441,568 research outputs found

    Key Steps in Developing a Cognitive Vaccine against Traumatic Flashbacks: Visuospatial Tetris versus Verbal Pub Quiz

    Get PDF
    Background: Flashbacks (intrusive memories of a traumatic event) are the hallmark feature of Post Traumatic Stress Disorder, however preventative interventions are lacking. Tetris may offer a 'cognitive vaccine' [1] against flashback development after trauma exposure. We previously reported that playing the computer game Tetris soon after viewing traumatic material reduced flashbacks compared to no-task [1]. However, two criticisms need to be addressed for clinical translation: (1) Would all games have this effect via distraction/enjoyment, or might some games even be harmful? (2) Would effects be found if administered several hours post-trauma? Accordingly, we tested Tetris versus an alternative computer game - Pub Quiz - which we hypothesized not to be helpful (Experiments 1 and 2), and extended the intervention interval to 4 hours (Experiment 2).Methodology/Principal Findings: The trauma film paradigm was used as an experimental analog for flashback development in healthy volunteers. In both experiments, participants viewed traumatic film footage of death and injury before completing one of the following: (1) no-task control condition (2) Tetris or (3) Pub Quiz. Flashbacks were monitored for 1 week. Experiment 1: 30 min after the traumatic film, playing Tetris led to a significant reduction in flashbacks compared to no-task control, whereas Pub Quiz led to a significant increase in flashbacks. Experiment 2: 4 hours post-film, playing Tetris led to a significant reduction in flashbacks compared to no-task control, whereas Pub Quiz did not.Conclusions/Significance: First, computer games can have differential effects post-trauma, as predicted by a cognitive science formulation of trauma memory. In both Experiments, playing Tetris post-trauma film reduced flashbacks. Pub Quiz did not have this effect, even increasing flashbacks in Experiment 1. Thus not all computer games are beneficial or merely distracting post-trauma - some may be harmful. Second, the beneficial effects of Tetris are retained at 4 hours post-trauma. Clinically, this delivers a feasible time-window to administer a post-trauma "cognitive vaccine".</p

    Impartial Games and Recursive Functions

    Get PDF
    Interest in 2-player impartial games often concerns the famous theory of Sprague-Grundy. In this thesis we study other aspects, bridging some gaps between combinatorial number theory, computer science and combinatorial games. The family of heap games is rewarding from the point of view of combinatorial number theory, partly because both the positions and the moves are represented simply by finite vectors of nonnegative integers. For example the famous game of Wythoff Nim on two heaps of tokens has a solution originating in Beatty sequences with modulus the Golden ratio. Sometimes generalizations of this game have similar properties, but mostly they are much harder to grasp fully. We study a spectrum of such variations, and our understanding of them ranges from being complete in the case of easier problems, to being very basic in the case of the harder ones. One of the most far reaching results concerns the convergence properties of a certain \star\star-operator for invariant subtraction games, introduced here to resolve an open problem in the area. The convergence holds for any game in any finite dimension. We also have a complete understanding of the reflexive properties of such games. Furthermore, interesting problems regarding computability can be formulated in this setting. In fact, we present two Turing complete families of impartial (heap) games. This implies that certain questions regarding their behavior are algorithmically undecidable, such as: Does a given finite sequence of move options alternate between N- and P-positions? Do two games have the same sets of P-positions? The notion of N- and P-positions is very central to the class of normal play impartial games. A position is in P if and only if it is safe to move there. This is virtually the only theory that we need. Therefore we hope that our material will inspire even advanced undergraduate students in future research projects. However we would not consider it impossible that the universality of our games will bridge even more gaps to other territories of mathematics and perhaps other sciences as well. In addition, some of our findings may apply as recreational games/mathematics

    Videogames as an incipient research object inMathematics Education

    Full text link
    [EN] This article presents a review of research made in the eld of mathematics education onthe use of video games in the classroom. These investigations have focused on four areas:impact in academic performance focused on mathematical contents, speci c mathematicalcontents learning, videogame design elements for mathematical learning and relation bet-ween videogames and problem solving. Finally, we propose two research new approachesthat have not been explored so far, like the use of commercial videogames for mathema-tical activities or the use of simulation games as environment to promote mathematicalmodeling[ES] En este artículo presentamos una revisión de las investigaciones realizadas en el ámbito de la Educación Matemática sobre el uso de videojuegos en las aulas. Hemos identificado cuatro aspectos que han centrado estas investigaciones: el impacto sobre el rendimiento académico en matemáticas, el aprendizaje de contenidos matemáticos concretos, los elementos de diseño de videojuegos para el aprendizaje de las matemáticas y la relación entre los videojuegos y la resolución de problemas. Finalmente, proponemos dos nuevos enfoques de investigación que todavía no han sido explorados, como el uso de videojuegos comerciales para desarrollar actividades matemáticas o el uso de videojuegos de simulación como entorno para promover la modelización matemática.Albarracín, L.; Hernández-Sabaté, A.; Gorgorió, N. (2017). Los videojuegos como objeto de investigación incipiente en Educación Matemática. Modelling in Science Education and Learning. 10(1):53-72. doi:10.4995/msel.2017.6081.SWORD5372101Prensky M. (2001). Digital game-based learning. McGraw-HillSalen K., Zimmerman E. (2004). Rules of play: Game design fundamentals. MIT press. Bishop A. (1991). Mathematical enculturation: A cultural perspective on mathematics education. Springer Science & Business Media. de Guzmán M. (2007). Ense-anza de las ciencias y la matemática. Revista Iberoamericana de Educación. Vol. 43, 19-58Clark, D. B., & Martinez-Garza, M. (s. f.). Prediction and Explanation as Design Mechanics in Conceptually Integrated Digital Games to Help Players Articulate the Tacit Understandings They Build through Game Play. Games, Learning, and Society, 279-305. doi:10.1017/cbo9781139031127.023Vigotsky L. S., Cole M. (1979). El desarrollo de los procesos psicológicos superiores. Ed. Crítica. Barcelona.Gros, B. (2007). Digital Games in Education. Journal of Research on Technology in Education, 40(1), 23-38. doi:10.1080/15391523.2007.10782494Charsky, D. (2010). From Edutainment to Serious Games: A Change in the Use of Game Characteristics. Games and Culture, 5(2), 177-198. doi:10.1177/1555412009354727Ke F. (2009). A qualitative meta-analysis of computer games as learning tools in "Handbook of research on effective electronic gaming in education". IGI Global, pp 1-32. https://doi.org/10.4018/978-1-59904-808-6.ch001Gee, J. P. (2003). What video games have to teach us about learning and literacy. Computers in Entertainment, 1(1), 20. doi:10.1145/950566.950595Dickey, M. D. (2005). Engaging by design: How engagement strategies in popular computer and video games can inform instructional design. Educational Technology Research and Development, 53(2), 67-83. doi:10.1007/bf02504866Connolly, T. M., Boyle, E. A., MacArthur, E., Hainey, T., & Boyle, J. M. (2012). A systematic literature review of empirical evidence on computer games and serious games. Computers & Education, 59(2), 661-686. doi:10.1016/j.compedu.2012.03.004Rosas, R., Nussbaum, M., Cumsille, P., Marianov, V., Correa, M., Flores, P., … Salinas, M. (2003). Beyond Nintendo: design and assessment of educational video games for first and second grade students. Computers & Education, 40(1), 71-94. doi:10.1016/s0360-1315(02)00099-4McFarlane A., Sparrowhawk A., Heald, Y. (2002). Report on the educational use of games. TEEM (Teachers evaluating educational multimedia), Cambridge.Hamlen, K. R. (2011). Children’s choices and strategies in video games. Computers in Human Behavior, 27(1), 532-539. doi:10.1016/j.chb.2010.10.001Özyurt, Ö., Özyurt, H., Güven, B., & Baki, A. (2014). The effects of UZWEBMAT on the probability unit achievement of Turkish eleventh grade students and the reasons for such effects. Computers & Education, 75, 1-18. doi:10.1016/j.compedu.2014.02.005Radford, L. (2009). «No! He starts walking backwards!»: interpreting motion graphs and the question of space, place and distance. ZDM, 41(4), 467-480. doi:10.1007/s11858-009-0173-9Kebritchi, M., Hirumi, A., & Bai, H. (2010). The effects of modern mathematics computer games on mathematics achievement and class motivation. Computers & Education, 55(2), 427-443. doi:10.1016/j.compedu.2010.02.007Bai, H., Pan, W., Hirumi, A., & Kebritchi, M. (2012). Assessing the effectiveness of a 3-D instructional game on improving mathematics achievement and motivation of middle school students. British Journal of Educational Technology, 43(6), 993-1003. doi:10.1111/j.1467-8535.2011.01269.xKe, F. (2008). A case study of computer gaming for math: Engaged learning from gameplay? Computers & Education, 51(4), 1609-1620. doi:10.1016/j.compedu.2008.03.003Van den Heuvel-Panhuizen, M., Kolovou, A., & Robitzsch, A. (2013). Primary school students’ strategies in early algebra problem solving supported by an online game. Educational Studies in Mathematics, 84(3), 281-307. doi:10.1007/s10649-013-9483-5Chow, A. F., Woodford, K. C., & Maes, J. (2011). Deal or No Deal: using games to improve student learning, retention and decision-making. International Journal of Mathematical Education in Science and Technology, 42(2), 259-264. doi:10.1080/0020739x.2010.519796Bottino, R. M., Ferlino, L., Ott, M., & Tavella, M. (2007). Developing strategic and reasoning abilities with computer games at primary school level. Computers & Education, 49(4), 1272-1286. doi:10.1016/j.compedu.2006.02.003Deterding, S., Dixon, D., Khaled, R., & Nacke, L. (2011). From game design elements to gamefulness. Proceedings of the 15th International Academic MindTrek Conference on Envisioning Future Media Environments - MindTrek ’11. doi:10.1145/2181037.2181040Barzilai, S., & Blau, I. (2014). Scaffolding game-based learning: Impact on learning achievements, perceived learning, and game experiences. Computers & Education, 70, 65-79. doi:10.1016/j.compedu.2013.08.003Panoutsopoulos H., Sampson D. G. (2012). A Study on Exploiting Commercial Digital Games into School Context. Educational Technology & Society, Vol.15, N.1, 15-27.Modi, G., Yang, P., Swann, A., & Dafny, N. (2006). Behavioral and Brain Functions, 2(1), 1. doi:10.1186/1744-9081-2-1Hernàndez-Sabaté, A., Joanpere, M., Gorgorió, N., & Albarracín, L. (2015). Mathematics learning opportunities when playing a Tower Defense Game. International Journal of Serious Games, 2(4). doi:10.17083/ijsg.v2i4.82Frejd P., Arlebäck J. (2017). Initial Results From An Intervention Using a Mobile Game App To Simulate A Pandemic Outbreak. Proceedings of ICTMA 17.Kiili, K. J. M., Devlin, K., Perttula, A., Tuomi, P., & Lindstedt, A. (2015). Using video games to combine learning and assessment in mathematics education. International Journal of Serious Games, 2(4). doi:10.17083/ijsg.v2i4.98Pope, H., & Mangram, C. (2015). Wuzzit Trouble: The Influence of a Digital Math Game on Student Number Sense. International Journal of Serious Games, 2(4). doi:10.17083/ijsg.v2i4.88Feng, J., Spence, I., & Pratt, J. (2007). Playing an Action Video Game Reduces Gender Differences in Spatial Cognition. Psychological Science, 18(10), 850-855. doi:10.1111/j.1467-9280.2007.01990.xFoster, S. R., Esper, S., & Griswold, W. G. (2013). From competition to metacognition. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems - CHI ’13. doi:10.1145/2470654.2470669Calder N. (2010). Using Scratch: An Integrated Problem-Solving Approach to Mathematical Thinking. Australian Primary Mathematics Classroom, Vol.15, N.4, 9-14.Chorianopoulos, K., & Giannakos, M. (2014). Design Principles for Serious Video Games in Mathematics Education: From Theory to Practice. International Journal of Serious Games. doi:10.17083/ijsg.v1i3.12Wouters P., Oostendorp H., Vrugte J., Vandercruysse S., Jong T., Elen J. (2016). The effect of surprising events in a serious game on learning mathematics. British Journal of Educational Technology, Vol.43, 540-560. https://doi.org/10.1111/bjet.12458Gutiérrez J., Arnau D., González J. A. (2015). Un estudio exploratorio sobre el uso de DragnBox Algebra como una herramienta para la ense-anza de la resolución de ecuaciones. Ensayos: Revista de la Facultad de Educación de Albacete, Vol.30, N.1 33-44.Arevalillo-Herráez, M., Arnau, D., & Marco-Giménez, L. (2013). Domain-specific knowledge representation and inference engine for an intelligent tutoring system. Knowledge-Based Systems, 49, 97-105. doi:10.1016/j.knosys.2013.04.01

    The influence of computer user knowledge and selected demographic characteristics the academic achievement of high school seniors

    Get PDF
    The primary purpose of this study was to identify the influence of computer user knowledge as measured by the Computer User Knowledge Survey (CUKS), and the personal demographic characteristics of Gender, Age, and Race on academic achievement as measured by the Graduation Exit Examination-21 (GEE-21), among high school seniors in public schools in a parish in South Louisiana. The CUKS and the Gender and Race data were collected from the self-perceived CUKS survey administered to 295 seniors registered in English IV classes at a school in South Louisiana. The academic achievement data and the ages of the student subjects were retrieved from the Louisiana Department of Education GEE-21 data base. Each of the six CUKS sub-scales, Basic Knowledge CUKS, Windows CUKS, Word Processing CUKS, Internet CUKS, Multimedia CUKS, and Computer Games CUKS, and the Overall CUKS score were correlated with each of the four GEE-21 academic achievement categories, Math, English, Science, and Social Studies. The results showed that Multimedia CUKS (r = .16; p = .018) and Basic Knowledge CUKS (r = .04; p = .037) were significantly related to English scores. No other significant relationships were found among the CUKS subscales and the GEE-21 scores. Regression analysis was used to determine if models existed which explained a significant portion of the variance in academic achievement scores. The regression models showed that Multimedia CUKS explained 2.3% of the variance in English scores; Gender explained 3.8% and Hispanic explained 1.9% of the variance in Science scores; and Gender explained 5% and Multimedia CUKS 1.9% of the variance in Social Studies scores. Conclusion included: 1) the racial make-up of the sample was very atypical for public schools in South Louisiana; 2) there was little or no correlation between computer user knowledge and academic achievement; 3) the scores of the student participants were exceptionally high on the self-perceived CUKS; 4) sample students typically scored in higher achievement levels than students statewide, and outstandingly so in Math. Recommendations included finding and using more objective computer knowledge assessments in future studies to reduce the possibility of student response error in similar studies

    HabitApp: New Play Technologies in Pediatric Cancer to Improve the Psychosocial State of Patients and Caregivers

    Full text link
    [EN] Childhood cancer involves long periods of hospitalization that trigger emotions such as fear or sadness. Previous research has studied the positive effects of technology games on improving the hospitalization experience, but most do not focus on caregivers and none allow interaction with the real time observation of a zoo. The present study evaluates the impact of HabitApp and assesses the short-term impact on the psychosocial state of patients and caregivers in order to improve the hospitalization experience. The participants in this study were 39 patients plus 39 caregivers. A quantitative analysis revealed a significant improvement in patient's and caregiver's psychosocial factors from the pre-play period to 10 min play time, and a significant interaction effect between the psychological state and the impact of HabitApp. The children with highest levels of depression obtained most benefit from the positive effects. A qualitative analysis brought out four themes: physical state, emotional state, social interaction, and hospital routines. Using a user experience questionnaire the patients and caregiver reported high satisfaction rates with the app use. These results confirm that it is important to continue studying this type of technology in order to develop better interventions to be included in an integral approach to this pathology considering caregivers into pediatric oncology patients' play therapy.This work was supported by MINECO Spain and financed by EDRF-FEDER with the project SUPEREMOS TIN2014-60077-R.Carrion-Plaza, A.; Jaén Martínez, FJ.; Montoya-Castilla, I. (2020). HabitApp: New Play Technologies in Pediatric Cancer to Improve the Psychosocial State of Patients and Caregivers. Frontiers in Psychology. 11:1-16. https://doi.org/10.3389/fpsyg.2020.00157S11611Akabane, S., Inakage, M., Leu, J., Araki, R., Choi, J. won, Chang, E., … Furukawa, S. (2010). ZOOTOPIA. ACM SIGGRAPH ASIA 2010 Posters on - SA ’10. doi:10.1145/1900354.1900388Artilheiro, A. P. S., Almeida, F. de A., & Chacon, J. M. F. (2011). Uso do brinquedo terapêutico no preparo de crianças préescolares para quimioterapia ambulatorial. Acta Paulista de Enfermagem, 24(5), 611-616. doi:10.1590/s0103-21002011000500003Barbosa, D. N. F., Bassani, P. B. S., Mossmann, J. B., Schneider, G. T., Reategui, E., Branco, M., … Nunes, M. (2014). Mobile Learning and Games: Experiences with Mobile Games Development for Children and Teenagers Undergoing Oncological Treatment. Lecture Notes in Computer Science, 153-164. doi:10.1007/978-3-319-05972-3_16Barrera, M. E., Rykov, M. H., & Doyle, S. L. (2002). The effects of interactive music therapy on hospitalized children with cancer: a pilot study. Psycho-Oncology, 11(5), 379-388. doi:10.1002/pon.589Bers, M. U. (2009). New Media for New Organs. Convergence: The International Journal of Research into New Media Technologies, 15(4), 462-469. doi:10.1177/1354856509342344Bratton, S. C., Ray, D., Rhine, T., & Jones, L. (2005). The Efficacy of Play Therapy With Children: A Meta-Analytic Review of Treatment Outcomes. Professional Psychology: Research and Practice, 36(4), 376-390. doi:10.1037/0735-7028.36.4.376Braun, V., & Clarke, V. (2006). Using thematic analysis in psychology. Qualitative Research in Psychology, 3(2), 77-101. doi:10.1191/1478088706qp063oaBrokstein, R. T., Cohen, S. O., & Walco, G. A. (2002). STARBRIGHT World and Psychological Adjustment in Children with Cancer: A Clinical Series. Children’s Health Care, 31(1), 29-45. doi:10.1207/s15326888chc3101_3Caldwell, C., Bruggers, C., Altizer, R., Bulaj, G., D’Ambrosio, T., Kessler, R., & Christiansen, B. (2013). The intersection of video games and patient empowerment. Proceedings of The 9th Australasian Conference on Interactive Entertainment Matters of Life and Death - IE ’13. doi:10.1145/2513002.2513018Dragone, M. A., Bush, P. J., Jones, J. K., Bearison, D. J., & Kamani, S. (2002). Development and evaluation of an interactive CD-ROM for children with leukemia and their families. Patient Education and Counseling, 46(4), 297-307. doi:10.1016/s0738-3991(01)00166-5Farnham, S., Cheng, L., Stone, L., Zaner-Godsey, M., Hibbeln, C., Syrjala, K., … Abrams, J. (2002). HutchWorld. Proceedings of the SIGCHI conference on Human factors in computing systems Changing our world, changing ourselves - CHI ’02. doi:10.1145/503376.503444Favara-Scacco, C., Smirne, G., Schilirò, G., & Di Cataldo, A. (2001). Art therapy as support for children with leukemia during painful procedures. Medical and Pediatric Oncology, 36(4), 474-480. doi:10.1002/mpo.1112Fuchslocher, A., Gerling, K., Masuch, M., & Kramer, N. (2011). Evaluating social games for kids and teenagers diagnosed with cancer. 2011 IEEE 1st International Conference on Serious Games and Applications for Health (SeGAH). doi:10.1109/segah.2011.6165463Gerling, K., Fuchslocher, A., Schmidt, R., Krämer, N., & Masuch, M. (2011). Designing and Evaluating Casual Health Games for Children and Teenagers with Cancer. Lecture Notes in Computer Science, 198-209. doi:10.1007/978-3-642-24500-8_21Glaser, B. G., & Strauss, A. L. (2017). The Discovery of Grounded Theory. doi:10.4324/9780203793206Ibáñez, E. (2016). Beneficio del apoyo psicosocial a la calidad de vida de niños y niñas enfermos de cáncer: Una revisión sistemática cualitativa. Revista Colombiana de Enfermería, 4(4), 125. doi:10.18270/rce.v4i4.1417Kato, P. M., Cole, S. W., Bradlyn, A. S., & Pollock, B. H. (2008). A Video Game Improves Behavioral Outcomes in Adolescents and Young Adults With Cancer: A Randomized Trial. PEDIATRICS, 122(2), e305-e317. doi:10.1542/peds.2007-3134Li, W. H., Chung, J. O., & Ho, E. K. (2011). The effectiveness of therapeutic play, using virtual reality computer games, in promoting the psychological well-being of children hospitalised with cancer. Journal of Clinical Nursing, 20(15-16), 2135-2143. doi:10.1111/j.1365-2702.2011.03733.xLima, K. Y. N. de, & Santos, V. E. P. (2015). Play as a care strategy for children with cancer. Revista Gaúcha de Enfermagem, 36(2), 76-81. doi:10.1590/1983-1447.2015.02.51514Liu, L. S., Inkpen, K. M., & Pratt, W. (2015). «I’m Not Like My Friends». Proceedings of the 18th ACM Conference on Computer Supported Cooperative Work & Social Computing. doi:10.1145/2675133.2675201Meier, A., Spada, H., & Rummel, N. (2007). A rating scheme for assessing the quality of computer-supported collaboration processes. International Journal of Computer-Supported Collaborative Learning, 2(1), 63-86. doi:10.1007/s11412-006-9005-xNilsson, S., Finnström, B., Kokinsky, E., & Enskär, K. (2009). The use of Virtual Reality for needle-related procedural pain and distress in children and adolescents in a paediatric oncology unit. European Journal of Oncology Nursing, 13(2), 102-109. doi:10.1016/j.ejon.2009.01.003Pedrosa, A. M., Monteiro, H., Lins, K., Pedrosa, F., & Melo, C. (2007). Diversão em movimento: um projeto lúdico para crianças hospitalizadas no Serviço de Oncologia Pediátrica do Instituto Materno Infantil Prof. Fernando Figueira, IMIP. Revista Brasileira de Saúde Materno Infantil, 7(1), 99-106. doi:10.1590/s1519-38292007000100012Pinquart, M. (2017). Parenting stress in caregivers of children with chronic physical condition-A meta-analysis. Stress and Health, 34(2), 197-207. doi:10.1002/smi.2780Pintado, S., & Cruz, M. F. (2017). Factores de resiliencia en niños y adolescentes con cáncer y su relación con el género y la edad. CIENCIA ergo sum, 24(2), 137-144. doi:10.30878/ces.v24n2a5Sajjad, S., Abdullah, A., Sharif, M., & Mohsin, S. (2014). Psychotherapy Through Video Game to Target Illness Related Problematic Behaviors of Children with Brain Tumor. Current Medical Imaging Reviews, 10(1), 62-72. doi:10.2174/1573405610666140313004302Schultz, K. A. P., Ness, K. K., Whitton, J., Recklitis, C., Zebrack, B., Robison, L. L., … Mertens, A. C. (2007). Behavioral and Social Outcomes in Adolescent Survivors of Childhood Cancer: A Report From the Childhood Cancer Survivor Study. Journal of Clinical Oncology, 25(24), 3649-3656. doi:10.1200/jco.2006.09.2486Shama, W., & Lucchetta, S. (2007). Psychosocial Issues of the Adolescent Cancer Patient and the Development of the Teenage Outreach Program (TOP). Journal of Psychosocial Oncology, 25(3), 99-112. doi:10.1300/j077v25n03_06Steliarova-Foucher, E., Colombet, M., Ries, L. A. G., Moreno, F., Dolya, A., Bray, F., … Bouzbid, S. (2017). International incidence of childhood cancer, 2001–10: a population-based registry study. The Lancet Oncology, 18(6), 719-731. doi:10.1016/s1470-2045(17)30186-9Suzuki, L. K., & Kato, P. M. (2003). Psychosocial Support for Patients in Pediatric Oncology: The Influences of Parents, Schools, Peers, and Technology. Journal of Pediatric Oncology Nursing, 20(4), 159-174. doi:10.1177/1043454203254039Muglia-Wechsler, A., Bragado-Álvarez, C., & Hernández-Lloreda, M. J. (2014). Eficacia de intervenciones psicológicas dirigidas a promover el ajuste de niños con cáncer y de sus padres: una revisión. Anales de Psicología, 30(1). doi:10.6018/analesps.30.1.149161Windich-Biermeier, A., Sjoberg, I., Dale, J. C., Eshelman, D., & Guzzetta, C. E. (2007). Effects of Distraction on Pain, Fear, and Distress During Venous Port Access and Venipuncture in Children and Adolescents With Cancer. Journal of Pediatric Oncology Nursing, 24(1), 8-19. doi:10.1177/104345420629601

    A Better-response Strategy for Self-interested Planning Agents

    Full text link
    [EN] When self-interested agents plan individually, interactions that prevent them from executing their actions as planned may arise. In these coordination problems, game-theoretic planning can be used to enhance the agents¿ strategic behavior considering the interactions as part of the agents¿ utility. In this work, we define a general-sum game in which interactions such as conflicts and congestions are reflected in the agents¿ utility. We propose a better-response planning strategy that guarantees convergence to an equilibrium joint plan by imposing a tax to agents involved in conflicts. We apply our approach to a real-world problem in which agents are Electric Autonomous Vehicles (EAVs). The EAVs intend to find a joint plan that ensures their individual goals are achievable in a transportation scenario where congestion and conflicting situations may arise. Although the task is computationally hard, as we theoretically prove, the experimental results show that our approach outperforms similar approaches in both performance and solution quality.This work is supported by the GLASS project TIN2014-55637-C2-2-R of the Spanish MINECO and the Prometeo project II/2013/019 funded by the Valencian Government.Jordán, J.; Torreño Lerma, A.; De Weerdt, M.; Onaindia De La Rivaherrera, E. (2018). A Better-response Strategy for Self-interested Planning Agents. Applied Intelligence. 48(4):1020-1040. https://doi.org/10.1007/s10489-017-1046-5S10201040484Aghighi M, Bäckström C (2016) A multi-parameter complexity analysis of cost-optimal and net-benefit planning. In: Proceedings of the Twenty-Sixth International Conference on International Conference on Automated Planning and Scheduling. AAAI Press, London, pp 2–10Bercher P, Mattmüller R (2008) A planning graph heuristic for forward-chaining adversarial planning. In: ECAI, vol 8, pp 921–922Brafman RI, Domshlak C, Engel Y, Tennenholtz M (2009) Planning games. In: IJCAI 2009, Proceedings of the 21st international joint conference on artificial intelligence, pp 73–78Bylander T (1994) The computational complexity of propositional strips planning. Artif Intell 69(1):165–204Chen X, Deng X (2006) Settling the complexity of two-player nash equilibrium. In: 47th annual IEEE symposium on foundations of computer science, 2006. FOCS’06. IEEE, pp 261–272Chien S, Sinclair A (2011) Convergence to approximate nash equilibria in congestion games. Games and Economic Behavior 71(2):315–327de Cote EM, Chapman A, Sykulski AM, Jennings N (2010) Automated planning in repeated adversarial games. In: 26th conference on uncertainty in artificial intelligence (UAI 2010), pp 376–383Dunne PE, Kraus S, Manisterski E, Wooldridge M (2010) Solving coalitional resource games. Artif Intell 174(1):20–50Fabrikant A, Papadimitriou C, Talwar K (2004) The complexity of pure nash equilibria. In: Proceedings of the thirty-sixth annual ACM symposium on theory of computing, STOC ’04, pp 604–612Friedman JW, Mezzetti C (2001) Learning in games by random sampling. J Econ Theory 98(1):55–84Ghallab M, Nau D, Traverso P (2004) Automated planning: theory & practice. ElsevierGoemans M, Mirrokni V, Vetta A (2005) Sink equilibria and convergence. In: Proceedings of the 46th annual IEEE symposium on foundations of computer science, FOCS ’05, pp 142–154Hadad M, Kraus S, Hartman IBA, Rosenfeld A (2013) Group planning with time constraints. Ann Math Artif Intell 69(3):243–291Hart S, Mansour Y (2010) How long to equilibrium? the communication complexity of uncoupled equilibrium procedures. Games and Economic Behavior 69(1):107–126Helmert M (2003) Complexity results for standard benchmark domains in planning. Artif Intell 143(2):219–262Helmert M (2006) The fast downward planning system. J Artif Intell Res 26(1):191–246Jennings N, Faratin P, Lomuscio A, Parsons S, Wooldrige M, Sierra C (2001) Automated negotiation: prospects, methods and challenges. Group Decis Negot 10(2):199–215Johnson DS, Papadimtriou CH, Yannakakis M (1988) How easy is local search? J Comput Syst Sci 37 (1):79–100Jonsson A, Rovatsos M (2011) Scaling up multiagent planning: a best-response approach. In: Proceedings of the 21st international conference on automated planning and scheduling, ICAPSJordán J, Onaindía E (2015) Game-theoretic approach for non-cooperative planning. In: 29th AAAI conference on artificial intelligence (AAAI-15), pp 1357–1363McDermott D, Ghallab M, Howe A, Knoblock C, Ram A, Veloso M, Weld D, Wilkins D (1998) PDDL: the planning domain definition language. Yale Center for Computational Vision and Control, New HavenMilchtaich I (1996) Congestion games with player-specific payoff functions. Games and Economic Behavior 13(1):111–124Monderer D, Shapley LS (1996) Potential games. Games and Economic Behavior 14(1):124–143Nigro N, Welch D, Peace J (2015) Strategic planning to implement publicly available ev charching stations: a guide for business and policy makers. Tech rep, Center for Climate and Energy SolutionsNisan N, Ronen A (2007) Computationally feasible vcg mechanisms. J Artif Intell Res 29(1):19–47Nisan N, Roughgarden T, Tardos E, Vazirani VV (2007) Algorithmic game theory. Cambridge University Press, New YorkPapadimitriou CH (1994) On the complexity of the parity argument and other inefficient proofs of existence. J Comput Syst Sci 48(3):498–532Richter S, Westphal M (2010) The LAMA planner: guiding cost-based anytime planning with landmarks. J Artif Intell Res 39(1):127–177Rosenthal RW (1973) A class of games possessing pure-strategy nash equilibria. Int J Game Theory 2(1):65–67Shoham Y, Leyton-Brown K (2009) Multiagent systems: algorithmic, game-theoretic, and logical foundations. Cambridge University PressTorreño A, Onaindia E, Sapena Ó (2014) A flexible coupling approach to multi-agent planning under incomplete information. Knowl Inf Syst 38(1):141–178Torreño A, Onaindia E, Sapena Ó (2014) FMAP: distributed cooperative multi-agent planning. Appl Intell 41(2):606– 626Torreño A, Sapena Ó, Onaindia E (2015) Global heuristics for distributed cooperative multi-agent planning. In: ICAPS 2015. 25th international conference on automated planning and scheduling. AAAI Press, pp 225–233Von Neumann J, Morgenstern O (2007) Theory of games and economic behavior. Princeton University Pressde Weerdt M, Bos A, Tonino H, Witteveen C (2003) A resource logic for multi-agent plan merging. Ann Math Artif Intell 37(1):93–130Wooldridge M, Endriss U, Kraus S, Lang J (2013) Incentive engineering for boolean games. Artif Intell 195:418–43

    Citizen Science and Gamification for Cultural Heritage

    Get PDF
    [ES] Este artículo presenta un procedimiento aplicado al levantamiento de los monumentos arqueológicos y arquitectónicos basado en un modelo de gamificación. La metodología puede devolver automáticamente datos científicos (XYZ y RGB) aprovechando el potencial de sistemas de adquisición structure from motion. De esta manera pueden abrirse nuevas perspectivas para el conocimiento y la valorización del patrimonio cultural, tanto en términos de participación del usuario, que se convierte en coprotagonista en el conocimiento del bien, como en relación con la contención de los costos en comparación con los métodos anteriores de levantamiento. [EN] Focus of this article is a procedure of knowledge for Built Cultural Heritage based on a model of gamification applied to scientific survey of the monuments. Automatically, the methodology is able to return scientific data (xyz and rgB) exploiting the potential of structure from motion capture systems. This new approach opens up new perspectives for the understanding and appreciation of cultural heritage, both in terms of audience involvement, which becomes co-starred in the development of knowledge of architectural and archaeological sites, both with respect to cost containment than previous methods.Senatore, L.; Gallozzi, A.; Cigola, M.; Strollo, RM. (2020). Citizen Science y Gamification aplicados a los Bienes Culturales. EGA Expresión Gráfica Arquitectónica. 25(39):232-239. https://doi.org/10.4995/ega.2020.11586OJS2322392539BAMPATZIA S., BOURlAKOS I., ANTONIOU A., VASSIlAKIS C., lEPOURAS G., and WAllACE M., 2016. en Bottino R., Jeuring J., Veltkamp R. (eds) Games and learning Alliance. GAlA 2016. lecture notes in Computer Science, pp. 331-342. Cham: Springer. https://doi.org/10.1007/978-3-319-50182-6_30BUJARI, A., CIMAN, M., GAGGI, O. and PAlAZZI C., 2017. Using gamification to discover cultural heritage locations from geo-tagged photos. , 21, 235-252. https://doi.org/10.1007/s00779-016-0989-6.CLINI P., CERQUETTI M.G., BERTUCCIOLI l., INVERNIZZI l., and GASPARINI M., 2016. Integrated methodologies for the study, enhancement and sharing of archaeological heritage: the ArcheoFano project. 6(2), 81-92. https://doi.org/10.2423/i22394303v6n2p81GAllOZZI A. SENATORE l. and DE ROSA G., 2017. Territories and Frontier of Representation, pp. 699706. Roma: Gangemi.KOCH, U., 2019. Sharing Heritage Reflections after EYCH 2018 about the place of cultural heritage for future cooperation in Europe. SCIRES, 9(1), 33-40. DOI 10.2423/i22394303v9n1p33KONTOGIANNI, G., KOUTSAFTIS, C., SKAMANTZARI, M., CHRYSANTHOPOUlOU, C., and GEORGOPOUlOS, A., 2017. Utilising 3D Realistic Models in Serious Games for Cultural Heritage. 1(2), 21-46. https://doi. org/10.4018/IJCMHS.2017070102SMITH M.l., 2014. Citizen Science in Archaeology. American Antiquity, 4, 749-762. https://doi. org/10.7183/0002-7316.79.4.74

    Video game genre (Video Games)

    Get PDF
    The variable 'genre' aims to identify and compare different types of games, mainly in terms of gameplay differences (i.e., rules and players’ possibilities to interact with a game). Genre is usually coded by using external video game databases, such as those published on journalistic websites.   Field of application/theoretical foundation: The variable ‘genre’ is often used in content analyses of video games to identify and compare different types of games. Lynch et al (2016), for example, investigate whether the number of sexualized characters differ between various video game genres (Action, Adventure, Fighting, Platformer, Role-Playing-Game, Shooter). However, the definition and validity of different genre lists is controversially discussed in the literature (e.g., Arsenault, 2009). Most content analytic studies adopt the value of the genre variable for a given game from an external source. Most commonly, scholars use one or more databases published on journalistic video game websites (www.ign.com; www.gamespot.com; www.giantbomb.com), on Wikipedia or the database of the Entertainment Software Rating Board (www.esrb.org). Most of the genre classifications in these databases are based on gameplay characteristics rather than narrative themes. For example, both the game Starcraft as well as Anno 1602 are classified as ‘real-time strategy’ on Wikipedia, regardless of the fact that they have rather different settings (science fiction vs. historic). To ensure that games are classified into a few, clear genre categories (some journalistic genre lists are extremely detailed, see Arsenault, 2009), many content analyses define potential values of the genre variable in a first step (see below). For example, while IGN (www.ign.com) currently categorizes games in 27 different genre categories, studies mostly only differentiate between 9-15 genres (see below). In a second step, the appropriate value of the variable for a given game is coded based on the external sources. Additionally, rules need to be developed that determine how to deal with potential conflicts. At first, if coding is based on multiple sources, it needs to be decided how to deal with potential conflicts between these sources. For example, Haninger and Thompson (2004) report that “the genre most frequently used” (p. 867) was coded in such cases. In contrast, Lynch and colleagues (2016) prioritized entries in the IGN database and only used additional sources (GiantBomb and Wikipedia) if information was lacking. Moreover, scholars need to decide how to deal with multiple categorizations of a given game in the same database (e.g., Anno 1602 is classified as ‘real-time strategy’ and ‘city-building game’ on Wikipedia). Lynch and colleagues (2016), for instance, coded the first genre from their list which was mentioned in the database. Finally, scholars must also ensure that their shortened list of genres (step 1) is consistent with the potentially more detailed classification approach of external databases or develop a scheme that defines the correspondence between these lists.   References/combination with other methods of data collection: Scholars may also use survey methods to classify games in homogeneous groups. For example, experts or players could be asked to evaluate several games on multiple dimensions, such as setting and gameplay mechanics. Subsequent statistical cluster analysis (e.g., hierarchical clustering) could be applied to identify homogeneous groups of games. Moreover, games could be clustered on the basis of their textual descriptions, for example, in Wikipedia articles. Automated methods, such as latent semantic analysis, can be used for this purpose (e.g. Ryan et al., 2015).   Example studies Coding material Measure Operationalization Unit(s) of analysis Source(s) (reported reliability of coding) Entry of a game in the video game database published on the journalistic website IGN; if information was unavailable the website GiantBomb as well as Wikipedia were used Genre Predefined list of genres: “action, adventure, casual, children’s entertainment, family entertainment, fighting, flight simulation, horror, platformer, racing, role-playing game (RPG), shooter, sports, strategy, or other/indeterminable” (p. 562) Game Lynch et al., 2016 (reliability not stated) Entry of a game in video game databases published on journalistic websites (IGN, GameSpot, GameFAQs) and the database of the Entertainment Software Rating Board Genre Predefined list of genres: “action, adventure, fighting, racing, role-playing, shooting, simulation, sports, strategy, or trivia” (p. 857) Game Haninger &amp; Thompson, 2004 (reliability not stated) Entry of a game in the video game database of the Entertainment Software Rating Board Genre Predefined list of genres: “adventure, flight simulator, fighting, music, role-playing, racing, shooter, sports, or strategy/puzzle” (p. 65) Game Smith et al., 2003 (reliability not stated)   References Arsenault, D. (2009). Video Game Genre, Evolution and Innovation. Eludamos. Journal for Computer Game Culture, 3(2), 29. Haninger, K., &amp; Thompson, K. M. (2004). Content and ratings of teen-rated video games. JAMA: The Journal of the American Medical Association, 160(4), 402–410. https://doi.org/10.1001/archpedi.160.4.402 Lynch, T., Tompkins, J. E., van Driel, I. I., &amp; Fritz, N. (2016). Sexy, Strong, and Secondary: A Content Analysis of Female Characters in Video Games across 31 Years. Journal of Communication, 66(4), 564–584. https://doi.org/10.1111/jcom.12237 Ryan, J. O., Kaltman, E., Mateas, M., &amp; Wardrip-Fruin, N. (2015). What We Talk About When We Talk About Games: Bottom-Up Game Studies Using Natural Language Processing. Proceedings of the 10th International Conference on the Foundations of Digital Games, 10. Smith, S. L., Lachlan, K. A., &amp; Tamborini, R. (2003). Popular video games: Quantifying the presentation of violence and its context. Journal of Broadcasting &amp; Electronic Media, 47(1), 58–76. https://doi.org/10.1207/s15506878jobem4701_

    Automatic classification of human facial features based on their appearance

    Full text link
    [EN] Classification or typology systems used to categorize different human body parts have existed for many years. Nevertheless, there are very few taxonomies of facial features. Ergonomics, forensic anthropology, crime prevention or new human-machine interaction systems and online activities, like e-commerce, e-learning, games, dating or social networks, are fields in which classifications of facial features are useful, for example, to create digital interlocutors that optimize the interactions between human and machines. However, classifying isolated facial features is difficult for human observers. Previous works reported low inter-observer and intra-observer agreement in the evaluation of facial features. This work presents a computer-based procedure to automatically classify facial features based on their global appearance. This procedure deals with the difficulties associated with classifying features using judgements from human observers, and facilitates the development of taxonomies of facial features. Taxonomies obtained through this procedure are presented for eyes, mouths and noses.Fuentes-Hurtado, F.; Diego-Mas, JA.; Naranjo Ornedo, V.; Alcañiz Raya, ML. (2019). Automatic classification of human facial features based on their appearance. PLoS ONE. 14(1):1-20. https://doi.org/10.1371/journal.pone.0211314S120141Damasio, A. R. (1985). Prosopagnosia. Trends in Neurosciences, 8, 132-135. doi:10.1016/0166-2236(85)90051-7Bruce, V., & Young, A. (1986). Understanding face recognition. British Journal of Psychology, 77(3), 305-327. doi:10.1111/j.2044-8295.1986.tb02199.xTodorov, A. (2011). Evaluating Faces on Social Dimensions. Social Neuroscience, 54-76. doi:10.1093/acprof:oso/9780195316872.003.0004Little, A. C., Burriss, R. P., Jones, B. C., & Roberts, S. C. (2007). Facial appearance affects voting decisions. Evolution and Human Behavior, 28(1), 18-27. doi:10.1016/j.evolhumbehav.2006.09.002Porter, J. P., & Olson, K. L. (2001). Anthropometric Facial Analysis of the African American Woman. Archives of Facial Plastic Surgery, 3(3), 191-197. doi:10.1001/archfaci.3.3.191Gündüz Arslan, S., Genç, C., Odabaş, B., & Devecioğlu Kama, J. (2007). Comparison of Facial Proportions and Anthropometric Norms Among Turkish Young Adults With Different Face Types. Aesthetic Plastic Surgery, 32(2), 234-242. doi:10.1007/s00266-007-9049-yFerring, V., & Pancherz, H. (2008). Divine proportions in the growing face. American Journal of Orthodontics and Dentofacial Orthopedics, 134(4), 472-479. doi:10.1016/j.ajodo.2007.03.027Mane, D. R., Kale, A. D., Bhai, M. B., & Hallikerimath, S. (2010). Anthropometric and anthroposcopic analysis of different shapes of faces in group of Indian population: A pilot study. Journal of Forensic and Legal Medicine, 17(8), 421-425. doi:10.1016/j.jflm.2010.09.001Ritz-Timme, S., Gabriel, P., Tutkuviene, J., Poppa, P., Obertová, Z., Gibelli, D., … Cattaneo, C. (2011). Metric and morphological assessment of facial features: A study on three European populations. Forensic Science International, 207(1-3), 239.e1-239.e8. doi:10.1016/j.forsciint.2011.01.035Ritz-Timme, S., Gabriel, P., Obertovà, Z., Boguslawski, M., Mayer, F., Drabik, A., … Cattaneo, C. (2010). A new atlas for the evaluation of facial features: advantages, limits, and applicability. International Journal of Legal Medicine, 125(2), 301-306. doi:10.1007/s00414-010-0446-4Kong, S. G., Heo, J., Abidi, B. R., Paik, J., & Abidi, M. A. (2005). Recent advances in visual and infrared face recognition—a review. Computer Vision and Image Understanding, 97(1), 103-135. doi:10.1016/j.cviu.2004.04.001Tavares, G., Mourão, A., & Magalhães, J. (2016). Crowdsourcing facial expressions for affective-interaction. Computer Vision and Image Understanding, 147, 102-113. doi:10.1016/j.cviu.2016.02.001Buckingham, G., DeBruine, L. M., Little, A. C., Welling, L. L. M., Conway, C. A., Tiddeman, B. P., & Jones, B. C. (2006). Visual adaptation to masculine and feminine faces influences generalized preferences and perceptions of trustworthiness. Evolution and Human Behavior, 27(5), 381-389. doi:10.1016/j.evolhumbehav.2006.03.001Boberg M, Piippo P, Ollila E. Designing Avatars. DIMEA ‘08 Proc 3rd Int Conf Digit Interact Media Entertain Arts. ACM; 2008; 232–239. doi: https://doi.org/10.1145/1413634.1413679Rojas Q., M., Masip, D., Todorov, A., & Vitria, J. (2011). Automatic Prediction of Facial Trait Judgments: Appearance vs. Structural Models. PLoS ONE, 6(8), e23323. doi:10.1371/journal.pone.0023323Laurentini, A., & Bottino, A. (2014). Computer analysis of face beauty: A survey. Computer Vision and Image Understanding, 125, 184-199. doi:10.1016/j.cviu.2014.04.006Alemany S, Gonzalez J, Nacher B, Soriano C, Arnaiz C, Heras H. Anthropometric survey of the Spanish female population aimed at the apparel industry. Proceedings of the 2010 Intl Conference on 3D Body scanning Technologies. 2010. pp. 307–315.Vinué, G., Epifanio, I., & Alemany, S. (2015). Archetypoids: A new approach to define representative archetypal data. Computational Statistics & Data Analysis, 87, 102-115. doi:10.1016/j.csda.2015.01.018Jee, S., & Yun, M. H. (2016). An anthropometric survey of Korean hand and hand shape types. International Journal of Industrial Ergonomics, 53, 10-18. doi:10.1016/j.ergon.2015.10.004Kim, N.-S., & Do, W.-H. (2014). Classification of Elderly Women’s Foot Type. Journal of the Korean Society of Clothing and Textiles, 38(3), 305-320. doi:10.5850/jksct.2014.38.3.305Sarakon P, Charoenpong T, Charoensiriwath S. Face shape classification from 3D human data by using SVM. The 7th 2014 Biomedical Engineering International Conference. IEEE; 2014. pp. 1–5. doi: https://doi.org/10.1109/BMEiCON.2014.7017382PRESTON, T. A., & SINGH, M. (1972). Redintegrated Somatotyping. Ergonomics, 15(6), 693-700. doi:10.1080/00140137208924469Lin, Y.-L., & Lee, K.-L. (1999). Investigation of anthropometry basis grouping technique for subject classification. Ergonomics, 42(10), 1311-1316. doi:10.1080/001401399184965Malousaris, G. G., Bergeles, N. K., Barzouka, K. G., Bayios, I. A., Nassis, G. P., & Koskolou, M. D. (2008). Somatotype, size and body composition of competitive female volleyball players. Journal of Science and Medicine in Sport, 11(3), 337-344. doi:10.1016/j.jsams.2006.11.008Carvalho, P. V. R., dos Santos, I. L., Gomes, J. O., Borges, M. R. S., & Guerlain, S. (2008). Human factors approach for evaluation and redesign of human–system interfaces of a nuclear power plant simulator. Displays, 29(3), 273-284. doi:10.1016/j.displa.2007.08.010Fabri M, Moore D. The use of emotionally expressive avatars in Collaborative Virtual Environments. AISB’05 Convention:Proceedings of the Joint Symposium on Virtual Social Agents: Social Presence Cues for Virtual Humanoids Empathic Interaction with Synthetic Characters Mind Minding Agents. 2005. pp. 88–94. doi:citeulike-article-id:790934Sukhija, P., Behal, S., & Singh, P. (2016). Face Recognition System Using Genetic Algorithm. Procedia Computer Science, 85, 410-417. doi:10.1016/j.procs.2016.05.183Trescak T, Bogdanovych A, Simoff S, Rodriguez I. Generating diverse ethnic groups with genetic algorithms. Proceedings of the 18th ACM symposium on Virtual reality software and technology—VRST ‘12. New York, New York, USA: ACM Press; 2012. p. 1. doi: https://doi.org/10.1145/2407336.2407338Vanezis, P., Lu, D., Cockburn, J., Gonzalez, A., McCombe, G., Trujillo, O., & Vanezis, M. (1996). Morphological Classification of Facial Features in Adult Caucasian Males Based on an Assessment of Photographs of 50 Subjects. Journal of Forensic Sciences, 41(5), 13998J. doi:10.1520/jfs13998jTamir, A. (2011). Numerical Survey of the Different Shapes of the Human Nose. Journal of Craniofacial Surgery, 22(3), 1104-1107. doi:10.1097/scs.0b013e3182108eb3Tamir, A. (2013). Numerical Survey of the Different Shapes of Human Chin. Journal of Craniofacial Surgery, 24(5), 1657-1659. doi:10.1097/scs.0b013e3182942b77Richler, J. J., Cheung, O. S., & Gauthier, I. (2011). Holistic Processing Predicts Face Recognition. Psychological Science, 22(4), 464-471. doi:10.1177/0956797611401753Taubert, J., Apthorp, D., Aagten-Murphy, D., & Alais, D. (2011). The role of holistic processing in face perception: Evidence from the face inversion effect. Vision Research, 51(11), 1273-1278. doi:10.1016/j.visres.2011.04.002Donnelly, N., & Davidoff, J. (1999). The Mental Representations of Faces and Houses: Issues Concerning Parts and Wholes. Visual Cognition, 6(3-4), 319-343. doi:10.1080/135062899395000Davidoff, J., & Donnelly, N. (1990). Object superiority: A comparison of complete and part probes. Acta Psychologica, 73(3), 225-243. doi:10.1016/0001-6918(90)90024-aTanaka, J. W., & Farah, M. J. (1993). Parts and Wholes in Face Recognition. The Quarterly Journal of Experimental Psychology Section A, 46(2), 225-245. doi:10.1080/14640749308401045Wang, R., Li, J., Fang, H., Tian, M., & Liu, J. (2012). Individual Differences in Holistic Processing Predict Face Recognition Ability. Psychological Science, 23(2), 169-177. doi:10.1177/0956797611420575Rhodes, G., Ewing, L., Hayward, W. G., Maurer, D., Mondloch, C. J., & Tanaka, J. W. (2009). Contact and other-race effects in configural and component processing of faces. British Journal of Psychology, 100(4), 717-728. doi:10.1348/000712608x396503Miller, G. A. (1994). The magical number seven, plus or minus two: Some limits on our capacity for processing information. Psychological Review, 101(2), 343-352. doi:10.1037/0033-295x.101.2.343Scharff, A., Palmer, J., & Moore, C. M. (2011). Evidence of fixed capacity in visual object categorization. Psychonomic Bulletin & Review, 18(4), 713-721. doi:10.3758/s13423-011-0101-1Meyers, E., & Wolf, L. (2007). Using Biologically Inspired Features for Face Processing. International Journal of Computer Vision, 76(1), 93-104. doi:10.1007/s11263-007-0058-8Cootes, T. F., Edwards, G. J., & Taylor, C. J. (2001). Active appearance models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(6), 681-685. doi:10.1109/34.927467Ahonen, T., Hadid, A., & Pietikainen, M. (2006). Face Description with Local Binary Patterns: Application to Face Recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(12), 2037-2041. doi:10.1109/tpami.2006.244Belhumeur, P. N., Hespanha, J. P., & Kriegman, D. J. (1997). Eigenfaces vs. Fisherfaces: recognition using class specific linear projection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(7), 711-720. doi:10.1109/34.598228Turk, M., & Pentland, A. (1991). Eigenfaces for Recognition. Journal of Cognitive Neuroscience, 3(1), 71-86. doi:10.1162/jocn.1991.3.1.71Klare B, Jain AK. On a taxonomy of facial features. IEEE 4th International Conference on Biometrics: Theory, Applications and Systems, BTAS 2010. IEEE; 2010. pp. 1–8. doi: https://doi.org/10.1109/BTAS.2010.5634533Chihaoui, M., Elkefi, A., Bellil, W., & Ben Amar, C. (2016). A Survey of 2D Face Recognition Techniques. Computers, 5(4), 21. doi:10.3390/computers5040021Ma, D. S., Correll, J., & Wittenbrink, B. (2015). The Chicago face database: A free stimulus set of faces and norming data. Behavior Research Methods, 47(4), 1122-1135. doi:10.3758/s13428-014-0532-5Asthana A, Zafeiriou S, Cheng S, Pantic M. Incremental face alignment in the wild. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 2014. pp. 1859–1866. doi: https://doi.org/10.1109/CVPR.2014.240Bag S, Barik S, Sen P, Sanyal G. A statistical nonparametric approach of face recognition: combination of eigenface &amp; modified k-means clustering. Proceedings Second International Conference on Information Processing. 2008. p. 198.Doukas, C., & Maglogiannis, I. (2010). A Fast Mobile Face Recognition System for Android OS Based on Eigenfaces Decomposition. Artificial Intelligence Applications and Innovations, 295-302. doi:10.1007/978-3-642-16239-8_39Huang P, Huang Y, Wang W, Wang L. Deep embedding network for clustering. Proceedings—International Conference on Pattern Recognition. 2014. pp. 1532–1537. doi: https://doi.org/10.1109/ICPR.2014.272Dizaji KG, Herandi A, Deng C, Cai W, Huang H. Deep Clustering via Joint Convolutional Autoencoder Embedding and Relative Entropy Minimization. Proceedings of the IEEE International Conference on Computer Vision. 2017. doi: https://doi.org/10.1109/ICCV.2017.612Xie J, Girshick R, Farhadi A. Unsupervised deep embedding for clustering analysis [Internet]. Proceedings of the 33rd International Conference on International Conference on Machine Learning—Volume 48. JMLR.org; 2016. pp. 478–487. Available: https://dl.acm.org/citation.cfm?id=3045442Nousi, P., & Tefas, A. (2017). Discriminatively Trained Autoencoders for Fast and Accurate Face Recognition. Communications in Computer and Information Science, 205-215. doi:10.1007/978-3-319-65172-9_18Sirovich, L., & Kirby, M. (1987). Low-dimensional procedure for the characterization of human faces. Journal of the Optical Society of America A, 4(3), 519. doi:10.1364/josaa.4.00051
    corecore