172 research outputs found

    Land and cryosphere products from Suomi NPP VIIRS: overview and status

    Get PDF
    [1] The Visible Infrared Imaging Radiometer Suite (VIIRS) instrument was launched in October 2011 as part of the Suomi National Polar-Orbiting Partnership (S-NPP). The VIIRS instrument was designed to improve upon the capabilities of the operational Advanced Very High Resolution Radiometer and provide observation continuity with NASA's Earth Observing System's Moderate Resolution Imaging Spectroradiometer (MODIS). Since the VIIRS first-light images were received in November 2011, NASA- and NOAA-funded scientists have been working to evaluate the instrument performance and generate land and cryosphere products to meet the needs of the NOAA operational users and the NASA science community. NOAA's focus has been on refining a suite of operational products known as Environmental Data Records (EDRs), which were developed according to project specifications under the National Polar-Orbiting Environmental Satellite System. The NASA S-NPP Science Team has focused on evaluating the EDRs for science use, developing and testing additional products to meet science data needs, and providing MODIS data product continuity. This paper presents to-date findings of the NASA Science Team's evaluation of the VIIRS land and cryosphere EDRs, specifically Surface Reflectance, Land Surface Temperature, Surface Albedo, Vegetation Indices, Surface Type, Active Fires, Snow Cover, Ice Surface Temperature, and Sea Ice Characterization. The study concludes that, for MODIS data product continuity and earth system science, an enhanced suite of land and cryosphere products and associated data system capabilities are needed beyond the EDRs currently available from the VIIRS

    Early Assessment of VIIRS On-Orbit Calibration and Support Activities

    Get PDF
    The Suomi National Polar-orbiting Partnership (S-NPP) satellite, formally the National Polar-orbiting Operational Environmental Satellite System (NPOESS) Preparatory Project (NPP), provides a bridge between current and future low-Earth orbiting weather and environmental observation satellite systems. The NASA s NPP VIIRS Characterization Support Team (VCST) is designed to assess the long term geometric and radiometric performance of the Visible Infrared Imaging Radiometer Suite (VIIRS) instrument onboard the S-NPP spacecraft and to support NPP Science Team Principal Investigators (PI) for their independent evaluation of VIIRS Environmental Data Records (EDRs). This paper provides an overview of Suomi NPP VIIRS on-orbit calibration activities and examples of sensor initial on-orbit performance. It focuses on the radiometric calibration support activities and capabilities provided by the NASA VCST

    Dedicated JPSS VIIRS Ocean Color Calibration/Validation Cruise

    Get PDF
    The NOAA/STAR ocean color team is focused on “end-to-end” production of high quality satellite ocean color products. In situ validation of satellite data is essential to produce the high quality, “fit for purpose” remotely sensed ocean color products that are required and expected by all NOAA line offices, as well as by external (both applied and research) users. In addition to serving the needs of its diverse users within the U.S., NOAA has an ever increasing role in supporting the international ocean color community and is actively engaged in the International Ocean-Colour Coordinating Group (IOCCG). The IOCCG, along with the Committee on Earth Observation Satellites (CEOS) Ocean Colour Radiometry Virtual Constellation (OCR-VC), is developing the International Network for Sensor Inter-comparison and Uncertainty assessment for Ocean Color Radiometry (INSITU-OCR). The INSITU-OCR has identified, amongst other issues, the crucial need for sustained in situ observations for product validation, with longterm measurement programs established and maintained beyond any individual mission. Recently, the NOAA/STAR Ocean Color Team has been making in situ validation measurements continually since the launch in fall 2011 of the Visible Infrared Imaging Radiometer Suite (VIIRS) aboard the Suomi National Polar-orbiting Partnership (SNPP) platform, part of the U.S. Joint Polar Satellite System (JPSS) program. NOAA ship time for the purpose of ocean color validation, however, had never been allocated until the cruise described herein. As the institutional lead for this cruise, NOAA/STAR invited external collaborators based on scientific objectives and existing institutional collaborations. The invited collaborators are all acknowledged professionals in the ocean color remote sensing community. Most of the cruise principal investigators (PIs) are also PIs of the VIIRS Ocean Color Calibration and Validation (Cal/Val) team, including groups from Stennis Space Center/Naval Research Laboratory (SSC/NRL) and the University of Southern Mississippi (USM); City College of New York (CCNY); University of Massachusetts Boston (UMB); University of South Florida (USF); University of Miami (U. Miami); and, the National Institute of Standards and Technology (NIST). These Cal/Val PIs participated directly, sent qualified researchers from their labs/groups, or else contributed specific instruments or equipment. Some of the cruise PIs are not part of the NOAA VIIRS Ocean Color Cal/Val team but were chosen to complement and augment the strengths of the Cal/Val team participants. Outside investigator groups included NASA Goddard Space Flight Center (NASA/GSFC), Lamont-Doherty Earth Observatory at Columbia University (LDEO), and the Joint Research Centre of the European Commission (JRC). This report documents the November 2014 cruise off the U.S. East Coast aboard the NOAA Ship Nancy Foster. This cruise was the first dedicated ocean color validation cruise to be supported by the NOAA Office of Marine and Air Operations (OMAO). A second OMAO-supported cruise aboard the Nancy Foster is being planned for late 2015. We at NOAA/STAR are looking forward to continuing dedicated ocean color validation cruises, supported by OMAO on NOAA vessels, on an annual basis in support of JPSS VIIRS on SNPP, J-1, J-2 and other forthcoming satellite ocean color missions from the U.S as well as other countries. We also look forward to working with the U.S. and the international ocean community for improving our understanding of global ocean optical, biological, and biogeochemical properties.JRC.H.1-Water Resource

    Determination of the NOAA-20 VIIRS TEB RVS from Emissive Radiation Measurements During the Pitch Maneuver

    Get PDF
    The Visible Infrared Imaging Radiometer Suite (VIIRS) is a key sensor carried on the newly launched (November 18, 2017) Joint Polar Satellite System-1 (JPSS-1), now transitioned to NOAA-20, and the Suomi National Polar-orbiting Partnership (SNPP) satellite. The two VIIRS sensors are nearly identical in design. Its on-board calibration components include a solar diffuser (SD) and a solar diffuser stability monitor (SDSM) for the reflective solar bands (RSB), a V-groove blackbody for the thermal emissive bands (TEB), and a space view (SV) port for background subtraction. These on-board calibrators are located at fixed scan angles. The VIIRS response versus scan angle (RVS) was characterized prelaunch in lab ambient conditions and is currently used to calibrate the on-orbit response for all scan angles relative to the calibrator's scan angle. A spacecraft level pitch maneuver was scheduled during the initial intensive Cal/Val testing for both the NOAA-20 and SNPP. The pitch maneuver provided a rare opportunity for VIIRS to make observations of deep space over the entire scan angle range, which can be used to characterize the TEB RVS. This study provides our analysis of the NOAA-20 pitch maneuver data and assessment of the derived TEB RVS. A comparison between the RVS determined by the pitch maneuver observations and prelaunch lab measurements is conducted for each band, detector, and mirror side of the half angle mirror

    Evaluation of the Visible Infrared Imaging Radiometer Suite (VIIRS) Cloud Base Height (CBH) Pixel-level Retrieval Algorithm for Single-layer Water Clouds

    Get PDF
    Evaluation of the Visible Infrared Imaging Radiometer Suite (VIIRS) Cloud Base Height (CBH) product was accomplished. CBH is an important factor for aviation, but a lack of coverage for ground-based retrieval is a significant limitation. Space-based retrieval is essential; therefore, the VIIRS CBH pixel-level retrieval algorithm was assessed for single-layer water clouds. Accurate (truth) measurements were needed not only for the CBH product, but also for VIIRS cloud optical thickness (COT), effective particle size (EPS), and cloud top height (CTH). Data from Atmospheric Radiation Measurement (ARM) sites were used, with VIIRS-ARM matchups created from June 2013 through October 2015 for four locations. After initial CBH results were large and highly variable, the VIIRS CTH product was replaced with the ARM (truth) CTH product. This substantially reduced variability and errors in the VIIRS CBH products, demonstrating that the CBH algorithm is fundamentally sound. Thus, future research is needed to reduce errors in the VIIRS CTH products in order to ensure the CBH products are suitable for aviation support

    A 20-YEAR CLIMATOLOGY OF GLOBAL ATMOSPHERIC METHANE FROM HYPERSPECTRAL THERMAL INFRARED SOUNDERS WITH SOME APPLICATIONS

    Get PDF
    Atmospheric Methane (CH4) is the second most important greenhouse gas after carbon dioxide (CO2), and accounts for approximately 20% of the global warming produced by all well-mixed greenhouse gases. Thus, its spatiotemporal distributions and relevant long-term trends are critical to understanding the sources, sinks, and global budget of atmospheric composition, as well as the associated climate impacts. The current suite of hyperspectral thermal infrared sounders has provided continuous global methane data records since 2002, starting with the Atmospheric Infrared Sounder (AIRS) onboard the NASA EOS/Aqua satellite launched on 2 May 2002. The Cross-track Infrared Sounder (CrIS) was launched onboard the Suomi National Polar Orbiting Partnership (SNPP) on 28 October 2011 and then on NOAA-20 on 18 November 2017. The Infrared Atmospheric Sounding Interferometer (IASI) was launched onboard the EUMETSAT MetOp-A on 19 October 2006, followed by MetOp-B on 17 September 2012, then Metop-C on 7 November 2018. In this study, nearly two decades of global CH4 concentrations retrieved from the AIRS and CrIS sensors were analyzed. Results indicate that the global mid-upper tropospheric CH4 concentrations (centered around 400 hPa) increased significantly from 2003 to 2020, i.e., with an annual average of ~1754 ppbv in 2003 and ~1839 ppbv in 2020. The total increase is approximately 85 ppbv representing a +4.8% change in 18 years. More importantly, the rate of increase was derived using satellite measurements and shown to be consistent with the rate of increase previously reported only from in-situ observational measurements. It further confirmed that there was a steady increase starting in 2007 that became stronger since 2014, as also reported from the in-situ observations. In addition, comparisons of the methane retrieved from the AIRS and CrIS against in situ measurements from NOAA Global Monitoring Laboratory (GML) were conducted. One of the key findings of this comparative study is that there are phase shifts in the seasonal cycles between satellite thermal infrared measurements and ground measurements, especially in the middle to high latitudes in the northern hemisphere. Through this, an issue common in the hyperspectral thermal sensor retrievals were discovered that was unknown previously and offered potential solutions. We also conducted research on some applications of the retrieval products in monitoring the changes of CH4 over the selected regions (the Arctic and South America). Detailed analyses based on local geographic changes related to CH4 concentration increases were discussed. The results of this study concluded that while the atmospheric CH4 concentration over the Arctic region has been increasing since the early 2000s, there were no catastrophic sudden jumps during the period of 2008-2012, as indicated by the earlier studies using pre-validated retrieval products. From our study of CH4 climatology using hyperspectral infrared sounders, it has been proved that the CH4 from hyperspectral sounders provide valuable information on CH4 for the mid-upper troposphere and lower stratosphere. Future approaches are suggested that include: 1) Utilizing extended data records for CH4 monitoring using AIRS, CrIS, and other potential new generation hyperspectral infrared sensors; 2). Improving the algorithms for trace gas retrievals; and 3). Enhancing the capacity to detect CH4 changes and anomalies with radiance signals from hyperspectral infrared sounders

    Assessing satellite-derived land product quality for earth system science applications: results from the ceos lpv sub-group

    Get PDF
    The value of satellite derived land products for science applications and research is dependent upon the known accuracy of the data. CEOS (Committee on Earth Observation Satellites), the space arm of the Group on Earth Observations (GEO), plays a key role in coordinating the land product validation process. The Land Product Validation (LPV) sub-group of the CEOS Working Group on Calibration and Validation (WGCV) aims to address the challenges associated with the validation of global land products. This paper provides an overview of LPV sub-group focus area activities, which cover seven terrestrial Essential Climate Variables (ECVs). The contribution will enhance coordination of the scientific needs of the Earth system communities with global LPV activities

    Uncertainties in Retrieval of Remote Sensing Reflectance from Ocean Color Satellite Observations

    Full text link
    Ocean Color radiometry uses remote sensing to interpret ocean dynamics by retrieving remote sensing reflectance () from satellite imagery at different scales and over different time periods. spectrum characterizes the ocean color that we observe, and from which we can discern concentrations of chlorophyll, organic and inorganic particles, and carbon fluxes in the ocean and atmosphere. is derived from the total radiance at the top of the atmosphere (TOA). However, it only represents up to ten percent of the total signal. Hence, the retrieval of from the total radiance at TOA involves the application of atmospheric correction (AC) algorithms, which include accurate modeling of Rayleigh and aerosol scattering, glint, and water variability. Each of these components yields uncertainties in the retrieved value of , especially in the blue bands. It is important to understand the main sources of uncertainties in , as uncertainties propagate into the retrieval of water parameters, which in turn inform climate models. In this study, a model was developed that quantifies the uncertainties of the main components in the current AC algorithm and used to analyze holistically the influence of these components on the uncertainties spatially and temporally in different water types taking advantage of the spectral differences between the components. The uncertainties were determined by comparing satellite and in situ data, with the in situ data obtained from the AErosol RObotic NETwork - Ocean Color (AERONET-OC) around the Northern Hemisphere and the Marine Optical BuoY (MOBY), Lanai, Hawaii. The satellite sensor data are from the Visible Infrared Imaging Radiometer Suite (VIIRS) on the S-NPP platform, the Ocean and Land Colour Instruments (OLCI) on Sentinel 3A and 3B, and the Operational Land Imager (OLI) on Landsat 8. Results showed that the Rayleigh component (molecular scattering and surface effects) is the main source of uncertainties for all water types, followed by water variability, which is more influential in coastal areas. The contributions of other components, including aerosol scattering, are usually smaller. In addition, wind speed ranges can influence results, especially in coastal regions. Across spatial scales, water variability played a dominant role in uncertainty and increased proportionally to the ground sampling distance

    Probabilistic fire spread forecast as a management tool in an operational setting

    Get PDF
    Background: An approach to predict fire growth in an operational setting, with the potential to be used as a decision-support tool for fire management, is described and evaluated. The operational use of fire behaviour models has mostly followed a deterministic approach, however, the uncertainty associated with model predictions needs to be quantified and included in wildfire planning and decision-making process during fire suppression activities. We use FARSITE to simulate the growth of a large wildfire. Probabilistic simulations of fire spread are performed, accounting for the uncertainty of some model inputs and parameters. Deterministic simulations were performed for comparison. We also assess the degree to which fire spread modelling and satellite active fire data can be combined, to forecast fire spread during large wildfires events. Results: Uncertainty was propagated through the FARSITE fire spread modelling system by randomly defining 100 different combinations of the independent input variables and parameters, and running the correspondent fire spread simulations in order to produce fire spread probability maps. Simulations were initialized with the reported ignition location and with satellite active fires. The probabilistic fire spread predictions show great potential to be used as a fire management tool in an operational setting, providing valuable information regarding the spatial–temporal distribution of burn probabilities. The advantage of probabilistic over deterministic simulations is clear when both are compared. Re-initializing simulations with satellite active fires did not improve simulations as expected. Conclusion: This information can be useful to anticipate the growth of wildfires through the landscape with an associated probability of occurrence. The additional information regarding when, where and with what probability the fire might be in the next few hours can ultimately help minimize the negative environmental, social and economic impacts of these firesinfo:eu-repo/semantics/publishedVersio

    VELOX - a new thermal infrared imager for airborne remote sensing of cloud and surface properties

    Get PDF
    The new airborne thermal infrared (TIR) imager VELOX (Video airbornE Longwave Observations within siX channels) is introduced. VELOX is a commercially available TIR camera system that has been adapted extensively for atmospheric applications, which are introduced in this paper. The system covers six spectral bands with centre wavelengths between 7.7 and 12 µm. Currently, VELOX is installed on board the German High Altitude and Long Range Research Aircraft (HALO) to observe cloud and surface properties. It provides observations of two-dimensional (2D) fields of upward terrestrial spectral radiance with a horizontal resolution of approximately 10 m×10 m at a target distance of 10 km. Atmospheric temperature values are rather low compared to the originally intended commercial applications of VELOX and range close to the detection limit of the sensor. This challenge requires additional calibration efforts to enable atmospheric applications of VELOX. Therefore, required sophisticated calibration and correction procedures, including radiometric calibrations, non-uniformity corrections, bad-pixel replacements, and window corrections, are presented. Furthermore, first observations of cloud properties acquired by VELOX during the EUREC4A (ElUcidating the RolE of Cloud-Circulation Coupling in ClimAte) campaign are discussed, including an analysis of the cloud top brightness temperature, cloud mask/fraction, and cloud top altitude data. The data reveal the potential of VELOX to resolve the cloud top temperature with a resolution of better than 0.1 K, which translates into a resolution of approximately 40 m in cloud top altitude
    • …
    corecore