
Non-autoreducible Sets for NEXP
Dung T. Nguyen and Alan L. Selman

University at Buffalo, The State University of New York, NY, US
{dtn3,selman}@buffalo.edu

Abstract
We investigate autoreducibility properties of complete sets for NEXP under different polynomial-
time reductions. Specifically, we show that under some polynomial-time reductions there are
complete sets for NEXP that are not autoreducible. We show that settling the question whether
every ≤p

dtt-complete set for NEXP is ≤p
NOR-tt-autoreducible either positively or negatively would

lead to major results about the exponential time complexity classes.

1998 ACM Subject Classification F.1.3 Complexity Measures and Classes

Keywords and phrases Autoreducibility, NEXP, diagonalization, structural complexity

Digital Object Identifier 10.4230/LIPIcs.STACS.2014.590

1 Introduction

Autoreducibility was first introduced by Trakhtenbrot [11]. A set A is autoreducible if A
is reducible to A via an oracle Turing machine M such that M never queries x on input x.
Ambos-Spies [1] introduced the polynomial-time variant of autoreducibility, where the oracle
Turing machine now runs in polynomial time. Each notion of polynomial-time reduction
induces the corresponding notion of autoreducibility.

The main question that has drawn many researchers’ attention is whether complete sets
for various complexity classes are polynomial-time autoreducible. Over many years, many
results about autoreducibility of complete sets of different classes have been discovered.
Glaßer et al. [7] showed that all m-complete sets of the following complexity classes are
many-one autoreducible: NP, PSPACE, EXP, NEXP, ΣP

k , ΠP
k , and ∆P

k for k ≥ 1. Beigel
and Feigenbaum [10] showed that all Turing complete sets for any class ΣP

k , ΠP
k , ∆P

k , k ≥ 0,
are Turing autoreducible. Also, all Turing complete sets for NP are Turing autoreducible.

Resolving some open questions about autoreducibility would lead to major class separa-
tion results. Buhrman et al. [2] proved various autoreducibility results for many different
complexity classes and demonstrated strong evidence that studying structural properties of
the complete sets, especially the autoreducibility property, might be an important tool to
separate complexity classes. For example, if there exists a Turing complete set of NEXP that
is not Turing autoreducible, then EXP is different from NEXP.

We reinforce this belief with the following result. Let hypothesis A be the assertion that
every ≤p

dtt-complete set for NEXP is ≤p
NOR-tt-autoreducible. We prove that hypothesis A is

true if and only if NEXP = coNEXP. It follows immediately that ¬A implies NEXP 6= EXP.
We see that settling hypothesis A either positively or negatively solves important problems
about these classes.

With this motivation in mind, we study autoreducibility questions for NEXP. Buhrman
et al. [2] extensively studied autoreducibility for EXP. It is known that under many-one,
1-tt, 2-tt, and Turing reductions, all complete sets for EXP are autoreducible. Also for any
k ≥ 3, under ≤p

k-tt-reduction, there exists a complete set for EXP that is not autoreducible.
For NEXP, it is known that all many-one complete sets are autoreducible. Moreover, Glaßer

© Dung T. Nguyen and Alan L. Selman;
licensed under Creative Commons License CC-BY

31st Symposium on Theoretical Aspects of Computer Science (STACS’14).
Editors: Ernst W. Mayr and Natacha Portier; pp. 590–601

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62918554?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.STACS.2014.590
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

D.T. Nguyen and A. L. Selman 591

et al. [6] took a next step to show that under 2-tt, disjunctive-truth-table, and conjunctive-
truth-table reductions, all complete sets for NEXP are autoreducible. We make progress
in this paper by proving non-autoreducibility of complete sets for NEXP under certain
polynomial-time reductions. In particular, we obtain the following results. (All definitions to
follow.)

For any positive integers s and k such that 2s − 1 > k, there is a ≤p
s-T -complete set for

NEXP that is not ≤p
k-tt-autoreducible.

There is a ≤p
T -complete set for NEXP that is not ≤p

tt-autoreducible.
There is a ≤p

3-tt-complete set for NEXP that is not honest ≤p
3-tt-autoreducible.

For any positive integer k, there is a ≤p
k-tt-complete set for NEXP that is not weakly

≤p
k-tt-autoreducible.

Proofs typically require intricate diagonalization arguments.
This paper is organized as follows. Section 2 contains notation and definitions about

many different polynomial-time reductions and autoreducibilities. In section 3, we obtain our
non-autoreducibility results for many different complete sets in NEXP. Section 4 contains
our result about hypothesis A. In section 5, we will show negative results in relativized
worlds for some open questions.

2 Preliminaries

Most notation and definitions are standard [9]. Strings are elements of {0, 1}∗. For every
string x, denote |x| to be the length of x. For every Turing machine M , L(M) denotes the
language accepted by the machine M . We denote MB to be an oracle Turing machine M
that accesses the oracle B. Also for every input x, M(x) is the outcome of the computation
of M on input x; i.e., M(x) = 1 if and only if M accepts input x. We assume that the pairing
function 〈. . .〉 is a one-to-one, polynomial-time computable function that can take any finite
number of inputs and its range does not intersect with 0∗. For every set A, the characteristic
function of A is denoted by A; that is, A(x) = 1 if x ∈ A and A(x) = 0 otherwise. Also |A|
denotes the cardinality of A.

For any two sets A and B, A is Turing-reducible to B in polynomial time, A≤p
TB, if

there exists a deterministic polynomial-time-bounded oracle Turing machine M such that
A = L(MB). Similarly, A≤p

k-TB if there exists a deterministic polynomial-time-bounded
oracle Turing machine M such that A = L(MB) and M asks no more than k queries for
any input x. In this paper, if we do not mention explicitly the running time of a reduction,
then that reduction is a polynomial time reduction. The reduction is nonadaptive, A≤p

ttB,
if the queries are independent of the oracle and so they do not depend on the answers
to the previous queries. Other notions of reductions are also considered. A set A is k-
truth-table-reducible to B, A≤p

k-ttB, if there exists a nonadaptive oracle Turing machine
MB that accepts A such that for any input x, the computation of MB on input x asks
no more than k queries. A set A is bounded-truth-table-reducible to B, A≤p

bttB, if there
exists some integer k such that A≤p

k-ttB. A set A is disjunctive-truth-table reducible to B
in polynomial time, A≤p

dttB, if there exists a polynomial time computable function f such
that for any x, f(x) = 〈q1, . . . , qk〉, and x ∈ A ⇐⇒ B(q1) ∨ · · · ∨ B(qk) = 1. Similarly, a
set A is conjunctive-truth-table reducible to B in polynomial time, A≤p

cttB, if there exists
a polynomial time computable function f such that for any x, f(x) = 〈q1, . . . , qk〉, and
x ∈ A ⇐⇒ B(q1)∧ · · · ∧B(qk) = 1. Other notions ≤p

k-dtt and ≤
p
k-ctt are defined analogously.

For any k-ary Boolean function α, a set A is α-truth-table reducible to B in polynomial

STACS’14

592 Non-autoreducible Sets for NEXP

time, A≤p
αttB, if there exists a polynomial time computable function f such that for any x,

f(x) = 〈q1, . . . , qk〉, and x ∈ A ⇐⇒ α(B(q1), . . . , B(qk)) = 1.
EXP =

⋃
{DTIME(2p(n)) | p is a polynomial} is the class of languages that can be decided

by a deterministic Turing machine in exponential time.
NEXP =

⋃
{NTIME(2p(n)) | p is a polynomial} is the class of languages that can be

decided by a nondeterministic Turing machine in exponential time.
Throughout this paper, let {NEXPi}i≥1 be an enumeration of all nondeterministic

exponential time Turing machines. Also we assume that the computation of NEXPj on input
x has running time that is bounded by 2|x|j .

Let K = {〈i, x, l〉 | NEXPi accepts input x within l steps} be a canonical complete set
for NEXP, where l is encoded in a binary string.

For any oracle Turing machine MB, let Q(MB , x) denote the set of all queries of the
computation of MB on input x.

I Definition 1 (Autoreducibility). For any reduction ≤, a set A is ≤-autoreducible if A ≤ A
via an oracle Turing machine MA such that for any x, x /∈ Q(MA, x). We call M an
autoreduction of A by ≤-reduction. The reduction ≤ can apply to any reductions, specifically,
all those that we mention above, such as ≤p

T ,≤
p
tt ,≤

p
k-tt ,≤

p
dtt , etc.

Honest reductions are discussed in [8] and [5]. Informally, in honest reductions, the strings
queried to the oracle cannot be too short compared to the input length. In this paper, we
use a stronger notion of honest reductions, where strings queried cannot be either too short
or too long compared to the input length. Its formal definition is as follows.

I Definition 2 (Honest truth-table reduction). Given any two sets A and B and an arbitrary
positive number c ≥ 1, we define an honest truth-table reduction ≤h-c

tt as follows: A≤h-c
tt B

if there exists a nonadaptive Turing machine M with oracle B such that MB accepts x if
and only if x ∈ A and for any input x, all queries q made to oracle B have length satisfying
|x|1/c ≤ |q| ≤ |x|c.

I Definition 3 (NOR-reduction). Given any two sets A and B, we define a NOR-truth-table
reduction ≤p

NOR-tt as follows: A≤p
NOR-ttB if there exists a nonadaptive Turing machine M

with oracle B such that for any input x, letting q1, . . . , qk be all queries of MB on input x,
then x ∈ A ⇐⇒ q1 /∈ B ∧ · · · ∧ qk /∈ B.

I Definition 4 (Weak-reduction). Given any two sets A and B, we define a weak truth-table
reduction ≤p

tt-w as follows: A≤p
tt-wB if and only if there exist two polynomial computable

functions f and g such that for any input x, f(x) = 〈q1, . . . , qk〉, g(x) = h(α1, . . . αk) is a
Boolean function with k variables α1, . . . αk such that h is neither an OR nor a NOR Boolean
function, and x ∈ A ⇐⇒ h(B(q1), . . . , B(qk)) = 1.

3 Non-autoreducible sets for NEXP

I Theorem 5. For any positive integers s and k such that 2s−1 > k, there is a ≤p
s-T -complete

set for NEXP that is not ≤p
k-tt-autoreducible.

Proof. Let {Mj}j≥1 be an enumeration of all ≤p
k-tt-reductions. Assume that Mj on input

x runs in time |x|j . We will construct a set B such that K≤p
s-TB but B is not ≤p

k-tt-
autoreducible. Recall that K, which is defined in the Preliminaries section, is a canonical
complete set for NEXP.

The ≤p
s-T -reduction from K to B will be as follows: we build a full binary tree of height s.

This tree has exactly 2s − 1 nodes. We number the nodes from top to bottom, left to right,

D.T. Nguyen and A. L. Selman 593

by using numbers 0, 1, . . . , 2s− 2; i.e. the root node will be numbered 0, then its two children
will be 1 and 2, etc. Then for any string x, each node i will be labeled by the pair 〈x, i〉.
From now on, for every such x, T (x) is such a query tree, and for every node N , N is referred
as a node itself or its label interchangeably. Also for any two nodes N1 and N2 such that
one node is an ancestor of another node, denote P(N1,N2) to be a unique path from N1
to N2. For every node N , denote the left path L(N) to be a path from N to a leaf node
by just traversing left. The right path R(N) is defined similarly. Those labels are possible
queries that can be asked to the oracle B by this reduction. Specifically, start at the root
node, and if the current query is node N , if the answer is YES, i.e. N ∈ B, then the next
query will be N ’s left child; otherwise the right child will be asked. The reduction accepts if
and only if the last query (certainly, it is one of the leaf nodes) belongs to B. Define the
sequence {yn}n≥0 such that y0 = 1 and yn+1 = 2yn

n + 1 for every n ≥ 0. Now we construct
such a set B that satisfies the above reduction. At the same time, we want to diagonalize
against all MB

n such that MB
n accepts 0yn if and only if 0yn /∈ B. The set B is constructed

in each stage as follows. Initially we set B = ∅.
At stage n, suppose that the set B has been constructed such that all strings of length

up to yn−1
n−1 have already been encoded into B appropriately to make the above reduction

work. We will encode all strings of length between yn−1
n−1 + 1 and ynn into B in this stage.

Compute Q that is the set of all queries q of Mn on input 0yn such that q = 〈x, i〉,
i ≤ 2s − 1, and yn−1

n−1 + 1 ≤ |x| ≤ ynn . Denote P to be the set of all x such that 〈x, i〉 ∈ Q
for some 0 ≤ i ≤ 2s − 1. And for each x ∈ P , denote P x to be the set of all 〈x, i〉 such that
〈x, i〉 ∈ Q and 0 ≤ i ≤ 2s − 1.

For each x in P , consider set P x. Notice that |P x| ≤ k < 2s − 1. Consider the query tree
T (x):

Case 1: If all leaf nodes are in P x, then there are some internal nodes such that they are
not in Px. Let N be the smallest node in the set of those nodes. Put N into B if and
only if x ∈ K. Also for every node N ′ in L(N) and N ′ 6= N , add N ′ to B. Finally for
every node N ′ in the path P(Root,N), add N ′ to B if and only if its left child node is
in the path.
Case 2: If there are some leaf nodes that are not in P x, let N be the smallest node in the
set of those nodes. Add N to B if and only if x ∈ K. For every node N ′ in P(Root,N),
add N ′ to B if and only if its left child is in that path.

For every x /∈ P such that yn−1
n−1 + 1 ≤ |x| ≤ ynn , put 〈x, 2s − 1〉 into B if and only if x ∈ K.

After all those steps are done, put 0yn into B if and only if MB
n rejects 0yn .

That is how B is constructed. It is straightforward to see that the construction satisfies
two properties: K≤p

s-TB and B is not ≤p
k-tt-autoreducible.

I Claim 6. B ∈ NEXP

Proof. Notice that all elements of B have one of two forms 0∗ and 〈x, i〉 where 0 ≤ i ≤ 2s−1.
For any input of any other form, it just rejects immediately.

Given an input b, consider the following cases:
b = 0yn for some n (otherwise, b /∈ B). Then by the construction,

0yn ∈ B ⇐⇒ MB
n rejects 0yn .

So if we know how to resolve all queries made to oracle B then it is easy to determine
whether MB

n accepts 0yn in exponential time. Now notice that in the above construction,
for every query q, it can be resolved by considering the query tree and it does not depend

STACS’14

594 Non-autoreducible Sets for NEXP

on the membership of some x in K. In this case membership in B can be answered
deterministically in exponential time.
b = 〈x, i〉 for some 0 ≤ i ≤ 2s − 1. By considering the query tree T (x), there are two
cases:

The membership of b in B can be determined straightforwardly, based on the above
construction, and does not depend on whether x ∈ K or not.
b ∈ B ⇐⇒ x ∈ K. In this case, we can simulate the machine to accept K on an input
x. Notice that |x| < |b|, so it can be done nondeterministically in exponential time.

Thus, B ∈ NEXP J

Hence, B is a ≤p
s-T -complete set for NEXP that is not ≤p

k-tt-autoreducible. J

Glaßer et al. [6] showed that every ≤p
2-tt-complete set for NEXP is ≤p

2-tt-autoreducible.
Theorem 5 is somehow “tight” in case s = 2 and k = 2. The following corollary separates
the notions of ≤p

2-T and ≤p
2-tt .

I Corollary 7. There is a ≤p
2-T -complete set for NEXP that is not ≤p

2-tt-complete.

It has been known that there is a Turing complete set for EXP that is not ≤p
tt-autoreducible

[4]. We want to remark that Buhrman et al. [3] showed that there is a set that is Turing
complete but not ≤p

tt-complete for NEXP. Moreover, their construction technique can be
adapted to show that for any positive integers s and k such that 2s−2 > k, there is a ≤p

s-T -
complete set for NEXP that is not ≤p

k-tt-autoreducible, which is weaker than what Theorem 5
states. By adding a minor trick to the proof in Theorem 5 or cleverly adapting the technique
in [3], we can separate the Turing-completeness notion from the ≤p

tt-autoreducibility notion
in NEXP, as opposed to Turing-completeness versus ≤p

tt-completeness in [3].

I Corollary 8. There is a Turing complete set for NEXP that is not ≤p
tt-autoreducible.

Proof. Notice that in this case, the Mn autoreduction will not ask just k queries on input
0yn , but it can ask up to ynn queries, because its running time on input 0yn is bounded by
ynn . Another modification is that the reduction from K to B will now need to ask more
queries, say |x|2 adaptive queries; that also means the query tree will have height |x|2.
With this trick in mind, in the construction algorithm of B at stage n, for every x in P ,
|P x| ≤ ynn = (2y

n−1
n−1 + 1)n < 2y

2(n−1)
n−1 < 2|x|2 . So the number of nodes in the query tree

T (x) will be bigger than the number of queries of Mn on input 0yn . In cases 1 and 2 the
construction will work similarly. J

Now we consider the more difficult question of whether every ≤p
3-tt-complete set for

NEXP is ≤p
3-tt-autoreducible. Notice that the above technique cannot be used, because the

number of options to encode every x in K into B is no more than the number of queries of
MB
n on input 0yn ; both are equal 3 in this case. This difficulty arises because we have no

“room” for the encoding and diagonalization at the same time. We need to use a different
technique to resolve that issue.

I Theorem 9. For any number c, there is a ≤p
2-T -complete set for NEXP that is not

≤h-c
3-tt-autoreducible.

Proof. Let {Mi}i≥1 be a standard enumeration of all ≤h-c
3-tt-autoreductions clocked such that

Mi runs in time ni. We will construct a ≤p
2-T -complete set B for NEXP incrementally in

each stage and diagonalize against all autoreductions Mi. We define the sequence {yn}n≥1
recursively as follows: y1 = 1 and yn+1 = max(ynn , yc

2

n) + 1 for all n ≥ 1.

D.T. Nguyen and A. L. Selman 595

In each stage, we construct B such that the following procedure is the ≤p
2-T -reduction

that reduces K to B. Given any input x, ask a query 0m to oracle B, where m is a number
that is bounded by some polynomial in |x|. If the answer is YES, then accept x if and only
if 〈0, x〉 ∈ B. If the answer is NO, then accept x if and only if 〈1, x〉 ∈ B. Obviously if B
satisfies this condition, then B is ≤p

2-T -hard for NEXP.
The detail of how B is constructed will be as follows.
Initially B = ∅.
Suppose at stage n, the set B is constructed up to length yn − 1. At this stage, we will
add appropriate strings of length between yn and yn+1 − 1 to accomplish two things:
encoding K into B and diagonalize, using the string 0yc

n , against the autoreduction Mn

that asks no more than 3 queries. Therefore, in the following steps, if Mn asks more than
3 queries, then the diagonalization task will be skipped to the next stage.

Consider the following case where queries of MB
n on input 0yc

n are 〈0, q1〉, 〈1, q2〉, and
〈1, q3〉 and the Boolean truth-table function is f(a, b1, b2). In other words, MB

n accepts
0yc

n if and only if f(B(〈0, q1〉), B(〈1, q2〉), B(〈1, q3〉)) = 1. (Lack of space does not permit a
complete proof of this Theorem.)

I Lemma 10. For any Boolean function f(a, b1, b2), at least one of the following statements
must be true:

There exist two Boolean functions g1(a) and g2(a), where g1(a) and g2(a) are one of a, 0,
or 1, such that f(a, g1(a), g2(a)) = 0 for every a.
There exists a Boolean function h(b1, b2), where h(b1, b2) is one of 0, 1, b1, b2, b1 ∧ b2, or
b1 ∨ b2, such that f(h(b1, b2), b1, b2) = 1 for every b1 and b2.

Suppose that we have f(b1 ∨ b2, b1, b2) = 1, for every b1 and b2 (in this case, we are
considering Statement 2 in the above lemma). Then if we set B(〈1, q2〉) = 1 if q2 ∈ K,
B(〈1, q3〉) = 1 if q3 ∈ K, and B(〈0, q1〉) = B(〈1, q2〉)∨B(〈1, q3〉). Also B(0yc

n) = 0. It is easy
to verify that 0yc

n /∈ B and MB
n accepts 0yc

n . So the diagonalization can be achieved by this
fact.

Moreover by this setting, the reduction K≤p
2-TB can be obtained correctly too. Notice

that 0yc
n /∈ B. Thus, q2 ∈ K if and only if 〈1, q2〉 ∈ B. Similarly for 〈1, q3〉. This fact is

correctly reflected in the above setting.
Last but not least, we need B to be in NEXP. Consider whether 〈1, q2〉 ∈ B. Notice that

it is equivalent to the question whether q2 ∈ K, which can be solved nondeterministically in
exponential time. A more difficult question is whether 〈0, q1〉 is in B. By B’s construction,
B(〈0, q1〉) = B(〈1, q2〉) ∨B(〈1, q3〉). By this fact, 〈0, q1〉 is in B if one of the two strings q2
and q3 is in B. This condition can also be solved nondeterministically in exponential time.
In summary, B is in NEXP.

By our construction we obtain three properties: ≤p
2-T -hardness of B, B is in NEXP,

and B is not autoreducible. That is, B is the set that we want to construct to prove this
theorem. J

We note that Lemma 10 cannot be generalized to a Boolean function of 4 variables
a1, a2, b1, b2 or more because we found a counterexample in that case. We obtained the
counterexample by writing a program to list all possible Boolean functions of 4 variables,
and then for each function checking whether it satisfies the two statements in Lemma 10.
So the proof of Theorem 9 cannot be generalized to work with ≤p

k-tt-reductions for k ≥ 4.
Nevertheless, the following theorem will show non-autoreducibility for ≤p

k-tt-reductions if we

STACS’14

596 Non-autoreducible Sets for NEXP

reduce the power of the ≤p
k-tt-autoreduction by not allowing the truth-table function to be

an OR or a NOR.

I Theorem 11. For any positive integer k, there is a ≤p
k-tt-complete set for NEXP(EXP)

that is not weakly ≤p
k-tt-w-autoreducible.

Proof. Let {Mj}j≥1 be an enumeration of polynomial-time weak ≤p
k-tt-autoreductions. For

each j ≥ 1, assume that Mj on input x runs in time |x|j . Denote α1, . . . , αk to be the
lexicographically first k strings of length dlog ke. We will construct a set B with the following
property: x ∈ K ⇐⇒ there exists a j, 1 ≤ j ≤ k, and 〈αj , x〉 ∈ B, which ensures that
K≤p

k-ttB, and then B is ≤p
k-tt-hard for NEXP. We also need B so that for any n ≥ 1, the

following property holds: 0yn ∈ B ⇐⇒ MB
n rejects input 0yn , which ensures that Mn is

not an autoreduction of B. (The value of yn will be chosen later in the proof) Then we can
conclude that B is not autoreducible.

We construct B in stages. In each stage, we will encode K into B and diagonalize against
all weak ≤p

k-tt-reductions using the string 0yn simultaneously to obtain those above two
properties.

Before going into detail of how B is constructed, we define the sequence {yn}n≥0 such
that y0 = 1 and yn+1 = 2yn

n + 1 for every n ≥ 0. B is constructed in each stage as follows.
Initially we set B = ∅. At stage n, suppose that B is already constructed up to strings of

length yn−1
n−1 . We will encode appropriately all strings of length between yn−1

n−1 + 1 and ynn
into B.

Let Q be the set of all queries q of Mn on input 0yn such that |q| > yn−1
n−1 . Let P = {x |

there exists a 1 ≤ j ≤ k such that 〈αj , x〉 ∈ Q}. For every x ∈ P , denote P x = {〈αj , x〉 |
〈αj , x〉 ∈ Q}.

Now we consider the following cases:
If |P x| < k for all x, then for every x ∈ P , denote t to be the smallest number such that
〈αt, x〉 /∈ Q. Put 〈αt, x〉 into B if and only if x ∈ K. Also for every x /∈ P , put 〈α1, x〉
into B if and only if x ∈ K. Finally, put 0yn into B if and only if MB

n rejects 0yn .
If |P x| = k for some x, consider the Boolean truth-table function g of Mn on input 0yn ,
we have two following cases:

If g(0, 0, . . . , 0) = 0, then let c1, . . . , ck be the lexicographically smallest non-zero value
such that g(c1, . . . , ck) = 0. For every ci such that ci = 1, put 〈αi, x〉 into B if and
only if x ∈ K. Also for every x /∈ P , put 〈α1, x〉 into B if and only if x ∈ K. Finally
put 0yn into B.
If g(0, 0, . . . , 0) = 1, then let c1, . . . , ck be the lexicographically smallest non-zero value
such that g(c1, . . . , ck) = 1. For every ci such that ci = 1, put 〈αi, x〉 into B if and
only if x ∈ K. Also for every x /∈ P , put 〈α1, x〉 into B if and only if x ∈ K.

This concludes the construction of B. The following lemma claims the time complexity of B.

I Lemma 12. B ∈ NEXP.

Proof. Given an input b, one of the following cases can happen:
Case 1: If b has the form 0∗: if |b| 6= yn for all n then reject. Otherwise, compute the set
Q of all queries when running a Turing machine MB

n on input 0yn . Notations of P and
P x are defined similarly to B’s construction above.

If |P x| < k for all x, then simulate the Turing machine MB
n on input 0yn . Whenever a

query q is asked, the answer from oracle B will be resolved as follows:
∗ If |q| > yn−1

n−1 , then answer NO.
∗ Otherwise, check whether q ∈ B recursively.

D.T. Nguyen and A. L. Selman 597

If |P x| = k for some x. Then let g be a Boolean truth-table function of MB
n on input

0yn .
∗ If g(0, . . . , 0) = 0 then accept.
∗ Otherwise, reject.

Case 2: b = 〈αi, x〉 for some αi (if b 6= 〈αj , x〉 for all j then just reject)
Compute the number n such that yn−1

n−1 < |b| ≤ ynn .
Consider sets Q, P , and P x as above when running MB

n on input 0yn . We have the
following cases:

If |P y| < k for every y ∈ P : If b ∈ Q then reject. Otherwise, accept if and only if i = 1
and x ∈ K.
If |P y| = k for some y ∈ P : If x 6= y then accept if and only if i = 1 and x ∈ K.
Otherwise, if x = y, let g be a Boolean truth-table function of Mn on input 0yn .
Consider the two following cases:
∗ If g(0, . . . , 0) = 0. Let c1, . . . , ck be the lexicographically smallest non-zero value

such that g(c1, . . . , ck) = 0. Accept if and only if ci = 1 and x ∈ K.
∗ If g(0, . . . , 0) = 1. Let c1, . . . , ck be the lexicographically smallest non-zero value

such that g(c1, . . . , ck) = 1. Accept if and only if ci = 1 and x ∈ K.
Now we will analyze the running time of the above tasks. The most expensive tasks will be
described as follows:

The number n can be determined in polynomial time in terms of length of input b.
The query set Q and the truth-table function g can be computed in time ynn , which is no
more than O(2|b|2).
In case 1, to recursively check whether the query q of length smaller than yn−1

n−1 belongs

to B or not deterministically takes time 22y
n−1
n−1 , which is no more than 2yn = 2|b| (Recall

that in this case, b = 0yn).
Determining whether x belongs to K can be done nondeterministically in 2|x| < 2|b|.

We conclude that B ∈ NEXP. J

I Lemma 13. K≤p
k-ttB.

Proof. In B’s construction, for every x that is in K, we encode at least one of the following
strings 〈α1, x〉 . . . 〈αk, x〉 into B. Strings that do not belong to K are not encoded into B. It
follows that K≤p

k-ttB. J

It is not hard to see that B is not weakly ≤p
k-tt-autoreducible, so by Lemma 12 and

Lemma 13, B is a ≤p
k-tt-complete set for NEXP that is not weakly ≤p

k-tt-autoreducible. J

The above proof also yields the following corollary:

I Corollary 14. For any positive integer k, there is a ≤p
k-dtt-complete set for NEXP(EXP)

that is not weakly ≤p
k-tt-autoreducible.

4 Implications

We begin with the following theorem.

I Theorem 15. Every ≤p
dtt-complete set for EXP is ≤p

NOR-tt-autoreducible.

Glaßer et al. [6] also showed that every ≤p
dtt-complete set for EXP is ≤p

dtt-autoreducible.
Then by Theorem 15, Corollary 14 is somehow “tight” for EXP.

STACS’14

598 Non-autoreducible Sets for NEXP

Algorithm 1 Algorithm to decide B. Input is of the form 〈0i, x〉.
Q := Q(Mi, 〈0i, x〉) // Set of all queries of Mi on input 〈0i, x〉
If (x /∈ Q) Then

If (x /∈ A) Then
Accept

Else
Reject

EndIf
Else

Reject
EndIf

Algorithm 2 Autoreduction algorithm for A. Input string is x.
Q := {q1, . . . , qk} := Q(Mj , 〈0j , x〉)
If x /∈ Q Then

If ((q1 /∈ A)&&(q2 /∈ A)&& . . . &&(qk /∈ A)) Then
Accept

Else
Reject

EndIf
Else

Reject
EndIf

Proof. Let A be a ≤p
dtt-complete set for EXP. We will show that A is also ≤p

NOR-tt-
autoreducible.

Let {Mi}i≥1 be a standard enumeration of all ≤p
dtt-reductions such that Mi runs in time

pi(n) = ni on inputs of size n.
Consider a set B containing elements of the form 〈0i, x〉 that are decided by Algorithm 1.

Obviously B ∈ EXP.
Since A is the ≤p

dtt-complete set for EXP, B≤p
dttA by some disjunctive truth-table

reduction Mj . For any x, if x is one of queries of Mj on input 〈0j , x〉, then 〈0j , x〉 /∈ B. This
fact implies that for all queries q, including x, q /∈ A. Then x /∈ A. If x is not one of the
queries q1, . . . , qk of Mj on input 〈0j , x〉, then x ∈ A ⇐⇒ 〈0j , x〉 /∈ B ⇐⇒ qi /∈ A for all i.

Based on that observation, we have the autoreduction algorithm for A described in
Algorithm 2.

Observe that this is a ≤p
NOR-tt-autoreduction. Thus A is ≤p

NOR-tt-autoreducible. J

Recall that every ≤p
k-dtt-complete set for NEXP is ≤p

k-dtt-autoreducible [6]. Also every
≤p

k-dtt-complete set for EXP is both ≤p
k-dtt-autoreducible [6] and ≤p

NOR-k-tt-autoreducible.
We want to know whether the same holds for NEXP; that is, whether every ≤p

k-dtt-complete
set for NEXP is also ≤p

NOR-k-tt-autoreducible. Settling this question would lead to important
complexity class results.

I Theorem 16. For any positive integer k, every ≤p
k-dtt-complete set for NEXP is ≤p

NOR-k-tt-
autoreducible if and only if NEXP = coNEXP.

Proof. Suppose every ≤p
k-dtt-complete set for NEXP is ≤p

NOR-k-tt-autoreducible. Notice that
K, the canonical complete set of NEXP, is also ≤p

k-dtt-complete. By the assumption, K is
≤p

NOR-k-tt-autoreducible.

D.T. Nguyen and A. L. Selman 599

Algorithm 3 NOR-Autoreduction algorithm for A. Input string is x.
〈q1, . . . , qk〉 ← f(x)
For i:= 1 to k do

If (x = qi) Then
Reject and Terminate

EndIf
EndFor
If ((q1 /∈ A)&& . . . &&(qk /∈ A)) Then

Accept
Else

Reject
EndIf

Let f be the autoreduction of K. That is, for every x, f(x) = 〈q1, . . . , qk〉, x 6= qi for all
i, and x ∈ K ⇐⇒ q1 /∈ K ∧ · · · ∧ qk /∈ K. We have the following fact:

x ∈ K ⇐⇒ x /∈ K ⇐⇒ q1 ∈ K ∨ · · · ∨ qk ∈ K.

So K̄≤p
k-dttK. Because K ∈ NEXP, we have K ∈ NEXP. Therefore, NEXP = coNEXP.

To prove the other direction, suppose NEXP = coNEXP. Let A be any ≤p
k-dtt-complete

set for NEXP. We show that A is also ≤p
NOR-k-tt-autoreducible. Note that A ∈ NEXP. Hence,

A≤p
k-dttA by some polynomial-time function f . In other words, for any x, f(x) = 〈q1, . . . , qk〉

and x ∈ A ⇐⇒ q1 ∈ A ∨ q2 ∈ A ∨ · · · ∨ qk ∈ A.
Rewriting this, we have x ∈ A ⇐⇒ q1 /∈ A∧ q2 /∈ A∧ · · · ∧ qk /∈ A. Observe that if there

is some i, i = 1, . . . , k such that qi = x then x /∈ A. Because otherwise, it contradicts to
the preceding fact. Based on these observations, we have the ≤p

NOR-k-tt-autoreduction for A
described in Algorithm 3. Hence, A is ≤p

NOR-k-tt-autoreducible. J

I Corollary 17. For any positive integer k, if there is a ≤p
k-dtt-complete set for NEXP that

is not ≤p
NOR-k-tt-autoreducible, then NEXP 6= EXP.

Proof. The proof follows directly from either Theorem 15 or Theorem 16. J

In the following section, we will show a partial result about NOR-autoreducibility for a
≤p

dtt-complete set for NEXP in the relativized world.

5 Relativization

While the question whether every ≤p
dtt-complete set for NEXP is ≤p

NOR-tt-autoreducible is
still open, we can prove that it does not hold in a relativized world.

I Theorem 18. Relative to some oracle B, there is a ≤pB

m -complete set for NEXPB that is
not ≤pB

NOR-tt-autoreducible.

Proof. Let {MB
j }j≥1 be an enumeration of polynomial-time ≤pB

NOR-tt-autoreductions. Notice
that MB

j can now access oracle B.
Let {NEXPBi }i≥1 be an enumeration of all nondeterministic exponential time oracle Turing

machines. For each j ≥ 1, suppose that nj bounds the running time of MB
j and 2nj bounds

the running time of NEXPBj . Let KB = {〈i, x, l〉 | NEXPBi accepts input x within l steps},
where l is encoded in a binary string, be a canonical complete set for NEXPB .

STACS’14

600 Non-autoreducible Sets for NEXP

We will construct sets A and B with the property x ∈ KB ⇐⇒ 〈0, x〉 ∈ A, which
ensures that KB≤p

mA, and then A is ≤p
m-hard for NEXPB . We also need A and B so that

for any n ≥ 1, the following property holds: 0yn ∈ A ⇐⇒ MB,A
n rejects input 0yn (the

value of yn will be chosen later in the proof). These properties guarantee that MB
n is not an

autoreduction of A. Then we can conclude that A is not autoreducible for NEXPB .
We construct A and B together in stages. In each stage, we encode KB into A and

diagonalize against all ≤pB

NOR-tt-reductions using the string 0yn simultaneously to obtain
those above two properties.

We define the sequence {yn}n≥0 such that y0 = 1 and yn+1 = ynn + 1 for every n ≥ 0.
Suppose at stage n that the set A has already been constructed up to length yn − 1. At

this stage, we will construct A for strings of length between yn and yn+1 − 1. Now consider
all queries q of MB

n on input 0yn made to oracle A when |q| ≥ yn and q = 〈0, x〉 for some j.
Let Q be the set of all such queries q.

Consider the following cases:
1. If there is a query q′ such that |q′| < yn and q′ ∈ A. Then put 0yn into A and 〈02yn

, 0yn〉
into B. Finally, for all strings s = 〈0, x〉 and yn ≤ |s| < yn+1, put s into A if and only if
x ∈ KB .

2. Otherwise, ignore all queries of length smaller than yn. For every q′ = 〈0, x〉 ∈ Q such
that x ∈ KB , choose any accepting path of KB on input x and denote Qq′ to be the set
of all queries made in that path. Consider the following cases:
a. If no such q′ exists, then for all strings s = 〈0, x〉 and yn ≤ |s| < yn+1, put s into A if

and only if x ∈ KB .
b. Otherwise, let P be the union of Qq′ for all such q′. Notice that there are no more than
ynn such q′, and for every q′, |Qq′ | ≤ 2|x| < 2yn

n . Then, |P | < ynn2yn
n < 22yn . Therefore,

there exists a string t of length 2yn such that t /∈ P . Put 〈t, 0yn〉 into B. Put 0yn into
A. Finally, for all strings of s = 〈0, x〉 and yn ≤ |s| < yn+1, put s into A if and only if
x ∈ KB .

This concludes the construction of sets A and B.
Now we will briefly show that A belongs to NEXPB. To determine membership of an

input 0y, we just need to guess one string t of length 2y and ask one query 〈t, 0y〉 to oracle
B; accept if and only if the answer is YES. For other input of the form 〈0, x〉, accept if and
only if x ∈ KB . So A ∈ NEXPB .

To see that A is not reduced to itself by any ≤pB

NOR-tt-autoreduction, we will show that
for any Mn, MA,B

n accepts 0yn if and only if 0yn /∈ A. In case (1), because there is one
query q′ such that q′ ∈ A, by the NOR-tt reduction, MA,B

n rejects 0yn . Notice that putting
〈02yn

, 0yn〉 into B does not affect the membership of q′ in A. In case (2a), MA,B
n accepts 0yn

and in this case 0yn is not put into A, and then it makes MB
n not reduce A to itself. In case

(2b), MA,B
n does not accept 0yn and notice that putting 〈t, 0yn〉 into B does not affect the

memberships of all q′ in KB. And finally 0yn is added to A to make MB
n not reduce A to

itself.
It is easy to see that KB≤p

mA because we encode all strings x ∈ KB by 〈0, x〉 into A
and nothing else, except the strings of form 0∗. Hence, A is the many-one complete set for
NEXPB that is not ≤pB

NOR-tt-autoreducible. J

We note that Theorem 16 actually relativizes. So we have the following familiar corollary:

I Corollary 19. There is a set B such that relative to the oracle B, NEXPB 6= coNEXPB.

D.T. Nguyen and A. L. Selman 601

Buhrman et al. [2] showed that relative to some oracle, there is a ≤p
2-T -complete set for

EXP that is not Turing autoreducible. Their technique also works for NEXP. I.e., we have
the following theorem:

I Theorem 20. Relative to some oracle, there is a ≤p
2-T -complete set for NEXP that is not

Turing autoreducible.

6 Open Questions

We know for any positive integers s and k such that 2s− 1 > k that there is a ≤p
s-T -complete

set for NEXP that is not ≤p
k-tt-autoreducible. We do not know what happens when 2s−1 ≤ k.

It is not known whether every Turing-complete set is Turing-autoreducible. Referring to
Theorem 9, the situation for ≤p

k-tt-reductions for k ≥ 4 is still open.

Acknowledgements. Our thanks to Nils Wisiol and Benedikt Budig for useful discussions
and feedback on drafts of this paper. Special thanks to Leen Torenvliet for his extensive
comments and corrections of an earlier version.

References
1 K. Ambos-Spies. P-mitotic sets. In E. Börger, G. Hasenjäger, and D. Roding, editors, Logic

and Machines, Lecture Notes in Computer Science 177, pages 1–23. Springer-Verlag, 1984.
2 H. Buhrman, L. Fortnow, D. van Melkebeek, and L. Torenvliet. Using autoreducibility to

separate complexity classes. SIAM Journal on Computing, 29(5):1497–1520, 2000.
3 H. Buhrman, S. Homer, and L. Torenvliet. Completeness for nondeterministic complexity

classes. Mathematical Systems Theory, 24(3):179–200, 1991.
4 H. Buhrman and L. Torenvliet. On the structure of complete sets. In IEEE Structure

in Complexity Theory Conference, 1994., Proceedings of the Ninth Annual, pages 118–133,
1994.

5 R. Downey, S. Homer, W. Gasarch, and M. Moses. On honest polynomial reductions,
relativizations, and P=NP. In IEEE Structure in Complexity Theory Conference, pages
196–207. IEEE Computer Society, 1989.

6 C. Glaßer, D. Nguyen, C. Reitwießner, A. Selman, and M. Witek. Autoreducibility of
complete sets for log-space and polynomial-time reductions. In Fedor V. Fomin, Rusins
Freivalds, Marta Z. Kwiatkowska, and David Peleg, editors, ICALP (1), volume 7965 of
Lecture Notes in Computer Science, pages 473–484. Springer, 2013.

7 C. Glaßer, M. Ogihara, A. Pavan, A. Selman, and L. Zhang. Autoreducibility, mitoticity,
and immunity. J. Comput. Syst. Sci., 73(5):735–754, 2007.

8 S. Homer. Minimal degrees for polynomial reducibilities. J. ACM, 34(2):480–491, 1987.
9 R. Ladner, N. Lynch, and A. Selman. A comparison of polynomial time reducibilities.

Theoretical Computer Science, 1:103–123, 1975.
10 J. Feigenbaum R. Beigel. On being incoherent without being very hard. Computational

Complexity, 2:1–17, 1992.
11 B. Trahtenbrot. On autoreducibility. Dokl. Akad. Nauk SSSR, 192, 1970. Translation in

Soviet Math. Dokl. 11: 814– 817, 1970.

STACS’14

	Introduction
	Preliminaries
	Non-autoreducible sets for NEXP
	Implications
	Relativization
	Open Questions

