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Abstract. A formal notion of diagonalization is developed which allows to enforce properties that
are related to the class of polynomial time computable sets (the class of polynomial time computable
functions respectively), like, e.g., p-immunity. It is shown that there are sets—called p-generic—
which have all properties enforceable by such diagonalizations. We study tiie behaviour and the
complexity of p-generic sets. In particular, we show that the existence of p-generic sets in NP is
oracle dependent, even if we assume P# NP.

1. Introduction

In recent publications structural properties of recursive sets like p-immunity (see,
e.g., [6, 10]), non-p-selectivity [19] and non-p-mitoticity [1] have been studied.
These properties have in common that no polynomial time computable set has any
of these properties. So the existence of a set with one of these structural properties
in the class NP of nondeterministically polynomial time computable sets would
separate P from NP. The existence of recursive sets which enjoy some of these
properties has been proved by diagonalization arguments. In some cases it has been
shown that the existence of such sets in NP is oracle dependent.

In this paper we formally characterize a class of diagonalizations over the classes
P and PF of polynoinial time computable sets and functions respectively, called
p-standard diagonalizations. This notion does not cover all diagonalization argu-
ments over P but it is restricted to diagonalizations which yield viitrnzsses of low
complexity for the desired properties. In part this is achieved by considering only
such properties which arz shared by some tally set, i.e., by a set over a single-letter
alphabet. Desnite those restrictions, the common diagonalization arguments over P
are covered by p-standard diagonalizations, as we demonstrate by a great number
of examples. For instance, the above-mentioned structural properties can ali be
enforced by p-standard diagonalizations. We show that there exist recursive sets,

* The results of this paper have been presented at the 11th ICALP "84, Antwerp, Belgium (see [3]).
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called p-generic sets, which have all properties enforceable by p-standard
diagonalizations.

The existence of p-generic sets in NP is shown to be oracle dependent. We prove
this by constructing recursive oracles A and B such that P* » NP4, P® # NP® and
there is a p*-generic set in NP* but NP? contains no p”®-generic set. For properties
Q enforceable by diagonalization over P this yields a new method for proving the
existence of an oracle A such that some set in NP fulfils Q“: to ensure this it will
suffice to show that, in the unrelativized case, Q is enforceable by a p-standard
diagonalization and that this fact relativizes.

After some preliminaries in Section 2, our diagonalization notion is introduced
in Section 3. The existence of p-generic sets is proved in Section 4. In Section §
some applications of p-standard diagonalizations are given. For instance, it is shown
that p-generic sets distinguish the various notions of strong polynomial time reduci-
bility introduced in [14]. Section 6 is devoted to the complexity of p-generic sets.
Limitations of p-standard diagonalizations are discussed in Section 7. It is shown
that a p-standard diagonalization does not suffice for diagonalizing over polynomial
time bounded Turing reductions. A stronger diagonalization concept overcoming
this shortcoming is introduced in Section §. Again it is proved that there are
sets—called strongly p-generic—possessing all properties enforceable by this ex-
tended diagonalization concept. Strongly p-generic sets can be constructed in double
exponsntial time. For any relativization, however, strongly p-generic sets are not in
NP (see [8]), whence they cannot serve for strong separation results for relativized
P and NP. In the final Section 9, we compare our diagonalization concepts with
the common diagonalization concepts in computational complexity theory and
recursive function theory.

Our study of p-generic sets has been inspired by genericity notions for recursively
enumerable sets introduced by Jockusch [11] and Maass [17]. Moreover, a conversa-

tion of the first author with C. Jockusch Jr and J. Mohrherr was stimulating for this
research.

2. Preliminaries

Lower case ietters from the middle of the aiphabet stand for elements of N, the
set of nonnegative integers. X ={0, 1}. x, y, z denote strings, i.c., elements of Z*,
capital letters A, B, C,... stand for recursive subsets of 3*. A set A is called tally
if Ac{0}*. |x| is the length of x and, for n<|xj, x(n) is the (n+1)st component
of x, i.e., (ip, ..., ik_;){n)=1i,. x*y is the concatenation of x and y- Sometimes we
abbreviate x *(i) by xi (xe XZ*,ie ). We say x extends y if x = y*z for some z.
The lexicographical ordering on strings is denoted by <.

We identify a set and its characteristic function; i.e., xe A iff A(x)=1and x¢ A
iff A(x)=0.

ATn denotes the restriction of the characteristic function of A to arguments of
length less than n; ie., Atn:3°">{0,1}, where $<"={xe I*:lxl<n} znd, for
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xeZ=", xe A iff Afn(x)=1. For tally A, we interpret A’.1 as a string, i.e., we iet
Afn=x, where |x|=n and Vk < n (x(k) = A(0*)). We write A =* B iff (A-B)u
(B-A) is finite. A@B={(0)*x:xe A}u{(1)*x:xe B}.

P (NP) is the class of subsets of £* which are (nor:)deterministically computable
in polynomial time. PF is the class of deterministically in polynomial time compu-
table functions from 2* to X*. {P,: neN} and {f, : n € N} are effective enumerations
of P and PF respectively. {M:neN} and {p,:neN} are standard enumerations
of the deterministic polynomizi time oracle machines (with oracle X) and their
respective polynomial bounds. We write x e M (xg M) iff M ¥ accepts (refutes) x.

We say a string y is used in the computation M (x) if the oracle X is queried
about y. Note that at most p, (|x|) strings—and only strings of length < p,(|x|)—are
used in the computation M {x).

A is a polynomial time many-one (( p-m)-)reducible to B, A </, b, if, for some
n, Vx {A(x)=B(f,(x))). A is polynomial time Turing ((p-T)-)reducible to B,
A <?B, if A=M} for some n. We write A =2, Biff A<’ Band B<% A
The (p-m(T))-degree of A is denoted by degh 1) A. P* is the set of deterministic
polynomial time sets relative to A, i.e,, PA={B:3n (B=M2)}.

3. Diagonalizations over polynomial time computable sets and functions

The goal of this section is to deveiop a formal characterization of a ciass of
diagonalization arguments over polynomial time computable sets and functions,
which subsumes the common diagonalizations over P. In Section 9 we will compare
our diagonalization notion with other concepts ir: the literature.

We start with analysing three typical constructions by diagonalizations, namely
that of

(1) a recursive set A, which is not in P,
(ii) a recursive p-immune set A, (see [6, 10]), i.e., an infinite set A, which does
not contain any infinite subset which is in P, and

(iii) a recursive non-( p-m)-autoreducible set A, (see [1]), i.e., a set which cannot
be nontrivially ( p-m)-reduced to itself (to be more precise, there is no function f
such that A; <’ A, via f and Vx (f(x) # x)).

Sets A; (i=1, 2, 3) with the desired properties are effectively constructed in stages,
where, at stage s+ 1, membership in A; is determined for strings of length s. So
A;1s is completed by the end of stage s, whence A, is recursive by the effectivity
of the construction. The constructicns have in common that the condition we want
to satisfy is broken down into an infinite list of simpler requirements, namely,

R:: Al # Pe;
R?: |P|=o = P.¢ Ay
R VUx(fi(x)5x) = not A, <F, A, via f,
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(with e eN), respectively. (In the case of set A,, we have to make sure additionally
that A, is infinite. We will ignore this task for the moment and come back to it later.)

The fact that A, meets requirement R. can be expressed as follows. Let Cl=
{X1%s:3x (|xl<s & X(x) # P.(x))}. Then A, meets R! iff A\1se C! for some s.
Similarly, A; meets R, i =2, 3, iff the premise of R, is false or A;1se C, for some
s, where

C2={X1s:3x (|x|<s & X(x)=0 & P.(x)=1)}
and
Ci={X1s:3xy (x|, Iyl <s & fo(x) =y & X (x) # X(y))}.

So, by determining an initial segment of A; in an appropriate way, we can guarantee
that A; meets the requirement R.. Moreover, assuming *hat the premise of R. is
correct, there are infinitely many stages s such that, for given A;{s, there is a 1-step
extension A;7s+1 of A;1s with (A;fs+1)e C.. So, intuitively speaking, either the
premise of K. fails, whence R! is met trivially, or in the course of the construction
of A, there ar= infinitely many chances to ensure R. by appropriately extending the
so far enumerated part of A; with length 1. For R! this is obvious since, for any s,
any A%s and any string x of length s, we obtain an extensicn (Afs+1)e C! of Ats
by choosing Ats+1 so that A(x) # P.(x).

For R? consider such s where, for some x of length s, P.(x)=1 and choose
Als+1 with (A1s+1)(x)=0. By the premise of R?, infinitely many such stages s
exist. Finally, for R consider stages s such that there are strings x and y with x # y,
|x|<|y|=s and f.(x) =y or £.(y) = x. (Note that by premise of R? infinitely many
such stages s must exist.) Given Afs, we then choose an exteusion Afs+1 of Afs
such that (A1s+1)(x) # (A?s+1)(y). Note that in contrast to the requirements R
and R2Z, where the strings of length s in A can be chosen independently from A{s,
in case of R} the extension depends on the previously constructed initial segment
of A. Namely, for x and y as above such that |x| <|y|, i.e., |x| <, the value of A(y)
is determined by the previously specified value of A(x). This dependence is typical
for more involved diagonalization arguments.

The above argument shows that A; meets requirsment R. iff

if 3%s I(X{s+1)e CL (X1s+1 extends A;1s) (3.1)
then 3s (A;}se Ch). '

This fact is (implicitly) used in the usual construction of the sets A;: At stage s+1
of the construction we choose e<s minimal (if there is any) such that R. is not
yet met at stage s (i.e., At<s (A;1te C;)) and R. can be ensured at stage s+1
(i.e., there is some X{s+1 extending A;1s such that (X1s+1)e C.). Then we let

Ails+1=X1s+1 for such an extension, thus meeting R.. So, for given e and for
s, such that, for all e'<e,

3t (Afte CL) = i<s, (Ate CL),

at any stage s> s, requirement R, will have highest priority for becoming satisfied
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in the above-described way. Hence, if the premise of (3.1) is correct, then A;{se C!
for some s.

So (3.1) is satisfied for each e eventually, thus implying that A, has the desired
property.

The fact that a pr rced by diagonalization can be ensured
by an infinite list of conditions of the form (3.1) is not limited to diagonalizations
over P but it applies to diagonalizations over any complexlty class (see Section 9
below). What is typical for diagonalizations over P is the complexity of the classes
C. in (3.1), namely, for an appropriate encoding, C' € P. This is of great importance
since, in general, we are interested in getting sets A; of as low a complexity as
possible and the complexity of A; depends on the complexity of the condition sets
C.. If we more closely analyse the complexity of A, in the above outlined construc-
tion, we see that the computation of A;(x) for a string x of length s depends on
tests of the form A;jte C{, 1<s5, where |A;}1}<2', and on a search among the 2*
possible extensions X 1s+1 of A;1s. The complexity can be exponentially decreased
by considering only tally sets. By requiring A; to be tally, A;1t can be interpreted
as a string of length t (cf. Section 2) and there are only two possible extensions
X1s+1 of Aifs, namely, A;1s*(0) and A;1s*(1).
So, for tally sets A, the sets C., C2, C2 can be written as

Cl={x:3n<|x| (x(n)# P.(0"))},
Ci={x:3n<|x| (x(n)=0 & P.(0")=1)},
Cl={x:Imn<|x| (£.(0™)=90" & x(m) # x(n))}
and (3.1) now becomes
3°s3j<1 (Ats*(j)e C) = 3s (Alse CL). (3.1

As one can easily check, C!, CZ, CleP.
The above analysis of examples for diagonalizations over P and PF leads us to
the following central definition.

Definition 3.1. A property Q of languages over the alphabet 2 can be enforced by
a p-standard diagonalization if there is a sequence {C,: e €N} of polynomial time
computable sets such that, for any tally set A, the following holds: if, for every eeN,

3%s3i<1 (Als*(i)e C,) = 3s (A1se C.), (3.2)

then A has property Q.

Note that only those properties can be enforced by a p-standard diagonalization
which are shared by some tally set. At first sight, this is a severe restriction. For
most structural properties studied in the context of the (P-NP)-problem, however,
tally witnesses are known (see Section 5). The restriction to tally sets will allow us
to construct ‘universal’ sets for p-standard diagonalizations in relativized NP (see
Sections 4 and 6). Without this restriction a similar result cannot be obtained (see
Section 9).
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As shown above, being not in P and non-( p-m)-autoreducibility can be enforced
by p-standard diagonalizations. In case of p-immunity in the above argument, we
ignored the task of making A, infinite. Since any set not in P is infinite, by the
following lemma we may conclude that p-immunity can be enforced by p-standard
diagonalizations too. Further examples of enforceable properties are given in
Section $.

Lemma 3.2. Let Q, and Q, be properties of languages over .

(a) If Q, and Q, can be enforced by p-standard diagonalizations, then so can the
conjunction Q, & Q, of Q, and Q.

(b) If Q, can be enforced by a p-standard diagonalization and Q, implies Q., then
Q, can be enforced by a p-standard diagonalization.

Proof. (a): Let {Cl:eeN}and {C2: e N} be sequences of polynomial time compu-
table sets which enforce Q, and Q, respectively. Then the sequence {C,.:eeN},
where C,. = C! and C,,., = C2, enforces Q; & Q,.

(b): Immediate. O

4. p-Generic sets

We will now show that there are tally recursive sets which have all properties
which can be enforced by p-standard diagonalizations. So any property Q which
can be enforced by a p-standard diagonalization is shared by a (tally) recursive set.

Definition 4.1. A tally set A is p-generic if, for every polynomial time computable
set C,

3%sJi<1 (Ats*{i)e C) = Is (A1se ). 4.1)

If Atse C, then we say A hits C. The name p-genericity stems from a similarity

betwesn Definition 4.1 and the definition of a generic set for forcing notions in set
theory.

p-Genericity is the strongest property that can be ensured by p-standard
diagonalization.

Proposition 4.2.
(i) p-Genericity can be enforced by p-standard diagonalization.

(i1) If A is p-generic and Q can be enforced by p-standard diagonalization, then
A has property Q.

(ii1) If Q is a property shared by all p-generic sets, then Q can be enforced by
p-standard diagonalization.
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Proof. (i): Choose {C,: eeN} to be the enumeration {P,:eeN} of P.

(ii): Any sequence {C,: e €N} of polynomial time computable sets is contained
in {P,:eeN}.

(iii) Immediate by (i) and Lemma 3.2(b). O

Note that no p-generic set can be in P since—as mentioned in the preceding
section—the property of being not in P can be ensured by a p-standard diagonaliz-
ation. We now show that p-generic sets actually exist.

Theorem <.3. There is a recursive p-generic set.

Proof. The proof is a standard diagonalization argument like the ones described in
Section 3. Still we give a fairly detailed proof since, for later refinements of Theorem
4.3, we will have to refer to the construction below.

We effectively construct a -generic set A in stages. To make A p-generic it suffices
to meet the requirements

R.:3As3%i<1 (Atix(i)e P,) = Is (A1seP,) (eeN).

At stage s+1 of the construction below, we determine the value of A(0°). So, by
the end of stage s, Afs will be defined and can be used in the description of stage
s+1.

We say R, is satisfied at (the end of ) stage s if, for some t<s, Alte P,. Note
that once R, is satisficd at some stage, it is satisfied ai all later stages and R, is met.
Requirement R, requires attention at stage s+ 1 if it is not satisfied at stage s and
Atsx(i)e P, for some i< 1. I R, requires attention at stage s + 1, then at stage s+1
we can ensure that Afs+1¢€ P, (and thus that R, is satisfied) by choosing the
appropriate value for A(0°). It might happen that at some stages more than one
requirement requires attention. In this case we give the requirement with least index
among the requirements asking for attention highest priority and ignore the other
ones.

We now give the construction of A.

Stage 0: Do nothing.

Stage s+1: If no requirement R,, e<s, requires attertion, then let A(0°)=0.
Otherwise, choose e and i minimal {in this order) such that R, requires attention
and Afs=*(i)e P,. Set A(0°) =i and say R, is active.

This completes the construction.

Obviously, the construction is effective and A7s is defines? hv the end of stage s.
So A is recursive. That the requirements R, are met and thus that A is p-generic
follows from the following ciaim.

Claim. For every e, R, requires attention only finitely often and is met.

The claim is proved by induction on e. Fix e and, by inductive hypothesis, assume
the claim correct for e’ <e. Then we can choose s, such that no requirement R.,
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e’' < e, requires attention after stage s,. Now if R, requires attention at some stage
5,> S0, then R, becomes active at stage s, and—as pointed out above—is satisfied
at all later stages. So R, does not require attention after stage s,.

To see that R, is met, w.l.o.g., assume that 3%s 3i<1 (Afs*(i)e P,). We have
to show that R, is satisfied at some stage and thus A hits P,. But if this were not
the case, then R, would require attertion at infinitely many stages, a contradiction.
This also completes the procf of the theorem. [

It is a general experience that there is no property Q such ‘hat both Q and the
complementary property Q can be ensured by diagonalizations. For p-standard
diagonalizations, :his experience can be formally verified.

Corollary 4.4. There is no property Q such that Q and Q can be enforced by p-standard
diagonalizations.

Proof. To construct a contradictior,, assume that Q and Q are enforceable by
p-standard diagonalization. Then, by Proposition 4.2, A€ Q and AcQ for any
p-generic set A. So there are no p-generic sets, contrary to Theorem 4.3. O

In the following two sections we will first study properties of p-generic sets and
then consider questions related to the complexity of such sets.

5. Properties of p-generic sets

In this section we will investigate some properties of p-generic sets and give more
examples of properties which can be enforced by p-standard diagonalizations. We
thereby reprove some known structural results (simplifying the original proofs) but

we also prove some new results, e.g., on the structure of the polynomial time one-one
degrees.

We first note that p-genericity is invariant under finite variations 2nd that the
complement of a p-generic set relative to {0}* is p-generic, too.

Theorem 5.1. Let A be p-generic. Then,
(i) {0}*~ A is p-generic and
(ii) for any B< {0}* such that B =* A, B is p-generic.
Proof. (i): Let C e P be given. Then,
C'={x":13xe C (|x'|=|x| & Vn<|x| (x'(n) =1-x(n)))}
is in P and, for any s and i<1,
Afsx(iYe C' iff ({0}*—A)s+x(1-DeC
So p-genericity of A implies p-genericity of {C}* — A.
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(ii): Fix B < {0}* such that B =* A, say Vs = s, (B(0°) = A(0*)), and let any C € P
be given. Then,

C"={Also*xx:Blso*xe€ C}
isin Pand, for s>sgand i<|,
Ats*(i)e C" iff Bfs*(i)e C.

So again p-genericity of A implies p-genericity of B. [

By equation (4.1), a p-generic set A hits any set C € P if it has infinitely many
chances to do so, i.e., if there are infinitely many s such that Als#(i)e C for some
i. The following theorem implies that if A has infinitely many chances to hit C, then
A hits C not just once but infinitely often. In a p-standard diagonalization we only
consider extensions of length 1. One might conjecture that considering longer
extensions will give more powerful diagonalization concepts. The following theorem
shows that a p-generic set A will still hit any set C € P if there are infinitely many
chances to hit C by extensions of any constant length, i.e., if

In3%s Ax (Ix|=n & Ats*xe C).

Intuitively speaking, this shows that p-generic sets also have all those properties
which are enforceable by finitely iterated p-standard diagonalizations, i.e.,
diagonalizations with any constant look-ahead instead of look-ahead of length 1.

So, by Proposition 4.2(i), such iterated diagonalizations are not more powerful
thzn simple p-standard diagonalizations. In Section 7 we will show, however, that
considering extensions of nonconstant length gives rise to a stronger diagonalization
concept.

Theorem 5.2. Let A be p-generic. Then, for all C € P, the following holds:
if In=13"s 3Ix (|x|<n& Als*xe C), then 3°s (A1se C). (5.1)

Proof. We prove by induction on n that, for all C € P, it holds that
3%s3Ix (x|=n & Als*xeC) = I°s (AlseC). (5.2)
Basic step (n=1): Fix C € P and assume that the premise of (5.2) holds. Let
Cn={x:|x|=m & xeC} (meN).

Then C,,€ P and 3°s i< 1 (Afs*(i)e C,). So, by p-genericity of A, A hits each
C,. and thus A hits C infinitely often.
Inductive step: Fix C and assume

3°s3Ix (Ix|=n+1 & Alsxxe C). (5.3)
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To show that A hits C infinitely often, let
C'={x:3i<1 (x={iYe C)}.
Then C'e P and, by (5.3),
3°s3x (x|=n& Atsxxe ().
So, by the inductive hypothesis, 37s (Alse C’), i.e. 3°sJi<1 (Afs=(i)eC). It
foilows, again by inductive hypothesis, that A hits  infinitely often. [

In the remainder of this section we will give some examples of properties which
can be enforced by p-standard diagonalizations. In Section 3 we have already shown
that not being in P and p-immunity are such properties. Recall that A is p-selective
if there is a polynomial time computable function f: Z*x 3* - 3* such that

Vx,yeZ* (f(x,y)e{x, y} and (An{x, y}#0=>f(x, y)€ A))
(cf. [19]).

Theorem 5.3. Let A be p-generic. Then
(i) AgP;
(ii) A is p-immune;
(iii) A is not p-selective.

Proof. It remains to prove (iii). For a contradiction, assume that A is p-selective,
i.e., for some polynomial time computable f,
Vx,ye&* [f(x,y)e{x,y} and (An{x, y} #0=>f(x, y) e A)], (5.4)
where w.l.o.g., f({0}* x {0}*) = {0}*. Then, for the set
C={x:Inx|=n+2&[f(0",0"")=0"=>x(n)=0&x(n+1)=1]
&LF0%0")Y=0"">x(n)=1&x(n+1)=0])},
C € P. Moreover, Vs 3x (|x| =2 & Als*x e C) whereas, by (5.4), As (Afse C). By
Theorem 5.2, this is impossible. O

Parts (ii) and (iii) of Theorem 5.3 show that p-generic sets are free of certain
redundancies; e.g., by immunity, they do not contain infinite trivial, i.e., polynomial

time computable, parts. The lack of further redundancy properties follows from the
next theorem and its corollaries.

Theorem S.4. Let A, B be recursive sets such that B< A and A is p-generic. Then the
following hold :

(@) if A<? Bvia f then
AngVazn,Im<sn (f(0")=07); (5.5)

(b) if B< A via fand f({0}*) < {O}*, then (5.5) holds;
(¢) ifA<? A viaf, then

Ang¥n=n, (f(0")=0"). (5.6)
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Proof. (a): Fix fsuch that A </, B via f and, for a contradiction, assume that (5.5)
fails. Then

I%n (SO e{0°...,0"}). (5.7)
First assume that
I (0" A&S(0™)e2{0°...,0"}) (5.8)

holds. Since A = f~'(B) and B < {0}*, this implies that {n.0"e AL IAm > n (f(0") =
0™)} is infinite. Hence, there are infinitely many s such that Afs=(0)e C for the
polynomial time computable set

C ={x0:3n<|x] (f(0")=0" & x(n)=1)}.

So A hits C, i.e., A(0")=1#0=A(f(0")) for some n. Since B< A this implies
A(0") = B(f(0")), a contradiction.
So (5.8) fails, whence there is a number n, such that

Yaz=n, (f(0")e{0°...,0"} = 0"¢ A).
So the polynomial time computable set
D={0":n=ny and f(0"32{0°%...,0"}}

is contained in {0}* — A. Moreover, by (5.7), D is infinite. It follows that {0}* - A
is not p-immune, contrary to Titeorems 5.1 and 5.3.

(b): The proof is very similar to the proof of part (a). Fix f such that B=</ A
via f and f({0}*)< {0}* and, for a contradiction, assume that (5.5) fails. Then
3°nIm>n (f(0")=0"). So either

3°n (0”2 A and Im>n (f(0")=0"))
in which case A will hit the set

{x1:3n<|x| (f(0") =0™ & x(n) =0)},
contrary to B =f"'(A); or, for some n,, the infinite set

{0":n=n, &f(0")2{0%...,0"}}eP

is contained in A, contrary to p-immunity of A.

(c): Fix fsuch that A <’, A via f and, for a contradiction, assume that f(0") # 0"
for infinitely many n. Then, by part (a), 3“n3Im<n (f(0")= 0™). So, for infinitely
many s, there is some i < 1 such that A1s#(i)e C for the polynomial time computable
set

C={xi:In<|x| (f(O™)=0"&x(n) # i}}.

This implics that A hits C, whence A(0") # A(f(0")) forsome n,a contradiction. J
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Theorem 5.4 has a series of interesting corollaries.

Corollary 8.5. Let A be p-generic. Then, for any subset B of A, A=!, B iff A=*B.

sEEmEEmss Ry 7T 7 L <

Proof. For a proof of the nontrivial implication, fix f; and f; such that A <], B via
fi and B <’, A via f,, where, w.l.o.g., f-({0}*) = {O}*. Then, by Theorem 5 4, there
is some number n, such that

A\ 114 nnly
JEW (...,U |}

Va=n, (/i{0"). (0
Since A <? A via f5o f,, whence f5° £,(0") =0" for almost all #n by Theorem 5.4,
this implies £f,(0") =£(0"}=0" for almost all n. So A=*B. 0

Corollary 8.6. Let A be p-generic and let B be a polynomial time computable set such
that B {0}* and BN {0}* are infinite. Then AnB <% A, AnB <} A and AnB
and An B are (p-m)-incomparable.

Proof. Since, by Theorems 5.1 and 5.3, A and {0}* — A are p-immune, A~ B and
An B are infinite. So, by Corollary 5.5, AnB =2 A and An B #% A. Since, for
any recursive set A and for any BeP, A =% (An B)®(An B), this implies the
claims. O

Corollary 5.6 in particular shows that p-generic sets are non-( p-m)-mitotic in the
sense of Ambos-Spies [1].

Theorem 5.4 has a {urther interesting corollary on the p-one-one-degrees of the
finite variants of a p-generic set. Recall that A is p-one-one (( p-1)-)reducible to B,
A <! B, if A<} B via a one-to-one function f.

Corollary 8.7. Let A be p-generic, x & A.
(@) A<PAu{x}

(b) The ( p-m)-degree of A contains a chain of ( p-1)-degrees of the order type of
the integers.

Proef. (a): Obviously, A <{ Au {x} via the one-to-one function f, where

‘ if y e {0}* —{x},
f(y)={y ye{or—{x}
y1 otherwise.

Now, for a contradiction, assume Au {x} </ A, say via g. Then, for each n=>1,
g"{x) € A. By injectivity of g this implies g"(x) # g™(x) for n # m. So, for h defined
by

if p#
hiy) = {8(y) ifysx,
i ify=x,
Asj AviahandVn=1 (h(g"(x))=g""'(x) # g"(x)). So there are infinitely many
n such that A(0") s 0". But this is impossible by Theorem 5.4(c).
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(b): Let {x,:neN}and {y,:neN} be sequences of pairwise different strings such
that x,e{0}j*-A and y, €A Then, by Theorem 5.1, Au{x,,...,x,} and
A-{y,,...,y.} are p-generic. So by part (a),

: <|"A"{)'|,J’2} <PA-{n<TA<{AU{x;}

<fAuix,x}<f--- 0

p-Generic sets can also be used to distinguish various notions of polynomial time
reducibility such as ( p-1)-reducibility, ( p-m)-reducibility and variants of p-truth-
table (( p-tt)-)reducibility. The following theorem gives a simple proof for some of
these sepataticn results which have already been shown by Ladner et al. in [14].
Here we are not able to prove that ( p-tt)-reducibility differs from ( p-T)-reducibility
on the recursive sets. The first reason is that the notion of p-genericity is too weak
to diagonalize over ( p-T)-reductions as we will see later. On the other hand, in the
context of tally languages there is no difference between (p-T)-reductions and
( p-tt)-reductions at all, that is, for tally A the following holds: B<{ Aiff B<] A.

For the formal notion of (p-tt)-reducibility we refer to [14], whereas for the
bounded versions we give a slightly different definition which is easier to use in our
proofs but does not change the induced reducibility relation.

Definition 5.8. A set A is k-bounded ( p-tt)-reducible to 2 set B (A <}, B) if there
is a polynomial time computable function f,:3*x{0, 1}*>{0, 1} and functions
fis---, Ju€PF such that x<.4 1 £(x B(j}-{x}h... R(fi{x))})=1. A is boundzd
( p-tt)-reducible to B (A </, B) if A <[, B for some k=1.

Theorem 5.9. Let A be p-generic. Then,
(i) A@A={0°":0"c A}u{0*""":0"c A} %] A;
(ii) A%? A;
(iii) D,={0%:{0"%,...,0"""" e A} =/ 1).u A, n=2;
(iv) Bnen D= {lnok :0%e D,} <{ A

Note that A®A<2 A A<!,A D,<’,A and @, D, <! A So p-generic
sets provide natural examples of sets proving
\tt;> Sbn'-’é (n+|)n:’¢\n u'-'é *-'9 Sp

(cf.[14]). We also see that, for n =2, <?_, is not transitive since D,, <7, D, <[4 A.

Proof of Theorem 5.9. (i): Assume that A@ A <[ A via f. Fix numbers r and s such
that 0" € A and 0° £ A ard define the function g bv letting g(0") = f(0°") for n# s,
g(0°) =£(0**"),and g(x) = f(x) for x e 3* —{0}*. Then AU {0°} <{ Avia g, contrary
to Corollary 5.7.

(ii): Assume that A <P, A via f, where, w.l.o.g., f({0}*) < {0}*. Define

C={x:3m, n<|x| (f(0™)=0"& x(m) = x(n))}.
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Then C € P and there is an i <1 such that A?s*(i)e C infinitely often. So, since A
is p-generic, there is an seN such that Atse C. It follows that A %2 A via f
contradicting the assumption.

(iii): To simplify notation, we only prove the case n=3. The extension to the
generai case is straightforward.

For a contradiction, assume D, <7, A, say via f,, f,, f,. W.l.o.g.. we may assume

AU VLHO) {0F* and VK (£,(0%) <£(0%)).

We distinguish the following cases.

£
3
!
>
3
=
-
:
D
.
I,

o B ara nera infinitaly k 3k+2 n k
Cu.)c }. thclc aliv lllﬁ.’.lltcl] 1iail y (0 )> 0 alld “(l\

J (4] v
A(£,(0%)), 0) # £,(0%, A(£,(0%)), 1). Then A has infinitely many chances to hit the
polynomial time computable set

C={x:3k, I, m<|x| [Ix|=m+1 & £(0") =0' &£ £,(0*) =0"

&m>3k+2 &f,(0%, x(1), x(m)) # x(3k) - x(3k+1) - x(3k+2)]}
and thus it hits C. By definition of C, this implies that D, <5, A via f, f,, f> does
not hold: a contradiction.

Case 2: otherwise. Distinguish the following two subcases.

Case 2.1: there are infinitely many k such that f;(0%)>0%**2 and f,(0% 0, i) #
fo(0%, 1, i) for somei<1. Then, let

C={x:3k I<|x| [|x|=1+1 &£,(0*)=0'& I>3k+2
& i< 1(£(0%, x(1), i) # x(3k) - x(3k+1) - x(3k+2))]}.

Obviously, C € P and A has infinitely many chances to hit C. Hence, by Theorem
5.2, there are infinitely many numbers k such that f£,(0*)> 0°**2 and

Jo(0%, A(£1(04)), i) # A(0**) - A(0**") - A(0%**?)
for some i< 1. Since
Case 1 fails and £,(0%) > £,(0%), this implies
Jo(0%, A(£1(0%)), A(£(0%))) # A(0°%) - A(0°**") - A(0%**%) = Dy(0%)

for infinitely many numbers k, contrary to our assumption that D; <%, A via f;,
hu Lo

Case 2.2: otherwise. Then there is some k, such that, for k= k,, the value of
Fo(0%, A(£,(0%)), A(fz(O"))) oniy depends on A13k+3. So if we let £;(0%) = £,(0%) if
£(0%)<0%**? and f(0") 0 otherwise (i =1, 2), then fo(0%, A(£;(0%)), A(£(0%)))=
fo(0%, A(£1(0%)), A(£:(04))) for k= ky. Now, let

C={x:3k L, m<|x| [k=ko & |x|=3k+3 &f,(0*)=0' & f,(0*) =0"
& fo(0%, x(1), x(m)) # x(3k) - x(3k+1) - x(3k+2)]}.

Then C € P and, for each string y of length 3k, k= k,, there is an extension x of
y suchthat|x|=3k+3 and x € C. So, by Theorem 5.2, A hits C, whencenot D; <$, A
via fo, fi, f>-

(iv) immediately follows from (iii). O
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We now turn to the question how compiex p-generic sets are. We first note that
there are p-generic sets which can be computed in exponential time while, on the
other hand, there are p-generic sets of arbitrarily high complexity.

Theorem 6.1. (a) There is a p-generic set A such that A e DTiME(2").
(b) For any recursive set B there is a recursive p-generic A such that A <2 B.

The proof of Theorem 6.1(a) is a straightforward variant of that of Theorem 4.3
based on the observation that, for each requirement R,, there is a polynomial q,
such that, given Afs, we can decide in g.(|A1s|) = g.(s) steps whether R, requires
attention and if so, compute the least i such that Afs*(i)e R, (i.e., the value i ‘R,
wants A(0°) to have’). We omit the proof since Theorem 6.1(a) is a direct consequence
of the existence of a universal set for P in DTiME(2") and of Theorem 6.2 below.

To prove (b), merge the requirements of Theorem 4.3 with requirements ﬁ,: A#
M2 which are handled in the usual way (see [13]).

We say a set U is universal for P if, for some polynomial time computable and
invertible bijection (, ):Nx 3*> 3* {U™:neN}= P, where U™ ={x:(n, x)e U}.

Theorem 6.2. Let U be universal for P. Then there is a p-generic set A such that A <% U.

Proof. In the proof of Theorem 4.3, replace all occurrences of P, by U'“). Then the
constructed set A can be (p-T)-reduced to U. O

Theorem 6.2 shows that p-generic sets are not more complicated than universal
sets for P. In particular, since there are universal sets of subexponential complexity,
there are p-generic sets of subexponential complexity, too. This leads to the question
whether—or under which hypotheses—there are p-generic sets in NP.

Before turning to this question, we note that there is no simplest p-generic set.

Theorem 6.3. Let A be a recursive p-generic set. Then there is a p-generic set A such
that A <! A.

Proof. Let A={0":0""¢ A}. Obviously, A=, An{0>":neN}. So A<2 A by
Corollary 5.6. To prove that A is p- generic, ﬁx C € P and assume that 3*s 3i=<1
(A1s#*(iye C). Let

C'={x:|x| is odd & ev(x)e C},

where, for x| =2n+1, |ev(x)|=n+1 and ev(x)(i) = x(2i), i< n. Obviously C'e P
and

Atsx(iye C & (AN2s+1)*l)e C'.

So, by p-genericity of A, A hits C' and thus Anits C. 0O
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The existence of sets with certain structural properties, like p-immunity, in the
class NP has been shown to be oracle dependent, i.e., there are (recursive) sets A
and B such that there is a set with that (relativized) property in NP but no set in
NP2 has that property (cf. [10]). We now show that the existence of p-generic sets
in NP is oracle dependent, too.

Definition 6.4. For any B, a tally set A is p®-generic if, for every C € P®, condition
(4.1) holds.

Theorem 6.5. There are recursive sets A and B such that
(i) P*# NP* and there is a set in NP?* which is p*-generic;
(ii) P? # NP®? and no NP?-set is p®-generic.

Proof. (i): We construct a recursive set A in stages such that the NPA-set
D={0":3xe A (|x|=n)}
is p*-generic. For this sake it suffices to meet the requirements

R.: 3%s3i<1(D}s*(i)e M2) = 3Is (D}se M?),

for all eeN.

The part of A enumerated by the end of stage s in the construction below is
denoted by A;, and we let D; be the string of length s such that, for n<s, D;(n)=1
iff 3x € A, (x| =n). We will ensure that for each s there is at most one string of
length s in A and if such an x exists, then x is enumerated in A at stage s+1. So
we will have A, = Afs and D, = D1s.

As in the proof of Theorem 4.3, the requirements are assigned priorities, R, having
higher priority than R,, iff n<m.

For each requirement R, and each stage s there will be a finite set R(e, s)c 3*
called the restraint set of R, at stage s. The purpose of R(e, s) is to ensure for
certain strings x that M2:(x)= M2(x) provided that An R(e, s)=§. Strings in
R(e <) can be enumerated in A after stage s only for the sake of requirements of
higher priority than R,.

We say R, is satisfied at stage s if, for some t<s, D,e M and if all strings x
of length =5 which are used in the computation M2:(D,) are elements of R(e, s).

An intermediate restraint set Ii(e, s) for R,, e <y, at the beginning of stage s+1 is
defined by

Ii(e, s)=R(e,s)u{x:|x|=s and x is used in one of the computations
M2:(D,*(0)) and M2«(D,*(1))}.

Note, that by the second clause of the definition of Ii(e, 5), An ﬁ(e, s) =0 implies
MZ2(D,*(i)) = M2(D,*(i)), i=0,1.
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Finally we say R, requires attention at stage s +1 if e <s and the following hold:

R, is not satisfied at stage s; (6.1)
3x (lxl =sand x¢ | R(e, s)); (6.2)
i< (M2(D,*(i))=1). (6.3)

We now give the construction of A and of the restraint sets R(e, s).

Construction of A
Stage 0: Ay=R(e, 0)=0 for all ecN.
Stage s+1: If no requirement requires attention, then let A,,, = A,, and

Ii(e, s) ife<s,

R(e’s“):{ﬂ ife>s:

otherwise choose e and i minimal (in this order) such that R, requires attention
and M2(D,*(i))=1. Let

A _{As ifi=0,
A, ux} ifi=1,

where x’ is the least x witnessing condition (6.2), and

Ii(e’, s) ife'<e,

R(e"”l):{ﬂ ife'>e

Also say R, is active. This completes the construction.
Note that the construction is effective, A; = Als, and D, = D1s. It follows that A
is recursive. To show that the requirements R, are met, we prove a series of claims.

Claim 1. If R, is active at stage s+ 1, then R, is satisfied at stage s+ 1.

Proof. If R, is active at stage s+ 1, then, for some i<1, M2+«(D,*(i)) =1 and, by
definition of A,.,, for the least such i, D,,, = D, *(i). Moreover, any string x used
in the computation M2«( D, *{i)) such that |x|=s is in R(e, 5) and no element of
R(e, s) is in A,,,— A,, whence M2+(D,,,)=MM(D,.)=1. O

Let R(e)={x:3s,Vs=s, (xe R(e, 5))} and say R, is permanently satisfied if it
is satisfied at some stage s such that R(e, s) < R(e).

Claim 2. (i) If no requirement R,., e’ < e, requires attention after stage s, then
Vi=s (R(e,s)< R(e, t)< R(e, t) < R(e)).
(ii) R(e)nA=0.
Proof. By induction. [
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 Claim 3. If R, is permanently satisfied, then, for some s, D1{s hits M A and R, is
satisfied at every stage t = s.

Proof. By Claim 2. [J

Claim 4. R. requires attention at most finitely often.

Proof. By inductiun on e. Fix e and, by inductive hypothesis, choose s, such that
no requirement R, , e'<e requires attention after stage s,. Now, if R, requires
attention at a stage s, +1> 5o, then R, becomes active at stage s, +1 and thus, by
Claims 2 and 3, R, i satisfied at stage s,+1 and all later stages. So R, does not
require attention after stage s, +1. [

Let r(e, s) = lU{ﬁ(e’, s):e'< e}|. Note that
IR(e,s)|= ¥ 2-pe(s).

So As.r(e, 5) is bounded by a polynomial. The next claim now follows.
Claim 5. For each e there is a stage s, such that Vs> s, (r(e, s)<2**").
Claim 6. Requirement R, is met.
Proof. W.l.0o.g., assume that
Bs (Dtse M. (6.4

By Claims 4 and 5, choose s,> e such that no requirement R.., e'< e, requires
attention after stage s, and such that Vs > s, (r(e, s) <2°*'). Then, by Claims 2 and
3 and (6.4), R, is not satisfied at any stage s > s,. Since R. does not require attention
after stage s,, this implies that, for nc s > s,, condition (6.3) holds, i.e.,

Vs=s5,Vis1 (M2X(D?s*(i))=0).

By definition of R(e, s), the choice of s,, and Claim 2, it now follows that
Vs=5, Vi<l (M_;‘(Dfs*(i)) =0)

and thus that R, is met. O

The proof of Claim 6 also completes the proof of Theorem 6.5(i).

(ii): Homer and Maass [10] have constructed a recursive oracle B such that
P? # NP® and no NP-set is p®-immune. Since the proof of Theorem 5.3 relativizes,
i.e., since p®-generic sets are p”-immune, this implies that no NP? set is p®-generic.
This completes the proof of Theorem 6.5. [

Corollary 6.6. Let Q be a property which can be enforced by a p-standard diagonaliz-
ation. Furthermore, assume that this fact relativizes. Then there is a recursive set A
such that P* # NP* and there is a (tally) NP*-set with property Q.
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Proof. With Theorem 5.6 and the relativized version of Proposition 4.2(ii) this
theorem is easily proved. [J

Since the common proofs that a property can be enforced by p-standard
diagonalization trivially relativize, Corollary 6.6 provides a new, simple approach
for obtaining oracle dependence results. To show that the existence of sets with a
certain property Q in NP can neither be proved nor be refuted by an argument
which relativizes, it suffices to show that QnP=@ and Q can be enforced by
p-standard diagonalization and that these facts relativize. For instance, by relativizing
Theorem 5.3, we obtain the following corollary.

Corollary 6.7. There are recursive sets A and C such that C e NP* and C is p*-immune
but not p*-selective.

7. Limitations of p-standard diagonalizations

Our notion of p-standard diagonalization covers the common diagonalizations
over polynomial time computable sets and functions. In particular, it subsumes
diagonalizations over polynomial time bounded many-one reductions. In general,
it does not cover however diagonalizations over polynomial time bounded Turing
reductions. The latter type of diagonalizations requires us to consider extensions of
the set under construction of polynomial length and not just extensions of length
1 (or of constant length), as in the case of p-standard diagonalizations.

To illustrate this limitation on p-standard diagonalizations, we show that, in
contrast to Corollary 5.6, there are a p-generic set A and a polynomial time
computable set B such that B {0}* and B {0}* are infinite and An B =% A. To
obtain this result, we first prove a iemma.

Lemma 7.1. There is a p-generic set A such that

VneN (0*"*'eA ¢ |AnL)=n), (7.1)
where I, ={0*:n’<i<(n+1)3.
Proof. The construction of a set A with ti:e desired properties is based on the

construction of a p-generic set given in Section 4. We start with some simple
observations regarding the intervais I,.

Vxel, (2n+1<|x|), (7.2)
2n<|I,| and I, is finite, (7.3)
n#m = I,nI,=0. (7.4)

We call a number s an n-number if 0° € I,,.
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Now the basic idea for satisfying (7.1) is the following. If a stage s is an n-number,
then only requirements R,, i< n—1, may become active at stage s+1, and if no
requirement is active at stage s+ 1, then we let A(0°) = A(0*™*"). Note that, by (7.2),
A(0*"*!) has been defined at a previous stage. Moreover, since each requirement is
active at most once, A(0°) = A(0°"*") for all but at most n — 1 n-numbers s by (7.4),
whence (7.1) will hold by (7.3).

Using the notation and the requirements of the proof of Theorem 4.3 this leads
to the following construction.

Construction

Stage 0: Do nothing.

Stage s+1: Define k by k=n—1 if s is an n-number, and by k = s otherwise. If
no requirement R,, e < k, requires attention, let A(0°) = A(0*"*") if s is an n-number,
and A(0°) =0 otherwise. Otherwise choose e and i minimal (in this order) such that
R, requires attention and Ats*(i)e P,, and set A(0°) = i. Also say that R, is active.

As in the proof of Theorer~ 4.3, we can show thai each requirement R, requires
attention only finitely often, is active at most once, and is met. For the proof that
R, is met, we only have to note that there are only finitely many stages s+1 such
that s is an n-number for some n<e+1 (by (7.3)), whence R, is prevented from
acting by the additional restraints introduced in this construction only finitely often.
Finally, it follows from the remarks preceding the construction that the constructed
set A satisfies (7.1). T

Theorem 7.2. There is a p-generic set A such that An{0°":neN} =§ A.

Proof. Fix A as in Lemma 7.1 and define f: {0}* > {0}* by

An{0®** ' :neN} <P An{0*":neN}.

Obviously, this implies An{0*":neN} =% A. O

We conclude ttis section with a further application of Lemma 7.1. Recall that a
one-to-one and oni¢ function f:3*-> 3I* or f:{0}* > {0}* is a p-isomorphism if f
and its inverse ' both are po'vnomial time computable. Note that, with f, f' is
a p-isomorphism, {o0.

A property Q (cf wally sets) is called p-invariant if, for A€Q and any p-
isomorphism f:X* > 3* (f.[0}* > {0}*), f(A) e Q again. As one can easily check,
most of the structural properties studied in the literature are p-invariant. For
p-immunity this follows from the observation that p-isomorphisms map infinite
polynomial time computztle sets to such sets again. Similarly, if A is p-selective,
if g is a selector function for A, and f a p-isomorphism, then fo g o f ' is a selector
for f(A). In contrast to these observations, p-genericity is not p-invariant.
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Theorem 7.3. p-Genericity is not p-invariant, i.e., there is a p-generic set A and a
p-isomorphism f:{0}* - {O}* such that f(A) is not p-generic.

Proof. Fix A as in Lemma 7.1 and define f:{0}* > {0}* by

02"+ ifs=2n+1,
f(0°)=30""""  if s=(2n+2)%
0¢ otherwise.

Then A is p-generic and, obviously, f is a p-isomorphism. We will show that f(A)

is not p-generic.
First, observe that, by (7.1),

VneN (0%"ef(A) & |f(A)n1,|=n), (1.5)
where I, ={0%:n’<i<(n+1)%. (Note that f(A)n I, = AnI,.) Also note that
xel, = |xl<(2n+2)% (7.6)

Now consider the set

C={x:3n (]x]=(2n+2)*+1 and x((2n+2)*) =0
iff there are at least n numbers i <|x} such that

x(i)=1and 0'e I,)}.
Obviously, C € P. Moreover, by (7.6), if a set B hits C, then
IneN (0°"*P’¢B & |BnI,|=n).

So, by (7.5), f(A) does not hit C. On the other hand, every set has infinitely many
chances to hit C. Hence, f(A) is not p-generic. [

8. Generalized p-standard diagonalizations and strongly p-generic sets

In this section we will show that our formal diagonalization concept can be
extended to cover also diagonalizations over polyromial time Turing reductions.
Since in such a reduction the required information is spread out over an interval
of polynomial length, we now have to consider extensions of such a length. Again
we will see that there is a strongest property which can be enforced by this extended
diagonalization concept and that there are recursive sets having this property. Due
to the more complicated diagonalization however, these sets are more complex than
p-generic sets.

Definition 8.1. (i) A property Q can be enforced by a generalized p-standard
diagonalization if there is a sequence {C,:eeN} of polynomial time computable
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where r is the polynomial r(n)

of A, it su

Yi<|z
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Then weC' and, by (84), |w|<gq(]z]), ie., Iw<q(t+p(t)). Now let s=
min{k: F(k)= t}. Then, for i<s, F(i)<t and thus w(i) = z(F(i)) = f(A) (0F").

It follows that there is a string x such that A}s*x = w. I remains to show thzt
|x] < r(s). First, note that F(s)=t, whence, by (8.4), t< g(s). On the other hand,
Ix] <|w| and, as shown above, |w|=< q(t+ p(t)). Hence,

Ix|=<q(q(s)+p(g(sN)=r(s). O

Theorems 7.3 and 8.2 show that there are p-generic sets which are not strongly
p-generic. In particular, there is no strongly p-generic set satisfying (7.1). A similar
argument shows that there are p-generic but no strongly p-generic sets A satisfying

As>0 {(A12s=Ats*(0,...,0)).
s-times

The increased power of generalized p-standard diagonalizations is further illumi-
nated by the next theorem which gives an example for a diagonalization of p-Turing
reductions captured by generalized p-standard diagonalization but not by p-standard
diagonalizations (cf. Theorem 7.2).

Theorem 8.3. Let A be strongly p-generic and let B € P such that {0}* n B is infinite.
Then AnB <} A.

Proof. Obviously, An B <% A. So it suffices to show A £f An B. For a contradic-
tion, assume A=M*"8 and p is a polynomial bound for M. W.l.o.g., p(n)> n.
For a string x, let xg be the string determined by |xg| =|x|, xg(n) = x(n) for 0" € B
and xg(n) =0 for 0" ¢ B. Then, for

C ={x:3n{|x|=p(n) & x(n)# M™s(n))},
C € P and, for s such that 0°¢ B,

Ix (|x|<p(s) & Als*xe C).

So, by infinity of {0}* N B and by strong p-genericity of A, A will hit C. It follows
that A# MA"® contrary to our assumption. [

Corollary 8.4. Let A be strongly p-generic and let BE P. Then, AnB=1Aiff An
B =* A.

Proof. We prove the nontrivial implication by contraposition. Assume AnB =f A
but A—(An B) is infinite. Then, {0}* B is infinite too, whence AnB #7 A by
Theorem 8.3. [

Corollary 8.5. Let A be strongly p-generic and let Be P such that |Bn{0}|=1Bn
{0}*| =co. Then An B and A~ B are ( p-T)-incomparable.

Proof. Since, for Be P, BeP too and since A =2(An B)®(An B), this is an
immediate consequence of Theorem 8.3. [J



200 K. Ambos-Spies et al.

Note that by Corollary 8.5, any strongly p-generic set A is non-( p-T)-mitotic in
the sense of Ambos-Spies [1]. We conciude with the proof that strongly p-generic
sets actually exist.

Theorem 8.6. There is a recursive strongly-p-generic set.

Proof. The proof is similar to that of Theorem 4.3, though somewhat more involved.
Given an enumeration {p,. : e €N} of all polynomials, we construct a recursive set
Ac {0}* to meet the requirements

R.;: 3%s3x(x|<pi(s) & Als*xe P,) = Is(AtseP,)

The construction of A is in stages. At stage s+ 1 we determine the value of A(0°).
So by the end of stage s *he enumeration of Als is completed.

Construction of A

Stage s+ 1: Requirement R ;, requires attention via x if (e,i)<s,At<s (Alte P,),
|x]|<pi(s), and AtsxxeP,.

If no requirement requires attention, then let A(0°) =0. Otherwise, choose (e, i)
and x minimal (in this order) such that R, ;, requires attention via x, let A(0°) = x(0)
and say R ; is active via x.

Obviously, the construction is effective and thus A is recursive. That A is strongly
p-generic foilows from the following claim.

Claim. For every e, i, R, requires attention at most finitely often and is met.

The claim is proved by induction. Fix (e, i) and, by inductive hypothesis, choose

5o such that no requirement R,, n <(¢, i), requires attention after stage s,. Now
distinguish two cases.

Case 1: s (Alse P,). Then R, is met and R, does not require attention after
the least stage s such that Afs< P,.

Case 2: 3s (Aflse 2.). Then distinguish two subcases.

Case 2.1: 35, Vs=s,Vx (|x|<pi(s)=>Als*x £ P,). Then R is met triviaily and
it stops requiring attention after stage s,.

Case 2.2: otherwise. Then choose s> s, and x minimal (in this order) such that
|x|=<pi(s) & Ats*xe P,, say x={(iy, ..., ix). Then—as one can easily see—R,..,, is
active at stage s+m via (ip_y,..., 0 for m=1,...,k+1. So Af(s+k+1)=
Afs*xe P,, contrary to assumption. So this case cannot apply. This completes the
proof of Theoremn 8.6. O

The construction can be modified to give a strongly p-generic set which is
recognizable in double exponential time. As the second author has shown in his

dissertation [8] however, there is no oracle A such that NP* contains a strongly
D-generic set.
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9. Conciuding remarks

In this final section we will relate our notion of (generalized) p-standard
diagonalizations to other diagonalization concepts in coinputational complexity
theory which can be found in the literature.

The most elementary cype of diagonalizations one encounters are diagonalizations
over recursively presentable (r.p) classes, i.e., classes of recursive sets which possess
a recursive aniversal set. Since the class P is r.p., the construction of a recursive set
A¢ Pis an example for such a diagonalization. For some general resuits or indexings
and diagonals of r.p. classes, see [12]. An important variant of diagonalizations
over r.p. classes which in addition, are closed under finite variations (c.f.v.) is the
delayed diagonalization or looking back technique (see, e.g., [7, 13, 15, 18]). Here,
starting from a given diagonal, new diagonals with certain additional properties are
constructed.

Most applications of the delayed diagonalization technique can be reduced to
the following diagonalization lemma due to Schoning ([18], see also [2]): given
diagonals D,,..., D, for rp. and cfv. classes C,,...,C, respectively, there is a
diagonal D for the union C,u - - - UC, of these classes whose complexity is bounded
by the sum of the given diagonals for the individual classes, i.e., D <}, D,®- - - D,.
Delayed diagonalizaticns have been used to characterize the fine structure of NP
under the assumption tha: P# NP (see, e.g., [2, 13]).

The diagonalizations considered here are of a more general type, not limited to
r.p. classes. For instance, the construction of a p-immune set (cf. Section 3) requires
us to diagonalize over the not recursively presentable /in fact not even recursively
enumerable) class of infinite recursive sets containing an infinite polynomial time
computable set together with ihe finite sets. We can reduce the task of constructing
a p-immune set, however, to the construction of a set A meeting an infinite effective
sequence of finitary :cquirements, namely the requirements

R.: if P, is infinite, then AN P, #0 (eeN)

(cf. Section 3). These requirements are finitary in the following sense: if we construct
A in stages by determining longer and longer initial segments of A, i.e., by letting
A, = A%l(s), 1:N-> N some unbounded increasing (recursive) function, then require-
ment R, can be met by considering finite extensions of certain initial parts Afl(s)
of A, i.e., by an appropriate choice of /(s + 1) > I(s) and by an appropriate definition
of A(x) for strings x of length =I(s) and <I(s+ 1) (see Section 3). In other words,
each requirement R, corresponds to a witness se: C, whose elements are finite initial
parts of sets such that a set A meets R, iff one of its initial parts belongs tc C.,.
Diagonalization arguments of the just described type are very common in recitrsive
function theory and are known as finite extension arguments (see, e.g., [16]). It is
typical for these arguments that there are conflicts among the requirements, i.e.,
extensicns of a given initial part belonging to the witness sets of two distinct
requirements will in general be incompatible. On the other hand, no matter how
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the set A is constructed, in general, for each requirement R,, there will be infinitely
many initial parts A1I(s) of A possessing finite extensions in the witness set C, of
R.. So, by assigning priorities to the requirements, we can ensure that all requirements
will be eventually met (cf. Section 3).

The complexity of diagonals constructed by finite extension arguments depends
on both the complexity of the witness sets and on the length of the extensions we
have to consider. In contrast to recursive function theory, we here consider only
recursive witness sets (since we only have to diagonalize over classes whose elements
are recursive sets). This restriction, however, does not automatically lead to recursive
diagonals: if the length of the extensions is not bounded, then we cannot decide
whether a given initial segment has an extension in some witness set. In recursive
function theory, this difficulty is overcome by recursively bounding the length of
the extensions in the length of the given initial segment; i.e., given A, = A1l(s), one
only checks extensions of length f(I(s)), f some recursive function.

Then possible extensions of admissible lengths belonging to a witness set do not
exist for all, but only for certain initial segments. So we cannot meet a requirement
at any stage, but we have to wait for appropriate stages. (For this reason, such
diagonalizations are also called wait-and-see arguments or—as in [5]—slow
diagonalizations.)

Moreover, due to the bounded search it might happenr that some extensions are
missed and a requirement is not met. The latter case can be avoided by considering,
at stage s for a requirement R,, not only extensions of A1I(s) of length f(I(s)), but
but also such extensions of (certain) At for t <I(s) and, if necessary, by replacing
the initial segment A1I(s) by a new extension of some At In general, this procedure
only yields a recursive approximation to the set A being constructed, i.e., the set A
will not be recursive but only A (see [16]). In a special variant of this technique,
an initial segment may be replaced only by an initial segment which contains all
the elements of the previously given initial segment, thus ensuring that the construc-
ted set is recursively enumerable. This technique is known as finite injury priority
methnd. For a detailed discussion of priority arguments, including ones refining the
above described technique by admitting also infinitary requirements, we refer the
reade: to [20].

Fortunately, the above described obstacles do not occur if we diagonalize over
complexity classes or enforce properties related to such classes by diagonalizations.
In case of deterministic time or space classes, the comp!lexity of the class is reflected
both by the complexity of the witness sets and by the (recursive) bounds on the
extensions which have to be considered. So in these cases always (recursively)
bounded extension arguments will do; i.e., it suffices to consider extensions recursively
bounded in the length of the given initial part. (Examples for such bounded extension
arguments are, besides the constructions referred to and given in this paper, the
constructions of [4] and others which vield recursive oracles separating relativized
complexity classes.) In fact, for most applications it suffices to consider extensions
of length 1, whence this case is treated separately here leading to the notion of
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p-standard diagonalization for length-1 bounded extension arguments related to the
class P which yield tally diagonals. The more general concept of generalized
p-standard diagonalization aims at a formalization of general finite extension argu-
ments related to P, based on the observation that the polynomial time bounds on
the members of P can be reflected by polynomial bounds on the extensions one has
to consider. Moreover, we restrict ourselves to diagonalizations over tally sets. As
pointed out in Section 3, this decreases the complexity of generic sets by an
exponential factor, thus allowing the construction of a (relativized) p-generic set in
relativized NP. For a non-tally set G which is generic for length-1-extension
diagonalization arguments over arbitrary polynomial time computable sets, the unary
encoding TALLY(G) of G is p-generic. Moreover, using the technique of [8] for
proving that there are no strongiy p-generic sets in NP, we can show that TaLLY(G) €
NP, whence G ¢ NTiIME(2?") for any number c. So non-tally generic sets are too
complex for providing strong separation results for (relativized) P and NP.

For a general treatment of these diagonalization techniques for arbitrary com-
plexity classes see [8]. There, the question of possible tradeoffs between the com-
plexity of the witness sets and the length of the bounds on the admissible extensions
is also discussed.
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