
We now show that if S ⊆ Σn2

such that |S| = n and S has a high Kolmogorov complexity, then all subsets of S have a
high Kolmogorov complexity.

Proposition 4.2. The following holds for almost all n. Let S ⊆ Σn2
such that |S| = n, S = {w1, . . . , wn} where w1 < · · · < wn, and

|code(S)| � n(n2 − log n).

1. ∀T ⊆ S, |code(T)| � n2(|T | − 1
2).

2. ∀i ∈ [2,n], wi − wi−1 > 3n2 .

Proof. For the first statement, assume there exist an S as in the proposition and a T ⊆ S such that |code(T)| < n2(|T | − 1
2).

The set S is completely described by the pair (code(T), code(S − T)). Hence∣∣code(S)
∣∣ � O

(
log

∣∣code(T)
∣∣) + ∣∣code(T)

∣∣ + ∣∣code(S − T)
∣∣.

To see this, use the O (log |code(T)|) bits to encode the constant size decoding program and the length of code(T) (both via
repetition code). The latter allows us to separate the code(T)-part from the code(S − T)-part. By assumption, log |code(T)| <
2 log n + log |T | � 3 log n. Moreover, by Proposition 4.1.1, |code(S − T)| � O (log n) + n2|S − T |. So we obtain

∣∣code(S)
∣∣ � O (logn) + n2

(
|T | − 1

2

)
+ n2|S − T | = n3 − n2

2
+ O (log n).

Hence, for sufficiently large n, |code(S)| < n(n2 − log n) which contradicts our assumption. So the first statement holds for
almost all n.

For the second statement, assume wi − wi−1 � 3n2. So T
df= {wi, wi−1} is a subset of S such that∣∣code(T)

∣∣ � n2 + O (logn),

since we only have to encode a constant size decoding program (via repetition code), the number n (via repetition code),
the word wi , and the number wi − wi−1. So for sufficiently large n, |code(T)| < n2 + n2

2 . By the first statement, this is only
possible for finitely many n. �

We now encode a sequence of words of length n2 into an oracle. The encoding will be such that for a given word, one
can compute the next word in the sequence in log-space (where the computation has access to the oracle). This will result
in the autoreducibility of a particular set. However, we will see that a log-space OTT can only make a constant number of
such moves to the right. We will exploit this to show that the mentioned set is not mitotic.

We start with a definition that describes how to encode a sequence of words into an oracle.

Definition 4.3. Let n,k � 1 and T ⊆ Σn2
such that T = {w0, . . . , wk−1}, w0 < · · · < wk−1, and wi = ai,1 · · ·ai,n2 for i ∈ [0,k)

and ai, j ∈ Σ . Moreover, for all i ∈ [1,k), wi − wi−1 � 3n2.

〈T 〉 df= T ∪ {
wi + j ∈ Σn

∣∣ i ∈ [0,k), j ∈ [
1,n2], ar, j = 1 where r = (i + 1 mod k)

}
.

This definition can be visualized as follows. For S ⊆ Σn2
, let c(S) denote the characteristic sequence that corresponds to

the membership in S for all words of length n2, i.e.,

c(S) = χS(0 · · · 00)χS(0 · · · 01)χS(0 · · · 10) · · ·χS(1 · · · 10)χS(1 · · · 11).

So c(S) ∈ Σ2n2

. Let T = {w0, . . . , wk−1} be as in Definition 4.3 and let S = 〈T 〉. Observe that

C. Glaßer / Journal of Computer and System Sciences 76 (2010) 792–811 805
c(S) ∈ 0∗ 1w1 0∗ 1w2 0∗ · · · 0∗ 1wk−1 0∗ 1w0 0∗

such that for i ∈ [0,k), the factor 1wi+1 mod k starts after the wi -th letter of c(S), i.e.,

1wi+1 mod k = χS(wi)χS(wi + 1) · · ·χS
(

wi + n2).
For fixed n,k � 1 and T ⊆ Σn2

such that |T | � n and T = {w0, . . . , wk−1} where w0 < · · · < wk−1 we use the abbreviation

Q j
df= {

w j, w j + 1, . . . , w j + n2}
for j ∈ [0,k). So querying the oracle for all words in Q j reveals the right neighbor of w j , i.e., the word wr where r =
(j + 1 mod k).

Recall that we encode a sequence of words of length n2 into an oracle such that, given a word from the sequence,
one can determine the next word in the sequence in log-space. Note that log-space computable functions are closed under
composition. So for every constant k > 1, in log-space we can also compute the k-th next word. The following lemma
shows that this k-times composition of the successor function is expensive if our sequence of words has high Kolmogorov
complexity. Roughly speaking, if on input w1 a log-space OTT queries for w5, then, in before, it must have queried n times
for the predecessor w4. By repeating this argument we obtain that the machine must have queried n2 times for w3, n3

times for w2, and n4 times for w1. This argument shows that for every log-space OTT M there exists a k (namely the
constant 8d in Lemma 4.5) such that M cannot compute the k-th next word in the sequence. So M only acts locally which
in turn shows that M cannot be used to establish mitoticity of a particular set.

Lemma 4.4. For every log-space OTM M with space bound d log n there exists n0 such that the following holds for all n � n0 , all
S ⊆ Σn2

, and all T ⊆ S such that |S| = n, code(S) � n(n2 − log n), and T = {w0, . . . , wk−1} where k � 2 and w0 < · · · < wk−1 . Let

i, j ∈ [0,k) such that j′ df= (j + 1 mod k) �= i and consider M〈T 〉(wi) between the steps t1 and t2 where t1 < t2 .

1. If a query tape τ is empty after step t1 and if in step t2 , the machine uses τ to query a word q ∈ Q j′ , then at least n words in Q j

are queried between the steps t1 and t2 .
2. If more than d log n words q ∈ Q j′ are queried between the steps t1 and t2 , then at least n words in Q j are queried between these

steps.

Proof. If statement 1 does not hold, then for infinitely many n, there exist S , T , i, j, t1, t2, and τ such that (i) τ is empty
after step t1, (ii) in step t2, the machine uses τ to query a word q ∈ Q j′ , and (iii) less than n words in Q j are queried
between the steps t1 and t2. If for fixed n, S , T , i, and j there is more than one possibility for t1, t2, τ , and q to satisfy
(i)–(iii), then we choose the one where t2 is minimal. We show that our assumption implies that code(T) is too short which
is a contradiction.

We encode the configuration of M〈T 〉(wi) after step t1 by the following string: O (1) bits for the machine state (repetition
code), O (log n) bits for the head position on the input tape (repetition code), O (log n) bits for the working tape and the
index tape including the head positions (repetition code), and 1 bit for each query tape (repetition code). This latter bit
describes the answer that is given by the oracle when the machine queries the corresponding tape next time. Hence the
configuration of M〈T 〉(wi) after step t1 is described by a string z of length O (log n). By assumption, the machine queries at
most n words q ∈ Q j . So the corresponding answers can be described by a string y ∈ Σn . Let x1 be the binary representation
of t2 − t1 (in repetition code) and let x2 be the binary representation of q − w j′ (in repetition code). Note that |x1| =
O (d log n), since otherwise the computation would have run into a loop. Also, x2 � n2 and hence |x2| = O (log n). Finally,
let v be a string of length O (log n) that consists of the constant-size listing of the decoding algorithm A described below
followed by the binary representations of n, i, and j (all in repetition code). Note that i, j < n. We claim that for sufficiently
large n, the string

u
df= v w0 · · · w j w j+2 · · · wk−1x1x2 yz

is a code for T , i.e., U (u) outputs the string w0 # w1 # · · · # wk−1 and stops.
To see this, the decoding algorithm A uses v to obtain j and it uses u to construct the set T ′ = T − {w j′ }. Then A uses

v to obtain i and hence wi (note that wi ∈ T ′ , since i �= j′). With help of z, the algorithm reconstructs the configuration
of M〈T 〉(wi) after step t1. The query tapes cannot be reconstructed, but thanks to z, for each tape we know the answer of
the next query made by this tape. Now A starts with the reconstructed configuration and simulates M ’s computation for x1
steps. During this simulation, the first query made by a tape is answered according to z, oracle queries in Q j are answered
according to y, and all remaining oracle queries are answered according to 〈T ′〉. Observe that the sets 〈T 〉 and 〈T ′〉 differ
only with respect to words in Q j ∪ Q j′ . The following factorization visualizes the situation if j + 1 < k, i.e., j′ = j + 1.

806 C. Glaßer / Journal of Computer and System Sciences 76 (2010) 792–811
c
(〈T 〉) = 0 · · · 01w10 · · · 01w j0 · · · 01w j+10 · · · 01w j+20 · · ·01w j+30 · · · 0wk−10 · · · 0w00 · · ·0

c
(〈

T ′〉) = 0 · · · 01w10 · · · 01w j0 · · · 01w j+20 · · · 00 · · · 00 · · · 01w j+30 · · · 0wk−10 · · · 0w00 · · ·0

↑ ↑ ↑
position: w j w j+1 w j+2

A makes sure that queries in Q j are answered correctly. So it remains to argue for queries q′ ∈ Q j′ . Let τ ′ be the query
tape that is used for querying q′ , and let t′ ∈ [t1, t2) be the step in which τ ′ queries q′ . If τ ′ queries the first time in our
simulation, then A gives the right answer, since it uses z to answer the first query made by a tape. Otherwise, τ ′ was
already used for querying earlier in our simulation. So after the first query, τ ′ became empty and after the t′-th step, the
machine queries q′ which is written on τ ′ . This contradicts our choice of t1, t2, τ , and q such that t2 is minimal. Therefore, in
our simulation, queries q′ ∈ Q j′ only appear as a first query made by a query tape and therefore, these queries are answered
correctly. It follows that A correctly simulates the work of M〈T 〉(wi) even though it does not know the word w j+1.

After the simulation, A finds the word q ∈ Q j′ written on the tape τ which is the tape that was queried in the last
simulation step. So A can reconstruct the missing word w j′ = q − x2. Now A has complete knowledge about T and can
output w0 # w1 # · · · # wk−1. This shows that u is a code for T , since the listing of A is encoded in a prefix of u, and since
U is a universal Turing transducer.

Therefore, for sufficiently large n,

∣∣code(T)
∣∣ � |u| = O (logn) + n + n2(k − 1) < n2

(
k − 1

2

)
= n2

(
|T | − 1

2

)
.

From Proposition 4.2.1 it follows that this is only possible if n is bounded by a constant. This contradicts our assumption
that we can choose n arbitrarily large. This shows statement 1 of the lemma.

Statement 2 follows from statement 1: If more than d log n words q ∈ Q j′ are queried between the steps t1 and t2, then
the number of queried words in Q j′ is greater than the number of query tapes and hence, one tape τ is used at least twice
to query a word from Q j′ . In particular, there must exist t′

1, t′
2 ∈ [t1, t2] where t′

1 < t′
2 such that after step t′

1 the tape τ
is empty and in step t′

2, the machine uses τ to query a word q ∈ Q j′ . This proves statement 2 and finishes the proof of
Lemma 4.4. �

We use the observation made in Lemma 4.4 and show that if we use a sequence of words with high Kolmogorov
complexity as an oracle, then a log-space OTM can only access a very small part of the sequence. So the computation will
not notice changes that are made outside this part.

Lemma 4.5. For every log-space OTM M with space bound d · log n where d > 1 there exists an n0 such that the following holds for
all n � n0 . If T ⊆ S ⊆ Σn2

such that |S| = n, code(S) � n(n2 − logn), and T = {w0, . . . , wk+8d−1} where k � 1 and w0 < · · · <

wk+8d−1 , then

∀i ∈ [0,k), M〈T 〉(wi) = M〈{wi ,wi+1,...,wi+8d}〉(wi).

Proof. Choose n0 as the maximum of 2d and the constant assured by Lemma 4.4. Let n � n0 and T ⊆ S ⊆ Σn2
such that

|S| = n, code(S) � n(n2 − log n), and T = {w0, . . . , wk+8d−1} where k � 1 and w0 < · · · < wk+8d−1. Moreover, fix some
i ∈ [0,k). We have to prove

M〈T 〉(wi) = M〈{wi ,wi+1,...,wi+8d}〉(wi). (6)

Claim 4.6. Let l � 2�1 + d log n�, s ∈ [0,k + 8d), and r
df= (s − i mod k + 8d). If M〈T 〉(wi) queries at least l words from Q s, then it

queries at least lnr/2 words from Q i .

Proof. The proof is by induction on r = 0, . . . ,k +8d −1. If r = 0, then i = s. So if M〈T 〉(wi) queries at least l words from Q s ,
then these are at least ln0 words from Q i which shows the induction base.

Now let r � 1 and hence i �= s. Assume that M〈T 〉(wi) queries at least l words from Q s . If we define j = (s−1 mod k+8d)

and j′ = s, then our assumption says that M〈T 〉(wi) queries at least l words from Q j′ . So the computation can be partitioned
into l′ = �l/�1 + d log n� � 2 intervals such that each interval queries for more than d log n words in Q j′ . We can apply
Lemma 4.4.2, since i �= j′ . Therefore, each interval queries at least n words in Q j . So the whole computation M〈T 〉(wi)

queries at least

l′n �
(

l − 1

)
n � ln

> l
√

n
�1 + d logn� 2�1 + d logn�

C. Glaßer / Journal of Computer and System Sciences 76 (2010) 792–811 807
words in Q j (the last estimation holds, since d � logn). Note that (j − i mod k + 8d) = r − 1. So from the induction hypoth-
esis it follows that M〈T 〉(wi) queries at least

(l
√

n)n(r−1)/2 = lnr/2

words from Q i . This finishes the induction step and proves Claim 4.6. �
Claim 4.7. For s ∈ [0, i) ∪ [i + 8d,k + 8d), M〈T 〉(wi) does not query for words in Q s.

Proof. Assume there exists s ∈ [0, i) ∪ [i + 8d,k + 8d) such that M〈T 〉(wi) queries for some q ∈ Q s . If we define j =
(s − 1 mod k + 8d) and j′ = s, then our assumption says that M〈T 〉(wi) queries for some q ∈ Q j′ . We can apply Lemma 4.4.1,

since i �= j′ . So M〈T 〉(wi) queries at least n words in Q j . Let r
df= (j − i mod k + 8d) and observe that r � 8d − 1 (since

j ∈ [0, i − 1) ∪ [i + 8d − 1,k + 8d)). From Claim 4.6 it follows that M〈T 〉(wi) queries at least n · nr/2 > n4d words from Q i .
However, the latter is impossible, since |wi | = n2 and so the computation M〈T 〉(wi) uses only log n2d bits of working space
which implies a time bound of n2 · n2d < n4d . This proves Claim 4.7. �

Observe (as in the proof of Lemma 4.4) that 〈T 〉 and 〈{wi, wi+1, . . . , wi+8d}〉 differ only with respect to words in

Q = Q 0 ∪ Q 1 ∪ · · · ∪ Q i−1 ∪ Q i+8d ∪ Q i+8d+1 ∪ · · · ∪ Q k+8d−1.

By Claim 4.7, M〈T 〉(wi) does not query for words in Q . This shows Eq. (6) and finishes the proof of Lemma 4.5. �
We now transfer Lemma 4.5 from OTMs to OTTs: If we use a sequence of words with high Kolmogorov complexity as an

oracle, then a log-space OTT can only compute a very small part of this sequence.

Corollary 4.8. For every log-space OTT M with space bound d · log n for d > 1 there exists an n0 such that the following holds for
all n � n0 . If T ⊆ S ⊆ Σn2

such that |S| = n, code(S) � n(n2 − log n), and T = {w0, . . . , wk+7+8d} where k � 1 and w0 < · · · <

wk+7+8d, then

∀i ∈ [0,k), M〈T 〉(wi) /∈ {w0, . . . , wi−1, wi+8d+8, . . . , wk+7+8d}.

Proof. Let M and d be as above. Let M ′ be the modification of M that on inputs of length n uses (d log n) + 1 query tapes
such that the output is written to the last query tape and at the end of the computation, the machine queries the word
on the last tape. Note that M ′ is a log-space OTM with space bound (d + 1) log n. Now consider the proof of Lemma 4.5
applied to M ′ . First, in that proof, we define a certain constant n0. Then we choose arbitrary n � n0 and T ⊆ S ⊆ Σn2

such
that |S| = n, code(S) � n(n2 − log n), and T = {w0, . . . , wk+8(d+1)−1} where k � 1 and w0 < · · · < wk+8(d+1)−1. Finally, in
Claim 4.7 we show that for all i ∈ [0,k) and all s ∈ [0, i) ∪ [i + 8(d + 1),k + 8(d + 1)) it holds that M ′〈T 〉(wi) does not query
for words in Q s . In particular, for these i and s, M ′〈T 〉(wi) does not query for ws and therefore, M〈T 〉(wi) �= ws . We obtain

∀i ∈ [0,k), M〈T 〉(wi) /∈ {w0, . . . , wi−1, wi+8(d+1), . . . , wk+8(d+1)−1}.
This proves the corollary. �

So far we learned that sequences of words of high Kolmogorov complexity allow us to set up relativized worlds in
such a way that log-space machines cannot learn more than a constant-size part of the original sequence. Hence, the
behavior of a log-space OTM M on input of some word wi on the list depends only on a constant number of successors
wi+1, . . . , wi+c on the list. In this sense, M on wi computes nothing more than a (c + 1)-ary relation on words, i.e.,
M(wi) = R(wi, wi+1, . . . , wi+c). By the Ramsey theorem, if we fix an arity d for relations and if we choose a sequence of
words that is large enough, then for every d-ary relation on words we will find a subsequence all of its words are equivalent
with respect to the relation (i.e., are all inside or all outside the relation). In our proof we will use the following formulation
of Ramsey’s theorem.

Theorem 4.9. (See [12].) For all d,a0,a1 � 1 there exists a minimal natural number R(d)(a0,a1) (the generalized Ramsey number
for two colors) such that no matter how each d-element subset of an R(d)(a0,a1)-element set S is colored with 0 and 1, there exists
b ∈ {0,1} and T ⊆ S such that |T | � ab and all d-element subsets of T have color b.

We have argued that log-space machines must act very locally on sequences of words of high Kolmogorov complexity.
As a consequence of this and the Ramsey theorem we can now show that one can always find a sequence that (if it is used
as oracle) simultaneously achieves two things:

808 C. Glaßer / Journal of Computer and System Sciences 76 (2010) 792–811
1. Unbalance: A given log-space OTM M1 (intuitively, a possible separator) cannot separate the sequence in a balanced
way. There will always be large parts in the sequence where M1 either always accepts or always rejects.

2. Locality: A given log-space OTT M2 (intuitively, a possible reduction establishing mitoticity) cannot map to words that
are in the sequence, but far from the input word.

These statements say that we can successfully diagonalize against every pair (M1, M2) where M1 is a separator and M2 is
a reduction that possibly establish mitoticity of our witness language.

Lemma 4.10. Let M1 be a log-space OTM and let M2 be a log-space OTT such that both machines have space bound d log n for d > 1.
For e � 8(d + 1) and for all sufficiently large n there exists T = {w0, . . . , w3e−1} ⊆ Σn2

such that the following holds:

1. w0 < · · · < w3e−1 and ∀i ∈ [1,3e), wi − wi−1 � 3n2;

2. either {w0, . . . , w2e−1} ⊆ L(M〈T 〉
1) or {w0, . . . , w2e−1} ⊆ L(M〈T 〉

1);

3. ∀i ∈ [0, e], M〈T 〉
2 (wi) /∈ {w2e, . . . , w3e−1}.

Proof. Let n1,0 be the constant n0 that arises if we apply Lemma 4.5 to M1 and let n2,0 be the constant n0 that arises
if we apply Corollary 4.8 to M2. Moreover, let n be large enough such that n � max{3e,n1,0,n2,0, R(8d+1)(3e,3e)}. By

Proposition 4.1.3, there exists S ⊆ Σn2
such that |S| = n and code(S) � n(n2 − log n). From Lemma 4.5 it follows that if

Q = {u0, . . . , u3e−1} ⊆ S where u0 < · · · < u3e−1, then

∀i ∈ [0,2e), M〈Q 〉
1 (ui) = M

〈{ui ,ui+1,...,ui+8d}〉
1 (ui). (7)

M1 induces the following relation on (8d + 1)-element subsets of S .

R
df= {

V
∣∣ V = {v0, . . . , v8d} ⊆ S, v0 < · · · < v8d, and M〈V 〉

1 (v0) accepts
}
.

Note that χR (i.e., the characteristic function of R) induces a 0–1-coloring of all (8d + 1)-element subsets of S . Also note
that |S| � R(8d+1)(3e,3e). By Theorem 4.9, there exists T ⊆ S of cardinality 3e and b ∈ {0,1} such that

∀V ⊆ T
(|V | = 8d + 1 ⇒ χR(V) = b

)
. (8)

Choose words w0 < · · · < w3e−1 such that T = {w0, . . . , w3e−1}. So from (7) we obtain

∀i ∈ [0,2e), M〈T 〉
1 (wi) = M

〈{wi ,wi+1,...,wi+8d}〉
1 (wi). (9)

Statement 1 of the lemma is an immediate consequence of Proposition 4.2. Moreover, (8) and (9) imply

∀i ∈ [0,2e), M〈T 〉
1 (wi) = M

〈{wi ,wi+1,...,wi+8d}〉
1 (wi) = b. (10)

This shows statement 2 of the lemma.

We turn to statement 3. If k
df= 3e − 8d − 8, then T = {w0, . . . , wk+7+8d}. From Corollary 4.8 we obtain

∀i ∈ [0,k), M〈T 〉
2 (wi) /∈ {w0, . . . , wi−1, wi+8d+8, . . . , wk+7+8d}.

In particular,

∀i ∈ [0, e], M〈T 〉
2 (wi) /∈ {w2e, . . . , w3e−1}.

This proves the statement 3. �
We now apply the argument given in Lemma 4.10 in an oracle construction. More precisely, we construct the oracle such

that no log-space machine (considered as a separator) can act in a balanced way and no log-space transducer (considered
as a reduction) can act in a non-local way. Relative to this oracle, we then construct a language L by diagonalizing against
all possible separators and all possible reduction functions that might witness the �log

m -mitoticity of L. In addition, the
construction of L is such that L is �log

m -autoreducible.

Theorem 4.11. There exists an oracle O relative to which �log
m -autoreducibility does not imply �log

m -mitoticity (i.e., there is an L that

is �log,O
m -autoreducible, but not �log,O

m -mitotic).

Proof. We use a stagewise construction such that at stage s, the oracle is constructed up to words of length n2
s where

n0 < n1 < · · · (the numbers ns will be chosen in the construction). At stage s we choose a Ts ⊆ Σn2
s such that |Ts| ∈ [2,ns].

Then we let O s = 〈Ts〉 and finally we define O = ⋃
s∈N

O s .

C. Glaßer / Journal of Computer and System Sciences 76 (2010) 792–811 809
After the construction of O , we will choose a suitable I ⊆ N and we will show that

L
df=

⋃
s∈I

T s

is �log,O
m -autoreducible, but not �log,O

m -mitotic. The detailed description of the construction follows.
Let p0, p1, . . . be a list of all pairs (N1, N2) such that N1 is a log-space OTM and N2 is a log-space OTT. At stage s we

choose Ts and O s = 〈Ts〉 in such a way that relative to the completed oracle O we can successfully diagonalize against the
pair ps = (N1, N2) in the following sense. We interpret N1 as a machine for a separator S of L, and we interpret N2 as a
log-space many-one reduction f that reduces L ∩ S to L ∩ S . A successful diagonalization means that by putting s inside or
outside I we can enforce that L ∩ S does not �log,O

m -reduce to L ∩ S via reduction function f .
Stage s: Assume ps = (N1, N2). Let M1 (resp., M2) be the modification of N1 (resp., N2) that does not query for words

of length � n2
s−1, but answers such queries according to the hardwired set O 0 ∪ · · · ∪ Q s−1. Choose d > 0 such that M1 and

M2 have the space bound d log n. Let t be the maximum running time of all computations that have been considered in the
construction so far. Choose ns large enough such that ns > max(ns−1, t) and that Lemma 4.10 can be applied to M1 and M2

for e
df= 8(d + 1) and n

df=ns . From Lemma 4.10 we obtain Ts = {w0, . . . , w3e−1} ⊆ Σn2
s such that:

• w0 < · · · < w3e−1 and ∀i ∈ [1,3e), wi − wi−1 � 3n2
s ; (11)

• either {w0, . . . , w2e−1} ⊆ L(M〈Ts〉
1) or {w0, . . . , w2e−1} ⊆ L(M〈Ts〉

1); (12)

• ∀i ∈ [0, e], M〈Ts〉
2 (wi) /∈ {w2e, . . . , w3e−1}. (13)

Let O s = 〈Ts〉. This finishes the stage s.

O
df=

⋃
s∈N

O s.

Let s � 1, ps = (N1, N2), and Ts = {w0, . . . , w3e−1} be as above. In the oracle construction, ns was chosen such that
n2

s > n2
s−1. Therefore, M〈Ts〉

1 (wi) accepts if and only if N O 0∪···∪O s
1 (wi) accepts. Similarly, M〈Ts〉

2 (wi) = N O 0∪···∪O s
2 (wi). More-

over, ns+1 is chosen large enough such that changing the oracle with respect to words of lengths � ns+1 will not affect
the computations N O

1 (wi) and N O
2 (wi). Hence M〈Ts〉

1 (wi) accepts if and only if N O
1 (wi) accepts. Also, M〈Ts〉

2 (wi) = N O
2 (wi).

Together with (12) and (13) we obtain

if N O
2 (w0) ∈ Ts, then

(
w0 ∈ L

(
N O

1

) ⇔ N O
2 (w0) ∈ L

(
N O

1

))
. (14)

We now describe the choice of a suitable I ⊆ N such that the set

LI
df=

⋃
s∈I

T s

is �log,O
m -autoreducible, but not �log,O

m -mitotic. The index set I is constructed in stages such that at stage s, we determine
whether or not s belongs to I . Assume we are at stage s such that ps = (N1, N2) and Ts = {w0, . . . , w3e−1} as above. Let

vs
df= w0 be the quasi-lexicographically minimal word in Ts .
Assume N O

2 (w0) /∈ Ts . In this case we put s to I if and only if for all s′ < s where s′ ∈ I it holds that N O
2 (w0) /∈ Ts . This

makes sure that w0 ∈ LI ⇔ N O
2 (w0) /∈ LI . (Note that if N O

2 (w0) ∈ LI , then N O
2 (w0) ∈ T0 ∪ · · · ∪ Ts , since by the construction,

ns+1 is large enough such that N O
2 (w0) cannot belong to Ts+1.)

Now let us assume N O
2 (w0) ∈ Ts . In this case we put s to I . From (14) we obtain w0 ∈ L(N O

1) ⇔ N O
2 (w0) ∈ L(N O

1).
Our construction ensures the following, no matter whether or not N O

2 (vs) belongs to Ts .

(
vs ∈ LI ⇔ N O

2 (vs) /∈ LI
) ∨ (

vs ∈ L
(
N O

1

)⇔ N O
2 (vs) ∈ L

(
N O

1

))
. (15)

From (15) we obtain the non-mitoticity of L
df= LI as follows: If L is �log,O

m -mitotic, then there exists a separator S ∈ LO

and a reduction f ∈ FLO such that L ∩ S �log,O
m L ∩ S via f . Let N1 be a log-space OTM and let N2 be a log-space OTT such

that S = L(N O
1) and f (x) = N O

2 (x). Choose s such that ps = (N1, N2). By (15), (vs ∈ L ⇔ f (vs) /∈ L) or (vs ∈ S ⇔ f (vs) ∈ S).

This contradicts the assumption that L ∩ S �log,O
m L ∩ S via f . Therefore, L is not �log,O

m -mitotic.
It remains to show that L is �log,O

m -autoreducible which actually holds for all L J where J ⊆ N.

Claim 4.12. L′ df= ⋃
s∈N

Ts belongs to LO . More precisely, L′ can be decided by a log-space OTM with only one query tape.

810 C. Glaßer / Journal of Computer and System Sciences 76 (2010) 792–811
Proof. By the choice of the Ts , all neighboring words in Ts have a distance wi − wi−1 � 3n2
s . After Definition 4.3 we already

observed that if Ts = {w0, . . . , wk−1} ⊆ Σn2
s , then in the characteristic sequence of 〈Ts〉, the word 1wi+1 mod k starts at

position wi . So the distance between the start of 1wi and the start of 1wi+1 is at least 3n2
s . From |1wi | = n2

s + 1 it follows
that the distance between the end of 1wi and the start of 1wi+1 is at least 2n2

s −1. Therefore, in the characteristic sequence
of 〈Ts〉, there are at least 2n2

s − 2 letters 0 between the words 1wi and 1wi+1. So a word w belongs to Ts if and only if
w ∈ 〈Ts〉 and for all i ∈ [1,2n2

s −2] it holds that w − i /∈ 〈Ts〉. It follows that a word w belongs to L′ if and only if w ∈ O and
for all i ∈ [1,2|w| − 2] it holds that w − i /∈ O . This shows L′ ∈ LO . Note that the latter condition can be tested in log-space
with one query tape. �
Claim 4.13. L is �log,O

m -autoreducible. More precisely, L is �log−lin,O
m -autoreducible by a reduction that can be computed by a log-

space OTT with only one query tape.

Proof. We describe a �log,O
m -autoreduction f for L = LI . Let w be the input. If w /∈ L′ , then f outputs a fixed word that

is not in L′ and that is different from w . Otherwise, w ∈ L′ and hence |w| = n2
s and w ∈ Ts for some s. Note that the

characteristic sequence of 〈Ts〉 is such that at position wi we find the next word wi+1. The same holds for O , since by our
construction, a word of length n2

s belongs to O if and only if it belongs to 〈Ts〉. Therefore, by querying the oracle for the
words w + 1, w + 2, . . . , w + |w| and by interpreting the answers as bits, we obtain a word w ′ which is the successor of w
in Ts . The function f outputs w ′ .

Observe that f ∈ FLO and that one query tape suffices to compute f . Moreover, f is not length-increasing.
We argue that f is a �log,O

m -autoreduction for L. Clearly, by the definition of f it holds that f (w) �= w . If w /∈ L′ , then
w /∈ L and f (w) /∈ L. So assume w ∈ L′ . In this case, w ∈ Ts and f outputs w ’s successor in Ts . By our construction, either
Ts ⊆ L or T ∩ LI = ∅. So w ∈ L ⇔ f (w) ∈ L. �

This finishes the proof of Theorem 4.11. �
Corollary 4.14. There exists an oracle O and a language L such that all of the following holds.

• L is �log-lin,O
m -autoreducible by a reduction function that is computable by a log-space OTT with only one query tape.

• L is not �log,O
m -mitotic.

Corollary 4.15. There exists an oracle O such that relative to O and with respect to every machine model μ ∈ {LL,RST, L,B,W,G} it

holds that �log
m -autoreducibility does not imply �log

m -mitoticity.

Proof. Let O and L be as in Corollary 4.14 and choose a machine model μ. From the first item of Corollary 4.14 it follows
that L is �log,O

m -autoreducible with respect to μ. By the second item of Corollary 4.14, L is not �log,O
m -mitotic with respect

to the G-model (which is the default machine model in this paper). Among all considered machine models, the G-model is
the most powerful one. Hence, L is not �log,O

m -mitotic with respect to μ. �
5. Conclusions

We know that autoreducibility and mitoticity are equivalent with respect to polynomial-time many-one reductions [5].
The present paper proves the same for polylog-space many-one reductions. Moreover, with respect to log-space many-
one reductions, the notions are almost equivalent, but it is difficult to prove or refute the equivalence (proving requires
nonrelativizable methods and refuting is as hard as separating L from P). However, we do not know the relationship of
autoreducibility and mitoticity with respect to (poly)log-space truth-table reductions and (poly)log-space Turing reductions.
The polynomial-time setting allows separations in these cases [5,6]. It remains an open question if similar separations can
be proved in the (poly)log-space setting.

References

[1] K. Ambos-Spies, P-mitotic sets, in: E. Börger, G. Hasenjäger, D. Roding (Eds.), Logic and Machines, in: Lecture Notes in Comput. Sci., vol. 171, Springer-
Verlag, 1984, pp. 1–23.

[2] J.F. Buss, Relativized alternation and space-bounded computation, J. Comput. System Sci. 36 (3) (1988) 351–378.
[3] R. Cole, U. Vishkin, Deterministic coin tossing with applications to optimal parallel list ranking, Inform. Control 70 (1) (1986) 32–53.
[4] G. Gottlob, Collapsing oracle-tape hierarchies, in: Proceedings 11th Conference on Computational Complexity, IEEE Computer Society Press, 1996,

pp. 33–42.
[5] C. Glaßer, A. Pavan, A.L. Selman, L. Zhang, Redundancy in complete sets, in: Proceedings 23rd Symposium on Theoretical Aspects of Computer Science,

in: Lecture Notes in Comput. Sci., vol. 3884, Springer-Verlag, 2006, pp. 444–454.
[6] C. Glaßer, A.L. Selman, S. Travers, L. Zhang, Non-mitotic sets, in: Proceedings 27th Conference on Foundations of Software Technology and Theoretical

Computer Science, in: Lecture Notes in Comput. Sci., vol. 4855, Springer-Verlag, 2007, pp. 146–157.

C. Glaßer / Journal of Computer and System Sciences 76 (2010) 792–811 811
[7] A.H. Lachlan, The priority method I, Z. Math. Logik Grundlagen Math. 13 (1967) 1–10.
[8] R.E. Ladner, A completely mitotic nonrecursive r.e. degree, Trans. Amer. Math. Soc. 184 (1973) 479–507.
[9] R.E. Ladner, Mitotic recursively enumerable sets, J. Symbolic Logic 38 (2) (1973) 199–211.

[10] R.E. Ladner, N.A. Lynch, Relativization of questions about log space computability, Math. Systems Theory 10 (1976) 19–32.
[11] N.A. Lynch, Log space machines with multiple oracle tapes, Theoret. Comput. Sci. 6 (1978) 25–39.
[12] F.P. Ramsey, On a problem of formal logic, Proc. London Math. Soc. 30 (1930) 264–286.
[13] W.L. Ruzzo, J. Simon, M. Tompa, Space-bounded hierarchies and probabilistic computations, J. Comput. System Sci. 28 (2) (1984) 216–230.
[14] B. Trakhtenbrot, On autoreducibility, Dokl. Akad. Nauk SSSR 192 (6) (1970) 1224–1227; translation in: Soviet Math. Dokl. 11 (3) (1970) 814–817.
[15] C.B. Wilson, A measure of relativized space which is faithful with respect to depth, J. Comput. System Sci. 36 (3) (1988) 303–312.

	Space-efficient informational redundancy
	Introduction
	Preliminaries
	Models of log-space oracle machines
	Complexity classes, reductions, autoreducibility, and mitoticity

	The equivalence (<=mplog-autoreducible <==> <=mplog-mitotic)
	The difficulty of (<=mlog-autoreducible ==> <=mlog-mitotic)
	Explanation on an intuitive level
	Road map for the oracle construction
	The detailed construction

	Conclusions
	References

