96 research outputs found

    Source-Channel Diversity for Parallel Channels

    Full text link
    We consider transmitting a source across a pair of independent, non-ergodic channels with random states (e.g., slow fading channels) so as to minimize the average distortion. The general problem is unsolved. Hence, we focus on comparing two commonly used source and channel encoding systems which correspond to exploiting diversity either at the physical layer through parallel channel coding or at the application layer through multiple description source coding. For on-off channel models, source coding diversity offers better performance. For channels with a continuous range of reception quality, we show the reverse is true. Specifically, we introduce a new figure of merit called the distortion exponent which measures how fast the average distortion decays with SNR. For continuous-state models such as additive white Gaussian noise channels with multiplicative Rayleigh fading, optimal channel coding diversity at the physical layer is more efficient than source coding diversity at the application layer in that the former achieves a better distortion exponent. Finally, we consider a third decoding architecture: multiple description encoding with a joint source-channel decoding. We show that this architecture achieves the same distortion exponent as systems with optimal channel coding diversity for continuous-state channels, and maintains the the advantages of multiple description systems for on-off channels. Thus, the multiple description system with joint decoding achieves the best performance, from among the three architectures considered, on both continuous-state and on-off channels.Comment: 48 pages, 14 figure

    Turbo space-time coding for mimo systems : designs and analyses

    Get PDF
    Multiple input multiple output (MIMO) systems can provide high diversity, high data rate or a mix of both, for wireless communications. This dissertation combines both modes and suggests analyses and techniques that advance the state of the art of MIMO systems. Specifically, this dissertation studies turbo space-time coding schemes for MIMO systems. Before the designs of turbo space-time codes are presented, a fundamental tool to analyze and design turbo coding schemes, the extrinsic information transfer (EXIT) chart method, is extended from the binary/nonbinary code case to coded modulation case. This extension prepares the convergence analysis for turbo space-time code. Turbo space-time codes with symbols precoded by randomly chosen unitary time variant linear transformations (TVLT) are investigated in this dissertation. It is shown that turbo codes with TVLT achieve full diversity gain and good coding gain with high probability. The probability that these design goals are not met is shown to vanish exponentially with the Hamming distance between codewords (number of different columns). Hence, exhaustive tests of the rank and the determinant criterion are not required. As an additional benefit of the application of TVLT, with the removal of the constant modulation condition, it is proved that throughput rates achieved by these codes are significantly higher than the rates achievable by conventional space-time codes. Finally, an EXIT chart analysis for turbo space-time codes with TVLT is developed, with application to predicting frame error rate (FER) performance without running full simulation. To increase the data rate of turbo-STC without exponentially increasing the decoding complexity, a multilevel turbo space-time coding scheme with TVLT is proposed. An iterative joint demapping and decoding receiver algorithm is also proposed. For MIMO systems with a large number of transmit antennas, two types of layered turbo space-time (LTST) coding schemes are studied. For systems with low order modulation, a type of LTST with a vertical encoding structure and a low complexity parallel interference cancellation (PlC) receiver is shown to achieve close to capacity performance. For high order modulation, another type of LTST with a horizontal encoding structure, TVLT, and an ordered successive interference cancellation (OSIC) receiver is shown to achieve better performance than conventional layered space-time coding schemes, where ordering is not available in the SIC detection

    On Code Design for Interference Channels

    Get PDF
    abstract: There has been a lot of work on the characterization of capacity and achievable rate regions, and rate region outer-bounds for various multi-user channels of interest. Parallel to the developed information theoretic results, practical codes have also been designed for some multi-user channels such as multiple access channels, broadcast channels and relay channels; however, interference channels have not received much attention and only a limited amount of work has been conducted on them. With this motivation, in this dissertation, design of practical and implementable channel codes is studied focusing on multi-user channels with special emphasis on interference channels; in particular, irregular low-density-parity-check codes are exploited for a variety of cases and trellis based codes for short block length designs are performed. Novel code design approaches are first studied for the two-user Gaussian multiple access channel. Exploiting Gaussian mixture approximation, new methods are proposed wherein the optimized codes are shown to improve upon the available designs and off-the-shelf point-to-point codes applied to the multiple access channel scenario. The code design is then examined for the two-user Gaussian interference channel implementing the Han-Kobayashi encoding and decoding strategy. Compared with the point-to-point codes, the newly designed codes consistently offer better performance. Parallel to this work, code design is explored for the discrete memoryless interference channels wherein the channel inputs and outputs are taken from a finite alphabet and it is demonstrated that the designed codes are superior to the single user codes used with time sharing. Finally, the code design principles are also investigated for the two-user Gaussian interference channel employing trellis-based codes with short block lengths for the case of strong and mixed interference levels.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201

    Physical layer security in wireless networks: intelligent jamming and eavesdropping

    Get PDF
    This work aims at addressing two critical security issues residing in the physical layer of wireless networks, namely intelligent jamming and eavesdropping. In the first two chapters we study the problem of jamming in a fixed-rate transmission system with fading, under the general assumption that the jammer has no knowledge about either the codebook used by the legitimate communication terminals, or the source’s output. Both transmitter and jammer are subject to power constraints which can be enforced over each codeword (peak) or over all codewords (average). All our jamming problems are formulated as zero-sum games, having the probability of outage as pay-off function and power control functions as strategies. We provide a comprehensive coverage of these problems, under fast and slow fading, peak and average power constraints, pure and mixed strategies, with and without channel state information (CSI) feedback. Contributions to the eavesdropping problem include a novel feedback scheme for transmitting secret messages between two legitimate parties, over an eavesdropped communication link, presented in Chapter 4. Relative to Wyner’s traditional encoding scheme, our feedback-based encoding often yields larger rate-equivocation regions and achievable secrecy rates. More importantly, by exploiting the channel randomness inherent in the feedback channels, our scheme achieves a strictly positive secrecy rate even when the eavesdropper’s channel is less noisy than the legitimate receiver’s channel. In Chapter 5 we study the problem of active eavesdropping in fast fading channels. The active eavesdropper is a more powerful adversary than the classical eavesdropper. It can choose between two functional modes: eavesdropping the transmission between the legitimate parties (Ex mode), and jamming it (Jx mode) – the active eavesdropper cannot function in full duplex mode. We consider two scenarios: the best-case scenario, when the transmitter knows the eavesdropper’s strategy in advance – and hence can adaptively choose an encoding strategy – and the worst-case scenario, when the active eavesdropper can choose its strategy based on the legitimate transmitter-receiver pair’s strategy. For the second scenario, we introduce a novel encoding scheme, based on very limited and unprotected feedback – the Block-Markov Wyner (BMW) encoding scheme – which outperforms any schemes currently available

    Modelling of mobile fading channels with fading mitigation techniques

    Get PDF
    This thesis aims to contribute to the developments of wireless communication systems. The work generally consists of three parts: the first part is a discussion on general digital communication systems, the second part focuses on wireless channel modelling and fading mitigation techniques, and in the third part we discuss the possible application of advanced digital signal processing, especially time-frequency representation and blind source separation, to wireless communication systems. The first part considers general digital communication systems which will be incorporated in later parts. Today's wireless communication system is a subbranch of a general digital communication system that employs various techniques of A/D (Analog to Digital) conversion, source coding, error correction, coding, modulation, and synchronization, signal detection in noise, channel estimation, and equalization. We study and develop the digital communication algorithms to enhance the performance of wireless communication systems. In the Second Part we focus on wireless channel modelling and fading mitigation techniques. A modified Jakes' method is developed for Rayleigh fading channels. We investigate the level-crossing rate (LCR), the average duration of fades (ADF), the probability density function (PDF), the cumulative distribution function (CDF) and the autocorrelation functions (ACF) of this model. The simulated results are verified against the analytical Clarke's channel model. We also construct frequency-selective geometrical-based hyperbolically distributed scatterers (GBHDS) for a macro-cell mobile environment with the proper statistical characteristics. The modified Clarke's model and the GBHDS model may be readily expanded to a MIMO channel model thus we study the MIMO fading channel, specifically we model the MIMO channel in the angular domain. A detailed analysis of Gauss-Markov approximation of the fading channel is also given. Two fading mitigation techniques are investigated: Orthogonal Frequency Division Multiplexing (OFDM) and spatial diversity. In the Third Part, we devote ourselves to the exciting fields of Time-Frequency Analysis and Blind Source Separation and investigate the application of these powerful Digital Signal Processing (DSP) tools to improve the performance of wireless communication systems

    Low-Density Hybrid-Check Coded Superposition Mapping and its Application in OFDM and MIMO

    Get PDF
    Since Shannon’s landmark paper, many approaches have been proposed to achieve the channel capacity. In the low SNR regime, the problem has almost been solved by capacity achieving channel codes. The research on coded modulation in the high SNR regime is still under development. Among many methods in accomplishing this goal, superposition mapping is an elegant way as it does not require extra shaping to generate a Gaussian-like distributed signal. Superposition mapping has been shown to offer very close to capacity performance for the AWGN channel by combining with an irregular channel code. The aim of this thesis is to search for a code which provides stable performance for moderate sequence length and sufficient number of iterations, which is more suitable for implementation. Concerning channel coding for superposition mapping, a generalized code design has recently been proposed. The so-called low-density hybrid-check (LDHC) coding intends to contrive coding and modulation in a joint way. The LDHC coding is constructed by integrating modulation into the Tanner graph. Thus, the complete code can be obtained by taking the effects of all the components into account. In this thesis, the LDHC code design is extended to OFDM and MIMO. For OFDM, the bit loading can be realized in the graph. In case of MIMO with spatial multiplexing, the code is extended to the spatial domain. In both cases, a suitable system structure will be proposed in this thesis. It will also be shown how this novel code design improves the system performance

    Precoding and multiuser scheduling in MIMO broadcast channels

    Get PDF

    A Joint data rate - error rate analysis in correlated space-time-wireless channels

    Get PDF

    Radio Access for Ultra-Reliable Communication in 5G Systems and Beyond

    Get PDF
    • …
    corecore