
SIAM J. COMPUT. 
Vol. 29, No. 5, pp. 1497-1520 

© 2000 Society for Industrial and Applied Mathematics 

SEPARATING COMPLEXITY CLASSES USING 
AUTOREDUCIBILITY* 

HARRY BUHRMANt, LANCE FORTNowi' DIETER VAN MELKEBEEK§' AND 

LEEN TORENVLIET1 

Abstract. A set is autoreducible if it can be reduced to itself by a Turing machine that does not 
ask its own input to the oracle. We use autoreducibility to separate the polynomial-time hierarchy 
from exponential space by showing that all Turing complete sets for certain levels of the exponential
time hierarchy are autoreducible but there exists some Turing complete set for doubly exponential 
space that is not. 

Although we already knew how to separate these classes using diagonalization, our proofs sepa
rate classes solely by showing they have different structural properties, thus applying Post's program 
to complexity theory. We feel such techniques may prove unknown separations in the future. In par
ticular, if we could settle the question as to whether all Turing complete sets for doubly exponential 
time are autoreducible, we would separate either polynomial time from polynomial space, and non
deterministic logarithmic space from nondeterministic polynomial time, or else the polynomial-time 
hierarchy from exponential time. 

We also look at the autoreducibility of complete sets under nonadaptive, bounded query, proba
bilistic, and nonuniform reductions. We show how settling some of these autoreducibility questions 
will also lead to new complexity class separations. 

Key words. complexity classes, completeness, autoreducibility, coherence 

AMS subject classifications. 68Ql5, 68Q05, 03D15 

PII. S0097539798334736 

1. Introduction. While complexity theorists have made great strides in under
standing the structure of complexity classes, they have not yet found the proper tools 
to do nontrivial separation of complexity classes such as P and NP. They have devel
oped sophisticated diagonalization, combinatorial and algebraic techniques, but none 
of these ideas have yet proven very useful in the separation task. 

Back in the early days of computability theory, Post [13] wanted to show that 
the set of noncomputable computably enumerable sets strictly contains the Turing 
complete computably enumerable sets. In what we now call "Post's program" (see 

* Received by the editors February 27, 1998; accepted for publication (in revised form) April 20, 
1999; published electronically March 15, 2000. A preliminary version of this paper was presented 
at the 35th IEEE Symposium on Foundations of Computer Science, IEEE Computer Society, Los 
Alamitos, CA, 1995. 

http://www.siam.org/journals/sicomp/29-5/334 73.html 
tcwI, Kruislaan 413, P. 0. Box 94079, 1090 GB Amsterdam, The Netherlands (buhrman@cwi.nl). 

Part of this research was done while the author was visiting the Univ. Politecnica de Catalunya in 
Barcelona. The research of this author was partially supported by the Dutch foundation for scientific 
research (NWO) through NFI Project ALADDIN, under contract NP 62-376 and a TALENT stipend. 

tDepartment of Computer Science, University of Chicago, 1100 East 58th Street, Chicago, IL 
60637 (fortnow@cs.uchicago.edu). The research of this author was supported in part by NSF grant 
CCR 92-53582. The research was partly conducted while the author was visiting CWI. 

§DIMACS, Rutgers University, 96 Frelinghuysen Rd., Piscataway, NJ 08854-8018 (dieter@dimacs. 
rutgers.edu). The research of this author was supported in part by the NSF through grant CCR 92-
53582, by the European Union through TMR grant ERB-4001-GT-96-0783 while the author was 
visiting CWI and the University of Amsterdam, and by the Fields Institute while the author was 
visiting the Fields Institute at the University of Toronto. 

1Faculteit WINS, Universiteit van Amsterdam, Plantage Muidergracht 24, 1018 TV Amsterdam, 
The Netherlands (leen@wins.uva.nl). The research of this author was partially supported by HC&M 
grant ERB4050PL93-0516. 

1497 



1498 BUHRMAN, FORTNOW, VAN MELKEBEEK, AND TORENVLIET 

[11, 15]), Post tried to show these classes differ by finding a property that holds for 
all sets in the first class but not for some set in the second. 

We would like to resurrect Post's program for separating classes in complexity 
theory. In particular we will show how some classes differ by showing that their 
complete sets have different structures. While we do not separate any classes not 
already separable by known diagonalization techniques, we feel that refinements to 
our techniques may yield some new separation results. 

In this paper we will concentrate on the property known as "autoreducibility." A 
set A is autoreducible if we can decide whether an input x belongs to A in polynomial
time by making queries about membership of strings different from x to A. 

Trakhtenbrot [16] first looked at autoreducibility in both the unbounded and 
space-bounded models. Ladner [10] showed that there exist Turing complete com
putably enumerable sets that are not autoreducible. Ambos-Spies [1] first transferred 
the notion of autoreducibility to the polynomial-time setting. More recently, Yao [18] 
and Beigel and Feigenbaum [5] have studied a probabilistic variant of autoreducibility 
known as "coherence." 

In this paper, we ask for what complexity classes do all the complete sets have 
the autoreducibility property. In particular we show the following. 

(i) All Turing complete sets for .6.fXP are autoreducible for any constant k, 
where .6.frf' denotes the sets that are exponential-time Turing reducible to Ef. 

(ii) There exists a Turing complete set for doubly exponential space that is not 
autoreducible. 

Since the union of all sets .6.~X'P coincides with the exponential-time hierarchy, we 
obtain a separation of the exponential-time hierarchy from doubly exponential space 
and thus of the polynomial-time hierarchy from exponential space. Although these 
results also follow from the space hierarchy theorems [9] which we have known for a 
long time, our proof does not directly use diagonalization, but rather separates the 
classes by showing that they have different structural properties. 

Issues ofrelativization do not apply to this work because of oracle access (see [8]): 
a polynomial-time autoreduction cannot view as much of the oracle as an exponential 
or doubly exponential computation. To illustrate this point we show that there exists 
an oracle relative to which some complete set for exponential time is not autoreducible. 

Note that if we can settle whether the Turing complete sets for doubly exponential 
time are all autoreducible one way or the other, we will have a major separation result. 
If there exists a Turing complete set for doubly exponential time that is not autore
ducible, then we get that the exponential-time hierarchy is strictly contained in doubly 
exponential time and hence that the polynomial-time hierarchy is strictly contained 
in exponential time. If all of the Turing complete sets for doubly exponential time are 
autoreducible, we get that doubly exponential time is strictly contained in doubly ex
ponential space, and thus polynomial time strictly in polynomial space. We will also 
show that this assumption implies a separation of nondeterministic logarithmic space 
from nondeterministic polynomial time. Similar implications hold for space-bounded 
classes (see section 5). Autoreducibility questions about doubly exponential time and 
exponential space thus remain an exciting line of research. 

We also study the nonadaptive variant of the problem. Our main results scale 
down one exponential as follows: 

(i) All truth-table complete sets .6.f are truth-table autoreducible for any con
stant k, where .6.f+1 denotes the sets polynomial-time Turing reducible to Ef. 

(ii) There exists a truth-table complete set for exponential space that is not 



SEPARATING COMPLEXITY CLASSES USING AUTOREDUCIBILITY 1499 

truth-table autoreducible. 
Again, finding out whether all truth-table complete sets for intermediate classes, 

namely polynomial space and exponential time, are truth-table autoreducible, would 
have major implications. 

In contrast to the above results we exhibit the limitations of our approach: For the 
restricted reducibility where we are only allowed to ask two nonadaptive queries, all 
complete sets for £XP, £XPSPAC£, ££XP, ££XPSPAC£, etc., are autoreducible. 

We also argue that uniformity is crucial for our technique of separating com
plexity classes, because our nonautoreducibility results fail in the nonuniform setting. 
Razborov and Rudich [14] show that if strong pseudorandom generators exist, "nat
ural proofs" cannot separate certain nonuniform complexity classes. Since this paper 
relies on uniformity in an essential way, their result does not apply. 

Regarding the probabilistic variant of autoreducibility mentioned above, we can 
strengthen our results and construct a Turing complete set for doubly exponential 
space that is not even probabilistically autoreducible. We leave the analog of this 
theorem in the nonadaptive setting open: Does there exist a truth-table complete 
set for exponential space that is not probabilistically truth-table autoreducible? We 
do show that every truth-table complete set for exponential time is probabilistically 
truth-table autoreducible. Thus, a positive answer to the open question would es
tablish that exponential time is strictly contained in exponential space. A negative 
answer, on the other hand, would imply a separation of nondeterministic logarithmic 
space from nondeterministic polynomial time. 

Here is the outline of the paper: First, we introduce our notation and state some 
preliminaries in section 2. Next, in section 3 we establish our negative autoreducibility 
results, for the adaptive as well as the nonadaptive case. Then we prove the positive 
results in section 4, where we also briefly look at the randomized and nonuniform 
settings. Section 5 discusses the separations that follow from our results and would 
follow from improvements on them. Finally, we conclude in section 6 and mention 
some possible directions for further research. 

1.1. Errata to conference version. A previous version of this paper [6] er
roneously claimed proofs showing all Turing complete sets for £XPSPAC£ are au
toreducible and all truth-table complete sets for PSP AC£ are nonadaptively au
toreducible. Combined with the additional results in this version, we would have a 
separation of JlC and NP (see section 5). 

However the proofs in the earlier version failed to account for the growth of the 
running time when recursively computing previous players' moves. We use the proof 
technique in section 3 though unfortunately we get weaker theorems. The original 
results claimed in the previous version remain important open questions as resolving 
them either way will yield new separation results. 

2. Notation and preliminaries. Most of our complexity theoretic notation is 
standard. We refer the reader to the textbooks by Balcazar, Diaz, and Gabarr6 [4, 3], 
and by Papadimitriou [12]. 

We use the binary alphabet B = { 0, 1}. We denote the difference of a set A with 
a set B, i.e., the subset of elements of A that do not belong to B, by A\ B. 

For any integer k ?::: 0, a Bk-formula is a Boolean expression of the form 

(2.1) :3 Y1 E Bn1 , Vy2 E Bn2 , ••• , Qk Yk E l:nk : <f;(y1, Y2, · · ·, Yk, z), 

where cj> is a Boolean formula, Qi denotes :3 if i is odd, and V otherwise, and the n; 's 
are positive integers. We say that (2.1) has k - 1 alternations. A Ih-formula is just 



1500 BUHRMAN, FORTNOW, VAN MELKEBEEK AND TORENVLIET 

like (2.1) except that it starts with a \I-quantifier. It also has k - 1 alternations. A 
QBFk-formula is a ."Ek-formula (2.1) or a II"Aormula without free variables z. 

For anv integer k 2: 0, "Bf denotes the kth ."E-level of the polynomial-time hierar-
• . EP 

chv. We define these levels recursively by ."E"{; = P and L;f+1 =NP k • The .6..-levels 

of.the polynomial-time and exponential-time hierarchy are defined as .6..f+ 1 = pEJ: 
and D.~~i = EX'PEf, respectively. The polynomial-time hierarchy PH equals the 
union of all sets D.f, and the exponential-time hierarchy E XPH similarly equals the 
union of all sets D.~X1' · 

A red'Uction of a set A to a set B is a polynomial-time oracle Turing machine 
Af such that MB = A. We say that A reduces to B and write A :::;~ IJ ("T" for 
Turing). The reduction Mis nonadaptive if the oracle queries Af makes on any input 
are independent of the oracle, i.e., the queries do not depend upon the answers to 
previous queries. In that case we write A :::;ft B ("tt" for truth-table). Reductions 
of functions to sets are defined similarly. If the number of queries on an input of 
length n is bounded by q(n), we write A :S::~n)-T Band A ::::::rn)-tt B, respectively; 
if it is bounded by some constant, we write A :::=::tt B ( "b" for bounded). We denote 
the set of queries of M on input x with oracle B by Q Ma (x); in case of nonadaptive 
reductions, we omit the oracle B in the notation. If the reduction asks only one query 
and answers the answer to that query, we write A:::;~ B ("m" for many-one). 

For any reducibility ::::;~ and any complexity class C, a set C is ::::;:;. -hard for C if we 
can ::;~-reduce every set A EC to C. If in addition C EC, we call C :::;;"-complete for 
C. For any integer k 2: 0, the set TQBFk of all true QBFA:-formulae is :::;~-complete 
for r;f. For k = 1, this reduces to the fact that the set SAT of satisfiable Boolean 
formulae is ::;~-complete for NP. 

Now we get to the key concept of this paper in the following definition. 
DEFINITION 2.1. A set A is autoreducible 'if there is a reduction M of A to itself 

that never queries its own input, i. e., for any input x and any oracle B, :r: t/c Q Al a ( :r;). 
We call such M an autoreduction of A. 

We will also discuss randomized and nonuniform variants. A set is probabilistically 
autoreducible if it has a probabilistic autoreduction with bounded two-sided error. Yao 
[18] first studied this concept under the name "coherence." A set is nonunif[wrnly 
autoreducible if it has an autoreduction that uses polynomial advice. For all these 
notions, we can consider both the adaptive and the nonadaptive case. For randomized 
autoreducibility, nonadaptiveness means that the queries only depend on the input 
and the random seed. 

3. Nonautoreducibility results. In this section, we show that large complex
ity classes have complete sets that are not autoreducible. 

THEOREM 3.1. There is a :::;~_rcomplete set for EEXPSPACE that is not 
antoreducible. 

l\fost natural classes containing E [, XP SPACE, e.g., triply exponential time and 
triply exponential space, also have this property. 

We can even construct the complete set in Theorem 3.1 to defeat every proba
bilistic autoreduction. 

THEOREM 3.2. There is a :::;LT-complete set for EEXPSPACE that is not 
probabilistically a'Utoreducible. 

In the nonadaptive setting, we obtain the following theorem. 
THEOREM 3.3. There is a :::::r-tt-complete set for EXPSPACE that is not non

adaptively autoreducible. 



SEPARATING COMPLEXITY CLASSES USING AUTOREDUCIBILITY 1501 

Unlike the case of Theorem 3.1, our construction does not seem to yield a truth
table complete set that is not probabilistically nonadaptively autoreducible. In fact, 
as we shall show in section 4.3, such a result would separate EXP from £XPSPAC£; 
see also section 5. 

We will detail in section 4.3 that our nonautoreducibility results do not hold in 
the nonuniform setting. 

3.1. Adaptive autoreductions. Suppose we want to construct a nonautore-
ducible Turing complete set for a complexity class C, i.e., a set A such that 

l. A is not autoreducible, 
2. A is Turing hard for C, 
3. A belongs to C. 

If C has a $~-complete set K, realizing goals 1 and 2 is not too hard: We can 
encode K in A, and at the same time diagonalize against all autoreductions. A 
straightforward implementation would be to encode K(y) as A((O,y)), and stagewise 
diagonalize against all $~-reductions M by picking for each Man input x not of the 
form (0, y) that is not queried during previous stages, and setting A(x) = 1- MA(x). 
However, this construction does not seem to achieve goal 3. In particular, deciding the 
membership of a diagonalization string x to A might require computing A( (0, y)) = 
K(y) on inputs y of length lxlc, assuming M runs in time nc. Since we have to 
do this for all potential autoreductions M, we can only bound the resources (time, 
space) needed to decide A by a function in t(nw(ll), where t(n) denotes the amount of 
resources some deterministic Turing machine accepting K uses. That does not suffice 
to keep A inside C. 

To remedy this problem, we will avoid the need to compute K(y) on large inputs 
y, say of length at least lxl. Instead, we will make sure we can encode the membership 
of such strings to any set, not just K, and at the same time diagonalize against Mon 
input x. We will argue that we can do this by considering two possible coding regions 
at every stage as opposed to a fixed one: the left region L, containing strings of the 
form (0, y), and the right region R, similarly containing strings of the form (1, y). The 
following states that we can use one of the regions to encode an arbitrary sequence, 
and set the other region such that the output of M on input x is fixed and indicates 
the region used for encoding. 

STATEMENT 3.4. Either it is the case that for any setting of L there is a setting 
of R such that MA(x) accepts, or for any setting of R there is a setting of L such 
that MA(x) rejects. 

This allows us to achieve goals 1 and 2 from above as follows. In the former case, 
we will set A(x) = 0 and encode Kin L (at that stage); otherwise we will set A(x) = 1 
and encode K in R. Since the value of A(x) does not affect the behavior of MA on 
input x, we diagonalize against Af in both cases. Also, in any case, 

K(y) = A((A(x),y)), 

so deciding K is still easy when given A. Moreover-and crucially-in order to com
pute A(x), we no longer have to decide K(y) on large inputs y, of length lxl or more. 
Instead, we have to check whether the former case in Statement 3.4 holds or not. 
Although quite complex a task, it only depends on M and on the part of A con
structed so far, not on the value of K(y) for any input of length lxl or more: We 
verify whether we can encode any sequence, not just the characteristic sequence of 
K for lengths at least lxl, and at the same time diagonalize against M on input x. 



1502 BUHRMAN, FORTNOW, VAN MELKEBEEK, AND TORENVLIET 

Provided the complexity class C is sufficiently powerful, we can perform this task in 
c. 

There is still a catch, though. Suppose we have found out that the former case 
in Statement 3.4 holds. Then we will use the left region L to encode K (at that 
stage), and we know we can diagonalize against A1 on input x by setting the bits of 
the right region R appropriately. However, deciding exactly how to set these bits of 
the noncoding region requires, in addition to determining which region we should use 
for coding, the knowledge of K(y) for all y such that lxl :::; IYI :::; lxtc. In order to 
also circumvent the need to decide K for too large inputs here, we will use a slightly 
stronger version of Statement 3.4 obtained by grouping quantifiers into blocks and 
rearranging them. We will partition the coding and noncoding regions into intervals. 
We will make sure that for any given interval, the length of a string in that interval 
(or any of the previous intervals) is no more than the square of the length of any 
string in that interval. Then we will blockwise alternately set the bits in the coding 
region according to K, and the corresponding ones in the noncoding region so as to 
maintain the diagonalization against M on input :r as in Statement 3.4. This way, 
in order to compute the bit A( (1, z)) of the noncoding region, we will only have to 
query Kon inputs y with IYI:::; lzl 2 , as opposed to IYI:::; lzlc for an arbitrarily large c 
depending on M as was the case before. 

This is what happens in the next lemma, which we prove in a more general form, 
because we will need the generalization later on in section 5. 

LEMMA 3.5. Fix a set K, and suppose we can decide it simultaneously in time 
t(n) and space s(n). Let a: : N-+ (O,oo) be a constructible monotone unbov,nded 
function, and s·uppose there is a deterministic Turing machine accepting TQBF that 
takes time t'(n) and space s'(n) on QBF-formulae of size 2n°'<"l with at most loga(n) 
alternations. Then there is a set A such that 

1. A is not autoreducible; 
2. K :::;f_T A; 

3. We can dec·ide A simultaneously in time 0(2n2 
• t(n2 ) + 2n · t'(n)) and space 

0(2n2 + s(n2 ) + s'(n)). 
Proof. Fix a function a: satisfying the hypotheses of the lemma, and let /3 = fo. 

Let M1 , A12, ... be a standard enumeration of autoreductions clocked such that M; 
runs in time nfl(il on inputs of length n. Our construction starts out with A being 
the empty set, and then adds strings to A in subsequent stages i = 1, 2, 3, ... defined 
by the following sequence: 

{ no 

n;+1 

Note that since A1; runs in time nfl(i), M; cannot query strings of length n;+i or more 
on input oni. 

Fix an integer 'i 2: 1 and let m = n;. For any integer j such that 0 :::; j :::; log f3 ( m), 
let Ij denote the set of all strings with lengths in the interval [m21 , min(m2J+ 1 , mfl(m) + 
1) ). Note that {!1} ~'!t(m) forms a partition of the set I of strings with lengths in 
[m,m6 (m) + 1) = [n;,n;+ 1) with the property that for any 0::::; k:::; log/](m), the 
length of any string in UJ=olj is no more than the square of the length of any string 
in Ik· 

During the ith stage of the construction, we will encode the restriction Kl 1 of K 
to I into { (b, y) I b E {O, 1} and y E I}, and use the string 0771 for diagonalizing against 



SEPARATING COMPLEXITY CLASSES USING AUTOREDUCIBILITY 1503 

if formula (3.1) holds 

then for j = 0, ... , logtJ(m) 

(fy)yE!J <- (K(y))yEJJ 

(ry)yEIJ +- the lexicographically first value satisfying 

(Ii fy)yElj+l • (3ry)yEIJ+l, (Ii fy)yEij+2' (3ry)yElj+2' 

· · ·, (lify)yEliogf>(m)' (3ry)yEiiogtl(m): M{ (Om) accepts, 

where A'= AU {(0,y) I y EI and fy = 1} U {(1,y) [y EI and ry = 1} 

end for 

A+- AU { (0, y) I y EI and fy = 1} U {(1, y) I y EI and ry = 1} 

else { formula (3.2) holds } 

for j = 0, ... , logtJ(m) 

(ry)yEIJ <- (K(y))yEij 

(fy)yEIJ <-the lexicographically first value satisfying 

(Ii ry)yEJj+l' (3 fy)yE1j+1, (liry)yEIJ+2, (3£y)yE/j+2, 

· · ·, (Vry)yEJ10gll(m), (3£y)yEiiog/l(m) : A1{'1 (Om) accepts, 

where A' = AU { (0, y) I y E I and ey = 1} U { (1, y) I y E I and ry = 1} 

end for 

A<-- Au {om} u { (0, y) I y EI and ey : 1} u { (1, y) I y EI and ry = 1} 

end if 

FIG. 3.1. Stage i of the construction of the set A in Lemma 3.5. 

Mi, applying the next strengthening of Statement 3.4 to do so. 
CLAIM 3.6. For any set A, at least one of the following holds: 

('t/ Py )yEio, (3 r y )yElo, ('t/ Py )yEI 1' (3 r y )yEI1 , 

(3.1) ... '('t/ fy)yEI1ogfJ(m)' (3 ry)yEI!og/l(m) : M{ (om) accepts 

or 

('tfry)yEI01 (3Cy)yEI01 ('t!ry)yElp (3Cy)yElp 

(3.2) ·. ·, (Vry)yEJ10gf>(m)' (3Py)yEliag/l(m): M{ (Om) rejects, 

where A' denotes AU {(O,y) I y EI and fy = l} U {(1,y) IY EI and ry = l}. 
Here we use (Q zy)yEY as a shorthand for Q Zy 1 , Q Zy2 , ... , Q zy 1y 1 , where Y = 

{y1, Y2, ... , YIYI} and all variables are quantified over {O, 1 }. Without loss of generality 
we assume that the range of the pairing function ( ·, ·) is disjoint from O*. 

Proof of Claim 3.6. Fix A. If (3.1) does not hold, then its negation holds, i.e, 

(3 Py )yElo, ('t/ r y )yElo, (3 Py )yEI 1' ('t/ ry )yEl 1 , 

(3.3) · .. , (3Py)yEliog1><m>' ('tfry)yEJ108 1><ml : M{ (Om) rejects. 

Switching the quantifiers (3 Py)yEij and ('t/ ry)yEIJ pairwise for every 0 S j :5 log ,B(m) 
in (3.3) yields the weaker statement (3.2). D 

Figure 3.1 describes the ith stage in the construction of the set A. Note that the 
lexicographically first values in this algorithm always exist, so the construction works 
fine. We now argue that the resulting set A satisfies the properties of Lemma 3.5: 

1. The construction guarantees that A(Om) = l-M;4\{om} (om) holds by the end 
of stage i. Since Mi on input om cannot query om (because Mi is an autoreduction) 



1504 BUHRMAN, FORTNOW, VAN MELKEBEEK, AND TORENVLIET 

nor any of the strings added during subsequent stages (because Mi does not even have 
the time to write down any of these strings), A(Om) = 1- MiA(om) holds for the final 
set A. Thus, M; is not an autoreduction of A. Since this is true of any autoreduction 
Mi, the set A is not autoreducible. 

2. During stage i, we encode Kl1 in the left region iff we do not put om into 
A; otherwise we encode Kl1 in the right region. Thus, for any Y E I, K(y) = 
A( (A(om ), y) ). Therefore, K S~-T A. 

3. First note that A only contains strings of the form om with m = ni for some 
integer i ;::: 1, and strings of the form (b, y) with b E {O, 1} and y E E*. Assume we 
have executed the construction of A up to but not including stage i and stored the 
result in memory. The additional work to decide the membership to A of a string 
belonging to the ith stage is as follows. 

(i) Case om. Since om E A iff formula (3.1) does not hold and (3.1) is a 
O( 11<m>i a<m> d "d h h om A . QBF21ogi3(m)-formula of size 2 m :'.S 2m , we can ec1 e w et er E m 

time O(t'(m)) and space O(s'(m)). 
(ii) Case (b, z) where b = A(Om) and z E !. Then (b, z) EA iff z E K, which we 

can decide in time t(lzl) and space s(lzl). 
(iii) Case (b,z) where b = 1-A(Om) and z E !. Say z Eh, 0:::; k:::; log,B(m). 

In order to compute whether (b, z) E A, we run the part of stage i corresponding to 
the values of j in Figure 3.1 up to and including k, and store the results in memory. 
This involves computing Kon uj=olj and deciding 0(21•1) QBF21agi3(m)-formulae of 

. 0( l!l(m)) <>(m) k . h d size 2 m ;::; 2m , namely one formula for each y E Uj=olj wh1c prece es or 
equals z in lexicographic order. The latter takes 0(2izl ·t' (m)) time and 0(2lzl +s'(m)) 
space. Since every string in uj=olj is of size no more than lzl2 , we can do the former 

in time 0(2l•l2 
• t(lzl2)) and space 0(2lzl2 + s(lzl2 )). So, the requirements for this 

stage are 0(2lzl 2 
• t(lzl2 ) + 2lzl · t'(lzl)) time and 0(2lzl2 + s(lzl2 ) + s'(lzl)) space. 

A similar analysis also shows that we can perform the stages up to but not in
cluding i in time 0(2m · (t(m) +t'(m))) and space 0(2m+s(m) + s' (m)). All together, 
this yields the time and space bounds claimed for A. D 

U . h a(n) ) • smg t e upper bound 2n for s'(n , the smallest standard complexity class to 
which Lemma 3.5 applies, seems to be EEXPSPACE. This results in Theorem 3.1. 

Proof of Theorem 3.1. In Lemma 3.5, set Ka $~-complete set for ££XPSPACE, 
and o:(n) = n. D 

In section 4.2, we will see that ;:;f_T in the statement of Theorem 3.1 is optimal: 
Theorem 4.6 shows that Theorem 3.1 fails for Sf-tt· 

We note that the proof of Theorem 3.1 carries through for :s:;~X'PS'PAC£_reductions 
with polynomially bounded query lengths. This implies the strengthening given by 
Theorem 3.2. 

3.2. Nonadaptive autoreductions. Diagonalizing against nonadaptive autore
ductions Mis easier. If M runs in time r(n), there can be no more than r(n) coding 
strings that interfere with the diagonalization, as opposed to 2T(n) in the adaptive 
case. This allows us to reduce the complexity of the set constructed in Lemma 3.5 as 
follows. 

LEMMA 3. 7. Fix a set K, and suppose we can decide it simultaneously in time 
t( n) and space s( n). Let a: : N -+ (0, oo) be a constructible monotone unbounded 
function, and suppose there is a deterministic Turing machine accepting TQBF that 
takes time t'(n) and space s'(n) on QBF-formulae of size n°'(n) with at most loga(n) 
alternations. Then there is a set A such that 



SEPARATING COMPLEXITY CLASSES USING AUTOREDUCIBILITY 1505 

1. A is not nonadaptively autoreducible; 
2. K :::;f-tt A; 
3. We can decide A simultaneously in time 0(2" + n<>(n)) · (t(n2 ) + t'(n))) and 

space 0(2" + n<>(n) + s(n2 ) + s'(n)). 
Proof The construction of the set A is the same as in Lemma 3.5 (see Figure 3.1) 

apart from the following differences. 
(i) M1, M2, ... now is a standard enumeration of nonadaptive autoreductions 

clocked such that M; runs in time n/3(i) on inputs of length n. Note that the set QM(x) 
of possible queries M makes on input x contains no more than lxl/3(i) elements. 

(ii) During stage i ;::: 1 of the construction, I denotes the set of all strings y 
with lengths in [m,m/3(m) + 1) = [n;,ni+1 ) such that (O,y) E QM;(om) or (1,y) E 

QM.(om), and Ij for 0:::; j:::; log,B(m) denotes the set of strings in I with lengths in 
[m2j, min(m2H', m/3(m) + 1) ). Note that the only fy 'sand ry's that affect the validity 
of the predicate "M/' (Om) accepts" in formula (3.1) and the corresponding formulae 
in Figure 3.1, are those for which y E /. 

(iii) At the end of stage i in Figure 3.1, we add the following line: 

A+-- AU {(b,y) I b E {O, 1},y E 1;* with m:::; IYI < m/3(m) + l,y €/.I and K(y) = l}. 

This ensures coding K(y) for strings y with lengths in [n;, n;+ 1 ) such that neither 
(0, y) nor (1, y) are queried by M; on input om. Although not essential, we choose to 
encode them in both the left and the right region. 

The proof that A satisfies the three properties claimed carries over. Only the time 
and space analysis in the third point needs modification. The crucial simplification 
over the adaptive case lies in the fact that (3.1) and the similar formulae in Figure 3.1 
now become QBF21og/3(n)-formulae of size n0(/3(m)) as opposed to of size 20(m13(m)) 

in Lemma 3.5. More specifically, referring to the proof of Lemma 3.5, we have the 
following cases regarding the work at stage i of the construction. 

(i) Case om. The above mentioned simplification takes care of this case. 
(ii) Case (b, z), where b = A(Om) and z EI. The argument of Lemma 3.5 carries 

over as such. 
(iii) Case (b, z), where b = 1 - A(om) and z E I. Computing Kon uJ=olj and 

storing the result can be done in time O(m/3(m) ·t(lzl 2 )) and space O(m/3(m) +s(lzl2 )). 

Deciding the O(m/3(m)) QBF21og,8(m)-formulae of size m0(/3(m)) :::; m<>(m) involved 
requires no more than O(m/3(m) · t'(m)) time and O(m/3(m) + s'(m)) space. 

(iv) Case (b, z) where b E {O, 1}, m :::; lzl :::; m/3(m) + 1, and z '/. I. This is an 
additional case. By construction, (b, z) E A iff z E K, which we can decide in time 
t(lzl) and space s(lzl). 

By similar analysis, a rough estimate of the resources required for the previous 
stages of the construction is 0(2m · (t(m) + t'(m))) time and 0(2m + s(m) + s'(m)) 
space, resulting in a total as stated in the lemma. D 

As a consequence, we can lower the space complexity in the equivalent of Theorem 
3.1 from doubly exponential to singly exponential, yielding Theorem 3.3. In section 
4.2 we will show we cannot reduce the number of queries from three to two in Theorem 
3.3. 

If we restrict the number of queries the nonadaptive autoreduction is allowed to 
make to some fixed polynomial, the proof technique of Theorem 3.3 also applies to 
EXP. In particular, we obtain the following theorem. 

THEOREM 3.8. There is a :::;'f-tt-complete set for EXP that is not :::;'f:tt-autoredu
cible. 



1506 BUHRMAN, FORTNOW, VAN MELKEBEEK, AND TORENVLIET 

4. Autoreducibility results. For small complexity classes, all complete sets 
turn out to be autoreducible. Beigel and Feigenbaum [5] established this property of 
all levels of the polynomial-time hierarchy as well as of PSPACE, the largest class 
for which it was known to hold before our work. In this section, we will prove it for 
the ti.-levels of the exponential-time hierarchy. 

As to nonadaptive reductions, the question was even open for all levels of the 
polynomial-time hierarchy. We will show here that the :;ft-complete sets for the 
.6.-levels of the polynomial-time hierarchy are nonadaptively autoreducible. For any 
complexity class containing £XP, we will prove that the :;f_tt-complete sets are 
:;f-tt-autoreducible. 

Finally, we will also consider nonuniform and randomized autoreductions. 
Throughout this section, we will assume without loss of generality an encoding 

I of a computation of a given oracle Turing machine M on a given input :x: with the 
following properties. I will be a marked concatenation of succesi:iive instantaneous 
descriptions of M, starting with the initial instantaneous description of AI on input 
x, such that: 

(i) Given a pointer to a bit in 1, we can find out whether that bit represents 
the answer to an oracle query by probing a constant number of bits of f. 

(ii) If it is the answer to an oracle query, the corresponding query is a substring 
of the prefix of I up to that point, and we can easily compute a pointer to the 
beginning of that substring without probing I any further. 

(iii) If it is not the answer to an oracle query, we can perform a local consistency 
check for that bit which only depends on a constant number of previous bit positions 
of "Y and the input x. Formally, there exist a function gM and a predicate eM, both 
polynomial-time computable, and a constant CM such that the following holds: For 
any input x, any index i to a bit position in 'Y, and any j, 1 :::; j :::; c M, g M ( :r:; i, j) is 
an index no larger than i, and 

(4.1) 

indicates whether 'Y passes the local consistency test for its ith bit Ii· Provided the 
prefix of I up to but not including position i is correct, the local consistency test is 
passed iff Ii is correct. 

We call such an encoding a valid computation of M on input x iff the local 
consistency tests (4.1) for all the bit positions i that do not correspond to oracle 
answers, are passed, and the other bits equal the oracle's answer to the corresponding 
query. Any other string we will call a computation. 

4.1. Adaptive autoreductions. We will first show that every ::;?-complete set 
for EXP is autoreducible, and then generalize to all l:i.-levels of the exponential-time 
hierarchy. 

THEOREM 4.1. Every ::;?-complete set for EXP 'is autoreducible. 
Here is the proof idea: For any of the standard deterministic complexity classes 

C, we can decide each bit of the computation on a given input x within C. Thus, if A 
is a :::;~-complete set for C that can be decided by a machine M within the confines 
of the class C, then we can :::;?-reduce deciding the ith bit of the computation of M 
on input x to A. Now, consider the two (possibly invalid) computations we obtain by 
applying the above reduction to every bit position, answering all queries except for x 
according to A, assuming x E A for one computation and x 'f. A for the other. 

Note that the computation corresponding to the right assumption about A(x) 
is certainly correct. Thus, if both computations yield the same answer (which we 



SEPARATING COMPLEXITY CLASSES USING AUTOREDUCIBILITY 1507 

·r RA\{x}((·, 21'(1,cl))) = RA.u{.r}(.( . ')P(ixll)) l {L .1.' '{.I X, .._. 

then accept iff R;;u{"}((:r,2P(i,:ll)) = 1 

else i ...- R~u{.r} (x) 

accept iff q,I(:r; i, R;; \{x} ( (:r, YM(:r; i; 1))), R:,1\ {:c} ( (:r, gu (:r; i, 2)) ), .. 

. . . ,R;I\{x}((J:,gM(:c;i,cM)))) = 0 

end if 

FIG. 4. 1. A utored·uction for the set A of Theorern 4.1 on inp·ut x. 

can efficiently check using A without querying .r:), that answer is correct. If not, the 
other computation contains a mistake. \Ve cannot check both computations entirely 
to see which one is right, but given a pointer to the first incorrect bit of the wrong 
computation, we can efficiently verify that it is mistaken by checking only a con::Jtant 
nurnber of bits of that computation. The pointer is again computable within C. 

In case C <;;:: EXP, using a :::;~-reduction to A and assuming J; E A or ,r: fj. A 
as above, we can determine the pointer with oracle A (but without querying :J:) in 
polynomial time, since the pointer's length is polynomially bounded. 

We now fill out the details. 
Proof of Theorem. 4.1. Fix a :::;~-complete set A for EXP. Say A is accepted 

by a Turing machim' l\I such that the computation of li1 on an input of size n has 
length 2P(nJ for some fixed polynomial p. vVithout loss of generality the last bit of 
the computation gives the final answer. Let g 111 , e111, and CM be the formalization of 
the local consistency test for 1\1 as described by ( 4.1). 

Let 11( (J:, i)) denote the ith bit of the computation of AI on input :i:. We can 
compute 11 in EXP, so there is an oracle Turing machine Rµ :::;~-reducing /l to A. 

Let cr(:r) he the first i, 1:::; i:::; 2P(l.rll, such that R;7\{r}((.r,i)) =} R;;u{"}((x,i)), 
provided it exists. Again, we can compute (J in EXP, so there is a :::;?-reduction Rcr 
from er to A. 

Consider the algorithm in Figure 4.1 for deciding A on input :J:. The algorithm is 
a polynomial-time oracle Turing machine with oracle A that does not query its own 
input :r. We now argue that it correctly decides A on input ::r. We distinguish between 
two cases. 

(i) Case R:\{x} ((:r, 2P(l,ll)) = R~l.u{:r} ( (:r, 2/!(l:rl)) ). Since at least one of the 

computations R;·; \ {J} ( (x. ·)) or R~l.u{ ''} ( (.r, ·)) coincides with the actual computation of 
f\1 on input :r:, and the last bit of the computation equals the final decision, correctness 
follows. 

(ii) CaseR;\{J:}((:r,2PCl"ll)) =} R;;u{'}((:r,2PCl 1 ll)). If:r EA, R:\{x}((x,2P(lxl))) 

= 0, so R:\{:1:}((:r, ·))contains a mistake. Variable i gets the correct value of the in
dex of the first incorrect bit in this computation, so the loc:al consistency test for 
R:\{:r}((x, ·)) being the computation of Mon input :r fails on the ith bit, and we 
accept :J:. If x fj. A, then R;z\{:r}((:r:, ·))is a valid computation, so no local consistency 
test fails, and we reject :i:. D 

The local checkability property of computations used in the proof of Theorem 
4.1 does not relativize, because the oracle computation steps depend on the entire 
query, i.e., on a number of bits that is only limited by the resource bounds of the base 
machine, in this case exponentially many. We next show that Theorem 4.1 itself also 
does not relativize. 

THEOREM 4.2. Relat'ive to some oracle, Er'<P has a s;'"[(_T-complete set that 'is 



1508 BUHRMAN, FORTNOW, VAN MELKEBEEK, AND TORENVLIET 

not a·utoreducible. 
Proof. Note that EXP has the following property. 
PROPERTY 4.3. There ·is an oracle Turing machine N running in EXP such that 

for any oracle B, the set accepted by NB is :::;'[;,-complete for [ XP 8 . 

Without loss of generality, we assume that N runs in time 2n. Let K 8 denote 

the set accepted by NB· 
\Ve will construct an oracle B and a set A such that A is s_f_T-complete for 

£XPB and is not S.~8 -autoreducible. 
The construction of A is the same as in Lemma 3.5 (see Figure 3.1) with /3(n) = 

log n and K = KB, except that the reductions lvfi now also have access to the oracle 

B. 
We will encode in B information about the construction of A that reduces the 

complexity of A relative to B but do it high enough so as not to destroy the sf _T-

completeness of A for EXP8 nor the diagonalizations against ".5_~ 8 -autoreductions. 
We construct B in stages along with A. We start with B empty. Using the 

notation of Lemma 3.5, at the beginning of stage i, we add 02 m to B iff property (3.1) 
does not hold, and at the end of substage j, we join B with 

if ( 3.1) holds at stage i, 

otherwise. 

Note that this does not affect the value of KB (y) for IYI < m2J+' nor the computations 
of Mi on inputs of size at most m (for sufficiently large i such that m log m < 2m). It 
follows from the analysis in the proof of Lemma 3.5 that the set A is 5-:f_T-hard for 

EXP8 and not s~B -autoreducible. 
Regarding the complexity of deciding A relative to B, note that the encoding 

in the oracle B allows us to eliminate the need for evaluating QBF1ogf:i(nJ-formulae 

of size 2n'3(nl. Instead, we just query B on easily constructed inputs of size 0(2"2 
). 

Therefore, we can drop the terms corresponding to the QBF1ogf3(nyformulae of size 

2"131 nl in the complexity of A. Consequently, A E EXP8 . 0 
Theorem 4.2 applies to any complexity class containing EXP that has Property 

4.3, e.g., EX'PSPACE, £EXP, ££XPSPACE, etc. 
Sometimes, the structure of the oracle allows us to get around the lack of local 

checkability of oracle queries. This is the case for oracles from the polynomial-time 
hierarchy, and leads to the following extension of Theorem 4.1. 

THEOREM 4.4. For any integer k 2: 0, every S~ -complete set for 6.~'.Jf is 
autoreditcible. 

The proof idea is as follows: Let A be a 5_~-complete set accepted by the de
terministic oracle Turing machine l'vf with oracle TQBFk. First note that there is a 
polynomial-time Turing machine N such that a query q belongs to the oracle TQBFk 
iff 

(4.2) :ly1, 'Vy2, ... , Qk Yk: N(q, Y1, Y2, ... , Yk) accepts, 

where the Ye's are of size polynomial in \qi. 
We consider the two purported computations of M on input x constructed in the 

proof of Theorem 4.1. One belongs to a party assuming x E A, the other to a party 



SEPARATING COMPLEXITY CLASSES USING AUTOREDUCIBILITY 1509 

assuming x rf_ A. The computation corresponding to the right assumption is correct; 
the other one might not be. 

Now suppose the computations differ and we are given a pointer to the first bit 
position where they disagree, which turns out to be the answer to an oracle query 
q. Then we can have the two parties play the k-round game underlying (4.2): The 
party claiming q E TQBF k plays the existentially quantified Ye 's, the other one the 
universally quantified Yc's. The players' strategies will consist of computing the game 
history so far, determining their optimal next move, ~~-reducing this computation to 
A, and finally producing the result of this reduction under their respective assumption 
about A(x). This will guarantee that the party with the correct assumption plays 
optimally. Since this is also the one claiming the correct answer to the oracle query 
q, he will win the game, i.e., N(q,y1,y2, ... ,yk) will equal his answer hit. 

The only thing the autoreduction for A has to do is determine the value of 
N(q, Yi, Y2, ... , yk) in polynomial time using A as an oracle but without querying :r. 
It can do that along the lines of the base case algorithm given in Figure 4.1. If during 
this process the local consistency test for N's computation requires the knowledge of 
bits from the Ye 's, we compute these via the reduction defining the strategy of the cor
responding player. The bits from q we need we can retrieve from the 1\f-computations, 
since both computations are correct up to the point where they finished generating q. 
Once we know N ( q, y1 , y2 , ... , Yk) we can easily decide the correct assumption about 
A(x). 

The construction hinges on the hypothesis that we can ~~-reduce determin
ing the player's moves to A. Computing these moves can become quite complex, 
though, because we have to recursively reconstruct the game history so far. The 
number of round::; k being constant seems crucial for keeping the complexity under 
control. The conference version of this paper [6] erroneously claimed the proof works 
for EXPSPACE, which can be thought of as alternating exponential time with an 
exponential number of alternations. Establishing Theorem 4.4 for [XPSPACE would 
actually separate NI:. from NP, as we will see in section 5. 

Proof of Theorem 4.4. Let A be a ~?-complete set for '6..f ~i = [;rpEf accepted 
by the exponential-time oracle Turing machine M with oracle TQBFk. Let gM, eM, 

and c M be the formalization of the local consistency test for M as described by ( 4.1). 
Without loss of generality there is a polynomial p and a polynomial-time Turing 
machine N such that on inputs of size n, 1\1 makes exactly 2P(n) oracle queries, all of 
the form 

where q has length 2P2 (n). l\foreover, the computations of Nin (4.3) each have length 

2P3 (nl, and their last bit represents the answer; the same holds for the computations 
of M on inputs of length n. Let 9N, eN, and CN be the formalization of the local 
consistency test for N. 

We first define a bunch of functions computable in '6..f~['. For each of them, 
say E, we fix an oracle Turing machine R~ that ~~-reduces E to A, and which the 
final autoreduction for A will use. The proofs that we can compute these functions 
in '6..~~f are straightforward. 

Let µ((x,i)) denote the ith bit of the computation of MTQBFk on input x, and 

a( x) the first i (if any) such that R~ \ {x} ( (:r, i)) =J R~u{x} ( (x, i)). The roles ofµ and 
a are the same as in the proof of Theorem 4.1: We will use Rµ, to figure out whether 



1510 BUHRMAN, FORTNOW, VAN JV1ELKEBEEK, AND TORENVLIET 

both possible answers for the oracle query "x E A?" lead to the same final answer, 
and if not, use Ra to find a pointer i to the first incorrect bit (in any) of the simulated 
computation getting the negative oracle answer x tf. A. If 'i turns out not to point to 
an oracle query, we can proceed as in the proof of Theorem 4.1. Otherwise, we will 
make use of the following functions and associated reductions to A. 

We define the functions r7e and Ye inductively for£= 1, ... , k, At each level£ we 
first define 7/£, which induces a reduction Rrie, and then define Ye based on Rry,. All of 
these functions take an input x such that the ith bit of R~ \ {x} ( (:r, ·)) is the answer to 
an oracle query (4.3), where i = R~u{x}(x). We define l)e(:r) as the lexicographically 

2P(lxl) 
least ye E I; such that 

x[Qe+i Ye+i, Q£+2 Ye+2, · · ·, Qk Yk : 
(4.4) N(q,y1(x), Y2(x), ... , Ye-i(x), Ye, Ye+i,.,., Yk) accepts] =£mod 2; 

if this value does not exist, we set rJe(x) = 02pClxlJ. Note that the right-hand side of 
(4.4) is 1 iffye is existentially quantified in (4.3). 

(4.5) 
if f, = R:u{x}((:r,i)) mod 2, 

otherwise. 

The condition on the right-hand side of (4,5) means that we use the hypothesis .x: EA 
to compute ye(x) from Rrie in case 

(i) either Ye is existentially quantified in ( 4.3) and the player assuming x E A 
claims ( 4.3) holds, 

(ii) or else Ye is universally quantified and the player assuming :r E A claims 
( 4.3) fails. 
Otherwise we use the hypothesis x fj. A. 

In case i points to the answer to an oracle query ( 4.3), the functions "le and the 
reductions R.,1£ incorporate the moves during the successive rounds of the game un
derlying (4.3). The reduction R71,, together with the player's assumption about mem
bership of x to A, determines the actual move ye(x) during the Eth round, namely 
R~u{x}(x) if the £th round is played by the opponent assuming x EA, and R~\{x}(x) 
otherwise. The condition on the right-hand side of (4.5) guarantees that the existen
tially quantified variables are determined by the opponent clairning the query ( 4.3) 
is a true formula, and the universally quantified ones by the other opponent. In 
particular, (4.5) ensures that the opponent with the correct claim about (4.3) has a 
winning strategy. Provided it exists, the function 7/e defines a winning move during 
the £th round of the game for the opponent playing that round, given the way the 
previous rounds were actually played (as described by the y(x)'s). For odd £, i.e., 
ye is existentially quantified, it tries to set Ye such that the remainder of (4.3) holds; 
otherwise it tries to set Ye such that the remainder of ( 4.3) fai!R. The actual move 
may differ from the one given by '!Je in case the player's assumption about ::r E A is 
incorrect. The opponent with the correct assumption plays according to 7)£. Since 
that opponent also makes the correct claim about (4.3), he will win the game. In any 
case, N(q, Yi, Y2, ... , Yk) will hold iff (4.3) holds. 

Finally, we define the functions v and T, which have a similar job as the functions 
µand a, respectively, but this time for the computation of N(q, Yi, y2 , ... , yk) instead 
of the computation of M[QBF (a;). More precisely, v( (x, r)) equals the rth bit of 
the computation of N(q, y1(x),y2(x), ... , Yk(x)), where the Ye(x)'s are defined by 



SEPARATING COMPLEXITY CLASSES USING AUTOREDUCIBILITY 1511 

if R:\{x}((x,2P3 <1xl))) = R:u{x}((x,2P3 (1xl))) 

then accept iff R:u{x}((x,2P3 (ixl))) = 1 

else i <- R~u{x}(x) 

end if 

if the ith bit of R: \ {"'} ( (x, ·)) is not the answer to an oracle query 

then accept iff eM(x; i, R:\{x} ((x, YM(x;i, 1)) ), R:\{x} ((x,gM(x; i, 2))), 

... ,R:\{x}((x,gM(x;i,cM)))) = 0 

else if R~\{x}((x,2P3 <1xll)) = R~u{x}((x,2P3 (1xll)) 

end if 

then accept iff R:\{x}((x,i)) -=j: R~\{x}((x,2P3 (1xl))) 
else r <- R:u{x}(x) 

end if 

accept iff 

eN(q, Yl, y2, · .. , Yki r,R~\{x} ( (x, 9N(q, Y1, y2, ... , Yki r, 1)) ), 

R~\{x} ( (x, YN(q, y1, Y2, ... , Yki r, 2)) ), 

.. .,R~\{x}((x,gN(q,y1,y2,. . .,yk;r,cN)))) = 0 

where q denotes the query described in R:\{x}((x, ·)) 

to which the ith bit in this computation is the answer 

and 

-{ R~~U{x}(x) iff-::R:u{x}((x,i))mod2, 
YR - ~t\{x} (x) otherwise 

FIG. 4.2. Autoreduction for the set A of Theorem 4.4 on input x. 

(4.5), and the bit with index i = R:u{x}(x) in the computation R:\{x}((x,-)) is the 
answer to the oracle query (4.3). We define T(x) to be the first r (if any) for which 
R~\{x}((x,r)) # R~u{x}((x,r)), provided the bit with index i = R:u{x}(x) in the 

computation R:\{x}((x, ·))is the answer to an oracle query. 
Now that we have these functions and corresponding reductions, we can describe 

an autoreduction for A. On input x, it works as described in Figure 4.2. We next 
argue that the algorithm correctly decides A on input x. Checking the other properties 
required of an autoreduction for A is straightforward. 

We only consider the cases where R:\{x} ( (x, 2P3 (\xll)) # R~u{x} ( (x, 2P3 (1xll)) and 

i points to the answer to an oracle query in R:\{x}((x,-)). We refer to the analysis 
in the proof of Theorem 4.1 for the remaining cases. 

(i) Case R~\{x}((x,2P3 (lxll)) = R~u{x}((x,2P3 (lxll)). Ifx EA, variable i points 

to the first incorrect bit of R~\{x} ( (x, ·) ), which turns out to be the answer to an 
oracle query, say (4.3). Since R~u{x}((x,2P3 (lxll)) yields the correct oracle answer to 
(4.3), 

and we accept x. 
If x 'f. A, both R~\{x}((x,i)) and R~\{x}((x,2P3 (lxll)) give the correct answer to 

the oracle query i points to in the computation R:\{x}((x, ·)). Thus, they are equal, 
and we reject x. 

(ii) Case R~\{x} ( (x, 2P3 (lxll)) # R~u{x} ( (x, 2P3 (lx\)) ). As described in Figure 

4.2, we will use the local consistency test for R~\{x} ( (x,-)) being the computa-



1512 BUHRMAN, FORTNOW, VAN MELKEBEEK, AND TORENVLIET 

tion of N(q,y1(x),y2(x), ... ,yk(x)). Apart from bits in the purported computation 
R~\{x}((x,-)), this test may also need bits from q and from the Yt(x)'s. The y2(x)'s 
can be computed straightforwardly using their definition (4.5). The bits from q we 
might need can be retrieved from R:\{x} ( (x, ·) ). This is because our encoding scheme 
for computations has the property that the query q is a substring of the prefix of the 
computation up to the position indexed by i. Since either R:\{x}((x, ·)) is correct 
everywhere, or else i is the first position where it is incorrect, the description of q in 
R~\{x} ( (x,-)) is correct in any case. Moreover, we can easily compute a pointer to 

the beginning of the substring q of R:\{x} ( (x, ·)) from i. 
If x E A, R:\{x}((x,2P3 (lxll)) is incorrect, so R:\{x}((x, ·)) has an error as a 

computation of N(q,y1 (x),y2(x), .. .,yk(x)). Variable r gets assigned the index of 
the first incorrect bit in this computation, so the local consistency check fails, and we 
accept x. 

If x fj. A, R:\{x}((x,-)) is a valid computation of N(q, Yi(x), Y2(x), .. ., Yk(x)), so 
every local consistency test is passed, and we reject x. 0 

4.2. Nonadaptive autoreductions. Thus far, we have constructed autoreduc
tions for ::;?-complete sets A. On input x we looked at the two candidate computa
tions obtained by reducing to A, answering all oracle queries except for x according to 
A, and answering query x positively for one candidate, and negatively for the other. 
If the candidates disagreed, we tried to find out the right one, which always existed. 
We managed to get the idea to work for quite powerful sets A, e.g., EXP-complete 
sets, by exploiting the local checkability of computations. That allowed us to figure 
out the wrong computation without going through the entire computation ourselves: 
With help from A, we first computed a pointer to the first mistake in the wrong 
computation, and then verified it locally. 

We cannot use this adaptive approach for constructing nonadaptive autoreduc
tions. It seems like figuring out the wrong computation in a nonadaptive way requires 
the autoreduction to perform the computation of the base machine itself, so the base 
machine has to run in polynomial time. Then checking the computation essentially 
boils down to verifying the oracle answers. Using the game characterization of the 
polynomial-time hierarchy along the same lines as in Theorem 4.4, we can do this for 
oracles from the polynomial-time hierarchy. 

THEOREM 4.5. For any integer k 2:: 0, every ::;ft-complete set for 6.f+1 is non
adaptively autoreducible. 

Parallel to the adaptive case, an earlier version of this paper [6] stated Theorem 
4.5 for unbounded k, i.e., for PSPACE. However, we only get the proof to work for 
constant k. In section 5, we will see that proving Theorem 4.5 for PSPAC£ would 
separate N£ from NP. 

The only additional difficulty in the proof is that in the nonadaptive setting, we 
do not know which player has to perform the even rounds, and which one the odd 
rounds in the k-round game underlying a query like (4.2). But we can just have them 
play both scenarios, and afterwards figure out the relevant run. 

Proof of Theorem 4.5. Let A be a ::;ft-complete set for 6.f+i = pE~ accepted by 
the polynomial-time oracle Turing machine M with oracle TQBFk. Without loss of 
generality there is a polynomial panda polynomial-time Turing machine N such that 
on inputs of size n, M makes exactly p(n) oracle queries q, all of the form 

(4.6) 3y1 E :Ep(nl, 'Vy2 E EP(nl, ... ,QkYk E L;P(n): N(q,y1,Y2, . .. ,yk) accepts, 



SEPARATING COMPLEXITY CLASSES USING AUTOREDUCIBILITY 1513 

where q has length p2(n). Let q(x, i) denote the ith oracle query of MTQBFk on input 
x. Note that q E FPEf. 

Let Q = { (x, i) I q(x, i) E TQBF d- The set Q belongs to D.f+1, so there is a 
:::;ft-reduction RQ from Q to A. 

Iffor a given input x R~u{x} and R~\{x} agree on (x,j) for every 1:::; j:::; p(JxJ), 

we are home: We can simulate the base machine Musing R~u{x} ( (x, j)) as the answer 
to the jth oracle query. 

Otherwise, we will make use of the following functions 7)1, ·ry2, ... , 'l/k computable in 
D.f+l, corresponding oracle Turing machines Rr/1 , Rr/2 , ••• , R11• defining :::;ft-reductions 
to A, and functions Y1, Y2, ... , Yk also computable in D.f+i · As in the proof of Theorem 
4.4, we define 'l/i and Yi inductively for C = 1, ... , k. They are defined for inputs x 
such that there is a smallest 1:::; i:::; p(JxJ) for which R~\{x} ( (x, i)) f= R~u{x} ( (x, i) ). 
The value of 'l)t(x) equals the lexicographically least YR E I;P(lxl) such that 

x[Qe+1 Ye+1, Qe+2 Y£+2, · · ·, Qk Yk : 

( 4.7) N(q(x, i), Yi (x), Y2(x), ... , Yi-1 (x), Yi, Ye+1, ... , Yk) accepts] = e mod 2; 

we set 1)i(x) = QP(lxl) if such string does not exist. The right-hand side of (4.7) is 1 iff 
Yi is existentially quantified in (4.6). 

(4.8) r1e X { 
RAU{x}( ) 

Yi= R~e\{x}(x) 
if e:::: R~u{x} ( (x, i)) mod 2, 

otherwise. 

The condition on the right-hand side of ( 4.8) means that we use the hypothesis x E A 
to compute Yi(x) from R11e in case 

(i) either Y£ is existentially quantified in ( 4.6) and the assumption x E A leads 
to claiming that ( 4.6) holds, 

(ii) or else Yi is universally quantified and the assumption x E A leads to claim
ing that ( 4.6) fails. 

The intuitive meaning of the functions r/i and the reductions R112 is similar to in 
the proof of Theorem 4.4: They capture the moves during the Eth round of the game 
underlying (4.6) for q = q(x, i). The function 'T)i encapsulates an optimal move during 
round e if it exists, and the reduction R,72 under the player's assumption regarding 
membership of x to A produces the actual move in that round. The condition on the 
right-hand side of ( 4.8) guarantees the correct alternation of rounds. We refer to the 
proof of Theorem 4.4 for more intuition. 

Consider the algorithm in Figure 4.3. Note that the only queries to A the algo
rithm in Figure 4.3 needs to make are the queries of Rq different from x on inputs (x, j) 
for 1 :::; j :S p(lxJ) and the queries of Rw different from x on input x for 1 :::; E:::; k. 
Since Rq and the Rr/e 's are nonadaptive, it follows that Figure 4.3 describes a :::;ft
reduction to A that does not query its own input. A similar but simplified argument 
as in the proof of Theorem 4.4 shows that it accepts A. Thus, A is nonadaptively 
autoreducible. D 

Next, we consider more restricted reductions. Using a different technique, we 
arrive at the following theorem. 

THEOREM 4.6. For any complexity class C, every :::;'f-tt-complete set for C is 
:::;'f-tt-autoreducible, provided C is closed under exponential-time reductions that only 
ask one query which is smaller in length. 



1514 BUHRMAN, FORTNOW, VAN MELKEBEEK, AND TORENVLIET 

if R~\{x}((x,j}) = R~u{x}((x,j}) for every 1 :S j :S p(lxl) 

then accept iff M accepts x when the jth oracle query is answered R~u{x} ( (x, j)) 

else i +-first j such that R~\{x}((x,j)) =f- R~u{x}((x,j)) 
accept iff N(q, Yl, y2, ... , Yk) = R~u{x} ( (x, i)) 

end if 

where q denotes the ith query of M on input x 

when the answer to the jth oracle query is given by R~u{x} ( (x,j}) 

and 
-{ R~iu{x}(x) if£:=R~u{x}((x,i))mod2, 

YR - R~i\{x}(x) otherwise 

FIG. 4.3. Nonadaptive autoreduction for the set A of Theorem 4.5 on input x. 

case truth-table of Mi on input (Oi, x) with the truth-value of query x set to A(x) 

constant: 

accept iff M;A rejects (Oi, x) 

of the form "y ft A": 

accept iff x ft A 

otherwise: 

accept iff x E A 

end case 

FIG. 4.4. Algorithm for the set D of Theorem 4.6 on input (Oi, x}. 

In particular, Theorem4.6 applies to C ==EXP, EXPSPACE, and ££XPSPACE. 
In view of Theorems 3.1 and 3.3, this implies that Theorems 3.1, 3.3, and 4.6 are op
timal. 

The proof exploits the ability of EXP to simulate all polynomial-time reductions 
to construct an auxiliary set D within C such that any :::;f-tt-reductions of D to some 
fixed complete set A has a property that induces an autoreduction on A. 

Proof of Theorem 4.6. Let M1, M2, ... be a standard enumeration of :::S:f-u
reductions such that Mi runs in time ni on inputs of size n. Let A be a :::;f_tt-complete 
set for C. 

Consider the set D that only contains strings of the form (Qi, x) for i E N and 
x E :E*, and is decided by the algorithm of Figure 4.4 on such an input. Except for 
deciding A(x), the algorithm runs in exponential time. Therefore, under the given 
conditions on c, DE c, so there is a sLtcreduction Mj from D to A. 

The construction of D diagonalizes against every :::S:Ltcreduction Mi of D to 
A whose truth-table on input (Oi, x) would become constant once we filled in the 
membership bit for x. Therefore, for every input x, one of the following cases holds 
for the truth-table of Mj on input (OJ,x). 

(i) The reduced truth-table is of the form "y EA" with y "I- x. Then y E A{::} 
Mj accepts (OJ, x) ~ x EA. 

(ii) The reduced truth-table is of the form "y ~A" with y "I- x. Then y ~A{::} 
Mj accepts (OJ, x) ~ x ~A. 

(iii) The truth-table depends on the membership to A of two strings different 
from x. Then Mf does not query x on input (QJ,x), and accepts iff x EA. 

The above analysis shows that the algorithm of Figure 4.5 describes a :::;f-ti-



SEPARATING COMPLEXITY CLASSES USING AUTOREDUCIBILITY 1515 

if JQMJ((OJ,x)) \ {x}J = 2 

then accept iff M f accepts (OJ, x) 

else { JQMJ((OJ,x)) \ {x}J = 1} 

y <- unique element of Q MJ ((OJ, x)) \ {x} 

accept iff y E A 

end if 

FIG. 4.5. Autoreduction constructed in the proof of Theorem 4.6. 

reduction of A. D 

4.3. Probabilistic and nonuniform autoreductions. The previous results 
in this section trivially imply that the s:t-complete sets for the .6.-levels of the 
exponential-time hierarchy are probabilistically autoreducible, and the :::;ft-complete 
sets for the .6.-levels of the polynomial-time hierarchy are probabilistically nonadap
tively autoreducible. Randomness allows us to prove more in the nonadaptive case. 

First, we can establish Theorem 4.5 for £XP. 
THEOREM 4. 7. Let f be a construcl'ible function. Every sj(n)-tt-complete set for 

£XP is probabilistically :::;~(f(n))-tt -autoreducible. In particular, every :::;"ft-complete 
set for £ XP is probabilistically nonadaptively autoreducible. 

Proof Let A be a SJ(n)-tt-complete set for EXP. We will apply the PCP 
Theorem for £XP [2] to A. 

LEMMA 4.8 (see [2]). There is a constant k such that for any set A E £XP, there 
is a polynomial-time Turing machine V and a polynomial p such that for any input 
x: 

( 4.9) 

(i) If x E A, then there exists a proof oracle 7r such that 

Pr [Vrr (x, r) accepts] = 1. 
li·l=v(lxl) 

(ii) If x ?/. A, then for any proof oracle 7r 

1 
Pr [Vrr ( x, r) accepts ] :::; - . 

lrl=v(lxl) 3 

Moreover, V never makes more thank proof oracle queries, and there is a proof oracle 
ii- E £XP independent of x such that (4.9) holds for 7r =ii- in case x EA. 

Translating Lemma 4.8 into our terminology, we obtain the following lemma. 
LEMMA 4.9. There ·is a constant k such that for any set A E £XP there is a 

probabilistic ::=;'f-tt-reduction N, and a set BE £XP such that for any input x: 

(i) If x E A, then NB (x) always accepts. 
(ii) If x ?/. A, then for any oracle C, Ne (x) accepts with probability at most ~. 

Let R be a ::=;j(n)-tt-reduction of B to A, and consider the probabilistic reduction 
MA that on input x, runs Non input x with oracle RAu{x}. MA is a probabilistic 
Sf f(n)-tt-reduction to A that never queries its own input. The following shows it 
defines a reduction from A: 

(i) If x EA, then RAu{x} =RA= B, so MA(x) = N 3 (x) always accepts. 
(ii) If x fj. A, then for C = RAu{x}, MA(x) = N°(x) accepts with probability 

at most ~· D 



1516 BUHRMAN, FORTNOW, VAN 1vIELKEBEEK, AND TORENVLIET 

Note that Theorem 4. 7 makes it plarniible why we did not manage to scale down 
Theorem 3.2 by one exponent to [XPSPAC£ in the nonadaptive setting, as we were 
able to do for our other results in section 3 when going from the adaptive to the 
nonadaptive case: This would separate EXP from £XPSPAC[. 

We suggest the extension of Theorem 4.7 to the 6.-levels of the exponential-time 
hierarchy as an interesting problem for further research. 

Second, Theorem 4.5 also holds for NP. 
THEOREM 4.10. All ::=;ft-complete sets for NP are probabilistically nonadaptively 

autoreducible. 
Proof. Fix a ::=;ft-complete set A for NP. Let RA denote a length nondecreasing 

:::;~-reduction of A to SAT. 
Define the set 

W = { ( ef>, Oi) \ rf> is a formula with say rn variables and :Ja E :sm : [ </J( a) and a; = l]}. 

Since WE NP, there is a :::;ft-reduction Rw from vV to A. 
We will use the following probabilistic algorithm by Valiant and Vazirani [17]. 
LEMMA 4.11 (see [17]). There exists a polynomial-time probabihst·ic Turing ma

chine N that on input a Boolean formula tp with n variables, outp·uts another quant~fier 
free Boolean formula <P = N ( <p) such that: 

(i) If <p is satisfiable, then with probabil'ity at least 4~,, <P has a uniq1;e satisfying 
assignment. 

(ii) If <p is not satisfiable, then <P is never satisfiable. 
Now consider the following algorithm for A: On input :i:, run Non input RA(x), 

yielding a Boolean formula </; with, say m variables, and it accepts iff 

evaluates to true. Note that this algorithm describes a probabilistic :::;ft-reduction to 
A that never queries its own input. Moreover, we have the following: 

(i) If x E A, then with probability at least 41~ 1 , the Valia.nt-Vazirani algo
rithm N produces a Boolean formula rf> with a unique satisfying assignment a</>. In 
that case, (R~U{x} ( (c/>, 0) ), R~U{x} ( (</;, 00) ), ... 'R~U{x} ( (</J, Qi)),. .. ) R~u{x} ( (</!, om))) 
equals a</>, and we accept x. 

(ii) If x ff. A, any Boolean formula rf> which N produces has no satisfying assign
ment, so we always reject x. 
Executing 8(n) independent runs of this algorithm, and accepting iff any of them 
accepts, yields a probabilistic nonadaptive autoreduction for A. D 

Thus, for probabilistic autoreductions, we get similar results as for deterministic 
ones: Low end complexity classes turn out to have the property that their complete 
sets are autoreducible, whereas high end complexity classes do not. As we will see in 
more detail in the next section, this structural difference yields separations. 

If we allow nonuniforrnity, the situation changes dramatically. Since probabilistic 
autoreducibility implies nonuniform autoreducibility [5], all our positive results for 
small complexity classes carry over to the nonuniforrn setting. But, as we will see 
next, the negative results do not, because also the complete sets for large complexity 
classes become autoreducible, both in the adaptive and in the nonadaptive case. Thus, 
uniformity is crucial for separating complexity classes using autoreducibility, and the 
Razborov-Rudich result [14] does not apply. 

Feigenbaum and Fortnow [7] define the following concept of #P-robustness, of 
which we also consider the nonadaptive variant. 



SEPARATING COMPLEXITY CLASSES USING AUTOREDUCIBILITY 1517 

TABLE 5.1 
Separation res'Ulis 'Using mdoreducibility. 

question yes 110 I 
Are all :S:f-complete sets for EXPSPACE autoreducible? NL t=NP PH# PSPACE 

Are all ::;~-complete sets for £EXP autore<lucible? 
NL t=NP 

PH f= EXP 
P f= PSPACE 

Are all :=;ft-complete sets for PSPACE :=;ft-autoreducible? NL t=NP PH# PSPACE 

Are all ::;ft-complete sets for EXP ::;ft-autoreducible'? 
NLt=NP 

PH ;if EXP 
PI PSPACE 

Are all ::;ft-complete sets for EXPSPACE 
probabilistically :S:ft-autoreducible? 

NL t=NP P # PSPAC£ 

DEFINITION 4.12. A set A is #P-robust ·if #'PA s;; ypA; A is nonadaptively 
#P-robust if #P;1 s;; YPrt. 

Nonadaptive #P-robustness implies #P-robustness. For the usual deterministic 
and nondeterministic complexity classes containing PSP.A.CE, all :::;~-complete sets 
are #P-robust. For the deterministic classes containing PSP.ACE, it is also true that 
the ::;ft-complete sets are nonadaptively #P-robust. 

The following connection with nonuniform autoreducibility holds. 
THEOREM 4.13. All #P-rob'Ust sets are nonuniformly a'Utored'Ucible. All non

adapt'ively #P-robust sets are nonuniformly nonadaptively autoreducible. 
Proof: Feigenbaum and Fortnow [7] show that every #P-robust language is 

random-self-reducible. Beige] and Feigenbaum [5] prove that every random-self-redu
cible set is nonuniformly autoreducihle (or ''weakly coherent,'' as they call it). Their 
proofs carry over to the nonadaptive setting. D 

It follows that the ::;ft-complete sets for the usual deterministic complexity classes 
containing PSP .ACE are all nonuniformly nonadaptively autoreducible. The same 
holds for adaptive reductions, in which case the property is also true of nondeter
ministic complexity clas8et-1 containing PSPACE. In particular, we get the following 
corollary. 

COROLLARY 4.14. All :::;f,-complete sets for- NEXP, EXPSPACE, EEXP, 
NEEXP, EEXPSPACE, ... are nonunifor-mly autored1tcible. All ~'ft-complete sets 
for PSPACE, EXP, EXPSPACE, ... are normn·iform.ly nonadaptively autornducible. 

5. Separation results. In this section, we will see how we can use the structural 
property of all complete sets being autoreducible to separate complexity classes. Based 
on the ret-1ults of sections 3 and 4, we only get separations that were already known: 
EXPH f. EEXPSPACE (by Theorems 4.4 and 3.1), EXP f. EEXPSPACE (by 
Theorems 4.7 and 3.2), and PH f. EXPSP.A.CE (by Theorems 4.5 and 3.3, and also 
by scaling down EXPH =f. EEXPSPACE). However, settling the question for certain 
other classes would yield impressive new separations. 

We summarize the implications in Table 5.1. 
THEOREM 5 .1. In Table 5.1, a positive answer to a q'Uest·ion from the first col

·umn implies the separation in the second column, and a negafrue answer implies the 
.separation in the third col'Umn. 

Most of the entries in Table 5.1 follow directly from the results of the previous 
sections. In order to finish the table, we use the next lemma. 



1518 BUHRMAN, FORTNOW, VAN MELKEBEEK, AND TORENVLIET 

LEMMA 5.2. If NP= N [., we can decide the validity of QBF-formulae of size t 
and with "Y altemaUons on a deterministic Turing machine M 1 'in time tO(c~) and on 

a nondeterministic Turing machine A12 in space 0( c1 log t), for some constant c. 

Proof. Since coNP =NP, by Cook's theorem we can transform in polynomial 
time a II1-formula with free variables into an equivalent 2::1-formula with the same free 

variables, and vice versa. Since NP= P, we can decide the validity of 2::1-formulae 
in polynomial-time. Say both the transformation algorithm T and the satisfiability 
algorithm S run in time nc for some constant c. 

Let cjJ be a QBF-formula of size t with "Y alternations. Consider the following 
algorithm for deciding r/J: Repeatedly apply the transformation T to the largest suffix 
that constitutes a 2:: 1- or II1-formula until the whole formula becomes 2: 1 , and then 
run Son it. 

This algorithm correctly decides the truth of <f;. Since the number of alternations 
decreases by one during every iteration, it makes at most / calls to T, each time at 
most raising the length of the formula to the power c. It follows that the algorithm 
runs in time tO(c" l. 

Moreover, since P = N [., a padding argument shows that DTIME[T] is con
tained in NSPACE[logT] for any time constructible function T. Therefore, the result 
holds. D 

This allows us to improve Theorems 3.2 and 3.3 as follows under the hypothesis 
NP= N.C. 

THEORE.M 5.3. If NP = NC, there is a ~f_T-complete set for EXPSPACE 
that is not probabilistically autoreducible. The same holds for EEXP instead of 
&XPSPACE. 

Proof Combine Lemma 5.2 with the probabilistic extension of Lemma 3.5 used 
in the proof of Theorem 3.2. D 

THEOREM 5.4. If NP = N £, there is a ~f-tt-complete set for PSPACE that is 
not nonadaptively autoreducible. The same holds for £XP instead of PSPACE. 

Proof Combining Lemma 5.2 with Lemma 3.7 for a(n) = n yields the result 
for £XP. The one for PSP ACE follows, since NP = N [. implies that £ XP = 
PSPACE. D 

Now, we have all ingredients for establishing Table 5.1. 

Proof of Theorem 5.1. The N £ f. NP implications in the "yes" -column of Table 
5.1 immediately follow from Theorems 5.3 and 5.4 by contraposition. 

By Theorem 3.1, a positive answer to the second question in Table 5.1 would 
yield E£XP =f. ££XPSPAC£, and by Theorem 3.3, a positive answer to the fourth 
question would imply £XP f. £XPSPAC£. By padding, both translate down to 
P =f. PSPAC£. 

Similarly, by Theorem 4.4, a negative answer to the second question would imply 

EXP'H =f. EEXP, which pads down to PH =f. EXP. A negative answer to the 
fourth question would yield PH I EXP directly by Theorem 4.5. By the same 
token, a negative answer to the first question results in £ XPH =f. £ XP SP AC£ and 

PH f. PSPAC£, and a negative answer to the third question in PH f. PSP.ACE. 
Theorem 4. 7, a negative answer to the last question implies £ XP =f. £ XP SPACE 
P =f. PSP ACE. D 

We note that we can tighten all of the separations in Table 5.1 a bit, because 
can apply Lemmas 3.5 and 3.7 to smaller classes than in Theorems 3.1 and 3.3, 
ectively. One improvement along these lines that warrants attention is replacing 
£I NP" in Table 5.1 with "coNP g NPnNSPACE[logO(l) n]." This is because 



SEPARATING COMPLEXITY CLASSES USING AUTOREDUCIBILITY 1519 

that condition suffices for Theorems 5.3 and 5.4, since we can strengthen Lemma 5.2 
as follows. 

LEMMA 5.5. If coNP <:;;NP n NSPACE[logO(l) n], we can decide the validity of 
QBF-fornmlae of size t and with/ alternations on a deterministic Turing machine M 1 

·in time tO(c-') and on a nondeterminist·ic Tur-ing machine Af2 in space O(d'logdt), 
for some constants c and d. 

6. Conclusion. We have studied the question of whether all complete sets are 
autoreducible for various complexity classes and various reducibilities. We obtained 
a positive answer for lower complexity classes in section 4 and a negative one for 
higher complexity classes in section 3. This way we separated the lower complexity 
classes from the higher ones by highlighting a structural difference. The resulting 
separations were not new, but we argued in section 5 that settling the very same 
question for intermediate complexity classes would provide major new separations. 

We believe that refinements to our techniques may lead to these separations, and 
we would like to end with some thoughts in that direction. 

One does not have to look at complete sets only. Let C1 <:;; C2 . Suppose we know 
that all complete sets for C2 are autoreducible. Then it suffices to construct, e.g., 
along the lines of Lemma 3.5, a hard set for C1 that is not autoreduc:ible, in order to 
separate C1 from C2. 

As we mentioned at the end of section 5, we can improve Theorem 3.1 a bit 
by applying Lemma 3.5 to smaller space-bounded classes than EE?<PSP.ACE. We 
cannot hope to gain much, though, since the coding in the proof of Lemma 3.5 seems 
to be DSPACE[2n"'("l ]-complete because of the QBF 2 log f3(n)-formulae of size 20(ni3Cnl l 
involved for inputs of size n. The same holds for Theorem 3.3 and Lemma 3. 7. 

Generalizations of autoreducibility may allow us to push things further. For 
example, one could look at k(n)-autoreducibility where A:(n) bits of the :;et remain 
unknown to the querying machine. Theorem 4.4 goes through for k(n) E O(logn). 
Perhaps one can exploit this leeway in the coding of Lemma 3.5 and narrow the gap 
between the positive and negative results. As discussed in section 5, this would yield 
interesting separations. 

Finally, one may want to look at other properties than autoreducibility to realize 
Post's program in complexity theory. Perhaps another concept from computability 
theory or a more artificial property can be used to separate complexity classes. 

Acknowledgments. We would like to thank l\/Ianindra Agrawal and Ashish Naik 
for very helpful discussions. We are also grateful to Carsten Lund and Muli Safra for 
answering questions regarding the PCP theorem. We thank the anonymous referees 
for their nice suggestions on how to present our results and for their meticulous 
proofreading. 

REFERENCES 

[l] K. AMBOS-SPIES, P-mitotic sets, in Logic and l\!achines: Decision Problems and Complex
ity, E. Borger, G. Hasenjager, and D. Rodiug, eds., Lecture Notes in Comput. Sci. 171, 
Springer-Verlag, Berlin, New York, 1984, pp. 1·-23. 

[2] S. ARORA, C. LUND, R. '\.!OTWANI, M. SUDAN, AND 1\1. SZEGEDY, Proof verification and the 
hardnes8 of approximation problems, J. ACM, 45 (1998), pp. 501-·555. 

[3] J. BALC.,\zAR, .J. DiAZ, AND J. GABARRCl, Structural Complexity II, lv!onogr. Theoret. Cornput. 
Sci. EATCS Ser. 22, Springer-Verlag, Berlin, 1990. 

[4] J. BALCAZAR, .J. DIAZ, AND J. GABARRCl, Str-uctuml Complexity I, l\fonogr. Thcoret. Comput. 
Sci. EATCS Ser. 11, Springer-Verlag, Berlin, 1995. 



1520 BUHRMAN, FORTNOW, VAN MELKEBEEK, AND TORENVLIET 

[5] R. BE!GEL AND J. FEIGENBAUM, On being incoherent wdhout being ·very hard, Comput. Com
plexity, 2 (1992), pp. 1-17. 

[6] H. BUHRMAN, L. FORTNOW, AND L. TORENVLIET, Using autoreducib'i/ity to separate complexity 
classes, in Proceedings of the 36th IEEE Symposium on Foundations of Computer Science, 
IEEE Computer Society, Los Alamitos, CA, 1995, pp. 520-528. 

[7] J. FEIGENBAUM AND 1. FoRTNOW, Random-self-reducibility of complete sets, SIAM J. Comput., 
22 (1993), pp. 994-1005. 

[8] L. FoRT:>OW, The role of relativization in complexity theory, Bull. European Assoc. Theoret. 
Comput. Sci., 52 (1994), pp. 229-244. 

[9] J. HARTMANIS AND R. STEARNS, On the computational corn.plexity of algo·rithms, Trans. Amer. 
Math. Soc., 117 (1965), pp. 285-306. 

[HJ] R. LADNER, Mitotic recursively enumerable sets, J. Symbolic Logic. 38 (1973), pp. 199·-211. 
[11] P. ODIFREDDI, Classical Recursion Theory, Stud. Logic Found. Math. 125, North-Holland, 

Amsterdam, 1989. 
[12] C. PAPADIMJTRIOU, Computational Complexity, Addison-Wesley, Reading, MA, 1994. 
[13] E. POST. Recursively enumemble sets of positive integers and their· decision problems, Bull. 

Amer. Math. Soc., 50 (1944), pp. 284-316. 
[14} A. R.AZBOROV AND S. R.UDICH, Natural proofs, J. Comput. System Sci., 55 (1997), pp. 24-35. 
[15] R. SOARE, Recursively Enumerable Sets and Degrees, Springer-Verlag, Berlin, New York, 1987. 
[16] B. TRAKHTENBROT, On autoreducibility, Dok!. Akad. Nauk SSSR, 192 (1970), pp. 1224-1227 

(in Russian); Soviet lvlathematics-Doklady, 11 (1970), pp. 814-817 (in English). 
[17] L. VALIANT AND V. VAZIRANI, NP is as easy as detecting unique solutions, Theoret. Comput. 

Sci., 47 (1986), pp. 85-93. 
[18] A. YAO, Coherent functions and program checkers, in Proceedings of the 22nd ACM Symposium 

on the Theory of Computing, Baltimore, MD, 1990, pp. 84--94. 


