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raet. A formal notion of diagonalization is developed which allows to enforce properties that 
are related to the class of polynomial timecomputable sets (the class of polynomial time computable 
functions respectively), like, e.g., p-immunity. It is shown that there are sets-called p-generio- 
which have all properties enforceable by such diagonalizations. We study the behaviour and the 
complexity of p-generic sets. In particular, we show that the existence of p-generic sets in NP is 
oracle dependent, even if we assume Pf NP. 

In recent publications structural properties of recursive sets like p-immunity (see, 
e-g=, [6, lo]), non-p-selectivity [19] and non-p-mitoticity [l] have bee 
These properties have in common that no polynomial time computable set has any 
of these properties. So the existence of a set with one of these structural properties 
in the class NP of nondeterministically polynomial time computable sets would 
separate P from NP. The existence of recursive sets which enjoy some of these 
properties has been proved by diagonalization arguments In some cases it has been 
shown that the existence of such sets in NP is oracle dependent. 

In this paper we formally characterize a class of diagonalizations over the classes 
P and PF of polynomial time computable sets and functions res 
p-standard diagonalizations. This notion does not cover all diag 
ments over P but it is restricted to diagonalizations which yield V&XWTS of low 

complexity for the desired properties. In part this is achieved by ~ons~deri~~ only 
such properties which arF; shared by some tally set, i.e., b 
alphabet. Despite tkd3 0-e restrictions, the common diagonalization ar 
are covered by p-standard dia alizations, as we demo 

of examples. , the above-me 
enforced by gonalizations. 

* E-c results of this pz-qer have been presented at the 1 Ith ICAk 
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eneric sets, which have all pro rties enforceable by p-standard 

The existence of p-generic sets in NP is shown to be o 
this by constructing recursive oracles A and B such th 
there is a PA-generic set in I+@ but NPB conta 
Q enforceable by diagonalization over P this yie 
existence of an oracle A such that some set in 
suffice to show that, in the unrelativized cas 

nalization and that this fact relativizes. 
After some preliminaries in Section 2, our n notion is introduced 

in Section 3. The existence of p-generic sets ection 4. In Section 5 
some applications of p-standard diagonalizations are given. For instance, it is shown 
that p-generic sets distinguish the various notions of strong polynomial time reduci- 
bility introduced in [ 143. Section 6 is devoted to the complexity of p-generic sets. 
Limitations of p-standard diagonalizations are discussed in Section 7. It is shown 
that a p-standard diagonalization does not suffice for diagonalizing over polynomial 
ime bounded Turing reductions. A stronger diagonalization concept overcoming 
his shortcoming is introduced in Section 8. Again it is proved that there are 
sets-called strongly p-generio-possessing all properties enforceable by this ex- 

ization concept. Strongly p-generic sets can be constructed in double 
. For any relativization, bowever, strongly p-generic sets are not in 

e [g]), whence they cannot serve for strong separation results for relativized 
NP. In the final Section 9, we compare our diagonalization concepts with 

the common diagonalization concepts in computational complexity theory and 
recursive function theory. 

Our study of p-generic sets has been inspired by genericity notions for recursively 
enumerable sets introduced by Jockusch [ 1 I] and Maass [ 171. Moreover, a conversa- 
tion of the first author with C. Jockusch Jr and J. Mohrherr was stimulating for this 
research. 

Lower case letters from the middle of the alphabet stand for elements of N, the 
set of nonnegative integers. C = (0, I}. X, y, z denote stn’ngs, i.e., elements of Z*, 

ital letters A+ stand for recursive subsets of C*. A set A is called tally 
if A c (0)“. 1x1 is the !ength of x and, for n c 1x1, x(n) is the (n + 1)st component 
of x, i.e., (iO,. . *, i&(n)= in. x * y is the concatenation of x and y. Sometimes we 
abbreviate x*(i) by xi (x E Z*, i E 22). We say x extends y if x = y * z for some z. 

e lexicographical ordering on strings is denoted by <. 
e identify a set and its charae eristic function; i.e., x E A iff A(x) = 1 and x e A 

e characteristic fu to arguments of 
) A~pLr”+( Fygl J$-.=(XE~*:$ 3x!, 5x 
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XE 

AT n = x, where 
(B-A) is finite 

P (NP) is the erministically computable 
in polynomial time. polynomial time compu- 
table functions from C* to C *. {P, : n E N} and ( fn : n E N) are effective enumerations 

and iPF respectively. { Mf : n E N} and { are standard enumerations 
e deterministic polynomia: time oracle machi oracle X) and their 

reri;pective polynomial boun s. We write x ~2 f accepts (refutes) x. 
We say a string y is used in the comput 

about ye Note that at most p,.(lxl) strings---an 
used in the computation Mt (x). 

A is a polynomial time many-one (( p-m)-)reducible to B, A =S 5 
n, Vx (A(x) = B(fn(x))). A is polynomial time 
A s f B9 if A = M !f for some n. We write A = &I 
The ( p-m(T))-degree of A is denoted by deg$,, A. PA is the set of deterministic 
polynomial time sets re!ative to A, i.e., PA = { & : 311; (B = I!!:)}. 

3. Diagonalizations over polynomial tilme corn table s&s and functions 

The goal of this section is to develop a form31 characterization of a class of 
diagonalization arguments over polynomial time computable sets and functions, 
which subsumes the common diagonalizations over P. In Section 9 we will compare 
our diagonalization notion with other concepts ir the literature. 

We start with analysing three typical constructions by diagonalizations, namely 
that of 

(i) a recursive set Al which is not in P, 
(ii) a recursive p-immune set A2 (see 16, lo]), i.e., an infinite set A2 which does 

not contain any infinite subset which is in P, and 
(iii) a recursive now-( p-m)-autoreducible set A3 (see [l]), i.e., a set which cannot 

be nontrivially (p-m) -reduced to itself (to be more precise, there is no function f 
such that A3 ~5 A3 via f and V.K (f(x) # x)). 

Sets Ai (i = 1,2,3) with the desired properties are effectively constructed in stages, 
where, at stage s + 1, membership in is determined for strings of length s. SO 

AiTs is completed by the end of stage s, whence i is recursive by the effectivity 

of the construction. The constructions have in co on that the condition we want 
to satisfy is broken down into an infinite list of simpler equirements, namely, 

1. 
e* Al # pe; 
2. 
e* =oO 



ely. (In the case of set A2 

s, where 

and 

So, by determining an initial s , we can guarantee 
oreover, assuming that t 

correct, there are infinitely m s, there is a l-step 
(A&s -b I) E Ci. So, intuitively speaking, either the 

r in the course of the construction 
ropriately extending the 

this is obvious since, for any s, 
any Afs and any string x of len xtensien (Afs+ 1) E CL of Afs 
by choosing Afs+ 1 so that A(x) # PC(x). 

er such s where, for some .T of length S, P’(x) = 1 and choose 
l)(x) = 0. By the premise of Rz, infinitely many such stages s 

2 consider stages s such that there are strings x and y with x f y, 
1x1 s IyI = s and f=(x) = y or f,(y) = x. (Note that by premise of z infinitely many 
such stages s must exist.) Given At s, we then choose an extellmsion At s + 1 of 
such shat (Ats + l)(x) f: (Ats + l)(y). Note that in ccsntrast to the requirement 
and 3, where the strings of length s in A can be chosen ndependengly from ATs, 

z the extension depends on the previously constructed i 
for x and y as above such that 1x1~ lyl, i.e., 1x1 c s, the 

is determined Uy the previously specified value of A(x). ‘This dependence is typical 
ore involved diagonalization arguments. 
e above argument shows that Ai meets requirement 

s + 1) E Ct (Xlys + 1 extends .&j’s) 
(3.1) 

is fact is (implicitly) used in the usual construction of the sets Ai: At stage s + 1 
of the construction we choose es s minimal (if there is any) such that 
yet met at stage s (i.e., ss (AittE Ci)) and 1 can be ensured at stage s + 1 
(i.e., there is some XTs extending Aifs such at (Xts+l)E Cij. Then we let 

s + 1 for such an extension, thus meeting So, for given e and for 

es ity for 
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escribed way. ) is correct, then 

So (3.1) is satisfied for each e eventual1 y, thus im 
property. 

The fact that a property which can be enforced by diagonalization can be ensure 
by an infinite list of conditions of the form (3.1) is not limited to diagonalizat~ons 
over P but it a lies to diagonalizations 

ow). at is typical for dia 
in (3 namely, for an app 

since, in general, we are interested in gettin 
possible and the complexity of 
Cf. If we more closely analyse 
tion, we see that the computation of Ai for a string x of length s depends on 
tests of the form Aitt E Cf, t s s, where IA,? tl s 2: and on a search amon 
possible extensions Xt s + 1 of Aits* The CO nentiall y decreased 
by considering only tally sets. By requirin can be interpreted 
as a string of length t (cf. Section 2) and there are only two possible extensions 
Xts + 1 of Aits, namely, Aifs *(0) and Aifs *(I). 

So, for tally sets Ai, the sets Ci, C’,, C’, can be written as 

c: = {x : 3n c 1x1 (x(n) z P,(O”))}, 

C2,={x:3n<(x) (x(n)=0 & p,(On)=l)}, 

C’, = {x: 3n,n < 1x1 (fe(Om) = 0” & x(m) f x(n))} 

and (3.1) now becomes 

3”s 3js 1 (Aifs*(j)E CL) * 3s (AifsE CL). (3.1’) 

As one can easily check, Ci, Cz, Cz E P. 
The above analysis of examples for diagonalizations over P and PF leads us to 

the folIowing central definition. 

Definition 3.1. A property Q of languages over the alphabet C can be enforced by 
a p-s&~~dard diagonalization if there is a sequence {C, : e E N} of polynomial time 
computable sets such that, for any tally set A, the following holds: if, for every e E 

3”s 3ic 1 (Ats*(i)E Ce) + 3s (Afsc Ce), (3.2) 

then A has property Q. 
Note that only those properties can be enforced by a p-standard diagonalization 
ich are shared by some tally set. 

most structural properties studied in 
tally witnesses are known (see Section 5). 
to construct ‘universal’ sets for p-sta 
Sections 4 and 6). Without this rest 

9). 
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e, being not in P and non-( p-m )-autored 
alizations. In case of p-immun 

2 infinite. Since any 
a we may conclude that p-immunity 

ples of enforc 

then so can the 

(b) If Q, can be enforced by a p-standard diagonaiization and Q1 implies Q2, then 

2 can be ~nf~r~e~ by a ~-st~~d~~d d~~gon~~~~~t~on. 

(a): Lzt{C~:e45M nd {C; : e E N) be sequences of polynomial time compu- 
table sets which enforce 1 and Q2 respectiveiy. Then the sequence {Ce: e E N}, 
where C2e = Cr and C2c+l = C’,, enforces Q1 

(b): Immediate. II3 

show that there are tally recursive sets which have all properties 
which can be enforced by -standard diagonalizations. So any property Q which 
can be enforced by a p-standard diagonalization is shared by a (tally) recursive set. 

set C, 
* A tally set is p-generic if, for every polynomial time computable 

sag C) * 3s (APSE C). (4-U 

Ts E C, then we say A hits C. The name p-genericity stems from a similarity 
and the definition of a generic set for forcing notions in set 

city is the strongest property that can be ensured by p-standard 
diag~~a~~~atio~. 

ee rce 



DiagQna~~za~io~s ouer polynomial ti 

: Choose {C,:edkl} to bet e enumeration 
y sequence { Ce : e E N} of p 

(iii) Immediate by (i) an emma 3.2(b). Cl 

Note that no p- eneric set can be in since---as mentioned in the precedin 
section-the property of being not in d by a p-standard 
ation. We now show that p- eneric sets actually exist. 

rem 4.3. 772ere is u recursive p-generic set. 

Proof. The proof is a standard diagonalization argume t like the ones described in 
Section 3. Still we give a fairly detailed proof since, for later refi 
4.3, we will have to refer to the construction below. 

We effectively construct a ,+generic set A in stages. To make A p-getleric it su!??ces 
to meet the requirements 

I&: 3s ?‘i< 1 (AT,*(i)6 P,) 1 3s (APSE P,) (edV). 

At stage s + 1 of the construction below, we determine the value of A(0”). So, by 
the end of stage s, Afs will be defined and can be used in the description of stage 
s+l. 

We say m;l, is satisJied at (the end of) stage s if, for some t s s, AT t E P,. Note 
that once lp, is satisfied at some stage, it is satisfied at all later stages and is met. 
Requirement Rp requires atten n at stage s + 1 if it is not satisfied at stage s and 
Afs*(i)c P, f~rst>mz is 1. IZ requires attentio at stage s + 1, then at stage s + 1 

we can ensure that Afs + 1 E P, (and thus that is satisfied) by choosing the 
appropriate value for A(0”). It might happen that at some stages more than one 
requirement requires attention. In this case we give the requirement with least index 
among the requirements asking for attention highest priority and ignore the other 
ones. 

We now give the construction of A. 
Stage 0: Do nothing. 
Stage s + 1: If no requirement , ess, 

Otherwise, choose e and i minimal (in this 
requires attention, then let (0”) =o. 

order) such that requires attentio 

and Afs*(i)~ P,. Set A(0”) = i and say 
This completes the construction. 
Obviously, the constructio 

So A is recursive. That the 
follows from the following claim. 

is active. 

requires attentio et. 

iS 

e claim correct for e’ C e. 



e’ e, re attention after sta requires attention at some 
becomes active a s pointeci out above-is sat 

at all later stages. So does not require attention after stage s, . 

is met, w.l.o.g., assume that 
s satisfied at some stage an 
would require atter?tion at i 

This also completes the proof of the theorem. 

eneral experience that there is no pro such that both the 
lementary property Q can be ensured by r ~-standard 

diagonalizations, ihis experience can be formally verified. 

erty Q such that Q and Q can be enforced by p-standard 

f. To construct a contra ictiom i”, assume that Q and Q are enforceable by 
p-stantlard diagonalization. Ihe by Proposition 4.2, AE Q and A E 0 for any 
p-generic set A. So there are no p-generic sets, contrary to Theorem 4.3. 0 

In the following two sections we will first study properties of p-generic sets and 
then consider questions related to the complexity of such sets. 

In this section we will investigate some properties of p-generic sets and give more 
examples of properties which can be enforced by p-standard diagonalizations. We 
thereby reprove some known structural results (simplifying the original proofs) but 
we also prove some new results, e.g., on t ure he polynomial ti 
degrees. 

We first note that p-genericity is invariant under finite variations and that the 
complement of a p-generic set relative to {Q}* is p-generic, too. 

B is p-generic. 

0 i : 

?I L ={x’: XE c (Ix’1 = 1x1 ) = 1 -x(n)))) 

for any s and is 1, 

(i)E C” i s*(l -i!E c. 



C” = {A~s,*x: 

is in and, for sXs, and is 1, 

ts*(i)E C” ifl 

By equation (4.1), a p-generic set hits .any set C E 
chances to do so, i.e., if there are infinitely many s such t 
i. The following theorem implies that if A has infinitely many chances to 
A hits C not just once but infinitely often. In a p-standard 
consider extensions of length 1. One might conjecture 
extensions will give more powerful iagonalization concept 
shows that a p-generic set A will still hit any set C E P if there are infinitely many 
chances to hit C by extensions of any constant length, i.e., if 

313% 3x (1x1= n & Ats*xE C). 

Intuitively speaking, this shows that p-generic sets also have all those pro 
which are enforceable by finitely iterated p-standard diagonalization 
diagonalizations with any constant look-ahead instead of look-ahead of length 1. 

So, by Proposition 4.2(i), such iterated diagonalizations are not more powerfIr 
than simple p-standard diagonalizations. In Section 7 we will show, however, t 
considering extensions of nonconstant length gives rise to a stronger diagonalization 
concept. 

Theorem 5.2. Let A be p-generic. 7hen~ for all @ E P, the folIowing holds: 

if 3n 2 13”s 3x (1x1 G ndAfs*xE C), then 3”s (APSE C). u-0 

Proof. We prove by induction on n that, for all C E P, it holds that 

3%3x (Ixl=n&Afs*xEC) * 3%(Afs~C). (5.2) 

Basic step (n = 1): Fix C E P and assume that the 

cm ={x:IxI3 m & XE C) (rnE!?i). 

en C,,,EPand 
Cm and thus A hits C infinitely often. 

Inductive step: Fix C an 

ericity of A, 



ss is e 



is infinite. It foIllows tfrat (0)” - 

sirrrilar to the proof sf part (a). Fix f such that 
d, for a contradiction, assume that (5.5) fail 

) = 0”). So either 

in case A wilt hit t 

); or, for some n,, the in 



a series of interestin 

For a proof of the nont~via~ imp1 
via f2, where, w.l.o.g., fi 

claims. El 

-immune, A .?7 and 
&A and A&#LA. Since, for 

(An B), this implies the 

Corollary 5.6 in particular shows that generic sets are non-( p-&mitotic in the 
sense of Ambos-Spies [I]. 

eo:em 5.4 has a further interestin corollary on the p-one-one-degrees of the 
nts of eneric set. Recall that ne (( p-I)-)reducible to B, 
A@ F)I a a one-to-one function 

t A be p-gen@~~ x e 

contujns a chain of (p-1).degrees of the order type of 

(x} via the one-to-one function f, where 

say via g. Then, for each n 2 1, 
lies g”(x) # g”(x) for n # m. So, for Ct defined 

nitely many 



various notions of po~yno 

these sepat atisn results 
Here we are not able 
on the recursive sets. 

context of tally Ian 
( p-tt)-reductions at 

es there is no difference between (p-T)-reductions and 

For the formal notion of (p-tt)-reducibility we refer to [ 143, whereas for the 
bounded versions we give a slightly different definition which is easier to use in our 
proofs but does not change the induced reducibility relation. 

IDefinition 5.8. A set A is k-bounded ( p-tt)-reducible to B set B (A s [_tt B) if there 
is a polynomial time computable function ,fo : C * x (0, l}k + (0, I} and functions 

f l,. . . ,j; E PF such that ,‘r z _-4, 3 j&-, B(fi(x:", _ . . , I?(j&))j = 1. -4 is bou?M 
( p-tt)-reducible to B (A ~,q,B)ifA~,9,,Bforsomek~l. 

Theorem 5.9. Let A be p-generic. Then, 
(i) AQ ={Q2n:On~A}u{02n+1:0n~A} P: 

(ii) A Pg A; 
(iii) Dn = {Ok : {On*‘, . . . , On’k+n-l} c A) S&-ll_tt A, n 3 2; 
(iv) @nEN 0, = {InOk :Ok E De} P&t A. 

Note that ABA s $, A, x s f_t, A, 0, s i_t1 A 9 and @jnE Dn s( A. So p-generic 
sets provide natural examples of sets proving 

core 
and 

g(O”) = f(OZr+*), and g 
to Corollary 5.7. 

( 1 ii : 

C=={x: < 1x1 (f(O") = 
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Then C E P and there is an i s 1 such that Afs * (i) E C infinitely often. So, since A 
is p-generic, there is an s E N such that Ats E C. It follows that A 6 & A via J; 
contradicting the assumption. 

(iii): To simplify notation, we only prove the case n = 3. e extension to the 

general case is straightforward. 
For a contradiction, assume D3 6 f_tl A, say via fo, f, , fi . 

fi(w*bJh({O~*)~{O~* and Vk (fA~“)~.h(@‘))~ 
e distinguish the following cases. 
Case 1: there are infinitely many k such that fi(Ok)> 03’+* and fo(Ok, 

A( fi(O“)), 0) it fo(Ok, A(f,(OL)), 1). Then A has infinitely many chances to hit the 
polynomial time computable set 

c=={x:3kJ??z+] [ix]= m+l & f~(o")=o'a_~(ok)=om 

&m~3k+2&fo(Ok,~(1),~(m))fx(3k)-x(3k+l)-x(3k+2)]) 

and thus it hits C By definition of C, this implies that D3 < 2qtt A via fo, fi , f2 does 
not hold: a contradiction. 

Cuse 2: otherwise. Distinguish the following two subcases. 
Case 2.1: there are infinitely many k such that fi(Ok) > OJk+* and fo(Ok, 0, j) # 

fo(Ok, I, i) for somei s 1. Then, let 

C={x:3k,kjx( [lxl=I+l &f,(Ok)=0’&I>3k+2 

dt Ss l(fo(Ok, x(Z), i) # x(3k) l x(3k+l) l x(3k+2))]}. 

Obviously, C E P and A has infinitely many chances to hit C. Hence, by Theorem 
5.2, there are infinitely many numbers k such that X(0’) > 03k’Z and 

fo(O’, A(fi(O&)), i) # A(03&) l A(03k+‘) l A(03k+2) 

for some i s 1. Since 
Case 1 fails and .fi(O’) > f,(O"), this implies 

fo(O”, A( fi(ok)), A&(0&))) # A(Osk) l A(d”+ ‘) l A(03’i2) = D3(Ok) 

for infinitely many numbers k, contrary to our assumption that D3 s $‘_at A via fo, 
ff 19 2s 

Case 2.2: otherwise. Then there is some b such that, for k 2 ko, the value of 
j&O’, A(fl(Ok)), A(f2(Ok))) onIy depends on At3k+ 3. So if we let $(O’) =_&(Ok) if 
A(Ok) < 03&+* and &O’) = 0 otherwise (i = U), thenf,(Ok,A(fi(Ok)), A(fi(O'Y))= 
h(ok, A(.?,(@)), A(&Ok))) for ka k,. Now, let 

C={x:3k,I,m<lxl [kd,,&~x~=3k+3&~,(Ok)=O’&~2(Ok;=0m 

Q(Ok, x(Z), x(m))#x(3k) l x(3k+l) l x(3k+2)]}. 

and, for each string y of length 3k, k 2 k,, , there is an extension x of 
x E C’. So, by Theorem 5.2, A hits C, whence not D3 szqtt A 

(iii). II 



Diagonalizations over polynomial time computable sets 161 

e co exi 

We now turn to the question how co lex p-generic sets are. We first note that 
there are p-generic sets which can be c puted in exponential time while, on the 
other hand, there are p- eneric sets of arbitrarily high complexity. 

6.1. (a) ?%ere is a p-generic set A such that E DTIMB(2E?). 
(b) For any recursive set B there is a recursive p-generic 

The proof of Theorem 6.1(a) is a straightforward variant of that of 
based on the observation that, for each requirement , there is a polynomial qe 
such that, given Afs, we can decide in qJ(Atsl) = qJs) steps whether 
attention and if so, compute the least i such that Ats *(i) E R, (i.e., the 
wants A(0”) to have’). We omit the proof since Theorem 6.1 (a) is a direct consequence 
of the existence of a universal set for P in DTtMtz(2”) and of Theorem 6.2 below. 

To prove (b), merge the requirements of Theorem 4.3 with requirements 
Mr which are handled in the usual way (see [13]). 

We say a set U is universal for P if, for some polynomial time computable and 
invertible bijection ( , ): N x C* + E*, { Ufn’: n E N} = P, where U(“) = {x : (n, x) E U}. 

Theorem 6.2. Let U be universal for P. Then there is a p-generic set A such that A s # U. 

Proof. In the proof of Theorem 4.3, replace all occurrences of P, by Ute). Then the 
constructed set A can be (p-T)-reduced to U. q 

Theorem 6.2 shows that p-generic sets are not more complicated than universal 
sets for P. In particular, since there are universal sets of subexponential complexity, 
there are p-generic sets of subexponential complexity, too. This leads to the question 
whether-or under which hypotheses-there are p-generic sets in NP. 

Before turning to this question, we note that there is no simplest p-generic set. 

Theorem 6.3. Let A be a recursive p-generic set. 7len there 5~ a p-generic set A such 
that&&A. 

Proof. Let a = (0” : 02” E A). Obviously, A =& An {02n : n E I%). So A <$ A by 
Corollary 5.6. To prove that i is p-generic, fix C E P and assume that 3”s 3i s 1 
(Ats*(i)E C). Let 

C’= (x : 1x1 is odd & ev(x) E C}, 

where, for 1x1~ 2n + 1, lev(x)l = n + 1 and ev(x)( i) = x(2i), is n. Obviously C’ E P 
and 

ifs*(i)E C e (.4t2S+l)*(c’)E C’. 

So, by p-genericity of 
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The existence of sets with certain structural properties, li e p-immunity, in the 
class NP has been shown to be oracle dependent, i.e., there are 
and B such that there is a set with that (relativized) property in 

NPB has that property (cf. [lo]). We no show that the existent 
is oracle dependent, too. 

. For any B, a tally set is pB-genet=ic if, for eve 

l%ere are recursive sets A and B such that 
PA and there is a set in Np which is pAmgeneric; 

(ii) PB # NPB and no NPB-set is p’-generic. 

f. (i): We construct a recursive set A in stages such that the NP’%et 

D={0":3x~ A (1x1= n)} 

is PA-generic. For this sake it suffices to meet the requirements 

. . is1 (DTs*(i)E Mt) + 3s (DTsE Mf), 

for all e E fV. 
The part of A enumerated by the end of stage s in the construction below is 

denoted by A,, and we let 0, be the string of length s such that, for n < s, D,(n) = 1 
iff 3x E A, (1x1= n). We will ensure that for each s there is at most one string of 
length s in A and if such an x exists, then x is enumerated in A at stage s + 1. So 
we will have A, = Ars and 0, = Dfs. 

As in the proof of Theorem 4.3, the requirements are assigned priorities, R,, having 
higher priority than 

For each requirement and each stage s there will be a finite set R(e, s) G C* 
called the restraint set of at stage s. The purpose of R(e, s) is to ensure for 
certain strings x that Mts(x) = I&!(x) provided that A n R( e, s) = 0. Strings in 
=&Up. c) (-?a~ be enum ted in A after stage s only for the sake of requirements of 

is satisjied at stage s if, for some t s s, D, E Mts and if all strings x 
of length 3s which are used in the corn ation M$( 0,) are elements of R(e, s). 
An intermediate restraint set &e, s) for , e =G s, at the beginning of stage s + 1 is 
defined by 

A(e,~)=R(e,s)u{x:lxl 3 s and x is used in one of the computations 

Mts(O,*(O)) and Mts(D,*(l))}. 

clause of the definition of (e, s), An R<e, s) =8 implies 
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FinaXy we say 

is not satisfied at sta 

x 1x1 =s and XE U k(e), s) ( (6.2) 

3iSl( $(D,*(i)) = 1). (6.3) 

We now give the construction of and of the restraint sets 

ion of A 

Stage 0: A0 = R( e, 0) = 0 for all e E 
Stage s + 1: If no requirement requ s attention, then let 

R(e,s+l)= 
d(e, s) if ess, 

0 ife>s; 

otherwise choose e and i minimal (in this order) such t 
and Md( 0, *(i)) = 1. Let 

requires attention 

A AS if i = 0, 
s+1= ASv(x’) if i= 1, 

where x’ is the least x witnessing condition (6.2), and 

R(e’,s+l)= 
&e’, s) if e’s e, 

0 if e’> e 

Also say R, is active. This completes the construction. 
Note that the construction is effective, A, = Ars, and 0, = Dts. It follows that A 

is recursive. To show that the requirements are met, we prove a series of claims. 

Claim 1. If is active at stage s + 1, then is sa tis$ed at stage s + 1. 

Proof. If R, is active at stage s + 1, then, for some i s 1, :s( 0, *(i)) = 1 and, by 

definition of A,,, , for the least such i, DS+1 = DS *(i). Moreover, any string x used 

in the computation Mts( 0, *(i)) such that Ixl> s is in &e, s) and no element of 

k(e, s) is in A,+, -A,, whence M$+l( D.*+,) = $(o,+,, = 1. cl 

et R(e) = {x : 3s, s 2 s, (XE R(e, s))} and say is per~~~~ntly satisJied if it 

is satisfied at some stage s such that R( e, s) G 

. (i) If no requirement e’< e, requires attention after stage s, the 

tBs (R(e,s)c R(e, t)c &e, t)c R(e)). 

By induction. Cl 
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3. If is permanently satisjed, then, for some s, Dts hits 

satisfied at every stage t 3 s. 

roof. By Claim 2. El 

. P requires attention at most fznitely often. 

, by inductive hypothesis such that 
e’< e requires attention after stage so. requires 

attention at a stage sI + 1> so, then becomes active at stage sI + 1 and thus, by 
Claims 2 and 3, is satisfied at stage s1 + 1 and al later stages. So does not 

require attention after stage s1 + 1. q 

Let r(e, s) = IU{&e’, s): e’s e}l. Note that 

I&e, s)l- 1 2 l p,(d). 
S’S S 

So As.r( e, s) is bounded by a polynomial. The next claim now follows. 

Claim 5. For each e there is a stage s, such that Ws > s, (r( e, s) < 2’+‘). 

Claim 6. Requirement is met. 

f. W.l.o.g., assume that 

By Claims 4 and 5, choose sl > e such that no requirement &, e’s e, requires 
attention after stage s1 and such that Vs > s1 (ate, s) < 2’+l). Then, by Claims 2 and 

is not satisfied at any stage s > s, . Since does not require attention 
after stage sl, this implies that, for n s > s1 , condition (6.3) holds, i.e., 

is 1 (Mf$Dfs*(i))=O). 

By definition of R( e, s), the choice of sl , and Claim 2, it now follows that 

s -5 s, is1 ( $(Dfs*(i))=O) 

and thus that is met. 0 

The proof of Claim 6 also completes the proof of Theorem 6.5(i). 

aass [ lo] have constructed a recursive oracle B such that 
nd no NPB-set is pB-immune. Since the proof of Theorem 5.3 relativizes, 

i.e., since p B-generic sets are p’ z -Ilxmune, this implies that no 
This completes the proof of Theorem 6.5. c1 



ith meorem 5.6 
s easily proved. 

osition 

Since the common roofs that a property can be enforced by p-standard 
diagonalization trivial1 lativize, Corollary 6.6 provides a ew, simple approach 
for obtaining oracle dependence results. To show that the e stence of sets with a 
certain property Q in NP can neither be prove 
which tivizes, it suffices to show that 
p-stan diagonalization and that these fat 
Theorem 5.3, we obtain the following corollary. 

ry 6.7. 77rere are recursive sets A and C such that C E NF@ and C is p A-immune 
but not pA-selective. 

7. Limitations of pstanda 

Our notion of p-standard diagonalization covers the common diagonalizations 
over polynomial time computable sets and functions. In particular, it subsumes 
diagonalizations over polynomial time bounded rncifiy-one reductions. In general, 
it does not cover however diagonalizations over polynomial time bounded ring 
reductions. The latter type of diagonalizations requires us to consider extensions of 
the set under construction of polynomial length and not just extensions of length 
1 (or of constant length), as in the case of p-standard diagonalizations. 

To illustrate this limitation on p-standard diagonalizations, we show that, in 
contrast to Corollary 5.6, there are a p-generic set A and a polynomial time 
computable set B such that B n (0)” and B A {0}* are infinite and A A B = f 
obtain this result, we first prove a lemma. 

Lemma 7.1. There is a p-generic set A such that 

Vn E I+4 (O*“+’ EA 4’ IAnI,,Ian), (7.1) 

where I,, = (0” : n*<i<(n+l)*}. 

The constructron of a set A with the desi 
construction of a p nerie set given in Section 
observations regardi 

2n s l&l and I, is finite, 

n#m => I,nIm=fl. 

er s a 
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the basic idea for satisfying (7.1) is the followi 
, i s n - 1, may become 
es+l,thenwelet 

(02n+‘) has been defined at a previous stage. over, since eat 
active at most once, A(0”) = A(O”‘+l) for all but at most n - 1 n- 
whence (7.1) will hold by (7.3). 

the notation and the requirements of the f of Theorem 
to the followin 

ctio 
Stage 0: Do nothing. 
Stages+l: ne k by k = n - 1 if s is an n-number, and by k = s otherwise. If 

no requiremen e s Ic, requires attention, let A(0”) = A(02n+1) ifs is an n-number, 
and A(0”) = 0 otherwise. Otherwise choose e and i minimal (in this order) such that 

requires attention and Ars *(i) E IF!, and set A(0”) = i. Also say that is active. 

As in the proof of T’heore~~ 4.3, we can sho aQ eirilclh requirement I& requires 
attention only finitely often, is active at most once, and is met. For the proof that 

is met, we only have to note that there are only finitely many stages s + 1 such 
that s is an n-number for some n s e+ 1 (by (7.3)), whence R, is prevented from 
acting by the additional restraints introduced in this construction only finitely often. 
Finally, it follows from the remarks preceding the construction that the constructed 
set A satisfies (7.1). fc 

. 7liere is a p-gcepieric set A such that A n {02” : n E N} ={ A. 

Fix A as in Lemma 7.1 and define f: {0}* + {O}* by 

An{02”+‘: }~fAn{O”“:nd}. 

is implies A n (02” : n E N} = f! 

e &is sectton with a further application of Lemma 7.1. Recall that a 
one-to-one and orxc function f : C* + C* or f: {0}* + (0)” is a p-isomorphism if f 
and its inverse j-’ both are polynomial time computable. Note that, with f, S’ is 

p-isomorphism, too. 
(02 tally sets) is called g-invariant if, for A E Q and any p- 

munity this follows from the observation that p-isomorphisms map infinite 
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as in Lemma 7.1 and define f: (0) 

i 

Vn+*)’ if s=2n+I, 
j-(0”) = 0*n+* if s = (2n -t ZQ2, 

OS 

Then A is p-generic and, obviously, f is a p-iso 
is not p-generic. 

First, observe that, by (73, 

VnE (O(2n+2’2~f(A) r-r, If(A) n I,J an), (7.3 

*<i<(n+l)*}. (Note thatf(A)nI,=AnI,.) AIso note that 

IxI< (2n +2)2. (7.6) 

Now consider t 

C=(x:31 (I~l=(2n+2)~+1 and x((Pn+2)*)=0 
ir”f there are at least n numbers i < 1x1 such that 

x(i)= 1 and 0% I,,)}. 

oreover, by (?.6), if a set B hits C, then 

3n EN (O(Zn+2)2 fZB @ lBnI,J2n). 

So, by (7.5), f(A) does not hit C. On the other hand, every set has infinitely many 
chances to hit ence, f(A) is not p-generic. El 

dard 

In this secti e will show that our formal diagonalization concept can be 
extended to co lso diagonalizations over polyromial time Turing reductions. 
Since in such a uction the required information is spread out over an interval 
of polynomial h, we now have to consider extensions of such a length. 
we will see that there is a strongest property which can be 
diagonalization co t and that there are recursive sets 
to the more complicated diagonalization however, these sets are more complex than 
p-generic sets. 



198 K. Amlws-Spies et al. 

sets such that, for any tally set A, the following holds: if, for every e E 

3polynomial p 3”s 3x (1x1 s p(s) 

then A has property Q. 
(ii) A tally set A is strongly p-gene c if, for every C E P, 

polynomial p YS 3X (lx16p(s) XEC) =a 3s( 

Note t roperty enforceable by a p-standard diagonal~zat~on can be 
enforced by a generalized p-standard dia,nonalization. So any strongly p- 
p-generic. Also one can easily see that strong p-genericity is the strongest property 
enforceable by a generalized p-standard diagsnalization and that a property can be 
enforced by generalized p-standard diagonalization iff it is shared by all strongly 

generic sets. Furthermore, Theorem 5.1 carries over to strongly p-generic sets. 
oreover, in contrast to the class of p-generic sets, +4e class of s.,ongly p-generic 

sets is p-invariant. 

Str0ng p-genericity is p-invariant. 

f. Let A be strongly p-generic and let f: {O * + {O}* be a p-isomorphism. To 
prove that f(A) is strongly p-generic, fix C E P and a polynomial p such that 

3”s 3x (1x1 G p(s) f(A)Ts*x~ C). (8.3) 

Then it suffices to show j’(A)+ E C for some s. 
Let F:lN+N be the bijection induced by f on N, i.e., f(0”) = OF? Then F is 

polynomial time computable and invertible (with respect to unary representation). 
So there is a polynomial q such that 

F(n)sq(n) and F-‘(n)sq(n). (8.4) 

Now, define C’ by 

C’=(x:3yc C (1x1 =max{F-‘(i):i<lyl}+L 

i < Iyl (Y(i) = x( F-‘( i))))}. 

Obviously, C’E P and 0” Cl. Moreover, if A hits C’, say ( Ats + 1) E C’, then f(A) 
hits C, namely f( A)Ts’E C for some number s’ =G q(s) + 1. So, by strong p-genericity 
of A, it sutfkes to show 

ssn3x(lxl+s)&Ats*xEC’), (8.5) 

where r is the polynomial r(n) = q( q( n) +p( q( n))). 
of of (8.5) fix n and, by (8.3), choose t and y such that q(n) < t3 Iyl s p(t), 

Y, ax{F-‘(i):i<lz >+l, and let w be any 

i< c il = z(i)). 



en WE C' and, 
min(k : F(k) 2 t}. ‘RI 

It follows that the 
s r(s). First, note that F(s) 2 t, w 

s 1 WI and, as shown above, IwI s 

remains to show th2t 

1x1 ss 4w)+P(qw)) = r(s). 

‘Theorems 7.3 and 8.2 show that there are eneric sets which are not stron 
p-generic. In Particular, there is no stron neric set satisfying (7. 
argument shows that there are p-generic t no strongly p-generic sets 

as>0 (At2s=Afs*( 
s-rimes 

The increased power of generalized p-standard diagonalizations is further illumi- 
nated by the next theorem which gives an example for a diagonalization of p-Turing 
reductions captured by genera!ized p-standard diagonalization but not by p-standard 
diagonalizations (cf. Theorem 7.2). 

3. Let A be strongly p-generic and let B E P such that {O}* n fi is injinite. 
ThenAnB~fA. 

Proof. Obviously, A n B G f A. So it suffices to show A s f A n B. For a contradic- 
tion, assume A = MAnB, and p is a polynomial bound for M. W.l.o.g., p(n) > n. 
For a string x, let xB be the string determined by lxsl = 1x1, xB( n) = x(n j for 0” E B 
and xB( n) = 0 for 0” e B. Then, for 

C={x:3n (txl=p(n)&x(n)f 

C E P and, for s such that 0” ti B, 

3x (Ixl<p(s) &A~s*xE C). 

So, by infinity of {0}* n 8 and by strong p-genericity of A, A will hit C. It follows 
that A# MAnB, contrary to our assumption. Cl 

Let A be strongly p-generic and Zet B E P. Then, A n B = f- A iff A n 
B =* A. 

roof. We prove the nontrivial implication by contraposition. Assume An 
but A - (A n B) is infinite. Then, {O}* n l? is infinite too, whence A n 
Theorem 8.3. Cl 

ch that IB n (O}.‘! = 1 

ince, for is is 

iate consequence of Theorem 8.3. •J 



Note that by Corollary 8.5, any strongly p-generic set A ic non-( p-‘I)-mitotic in 
the sense of Ambos-Spies [I]. We conciudt: with the proof that stron 
sets actually exist. 

ere is a rwwsive s 

The proof is similar to that of The at more involved. 
Given an enumeration (p, : e E lynomials, we construct a recursive set 
A c_ (0)” to meet the requirements 

The construction of A is i stages. At stage 
So by the end of stage s !h enumeration of 

s+l we determine the 

4s is completed. 
value of A(0”). 

If no requirement requires attention, then let (0”) = 0. Otherwise, choose (e, i) 
and x minimal (in this order) such that q,i, requ s attention via x, let A(0’) = x(O) 
and say ei) is active vi42 x 

Obviously, the construction is effective and thus A is recursive. That A is strongly 
p-generic follows from the following claim. 

im. For every e, &, ci) requires attention at most finitely often and is met. 

The claim is p 
so such that no re 
distinguish two cases. 

ion. Fix (e, i) and, by inductive hypothesis, choose 
n < (6, i), requires attention after stage so. Now 

s (APSE PC). Then Rc is met and does not require attention after 
e s such that A+ E PC. 

s E ?‘I. Then distinguish two subcases. 
s 2 s1 VX (1x1 s pi(s)=SAfs*xe P=). Then e,i) is met trivially and 

it stops requiring attention after stage sl. 
Che 2.2: otherwise. Then choose s > so a minimal (in this order) such that 

1x1 spi(S) &A~s*xE P,, say x =(io, . . . , ik). en-as one can easily see- 
active at stage s+m via (iw+...,ik) for m=l,...,k+l. So Ar(s+k+l)= 
A~S*XE contrary to assumption. So this case cannot apply. This completes the 
proof of orem 8.6. 0 

to give a strongly p-generic set which is 



this final section we will re 

which can be found i 
most elementary Qpe of di 

versa1 set. Since the 

constructed. 
Most applications of the delayed disgonalization technique can be reduced to 

the following diagonalization lemma due to Schiining ([ I$], see also [ 2 3): 
diagonals D,, . . . , D, fir r-p. and c$v. classes C, , . . . , C, respectit&y, therp is a 
diagonal D for the union C, v 9 9 - v C, of these classes whose complexity is bounded 
by the sum of the given diagonals for the individual classes, i.e., D G & D1 @ - l l 0,. 

Delayed diagonalizations have been used to characterize the fine structure of NP 
under the assumption tha: P# NP (see, e.g., /2, 131). 

The diagonalizations considered here are of a more general type, not limited to 
r.p. classes. For instance, the construction of a p-immune set (cf. Section 3) requires 
us to diagonalize over the not recursively presentab!e (in fact not even recursively I 
enumerable) class of infinite recursive sets containing an infinite polynomial time 
computable set together with the finite sets. We can reduce the task of constructing 
a p-immune set, however-, to the construction of a set A meeting an infinite effective 
sequence of finitary rs;qu?ements, namely the requirements 

Re: if pC is infinite, then An PC # 8 (e E N) 

(cf. Section 3). These requirements are finitary in the following sense: if we construct 
A in stages by determining longer and longer initial segments of A, i.e., by letting 
A, = Atl(s), 1: + N some unbounded increasing (recursive) function, then require- 

can be met by considering finite extensions of certain initial parts 
, by an appropriate choice of l( s + 1) > l(s) and by an appropriate definition 

of A(x) for strings x of length 

parts of sets such 
Diagonalization arguments o 

iff one of its initial 



ally met (cf. Section 3). 

unded, then we cannot decide 
whether a given initial segment has an extension in some witness set. In recursive 
function theory, this difficulty is overcome by recursively bounding the length of 
the extensions in the length of the given initial segment; i.e., given A, = At&s), one 
only checks extensions of length f( i( s)), f some recursive function. 

Then possible extensions of admissible lengths belonging to a witness set do not 
exist for all, but only for certain initial segments. So we cannot meet a requirement 
at any stage, but we have to wait for appro riate stages. (For this reason, such 
diagonalizations are also called w&-and-see arguments or-as in [SJ--slow 
diagonalimiom~ ) 

oreover, due to the bounded search it might happen that some extensions are 
missed and a requirement is e latter case can be avoided by considering, 
at stage s for a requirement extensions of At 1( s) of length f (I( s)), but 
but also such extensions of (certain) ATt for t < I(s) and, if necessary, by re$zcjtig 
the initial segment AT I( s ) by a new extension of some AT t. In general, this procedure 
only yields a recursive approximation to the set A being constructed, i.e., the set A 
will not be recursive but only A! (see [ 161). In a special variant of this technique, 
an initial segment may be replaced only by an initial segment which contains all 
the elements of the previously given initial segment, thus ensuring that the construc- 
ted set is recursively enumerable. This technique is known as finite injury priority 

For a detailed discussion of priority arguments, including ones refining the 
above tiescribed technique by admitting also infinitary requirements, we refer the 
reade: to [20f. 

0th by the complexity of’ the witness sets and by the (recursive) bounds on the 
ns which have to be considered. So in these cases always (recursively) 

er extensions recursively 
such bounded extension 
iven in this paper, the 

separately here leading to the notion of 



ents related to t 

at a formalization 
ments related to P, based on the observation that the polynomial time bounds on 
the members of P can be reflected by polynomial 
to consider. oreover, we restrict ourselves to dia 

ointed out in Section 3, this decreases the c eneric sets by an 
exponential factor, thus allowing the constructio 
relativized NP. For a non-tally set G which 
diagonalization arguments over arbitrary polynomi 
encoding TALLY(G) of G is p-generic. oreover, using the technique of [8] for 
proving that there are no strongly p-gene sets in NP, we can show that TALLY(G) 6 

NP, whence G Irl NT’IME(~~“) for any number c. So non-tally generic sets are too 
complex for providing strong separation results for (relativized) P and N 

For a general treatment of these diagonalization techniques for arbitrary com- 
plexity classes see [S]. There, the question of possible tradeoffs between the com- 
plexity of the witness sets and the length of the bounds on the admissible extensions 
is also discussed. 

References 

PI 

[33 

WI 

PI 

WI 

VI 

PI 

PI 

WI 

WI 

WI 

K. Ambos-Spies, p-Mitotic sets, in: E. Biirger, G. Hasenjiger and D. Rodding, eds., Logic and 
Mac!rines: Decision fioblems and Complexity, Lecture Notes in Computer Science 171 (Springer, 
Berlin, 1984) l-23. 
K. Ambos-Spies, Polynomial time degrees of NP-sets, in: E. Barger, ed., Current Trends in Theoretical 
computer Science (Computer Science Press, Rockville, MD, 1987). 
K. Ambos-Spies, H. Fleischhack and H. Huwig, p-Generic sets, in: J. Paredaens, ed., Proc. Zlrh 
Internat. COIL on Automata, Languages und Programming, Lecture Notes in Computer Science 172 
(Springer, Berlin, 1984) 58-68. 
T. Baker, J. Gill and R. Solvay, Relativizations of the P = ?NP question, SIAM J. Comput. 4 (1975) 
431-442. 
J.L. Balcazar, Separating, strongly separating and collapsing relativized complexity classes, in: 
M. P. Chytil and V. Koubek, eds., Muthemuticul Foundations of Computer Science 1984, Lecture 
Notes in Computer Science 176 (Springer, Berlin, 1984) I- 16. 
C.H. Bennett and J. Gill, Relative to a random oracle A, p # Np # CO-Np with probability 1, 
~sl.dM .I. Compur. IQ (1981) 96-113. 
P. Chew and M. Machtey, A note on structure and looking back applied to the relative complexity 
of computable functions, J. Compur. System Sci. 22 (1981) 53-59. 
H. Fleischhack, On diagonalizations over complexity classes, Dissertation, Universitgt Dortmund, 
1985. 
H. Fleischhack, p-Genericity and strong p-genericity, in: J. Gruska et al., eds., themu ticul 

Foundations of Computer Science 1986, Lecture Notes in Computer Science 233 (Sp er, Berlin, 

1986) 341-349. 
and W. Maass, Oracle-dependent properties of the lattice of NP-sets, %orel. COmPUf- 
83) 279-289. 

C.G. Jockusch Jr., Genericity for recursively enumera . E~Wzh-s et al-, eds., 
Recursion Theory ek, Lecture Notes in Mathematics 6141 (Springer, Berlin, 1985) 203-232. 
D. Kozen, Indexing of subrecursive classes, Theoret. Comput. Sci. 11 (1980) 277-301. 



204 K. Ambos-Spies et al 

1131 RE. Ladner, On the structure of polynomial time reducibility, J. ACM 22 (1975) 155-171. 
[ 141 R.E. Ladner, N.A. Lynch and A.L. Selman, A comparison of polynomial time red~cibi~ities, 

Cornput. Sci. 1 (1975) 103-123. 
[ 151 L. Landweber, R. Lipton and E. Robertson, On the structure of sets in NP and ot 

classes, lkoret. Comput. Sci 15 (1981) 181-200. 
[ 161 M. Lerman, Degees of Unsobability (Springer, Berlin, 1983). 
[ 171 W. Maass, Recursively enumerable generic sets, J. Symbolic Logic 47 (1982) 809-823. 
[18] U. iining, A uniform approach to obtain diagonal sets in complexity classes, 7lworet. C’omput. 

SC (1982) 95-103. 
[ 193 A.L. Selman, p-Selective sets, tally languages, and the behaviour of polynomial time reducibilities 

on NP, Math. Systems 7heory 13 (1979) 55-65. 
[20] R.1. Soare, Recwsiveiy Enumerable Sets and Degrees (Springer, Berlin, 1987). 


