
Michigan Technological University Michigan Technological University 

Digital Commons @ Michigan Tech Digital Commons @ Michigan Tech 

Dissertations, Master's Theses and Master's 
Reports - Open 

Dissertations, Master's Theses and Master's 
Reports 

2007 

A Joint data rate - error rate analysis in correlated space-time-A Joint data rate - error rate analysis in correlated space-time-

wireless channels wireless channels 

Hui Tong 
Michigan Technological University 

Follow this and additional works at: https://digitalcommons.mtu.edu/etds 

 Part of the Electrical and Computer Engineering Commons 

Copyright 2007 Hui Tong 

Recommended Citation Recommended Citation 
Tong, Hui, "A Joint data rate - error rate analysis in correlated space-time-wireless channels", Dissertation, 
Michigan Technological University, 2007. 
https://digitalcommons.mtu.edu/etds/76 

Follow this and additional works at: https://digitalcommons.mtu.edu/etds 

 Part of the Electrical and Computer Engineering Commons 

http://www.mtu.edu/
http://www.mtu.edu/
https://digitalcommons.mtu.edu/
https://digitalcommons.mtu.edu/etds
https://digitalcommons.mtu.edu/etds
https://digitalcommons.mtu.edu/etd
https://digitalcommons.mtu.edu/etd
https://digitalcommons.mtu.edu/etds?utm_source=digitalcommons.mtu.edu%2Fetds%2F76&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.mtu.edu%2Fetds%2F76&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.mtu.edu/etds?utm_source=digitalcommons.mtu.edu%2Fetds%2F76&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.mtu.edu%2Fetds%2F76&utm_medium=PDF&utm_campaign=PDFCoverPages


A Joint Data Rate - Error Rate Analysis in Correlated Space-Time Wireless

Channels

by

Hui Tong

A DISSERTATION

Presented to the Faculty of

The Graduate College at the Michigan Technological University

In Partial Fulfillment of Requirements

For the Degree of Doctor of Philosophy

Major: Electrical Engineering

Under the Supervision of Prof. Seyed Alireza Zekavat

Houghton, Michigan

2007

www.arts
pdf.com

This PDF has been modifie
d using a demo version of A

RTS PDF softw
are



A Joint Data Rate - Error Rate Analysis in Correlated Space-Time Wireless

Channels

Hui Tong, Ph.D. Candidate

Michigan Technological University, 2007

Advisor: Prof. Seyed Alireza Zekavat

Future generations of wireless communications demand a) high data rate and b)

low error rate. However, information theory has revealed that in general the two

performance metrics can not be optimized simultaneously. In other words, there

is a tradeoff between data rate and error rate. Recently, this tradeoff is studied in

multi-input-multi-output (MIMO) fading channels, where multi-antenna is employed

at both transmitter side and receiver side.

Original works on the tradeoff assumes rich scattering environments, i.e., fadings

across different antenna pairs are independent. But, in real applications, scattering

sources can be poor. For example, rural, on highway, or on the top of a skyscraper.

Therefore, practically fadings across different antenna pairs are not independent:

they are correlated. It is motivated to study the tradeoff in poor scattering environ-

ments. However, solving the interested problem is not as trivial as it looks like. In

fact, it has to be decomposed into several simpler problems.

First, the tradeoff is investigated in single-input-single-output (SISO) channels,

where temporal correlations are incorporated. A novel concept, spike sharpening

effect, is introduced to interpret the tradeoff in SISO channels.

Second, the single-input-multi-output (SIMO) channels are studied, where multi-

ple antennas are employed at the receiver side. Error performance in SIMO channels

is analyzed and simulated under perturbations and non-stationarity considerations.
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Thirdly, correlated MIMO channel modeling is studied, i.e., spatially correlated

fadings are considered. A unified framework is proposed to accommodate several

stochastic models that are presented in the literature. Moreover, under this frame-

work, it is depicted that different models are feasible in different physical environ-

ments.

Finally, an innovative channel capacity analysis reveals that, in high signal-to-

noise ratio regimes, a correlated MIMO channel can be approximately decomposed

into a linear summation of multiple parallel SISO and SIMO channels. Then, combin-

ing the previous results, the tradeoff in poor scattering MIMO channels is established.

The above results are not only meaningful for abstract analysis, but also useful

for practical algorithm development in wireless communications. They help wireless

engineer to incorporate practical considerations (Doppler spread, perturbation, sta-

tionarity, poor scattering, etc) into their design, and aim to build a system that can

approach its ultimate performance in real environments.
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Chapter 1

Introduction

This dissertation studies wireless communications in correlated fading channels. Many

realistic wireless channels, such as single-input-single-output (SISO) channels with

moderate Doppler spread, and multi-input-multi-output (MIMO) channels in poor

scattering environments, are categorized as correlated channels. In these environ-

ments, a joint data rate - error rate analysis is conducted. It is demonstrated that

there is an optimal tradeoff between data rate and error rate. This tradeoff can be

extended to other environments in a similar manner. This study is useful for inves-

tigating the capacity limits of mobile adhoc networks, e.g., wireless local positioning

system under development at Michigan Tech [Tong and Zekavat(2007)].

1.1 Motivation

In general, a communication system consists of: 1) a transmitter, 2) a receiver and 3)

a channel that maintains transmitter-receiver connection [Proakis(2000)]. In wireless

communications, the channel gains are random, because the transmitted electromag-

netic wave propagates through media in a random manner. Historically, the random

channel gains are called fadings [Rappaport(2002)].

The simplest fading channel, slow frequency flat SISO channel, has been studied

for over thirty years [Jakes(1974)]. In such channels, the transmit antenna sends
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information symbols to the receive antenna in a sequential way. Assuming fadings

vary slowly, a (relatively) constant fading might be experienced over one or multi-

ple symbol durations. Accordingly, one way to model temporal fadings is the block

fading model [Marzetta and Hochwald(1999)], i.e., fadings remain unchanged during

a certain number of symbol durations, namely a block, and then they become com-

pletely independent in the next block. Longer block corresponds to smaller temporal

correlation. Although simple, this model omits certain essential features of fading

processes, such as wide sense stationarity. In our work, we view the SISO fading

process as a stochastic process, and use its power spectral density (PSD) to describe

the correlated fadings.

In addition to SISO (single antenna) channels, if multiple antennas are employed

at the receiver side, the system would experience single-input-multi-output (SIMO)

channels. Similarly, multi-input-single-output (MISO) and MIMO channels can be

defined. In such channels, information symbols can be send not only in sequential,

but also in parallel way. In the past decade, multi-antenna systems developed in an

astounding speed.

At the beginning stage, multiple antennas are mainly exploited to achieve trans-

mit (or receive) diversity [Alamouti(1999)] [Tarokh et al.(1998)], i.e., error rate per-

formance can be improved. With the development of MIMO capacity analysis , it is

gradually realized that multiple antennas may also improve data rate performance,

namely multiplexing gain [Telatar(1999)] [Foschini and Gans(1998)]. Both of the two

advantages of multi-antenna systems have been commercialized [Golden et al.(1999)]

[Behbahani et al.(2000)].

However, recently a benchmark work found that diversity gain and multiplexing

gain can not be optimized simultaneously [Zheng and Tse(2003)]. In other words,

there is a tradeoff between diversity gain and multiplexing gain. The original works
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propose the tradeoff assuming spatially independent fadings, i.e., fadings across dif-

ferent antenna pairs are independent.

Although it is neat and relatively easy to analyze independent fadings, experimen-

tal results reveal that spatial fadings are practically correlated [Chizhik et al.(2002)].

A number of models have been proposed for correlated fadings. Examples are

[Kermoal et al.(2001)] [Sayeed(2002)] [Weichselberger et al.(2006)]. In our work, we

introduce a unified framework that accommodates all of the above channel models.

Moreover, it is found that different models are suitable only in certain physical envi-

ronments. This well explains why each model is supported by different experiments.

With a solid understanding of correlated channel models, the diversity-multiplexing

tradeoff are studied for correlated fading channels. Time varying SISO (temporally

correlated) and time-invariant MIMO (spatially correlated) channels are examined.

Finally time-varying MIMO (both temporally and spatially correlated) channels are

preliminarily studied.

1.2 Outline

In general terms, this dissertation examines the performance of wireless communi-

cation systems under certain practical considerations. The outline of each of the

chapter is as follows.

Chapter 1, the present chapter, gives the motivation, outline, and contributions

of this dissertation.

Chapter 2 studies the joint data rate - error rate performance in SISO channels

in high SNR regimes. The concepts of diversity gain and multiplexing gain are first

introduced and analyzed. The diversity-multiplexing tradeoff is then interpreted

through a novel spike sharpening effect. Finally, temporal fading correlations are

considered using the view of spike sharpening effect.
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Chapter 3 starts incorporating multi-antennas into our system. In this chapter,

multi-antennas are employed only at the receiver side (SIMO). With fully correlated

fadings, conventional Fourier beamforming techniques are dealt under array pertur-

bations. The perturbations are caused by the imperfect knowledge of array manifolds

in real applications. Theoretical analysis matches simulation results very well.

Chapter 4 extends conventional beamforming to statistically optimal beam-

forming techniques (in SIMO channels). Particularly the cyclostationarity property

of periodical signals is exploited to counter the non-stationarity problems in certain

practical environments. This work helps the covariance matrix estimation for opti-

mal beamformers. It should be noted that although the works of Chapter 3 and 4 are

conducted in the background of wireless local positioning systems, their concepts and

contributions are general: they can be applied into general communication systems

as well.

With a fine understanding of SIMO systems, Chapter 5 finally considers the case

where multiple antennas are employed at both transmitter and receiver side (MIMO).

Although correlated SIMO channel modeling is trivial, correlated MIMO channel

modeling turns out to be much harder, due to its multi-dimension nature. In this

chapter, a unified framework that accommodates previous correlated MIMO channel

models is introduced. Then, through an eigen analysis of the unified framework, it

is shown that each of the previous models are applicable only in certain physical

environments. Finally, a preliminary error rate analysis for orthogonal space-time

block codes is conducted.

Chapter 6 explores the diversity-multiplexing tradeoff in correlated MIMO

channels. Defining outage probability as the probability that the random channel

capacity is smaller than the transmission rate, the tradeoff can be demonstrated

through computing the outage probability. In this work, it is found that the outage
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probability in MIMO systems with asymptotically high signal-to-noise ratio can be

decomposed into the production of multiple conditional outage probabilities. Each

conditional outage probability corresponds to a parallel SISO system. Hence, the

tradeoff in MIMO system can be decomposed to a summation of the tradeoffs in

multiple parallel SISO systems. This outage decomposition approach is applicable in

both correlated and independent MIMO channels. The tradeoff with a small number

of antennas are explicitly derived.

Chapter 7 concludes the dissertation and discusses several broader visions.

The organization of this dissertation is summarized in Fig. 1.1.

1.3 Research Contributions

The main contribution of this dissertation is the joint error rate - data rate analysis

under practical considerations, for example, poor scattering environments. Details

of the research contributions in each chapter are as follows.

Chapter 2 analyzes diversity-multiplexing tradeoff in SISO channels through

spike sharpening effect. The mathematical derivations are introduced in a submitted

journal paper, while the intuitions are depicted in a submitted conference paper.

• H. Tong and S. A. Zekavat, “On the Fundamental Tradeoff between Diversity

Gain and Multiplexing Gain in SISO Channels with Memory,” IEEE Transac-

tions on Information Theory, in review.

• H. Tong and S. A. Zekavat, “A Novel Perspective on the Diversity-Multiplexing

Tradeoff through Spike Sharpening Effect: Multiplicative Noise in Time Vary-

ing SISO Fading Channels with High SNR,” IEEE WCNC 2008, submitted

to.
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 Chapter 1 
“Introduction” 

Chapter 2 
“Diversity-Multiplexing Tradeoff 
in SISO channels with memory” 

Chapter 3 
“Perturbation Analysis 

in SIMO Channels” 

Chapter 4 
“Stationarity Analysis 
in SIMO Channels” 

Chapter 5 
“Stochastic Correlated 

MIMO Channel Modeling” 

Chapter 6 
“Diversity-Multiplexing Tradeoff in 
Poor Scattering MIMO Channels” 

Chapter 7 
“Conclusions and 
Future Works” 

Figure 1.1: Organization of the Dissertation.

www.arts
pdf.com

This PDF has been modifie
d using a demo version of A

RTS PDF softw
are



7

Chapter 3 studies fully correlated SIMO channels. Under array perturbations,

the error performance is theoretically derived for conventional Fourier beamformers.

The discussion in this chapter was presented in one published journal paper and one

published conference paper.

• H. Tong and S. A. Zekavat, “A Novel Wireless Local Positioning System via

a Merger of DS-CDMA and Beamforming: Probability-of-Detection Perfor-

mance Analysis under Array Perturbations,” IEEE Transactions on Vehicular

Technology, no. 3, vol. 56, May 2007, pp. 1307-1320.

• H. Tong and S. A. Zekavat, “Wireless Local Positioning System via DS-CDMA

and Beamforming: A Perturbation Analysis,” IEEE WCNC 2005, New Or-

leans, LA, Apr. 2005.

Chapter 4 exploits cyclostationarity to counter non-stationarity problems in

covariance matrix estimation for optimal beamformer in SIMO channels. The results

are illustrated in one accepted journal paper and one published conference paper.

• H. Tong, J. Pourrostam, and S. A. Zekavat, “Optimum Beamforming for a

Novel Wireless Local Positioning System: A Stationarity Analysis and Solu-

tion,” EURASIP Journal on Advances in Signal Processing, to appear in.

• H. Tong and S. A. Zekavat, “Wireless Local Positioning System via DS-CDMA

and Beamforming: A Stationarity Analysis,” SPIE 2005, Orlando, FL, Mar.

2005.

Chapter 5 reviews existing correlated channel models, organizes their relation-

ships, and maps their eigen structure to specific physical environments. A pre-

liminary error performance analysis is conducted. The results in this chapter are

scattered in two journal papers (one published, one in review) and three conference

papers (two published/accepted, one in review).
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• H. Tong and S. A. Zekavat, “Spatially Correlated MIMO Channel: Generation

via Virtual Channel Representation,” no. 5, vol. 10, IEEE Communications

Letters, May. 2006.

• H. Tong and S. A. Zekavat, “Stochastic MIMO Channel Modeling: What Envi-

ronments Can Be Represented by the Kronecker Product Form?,” IEEE Trans-

actions on Wireless Communications, in review.

• H. Tong and S. A. Zekavat, “Capacity and Error Performance of Correlated

MIMO Systems Via Virtual Channel Representation,” IEEE PIMRC 2007,

Athens, Greece, Sep. 2007, to appear in.

• H. Tong and S. A. Zekavat, “A Simple Beamforming-SIMO Merger in Spatially

Correlated Channel via Virtual Channel Representation,” IEEE GLOBECOM

2005, St. Louis, MO, Nov, 2005.

• H. Tong and S. A. Zekavat, “On the Suitable Environments of the Kronecker

Product Form in MIMO Channel Modeling,” IEEE WCNC 2007, submitted

to.

Chapter 6 demonstrates an approach for computing the diversity-multiplexing

tradeoff in correlated MIMO channels. The proposed outage decomposition approach

converts MIMO channels to a combination of multiple parallel SISO channels; hence,

facilitates the tradeoff computation. The following journal paper is currently in

progress.

• H. Tong and S. A. Zekavat, “The Diversity-Multiplexing Tradeoff in Poor Scat-

tering 2x2 MIMO Channels through an Outage Decomposition Approach,” in

progress.
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I am also grateful for the collaborations in the following conference papers.

• S. A. Zekavat, H. Tong and J. Tan, “A Novel Wireless Local Positioning System

for Airport (Indoor) Security,” SPIE 2004, San Diego, CA, Feb. 2004.

• J. Pourrostam, S. A. Zekavat, and H. Tong, “A Novel DOA Estimation in

Wireless Local Positioning Systems,” IEEE RADAR 2007, Waltham, MA, Apr.

2007.

• W. Xu, S. A. Zekavat and H. Tong, “A Novel Approach for Spatially Corre-

lated Multi-User MIMO Channel Modeling: Impact of Surface Roughness and

Directional Scattering”, Allerton 2007, to appear in.
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Chapter 2

The Diversity-Multiplexing
Tradeoff in SISO Channels with
Memory

This chapter investigates the tradeoff between multiplexing gain and diversity gain

in a Single-Input-Single-Output (SISO) system with temporally correlated fadings.

More explicitly, we consider an average power constrained, single-user, SISO system

in time varying, frequency flat, Rayleigh fading channels, where channel state infor-

mation is perfectly known at the receiver, but it is not known at the transmitter.

Here, the codeword length may span over a time much greater than the channel

coherence time.

The new view of Power Spectral Density (PSD), which is a sufficient description

of the statistics of fading process, is adopted to describe correlated fadings. Cat-

egorization of fading processes based on their PSDs, and the corresponding fading

generation methods are discussed in detail. This categorization can be considered as

the generalization of Telatar’s concepts about ergodic channels.

Multiplexing gain and diversity gain serve as the critical measures of transmis-

sion rate and error rate in high signal-to-noise ratio (SNR) regimes, respectively.

With the assumption of flat PSD, i.e., independent fadings, prior research has shown
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that multiplexing gain and diversity gain can not be optimized simultaneously: the

tradeoff between them resembles a simple linear relationship.

In practical systems, the PSD of a fading process is not necessarily flat, but may

exhibit any shape with a positive Lebesgue measure. It is demonstrated that the

tradeoff between multiplexing gain and diversity gain is scaled by the “spreadness”

of the PSD, which is essentially the second order statistics of the instantaneous

mutual information in the corresponding fading channel. Using the “spreadness”, it

is finally shown that although both slow and fast varying channels yield the same

channel capacity; in fast varying channels, it is easier to approach such a capacity,

i.e., fast varying channels yield better diversity gain assuming the same multiplexing

gain.

2.1 Introduction

The study of channel capacity has been the interest of communication researchers for

over fifty years [Verdu(1998)]. The original Shannon’s capacity only deals with Ad-

ditive White Gaussian Noise (AWGN) channels [Shannon(1948)]. In recent decades,

channel capacity in fading channels has drawn significant attention due to the rapid

development of wireless communication systems, in which we need to deal with fad-

ing channels but not AWGN channels. The fundamental difference between AWGN

channels and fading channels is the nature of channel gain. In AWGN channels,

channel gain is deterministic and time invariant. In fading channels, channel gain

(fading) is random and (in most cases) time-varying.

In this chapter, we consider an average-power constrained, single-input-single-

output (SISO), single user system in time varying, frequency flat, Rayleigh fad-

ing channels, where channel state information (CSI) is available at receiver, but

not known at transmitter. This is a rather standard wireless communication sys-

tem configuration. Channel capacity of these systems has been well understood
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[Goldsmith and Varaiya(1997)] [Ozarow et al.(1994)]. However, just knowing chan-

nel capacity is often not sufficient in practical systems: It is important to know the

rate that we can approach to such a capacity.

What is channel capacity? As it is well known, error probability vanishes when

code word length approaches to infinity, while a definitely positive transmission rate

still can be maintained. The supremum of the transmission rate is channel capacity.

In a real system, we do not have an infinitely long code word. Hence, it is also

important to study how error probability decays with code word length: If error

probability decays quickly with codeword length, it is easy to approach channel

capacity.

In general, it is hard to obtain an exact characterization of the decay rate of

error probability [Feinstein(1955)]. A famous approach is Gallager’s error expo-

nent, which serves as an upper bound of the error probability [Gallager(1968)].

More recently, Zheng and Tse [Zheng and Tse(2003)] point out that the outage

probability is the lower bound of the error probability, through Fano’s inequality

[Cover and Thomas(1991)]. Moreover, they show that, in terms of diversity gain,

outage probability is a tight bound for error probability in high SNR regimes.

In this work, we are particularly interested in the error probability analysis in

high signal-to-noise ratio (SNR) regimes. In other words, we are interested in the

tradeoff between multiplexing gain and diversity gain, which serves as the critical

measure of transmission rate and error rate, respectively. First, multiplexing gain is

defined as [Zheng and Tse(2003)]:

r = lim
η→∞

R(η)

log η
. (2.1)

A transmission strategy would possess a multiplexing gain r, if the ratio of its trans-

mission rate R(η) and the logarithm of SNR η is kept constant in high SNR regimes.
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On the other hand, diversity gain is defined as [Zheng and Tse(2003)]:

d(r) = − lim
N→∞

lim
η→∞

Pe(N, η, r)

N · log η
(2.2)

This definition already incorporates the fact that the error probability Pe decays

exponentially with both the codeword length N and the logarithm of SNR η. More-

over, it also shows that diversity gain is a function of multiplexing gain, i.e., error

performance is a function of transmission rate.

Intuitively, one would expect that higher transmission rate leads to worse error

performance: actually it is true. For independent channel fadings, in high SNR

regimes with long codeword, the tradeoff between multiplexing gain and diversity

gain corresponds to [Zheng and Tse(2003)]:

d(r) = 1− r, (2.3)

i.e., roughly speaking, increasing transmission rate would lead to higher error prob-

ability.

Please note that in general, Doppler frequency shift is much smaller than the

signal bandwidth. Therefore, in most real systems, fadings are not independent but

correlated: slowly varying channels creates correlated fadings. One previous ap-

proach to model the speed of channel variation is the block fading model: Fadings

are assumed to be constant for a certain block of symbols, and then become com-

pletely independent for the next block of symbols. Of course this is a very rough

approach.

Assuming fading processes are circularly symmetric wide sense stationary ergodic

complex Gaussian processes, the new view of power spectral density (PSD) is incor-

porated in this work to describe the fading processes. Independent fadings exhibit

a flat PSD, while correlated fadings exhibit other shapes of PSD. This work shows
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that, as long as the PSD possesses a definitely positive Lebesgue measure, the trade-

off between multiplexing gain and diversity gain with correlated fadings corresponds

to:

d(r) = s · (1− r) (2.4)

where s is called the “spreadness” of the PSD, and corresponds to:

s =

(
6

π2
·
∞∑

k=1

∫ 0.5

−0.5

S2
k(f)

k2
df

)−1

. (2.5)

In (2.5), S(f) denotes the PSD of fading process, and Sk(f) = S(f)∗Sk−1(f), where

∗ denotes cyclic convolution. For flat PSD, s = 1. For other shapes of PSD, s < 1.

Extensions of the tradeoff between multiplexing gain and diversity gain have been

investigated recently, such as [Yang and Belfiore(2006)] and [Gamal et al.(2006)].

However, few of them is dealing with correlated fadings. Particularly, none of

them adopts the view of spectral analysis. Other relevant discussions, such as

[Lapidoth and Moser(2003)] [Lapidoth(2005)] and [Etkin and Tse(2006)], that adopt

the view of linear prediction (which is very close to the view of spectral analysis),

only deal with channel capacity but not error performance. Hence, this chapter con-

tributes to the joint data rate and error rate analysis of wireless communications, in

the view of spectral analysis.

The result proposed in this work can be easily extended into multi-input-multi-

output (MIMO) cases on the concept level. However, it is still hard to obtain an ex-

plicit mathematical expression in MIMO systems with correlated fadings: Kronecker

product in place of matrix multiplication, and, eigen decomposition in place of diago-

nalization lead to very high mathematical difficulties. It should be emphasized that,

once those mathematical difficulties in MIMO systems are solved, viewing fading

process through its PSD inherently leads to the immediate application of many well-

established spectral-based signal processing algorithms, e.g., cepstrum, 2D Capon,
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discrete prolate spheroidal sequence, in the newly proposed 4G and above wireless

communication systems that are most likely based on advanced MIMO techniques.

Hence, this work may have a profound impact in the future wireless system design.

Up to now, the main results have been introduced. The rest of this chapter is

organized as follow: In Section 2.2, we discuss fading channel models; In Section 2.3,

we show the derivation of the tradeoff; Section 2.4 introduces the intuitions behind

the tradeoff, and provides numerical examples; Finally Section 2.5 concludes this

chapter. Throughout the whole chapter, we try to keep just a minimum amount of

math in the text, and refer all the details of derivations to appendices.

2.2 Channel Model

The study of temporal channel modeling started in the age of Einstein [Cohen(2005)],

and surprisingly in the twenty first century, new results are still being generated

[Baddour and Beaulieu(2005)]. In this work, we particularly consider the modeling

of time-varying, frequency flat, Rayleigh fading SISO channels that are possibly

with memory, i.e., fadings are possibly correlated. Exploiting the discrete-time,

base band channel expression [Tse and Viswanath(2005)], this fading process can

always be considered as a wide sense stationary ergodic stochastic complex Gaussian

process [Goldsmith(2005a)]. The most convenient way to describe such a process is its

Power Spectral Density (PSD) [Papoulis and Pillai(2002)]. Hence, our channel model

analysis is completely based on the analysis of PSD. Assuming channel estimation

process generates a fading coefficient for every symbol, the sampling frequency of

channel fadings would be equal to the signal bandwidth. In this chapter, all PSDs

are scaled by this sampling frequency.

In this section, we first categorize fading processes: regular processes, bandlimited

processes, and periodical processes. Then, we compare different fading generation
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techniques and their corresponding suitable fading models. Finally, we show that

block fading model, different from its original purpose, is not an adequate approxi-

mation of bandlimited processes: It turns out to be a rough approach compared to

the PSD-based fading generation techniques.

2.2.1 Categorizing Temporal Channel Models

Telatar’s seminar work [Telatar(1999)] introduces two extreme cases of temporal

channels: 1) Extremely fast time varying channels: In this case channel fadings would

be independent over each symbol. Assuming wide sense stationarity, the fadings

would be independent and identically distributed (i.i.d.). In this work, the associated

channels are called i.i.d. channels, while in Telatar’s work they are called ergodic

channels; 2) Extremely slow time varying channels: In this case, channel fadings

are generated randomly, but kept invariant during the whole period of observation.

In this work, the associated channels are called time-invariant channels, while in

Telatar’s work they are called non-ergodic channels.

Real channels comprise not only extremely fast and extremely slow cases, but also

the cases between these two extreme cases. Here, we propose a general categorization

of fading processes based on their PSDs, as shown in Fig. 2.1. In the order of speed of

channel variation, five types of fading processes are introduced: i.i.d. fading, regular

process, bandlimited process, periodical process, and time-invariant process.

Here, two channel categorization approaches are discussed: 1) spectral analysis,

and 2) optimum linear prediction. It is shown that those approaches are inter-

related: the approach of optimum linear prediction is based on the approach of

spectral analysis. Explaining the two approaches and their relationship, we shall

have an intuition why this categorization leads to an intrinsic sense of the speed of

channel variation.
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Figure 2.1: Fading Processes Categorization

Spectral Analysis

i.i.d. channels are special cases of regular processes, as fadings in regular processes

are filtered white noise. The filters associated to regular processes are combinations

of finite impulse response (FIR) and/or infinite impulse response (IIR) filters, with

a finite number of taps, expressed via an auto regressive moving average (ARMA)

model. The PSD and the corresponding filter coefficients are related by spectral

factorization [Papoulis and Pillai(2002)].

PSDs of regular processes span over the whole frequency axis, from the −0.5

sampling frequency to the 0.5 sampling frequency. Here, the sampling frequency of

fading processes is in fact the signal bandwidth. In regular processes, the number of

zeros of the PSD is finite, as they represent a finite order filter. Hence, one property

of regular processes corresponds to:

u({f : S(f) = 0}) = 0. (2.6)

where u(·) denotes the Lebesgue measure on the interval [−0.5, 0.5], and S(f) denotes

the PSD of a fading process.

On the other hand, time-invariant channels are special cases of periodical pro-

cesses, as shown in Fig. 2.1. When there is only one sinusoid with f = 0, the
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periodical process becomes time-invariant process. Note that periodical processes

are not ergodic: their fading statistics can not be obtained via the observed fading

time series. Hence, it is actually not very adequate to use PSD to describe those

processes.

However, we can extend the spectral representation of deterministic signals to

represent periodical processes. They can be considered as the summation of multiple

sinusoids: the amplitude of each sinusoid is chosen randomly at the beginning, and

then held constant for the whole transmission period (possibly infinitely long). A

famous example of the periodical processes is the Jake’s model [Jakes(1974)], where

evenly spaced frequencies are chosen. Assuming the number of sinusoids is finite, the

property of periodical property corresponds to:

u({f : S(f) = 0}) = 1. (2.7)

In addition to regular and periodical processes, the PSD of bandlimited fading

processes correspond to:

u({f : S(f) = 0}) = u, u ∈ (0, 1). (2.8)

Noting that the PSD of a fading process is essentially its Doppler spectrum and in

most real systems the maximum Doppler frequency shift is much smaller than signal

bandwidth, fading processes would be practically bandlimited.

It can be seen that regular processes, bandlimited processes and periodical pro-

cesses are sorted in the order of their Lebesgue measure, while i.i.d channels and

time-invariant channels are special cases of regular processes and periodical pro-

cesses, respectively. Therefore, a generalization of Telatar’s ergodic and non-ergodic

channel models has been made here.

Intuitively, more spread the PSD has, faster the channel varies. However, a con-

sistent measurement of the “spreadness” of PSD has not been presented in the current

literature. In Section 2.3, the explicit mathematical expression of the “spreadness”

of PSD is introduced.
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Optimum Linear Prediction

Another approach for categorizing fading processes is based on optimum linear pre-

diction error [Etkin and Tse(2006)].

Question: Can we accurately predict the next future value of a stochastic process,

if an infinite number of past value is known? This question has already been answered

by mathematicians, and was summarized by Papoulis in [Papoulis(1985)]. Note that

the proof in [Papoulis(1985)] is based on spectral analysis, which is consistent with

the discussion in Section 2.2.1. Roughly speaking, the proof exploits the fact that

FIR filter for bandlimited processes must possess infinite order, while FIR filters for

regular processes possesses a finite order.

The optimum linear prediction error corresponds to:

εpred = arg min
a1,a2,···

Æ




(
h0 −

T∑

k=1

akh−k

)2

 (2.9)

where Æ denotes expectation, h−T , · · · , h−2, h−1 denotes the known fading values, h0

denotes the currently unknown fading value, and a1, a2, · · · , aT represents the linear

prediction filter.

For regular processes, a rough answer1 is [Papoulis(1985)]:

εpred > 0, for T →∞. (2.10)

This corresponds to the fact that, even given an infinitely long past, the next fading

can not be predicted accurately.

For bandlimited processes [Papoulis(1985)]:

εpred → 0, for T →∞. (2.11)

1We do not discuss the fine answer, i.e., the Paley-Wiener condition, since the goal of this chapter
is not to study the exact optimal linear prediction error.
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So, in this case, the prediction error decreases as the length of known past increases,

but it is never exactly zero with finite N . This is the reason why bandlimited

processes are also called “weakly predictable processes” [Papoulis(1985)].

For periodical processes, we have:

εpred = 0, for finite T (2.12)

So given just a finite number of known values, the next value of a periodical process

can be estimated accurately. Actually ,this is easy to understand, since the fading

values are periodical in this case.

What does prediction error mean? Larger prediction error corresponds to a harder

capability of predicting the future value through its past. This corresponds to a low

correlation between future and past values. Accordingly, comparing (2.10) to (2.12),

we recognize that regular, bandlimited, and periodical processes are sorted in the

order of speed of fading correlations.

2.2.2 Fading Generation Algorithms

In addition to categorizing fading processes, the generation techniques corresponding

to different categories are different as well.

White Noise Filtering and Regular Processes

Regular processes are mainly modeled by spectral factorization: its spectral can

always be decomposed to certain polynomials [Saeks(1976)], i.e., poles and zeros

structure. Then, a finite order FIR/IIR combined filter can be implemented via

pole-zero structure. A regular process is the output of such a minimum phase filter

with white noise as its input.
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Sum of Sinusoids and Periodical Processes

As we have shown, the spectral of periodical processes contains a finite number of

lines, i.e., line spectral. It is easily understood that such a process can be generated

by sum of sinusoids. A famous example of such a model is the Jake’s model.

Inverse DFT and Bandlimited Processes

Bandlimited processes can be generated either by a filter with infinite number of

zeros, or by an infinite number of sinusoids. But, apparently both of the two methods

are not adequate enough for simulation purposes. Bandlimited fading generation has

been well studied in a series works conducted by Beaulieu [Beaulieu and Tan(1997)]

[Young and Beaulieu(2000)], which corresponds to:

~h
DFT←→ (s0.5 ¯ ~hiid). (2.13)

Here, s0.5 denotes the square root of the PSD, hiid is a vector consisting of i.i.d.

complex random variables, and, ¯ represents element-wise multiplication. Applying

DFT to the right hand side (RHS) of (2.13), the temporal fading process is achieved.

The IDFT generation is a natural expression of periodogram, as described in

[Stoica and Moses(1997)]. It works not only with bandlimited fadings, but also with

regular and periodical processes. It is particularly applicable to the generation of a

large number of channel fadings, in which the aliasing effect is kept minimum. In our

work, we consider the cases that the number of fadings approaches infinity. Hence,

the inverse DFT method would be our preferred fading generation technique.

2.2.3 Block Fading Assumption is Not Adequate

Currently, block fading model is the most widely used temporal model for time

varying channels due to its simplicity in simulations. The block fading model assumes

that fadings are constant in a block, e.g., L transmitted symbols, while fadings in
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Figure 2.2: Understanding the block fading model in the view of spectral analysis

different blocks are completely independent. Approximately, L is the ratio of channel

coherence time and symbol duration, or the ratio of signal bandwidth and maximum

doppler frequency.

If L = 1, fading process would be a i.i.d. process, i.e., extremely fast varying

channels. If L →∞, fading process shall be a time-invariant process, i.e., extremely

slowly varying channels. L = 2, 3, · · · indicates cases between extremely fast and

extremely slowly varying channels. Therefore, block fading models can be considered

as another generalization of Telatar’s ergodic channel concept. Here, we address that

PSD-based generalization is finer than block fading model.

As shown in Fig. 2.2, block fading generation essentially is time domain inter-

polation. First an i.i.d. fading process is generated. Then, this i.i.d. process is

expanded, i.e., L − 1 zeros are inserted between each i.i.d fadings. Finally, the ex-

panded i.i.d process convolves with a filter whose L coefficients are the same, and

the output would be block fadings.

The frequency domain expression of block fading generation is shown in Fig.

2.2 as well. In frequency domain, the original spectrum is scaled after expanding.

Because the frequency response of the all one filter with L taps is a sinc function, the

spectrum of block fadings would be the multiplication of the scaled original spectrum
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and the sinc function formed by the all one filter. Hence, the spectrum of fadings

generated by block fading method includes both main lobe and side lobes.

Ideally, the spectrum of generated fadings should include only the main lobe,

while in this case it includes sidelobes. For block fading model, side lobes, which are

artificially introduced by the sinc function with length L, would not decay when the

number of generated fading increases. Levels of side lobe are solely determined by

L, and they are independent of the number of generated fadings.

In contrast, applying PSD and IDFT method, the generated spectrum would

be the convolution of the desired spectrum with the frequency response of an all

one filter with length T , where T denotes the number of total generated fading

[Stoica and Moses(1997)]. When T → ∞, the spectrum of the all one filter with

length T would approach a Dirac delta function; consequently, the generated spec-

trum would approach to the desired spectrum. However, for block fading model,

when T → ∞, the generated spectrum is still severely distorted. In this work, we

are interested in generating a large number of fadings; hence, we adopt the IDFT

method to generate correlated fadings.

2.3 The Tradeoff between Multiplexing Gain and Diversity Gain

The tradeoff is mainly shown through computing the first and the second order statis-

tics of mutual information. We first define the mutual information, then we discuss

the relationship between various concepts and statistics of mutual information: 1)

Channel capacity is mainly related to the first order statistics of mutual information,

and 2) the tradeoff between diversity gain and multiplexing gain is determined by

the second order statistics.

The results shows that the first order statistics does not vary with the PSD of

fadings, while the second order statistics varies with the PSD. Hence, although both

fast and slowly varying channels yield the same channel capacity, the diversity gain

in fast varying channels is higher, assuming the same multiplexing gain.
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2.3.1 Mutual Information in SISO Fading Channels

Before defining the mutual information and capacity, we first introduce the signal

model of frequency flat SISO channels. The frequency flat SISO channel input-output

relationship corresponds to:

y[n] = h[n] · x[n] + w[n], n ∈ {· · · ,−1, 0, 1, 2, · · · } (2.14)

where x[n] and y[n] denote the transmitted and received symbols, respectively, and

h[n] and w[n] denote channel fadings and receiver noise, respectively. It is assumed

that w[n] is an i.i.d. complex Gaussian process with variance σ2
w, and h[n] is a

circularly symmetric complex Gaussian process, which can be regular, bandlimited,

or periodical. Representing (2.14) in the vector form:

~y = H · ~x + ~w (2.15)

where ~y, ~x and ~w are column vectors, H denotes a diagonal matrix, whose diagonal

elements are channel fadings, i.e., H = diag(~h).

Without loss of optimality, we set the input sequence, ~x, circularly symmetric

complex Gaussian random variables (see details about this assumption in [Telatar(1999)]).

Then, the output ~y would comprise circularly symmetric complex Gaussian random

variables, and its covariance matrix corresponds to:

Qyy = Æ
[
~y~y†

]
= σ2

w · (I + η ·HQxxH) , (2.16)

where Qxx represents the input covariance matrix, i.e., Qxx = Æ
[
~x~x†

]
. Note that

the input must satisfy an average power constraint, i.e.,

Tr(Qxx)

N
≤ Pt, (2.17)
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where N denotes the length of codeword. Moreover, the signal-to-noise ratio (SNR),

η, is defined as:

η =
Pt

σ2
w

. (2.18)

Now, we can start deriving the mutual information in SISO fading channels.

Assuming perfect CSI at the receiver, this channel has one input sequence ~x, and

two output sequences ~y and ~h. Hence, in this channel, the mutual information

between the input and the output corresponds to:

I(~x; ~y,~h) = I(~x;~h) + I(~x; ~y|~h)

= I(~x; ~y|~h) (2.19)

The first equality follows the chain rule, and the second equality is due to the fact

that CSI is not available at the transmitter, i.e., I(~x;~h) = 0. Then, the mutual

information in (2.19) corresponds to:

I(~x; ~y|~h) = H(~y|~h)−H(~y|~x,~h)

= H(~y|~h)−H(~w)

= log det(πeQyy|~h)−N · log(πeσ2)

= log det (I + η ·HQxxH) (2.20)

The first equality follows the definition of mutual information; the second equality

follows input-output relationship in (2.15); the third exploits the differential entropy

rate of Gaussian processes [Cover and Thomas(1991)], where e denotes the Euler’s

constant; and the last equality is apparent as shown in (2.16).

Mathematically, (2.20) is a simplified version of Telatar’s capacity equation: In

our work H is restricted to be diagonal, while this restriction is not applied to

Telatar’s equation. Here, we discuss a different perspective of (2.20) from that of
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Telatar. We say that the mutual information in fading channels, i.e., I(~x; ~y,~h) is

a random variable, since it is a function of channel fadings. The concept of ran-

dom mutual information is the key point to understand channel capacity in fading

channels.

The next natural question is: What determines the statistical properties of the

random mutual information I(~x; ~y,~h)? We easily note that they are determined by

1) SNR, η, 2) fading statistics, S(f), 3) code word length, N , and 4) input covariance

matrix, Qxx. In this work, we are interested in investigating the effects of the fading

statistics S(f) on the first and second order statistics of mutual information.

To study the effects of S(f), we assume an asymptotically high SNR environment

with sufficiently large code word length. The assumption of high SNR denotes high

transmission power, i.e., sufficient resources at the receiver side. The assumption of

large code word length denotes sufficient decoding computation power, i.e., sufficient

resources at the receiver side. Hence, the assumptions essentially remove the resource

limitation at both the transmitter side and the receiver side.

Now, assuming high SNR and long codeword, the statistics of mutual information

is only function of fading PSD S(f), and input covariance matrix Qxx. In Section

2.3.2, it shown that in high SNR regimes, Qxx = I is optimal in terms of achieving

channel capacity. This result significantly alleviates the mathematical difficulties in

the second order statistics analysis.

Through the above three conditions: high SNR, long codeword, and identity

input covariance matrix, the final relationship between fading PSD and the second

order statistics of mutual information would be established. The relationship turns

out to be the final result: the tradeoff between diversity gain and multiplexing gain.

2.3.2 The First Order Statistics of Mutual Information

The main goal of this subsection is to show that identity input covariance matrix is

optimal in high SNR regimes, which facilitates the second order statistics analysis.
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Theorem 2.3.1. Given a fixed code word length N , and certain fading statistics

S(f), the expectation of the mutual information I(~x; ~y,~h) increases linearly with

the logarithm of the SNR η. Moreover, the input covariance matrix that maximizes

the expectation of the mutual information is an identity matrix, i.e., identity input

covariance matrix achieves channel capacity in high SNR regimes.

In other words, the solution to the following optimization:

arg max
Qxx

lim
η→∞

Æ [log det (I + η ·HQxxH)]

log η
s.t.

Tr(Qxx)

N
≤ Pt (2.21)

is Qxx = I.

Proof. See appendix 2.A.

Based on this theorem, We set Qxx = I in the rest of this chapter. Since H is

diagonal in SISO cases, the associated mutual information would be in a very simple

form by setting Qxx = I, i.e.,:

log det (I + η ·HH) =
N∑

n=1

log(1 + ηAn), (2.22)

where An = hnh
∗
n. Considering a Rayleigh fading channel, An would follow an

exponential distribution.

2.3.3 Concepts Related to the First Order Statistics: Capacity and Er-
godic Capacity

Here, we mainly discuss the concepts that are relevant to the first order statistics of

mutual information. The classical definition of channel capacity is the supremum of

mutual information per unit time, with sufficiently large code word length, i.e.,

C = lim
N→∞

sup
I(~x; ~y,~h)

N
. (2.23)
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Particularly, using (2.20), the channel capacity corresponds to:

C = lim
N→∞

sup
Qxx

log det (I + η ·HQxxH)

N
. (2.24)

In the asymptotically high SNR regime, we have shown that Qxx = I is optimal.

Accordingly, the channel capacity corresponds to:

C = lim
N→∞

∑N
n=1 log(1 + η · An)

N

= Æ [log(1 + η · An)] (2.25)

=

∫ ∞

0

log(1 + η · A)pA(A) dA. (2.26)

Here, pA(A) is the PDF of square of fading amplitudes, e.g., exponential distribution

pA(A) = e−A for Rayleigh fading channels. We note that the result in (2.26) is

exactly the same as that of [Goldsmith and Varaiya(1997)].

An important point is that C would be independent of S(f), if we assume Qxx = I.

This means that slowly and fast varying channels yield the same channel capacity,

in high SNR regimes. This is a somewhat important conclusion which was conveyed

implicity in [Biglieri et al.(1998)].

Moreover, the second equality of (2.25) is consistent with the definition of ergodic

capacity, i.e., the expectation of mutual information with finite N coincides with the

classical definition of channel capacity, which is defined via an infinite N . This

observation validates the properness of the concept of ergodic capacity.

Similar as Telatar’s discussion, (2.25) only holds for regular and bandlimited

processes. For periodical process, we can not replace expectation with limitation,

because the effective number of samples of fadings is finite. Thus, for periodical

processes, the conventional definition of channel capacity does not exist: (2.24) would

not approach a certain limit even if N is infinite.
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Up to now, we have discussed the first order statistics of mutual information and

the relevant concepts: the channel capacity and the ergodic capacity. The two pa-

rameters represents the ultimate performance of communication systems. However,

in practical systems, just knowing the ultimate performance is not enough. We also

need to know how hard it is to obtain such a performance. This is mainly deter-

mined by the second order statistics of mutual information and the relevant concepts:

outage capacity, multiplexing gain and diversity gain.

2.3.4 Second Order Statistics of Mutual Information

We showed that Qxx = I optimizes mean of mutual information in high SNR regimes.

Hence, throughout the analysis of the second order statistics, Qxx is set to I. As

discussed in Section 2.3.1, the second order statistics is a function of fading PSD,

S(f), SNR, η, and codeword length, N .

In this section, we show that, assuming high SNR and long codeword, the effects

of S(f), η and N can be easily separated. Considering high SNR and long code word:

1) the variance of mutual information would be independent of SNR and decays

linearly with N , and 2) the spreadness of S(f) determines how fast the variance

decays with N , that is, the slope of the linear relationship.

The first theorem introduces the relationship between SNR and the variance of

mutual information. This variance approaches a limit which is independent of SNR,

when SNR approaches infinity.

Theorem 2.3.2. When SNR approaches infinity, the variance of mutual information

approaches a limit that is independent of SNR, i.e.,

lim
η→∞

var (log det (I + η ·HH)) = var (log HH) (2.27)

.
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Proof. The equation seems easy, but the derivation is quite cumbersome for corre-

lated fadings. See the details in Appendix 2.B.

Note that LHS of (2.27) is a function of η while its RHS is not; hence, the variance

of mutual information does not increase with SNR in high SNR regimes. Here, it is

noted that the mean of mutual information increases linearly with the logarithm of

SNR. Therefore, comparing (2.26) and (2.27), it is evident that the first and second

order statistics of mutual information exhibits completely different behaviors as SNR

increases.

The next step is to study the effect of codeword length on the variance of mutual

information. Here, we introduce two lemmas before introducing the Theorem on the

relationship between codeword length and the variance of mutual information.

Lemma 2.3.3. In high SNR regimes, the variance of mutual information is expressed

by the dilogarithm of correlation between square of fading amplitudes, i.e.,

var (log HH) = N ·£(ρ0 ) + 2 ·
N−1∑

l=1

(N − l)£(ρl), (2.28)

where £(·) denotes the dilogarithm function which is defined as:

£(ρl) = −
∫ ρ

0

log(1 − t)

t
dt , (2.29)

or equivalently,

£(ρl) =
∞∑

k=1

(ρl)
k

k2
(2.30)

Here, ρl represents the correlation coefficient between two exponential random

variables, i.e.,

ρl =
Æ[AnAn−l]−Æ[An]Æ[An−l]√

var(An)var(An−l)
(2.31)

Proof. See the details in Appendix 2.C.
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Through lemma 2.3.3, we can compute LHS of (2.28), if the correlation coefficient

between An and An−l is known. Adopting the fading generation process in Section

2.2.2, we have another lemma that maintains the relationship of fading PSD and

correlation coefficient between the square of corresponding fading amplitudes:

Lemma 2.3.4. The correlation coefficients of square of fading amplitudes corre-

sponds to the square of amplitudes of correlation between fadings, i.e.,

ρl = RlR
∗
l , (2.32)

where

Rl =
1

N

N∑
n=1

Sne
j·2π n

N
l (2.33)

In (2.33), Sn denotes the discrete samples of the Power Spectral Density of the

fadings, and satisfies:
N∑

n=1

Sn = N (2.34)

Proof. See the details in Appendix 2.D.

Combining lemmas 2.3.4 and 2.3.3, we can compute the variance of mutual in-

formation for any N in high SNR regimes. However, still a closed form expression

of the variance of mutual information is hard to obtain. Only when N is sufficiently

large, we can express the variance of mutual information in terms of fading PSD, in

which we mainly exploit the fact that eigen values of auto-covariance matrix sequence

follows the PSD when N →∞.

Theorem 2.3.5. In high SNR regimes, and sufficiently large codeword length N , the

variance of normalized mutual information decays linearly with N , where the scalar

is determined by the doppler spectrum (PSD) of fading, i.e.,

lim
N→∞

lim
η→∞

var

(
1

N
log det (I + η ·HH)

)
=

∑∞
k=1

(∫ 0.5

−0.5

S2
k(f)

k2 df
)

N
· 6

π2
, (2.35)

where S1(f) = S(f), Sk(f) = Sk−1(f) ∗ S(f), note ∗ denotes cyclic convolution.
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Proof. See the details in Appendix 2.E.

So finally, it is shown that the variance of mutual information decays linearly

with N . Moreover, we define the spreadness of a PSD:

s =

(
6

π2

∞∑

k=1

∫ 0.5

−0.5

S2
k(f)

k2
df

)−1

(2.36)

The spreadness of PSD serves at the scalor that how fast the variance decays with

N . More spread the PSD has, faster the variance decays with N .

For i.i.d. channels, Sk(f) = 1 for any k. Then, the corresponding spreadness

is: 6
π2

∑∞
k=1

1
k2 = 1. For other channels,

∫ −0.5

−0.5
S2

k(f) df > 1. Hence, we see that

the spreadness of PSD is maximum in i.i.d. channels, while slowly varying channels

yield smaller spreadness. Specifically, we note that if a PSD contains a dirac delta

function, the spreadness would be zero. In those scenarios, reliable communications

is not possible, because the variance of mutual information does not vanish even with

large codeword length.

2.3.5 Concepts Related to the Second Order Statistics of Mutual Infor-
mation: Multiplexing Gain and Diversity Gain

As discussed in Section 6.1, in high SNR regimes, multiplexing gain and diversity

gain are essentially transmission rate and error rate, respectively. It has been de-

picted that the mean of mutual information is log η [Zheng and Tse(2003)]. Now,

suppose we have a transmission scheme with transmission rate r · log η, r < 1, which

corresponds to a transmission rate that is less than channel capacity. Here, r is

the multiplexing gain. Now, what is the corresponding outage probability for this

multiplexing gain? First, we have the following result for the outage probability:

lim
η→∞

lim
N→∞

Pout(r · log η) = lim
η→∞

lim
N→∞

P

(
1

N

N∑
n=1

log(1 + η · An) < r · log η

)

= lim
η→∞

lim
N→∞

P

(
N∑

n=1

log An < −(1− r)N log η

)
. (2.37)
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Now, considering an i.i.d. channel, the above result can be simplified to:

lim
η→∞

lim
N→∞

Pout(r · log η)

= lim
η→∞

lim
N→∞

P (log A1 < −(1− r) log η, log A2 < −(1− r) log η,

· · · , log AN < −(1− r) log η)

= lim
η→∞

lim
N→∞

P (log A1 < −(1− r) log η) · P (log A2 < −(1− r) log η)

· · ·P (log AN < −(1− r) log η)

= lim
η→∞

lim
N→∞

(P (log A1 < −(1− r) log η))N . (2.38)

Because we have shown that A1 follows exponential distribution, it is easy to show:

lim
η→∞

P (log A1 < −(1− r) log η) = lim
η→∞

P (A1 < exp (−(1− r) log η))

= lim
η→∞

(
1− exp(η−(1−r))

)

= lim
η→∞

exp (−(1− r) log η) , (2.39)

Accordingly, the outage probability for an i.i.d. channel corresponds to:

lim
η→∞

lim
N→∞

Pout(r · log η) = exp (−(1− r) ·N · log η) . (2.40)

To compute the diversity gain defined in (2.2), and we can replace error probability

with outage probability when computing diversity gain [Zheng and Tse(2003)], i.e. ,

d(r) = − lim
η→∞

Pe(r · log η)

log η
= − lim

η→∞
Pout(r · log η)

log η
. (2.41)

Hence, in i.i.d. channels, diversity gain can be expressed as a function of multiplexing

gain:

d(r) = − lim
N→∞

lim
η→∞

Pout(r · log η)

N · log η
= 1− r. (2.42)

Next, we consider the correlated channels. What is the difference between cor-

related channels and i.i.d. channels? Note that for bandlimited and regular fading
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processes, the capacity is a summation of many correlated random variables. Hence,

when N → ∞, the capacity distribution for correlated channels would be the same

as i.i.d. channels. The only difference is that the convergence rate in correlated

channels is slower, i.e., given the same number of fadings, the variance of correlated

fadings is larger than the variance of independent fadings. In other words, variance

of N ′ correlated fadings would be equal to the variance of N independent variables,

where:

N ′ =
N

s
, s ≤ 1. (2.43)

Note that s ≤ 1 for all cases, where the equality only holds for i.i.d. channels.

Intuitively, this corresponds to the fact that, compared to i.i.d. fadings, in correlated

fadings, longer codeword is needed to achieve the same variance (or error probability).

Replacing N in (2.40) with N ′ · s in (2.43), the outage probability for correlated

channels would correspond to:

lim
η→∞

lim
N→∞

Pout(r · log η) = exp (−(1− r) · log η · s · N) (2.44)

Then, based on the definition of diversity gain, the diversity gain is:

d(r) = − lim
N→∞

lim
η→∞

Pout(r · log η)

N · log η
= s · (1− r) (2.45)

which exactly corresponds to the result presented in Section 6.1.

In this section, the derivation process for the tradeoff between diversity gain and

multiplexing gain has been demonstrated via a mathematical approach. Numerical

results and intuitive explanations on the tradeoff is presented in the next section.

2.4 Intuitions and Numerical Examples

First, this section intuitively demonstrates the tradeoff through discussing the effects

of 1) SNR, η, 2) codeword length, N , and 3) fading PSD, S(f), on the mean and

variance of the normalized mutual information:

Inorm =
I(~x; ~y,~h)

N
, (2.46)
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SNR Increses 

normI  

PDF of normI  

Figure 2.3: The effects of SNR on
mean and variance.

 
PDF of normI  

normI  

Codeword length 
increases 

Figure 2.4: The effects of codeword
length on mean and variance.

in which the optimal input covariance matrix has been assumed to be an identity

matrix. Because the mean of the normalized mutual information is channel capac-

ity, we choose to analyze the normalized mutual information, but not the mutual

information.

The effects of η are shown in Fig. 2.3. Assuming fixed N and S(f), Theorem

2.3.1 reveals that the mean increases linearly with logarithm of SNR; while Theorem

2.3.2 states that the variance does not increase with SNR. Hence, the mean increases

with SNR while the variance is independent of SNR.

The effects of N are shown in Fig. 2.4. As stated by Theorem 2.3.2, the variance

decays linearly with N . Meanwhile, it is easy to compute that the mean does not

chage with N . Hence, the variance decreases with N while the mean is independent

of N .

Then, how to understand the tradeoff via the effects of SNR and N on the mean

and the variance? It is shown in Fig. 2.5. First, it is noted that in high SNR regimes,

the mean is log η. Next, let a transmission strategy possess a multiplexing gain r, i.e.,

the transmission rate is r · log η. Note that the outage probability, P(Inorm < r · log η),

corresponds to the shadowed area in Fig. 2.5. In general, it is hard to maintain an
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mutual information) 

Transmission Rate 

Figure 2.5: Understanding the Tradeoff between Diversity Gain and Multiplexing
Gain through the PDF of Inorm.

exact closed form expression for outage probability, because it is hard to obtain the

exact PDF of Inorm, the normalized mutual information.

However, when η → ∞ and N → ∞, as long as r < 1, the “distance” between

the transmission rate and channel capacity (shown in Fig. 2.5) is much larger than

the variance [see (2.35)], i.e., (1− r) log η À 1
s
N . In this case, the outage probability

is the “tail” of the PDF of the normalized mutual information. Our contribution is

to show that the “tail” of the PDF of Inorm resembles an exponential function for

Rayleigh Fading channels [see (2.39)]. The parameter of this exponential function

is: 1) proportional to the difference between capacity and transmission rate, i.e.,

(1 − r) log η; and 2) inversely proportional to the variance of normalized mutual

information, 1
s·N . Then, it is shown that Pout = exp(−(1 − r)sN log η) [see (2.44)],

which directly corresponds to the tradeoff between diversity gain and multiplexing

gain.

www.arts
pdf.com

This PDF has been modifie
d using a demo version of A

RTS PDF softw
are



37

 

Fast Varying 
Channels 

Slowly Varying  
Channels 

r  
r  

1 

1 

s  

D
iversity G

ain 

Multiplexing Gain 

Figure 2.6: Effects of the spreadness of Fading PSD on the Tradeoff between Diversity
Gain and Multiplexing Gain

The ultimate goal of this work is to analyze the effects of spreadness of PSD

on the tradeoff between diversity gain and multiplexing gain, which is shown in

Fig. 2.6. The tradeoff itself has a linear relationship, i.e., increasing multiplexing

gain decreases diversity gain linearly. Here, the spreadness of PSD, s, serves as the

slope of the linear relationship. Assuming the same multiplexing gain, fast varying

channels, which have bigger spreadness, achieve better diversity gain compared to

slowly varying channels.

Finally, to understand why s is called “spreadness”, we compute the spreadness

for a family of PSDs. The structures of PSDs in this family follows similar shape, as

shown in Fig. 2.7. The only parameter of this family, κ, corresponds to:

κ =
a

b
, (2.47)

where a and b has been defined in Fig. 2.7. The advantage of this family is that

the Lebesgue measure of the members in this family ranges from 0 to 1. Based on
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Figure 2.8: Spreadness for the PSD
family in Fig. 2.7

the geometry of Fig. 2.7, it is easy to see that: κ = 0 corresponds to i.i.d channel;

0 < κ ≤ 4 corresponds to regular processes; 4 < κ < ∞ corresponds to bandlimited

processes. When κ →∞, the PSD corresponds to time-invariant channels.

The spreadness with respect to κ is plotted in Fig. 2.8. As expected, larger κ

leads to smaller spreadness. Hence, as PSD becomes more flat (κ decreases), the

spreadness increases.

2.5 Conclusions

In this work, we discuss the fundamental tradeoff between multiplexing gain and di-

versity gain in SISO channels with correlated fadings. Different from previous studies,

the view of power spectral density (PSD) is adopted to describe correlated fadings.

Categorization of fading processes and corresponding fading generation methods are

discussed in detail. Then, the tradeoff between multiplexing gain and diversity gain

are shown to resemble a simple linear relationship, where the “spreadeness” of the

fading PSD serves as the slope of the linear relationship. More spread PSD, i.e.,

faster varying channels, yield better diversity gain than slowly varying channels,

assuming the same multiplexing gain.
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2.A Proof of Theorem 2.3.1

First, we note that the optimum Qxx satisfies:

Æ [log det(I + η ·HH)] ≤ Æ [log det(I + η ·HQxxH)] , (2.48)

where in the LHS, the optimum Qxx is replaced by I.

Second, we have:

Æ [log det(I + η ·HQxxH)] ≤ Æ [log det(I + Nη ·HH)] . (2.49)

Since all eigen values of NI is greater than the biggest eigen value of Qxx, due to the

average power constraint, then, due to the convexity of the function log det(·), the

log det of the two matrices have the above inequality.

Combining (2.49) and (2.48), the upper bound and lower bound of supremum of

mutual information would correspond to:

Æ [log det(I + η ·HH)] ≤ Æ [log det(I + η ·HQxxH)] ≤ Æ [log det(I + Nη ·HH)]

(2.50)

The goal of this proof is to show that the upper bound and lower bound approach

the same value, when η →∞, i.e.,

lim
η→∞

Æ [log det(I + η ·HH)]

log η
= lim

η→∞
Æ [log det(I + Nη ·HH)]

log η
. (2.51)

Then, we cay say the optimal Qxx achieves the same performance as I in high SNR

regimes, i.e.,

lim
η→∞

Æ [log det(I + η ·HH)]

log η
= lim

η→∞
Æ [log det(I + η ·HQxxH)]

log η
. (2.52)

In other words, I would be optimal in terms of achieving channel capacity in high

SNR regimes.
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First, in high SNR regimes, the lower bound corresponds to:

lim
η→∞

Æ [log det(I + η ·HH)]

log η
(2.53)

= lim
η→∞

Æ
[∑N

n=1 log(1 + η · An)
]

log η

= lim
η→∞

∑N
n=1 Æ [log(1 + η · An)]

log η

= lim
η→∞

N · ∫∞
0

log(1 + η · A) · PA(A) dA

log η
, (2.54)

where An = hnh
∗
n, i.e., An is the square of the amplitudes of the channel fadings.

By dominant convergence theorem, we can exchange the integral and the limita-

tion, i.e.,

lim
η→∞

∫∞
0

log(1 + η · A) · pA(A) dA

log η
=

∫ ∞

0

lim
η→∞

log(1 + η · A)

log η
· pA(A) dA, (2.55)

where pA(A) denotes the PDF of A, the square of fading amplitude.

Note that when η →∞,

log(1 + η · A)

log η
=

log η + log A + log(1 + 1
ηA

)

log η
→ 1. (2.56)

Inserting (2.56) in (2.55):

∫ ∞

0

lim
η→∞

log(1 + η · A)

log η
· pA(A) dA =

∫ ∞

0+

pA(A) dA. (2.57)

Note that at the RHS of (2.57), the lower limit of the integration is 0+ but not

0. Hence, as long as the distribution of the square of fading amplitude has a zero

probability at the amplitude of zero, i.e., the PDF does not contain a delta function at

the A = 0, (2.57) would correspond to one in SISO channels. A similar phenomenon

has been observed in [Koch and Lapidoth(2006)]. Noting that all current fading

models (Rayleigh, Ricean, and Nakagami) satisfy this condition, hence (2.57) equals

to one holds for all frequency flat SISO fading channels.
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Substituting (2.57) to the expression of the lower bound, (2.53), the lower bound

is shown to be:

N

∫ ∞

0+

pA(A) dA, (2.58)

which in most cases is simply N .

The discussion about the upper bound would be similar. First, the upper bound

corresponds to:

lim
η→∞

Æ [log det(I + ηNHH)]

log η

= lim
η→∞

N · ∫∞
0

log(1 + ηNA)pA(A) dA

log η

=N ·
∫ ∞

0

lim
η→∞

log(1 + ηNA)

log η
pA(A) dA. (2.59)

Note that when η →∞,

log(1 + ηNA)

log η
=

log η + log NA + log(1 + 1
ηA

)

log η
→ 1. (2.60)

Substituting (2.60) into (2.59), the upper bound would correspond to:

N

∫ ∞

0+

pA(A) dA, (2.61)

which is the same as the result for lower bound.

Hence, I would be the optimal input covariance matrix in terms of achieving

capacity in high SNR regimes.

2.B Proof of Theorem 2.3.2

The theorem states:

lim
η→∞

var (log det (I + η ·HH)) = var (log HH) (2.62)

Considering H is diagonal, the above equation corresponds to:

lim
η→∞

var

(
N∑

n=1

log(1 + ηAn)

)
= var

(
N∑

n=1

log An

)
. (2.63)
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Expanding the LHS of (2.63):

N · fLHS(η, 0) + 2 ·
N−1∑

l=1

(N − l) · fLHS(η, l), (2.64)

where fLHS(η, l) corresponds to:

fLHS(η, l) = Æ[log(1 + ηAn) log(1 + ηAn−l)]−Æ[log(1 + ηAn)]Æ[log(1 + ηAn−l)].

(2.65)

Expanding the RHS of (2.63):

N · fRHS(0) + 2 ·
N−1∑

l=1

(N − l) · fRHS(l), (2.66)

where fRHS(η, l) corresponds to:

fRHS(l) = Æ[log(An) log(An−l)]−Æ[log(An)]Æ[log(An−l)]. (2.67)

Comparing (2.64) and (2.66), to prove this theorem, we just need to prove that

lim
η→∞

fLHS(η, l) = fRHS(l) (2.68)

To check if (2.68) holds, we check the detailed structure of fLHS(η, l).

It is known that the joint PDF of two exponential variables, A and A′, corresponds

to [Simon and Alouini(1998)]:

p(A,A′) =
1

1− ρ
exp

(
−A + A′

1− ρ

)
I0

(
−2
√

ρAA′

1− ρ

)
, (2.69)

where I0 denotes the modified Bessel function of the first kind with zero order, and

the parameter ρ corresponds to the correlation coefficient between A and A′:

ρ =
Æ[AA′]−Æ[A]Æ[A′]√

var(A)var(A′)
, (2.70)

Interestingly, it has been observed that in general the second order statistics,

i.e., correlation coefficient, can not determine the joint PDF of multiple exponential
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variables. The only exception is the bivariate exponential variables, in which the

correlation coefficient determines the joint PDF [Mallik(2003)].

Applying (2.69), the first part of (2.65) corresponds to:

Æ[log(1 + ηAn) log(1 + ηAn−l)]

=

∫ ∞

0

∫ ∞

0

log(1 + ηA) log(1 + ηA′)
1

1− ρl

exp

(
−A + A′

1− ρl

)
I0

(
−2
√

ρlAA′

1− ρl

)
dA dA′,

(2.71)

where ρl denotes the correlation coefficient between An and An−l. The second part

of (2.65) corresponds to:

Æ[log(1 + ηAn)]Æ[log(1 + ηAn−l)] =

(∫ ∞

0

log(1 + ηA) exp(−A) dA

)2

(2.72)

Here, we adopt a similar approach as in [Tan and Beaulieu(1997)] for analyzing

(2.71), i.e., we use the infinite series representation of the modified Bessel function

[(8.441.1) in [Gradshteyn and Ryzhik(1965)]],

I0

(
−2
√

ρlAA′

1− ρl

)
=

∞∑

k=0

(ρlAA′)k

(1− ρl)2k(k!)2
. (2.73)

Substituting (2.73) into (2.71):

Æ[log(1 + ηAn) log(1 + ηAn−l)]

=

∫ ∞

0

∫ ∞

0

log(1 + ηA) log(1 + ηA′)
1

1− ρl

exp

(
−A + A′

1− ρl

) ∞∑

k=0

(ρlAA′)k

(1− ρl)2k(k!)2
dA dA′

(2.74)

=
∞∑

k=0

(ρl)
k

(1− ρl)2k+1(k!)2

(∫ ∞

0

Ak log(1 + ηA) exp(− A

1− ρl

) dA

)2

(2.75)

To see the effect of high SNR η, we write:

log(1 + ηA) = log η + log A + log(1 +
1

ηA
)

= log η + log A +O(1/η), (2.76)
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where the second equality holds only in high SNR regimes.

Substituting (2.76) in (2.75), (2.71) in high SNR regimes would correspond to:

lim
η→∞

Æ[log(1 + ηAn) log(1 + ηAn−l)]

=
∞∑

k=0

(ρl)
k

(1− ρl)2k+1 · (k!)2

(∫ ∞

0

(log η + log A) exp(− A

1− ρl

)Ak dA

)2

(2.77)

= (log η)2 ·
∞∑

k=0

(ρl)
k

(1− ρl)2k+1(k!)2

(∫ ∞

0

Ak exp(− A

1− ρl

) dA

)2

︸ ︷︷ ︸
a1

+

2 log η ·
∞∑

k=0

(ρl)
k

(1− ρl)2k+1(k!)2

∫ ∞

0

Ak log A exp(− A

1− ρl

) dA

∫ ∞

0

Ak exp(− A

1− ρl

) dA

︸ ︷︷ ︸
b1

+

∞∑

k=0

(ρl)
k

(1− ρl)2k+1(k!)2

(∫ ∞

0

Ak exp(− A

1− ρl

) dA

)2

︸ ︷︷ ︸
c1

(2.78)

For notation wise simplicity, here we define the coefficients of powers of log η as

a1, b1, c1, as shown in (2.77).

Similarly, using (2.76), the second part of (2.65) in high SNR regimes corresponds

to:

lim
η→∞

(Æ[log(1 + ηA)])2

=

(∫ ∞

0

(log η + log A) exp(−A) dA

)2

= (log η)2 ·
(∫ ∞

0

exp(−A) dA

)2

+ 2 log η ·
∫ ∞

0

log A exp(−A) dA +

(∫ ∞

0

log A exp(−A) dA

)2

= (log η)2 + 2 log η · ζ + ζ2. (2.79)

The last equality is based on the following definite integral [(4.331.1) in [Gradshteyn and Ryzhik(1965)]]:

∫ ∞

0

exp(−µx) log x dx = − 1

µ
(ζ + log µ), (2.80)
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where ζ is the Euler-Mascheroni Constant2, defined as:

ζ = lim
n→∞

[
n∑

m=1

1

m
− log n

]

= 0.5772156.... (2.81)

Moreover, we see the RHS of (2.68) corresponds to:

fRHS(l) = Æ[log(An) log(An−l)]−Æ[log(An)]Æ[log(An−l)]

=

∫ ∞

0

∫ ∞

0

log A log A′

1− ρl

exp

(
−A + A′

1− ρl

)
I0

(
−2
√

ρlAA′

1− ρl

)
dA dA′ −

(∫ ∞

0

log A exp(−A) dA

)2

=
∞∑

k=0

(ρl)
k

(1− ρl)2k+1(k!)2

(∫ ∞

0

Ak log A exp(− A

1− ρl

) dA

)2

−
(∫ ∞

0

log A exp(−A) dA

)2

= c1 − ζ2. (2.82)

The above results have already incorporated the infinite series representation of mod-

ified Bessel functions, (2.73), and the definite integral in (2.80).

Through the results in (2.82), (2.79) and (2.77), to prove (2.68), we just need to

show that a1 = 1 and b1 = ζ.

We first check if a1 = 1.

a1 =
∞∑

k=0

(ρl)
k

(1− ρl)2k+1(k!)2

(∫ ∞

0

Ak exp(− A

1− ρl

) dA

)2

=
∞∑

k=0

(ρl)
k(1− ρl)

(k!)2

(∫ ∞

0

(
A

1− ρl

)k exp(− A

1− ρl

) d
A

1− ρl

)2

. (2.83)

Let x = A
1−ρl

, the above results correspond to:

a1 =
∞∑

k=0

(ρl)
k(1− ρl)

(k!)2

(∫ ∞

0

xk exp(−x) dx

)2

. (2.84)

We also know that [(3.381.4) in [Gradshteyn and Ryzhik(1965)]]

∫ ∞

0

xk exp(−µx) dx =
1

µk+1
Γ(k + 1), (2.85)

2In most literatures, the notation of Euler-Mascheroni Constant is γ. However, we have used γ
to represent the degrees of freedom in this work, so we use another notation, ζ, for this constant.
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where Γ(·) denotes the Gamma function. It has been well known that

Γ(k) = (k − 1)! for k = 1, 2, 3... (2.86)

Then, a1 finally corresponds to:

a1 =
∞∑

k=0

ρk(1− ρ)

(k!)2
(k!)2 = (1− ρ)

∞∑

k=0

ρk = 1 (2.87)

Now, we check if b1 = ζ.

b1 =
∞∑

k=0

(ρl)
k

(1− ρl)2k+1(k!)2

∫ ∞

0

Ak log A exp(− A

1− ρ
) dA

∫ ∞

0

Ak exp(− A

1− ρ
) dA

=
∞∑

k=0

(ρl)
k(1− ρl)

k!

∫ ∞

0

(
A

1− ρl

)k

(
log

A

1− ρl

+ log(1− ρl)

)
exp(− A

1− ρl

) dA

(2.88)

Here, we already exploited the result in (2.85). Again, let x = A
1−ρl

,

b1 =
∞∑

k=0

(ρl)
k(1− ρl)

k!

(∫ ∞

0

xk exp(−x) log x dx + log(1− ρl) ·
∫ ∞

0

xk exp(−x) dx

)

(2.89)

The above can be solved using [(4.352.4) in [Gradshteyn and Ryzhik(1965)]],

∫ ∞

0

xk exp(−x) log x dx = Γ′(k + 1), (2.90)

where Γ′(·) denotes the derivative of Gamma function, and corresponds to [Weisstein(Web)]:

Γ′(k + 1) = k!

(
ζ −

k∑
m=1

1

m

)
, for k = 1, 2, 3... (2.91)

and ζ has been defined in (2.81). Then, b1 would correspond to:

b1 =
∞∑

k=0

(ρl)
k(1− ρl)

k!

(
k!

(
ζ −

k∑
m=1

1

m

)
+ log(1− ρl) · k!

)

= (1− ρl) (ζ + log(1− ρl))
∞∑

k=0

(ρl)
k + (1− ρl)

∞∑

k=0

k∑
m=1

(ρl)
k

m
(2.92)
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= ζ + log(1− ρl)− (1− ρl)
∞∑

m=1

∞∑

k=m

(ρl)
k

m

= ζ + log(1− ρl)−
∞∑

m=1

(ρl)
m

m

= ζ (2.93)

Hence, we have shown that a1 = 1 and b1 = ζ. Then, (2.68) holds. Via (2.68),

(2.63) can be proved, i.e., Lemma 2.3.2 is proved.

2.C Proof of Lemma 2.3.3

In appendix 2.B, we have shown that

var (log HH) = N · fRHS(0) + 2 ·
N−1∑

l=1

(N − l) · fRHS(l), (2.94)

where

fRHS(l) = Æ[log(An) log(An−l)]−Æ[log(An)]Æ[log(An−l)]. (2.95)

Hence, to prove Lemma 2.3.3, we just need to show that:

Æ[log(An) log(An−l)]−Æ[log(An)]Æ[log(An−l)] = £(ρl), (2.96)

where ρl is the correlation coefficient between An and An−l, and £(·) denotes the

dilogarithm function which is defined in (2.29).

Using (2.80), we see that Æ[log(An)] = ζ. Therefore, to prove the Lemma, we

just need to show:

Æ[log(An) log(An−l)] = ζ2 + £(ρl), (2.97)

where ζ has been defined in (2.81).

Applying the joint PDF of two exponential variables (2.69), we write the LHS of

(2.97) as:

Æ[log(An) log(An−l)] =

∫ ∞

0

∫ ∞

0

log A log A′

1− ρl

exp

(
−A + A′

1− ρl

)
I0

(
−2
√

ρlAA′

1− ρl

)
dA dA′,

(2.98)
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then using the infinite series representation of modified Bessel functions (2.73),

Æ[log(An) log(An−l)] =
∞∑

k=0

(ρl)
k

(k!)2(1− ρl)

(∫ ∞

0

(
A

1− ρl

)k

log A exp(− A

1− ρl

) dA

)2

.

(2.99)

Letting x = A
1−ρl

,

Æ[log(An) log(An−l)]

=
∞∑

k=0

(ρl)
k(1− ρl)

(k!)2

(∫ ∞

0

xk log x exp(−x) dx + log(1− ρl)

∫ ∞

0

xk exp(−x) dx

)2

.

(2.100)

Using the definite integral results in (2.80), (2.85) and (2.90),

Æ[log(An) log(An−l)] =
∞∑

k=0

(ρl)
k(1− ρl) (log(1− ρl)− ζ + zk)

2 , (2.101)

where

zk =





k∑
m=1

1
m

for k = 1, 2, 3...

0 for k = 0
(2.102)

Expanding the square of polynomial in (2.101),

Æ[log(An) log(An−l)]

= (1− ρl) · (log(1− ρl)− ζ)2 ·
∞∑

k=0

(ρl)
k

︸ ︷︷ ︸
a2

+

(1− ρl) · 2 (log(1− ρl)− ζ) ·
∞∑

k=1

(ρl)
k

∞∑
m=1

1

m
︸ ︷︷ ︸

b2

+(1− ρl) ·
∞∑

k=1

(ρl)
k

(
k∑

m=1

1

m

)2

︸ ︷︷ ︸
c2

(2.103)

The essential part of this proof is to analyze a2, b2 and c2. First, calculations of

a2 and b2 are straightforward:

a2 =
1

1− ρl

, (2.104)
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and,

b2 =
∞∑

k=1

k∑
m=1

(ρl)
k

m
=

∞∑
m=1

∞∑

k=m

(ρl)
k

m
=

1

1− ρl

∞∑
m=1

(ρl)
m

m
= − log(1− ρl)

1− ρl

. (2.105)

The analysis of c2 is much more difficult:

c2 =
∞∑

k=1

(ρl)
k

(
k∑

m=1

1

m

)2

=
∞∑

k=1

k∑
m=1

k∑
n=1

(ρl)
k

mn

=
∞∑

m=1

∞∑

k=m

k∑
n=1

(ρl)
k

mn

=
∞∑

m=1

m∑
n=1

∞∑

k=m

(ρl)
k

mn
+

∞∑
m=1

∞∑
n=m+1

∞∑

k=n

(ρl)
k

mn

=
1

1− ρl

( ∞∑
m=1

m∑
n=1

(ρl)
m

mn
+

∞∑
m=1

∞∑
n=m+1

(ρl)
n

mn

)

=
1

1− ρl

( ∞∑
m=1

m∑
n=1

(ρl)
m

mn
+

∞∑
n=2

n−1∑
m=1

(ρl)
n

mn

)

=
1

1− ρl

( ∞∑
m=1

∞∑
n=1

(ρl)
m

mn
+

∞∑
m=2

m−1∑
n=1

(ρl)
m

mn

)

=
1

1− ρl

(
2 ·

∞∑
m=1

m∑
n=1

(ρl)
m

mn
−

∞∑
m=1

(ρl)
m

m2

)
(2.106)

For convenience, we let:

fc2(ρl) = 2 ·
∞∑

m=1

m∑
n=1

(ρl)
m

mn
−

∞∑
m=1

(ρl)
m

m2
(2.107)

By Taylor series expansion of logarithm function, we have the closed form ex-

pression of derivative of fc2(ρl):

f ′c2(ρl) = −2 · log(1− ρl)

ρl

+
log(1− ρl)

ρl(1− ρl)
(2.108)

Through the definition of dilogarithm function in (2.29), we can show that:

fc2(ρl) = £(ρl) + (log(1 − ρl))
2 (2.109)
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Finally, we have c2,

c2 =
£(ρl) + (log(1 − ρl))

2

1− ρl

(2.110)

Substituting the values of a2, b2 and c2 to (2.103), we see that (2.97) holds. Hence,

lemma 2.3.3 is proved.

2.D Proof of Lemma 2.3.4

The correlation coefficient ρl is defined as:

ρl =
Æ[AnAn−l]−Æ[An]Æ[An−l]√

var(An) var(An−l)
. (2.111)

Easily we know Æ[An] = 1 and Æ[An−l] = 1, so the only unknown term is

Æ[AnAn−l]. Noting that An = hnh∗n, we have:

Æ[AnAn−l] = Æ[hnh∗nhn−lh
∗
n−l] (2.112)

By the Inverse DFT fading generation process discussed in Section 2.2, the fadings

hn correspond to:

hn =
1√
N

N∑
a=1

haS
1
2
a exp(j2π

a

N
· n), (2.113)

where ha denotes multiple i.i.d. complex Gaussian variables, and S
1
2
a is the square

root of the discrete sample of the PSD S(f), and for large N satisfies:

N∑
a=1

Sa = N (2.114)

Substituting (2.113) into (2.112), we have the covariance between two joint ex-

ponential variables:

Æ[AnAn−l]

=
1

N2

N∑
a=1

N∑

b=1

N∑
c=1

N∑

d=1

Æ[hah
∗
bhch

∗
d]S

1
2
a S

1
2
b S

1
2
c S

1
2
d exp

(
j2π

(
(a− b) · n

N
+ (c− d) · n− l

N

))
.

(2.115)
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Note:

Æ[hah
∗
bhch

∗
d] =





1 if a = b and c = d and a 6= c
1 if a = d and b = c and a 6= c
2 if a = b = c = d
0 otherwise

(2.116)

, Hence, (2.112) corresponds to:

Æ[AnAn−l] =
1

N2




N∑
a=1

N∑
c=1
a 6=c

SaSc +
N∑

a=1

N∑
c=1
a6=c

SaSc exp

(
j2π

a− c

N
· l

)
+ 2

N∑
a=1

(Sa)
2




=
1

N2

(
N∑

a=1

N∑
c=1

SaSc +
N∑

a=1

N∑
c=1

SaSc exp

(
j2π

a− c

N
· l

))
(2.117)

Substituting (2.117) into (2.111), the final correlation coefficient corresponds to:

ρl = RlR
∗
l , (2.118)

where

Rl =
1

N

N∑
a=1

Sa exp
(
j2π

a

N
· l

)
. (2.119)

Hence, the lemma 2.3.4 is proved.

A remarkable property of ρl is that it is always positive. This is in fact ex-

pected: Considering we have a large fading amplitude at one time, at other time we

would expect a large fading but not a small fading amplitude; hence, the correlation

coefficient is always positive.

2.E Proof of Theorem 2.3.5

First of all, we define the norm operation of a matrix:

|A| =
N∑

a=1

N∑

b=1

(A)a,b (2.120)

where (A)a,b denote the element of matrix A at ath row and bth column. Note this

operation is not the Frobenius norm operation, here we define the norm simply as

the summation of all elements in the matrix.
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Now, we can write the variance of the normalized mutual information as:

var

(
1

N

N∑
n=1

log An

)
=

1

N2

(
N ·£(ρ0 ) + 2

N−1∑

l=1

(N − l) ·£(ρl)

)
=
|L|
N2

, (2.121)

where L is defined as:

L =




£(ρ0 ) £(ρ1 ) · · · £(ρN−1 )
£(ρ1 ) £(ρ0 ) · · · £(ρN−2 )

...
...

. . .
...

£(ρN−1 ) £(ρN−2 ) · · · £(ρ0 )


 . (2.122)

Using the series representation of the dilogarithm function,

£(ρl) =
∞∑

k=1

(ρl)
k

k2
, (2.123)

we can write the norm of L in another form:

|L| =
∞∑

k=1

|Lk|
k2

, (2.124)

in which Lk corresponds to:

Lk =




(ρ0)
k (ρ1)

k · · · (ρN−1)
k

(ρ1)
k (ρ0)

k · · · (ρN−2)
k

...
...

. . .
...

(ρN−1)
k (ρN−2)

k · · · (ρ0)
k


 . (2.125)

In appendix 2.D, we have shown that ρl = RlR
∗
l , therefore, we can write:

|Lk| = tr(RkR
†
k) =

N∑
n=1

λn(RkR
†
k) (2.126)

where λn(·) denotes the nth eigen value of the corresponding matrix, and Rk is defined

as:

Rk =




(R0)
k (R1)

k · · · (RN−1)
k

(R1)
k (R0)

k · · · (RN−2)
k

...
...

. . .
...

(RN−1)
k (RN−2)

k · · · (R0)
k


 . (2.127)

In general, the eigen values of Rk is not easy to be computed via the PSD S(f).

However, for large values of N , some nice mathematical results are available already.
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The asymptotic behavior of the product of Toeplitz matrices are well studied in

[Grenander and Szegio(1958)] and recently summarized in an engineering manner in

[Gray(1977)]. Here, we refer to Theorem 5.3 in [Gray(1977)].

lim
N→∞

1

N

N∑
n=1

λn(RkR
∗
k) =

∫ 0.5

−0.5

(Sk(f))2 df (2.128)

where Sk(f) satisfies:

(Rl)
k =

∫ 0.5

−0.5

Sk(f) exp

(
j2π

l

N
· f

)
df. (2.129)

In other words, Sk(f) is the spectrum corresponding to the auto-covariance ma-

trix Rk. We note that the elements of Rk is the kth power of elements of R, and we

know that time-domain multiplication is equivalent to the frequency-domain convo-

lution. In other words, it is noticed that bRk is multiplication of bRk−1 and R1, then

its spectral, Sk(f) would corresponds to convolution of Sk−1(f) and S1(f), i.e.,:

Sk(f) = Sk−1(f) ∗ S(f), (2.130)

where ∗ denotes the cyclic convolution, and S1(f) = S(f).

Combining the results in (2.130), (2.128) and (2.126), Theorem 2.3.5 is proved.
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Chapter 3

Perturbation Analysis in SIMO
Channels

This chapter1 investigates the Probability-of-Detection (POD) performance of a novel

Wireless Local Positioning System (WLPS2) realized via Direct Sequence Code Di-

vision Multiple Access (DS-CDMA) and beamforming techniques. The proposed

WLPS has unique signaling schemes that discriminate it from the traditional wire-

less systems and allows the WLPS to have many civilian and military applications.

The WLPS consists of two main parts: (1) the detecting unit, a base station carried

by a mobile unit defined as Dynamic Base Station (DBS), and (2) the being detected

unit, a transponder (TRX) that is mounted on the targets, each assigned a unique

identification code (ID code). Each DBS should be capable of detecting and locating

all available TRXs in its coverage area. As a result, the main complexity of this

system is focused at the DBS receiver.

In this work, we introduce WLPS structure, and both theoretically and numer-

ically compute, and compare the Probability-of-Detection performance of the DBS

receiver realized by a merger of DS-CDMA and antenna arrays. We also analyze

and simulate the performance of this system under perturbations in the DBS an-

1Portions of this chapter were previously reported in [Zekavat(2003)] [Zekavat et al.(2004)]
[Tong and Zekavat(2005)].

2The WLPS US Patent is pending by Michigan Tech. University.
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tenna array vector. The simulations are particularly performed for vehicular collision

avoidance applications.

3.1 Introduction

Historically, positioning was developed for navigational purposes with a wide va-

riety of civilian and military applications, and they fall into two main categories,

Global Positioning Systems (GPS) [Getting(1993)] [Grant(1988)] and Local Posi-

tioning Systems (LPS) [Werb and Lanzl(1998)] . GPS is a precise, all-weather, 24

hour satellite based positioning system mainly developed for direction finding and

navigation [Bernard(1992)]. However, GPS has the following problems: (1) its signal

does not penetrate into the buildings; hence, it does not perform at indoor areas, (2)

it looses its precision in rich scattering environments such as urban areas, (3) it is

mainly suitable for navigation and for tracking or command purposes, it should be

merged with a communication system for transmission of position information from

the GPS to a center (e.g., command center in defense applications), and (4) it is yet

expensive.

Local positioning systems (LPS) fall into two main categories [Vossiek et al.(2003)]:

(1) Self Positioning: A mobile device finds its own instantaneous location with respect

to a fixed point, e.g., the starting point or a beacon node, and (2) Remote Position-

ing: A mobile device finds the instantaneous positions of other objects (mobiles)

with respect to its own position. The Wireless Local Positioning System (WLPS)

introduced in this chapter is a remote positioning system with active targets capa-

ble of detecting and locating targets within several hundred meters in a dynamic

environment [Zekavat(2003)] [Zekavat et al.(2004)] [Tong and Zekavat(2005)].

In the quest for wireless positioning, different systems have been developed or are

under development. For example, radar systems are used to find the position of tar-

gets in the surrounding areas via transmission of a short burst of energy and process-

ing its reflection from the targets [Skolnik(1981)] [Sekine et al.(1992)]. The ability of
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radars to detect the desired targets is hindered by clutters or reflections from undesir-

able objects and interfering radars, which are inevitable in typical indoor and urban

areas, rendering radar systems impractical [Hermann et al.(2001)] [Zekavat(2003)].

Another example is a vision system that uses video signals collected from a camera to

recognize targets and estimate positions [Saneyoshi(1996)]. Such systems, including

Chrysler’s mobile positioning system, face major limitations at night and in severe

weather conditions such as intense rain, snow and fog.

The Wireless Local Positioning System (WLPS) introduced in this chapter con-

sists of: (1) a base station in each monitoring mobile, which serves as a non-static or

Dynamic Base Station (DBS), and (2) a transponder (TRX) in target mobiles, which

acts as active targets. Unique IDentification (ID) codes are assigned to each target.

DBS transmits a short pulse containing an ID Request (IDR) signal to all targets

located in its vicinity, and it does not transmit within two consecutive IDRs called ID

request Repetition Time (IRT ). The targets respond to that signal by transmitting

their ID codes back to the DBS. DBS recognizes each target by its ID code, and then

positions, tracks and monitors those targets. Positioning is realized via calculating

the Time-of-Arrival (TOA) and the Direction-of-Arrival (DOA). TOA is defined as

the time difference between transmission of the ID request signal and reception of

the corresponding TRX ID.

The performance of WLPS system depends on two main variables: a) Probability-

of-Detection (POD) of the ID of each TRX, and b) accuracy of positioning, which

is a function of the estimation of TOA and DOA. The positioning performance

of WLPS primarily depends on the development of TOA/DOA estimation tech-

niques. In general, TOA can be estimated via RAKE receivers [Ramos et al.(1997)];

DOA can be estimated via super resolution spatial spectral estimation techniques

[Al-Ardi et al.(2004)]; or DOA/TOA can be estimated jointly [Wang et al.(2001)].
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Novel DOA estimation techniques have been designed for WLPS and be presented

in [Pourrostam et al.(2007)].

In this chapter, we focus on the ID detection process of the WLPS which involves

a study on the Probability-of-Detection performance. WLPS uses TRX ID IDs to

distinguish and track the TRXs in its coverage area. Moreover, some WLPS appli-

cations may only need ID detection but not TOA/DOA estimations: For example,

as an application of WLPS in stop-free toll stations, when a driver passes by a toll

station, the monitoring system (DBS) would just record the vehicle’s ID (TRX) for

billing purposes.

Many local positioning systems via active targets have been introduced in the

literature. Examples include: (1) Airborne traffic alert and collision avoidance

(TCAS) systems [Williamson and Spencer(1989)] [Kahne and Frolow(1996)] devel-

oped for future air navigation systems (FANS) [Trim(1990)] use transponders at

airplanes (active targets) for positioning purposes. These systems use the radar

principles for range resolution with a range of 10-40 miles [Ractliffe(1990)] which

leads to a limited capacity suitable for those applications. The technique used in

TCAS is not feasible for wireless channels, which experience multi-path fading and

interference effects, and cover a range of 0.1-1 mile in many applications; (2) Cell

phone positioning systems may exploit a triangulation technique [Cedervall(1998)]

to estimate subscriber’s position. In order to achieve a reasonable positioning accu-

racy (around 100m), the subscriber’s signal can be received by at least three base

stations. But, this number of base stations might not be available at all times.

In addition, experimental results show that the capability of this system is lim-

ited by multipath environments [Hepsaydir(1999)]. A merger of area power inten-

sity map and directional antennas may also be utilized for cell phone positioning

purposes [Kikuchi et al.(2003)]. This approach requires detailed information that
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constrains to static (as opposed to dynamic) positioning; (3) In tagged local po-

sitioning systems (TLPS), mobiles (active targets) transmit periodic signals at all

times, and static base stations receive those signals and locate the targets via a

triangulation technique [Werb and Lanzl(1998)]. In order to increase its robust-

ness to multipath effects and increase its accuracy, this system utilizes additional

readers and reference tags. These systems are limited to a relatively fixed envi-

ronment [Ni et al.(2003)]; and (4) In WLAN positioning systems, a triangulation

technique is used by mobile nodes for positioning purposes. In order to perform

triangulation, WLAN positioning requires a number of nodes to be involved in the

positioning process [Singh et al.(2004)]. Hence, positioning process can not be per-

formed independently by each node, which limits the applications of these positioning

systems.

In the WLPS introduced in this chapter, each DBS is capable of positioning

all TRXs in its coverage area. Moreover, the DBS does not need additional prior

environmental information. Hence, WLPS is not limited to the fixed base station.

In addition, via the application of wireless signaling schemes such as Code Division

Multiple Access (CDMA), diversity combining and beamforming, the interference

and multipath fading effects can be reduced and the probability of detection in-

creases. The WLPS can be defined as a node in Mobile Adhoc Network (MANET)

with a variety of applications in security systems (e.g., in indoor security via imple-

mentation of DBS and TRX on security guards and just TRX on people entering

the building), vehicle collision avoidance system and multi robot control (e.g., by

implementing the DBS and TRX on all vehicles or robots [Zekavat(2003)]), and de-

fense (e.g., for command control and tracking, by implementation of DBS on the

central command and control, DBS and TRX on all commanders and TRX on sol-

diers). The coverage area of WLPS can be increased via multiple-hop localization

techniques [Zekavat et al.(2004)] [Li et al.(2000)] [Gharavi and Ban(2003)].
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In this work, we investigate the realization of this system via standard trans-

mitters and receivers (i.e., simple modulators and demodulators) as well as Direct

Sequence CDMA (DS-CDMA) receivers with and without antenna arrays and beam-

forming (BF) techniques, and we compare their Probability-Of-Detection, Pd, perfor-

mance. In DS-CDMA the transmitted symbol is multiplied in a spreading code in the

time domain. Orthogonal spreading codes maintain the orthogonality between the

signals transmitted from different TRXes. In addition, multipath fading effects are

reduced by exploiting path diversity at the DS-CDMA receiver. This technique alone

enhances the Probability-of-Detection (POD) performance of the DBS receiver. A

merger of DS-CDMA with Spatial Division Multiple Access (SDMA) highly enhances

the performance of the DBS. SDMA is accomplished by employing directionality via

antenna arrays at the DBS receiver. These antenna arrays are required for DOA

estimation as well. Our simulation depicts that by a proper selection of IRT , both

DS-CDMA and standard Rake receivers with conventional BF lead to a high POD

performance. Here, we particularly perform the simulations for vehicular collision

avoidance (road safety) applications of WLPS.

In real applications, perturbation of the array weight vector due to effects such

as sensor position errors, gain errors, phase errors, mutual coupling between sen-

sors, imperfect channel phase estimation, and different cable length for each sensor

degrades the receiver performance [Yang and Swindlehurst(1995)] [Godara(1997)].

Synthesizing all these effects leads to an additive random Gaussian error on the ar-

ray weight vector [Wax and Anu(1997)]. In this work, we also study the performance

degradation (POD and capacity) caused by these perturbation effects.

The chapter is organized as follows: Section II introduces the WLPS structure.

Section III discusses the theoretical analysis of the system performance for different

system configurations as well as the perturbation effect. Section IV represents the

simulation and analytical results. Section V concludes the chapter. A table of

abbreviations used throughout this chapter is provided in Table 3.1.
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Table 3.1: Table of Abbreviations
BF Beamforming

DBS Dynamic Base Station
DOA Direction of Arrival

DS-CDMA Direct Sequence Code Division Multiple Access
GPS Global Positioning System
IDR ID Request Signal
IRT ID Request Repetition Time
LPS Local Positioning System
POD Probability-of-Detection

RCVR Receiver
SDMA Spatial Division Multiple Access
TOA Time Of Arrival
TRX Transponder

WLPS Wireless Local Positioning System

3.2 A Novel Wireless Local Positioning System

The two WLPS main parts include: A dynamic base station (DBS) and a transponder

(TRX). The DBS transmitter generates an ID code request (IDR) signal every IRT

(ID request repetition time) to all TRXs in the coverage area; then, it waits to receive

a response back from the TRX within IRT (see Fig. 3.1). TRX transmits a unique

ID code as soon as it detects the IDR signal transmitted by the DBS. The ID code

is selected from simple pseudo random codes which consist of +1 and -1. Hence, the

number of bits in the code depicts the maximum capacity of the WLPS. Depending

on the application, the ID code can be assigned permanently or can be assigned by

the DBS transmitter. The structure of DBS is shown in Fig. 4.1.

In a WLPS structure, each DBS communicates with a number of TRX in its

coverage area simultaneously. This is the same as usual cellular communication

systems. However, in contrast to cellular systems, in WLSP each TRX communicates

with a number of DBS simultaneously as well. In addition, the time of transmission

and reception would be different at the DBS, as shown in Fig. 3.1. Moreover, the

whole DBS and TRX use different transmission frequencies. Thus, the overall system
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τDBS 

       
       IRT 

ID request signal transmitted by a specific DBS: This 
message will be transmitted via a CDMA scheme every IRT Received signal (ID code) from a mobile (TRX) which is 

transmitted via a MA scheme. 

 
 τTRX 

TOA calculation 

Figure 3.1: Transmission of IDR and reception from TRX in DBS. Assuming a
Pseudo Random ID codes, the number of the bits in the code represents the maximum
capacity of the WLPS.

Transmitter

Antenna
Omni−Directional Modulator (If it is required)

MA Scheme ID Request (IDR)
Signal Generator

MA RCVR and
Diversity Combiner

Adaptive Beamformer
and DOA Finder

ID Detector 
and Position FinderAntenna Array

Receiver

Figure 3.2: DBS structure

is considered as a time division duplex (TDD)-frequency division duplex (FDD), that

is, hybrid TDD/FDD communication system (differ from cellular systems that are

either TDD or FDD). This allows WLPS to reduce the interference effects via a

proper selection of IRT .

The minimum allowable value for IRT (IRTmin) is calculated to avoid range am-

biguity: If the response to each IDR signal is received in DBS within IRT , mobile

range is calculated correctly; however, if it is received after the next IDR transmis-

sion, the range is not correctly calculated. Here, IRT is a function of the maximum

coverage or the maximum range Rmax. The minimum allowable IRT corresponds

to:

IRTmin = 2Tmax + Td + TG, (3.1)
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where Tmax denotes the maximum possible time delay between the TRX trans-

mission and the DBS reception, Td is the TRX time delay in responding to the IDR

signal which determines the minimum time before receiving the first signal back

from a TRX, and TG is the guard band time to avoid range ambiguity, corresponds

to [Zekavat(2004)]:

TG = 5Tm + τDBS + τTRX . (3.2)

Here, Tm is the wireless channel delay spread, τDBS and τTRX are the durations of

DBS and TRX transmitted signals, respectively. Considering the maximum uplink

antenna array half power beam widths (HPBW) β to be less than 90◦, using a

simple geometry in a scattering environment, Tmax is determined by Rmax and β via

[Zekavat(2004)]:

Tmax =

(
Rmax

2c

)
· 1 + cos β

cos β
, (3.3)

where c denotes the speed of light. Eq. (3.1) refers to a lower limit for IRT (i.e.,

IRTmin). The upper limit for IRT (IRTmax) is a function of the speed of moving

TRX and DBS, and accordingly, the required processing speed.

The TRX receiver is subject to inter-DBS interference (IBI), since more than one

DBS may transmit IDR signals in the coverage area of a TRX. Large selection of IRT

reduces the probability-of-overlap, povl, or collision of the DBSs transmitted signals

at the TRX receiver. In addition, a number of TRXs in the DBS coverage area re-

spond to the IDR signal of one DBS simultaneously, causing inter-TRX-interference

(IXI) at the DBS receiver. Both IXI and IBI are functions of the povl for the trans-

mitted signals from TRXs and DBSs, respectively. povl has a profound effect on the

performance of the receiver, is a function of the number of mobiles or transmitters

(DBS or TRX), K, in their coverage area, and corresponds to:

povl = 1− (1− dc)
K−1, (3.4)
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where the duty cycle, dc, defined as dc = τ/T , τ = τDBS(τTRX) is the duration

of DBS (TRX) transmitted signal, and T = TDBS(TTRX), where TDBS = IRTmin,

TTRX = IRT .

In general, large selection of IRT reduces IBI effects at the TRX receiver and

highly enhances its POD performance. However, the large selection of IRT does

not affect the IXI, since all of the signals are received by DBS receiver within the

Tmax time frame, which is mainly a function of the maximum coverage range. It

is also worth mentioning, each TRX located in the coverage area of more than one

DBS may generate ID codes in response to more than one DBS within each IRT .

This leads to both IXI as well as range ambiguity. Range ambiguity can be resolved

via changing code assignments (MA codes, ID codes or both) for different DBS. In

addition, in Eq. (4.1), the parameter dc is a function of τTRX and τDBS, so as the

probability-of-overlap and the POD performance of WLPS.

In general, selection of τDBS and τTRX depends on the POD, desired system capac-

ity (in terms of the number of TRX/DBS accommodated), bandwidth, positioning

accuracy and maximum coverage range, and may vary with WLPS application. The

duration of the transmitted signal by the DBS (τDBS) and TRX (τTRX) should be

much smaller than the IRT to reduce povl among signals received by receivers of

TRX and DBS, respectively. A smaller povl decreases both the IBI effects (at TRX)

and IXI effects (at DBS), which in turn enhances the POD performance and the

capacity of the WLPS system. On the other hand, the system maximum capacity

expressed by the maximum number of TRX (DBS) determines the number of bits

within each ID code, which is to be transmitted over a period of τTRX (τDBS) . The

required bandwidth is inversely proportional to τTRX and τDBS for a given capacity.

A large selection of IRT allows τDBS to be selected much larger than τTRX without

sacrificing povl at the TRX receiver. Hence, WLPS bandwidth is mainly determined

by the value of τTRX (see Section 4.5, the simulation results).
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3.3 WLPS Implementation And Theoretical Analysis

As discussed in Section 4.2, in general, the interference effect IXI (IBI) at the DBS

(TRX) receiver can be mitigated via selecting dc small enough. Large selection

of IRT reduces the dc and consequently the IBI at the TRX receiver; however,

large selection of IRT does not have any effect on the IXI at the DBS receiver.

The dc can also be reduced via small selection of τ (τDBS or τTRX), that in turn

enhances the required bandwidth. Hence, while a standard receiver ensures TRX

high performance for a multi-user environment, the DBS performance is improved

just via MA schemes. We start with the theoretical investigation of performance

for standard receivers and then we continue the discussion for DS-CDMA schemes.

The theoretical results discussed here can be equivalently applied to both TRX and

DBS receivers. The details of derivations of equations presented in this section are

provided in Appendices 3.A-3.C.

3.3.1 Standard Receiver System

Assuming a standard receiver at the DBS (TRX), the transmitted signal from the

TRX (DBS) corresponds to (see Fig. 3.1):

sk(t) =
N−1∑
n=0

bk[n]gTb
(t− nTb) · cos(2πfct), (3.5)

where N denotes the number of bit per ID code (that represents the maximum

capacity of the WLPS), bk[n] denotes the nth bit of user k’s ID, Tb = τ/N represents

the DBS(TRX) bit duration where τ = τTRX(τDBS); gTb
(t) are rectangular pulses

with the duration τ and Tb.

Assuming a frequency selective channel, the received signal r(t) at the DBS(TRX)

receiver is a mixture of signals from different TRXs(DBSs) and different paths, which

is given by:

r(t) =
K∑

k=1

Lk−1∑

l=0

N−1∑
n=0

αk
l b

k[n] · gTb
(t− τ k

l − nTb) · cos(2πfct + φk
l ) + n(t), (3.6)
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where K denotes the total number of TRXs(DBSs), Lk is the number of paths for

TRX(DBS) k, and αk
l , τ k

l , φk
l denote the fading factor, time delay and random phase

for kth user’s lth path, respectively.

After the demodulation, the nth bit output for jth DBS’s (TRX’s) qth path cor-

responds to:

yj
q [n] =

∫ τ j
q +(n+1)Tb

τ j
q +nTb

r(t) cos(2πfct + φj
q) dt, (3.7)

Assuming all TRXs(DBSs) have the same number of paths, i.e., Lk = L,∀k,

and fading energy is uniformly distributed in paths, i.e., E[(αj
q)

2] = 1/L, the in-

stantaneous SINR in jth user’s qth path, i.e., for any path of any TRX(DBS) is (see

Appendix 3.B):

ri =
Aa

Da · (K − 1) + Da · (1− 1
L
) + 1

r̄0

· 2

L
, (3.8)

where r̄0 is the average SNR, which is defined as the ratio between average bit energy

and white noise. In this case,Aa = 1, Da = dc , and dc denotes the duty cycle [see

Eq. (4.1)].

3.3.2 Standard Receiver merger with Conventional Beamforming

BF techniques reduce the signal from other users and other paths as long as they

are in different direction from the desired user and path. In this case, with the same

transmitted signal as Eq. (3.5), the received signal at the DBS(TRX) with antenna

arrays corresponds to:

~r(t) =
K∑

k=1

Lk−1∑

l=0

N−1∑
n=0

αk
l · ~V (θk

l ) · bk[n] · gTb
(t− τ k

l − nTb) · cos(2πfct + φk
l ) + ~n(t), (3.9)

where ~V (θk
l ) denotes the array response vector and corresponds to:

~V (θk
l ) =

[
1 exp(j · −2πd cos(θk

l )

λ
) · · · exp(j · −2(M − 1)πd cos(θk

l )

λ
)

]T

.

(3.10)
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Here, d is the spacing between antenna elements, M is the total number of antennas,

λ denotes the carrier wavelength and θk
l is the direction of kth user’s lth path.

After BF and demodulation, the nth bit for jth user’s qth path corresponds to:

yj
q [n] = ~WH(θj

q)

∫ τ j
q +(n+1)Tb

τ j
q +nTb

~r(t) cos(2πfct + φj
q) dt, (3.11)

where ~W (θj
q) = ~v(θj

q) if no perturbation presents, and H denotes Hermition trans-

pose. ~W (θj
q) with perturbation is explained in section 3.3.5.

In this case, the SINR for any path of any user is (see Appendix 3.B):

ri =
Ab

Bb ·Db · (K − 1) + Bb ·Db · (1− 1
L
) + M

r̄0

· 2

L
, (3.12)

where Ab = M2, Db = dc, and

Bb =
M−1∑
m=0

(m + 1)J0(
2πdm

λ
)J0(

−2πdm

λ
) +

2M−2∑
m=M

(2M −m− 1)J0(
2πdm

λ
)J0(

−2πdm

λ
).

(3.13)

Here, J0 represents the zeroth order Bessel function of the first kind.

3.3.3 The DS-CDMA System

The transmitted DS-CDMA signal by the kth TRX (DBS) corresponds to:

sk(t) =
N−1∑
n=0

bk[n] · gTb
(t− nTb) · ak(t− nTb) · cos(2πfct), (3.14)

where ak(t) =
∑G−1

i=0 Ck
i gTc(t − iTc), Ck

i ∈ {−1, 1}, denotes the spreading code, and

G is the processing gain (code length), Tc = τ/(N ·G) , τ = τTRX(τDBS), represents

the chip duration and, gTc(t) is a rectangular pulse with the duration of Tc.

The received signal corresponds to:

r(t) =
K∑

k=1

Lk−1∑

l=0

N−1∑
n=0

αk
l b

k[n] ·gTb
(t− τ k

l −nTb) ·ak(t− τ k
l −nTb) · cos(2πfct+φk

l )+n(t).

(3.15)
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Figure 3.3: DBS(TRX) receiver structure assuming a frequency selective channel
and smart antennas with DS-CDMA

After despreading, the nth bit output of jth DBS’s(TRX’s) qth path corresponds

to:

yj
q [n] =

∫ τ j
q +(n+1)Tb

τ j
q +nTb

r(t) · cos(2πfct + φj
q) · ak(t− τ j

q − nTb) dt. (3.16)

Finally the SINR for any path of any DBS(TRX) is (see Appendix 3.B):

ri =
Ac

Dc · (K − 1) + Dc · (1− 1
L
) + G

r̄0

· 2

L
, (3.17)

where Ac = G, and

Dc = dc − N2 − 3N + 3

2N2
· d2

c . (3.18)

3.3.4 DS-CDMA Merger with Conventional Beamforming

With the same transmitted signal as in Eq. (4.4), the received signal at the DBS

(TRX) for the antenna array (see Fig. 4.3), which is a mixture of signals from

different TRXs(DBSs) and different paths, is given as:

~r(t) =
K∑

k=1

Lk−1∑

l=0

N−1∑
n=0

αk
l ·~V (θk

l )·bk[n]·gTb
(t−τ k

l −nTb)·ak(t−τ k
l −nTb)·cos(2πfct+φk

l )+~n(t).

(3.19)

The ith bit output of BF for jth user’s qth path is given as:

yj
q [n] = ~WH(θj

q)

∫ τj
q +(n+1)Tb

τ j
q +nTb

~r(t) · cos(2πfct + φj
q) · ak(t− τ j

q − nTb) dt. (3.20)
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Finally, the SINR for any path of any user corresponds to (see Appendix 3.B:

ri =
Ad

Bd ·Dd · (K − 1) + Bd ·Dd · (1− 1
L
) + MG

r̄0

· 2

L
, (3.21)

where Ad = M2G, Bd = Bb, and Dd = Dc.

3.3.5 Perturbation effects

Here, we investigate the effects of perturbation in sensor position, channel phase esti-

mation, and the effects of mutual coupling between sensors, receiver fluctuation due

to temperature and humidity, quantization effects, different cable length for each sen-

sor, imperfect channel phase estimation, etc. According to Central Limit Theorem,

the summation of these effects leads to additive zero mean Gaussian random vari-

ables along the elements in the array, i.e., the weighting vector ~W (θk
l ) in Eq. (3.16)

and (4.9) does not match array response vector ~V (θk
l ) exactly, but corresponds to

~W (θk
l ) = ~V (θk

l ) + ~εk
l , where ~E, called error vector, denotes a column vector that

contains M independent Gaussian random variables with zero mean and variance

σ2
ε [Rao and Jones(2001)].

With this error vector, the peak of the directional beam does not point to the

desired user perfectly, but steered away from the desired user. Therefore, the power

of the desired user is reduced. In addition, sidelobe’s power of the directional beam

increases; hence, power of IXI(IBI) increases. As a result, SINR is reduced by per-

turbation, which is a function of σ2
ε .

With perturbations, for standard receiver with antenna arrays, as introduced in

Eq. (3.12), the SINR for any path of DBS(TRX) corresponds to (see Appendix 3.B):

ri =
Ae

Be ·De · (K − 1) + Be ·De · (1− 1
L
) + M+σ2

ε

r̄0

· 2

L
,

where De = dc, and, (see Appendix 3.C)

Ae = M2 + σ2
ε

M−1∑
m=0

J0(2 · 2πdm

2
), (3.22)
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Be =
M−1∑
m=0

(m + 1)J0(
2πdm

λ
)J0(

−2πdm

λ
) +

2M−2∑
m=M

(2M −m− 1)J0(
2πdm

λ
)J0(

−2πdm

λ
)

+ σ2
ε

M−1∑
m=0

J0(2 · 2πdm

2
). (3.23)

Similarly, for DS-CDMA system with antenna arrays, as introduced in Eq. (3.21),

the SINR for any path of any user corresponds to (see Appendix 3.B):

ri =
Af

Bf ·Df · (K − 1) + Bf ·Df · (1− 1
L
) + (M+σ2

ε )·G
r̄0

· 2

L
,

where Df = De, Bf = Be as introduced in Eq. (3.23), and (see Appendix 3.C)

Af = G · (M2 + σ2
ε

M−1∑
m=0

J0(2 · 2πdm

2
)). (3.24)

3.3.6 Path Diversity Combining

Finally, for all of the receivers discussed in parts A-E, we apply Maximal Ratio Com-

bining (MRC) across the path diversity components [Shah and Haimovich(2000)]:

zj[n] =
L∑

l=1

αj
l y

j
l [n]. (3.25)

Therefore, the final instantaneous SINR expression can be written as:

r0 = re · (α2
1 + α2

2 + · · ·+ α2
L). (3.26)

In Eq. (3.26), the parameter re has been defined in Eq. (3.8), (3.12), (3.17),

(3.21), corresponding to the receivers introduced in previous subsections. The Bit-

Error-Rate for all of the discussed receivers corresponds to (see Appendix 3.A):

Pe =

∫ ∞

0

Q(
√

2r0)f(r0|r̄0) dr0 = 0.5


1−

√
r̄

1 + r̄
·

L−1∑

l=0




2l

l


 · 1

22l · (1 + r̄)l


 .

(3.27)

Here, r̄ = L · ri, which corresponds to a uniform power distribution over L paths, ri

has been introduced in (8), (12), (17) and (21).
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For frequency-selective channel, L is greater than one. For flat-fading channel, L

equals to one. If all bits are detected correctly, the ID of the desired user is detected

correctly. Therefore, the probability-of-detection is given as:

Pd = (1− Pe)
N , (3.28)

and the probability-of-miss-detection corresponds to:

Pmd = 1− Pd. (3.29)

3.4 Numerical Results And Analysis

In this section, we evaluate the POD performance and capacity (in terms of number-

of-TRXs(DBSs)) of WLPS system under multi-TRX, multi-path environment, via

simulations and we compare the results with the theoretical result of Eq. (3.28).

This setup is typically useful for vehicle collision avoidance applications, where each

vehicle is required to cover the front area. For simulation purposes, we assume:

1. The ID code has 6 bits (N = 6);

2. The DS-CDMA code has 64 chips (G = 64);

3. Channel delay spread, Tm for a typical street area is 27 nsec [Arowojolu et al.(1994)];

4. Carrier frequency = 3 GHz, τTRX = 1.2 µs, and τDBS = 24 µs;

5. The antenna array is linear with 4 elements, and element spacing d = λ
2

=

0.05 m (HPBW = 27◦);

6. Four multipaths lead to L = 4 fold path diversity for DS-CDMA system;

7. The TRX distance and angle are uniformly distributed in [ 0 1 ] km and [ 0 π ],

respectively;
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8. Uniform multi-path intensity profile, i.e., bit energy is distributed in each path

identically;

9. Binary Phase Shift Keying (BPSK) modulation;

10. Perfect power control and DOA, TOA estimation; and,

11. The average Signal-to-Noise Ratio (SNR) introduced in Eq. (3.8), (3.12), (3.17)

and (3.21) is r̄0 = 20 dB.

12. The error variance, if perturbation presents, equals to 0.5, i.e., σ2
ε = 0.5. This

error variance means the standard deviation of perturbations is around 70% of

elements of array response vector without perturbations.

Based on the assumed setup, then we deduce that TRX signal TOA is uni-

formly distributed in [ Td Tmax ], at the DBS receiver. Assuming Td ¿ Tmax, the

TRX signal TOA is approximately uniformly distributed in [ 0 Tmax ]. In addition,

the minimum IRT , IRTmin, is 32 µsec [c.f., Eq. (3.1)]. We select a larger value

IRT = 24 msec in order to reduce the IBI effects. It is worth mentioning that in

the assumptions, τDBS is selected larger than τTRX , since the IBI effect at the TRX

receiver can be removed via large selection of IRT . Hence, a smaller bandwidth is

required for the DBS transmitter. With the assumed τDBS and τTRX , the required

bandwidth of a DS-CDMA (standard) transmitter is 320MHz (5MHz) for TRX,

and 16MHz (250KHz) for DBS, respectively. Hence, DBS required bandwidth is

much smaller than the TRX and the WLPS bandwidth is mainly determined by

the TRX transmission bandwidth, as expected. In addition, using these parame-

ters, the duty cycle for DBS and TRX receivers correspond to dc,DBS ' 0.1 and

dc,TRX ' 0.001.

As we mentioned earlier, the IBI at the TRX receiver can be considerably reduced

by selecting the IRT as large as possible; however, this selection will not affect
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Figure 3.4: Simulation results for DBS receivers, without perturbation.

IXI at the DBS receiver. Hence, a TRX receiver can just be implemented by a

simple transceiver (or DS-CDMA) system without employment of BF, while a DBS

receiver needs a combination with BF. It should be mentioned that antenna arrays

are required at the DBS receiver for DOA estimation as well. A small dc,TRX ' 0.001

at the TRX receiver leads to a small povl, which leads to small IBI and high POD.

In contrast, a large dc,DBS ' 0.1 at the DBS receiver leads to a high povl that results

in high IXI. Both BF and CDMA techniques help to reduce the IXI effects at DBS.

The POD (Pd) of the DBS receiver is depicted in Fig. 3.4. This figure compares Pd

vs. the number of TRX for a standard transceiver and a DS-CDMA transceiver, with

or without antenna arrays. It shows that in general the Pd decreases as the number

of TRX increases, which is a direct result of IXI. While beamforming enhances the

POD for a standard receiver, yet it does not lead to a high POD performance (see

the lower two curves). However, BF considerably enhances the capacity of the DS-

CDMA system (see the 3rd and 6th curves from the bottom). Merging DS-CDMA

with BF is thus highly promising for enhancing the Pd performance of WLPS systems.
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Figure 3.5: Simulation results for TRX receivers, without perturbation.

In Fig. 3.4 the solid lines represent the theoretical results which have a good match

with the simulations.

The Pd results for TRX receiver using standard receiver is shown in Fig. 3.5.

Although simple, a standard TRX receiver typically achieves good Pd performance.

Further improvement is possible by selecting a larger IRT value, or a smaller τDBS

value. Occupying the same bandwidth as DS-CDMA, a standard receiver should

choose τTRX ( τDBS) to be 1/64th of that of a DS-CDMA system. In this case, the

same number of path diversity as the DS-CDMA receiver (i.e., four fold diversity) is

achievable. This corresponds to dc,TRX ' 0.000015 (dc,DBS ' 0.0015), which leads

to a very small povl at the DBS (TRX) receiver and very high Pd. This fact has been

shown in Fig. 3.4 (see 5th curve from the bottom) and Fig. 3.5 (see the top curves).

The top curves in Fig. 3.4 and Fig. 3.5 have been redrawn in Fig. 3.6 and 3.8. In

addition, the probability-of-miss-detection [defined in Eq. (3.29)] corresponding to

the curves in Fig. 3.6 and 3.8 have been sketched in Fig. 3.7 and 3.9, respectively.
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Figure 3.6: The top two curves of Fig. 3.4: Probability of Detection.
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Figure 3.7: Probability of miss Detection corresponds to Fig. 3.6.
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Figure 3.8: The top two curves of Fig. 3.5: Probability of Detection.

Fig. 3.6 and 3.7 show that, at the DBS receiver with similar bandwidths, DS-

CDMA receivers outperforms standard receivers. When high number of TRXs are

available, (e.g., Number of TRX=60), Pd of standard system is approximately 99%,

while Pd of DS-CDMA system is approximately 99.8%. Hence, Pd of DS-CDMA sys-

tem satisfies most tracking purposes, which is due to a combination of path diversity

and orthogonality achieved via these systems.

Fig. 3.9 shows that, at the TRX receiver with similar bandwidths, a DS-CDMA

system outperforms standard system too. Because of the large selection of IRT helps

reduce IBI, TRX receiver with antenna array performance is even better than DBS

receiver with antenna array in similar environments. When high number of TRXs are

available,(e.g., Number of TRX=60), Pd of standard system is approximately 99.9%,

while Pd of DS-CDMA system is approximately 99.99%. Note that the TRX receiver

performance can also be improved via larger selection of IRT (such as 0.24 sec). Due

to simplicity, a standard receiver system is recommended for TRX receiver.

www.arts
pdf.com

This PDF has been modifie
d using a demo version of A

RTS PDF softw
are



76

10 20 30 40 50 60
10

−5

10
−4

10
−3

10
−2

Number of DBS

P
ro

ba
bi

lit
y 

of
 M

is
s 

D
et

ec
tio

n

Only Standard RCVR, Duty cycle = 0.000015, 4 fold
DS−CDMA, Duty cycle = 0.001, 4 fold
Theoretical Results

Figure 3.9: Probability of miss Detection corresponds to Fig. 3.8.
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Figure 3.10: DBS performance with perturbations vs. Number of Users.
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Fig. 3.10 shows the capacity of the system, i.e., the probability-of-miss-detection

as a function of the number of TRX, under perturbations. This figure shows the sys-

tem capacity decreases as the error variance equals to 0.5, and setting the probability-

of-miss-detection threshold at 0.1%, the system capacity is reduced by 20% for DS-

CDMA system, and 30% for standard systems.

3.5 Conclusions

This chapter presents a novel WLPS system. With a DBS/TRX structure and a

novel signaling technique, WLPS would have various applications in road safety (ve-

hicle collision avoidance), multirobot control, defense, law enforcement, and security.

We studied and compared the probability-of-detection (POD) performance and the

capacity of DBS and TRX with both DS-CDMA and standard systems with and

without beamforming (BF) for a special setup suitable for road safety applications.

The study shows that with similar bandwidth both DS-CDMA and standard systems

with BF ensures high POD performance and capacity while DS-CDMA technique

leads to a better performance comparing to standard receivers. We also investigated

the perturbation effects in DBS antenna array weights. Perturbation reduces the

asymptotic system POD performance and capacity. Future studies will focus on the

development of unique DOA estimation for WLPS as well as adaptive BF techniques

at the DBS receiver for high scattering environments.

3.A Probability of Detection Derivation

The POD is defined as the probability that DBS detects all bits within an ID cor-

rectly, and corresponds to:

Pd = (1− Pe)
N , (3.A.30)

where Pe denotes the probability that one bit is not detected correctly, and N denotes

the number of bits in one ID.
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Assuming L path diversities and applying maximal ration combining, the received

signal is in the form:

s = s0 ·
L∑

l=1

|hl|2 +
L∑

l=1

h∗l nl, (3.A.31)

where s0 denotes the transmitted signal, hl denotes the fading over lth path, which is a

circularly symmetric complex Gaussian random variable, and nl is the corresponding

noise.

The instantaneous received signal power corresponds to:

Ps = Es ·
(

L∑

l=1

|hl|2
)2

, (3.A.32)

where Es denotes the transmitted signal power.

The instantaneous noise power corresponds to:

Pn =
N0

2
·

L∑

l=1

|hl|2, (3.A.33)

where N0 denotes the thermal noise power.

Combining (3.A.32) and (3.A.33), the instantaneous SNR corresponds to:

r = r̄

L∑

l=1

|hl|2, (3.A.34)

where r̄ denotes the average SNR.

Assuming a Rayleigh fading channel, it is well known that |hl| follows Rayleigh

distribution, and |hl|2 follows exponential distribution. The summation of i.i.d. ex-

ponential random variables follows Erlang distribution, i.e., :

p =
L∑

l=1

|hl|2 ∼ p(L−1)

(L− 1)!
· e−p. (3.A.35)

The instantaneous SNR follows a scaled Erlang distribution:

r = pr̄ ∼ rL−1

(L− 1)! · r̄L
· e− r

r̄ . (3.A.36)
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The BER corresponds to:

Pe =

∫ ∞

0

Q(
√

2r)P (r|r̄) dr (3.A.37)

=

∫ ∞

0

∫ ∞

√
2r

1√
2π

e−
x2

2
e−

r
r̄ · rL−1

(L− 1)! · r̄L
dx dr. (3.A.38)

Let v = r
r̄
, after certain manipulations, the BER corresponds to:

Pe =
1

(L− 1)!

∫ ∞

0

1√
2π

e−
x2

2

∫ x2

2r̄

0

e−vvL−1 dv dx. (3.A.39)

Note that

∫ x2

2r̄

0

e−vvL−1 dv = −(L− 1)!
L−1∑

l=0

vle−v

l!
|v=x2

2r̄
v=0

= (L− 1)!

(
1−

L−1∑

l=0

(x2

2r̄
)ke−

x2

2r̄

l!

)
(3.A.40)

Combining (3.A.40) and (3.A.39), the BER corresponds to:

Pe =

∫ ∞

0

1√
2π

e−
x2

2

(
1−

L−1∑

l=0

(x2

2r̄
)ke−

x2

2r̄

l!

)
dx (3.A.41)

In 3.A.41:

∫ ∞

0

1√
2π · l!e

−x2

2
−x2

2r̄ (
x2

2r̄
)l dx

=
1

l!
· 1√

2π
· 1

(2r̄)l

∫ ∞

0

x2le−
1+r̄
2r̄

x2

dx

=
1

l!
· 1√

2π
· 1

(2r̄)l
· (2l − 1)!!

2l+1
(

1+r̄
2r̄

)l

√
2πr̄

1 + r̄

=




2l

l


 1

22l+1(1 + r̄)l

√
r̄

1 + r̄
(3.A.42)

Hence, the final BER expression is:

Pe =

∫ ∞

0

Q(
√

2r0)f(r0|r̄0) dr0 = 0.5


1−

√
r̄

1 + r̄
·

L−1∑

l=0




2l

l


 · 1

22l · (1 + r̄)l


 .

(3.A.43)
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Here, r̄ = L · ri, which corresponds to a uniform power distribution over L paths.

Please note that the result in (3.A.37) is not only applicable for single user case, but

also applicable for multi-user environments, as long as the interference and thermal

noise follows Gaussian distribution, which is valid in most cases based on the central

limit theorem. Thus, the result in (3.A.43) is applicable for CDMA multi-user case

as well, where re is in fact Signal to Interference and Noise Ratio (SINR), which is

also called ”effective SNR”. The derivation of effective SNR in WLPS is presented

in Appendix 3.B.

Although we derived the above results independently, it is recently found that

similar results have been obtained in [Eng and Milstein(1995)].

3.B Effective SNR Derivation

As we discussed in Section 3.3.4, the received signal with BF and DS-CDMA corre-

sponds to:

~r(t) =
K∑

k=1

Lk−1∑

l=0

N−1∑
n=0

αk
l ·~V (θk

l )·bk[n]·gTb
(t−τ k

l −nTb)·ak(t−τ k
l −nTb)·cos(2πfct+φk

l )+~n(t).

(3.B.44)

The ith bit output of BF for jth user’s qth path is given as:

yj
q [n] = ~WH(θj

q)

∫ τ j
q +(n+1)Tb

τ j
q +nTb

~r(t) · cos(2πfct + φj
q) · ak(t− τ j

q − nTb) dt

=
K∑

k=1

Lk−1∑

l=0

N−1∑
n=0

αk
l · Cjk

ql · bk[n] · cos(φk
l − φj

q) · γkj(τ l
h − τ j

q − nTb)

+

∫ τ j
q +(n+1)Tb

τ j
q +nTb

~WH(θj
q) · ~n(t) · ak(t− τ j

q − nTb) · cos(2πfct + φj
q) dt, (3.B.45)

where

Cjk
ql = ~WH(θj

q) · ~V (θk
l ), (3.B.46)
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and

γkj(τ) =

∫ Tb+τ

0

ak(t) · aj(t− τ) dt. (3.B.47)

The first term in 3.B.45 can be decomposed to three parts: Desired signal, Inter-

Symbol-Interference (ISI), and Multi-Access-Interference (MAI).

The desired signal corresponds to the case that k = j and q = l:

Sj
q [n] = αj

q · Cjj
qq · rjj(0) · bj[n]. (3.B.48)

The ISI corresponds to the case that k = j and q 6= l:

ISIj
q [n] =

Lk−1∑

l=0,l 6=q

N−1∑
i=0

αj
l · Cjj

ql · bj[n] · cos(φj
l − φj

q) · rjj(τ j
l − τ j

q − nTb). (3.B.49)

The MAI corresponds to the case that k 6= j:

MAIj
q [n] =

K∑

k=1,k 6=j

Lk−1∑

l=0

N−1∑
i=0

αlk ·Cjk
ql ·bk[n] ·cos(φk

l −φj
q) ·γkj(τ k

l −τ j
q −nTb). (3.B.50)

Finally, the noise component corresponds to:

NIj
q [n] = ~WH(θj

q) ·
∫ τj

q +(n+1)Tb

τj
q +nTb

~n(t) · ak(t− τ j
q − nTb) · cos(2πfct + φj

q) dt. (3.B.51)

The SINR corresponds to:

SINRj
q[n] =

E
[
(Sj

q [n])2
]

E
[
(ISIj

q [n])2
]
+ E

[
(MAIj

q [n])2
]
+ E

[
(NIj

q [n])2
] . (3.B.52)

The desired signal power corresponds to:

E
[
(Sj

q [n])2
]

= E[(αj
q)

2] · E[(Cjj
qq)

2] · E[(rjj(0))2]/L. (3.B.53)

Assuming a Rayleigh fading channel,

E
[
(Sj

q [n])2
]

= E[(Cjj
qq)

2] · E[(rjj(0))2]/L. (3.B.54)

Note that the Rayleigh channel assumption will be constantly used in the following

derivations.
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The ISI power corresponds to:

E
[
(ISIj

q [n])2
]

=
Lk−1∑

l=0,l 6=q

E[(Cjj
ql )

2] · E[cos(φj
l − φk

q)
2] ·

N−1∑
i=0

E[(rjj(τ j
l − τ j

q − nTb))
2]

(3.B.55)

Because φj
l ∼ U [0, 2π], φj

q ∼ U [0, 2π] and they are independent of each other, it is

easy to find E[cos(φj
l − φk

q)
2] = 0.5. Assuming all TRX experience the same number

of paths (Lk = L, ∀k), within a specific wireless environments, the ISI power finally

corresponds to:

E
[
(ISIj

q [n])2
]

= (1− 1

L
) · 1

2
· E[(Cjj

ql )
2] ·

N−1∑
i=0

E[(γjj(τ j
l − τ j

q − nTb))
2] (3.B.56)

Similarly, the MAI power corresponds to:

E[(MAIj
q [n])2] =

K − 1

2
· E[(Cjk

ql )2] ·
N−1∑
i=0

E[(γkj(τ k
l − τ j

q − nTb))
2] (3.B.57)

Finally, assuming unit transmit energy, the noise power corresponds to:

NIj
q [n] =

E[ ~WH(θj
q)

~W (θj
q)] ·G

M · 2r̄o

(3.B.58)

where r̄o denotes the average SNR.

Now, knowing E[(Cjk
ql )2] = E[(Cjj

ql )
2] and E[(γjj(τ j

l − τ j
q − nTb))

2] = E[(γkj(τ k
l −

τ j
q −nTb))

2] from appendix III (see (III.72) and (III.78)), substituting (II.54), (II.56),

(II.57) and (II.58) into (II.52), the effective SNR corresponds to:

ri =
E[(Cjj

qq)
2] ·G/L

(K − 1
L
) · E[(Cjj

ql )
2] ·∑N−1

i=0 E[(rjj(τ j
l − τ j

q − nTb))2] +
E[ ~W H(θj

q)
~

W (θj
q)]·G

M ·2r̄o

(3.B.59)

Let A = E[(Cjj
qq)

2] · G, B = E[(Cjj
ql )

2] = E[(Cjk
ql )2], and D =

∑N−1
i=0 E[(rjj(τ j

l −
τ j
q − nTb))

2] =
∑N−1

i=0 E[(rjk(τ j
l − τ j

q − nTb))
2], the effective SNR corresponds to:

ri =
A

(K − 1
L
) ·B ·D +

E[ ~W H(θj
q)

~
W (θj

q)]·G
M ·r̄o

· 2

L
(3.B.60)
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This is the general framework that is used in effective SNR computing. The pa-

rameters A , B , D and E[ ~WH(θj
q)

~W (θj
q)] varies with system configuration, i.e., with

and without DS-CDMA, and, with and without beamforming.

Before we go to the computation of A , B , D and E[ ~WH(θj
q)

~W (θj
q)], let us give

an intuitive explanation of the framework.

First, we explain the term at the end of (3.B.60), 2
L
. It is divided by L because

the signal energy is distributed in L paths in our system. It is multiplied by 2

since all interference and noise are attenuated by 2 because of random channel phase

(see explanation of (II.55), i.e., E[cos(φj
l − φk

q)
2] = 0.5), while desired signal is not

attenuated due to perfect phase tracking.

Second, it is easy to understand that A represents how well the desired signal is

magnified via beamforming and CDMA techniques.

Third,
E[ ~W H(θj

q)
~

W (θj
q)]·G

M
denotes how the noise is amplified due to beamforming

and CDMA. We note the amplification of noise is always less than or equal to the

amplification of desired signal.

Finally, we explain the interference term (K− 1
L
) ·B ·D. Assuming K users, each

user transmit through L paths, there are totally KL signals. Only one of those signals

is desired; All others are interference. So, the number of interferers is KL− 1. Note

each interferer possesses 1
L

energy, the raw interference power is K − 1
L
. Here, the

term B and D represent how well the multi-access techniques (SDMA and CDMA)

suppress those interferers.

Now we see the framework in appendix II is solid. Exact equations for A, B, D,

and E[ ~WH(θj
q)

~W (θj
q)] are given in appendix III. Here we give an example, the deriva-

tion of (21), to show how to determine A , B ,D and E[ ~WH(θj
q)

~W (θj
q)] via results in

appendix III.

First, according to (III.72), with σ2
ε = 0:

E[(Cjj
qq)

2] = M2 (3.B.61)
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Hence,

A = M2 ·G (3.B.62)

Second, according to (III.72) as well, with σ2
ε = 0:

B = E[(Cjj
ql )

2] = E[(Cjk
ql )2] (3.B.63)

=
M−1∑
m=0

(m + 1)J0(
2πdm

λ
)J0(−2πdm

λ
) +

2M−2∑
m=M

(2M −m− 1)J0(
2πdm

λ
)J0(−2πdm

λ
)

Third, according to (III.78):

D = dc − N2 − 3N + 3

2N2
d2

c (3.B.64)

Finally, according to (III.73), with σ2
ε = 0:

E[ ~WH(θj
q)

~W (θj
q)] = M2 (3.B.65)

Now, we clearly see how to obtain the result in (21). All other equations are

derived in a similar manner. All necessary information regarding computation of A,

B, D, and E[ ~WH(θj
q)

~W (θj
q)] are included in appendix III.

3.C Spatial and Temporal Correlation Computation

As we discussed in section 3.3.5, ~W (θk
l ) = ~V (θk

l ) + ~εk
l . Hence, using (3.B.46):

Cjk
ql = ~W jH

q · ~V k
l = ~V jH

q · ~V k
l + ~εjH

q · ~V k
l , (3.C.66)

the spatial correlation corresponds to:

E
[
(Cjk

ql )2
]

= E
[
(~V jH

q · ~V k
l )2

]
+ E

[
(~εjH

q · ~V k
l )2

]
. (3.C.67)

The cross terms are removed because ~εj
q is zero-mean and independent from ~V k

l and

~V j
q .
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In the first term of (3.C.67):

(~V jH

q · ~V k
l )2 =

[
M−1∑
m=0

ej2πdm(cosj
q − cosk

l )/λ

]2

=
M−1∑
m=0

(m + 1)ej2πdm(cosj
q − cosk

l )/λ

+
2M−2∑
m=M

(2M −m− 1)ej2πdm(cosj
q − cosk

l )/λ. (3.C.68)

Assuming θj
q and θk

l are independent from each other and uniformly distributed

in [0, π], the first term in (3.C.67) corresponds to:

E
[
(~V jH

q · ~V k
l )2

]
=

∫ π

0

∫ π

0

1

π2
(~V jH

q · ~V k
l )2 dθj

q dθk
l

=
M−1∑
m=0

(m + 1)J0(
2πdm

λ
)J0(−2πdm

λ
)

+
2M−2∑
m=M

(2M −m− 1)J0(
2πdm

λ
)J0(−2πdm

λ
) (3.C.69)

In the first term of (3.C.67):

(~εjH

q · ~V k
l )2 =

(
M−1∑
m=0

εjH

q,m · e−j2πdm cos θk
l /λ

)2

, (3.C.70)

where εj
q,m denotes the mth element of ~εj

q. Here, the second term in (3.C.67) corre-

sponds to:

E
[
(~εjH

q · ~V k
l )2

]
= E

[
M−1∑
m=0

(εjH

q,m)2 · e−j2·2πdm cos θk
l /λ

]

= σ2
ε ·

M−1∑
m=0

∫ π

0

1

π
e−j2·2πdm cos θk

l /λ dθk
l

= σ2
ε

M−1∑
m=0

J0(−2 · 2πdm

λ
) (3.C.71)

Combining (3.C.69) and (3.C.71), the final expression of spatial correlation cor-
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responds to:

E
[
(Cjk

ql )2
]

=





M2 + σ2
ε

∑M−1
m=0 J0(−2·2πdm

λ
) if l = q and j = k∑M−1

m=0 (m + 1)J0(
2πdm

λ
)J0(−2πdm

λ
)

+
∑2M−2

m=M (2M −m− 1)J0(
2πdm

λ
)J0(−2πdm

λ
)

+σ2
ε

∑M−1
m=0 J0(−2·2πdm

λ
) if l 6= q or j 6= k

(3.C.72)

Following a similar manner, it is easy to find that:

E
[

~WH(θj
q)

~W (θj
q)

]
= M2 + σ2

ε , (3.C.73)

which will be used in noise power computation.

Assuming a pseudo-noise coded DS-CDMA system, given k 6= j, the temporal

correlation corresponds to:

E
[
γkj||τ |] =

{
0 if Tb < |τ |
1 if 0 ≤ |τ | ≤ Tb

, (3.C.74)

and,

E
[
(γkj)2||τ |] =

{
0 if Tb < |τ |
1 if 0 ≤ |τ | ≤ Tb

. (3.C.75)

Let τ ′ = τ k
l − τ j

q , assuming τ k
l and τ j

q uniformly distributed in [0, τ0], the proba-

bility density function of |τ ′| corresponds to:

p(|τ ′|) =
2

τ0

(
1− |τ ′|

τ0

)
if |τ ′| < τ0, (3.C.76)

where τ0 = IRTmin defined in (3.1) .

Note that

E[(γkj(τ ′)2] =

∫ τ0

0

E
[
(γkj)2||τ ′|] p(|τ ′|) d|τ ′| =

∫ Tb

0

2

τ0

(
1− |τ ′|

τ0

)
d|τ ′| = 2·Tb

τ0

−(
Tb

τ0

)2,

(3.C.77)

.

Finally

N−1∑
n=0

E[(γkj(τ k
l − τ j

q − nTb))
2] = dc − N2 − 3N + 3

2N2
d2

c , (3.C.78)

where dc denotes the duty cycle defined as N · Tb

IRTmin
.
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Chapter 4

Stationarity Analysis in SIMO
Channels

This chapter investigates the implementation of a novel Wireless Local Positioning

System (WLPS). WLPS main components are: (a) a dynamic base station (DBS),

and (b) a transponder, both mounted on mobiles. The DBS periodically transmits

ID request signals. As soon the transponder detects the ID request signal, it sends its

ID (a signal with a limited duration) back to the DBS. Hence, the DBS receives non-

continuous signals periodically transmitted by the transponder. The non-continuous

nature of the WLPS leads to non-stationary received signals at the DBS receiver,

while the periodic signal structure leads to the fact that the DBS received signal is

also cyclostationary.

This work discusses the implementation of Linear Constrained Minimum Vari-

ance (LCMV) beamforming at the DBS receiver. We demonstrate that the non-

stationarity of the received signal causes the sample covariance to be an inaccurate

estimate of the true signal covariance. The errors in this covariance estimate limit

the applicability of LCMV beamforming. A modified covariance matrix estimator,

which exploits the cyclostationarity property of WLPS system is introduced to solve

the non-stationarity problem. The cyclostationarity property is discussed in detail

theoretically and via simulations. It is shown that the modified covariance matrix es-

timator significantly improves the DBS performance. The proposed technique can be
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applied to periodic-sense signaling structures, such as the WLPS, RFID and reactive

sensor networks.

4.1 Introduction

This chapter12 investigates how to implement optimal beamforming for a novel wire-

less local positioning system (WLPS3). We focus on how to estimate covariance ma-

trix for optimal beamforming, because the specific signaling scheme in this WLPS,

i.e., cyclostationarity, enables a novel covariance matrix estimator.

The WLPS consists of two main components [Tong and Zekavat(2005)]: a Dy-

namic Base Station (DBS) and a transponder (or possibly a number of transponders),

all mounted on mobiles. The DBS periodically transmits ID request signals (a short

burst of energy). Each time a transponder detects the ID request signal, it sends its

unique ID (a signal with a limited duration) back to the DBS. In the WLPS, the DBS

detects and tracks the positions and IDs of the transponders in its coverage area.

The position of a transponder is determined by the combination of time-of-arrival

(TOA) and direction-of-arrival (DOA). TOA is estimated via the time difference be-

tween the transmission of ID request signal and the reception of the corresponding

ID. DOA estimation would be possible if an antenna array is installed at the DBS

receiver [Stoica and Nehorai(1989)].

In WLPS, a single unit (the DBS) is capable of positioning transponders located

in its coverage area. In systems such as cell phone positioning [Hellebrandt et al.(1997)]

and radio frequency ID [Juels(2006)], multiple units should cooperate in the process

of positioning. Accordingly, the WLPS has many civilian and military applications.

For example, in vehicle collision avoidance applications, each vehicle (car) may carry

1This work was partially reported in [Tong and Zekavat(2005)].
2This work is supported by the US NSF grant ECS-0427430.
3WLPS US Patent is Pending at Michigan Tech. University.
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a DBS and each pedestrian may carry a transponder. Then, each vehicle is able to

position (and identify) pedestrians. Another possible application of the WLPS is

airport security, where security guards may carry DBSs and passengers may carry

transponders.

The WLPS can be considered as a merger of positioning and communication

systems: The TOA/DOA estimation is the primary procedure for positioning, while

the ID detection process is supported by communications. This chapter investi-

gates the ID detection performance, i.e., the communication aspect of the WLPS,

while the TOA/DOA estimation process is discussed in [Pourrostam et al.(2007)]

and [Wang and Zekavat(2006)].

As depicted in [Tong and Zekavat(2007)], the main source of error in the ID detec-

tion process is the interference from other transponders. To reduce this interference,

direct sequence code division multiple access (DS-CDMA) and beamforming tech-

niques are adopted in the WLPS. The conventional beamforming methods (delay and

sum) in the WLPS has been discussed in [Tong and Zekavat(2007)]. In general, lin-

ear constrained minimum variance (LCMV) beamforming outperforms conventional

beamforming in terms of interference suppression [Frost(1972)]. Therefore, it is nat-

ural to extend our study from conventional beamforming to LCMV beamforming.

An important step to perform LCMV beamforming is the estimation of the covari-

ance matrix of the received signal. Considering stationary signals, sample covariance

accurately estimates the true signal covariance [Carlson(1988)]. However, in the

WLPS, the received signal at the DBS receiver is not stationary, because the DBS

transmits ID request signals non-continuously. The non-stationarity of the received

signal causes the sample covariance to be an inaccurate estimate of the true signal

covariance. The errors in this covariance estimate limit the applicability of LCMV

beamforming in the WLPS.
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In this work, a modified covariance matrix estimator is proposed. The transpon-

ders transmit signals non-continuously and repetitively. Accordingly, the DBS re-

ceived signal is non-stationary and cyclostationary. The proposed modified covari-

ance matrix estimator exploits the cyclostationarity to counter the non-stationarity

problem. A detailed theoretical analysis shows that, in most practical situations,

the cyclostationarity duration is sufficiently long to ensure an accurate estimate. Fi-

nally, the WLPS ID detection performance is numerically simulated. The numerical

results confirm that the modified covariance matrix estimator improves the WLPS

performance significantly. It should be further noted that the proposed estimator is

not restricted to this particular WLPS system: it is possible to apply this estimator

to any system that exhibits repetitive structures. Hence, the proposed covariance

matrix estimator has a wide range of applications.

Beamforming [Capon(1969)] and cyclostationarity [Gardner et al.(2006)] have

been studied separately for more than fifty years. In recent decades, a joint consid-

eration of beamforming and cyclostationarity (i.e., beamforming for cyclostationary

signals) attracted certain attention [Wu and Wong(1996)] [Lee and Lee(1999)]. In

those studies, the signals are both stationary and cyclostationary. In other words,

continuous signals with repetitive structures are considered. In our work, we study

non-continuous signals with repetitive structures. Therefore, this chapter exploits

cyclostationarity to counter the non-stationarity problem in optimal beamforming.

The rest of the chapter is organized as follows: Section 4.2 introduces the funda-

mentals of the WLPS structure; Section 4.3 discusses the implementation of WLPS

system and the non-stationarity problem; Section 4.4 demonstrates how to exploit

cyclostationarity to counter the non-stationarity problem; Section 4.5 presents nu-

merical results and Section 4.6 concludes the chapter.
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ID of transponder #3 

ID of transponder #1 

ID of transponder #2 

Periodic ID Request Signal 

DBS Transponders 

Figure 4.1: WLPS Basic structure.

4.2 Non-Continuous and Repetitive Nature of the WLPS

The WLPS comprises of a set of DBS and transponders. In the scope of this chapter,

we consider the communication between one DBS and multiple transponders. The

DBS transmits ID request signals periodically to all transponders in its coverage

area. Once a transponder detects the ID request signal, it sends its unique ID (a

signal with limited duration) back to the DBS, as shown in Fig. 4.1. The DBS is

equipped with multiple antennas to support DOA estimation and beamforming.

In the WLPS, a DBS communicates with multiple transponders simultaneously.

This is the same as standard cellular communication systems. However, different

from cellular systems, the DBS received signal in the WLPS is not stationary.

As shown in Fig. 4.1, the signal transmitted by a transponders do not span over

the whole time domain. This feature leads to a new performance measure metric:

probability-of-overlapping, povl, which is defined as the probability that the desired

ID is overlapped with the ID signals from other transponders. In standard wireless

systems, povl is always unity for multiple transponders. In the DBS receiver, the
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probability-of-overlapping is less than unity and corresponds to:

povl = 1− (1− dc)
K−1, (4.1)

where K denotes the number of transponders, and, dc represents duty cycle, which

is defined as:

dc =
τ

IRTmin

. (4.2)

Here, τ is the duration of the ID of a transponder, and IRTmin is the time difference

between the first responding transponder and the last responding transponder. A

comprehensive results for IRTmin has been introduced in [Tong and Zekavat(2005)];

here, roughly,

IRTmin =
Rmax

2c
, (4.3)

where Rmax is the maximum coverage distance of the DBS, and c denotes the speed

of light. For vehicle collision avoidance applications, typically Rmax should not not

exceed 1 km. The exact value of Rmax may vary with different environments, e.g.,

urban or highways. .

In general, through this preliminary study, the non-continuous nature of the

WLPS seems alleviate the interference problem: the undesired signals from other

transponders may or may not interfere with the desired signal. In contrast, in stan-

dard communication systems, the undesired signals always overlap with the desired

signal.

However, it is noted that the non-continuous nature of the WLPS is not suffi-

cient in terms of rejecting interference. As shown in Fig. 4.2, the probability-of-

overlapping is very high when dc = 0.1 with a moderate number of transponders

(N = 10). In many applications, e.g., vehicle collision avoidance, the duty cycle

might be even larger than 0.1. Therefore, one can not expect to suppress interfer-

ence reliably through the non-continuous nature of the WLPS.
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Figure 4.2: The probability of overlapping.

To reduce interference power, DS-CDMA and beamforming techniques are nec-

essary in the WLPS. A detailed analysis for conventional beamforming and DS-

CDMA techniques has been presented in [Tong and Zekavat(2007)]. In general, op-

timal beamformers performs better than the conventional beamformer. Hence, it is

natural to extend our study from conventional beamformer to optimal beamformers.

Optimal beamformers generate a statistically optimum estimation of the desired

signal through applying a weight vector to the observed data. This weight vector

is computed via optimizing a certain cost function. Examples of these cost func-

tions include total power, SINR, entropy, Mean Square Error, or Non-Gaussianity

[Godara(1997)][Hyvarinen et al.(2001)]. Here, LCMV beamformer is selected be-

cause: 1) it is particularly good at rejecting interference, and 2) it only requires

the observations of the received signals and the direction of the desired signal. The

former is easy to obtain and the latter has been available via the DOA estimation

process, which is prior to the beamforming process.
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The basic structure of the WLPS has been introduced in this section. In the next

section, we introduce the signal model of the WLPS, and describe the beamforming

implementation in a mathematical form. It is emphasized that directly applying

LCMV beamforming in the WLPS is not appropriate due to its non-stationary na-

ture. In Section 4.4, cyclostationarity would be exploited to solve the non-stationarity

problem.

4.3 System Implementation and Non-Stationarity Analysis

Once a transponder detects the ID request signal, it would transmit its unique ID

back to the DBS. To suppress interference from other transponders, the bits in the

ID are spread by DS-CDMA techniques. Hence, the transponders would periodically

transmit DS-CDMA signals that are with a limited duration. In a multi-path (urban)

environments, the received signal at the DBS receiver would be the summation of

DS-CDMA signals from multiple transponders through multiple paths. Finally, in

the DBS receiver, it is possible to apply DS-CDMA despreading and beamforming

techniques to extract the ID of the desired transponder, as explained in Section 4.3.1

In this work, the DOA estimation for the paths of the desired transponder is

assumed to be perfect: Although the non-stationarity nature does have effect on

DOA estimation, the effect turns out to be minimal, and the DOA estimation is

accurate enough for most practical applications[Pourrostam et al.(2007)]. Since the

only required information for LCMV beamforming is the directions of the paths of

the desired transponder and the estimation of covariance matrix, a good estimation

of the covariance matrix would ensure a good ID detection performance, as depicted

in Section 4.3.2.

In Section 4.3.3, it is shown that the standard sample covariance matrix estima-

tor does not lead to a good quality of covariance matrix estimation. The reason is
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that, due to the non-stationary nature of the WLPS, different bits of the ID experi-

ence difference interference. Hence, averaging covariance matrix over each bit does

not lead to a consistent estimator, i.e., increasing the number of averaged data does

not reduce the mean square error (MSE) of the estimation. The consistent covari-

ance matrix estimator, which exploits the cyclostationarity of the WLPS, would be

introduced in Section 4.4.

4.3.1 Signal Model

The transmitted DS-CDMA signal by the kth transponder corresponds to:

sk(t) = gτ (t) ·
N−1∑
n=0

bk[n] · gTb
(t− nTb) · ak(t− nTb) · cos(2πfct) (4.4)

where N denotes the number of bits per ID code (that represents the maximum

capacity of the WLPS, which is in the order of 2N), bk[n] denotes the nth bit of

transponder k’s ID, Tb = τ
N

represents the transponder bit duration, gτ (t) and gTb
(t)

are rectangular pulses with the duration of τ and Tb, respectively. Here, ak(t) denotes

the spreading code for the kth transponder, i.e.,

ak(t) =
G−1∑
g=0

Ck
g gTc(t− gTb), Ck

g ∈ {−1, 1}, (4.5)

where G (G ≤ 2N) 4 is the processing gain (code length), Tc = Tb

G
= τ

N ·G represents

the chip duration, and gTc(t) is a rectangular pulse with the duration of Tc.

With an antenna array mounted on the DBS receiver, the received signal at the

DBS (see Fig. 4.3), which is the summation of signals from multiple transponders

through multiple paths, corresponds to:

~r(t) =
K∑

k=1

Lk−1∑

l=0

N−1∑
n=0

αk
l
~V (θk

l )b
k[n]gTb

(t− τ k
l − nTb)gτ (t− τ k

l )·

·ak(t− τ k
l − nTb) cos(2πfct + φk

l ) + ~n(t), (4.6)

4Note that 2N is the maximum number of transponders that the system can accommodate.
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Figure 4.3: DBS receiver implementation via antenna arrays and DS-CDMA systems.

where K denotes the total number of transponders, Lk is the number of paths for the

transponder k, and αk
l , τ k

l , φk
l denote the fading factor, time delay and random phase

shift for kth transponder’s lth path, respectively. Here, for simplicity of presentation,

we assume Lk = L, ∀ k. ~V (θk
l ) denotes the array response vector that corresponds

to:

~V (θk
l ) =

[
1 exp(−i · 2πd cos(θk

l )/λ) · · · exp(−i · 2(M − 1)πd cos(θk
l )/λ)

]T
.

(4.7)

Here, i denotes the imaginary unit, d is the spacing between antenna elements,

M is the total number of antennas, (·)T denotes transpose, λ denotes the carrier

wavelength and θk
l is the direction of kth transponder’s lth path. Basically, in (4.7),

we assume half wavelength spacing between antennas, and the precise knowledge of

array manifold at the DBS receiver.
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After demodulation, the gth chip of the nth bit output for the jth transponder’s

the qth path would correspond to:

~yj
q [n, g] =

∫ τ j
q +(n+1)Tb+(g+1)Tc

τ j
q +nTb+gTc

~r(t) cos(2πfct + φj
q)g(t− τ j

q − nTb − gTc) dt. (4.8)

The gth chip of the nth bit output of the beamformer for jth transponder’s qth

path is given as:

zj
q [n, g] = ~WH(θj

q) · ~yj
q [n, g], (4.9)

where the weight vector ~W (θj
q) and ~yj

q [n, q] are both 1 ×M column vectors, and H

denotes Hermitian transpose. Except Each RAKE corresponds to one path. Each

path is received from a specific direction. Hence, beamforming on each RAKE is

applied to capture the energy from the associated direction.

The receiver in Fig. 4.3 and (4.9) resembles a spatial RAKE-like structure. Here,

each RAKE corresponds to one path. Each path is received from a specific direc-

tion. Hence, beamforming on each RAKE is applied to capture the energy from the

associated direction.

After beamforming, the signals from different paths are combined via Maximal

Ratio Combining:

zj[n, g] =
L∑

l=1

αj
l z

j
l [n, g] (4.10)

Finally, the CDMA despreading is applied and the detected bit is given as:

zj[n] =
G∑

g=1

zj[n, g]Cj
g . (4.11)

The above description has included all necessary steps of WLPS ID detection

process, except the calculation of the weight vector ~W (θj
q) in (4.9), which is the

kernel part of this work. Here, we discuss how to determine ~W (θj
q) in Section 4.3.2.
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4.3.2 Weight Vector Calculation

The conventional beamforming weight vector simply corresponds to:

~Wf (θ
j
q) = ~V (θj

q). (4.12)

Noting that ~V (θj
q) is a predefined linear phase filter, which coincides with the defi-

nition of discrete Fourier transform, it is said that the conventional beamforming is

equivalent to discrete Fourier transform [Stoica and Moses(1997)].

The LCMV beamforming, which minimizes the total output power, while keeping

the desired signal power constant, corresponds to the solution of [Frost(1972)]:

min
~Wc(θ

j
q)

~WH
c (θj

q)R
j
q
~Wc(θ

j
q) s.t. ~WH

c (θj
q)~V (θj

q) = 1 (4.13)

Using Lagrange Multiplier, the solution of the above equation, i.e., LCMV BF,

is given by [Stoica et al.(2003)]:

~Wc(θ
j
q) =

Rj
q
−1 ~Wf (θ

j
q)

~WH
f (θj

q)R
j
q
−1 ~Wf (θ

j
q)

(4.14)

where Rj
q is the covariance matrix of jth transponder’s qth path’s observed signal,

i.e., Rj
q = E

[
~yj

q · ~yjH

q

]
.

In this work, precise knowledge of the DOA θj
q and array manifold are assumed,

i.e., ~Wf (θ
j
q) is perfectly known. Then, the only left important implementation issue

of the LCMV beamforming is the estimation of Rj
q. In general, the sample covariance

matrix estimator corresponds to:

R̂j
q =

1

Γ

Γ−1∑
n=0

~yj
q [n]~yjH

q [n] (4.15)

where Γ, (Γ ∈ {1, 2, 3 · · ·N} ), denotes the selected data length for Rj
q estimation.

If ~yj
q [n] is a stationary and ergodic process, the sample average equals time average,

and the sample covariance matrix estimator leads to an accurate estimate of Rj
q.

In another word, the sample covariance matrix estimator would be consistent, and

increasing the number of data samples reduces the error variance of the sample

covariance matrix estimator.
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Figure 4.4: Different chips experience different interference.

4.3.3 NonStationarity Analysis

Standard wireless communication systems are stationary because of transmission of

very long sequences from a large number of users. In other words, in these systems,

different chips of the desired signal would experience the same interference. How-

ever, because the WLPS transponder transmitted signal is a short burst signal, the

interfering signal may only interfere with some, but not all chips of the desired signal

(see Fig. 4.4). Hence, the interference changes within each bit of the desired sig-

nal. This is especially the case for medium probability-of-overlapping, povl, values.

Therefore, in WLPS, Rj
q varies for different chips and large selection of Γ does not

necessarily lead to a high quality of the covariance matrix estimation. To have a bet-

ter understanding when the received signal is not stationary, we have the following

discussion:

• Small values of dc in (4.1) leads to low povl (see Fig. 4.2). In an extreme situa-

tion, povl → 0. In this case, since there is no interference at all, E[~yj
q [n]~yjH

q [n]] =
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E[~yj
q [n + 1]~yjH

q [n + 1]], and the sample covariance matrix estimator leads to an

accurate estimation. However, the main advantage of LCMV beamforming is

interference suppression, and in this situation LCMV will not provide better

performance than conventional beamforming even with accurate estimation of

Rj
q.

• Large values of dc in dense transponder environment leads to povl → 1. In this

case, the sum of interferences becomes would approximately be white noise,

and the received signal statistically tends to be stationary, i.e., E[~yj
q [n]~yjH

q [n]] '
E[~yj

q [n+1]~yjH

q [n+1]]. In this case, the covariance matrix would be an identity

matrix and LCMV beamforming becomes equivalent to conventional beam-

forming.

• Medium dc values and moderate transponder density lead to a spatial structure

for the interference, i.e., several interfering signals are received in different

directions. In this case, the received data samples would be non-stationary,

large selection of Γ does not improve the quality of covariance estimation, and

the sample covariance matrix estimator is not consistent.

Fig. 4.5 represents the mean square error (MSE) between the true value and the

estimated values of covariance matrix as a measure of non-stationarity, assuming a

flat fading channel. The MSE corresponds to:

MSE =
M∑

m=1

M∑
u=1

(Rj
q(m,u)− R̂j

q(m,u))2 (4.16)

where M is the number of antenna array elements, Rj
q and R̂j

q denote the true

and estimated covariance matrixes via sample covariance matrix, respectively. The

direction and distance of the transponders are assumed to be uniformly distributed in
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Figure 4.5: Simulation Results: The Mean Square Error of estimated covariance
matrix by standard estimation method.

[0, π] and [0, Rmax]. The estimated covariance matrix is normalized before comparing

it with true covariance matrix.

It is seen that when dc is small (= 0.001) and the number of transponder is small

(< 30), the MSE is kept minimal, which is consistent with the first case discussed

above.

When dc is large (= 0.1) and the number of transponder is large (> 60), the

MSE is small as well. This corresponds to the second case discussed: A large number

of interferences leads to a spatially white structure. In other words, every chip is

interfered by signals in many directions. Hence, the interference over different chips

would be similar, which leads to a stationary process.

When dc is moderate (= 0.01), the MSE is large, i.e., the non-stationarity problem

is severe.

The high MSE shown in Fig. 4.5 leads to low probability-of-detection. As a result,

directly applying LCMV beamforming does not improve the system performance

www.arts
pdf.com

This PDF has been modifie
d using a demo version of A

RTS PDF softw
are



102

compared to a conventional beamforming. This point is verified by ID detection

simulations in Fig. 4.10 (see Section 4.5).

4.4 Estimator Based on the Cyclostationarity

Section 4.3.3 introduced the the non-stationarity problem in the WLPS. This sec-

tion proposes a modified covariance matrix estimator to solve the non-stationarity

problem, which exploits the cyclostationarity property of the WLPS.

4.4.1 New Estimator Via Cyclostationarity

The non-stationarity is mainly generated by the non-continuous transmission of

transponders. However, it should be noted that, in addition to the non-continuousness,

the transmission is also periodical. In every period, a transponder retransmits the

same ID bits with the same spreading code. Now, assuming all transponders’ direc-

tions and distances remain the same for a number of periods, same chips of transpon-

der ID in different period experience the same interference (See Fig. 4.6). Here, the

period of transponder transmission is called ID request time (IRT).

The repetition property of transponder transmission is also known as cyclosta-

tionarity: although different chips in the same period does not experience same

interferences, same chips in different periods experience same interferences. Hence,

it is possible to apply beamforming to each chip, if the covariance matrix for each

chip can be estimated. As shown in Fig. 4.6, the covariance matrix estimation via

cyclostationarity for the gth chip of the nth bit corresponds to:

R̂j
q[n, g] =

1

Ω

Ω∑
ω=1

~yj
q [n, g, ω]~yjH

q [n, g, ω] (4.17)

where Ω denotes the number of period within which the cyclostationarity holds.

Using (4.17), consequently (4.8) and (4.9) would correspond to:

~yj
q [n, g, ω] =

∫ τj
q +(n+1)Tb+(g+1)Tc+(ω−1)IRT

τ j
q +nTb+gTc+(ω−1)IRT

~r(t) cos(2πfct + φj
q)·
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Figure 4.6: Same Chips in different IRT periods have the same interference

g(t− τ j
q − nTb − gTc − ωIRT ) dt, ω ∈ {1, 2, · · · , Ω}, (4.18)

and

zj
q [n, g] =

1

Ω

Ω∑
ω=1

~WH(θj
q) · ~yj

q [n, g, ω], (4.19)

respectively. (4.19) reflects both beamforming and equal gain time diversity combin-

ing processes. Because each frame experiences independent fading, we also achieve

time diversity benefits via combining the chips from different IRT. The receiver struc-

ture via cyclostationarity is shown in Fig. 4.7. Here, a separate block is considered

for the covariance matrix estimator via cyclostationarity, since the new estimator

requires a temporary storage of the received signals.

It should be noted the proposed consistent covariance matrix estimator may not

be restricted to LCMV beamforming, various optimal [Xia and Giannakis(2006)] or

robust beamforming [Lorenz and Boyd(2005)][Vorobyov et al.(2004)] methods may

also use this estimator. In this chapter, the application of LCMV beamforming in

the WLPS is introduced. The proposed concept may be easily extended to any signal
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Figure 4.7: Receiver Structure with using cyclostationarity

www.arts
pdf.com

This PDF has been modifie
d using a demo version of A

RTS PDF softw
are



105

processing algorithm that requires an estimation of covariance matrix, as long as the

system exhibits a repetitive nature.

4.4.2 Cyclostationarity Duration

An important issue of the new estimator is the maximum possible value of Ω, i.e.,

the number of periods that the cyclostationarity holds. A larger value of Ω leads to

better estimation, while a small value of Ω (e.g., 1 or 2) will render the estimator via

cyclostationarity improper.

Cyclostationarity Duration for A Single Transponder

Basically, Ω is determined by IRT and the duration within which the cyclostationarity

remains available, and corresponds to:

Ω ≤ Tcy

IRT
, (4.20)

where Tcy is the time within which cyclostationarity condition holds, and IRT de-

notes the repetition time of the ID request signal. Two parameters impact the

cyclostationarity: The direction and the distance of transponder. Hence, the Tcy is

the time within which: (a) the direction of the transponder approximately remains

constant, and (b) the distance of the transponder approximately remains unchanged

(see Fig. 4.8).

Therefore, we consider the impact of the movement of the transponder in two

directions. The first is in the direction that is parallel to the line connecting transpon-

der and antenna array. In this direction, the variation of the TOA within the duration

of Tcy should be much smaller than the chip duration Tch, i.e., TOA is relatively fixed

during Tcy, which corresponds to:

Tcy ¿ c

B · v‖ , (4.21)
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Figure 4.8: Relationship between v, v⊥ and v‖

where c is the speed of light, B = 1/Tch denotes the transponder signal bandwidth,

and v‖ represents the doppler velocity of the transponder;

The second direction is the direction that is perpendicular to the line connecting

transponder and antenna array. In this direction, the variation of DOA should be

much smaller than the antenna array half power beamwidth, i.e., DOA is relatively

fixed during Tcy, which corresponds to:

Tcy ¿
θB

2
· d

v⊥
, (4.22)

where θB is the half power beam width, d denotes the distance between transponder

and DBS, and v⊥ is depicted in Fig. 4.8.

Combining the above two conditions, the final condition corresponds to:

Tcy ¿ min(
c

B · v‖ ,
θB · d
2v⊥

) (4.23)

Note that the first condition (TOA constraint) is independent of distance, while the

second condition (DOA constraint) depends on both velocity and distance.

Equivalent to (4.23), we have the conditions for cyclostationarity doppler fre-

quency, which corresponds to:

fcy =
1

Tcy

À max(
B · v‖

c
,

2v⊥
θB · d) (4.24)
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This means that the changing rate of cyclostationarity should be much larger than

DOA/TOA changing rate.

Knowing v‖ = v · cos(ψ) and v⊥ = v · sin(ψ) (see Fig. 4.8), and considering ψ

a uniform random variable within 0 and 2π, the cyclostationarity doppler spread

(Bcy,d), which is the Root-Mean-Square (RMS) value of cyclostationarity doppler

frequency, corresponds to:

Bcy,d = max(

√
Æ

[
B · v‖

c

]2

,

√
Æ

[
2v⊥

Bd · d
]2

), (4.25)

where Æ(·) denotes expectation operation.

Applying simple mathematical manipulations, (4.25) would correspond to:

Bcy,d = max(
B · v√

2c
,

√
2v

θB · d). (4.26)

Then, using (4.26) and similar to the definition of channel coherence time, we define

the cyclostationarity coherence time as [Rappaport(2002)]:

Tcy,c
∼= 1

Bcy,d

(4.27)

In order to guarantee cyclostationarity during Tcy, Tcy should be selected smaller

than Tcy,c, or:

Tcy < Tcy,c (4.28)

To demonstrate the effects of the two conditions on cyclostationarity, the cyclosta-

tionarity coherence time with various velocity and distance values has been computed

in Fig. 4.9. Here, we assume 300 MHz bandwidth and 27◦ half power beamwidth

(consistent with four antenna elements). The first area of interest in Fig. 4.9 is

low-velocity and short-range area, which is mainly suitable for applications such as

indoor and airport security. Note that the cyclostationarity doppler spread varies

with distance in this area. Hence, we can conclude that for short range applications,
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Figure 4.9: Cyclostationarity Coherence Time for Different Applications, Single
transponder

DOA would be the dominant condition for cyclostationarity. The second area of in-

terest is high-velocity, long-range area, which is mainly suitable for vehicle collision

avoidance system. Note that the cyclostationarity doppler spread is independent of

distance in this area. We can conclude that for long range applications, the main

constraint is the rate of change of TOA.

4.5 Numerical Results

In this section, we use Monte-Carlo simulations to evaluate the ID detection perfor-

mance of the WLPS system implemented via LCMV beamforming, with and without

the newly proposed covariance matrix estimator via the cyclostationarity property.

Here, we consider a multi-transponder, multi-path environment. For simulation pur-

poses, we assume:

1. The ID code has 6 bits (N = 6);

2. The DS-CDMA code has 64 chips (G = 64);
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3. Channel delay spread for a typical street area is 27 nsec [Arowojolu et al.(1994)];

4. Carrier frequency = 3 GHz, τTRX = 1.2 µs, and τDBS = 24 µs;

5. The antenna array is linear with 4 elements, and element spacing d = λ
2

=

0.05 m (half power beamwidth = 27◦);

6. Four multipaths lead to L = 4 fold path diversity;

7. The transponder distance and angle are uniformly distributed in [ 0 1 ] km

and [ 0 π ], respectively;

8. Uniform multi-path intensity profile, i.e., bit energy is distributed in each path

identically;

9. Binary Phase Shift Keying (BPSK) modulation; and,

10. Perfect power control and DOA/TOA estimation.

The above assumptions are particularly suitable for vehicle safety applications.

Based on the assumed setup, transponder signal TOA is uniformly distributed in

[ Td Tmax ], at the DBS receiver. Assuming Td << Tmax, approximately TOA of

transponder signal is uniformly distributed in [ 0 Tmax ], and the required band-

width of a DS-CDMA transponder transmitter is 320MHz. Using these parame-

ters, IRTmin = 12 µs, then the duty cycle for DBS receivers would correspond to

dc,DBS ' 0.1, which leads to a high probability-of-overlapping (see Fig. 4.2).

Assuming the vehicle speed is 30 m/s, the cyclostationarity coherence time (based

on an average distance of 500 m) would be 47.1 ms, as shown in Fig. 4.9. As we

mentioned in Section 4.2, usually IRT is selected much larger than IRTmin in order

to reduce interference power at transponder receiver. Here, we select IRT = 1.2 ms.

Using (4.28), Tcy
∼= Tcy,c/5 = 9.42 ms, and using (4.20), finally Ω ∼= 8. In other words,
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within 8 IRT frames, the conditions for cyclostationarity would well exist. It should

be mentioned that the conditions simulated in this chapter leads to a conservative

selection of Ω, and in many applications, higher value than Ω = 8 is expected.

The simulation results are shown in Fig. 4.10. The measurement of ID detection

performance is Probability-of-Miss-detection (Pmd), i.e., the probability that the ID

of the desired transponder is not detected correctly. Here, Pmd = 1−(1−Pd)
N , where

N the number of bits per ID, and Pd denotes the probability that one bit of the ID

is detected correctly. As discussed in Section 4.3.3, due to nonstationarity nature

of the WLPS, traditional sample covariance matrix estimator computation leads to

a high probability of miss detection. It can also be seen that the performance of

LCMV BF with the covariance matrix estimator via cyclostationary property leads

to a significantly improved performance compared to the standard covariance matrix

estimator. It is observed that the proposed technique doubles the capacity of this

system at the Pmd = 10−3 (i.e., from 25 to 50).
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The result not only benefits from solving non-stationarity problem, but also the

time diversity attained over the 8 IRT periods, since the fading is assumed to be

independent over chips in different frames (IRT). This diversity improves the perfor-

mance in conjunction with cyclostationarity. In order to demonstrate the different

effects of time diversity combining and optimum beamforming, we also perform the

optimum beamforming without using time diversity combining. It can be seen that

both of the two techniques contributes to DBS receiver performance. It is observed

that as the number of transponders increases, the time diversity has a dominant

impact on the performance improvement.

4.6 Conclusion

This chapter proposes a novel covariance matrix estimator, which is the critical

step for optimal beamforming implementation, in a wireless local positioning system

with a periodic signaling structure. Different from standard wireless systems, the

standard sample covariance matrix estimator is not consistent in the WLPS system

due to its non-stationarity nature. A new consistent estimator, which exploits the

cyclostationarity property of the WLPS, is proposed. It is demonstrated that in most

application, the cyclostationarity duration is sufficiently large for covariance matrix

estimation. Numerical simulations verify that the new estimator improves system

performance significantly.
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Chapter 5

Stochastic Correlated MIMO
Channel Modeling

Recent Multi-Input-Multi-Output (MIMO) research demonstrates that real wireless

environments exhibit spatially correlated fadings: The independent fading assump-

tion does not hold in all cases. Accordingly, spatially correlated MIMO channel

models have attracted considerable attention. The Kronecker product form (KPF)

is the currently most widely used MIMO channel model describing spatial correla-

tions. However, its validity in various environments have not been well examined.

In this work, first the correlation structure of the KPF is discussed. It is shown

that the KPF exhibits a separable correlation structure. Second, we find the physical

environments that correspond to separable correlation structure. It is claimed that

the separable correlation structure corresponds to separable scatterers in physical

environment.

Note that the separable scatterers present in macrocell environments, but they

do not in microcell environment. Hence, the KPF is applicable in macrocell envi-

ronments, but it is not in microcell environments. Numerical simulations, which is

based on the ray tracing approach with geometry based channel model, confirm the

above conclusion.

A number of stochastic MIMO channel models have been proposed, and each

of them is supported by different experimental results. This chapter clarifies the

www.arts
pdf.com

This PDF has been modifie
d using a demo version of A

RTS PDF softw
are



113

relationship between various models, and provides a clear, unified framework for

understanding spatially correlated MIMO channel modeling.

The most comprehensive description of MIMO fading correlations is called the

“total correlation matrix”. It is found that, for different channel models, the eigen

structure of the total correlation matrix would be different. W-model has separable

eigen basis, virtual channel representation predefines fixed and separable eigen basis,

and Kronecker product form requires separable eigen basis and separable eigen values.

Moreover, it is noted that different eigen structures correspond to different phys-

ical environments, i.e., different stochastic channel models are suitable in different

physical environments. A detailed investigation reveals that W-model assumes sep-

arable transmitter and receiver; virtual channel representation is suitable for large

dimensional arrays; and Kronecker product form works in macrocell environments.

5.1 Introduction

In the past decade, Multiple-Input-Multiple-Output (MIMO) systems have attracted

significant attention in wireless communications due to its great potential to in-

crease channel capacity [Telatar(1999)]. Originally, MIMO research assumes fadings

between different antenna elements are completely independent [Alamouti(1999)].

However, on going studies confirm that the assumption of channel independence is

not always satisfied in real applications [Shiu et al.(2000)]. Hence, spatially corre-

lated MIMO channel modeling becomes the interest of many researchers recently

[Yu and Ottersten(2002)].

Spatially correlated MIMO channel modeling mainly deals with two dimensional

(2-D) correlated random variables generation. The most famous one of such models

is the Kronecker product form (KPF) [Kermoal et al.(2001)]. The KPF is a natural

extension of the traditional one dimensional (1-D) correlated random variables gen-

eration. Consequently, the KPF has been widely accepted and extensively adopted
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in most MIMO studies [Shin et al.(r in)]. However, it should be noted that the KPF

has its own limitation: It is suitable only in certain environments.

In this work, first the correlation structure of the KPF is discussed. It is shown

that the KPF possesses separable correlations [Chuah et al.(2002)]. Next, through

a simple ray tracing approach, it is demonstrated that real environments does not

necessarily exhibit separable correlations. Then, in which specific environment, cor-

relations would be separable?

Here, it is claimed that separable correlation corresponds to separable scatterers.

Noting that in macrocell and microcell environments, the scatterers form two rings

and eclipse shapes, respectively [Ertel et al.(1998)], it is said that macrocell envi-

ronments has separable scatterers while microcell environments does not. Hence,

the KPF is suitable for macrocell, but it is not applicable for microcell. Numeri-

cal simulations confirm this conclusions. Finally, a generalization of the KPF for

Line-of-Sight considerations is discussed.

An example of macrocell environment is the cellular mobile system, while the

example of microcell environment would be the Wi-Fi (IEEE 802.11) systems. Hence,

the result in this chapter has a considerable impact on MIMO system design in

various applications, such as cellular or Wi-Fi systems.

In the past decade, Multiple-Input-Multiple-Output (MIMO) systems have at-

tracted significant attention in wireless communications research due to their great

potential to increase channel capacity [Telatar(1999)] [Foschini and Gans(1998)]. Orig-

inally, MIMO research assumes fadings across different antenna pairs are completely

independent [Alamouti(1999)] [Tarokh et al.(1998)]. However, recent studies confirm

that the assumption of channel independence is not always satisfied in real applica-

tions [Shiu et al.(2000)]. Hence, after year 2000, researchers initiated the investiga-

tion of spatially correlated MIMO channels [Kang and Alouini(2006)] [Shin et al.(r in)].
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The most widely used spatially correlated MIMO channel model is the Kronecker

product form (KPF) [Kermoal et al.(2001)]. However, the KPF has been questioned

by many researchers [Oestges et al.(2005)], both experimentally [Ozcelik et al.(2003)]

and theoretically [Abdi and Kaveh(2002)]. Therefore, after the introduction of the

KPF, a number of other spatially correlated MIMO channel models have been pro-

posed. Examples of these techniques include the virtual channel representation

(VCR) [Sayeed(2002)], and W-model [Weichselberger et al.(2006)]. This work fo-

cuses on the above three models. Other MIMO channel models, e.g., Gesbert

model [Chizhik et al.(2002)] [Gesbert et al.(2002)] and Muller’s finite scatterer model

[Debbah and Muller(2005)], are beyond the scope of this dissertation.

Surprisingly, all of the three models are supported by different experiments

[Almers et al.(2007)] [Yu and Ottersten(2002)] Therefore, all of them seem equally

convincing. Then, for MIMO system designers, it is hard to choose a proper model,

since none of them seems superior to another. In this work, it is shown that each

channel model is suitable for describing only a certain physical environment. Hence,

the selection of channel model should depend on applications. Because space-time

signal processing algorithm varies with channel modeling, this work may lead to the

first explicit and general guidance on how to design MIMO systems based on physical

environments.

We first introduce a unified framework that accommodates all MIMO channel

models: the total correlation matrix, which is always a semi-positive definite Hermi-

tian Toeplitz matrix. Then, it is demonstrated that for previously proposed channel

models, the total correlation matrix possesses some special eigen structures. W-

model has separable eigen basis; the VCR assumes fixed separable eigen basis; and

the KPF requires separable eigen basis and separable eigen values.

Second, we point out that different eigen structure corresponds to different phys-

ical environment: W-model assumes separable transmitter and receiver; the VCR is
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suitable for large dimensional arrays; and the KPF works with macrocell environ-

ments.

Finally, although the total correlation matrix framework is good in many envi-

ronments, it is found that it can not describe all physical environments. For example,

the keyhole problem, which is depicted by Gesbert model, is beyond the correlation

considerations. Hence, Gesbert model can not be included in the total correlation

matrix framework.

The mathematical notations in this chapter are: Bold capital letter denotes ma-

trix, small letter with arrow on its head denotes vector. Moreover, (·)> and (·)†

denotes transpose and conjugate transpose, respectively; (·)∗ denotes element-wise

conjugate operation; Æ[·] denotes element-wise expectation operation; ⊗ denotes

Kronecker product; vec(·) denotes vectorization operation, i.e., if H = [ ~h1
~h2 · · · ~hN ],

then vec(H) = [ ~h1

> ~h2

> · · · ~hN

>
]>; ¯ denotes element-wise matrix multiplication;

D(~h) denotes the diagonal matrix whose diagonal elements corresponds to the vec-

tor ~h.

The rest of the chapter is organized as follow: Section 5.2 discusses Kronecker

Product Form, which is the most widely used model currently. Its correlation struc-

ture and feasible physical environments are both analyzed and simulated. Section 5.3

discusses a relatively new channel model: Virtual Channel Representation. The cor-

relation coefficients between channel fadings in VCR model is analytically derived,

then it is shown that VCR possess a non-separable correlation structure. Section

5.4 introduces the unified framework for all the MIMO channel models, KPF, VCR

and W-model. Their correlation structure and relevant physical environments are

compared and summarized. Section 5.5 conducts a preliminary error performance

analysis with VCR model; Section 5.6 depicts the keyhole problem and Gesbert

model, which is beyond the considerations of correlation structure; Section 6.5 con-

cludes this chapter.
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5.2 The Kronecker Product Form

The input-output relationship in MIMO systems corresponds to:

~y = H~x + ~n, (5.1)

where ~y, ~n and ~x are column vectors with dimension NR, NR, and NT , respectively.

The goal of MIMO channel modeling is to find the structure of H, which is a NR×NT

complex matrix. NT denotes the number of transmit antennas, and NR denotes the

number of receive antennas.

Assuming Rayleigh fading, the elements of H are zero-mean circularly symmetric

[Telatar(1999)] complex Gaussian random variables (r.v.). For correlated fadings, the

elements of H would be correlated. The most famous model that tries to describe

the correlations is the Kronecker product form (KPF).

The KPF proposes that the fading matrix, H, is [Kermoal et al.(2001)]:

H = G
1
2
RHiidG

1
2
>

T . (5.2)

Here, Hiid represents a NR × NT matrix consisting of independent and identically

distributed (i.i.d.) complex Gaussian random variables (r.v.). The matrices G
1
2
T and

G
1
2
R satisfy:

G
1
2
TG

1
2
†

T = GT and G
1
2
RG

1
2
†

R = GR, (5.3)

where GT and GR are transmit and receive correlation matrices, with dimensions

NT ×NT and NR ×NR, respectively.

5.2.1 Correlation Structure

The name “Kronecker product form” is due to the fact that the total correlation

matrix, G, is the Kronecker product of GR and GT . The total correlation matrix is

defined as:

G = Æ
[
vec(H) · vec(H)†

]
, (5.4)
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where vec(·) represent vectorization operation, i.e., if

H =
[
~h1

~h2, · · · ,~hNT

]
, (5.5)

then

vec(H) =
[
~h>1 ~h>2 , · · · ,~h>NT

]>
. (5.6)

Roughly speaking, the vectorization operation “stacks” all columns of H into a single

column. Effectively the the vectorization operation converts two dimensional matrix

to an one dimensional vector.

G is said to be a sufficient description of the fading matrix H, since the joint prob-

ability density function of elements in H can be found once the matrix G is known

[Papoulis and Pillai(2002)]. For the KPF, the total correlation matrix corresponds

to:

G = GT ⊗GR. (5.7)

Here, ⊗ denotes Kronecker product. For example, the Kronecker product of two

matrices A and B would be:

A⊗B =




a11B a12B · · ·
a21B a22B · · ·

...
...

. . .


 , (5.8)

where a11, a12, a21, a22, · · · are the elements of the matrix A.

Note that the elements of G are correlations between fadings. If the elements

of G can be arbitrarily selected, then the correlation between fadings would be a

function of four parameters, i.e.,

Æ [hpqh
∗
st] = r(p, q, s, t), (5.9)

where hpq denotes the element of H at pth row and qth column, hst is similarly defined.
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However, according to (5.7), the elements of G can not be selected arbitrar-

ily: they are structured. Consequently, Æ [hpqh
∗
st] would not be a function of four

parameter, it would possess some special property. The first property is stationary:

Æ [hpqh
∗
st] = r(p− s, q − t), (5.10)

i.e., the correlation between fadings are determined by their difference, but not their

absolute position.

In addition to the stationarity property, the KPF has a finer property: separable

stationarity property. After some manipulation of (5.7), the correlation between

fadings would be:

Æ [hpqh
∗
st] = rR(p− s) · rT (q − t) (5.11)

Here, rR(·) and rT (·) are two arbitrary auto correlation sequences with maximum

lags NR − 1 and NT − 1, respectively. (5.11) presents that the correlation can be

separated to two parts: transmitter part and receiver part, and both of the two parts

are stationary.

It is noted that if the KPF holds, then (5.11) holds. On the other hand, if (5.11)

holds, then the KPF holds. Therefore, (5.11) will be the tool to check the validity of

KPF in various environments. If in one specific environment, (5.11) holds, then the

KPF is suitable in this environment. Otherwise, the KPF is not capable of describing

this environment.

In section 5.2.2, we check that if (5.11) is satisfied in a general environment. No

any restriction on the positions of scatterers is superimposed in section 5.2.2. It will

be seen that in general that the KPF is not applicable. In section 5.2.3 and 5.2.4,

the scatterers are placed on eclipse and two rings, respectively. Overall, the results

in section 5.2.3 and 5.2.4 show that the KPF works only with separable scatterers,

i.e., if scatterers are locally clustered around transmitters and receivers, respectively,

then the KPF is applicable, otherwise it is not.
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Figure 5.1: Geometry for fading computation

5.2.2 General Environments

Here, we assume: 1) the scatterers are pervasively distributed in the space, 2) a

single bounce channel model, 3) the distance between scatterer and antenna array

is significantly larger than the antenna array size, 4) all scatterers reflects the in-

cident energy omni-directionally, i.e., isotropic fading, and 5) receiver collects all

transmitted energy.

Using a technique similar to [Byers and Takawira(2004)], the fading between qth

transmitter element and pth receiver element corresponds to:

hpq = lim
∆θ→0

lim
∆φ→0

√
∆θ ∆φ

2π

2π∑

θ=0

2π∑

φ=0

fθφ · exp(j · (lq,θφ

+ (q − 1)dT sin θ + (p− 1)dR sin ψ + lθφ,p) · 2π

λ
). (5.12)

The corresponding geometry of this equation is shown in Fig. 5.1, where fθφ denotes

the complex reflection gain of the scatter in the direction (θ, φ), lp,θφ and lθφ,q repre-

sent the distance from the scatter fθφ to the transmitter and receiver, respectively,
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and, dT and dR represents the antenna element spacing at transmitter and receiver,

respectively.

Using (5.12), the correlation between fadings corresponds to:

Æ [hpqh
∗
st] = lim

∆θ→0
lim

∆ψ→0

∆θ ∆ψ

(2π)2

2π∑

θ=0

2π∑

ψ=0

E
[∣∣f 2

θφ

∣∣] ·

· exp(j((q − t)dT sin θ + (p− s)dR sin ψ)
2π

λ
). (5.13)

Please note that in (5.13), the absolute distances lq,θφ and lθφ,p in (5.12) are canceled

out, which means the channel statistics are determined by the scatter’s direction and

antenna spacing, but independent of the absolute distance lθφ and lθφ,p.

The integral form of (5.13) corresponds to:

Æ [hpqh
∗
st] =

∫ 2π

0

∫ 2π

0

p(θ, φ) exp(j((q − t)dT sin θ

+ (p− s)dR sin φ)
2π

λ
) dθ dφ, (5.14)

where p(θ, ψ) is the scatterer density function, defined as:

p(θ, ψ) =
Æ

[
f 2

θφ

]

(2π)2
. (5.15)

Here, the scatterer density function is analogous to a 2-D power density function,

which describes how the power is distributed along θ and ψ directions.

Observing (5.14), the KPF can not describe the general channel, because in

general the fading correlation can not be written in the form of rR(p − s)rT (q − t).

A similar conclusion can be found in [Abdi and Kaveh(2002)].

For some special case of p(θ, ψ), the KPF is still capable of describing the channel.

For example, if the scatterer density function is in the form:

p(θ, ψ) = p(θ)p(ψ), (5.16)

then the double integral in (5.14) could be decomposed into two separate integrals,

and the correlation structure would be separable. Then, the KPF would be capable

of describing this particular channel.
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5.2.3 Microcell Environments

In this section, we consider microcell environments, where scatterer distribution fol-

lows an elliptic structure [Ertel et al.(1998)], as shown in Fig. 5.2. The transmitter

and receiver antenna arrays are located in the focal of the ellipse. An example of mi-

crocell environments is indoor environments, e.g., the environments for Wi-Fi (IEEE

802.11) systems. In such environments, transmitters and receivers would share the

same scatterers.

Here, we assume the scatterer-transmitter/receiver distance and symbol duration

are significantly larger than the antenna size and the delay created by antenna ele-

ment spacing, respectively. Now, due to the geometry of ellipse, all scatterers create

similar channel delays. This delay difference would be in the order of antenna size,

which is much smaller than the symbol duration. This leads to a frequency flat

fading channel.

Using the same assumptions in Section 5.2.2 and similar technique as (5.14), the

fading correlation between pth transmitter element and qth receiver element corre-

sponds to:

Æ [hpqh
∗
st] =

∫ 2π

0

p(ψ) · exp(π · j((p− s)
b sin ψ

c + b cos ψ

+ (q − t)
b sin ψ

c− b cos ψ
)) dψ (5.17)

where ψ denotes the angle of arrival of scatterers with respect to the center of the

ellipse (see Fig. 5.2).

Although the closed form solution of (5.17) does not exist, but for a particular

p(ψ), the integral can be numerically evaluated. Obviously the first chosen p(ψ) is:

p(ψ) =
1

2π
. (5.18)
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Figure 5.2: Geometry of Scatterers Distribution for Microcell Environments

This scatterer density function corresponds to a uniformly distribution of scatterers

along ψ, which leads to a rich scattering environment.

The correlation results for (5.18) is shown in Fig. 5.3. In this figure, ρ(0, d)

[ρ(d, 0)] refers to the correlation between two receiver [transmitter] elements with

spacing d and the same transmitter [receiver]. Due to symmetric geometry, ρ(0, d) =

ρ(d, 0). Moreover, ρ(d, d) refers to the correlation between two receiver elements

with spacing d and two transmitter elements with spacing d. If the KPF is realistic,

according to separable spatial stationarity condition, ρ(d, d) = ρ(0, d)2, which is the

“ρ(d, d) prediction” curve in the figure. Analytical results are numerical evaluation

of (5.17), and simulation results are generated via (5.12), assuming 1000 scatterers

in (5.13) and 256 fading realizations are generated to compute the fading statistics.

First, we see that the simulation results have a good match with analytical re-

sults. Second, if the KPF is realistic, the predicted ρ(d, d) should be the same as

analytical and simulated ρ(d, d). However, there is a significant difference between
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Figure 5.3: Correlation Results for Elliptical Channel with p(ψ) = 1
2π

.

predicted ρ(d, d) and analytical/simulated ρ(d, d). This confirms that the the Kro-

necker product form method does not lead/generate realistic correlation between

antennas in microcell environments.

Third, it is shown that the correlation at larger distances is not necessarily

smaller, while the envelope of the correlation decreases monotonically. This is be-

cause the correlation is a discrete sample of the sinc-like function. Overall, in contrast

to common sense, the correlation may not decrease when distance increases, although

the envelope of the correlation monotonically decreases with distance.

The second chosen p(ψ) is:

p(ψ) =
2

π
| sin(ψ)|. (5.19)

Comparing with the former distribution (5.18), the latter one leads to a non-uniform

distribution, because the reflected power is more concentrated in some particular

direction, i.e., ψ = π
2

and ψ = −π
2
.
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Figure 5.4: Correlation Results for Elliptical Channel with p(ψ) = 2
π
|sin(ψ)|.

The analytical results for (5.19) is shown in Fig. 5.4. First, similar to p(ψ) = 1
2π

,

the KPF prediction is significantly different from real value. Second, comparing Figs.

5.3 and 5.4, the correlation for p(ψ) = 2
π
| sin(ψ)| is much larger than p(ψ) = 1

2π
. This

is reasonable since the second scatterer density function leads to a more non-uniform

distribution, thus it leads to a more correlated channel.

In this section, we evaluate a particular channel family (elliptical distributed

channel), and proved that, in general the KPF does not generate a realistic descrip-

tion in microcell environments. A discussion on other channel models that might

be suitable for microcell environments can be found in another paper of the au-

thors [Tong and Zekavat(d toa)].

5.2.4 Macrocell Environments

In macrocell environments, the scatterer distribution would follow the two ring model

[Ertel et al.(1998)], as shown in Fig. 5.5. An example of macrocell environments

is the environments for cellular systems, where both base station and mobile are
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Figure 5.5: Geometry of Scatterers Distribution in Macrocell Environments.

surrounded by multiple reflective objects, and there is not line of sight between the

mobile and the base station.

Using similar assumption as (5.12), the fading between qth transmit antenna

element and pth receive antenna element corresponds to:

hpq = lim
K→∞

lim
L→∞

1√
KL

·
L∑

l=1

K∑

k=1

gl · gk · exp((RT +

(q − 1)dT sin θl + dlk + (p− 1)dR sin φk + RR)
2π

λ
) (5.20)

where gl and gk denote lth transmit scatterer and kth receive scatterer, respectively,

and, RT and RR denote radius of transmit scatterers and receiver scatterers, respec-

tively.

The correlation between two fadings corresponds to:

Æ [hpqh
∗
st] = lim

K→∞
lim

L→∞
1

KL

L∑

l=1

K∑

k=1

Æ
[|gl|2

]
Æ

[|gk|2
] ·

· exp

(
((q − t)dT sin θl + (p− s)dR sin φk)

2π

λ

)

= lim
L→∞

1

L

L∑

l=1

Æ
[|gl|2

]
exp

(
((q − t)dT sin θl)

2π

λ

)
·

lim
K→∞

1

K

K∑

k=1

Æ
[|gk|2

]
exp

(
((p− s)dR sin φk)

2π

λ

)
(5.21)
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The above summation approaches to the integral:

Æ [hpqh
∗
st] =

∫ 2π

0

pθ(θ)exp

(
((q − t)dT sin θ)

2π

λ

)
dθ

·
∫ 2π

0

pφ(φ) exp

(
((p− s)dR sin φk)

2π

λ

)
dφ (5.22)

Simply define the first term and second term in (5.22) as rT (q− t) and rR(p− s),

respectively, it is easy to see that the correlation in macrocell environment satisfies

separable spatial stationarity condition, i.e., Æ [hpqh
∗
st] = rT (q − t)rR(p− s). Hence,

in macrocell environments, the KPF is still capable of generating realistic channel

statistics.

The simulation results for macrocell environments are shown in Figs. 5.6 and

5.7. The first chosen scatterer density function would be uniform distribution at

both sides, i.e, p(θ) = p(φ) = 1
2π

. The two side correlation analytical results are

predicted by the KPF; we see that the simulation results matches with the KPF

prediction. Hence, the KPF can describe this macrocell environment.

The second chosen scatterer density function is von Mises distribution at both

sides, i.e.,

p(θ) =
eκ cos θ

2πI0(κ)
θ ∈ [−π, π) (5.23)

and

p(φ) =
eκ cos φ

2πI0(κ)
φ ∈ [−π, π) (5.24)

where I0(·) denotes the modified Bessel function of the first kind of order zero. Here,

κ is the main parameter. If κ = 0, the von Mises Distribution corresponds to rich

scattering environment, i.e., scatterers are uniformed distributed in [−π, π]. Larger

κ leads to smaller angle dispersion, i.e., a more correlated channel. κ →∞ leads to

a coherent channel. It has been observed that von Mises Distribution matches with

many real azimuth power spectrum [Abdi et al.(2002)]. In our simulation, we choose
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Figure 5.6: Correlation Results for Two Ring Channel with uniformly distributed
scatterers.
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Figure 5.7: Correlation Results for Two Ring Channel with von Mises Distribution
at both sides (κ = 10).
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κ = 10. Here, the simulation results matches with the KPF analytical results for von

Mises Distribution. Therefore, via both theoretical and numerical results, we show

that the KPF is capable of describing macrocell environments.

5.2.5 Line-of-Sight Considerations

In Section 5.2.3 and 5.2.4, the microcell and macrocell environments without Line-

of-Sight (LoS) are considered. We show that the KPF is suitable for macrocell

environments without LoS. However, in real environments, LoS may present. Hence,

it is also necessary to consider the effects of LoS components.

In [Abdi and Kaveh(2002)], it has been clearly stated that macrocell environ-

ments with LoS do not possess separable correlation structure. Therefore, directly

applying the KPF in macrocell environments with LoS is not feasible. However,

in this section, we show that a variation of the KPF can successfully describe

macrocell environments with LoS. This variation is motivated by the relevant works

in [Tulino et al.(2005)].

First, the eigen value decomposition (EVD) of the transmit covariance matrix

corresponds to:

GT = UTΛTU†
T . (5.25)

Here, GT is assumed to be semi-positive definite. It is well known that each column

of UT corresponds to a certain direction, and elements of the diagonal matrix ΛT

denotes the reflected signal power in the corresponding directions. Let Λ
1
2
T denotes

the NT ×NT diagonal matrix whose diagonal elements are square roots of diagonal

elements of ΛT , the matrix G 1
2

in (5.77) would correspond to:

G
1
2
T = UTΛ

1
2
T . (5.26)

In the KPF, the matrix G
1
2
T is the critical parameter that determines spatial correla-

tions at the transmitter side. In (5.26), G
1
2
T is decomposed into two parts: directions,

and the power in those directions.
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Similarly, for receiver covariance matrix, the EVD corresponds to:

GR = URΛRU†
R. (5.27)

Moreover, similarly G
1
2
R can be decomposed into the multiplication of directions and

the power in those directions:

G
1
2
R = URΛ

1
2
R. (5.28)

Substituting (5.26) and (5.28) into the KPF generation equation (5.77), (5.77)

would turn out to be:

HNLoS = URΛ
1
2
RHiidΛ

1
2

>

T U>
T . (5.29)

Here, the KPF is decomposed into the multiplication of the receive directions, the

power in the receive directions, randomness of the scatterers (Hiid, the power in the

transmit directions, and the transmit directions.

(5.29) describes the non-LoS components in macrocell environments. Now, as-

suming that there is a LoS component in the mth receive direction and nth transmit

direction, the LoS component would be:

HLoS = URΩLoSU
>
T , (5.30)

where ΩLoS corresponds to:

ΩLoS =




0 · · · · · · 0
0 · · · · · · 0
...

. . . 1
...

0 · · · · · · 0


 . (5.31)

The only non-zero element of ΩLoS is on its mth row and nth column.

Two remarks are necessary for understanding the fading for LoS component.

First, (5.30) does not possess a separable structure. This is why the KPF is not

directly feasible for macrocell environments with LoS. Second, there is no random
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Table 5.1: Summary of the Suitability of the Kronecker Product Form
Without Line-of-Sight With Line-of-Sight

Microcell Environments No No
Macrocell Environments Yes Needs Generalization

variables in (5.30). This is because that the LoS components are deterministic, while

non-LoS components are random.

Combining both LoS and Non-LoS components, the fadings in macrocell envi-

ronments with LoS would correspond to:

H = UR

(√
1

K + 1
Λ

1
2
RHiidΛ

1
2

>

T +

√
K

K + 1
ΩLoS

)
U>

T , (5.32)

where the Rician factor K denotes the ratio of signal power in LoS component over

the non-LoS scattered power.

The model in (5.32) would be capable of describing fadings in Macrocell envi-

ronments with LoS. (5.32) is essentially a generalization of the KPF model. When

K = 0, i.e., the power of LoS component would be zero, and (5.32) boils down to the

original KPF. When K →∞, (5.32) would correspond to a free space propagation:

the scattering phenomenon does not exist. For other values of K, both LoS and

non-LoS components exist.

Finally, the suitability of the KPF in various environments is summarized in

Table 5.1. First, the KPF is not suitable for microcell environments, no matter if the

LoS exists or not. Second, the KPF is applicable to macrocell environments without

LoS. Thirdly, a generalization of the KPF is feasible in macrocell environments with

LoS.

5.3 Virtual Channel Representation

This chapter discusses the recently proposed Virtual Channel Representation (VCR)

and compares it with traditional 2-D product form method. In [Ertel and Reed(1998)],
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the authors presented a production-form correlated fading channel generation. By

multiplying a row of i.i.d. (identical independent distribute) zero-mean complex

Gaussian variables and a specific matrix G
1
2 , the amplitudes of the resulted com-

plex Gaussian variables would be correlated, i.e., equal-power correlated Rayleigh

variables are generated. The correlation between those Rayleigh variables are de-

termined by the matrix G
1
2 , which is Cholesky (eigen value) decomposition of the

correlation matrix G. The two dimensional (2-D) version of production approach

has been widely used in many references as well [Chuah et al.(2002)]. However, the

channel capacity predicted by production-form method is significantly lower than

experiment results [Ozcelik et al.(2003)].

In [Young and Beaulieu(2000)], an approach other than the production-form is

proposed, where, the amplitudes of Discrete Fourier Transform (DFT) of a row (one

dimensional DFT) of independent zero-mean complex Gaussian variables are corre-

lated Rayleigh variables. The correlation is determined by the variances of those in-

dependent zero-mean complex Gaussian variables. The 2-D version of DFT method,

which is called VCR, has been reported in [Sayeed(2002)]. VCR transforms the fad-

ing between different antenna elements to the fading between different beams. A

recent experiment result shows that VCR provides a better channel capacity predic-

tion than production-form method [Zhou and Sayeed(d to)].

The chapter contributions include: (a) Extending the theoretical fading ampli-

tude and phase correlation result from 1-D DFT to 2-D DFT, i.e., extending the

theoretical correlation results from SIMO to MIMO channels; (b) Investigating the

relationship between 2-D DFT and 2-D production-form methods, and proving that

2-D DFT is a more general method than the production-form.

Considering: 1) The recent claim in the literature that 2-D production-form

method is an oversimplified model [Oestges et al.(2005)] and it contradicts exper-

iment results [Ozcelik et al.(2003)], and, 2) We prove that VCR is a more gen-

eral model than 2-D production-form method, this work leads to a good hint that
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VCR is a more realistic channel model compared with the traditional production-

form method. Thus, MIMO spatially correlated channels (such as indoor or ur-

ban areas) should be generated with VCR model in order to match with experi-

ments [Zhou and Sayeed(d to)].

5.3.1 VCR Fading Amplitude and Phase Correlation

Throughout this chapter, we use the following notation: Superscripts H and T denote

Hermitian transpose and transpose, respectively; Subscripts R and T corresponds to

receiver and transmitter, respectively; Subscripts v and P means the matrix is used

by VCR or production-form methods, respectively.

Assuming M transmit antenna elements and N receive antenna elements, the

channel fading matrix is generated by 2-D DFT of VCR channel fading matrix, Hv,

via:

H = ARHvA
H
T , (5.33)

where

AR = [~aR(θ1R) ~aR(θ2R) · · · ~aR(θMR)] (AR ∈ CM×M) (5.34)

and

AT = [~aT (θ1T ) ~aT (θ2T ) · · · ~aT (θNT )] (AT ∈ CN×N) (5.35)

.

Here,

~aR(θmR) =
1√
M

[
1 e−j2πθmR · · · e−j(M−1)2πθmR

]T
(5.36)

and

~aT (θnT ) =
1√
N

[
1 e−j2πθnT · · · e−j(N−1)2πθnT

]T
(5.37)

are the array vector of the receiver and transmitter, respectively; and m ∈ {1, 2, · · · ,M},
n ∈ {1, 2, · · · , N}. θmR and θnT are evenly selected within the range of [−0.5 0.5],
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i.e.,

θmR =
2m + 1−M

2M
(5.38)

and

θnT =
2n + 1−N

2N
. (5.39)

In this case, AR and AT are unitary matrixes, i.e., ARAH
R = IM ∈ RM×M and

ATAH
T = IN ∈ RN×N , where IM and IN are identity matrixes. Moreover, AR and

AT are in fact Fourier Transform matrixes, and, H and Hv are 2-D Fourier pairs.

The elements of Hv are zero-mean complex Gaussian variables with variance ma-

trix Ψ = var(Hv). This variance matrix completely characterizes the statistics of Hv.

Here, for convenience and without loss of generality, we assume unity transmitted

bit energy, which corresponds to:
N∑

n=1

M∑
m=1

ψm,n = 1, where ψm,n is the mth row nth

column element of Ψ. In this section, we show the theoretical results of correlation

between any two elements of H for any value of Ψ.

The fading between pth receiver and qth transmitter elements, or the pth row, qth

column element of H, corresponds to: hp,q = Re(hp,q) + j · Im(hp,q). Both Re(hp,q)

and Im(hp,q) are zero-mean Gaussian variables since they are linear combinations

of independent zero-mean Gaussian variables. It is easy to show that Re(hp,q) and

Im(hp,q) are uncorrelated and their variances correspond to:

u = E
[
(Im(hp,q))

2] = E
[
(Re(hp,q))

2] =
1

2MN
. (5.40)

Now, we study the relationship between hp,q and another fading hs,t. The corre-

lations between real and imaginary parts of hp,q and hs,t correspond to:

u1 = E [Re(hp,q)Re(hs,t)] = E [Im(hp,q)Im(hs,t)] (5.41)

=
1

MN

N∑
n=1

M∑
m=1

ψm,n

2
cos θpqstmn,
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and,

u2 = E [Re(hp,q)Im(hs,t)] = −E [Re(hs,t)Im(hp,q)] (5.42)

=
1

MN

N∑
n=1

M∑
m=1

ψm,n

2
sin θpqstmn,

where θpqstmn = 2π
[
(n− 1) t−q

N
− (p− s)2m−1−M

2M

]
.

The cross-correlation coefficient between the amplitudes of hp,q and hs,t corre-

sponds to [eq. (1.5-26), 8]:

ρr = E [|hp,q||hs,t|] =
(1 + λ)Ei

(
2
√

λ
1+λ

)
− π

2

2− π
2

, (5.43)

where Ei() denotes the complete Elliptic integral of the second kind. Moreover, the

cross-correlation coefficient between the phase of hp,q and hs,t corresponds to [eq.

(1.5-33), 8]:

ρθ = E [∠hp,q∠hs,t] = 3ξ(1 + 2ξ)− ζ. (5.44)

The parameters λ, ξ and ζ in (5.43) and (5.44) correspond to:

λ =

√
u2

1 + u2
2

u2
, ξ =

1

2π
sin−1

(u1

u

)
, ζ =

3

4π2

∞∑

k=1

λ2k

k2

To verify the theoretical results in (5.43) and (5.44), a small simulation is con-

ducted. According to (5.73), the channel fading generation process in this simulation

includes three steps: (1) Selecting a virtual variance matrix Ψ, which can be chosen

arbitrarily or mapped from a physical channel model; (2) Generating the virtual

channel matrix Hv using Ψ = var(Hv); and, (3) Generating channel fading matrix

H using (5.73).

The comparison of theoretical and simulation results of the correlation coefficient

of the amplitudes and phases are shown in Fig. 1. The x-axis in Fig. 1 represents

the ”dominance factor” z defined as follow: With ψm,n the element of Ψ, and p, q
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arbitrarily selected dominating beams, we define a simple model for Ψ as: ψm,n =

1 if m = p, n = q, and, ψm,n = z otherwise. The y-axis of Fig. 1 is the fade

amplitude (phase) correlation coefficients over adjacent antenna elements, assuming

four transmitters and six receivers.

If z approaches 0, there is only one dominating virtual path between transmitter

and receiver, and the antenna element fades become coherent, i.e., the same fade

amplitudes and fixed phase shifts over the antenna elements. If z approaches 1, there

is no dominating virtual path between transmitter and receiver, and the antenna

element fades tend to become independent since the signal received from different

directions has equal power due to a rich scattering environment. Hence, as z changes

from 0 to 1, the correlation coefficient of the channel changes from 1 to 0, or the

channel changes from coherent to independent (see the x-axis of Fig. 1).

In this section, we (1) explained the correlated channel generation process us-

ing VCR; and, (2) extended the previous theoretical correlation coefficient results

in [Jakes(1974)] from 1-D DFT to 2-D DFT case by recomputing the parameters u,

u1 and u2. In the next section, we will use the above results (u, u1, u2) to prove

that the generation of H via VCR in (5.73) is a more general technique than the

traditional production-form.

5.3.2 VCR versus 2D Production-Form

The traditional production-form process corresponds to:

H = G
1
2
RHPG

1
2
H

T , (5.45)

where HP is an M × N matrix consisting of i.i.d zero-mean complex Gaussian ele-

ments. The matrixes G
1
2
T and G

1
2
R in (5.77) satisfy: G

1
2
TG

1
2
H

T = GT and G
1
2
RG

1
2
H

R =

GR, where GT and GR are transmit and receive correlation matrixes with elements
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that respectively satisfy: E
[
hp,qh

H
p,t

]
= gTq,t and E

[
hp,qh

H
s,q

]
= gRp,s . Here, gTq,t is the

qth row tth column element of GT , and gRp,s is the pth row sth column element of GR.

Note that the correlation between the two channels hp,q,hp,t is independent of index

of receiver, p. This corresponds to the fact that gTq,t only represents local scatterers

around transmitter elements. Similar conclusion applies to hp,q, hs,q and gRp,s . In

addition, the most important property of production method is [Chuah et al.(2002)]:

E
[
hp,qh

H
s,t

]
= gRp,sgTq,t . (5.46)

Since gTq,t and gRp,s only represent local scatterers around transmitters/receivers,

this property confirms that for production form, the correlation between two spatial

channels only considers local scatterers. In other words, this method assumes free

space in the medium between transmitters and receivers, which is not true in all

wireless environments such as indoor and urban areas.

Another common assumption in wireless communications is spatially stationarity

of the correlation matrix elements, gRp,s , gTq,t , which corresponds to:

gRp,s = rR(p− s) and gTq,t = rT (q − t), (5.47)

where rR(p − s) is the local correlation coefficient determined by the distance be-

tween rth and sth correlation receiver element, and rT (q− t) is defined similarly. This

means that the local correlations gRp,s and gTq,t are solely determined by the distance

between two transmitter or receiver elements, and they are independent of their abso-

lute positions in the environment. We will use this assumption in the following deriva-

tions as well; and, define local correlation vectors ~rR = [rR(0) rR(1) · · · rR(N − 1)]T ,

and ~rT = [rT (0) rT (1) · · · rT (M−1)]T for the receiver, and transmitter, respectively.

Here, we introduce a theorem that clarifies the relationship between 2-D VCR

and 2-D production-form method. This theorem shows the fading channels that 2-D

production-form generates are a subset of the fading channels that 2-D VCR model

would generate.
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Theorem 5.3.1. The 2-D production-form is equivalent to 2-D VCR method if and

only if the variance matrix of Hv, Ψ, can be decomposed into two vectors ~ψT ∈ RN×∞

and ~ψR ∈ RM×∞, that is:

Ψ = ~ψR
~ψH

T . (5.48)

Proof. Substituting (5.47) into (5.46), the correlation between the two channels with

different transmitter and receiver elements in 2-D production-form corresponds to:

E
[
hp,qh

H
s,t

]
= rR(p− s)rT (q − t). (5.49)

Please note that E
[
hp,qh

H
s,t

]
also fully describes the fading statistics. Using (5.41)

and (5.42), the same correlation for VCR corresponds to:

E
[
hp,qh

H
s,t

]
=

1

MN

N∑
n=1

M∑
m=1

ψm,nejθpqstmn . (5.50)

Here, first, we prove the sufficient condition, i.e., if (5.48) is satisfied, 2-D VCR

model and 2-D production-form can be translated into each other. If Ψ = ~ψR
~ψH

T ,

then ψm,n = ψR(m)ψT (n), and (5.50) corresponds to :

E
[
hp,qh

H
s,t

]
=

1

N

N∑
n=1

ψT (n)e−j2π(q−t)n−1
N (5.51)

× 1

M

M∑
m=1

ψR(m)e−j2π(p−s) 2m−1−M
2M .

Comparing Eqs. (5.51) and (5.49), we find that defining

rR(p− s) =
1

M

M∑
m=1

ψR(m)e−j2π(p−s) 2m−1−M
2M , (5.52)

and,

rT (q − t) =
1

N

N∑
n=1

ψT (n)e−j2π(q−t)n−1
N , (5.53)

the 2-D production-form and 2-D VCR method would be equivalent. Equations

(5.52) and (5.53) represent two separate discrete Fourier transforms.
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Second, we prove the necessary condition, i.e., if 2-D VCR model and 2-D

production-form can be translated into each other, then Ψ = ~ψR
~ψH

T . That is, if:

rT (q − t)rR(p− s) =
1

MN

N∑
n=1

M∑
m=1

ψm,ne
jθpqstmn (5.54)

then Ψ could be decomposed into multiplication of two vectors. Note that ~rR~rH
T and

Ψ are 2D DFT pairs if (5.54) holds. According to separability property of 2D DFT,

if 2-D Fourier transform of Ψ is multiplication of two vectors, then Ψ can be written

as multiplication of two vectors as well. Thus, the necessary condition is proved.

Corollary 5.3.2. If a 2-D VCR model is expressed by 2-D production-form, then

(~rR, ~ψR) and (~rT ,~ψT ) would be two discrete Fourier transform pairs, as shown in

(5.52) and (5.53).

According to theorem 5.3.1, in the first step of VCR correlated channel generation

process, if the chosen Ψ satisfies (5.48), i.e., the matrix Ψ can be expressed by

multiplication of two vectors, this VCR model can be represented by production-

form as well. Otherwise, this VCR channel can not be represented by production-

form method. As we discussed, since production-form method describes only local

scatters, we reach to the conclusion that VCR model describes both local and non-

local scatterers and VCR is a more general channel model than production-form

method.

Now, we 1) explained the generation process of 2-D VCR model; 2) extended

the theoretical results of the correlation coefficient of 1-D DFT method to 2-D DFT

method, i.e., from SIMO to MIMO channels; 3) simulated a simple 2-D VCR model

to verify the theoretical results; and, 4) proved that the traditional 2-D production

fading channel generation process is a special case of 2-D VCR model. Moreover,

combining recent literature and this work, this work leads to a good hint that VCR
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is a more realistic channel model compared with the traditional production-form.

According to this conclusion, all simulations and theoretical results in spatially cor-

related channel should be generated with this VCR model in order to match with

experiment results.
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Figure 5.8: Theoretical and simulated amplitude (phase) correlation coefficients com-
parison.

5.4 The Total Correlation Matrix: Comparing KPF, VCR and W-model

The input-output relationship in MIMO systems corresponds to:

~y = H~x + ~n, (5.55)

where ~y, ~n and ~x are column vectors with dimension NR, NR, and NT , respectively.

The goal of MIMO channel modeling is to find the structure of H, which is an

NR × NT complex matrix. NT denotes the number of transmit antennas, and NR

denotes the number of receive antennas.
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Assuming Rayleigh fading, the elements of H would be zero-mean circularly

symmetric [Telatar(1999)] complex Gaussian random variables. Non-Rayleigh faded

MIMO channels can be generated via an extension of Rayleigh MIMO channels

[Tulino and Verdu(2006)].

In spatially correlated fading environments, the elements of H would be corre-

lated. The next step is to find how to describe the correlation between those ele-

ments. Here, the most comprehensive description of their correlations is the “total

correlation matrix”, which is defined via vectorization operation.

The column-wise form of the fading matrix, H, corresponds to:

H =
[
~h1

~h2, · · · ,~hNT

]
. (5.56)

Here, ~hi represents the ith column of H. Then, the vectorized fading matrix, vec(H),

would be:

vec(H) =
[
~h>1 ~h>2 , · · · ,~h>NT

]>
. (5.57)

Roughly speaking, the vectorization operation “stacks” all columns of H into a single

column. Effectively the vectorization operation converts two dimensional matrix to

an one dimensional vector.

Here, the total correlation matrix is defined as the covariance matrix of the

vectorized fading matrix:

G = Æ
[
vec(H) · vec(H)†

]
. (5.58)

G is said to be a sufficient description of the fading matrix H, since the joint prob-

ability density function (PDF) of elements in H can be found once the matrix G is

known[Papoulis and Pillai(2002)].

Note that each element of G represents the correlation between two elements in

H. Because there are NRNT elements in H, G is with dimensions NRNT × NRNT .

It is also easy to verify that G is conjugate symmetric, i.e., Hermitian.
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In addition to Hermitian form, there are more requirements on the form of G,

because of the physical world constraints. Here, we introduce the first main result: G

would be in Toeplitz form if elements H are samples of a two dimensional stationary

ergodic circularly symmetric complex Gaussian random process.

Theorem 5.4.1. If the elements of H are samples of a two dimensional stationary

ergodic circularly symmetric complex Gaussian random process, then

gm,n =

{
gm−n m ≥ n
g∗n−m m < n

, (5.59)

where gm,n denotes the element of G in the mth row and nth column, (·)∗ represents

conjugate operation.

Proof. If a two dimensional random process satisfies the conditions claimed in the

above theorem, it would always possess a two dimensional (2-D) power spectral

density (PSD), S(ω, u). The relationship between correlation and the 2-D PSD

corresponds to:

Æ[hp,qh
∗
s,t] =

∫ −0.5

−0.5

∫ −0.5

−0.5

S(ω, u)e−j2π(ω(p−s)+u(q−t)) dω d u. (5.60)

Note that Æ[hp,qh
∗
s,t] is the element of G at row (q − 1)NR + p and column

(t−1)NR +s. Then the difference between the indexes of the row and column would

be (q − t)NR + (p− s).

Now, assume another element of G, Æ[hp′,q′h
∗
s′,t′ ], is on the same diagonal of

Æ[hp,qh
∗
s,t], i.e., (q − t)NR + (p − s) = (q′ − t′)NR + (p′ − s′). Then, considering

p, s, p′, s′ ∈ {1, 2, · · · , NR} and q, t, q′, t′ ∈ {1, 2, · · · , NT}, it can be found that q−t =

q′ − t′ and p− s = p′ − s′. Via (5.60), it is found that Æ[hp′,q′h
∗
s′,t′ ] = Æ[hp,qh

∗
s,t]. In

other words, the elements located on the same diagonal would be identical. Therefore,

G would be in Toeplitz form.
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In general, MIMO fading processes satisfy the conditions stated in Theorem 5.4.1

[Goldsmith(2005b)]; Hence, G is considered in in Hermitian Toeplitz form for the

rest of this chapter.

According to this theorem, it seems easy to generate 2-D fading processes via

vectorization operation: Generating an NRNT dimensional vector with any arbitrary

correlations, and then converting this vector to an NR×NT matrix, the fading matrix

would be produced. But, we shall immediately see that the physical world applies

more constraints on the structure of G, in addition to the Hermitian Toeplitz form.

In the next section, we start analyzing the eigen structure of G. It is well known

that Hermitian Toeplitz matrix is semi-positive definite, i.e., G has the singular value

decomposition:

G = UΛU†, (5.61)

where U and Λ are eigen vector matrix and eigen value matrix, respectively; Λ is

diagonal, and the elements on the diagonal are non-negative.

5.4.1 The W-model: Separable Eigen Basis

The W-model[Weichselberger et al.(2006)] proposes that the structure of fading ma-

trix, H, corresponds to:

H = UR(Ω¯Hiid)U
†
T . (5.62)

Here, UR and UT denote two complex unitary matrices with NR×NR and NT ×NT

dimensions, respectively. Ω is an NR ×NT matrix with non-negative real elements,

and Hiid represents a matrix that consists of NR × NT independent identically dis-

tributed (i.i.d.) complex Gaussian random variables, ¯ denotes element-wise matrix

multiplication.

For W-model, the total correlation matrix, G, has separable eigen basis, in ad-

dition to Hermitian Toeplitz form.
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Theorem 5.4.2. If a fading matrix H has the structure depicted in (5.62), then the

eigen basis of the corresponding total correlation matrix, G, would be the Kronecker

product of two other unitary matrices, UR and UT , i.e.,:

G = (UR ⊗UT )D(vec(Ω))(UR ⊗UT )†. (5.63)

Here, D(·) corresponds to a diagonal matrix, whose diagonal elements are determined

by the elements of Ω. ⊗ denotes Kronecker product. The Kronecker product of two

matrices A and B is defined as:

A⊗B =




a11B a12B · · ·
a21B a22B · · ·

...
...

. . .


 . (5.64)

Equivalently, this theorem states that for W-model, the eigen basis matrix of G

is the Kronecker product of UR and UT , and the eigen values of G is the elements

of Ω.

Proof. Because UR and UT are both unitary, (5.62) becomes:

HUT = UR(Ω¯Hiid). (5.65)

Applying vectorization on both sides,

vec (HUT ) = vec (UR(Ω¯Hiid)) , (5.66)

then

(U†
T ⊗ INR

)vec(H) = (INT
⊗UR)vec ((Ω¯Hiid)) . (5.67)

Multiplying both sides by their own conjugate, and taking expectation:

(U†
T ⊗ INR

)Æ
[
vec(H)vec(H)†

]
(UT ⊗ INR

)

= (INT
⊗UR)Æ[vec(Ω¯Hiid)vec(Ω¯Hiid)

†](INT
⊗U†

R) (5.68)
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Noting that UT ⊗ INR
is a unitary matrix, and

Æ[vec(Ω¯Hiid)vec(Ω¯Hiid)
†] = D (vec(Ω)) (5.69)

the final expression would correspond to:

G = (UR ⊗UT )D(vec(Ω))(UR ⊗UT )†. (5.70)

The above theorem states that W-model does not have any constraint on the

eigen values of G: they could be any non-negative numbers. However, it assumes

the eigen basis of G is the Kronecker product of two other unitary matrices, i.e.,

U = UR ⊗UT , (5.71)

where U is the eigen basis of G, UR and UT are introduced in (5.62). Through

(5.71), W-model is said to have separable eigen basis, i.e., the eigen basis matrix

U can be separated to transmitter side component UT and receiver side component

UR.

The next question is, in what physical environment, the total correlation matrix

has separable eigen basis? At the first glance, it seems not easy. Fortunately, this

question has been answered in [Barton and Fuhrmann(1993)] in a different back-

ground. The answer is: When there are NR antennas clustered together, while

another NT antennas clustered together, and the distance between the two clusters

are greatly larger than the cluster size, G would possess separable eigen basis. In

other words, separable eigen basis corresponds to separable transmitter and receiver.

Since most MIMO systems have separable transmitter and receiver, W-model would

be capable of describing most MIMO systems.
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TX RX 
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TX RX 

Figure 5.9: Comparison of standard and distributed MIMO systems.

An exception might be the distributed MIMO systems, as shown in Fig. 5.9. In

those systems, the transmitting antennas and receiving antennas are not necessarily

clustered together. Hence, W-model would not be able to describe such channels.

Another possible example is multi-hop mobile ad hoc networks (MANET). Although

MANET is not a MIMO system, its channel modeling is closely relevant to MIMO

channel modeling. Imagining that there are NT nodes in the talking distance of node

A, and NR nodes in the talking distance of node B, then the channel between A and

B can be described by the general correlation structure, but can not be described by

W-model.

5.4.2 The VCR: Fixed Separable Eigen Basis

The discussion of the VCR is slightly different from the discussion of the W-model,

because the VCR varies with array manifolds. Originally, the VCR is proposed

with uniform linear array (ULA); hence, we start with ULA cases. It is shown

that the VCR predefines fixed and separable eigen basis. While separable eigen basis

corresponds to separable transmitter and receiver, being fixed corresponds to the fact
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that the VCR is suitable for only large dimensional arrays. Finally, we demonstrate

how to extend the original VCR to non-ULA arrays.

The ULA Case

Assuming ULA receiving antenna, the array response vector corresponds to:

aR(ϑ) =
1

NR

[
1 exp(−j

2πλϑ

d
) · · · exp(−j

2πλϑ ·NR

d
)

]>
. (5.72)

Here, λ is the carrier wavelength, and d denotes the spacing between antenna el-

ements. Taking aR(ϑ) as the columns of AR and uniformly selecting values of ϑ

in [−1, 1], AR would be a Fourier transform matrix with dimensions NR × NR: If

~y = AR~x, then ~y would be the fast Fourier transform of ~x[Stoica and Moses(1997)].

It is noted that AR is unitary. AT can be defined in a similar manner.

The VCR proposes that the fading matrix corresponds to:

H = AR(Ω¯Hiid)A
†
T . (5.73)

Comparing (5.73) and (5.62), the VCR is exactly the same as the W-model, except

that the adaptive eigen basis UR and UT are replaced by fixed Fourier transform

matrices AR, AT . Hence, the VCR is a special case of the W-model.

According to the above conclusion, the eigen basis of G would be:

U = AR ⊗AT . (5.74)

It can be verified that the Kronecker product of two Fourier transform matrices is

still a Fourier transform matrix [Regalia and Mitra(1989)]. Therefore, U would be

a Fourier transform matrix with dimensions NRNT × NRNT . Hence, in the eigen

structure of the total correlation matrix, there is no any constraint on eigen values,

but the eigen basis must be a Fourier transform matrix.
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Figure 5.10: An Example of Non-ULA Array

Now the question is, under what condition, the eigen basis of a complex Hermitian

Toeplitz matrix would be a Fourier transform matrix? [Gray(1977)] answers this

question: The eigen basis matrix of G would approach a Fourier transform matrix, if

and only if the dimension of G approach infinity, i.e., NRNT →∞. Hence, the VCR,

although makes a good intuition, is rather an approximation when the number of

antennas is large. This conclusion is analogous the conclusion by Slepian that Fourier

transform is optimal only if the data length is infinity [Stoica and Moses(1997)].

Extending the VCR to Non-ULA Cases

In [Hong et al.(2003)], it is claimed that the VCR is suitable only for ULA, while the

KPF is applicable for both ULA and non-ULA; hence, the VCR is a special case of

the KPF. However, it should be noted that although the original VCR is proposed

with ULA, the essential concept of the VCR does not necessarily assume ULA. To

understand how to extend VCR to non-ULA cases, we have the following example.
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An N -elements 2D antenna array is shown in Fig. 5.10. This array may exhibit

any arbitrary shape. The matrix of the positions of the array elements, D, is defined

as:

D =

[
y1 y2 · · · yN

x1 x2 · · · xN

]T

(5.75)

Now, with a plane wave in an incident direction θ, what is the array response

vector corresponding to this direction? With simple geometry, it can be found that:

~a(θ) = exp (−j2π (D · [cos θ sin θ]) /λ) . (5.76)

When all elements of the array are placed on the X-axis with the same spacing,

(5.76) is simplified to ULA case, i.e., (5.72).

Here, ~a(θ) still represents a Fourier transform: it performs a proper sum and delay

operation, and can filters out signals in the direction of θ for even an irregular array.

It is determined by only array shape, but independent from scatterers’ positions.

Setting ~a(θ) a column vector of AT , AT can be found. Advanced radar systems

have been built based on the above analysis [Palmer et al.(1998)]. Overall the key

assumption of the VCR is the assumption of a large number of antennas, but it does

not necessarily assume ULA.

5.4.3 The KPF: Separable Eigen Values and Separable Eigen Basis

The Kronecker product form (KPF) is the most widely used MIMO channel model,

mainly because it is a natural extension of one dimensional correlated channel models.

However, it may not be a proper selection in certain environments.

For the KPF, the fading matrix corresponds to [Kermoal et al.(2001)]:

H = G
1
2
RHiidG

1
2
>

T . (5.77)

Here, the matrixes G
1
2
T and G

1
2
R satisfy:

G
1
2
TG

1
2
†

T = GT and G
1
2
RG

1
2
†

R = GR, (5.78)
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where GT and GR are transmit and receive correlation matrices, with dimensions

NT ×NT and NR ×NR, respectively.

For KPF, the total correlation matrix has been well known [Kermoal et al.(2001)]:

G = GR ⊗GT . (5.79)

Respectively, the singular value decomposition of GR and GT corresponds to:

GR = URΛRU†
R and GT = UTΛTU†

T . (5.80)

Combining (5.80) and (5.79), the total correlation matrix have the following eigen

structure:

G = (UR ⊗UT )(ΛR ⊗ΛT )(UR ⊗UT )†. (5.81)

Note that both its eigen value matrix and eigen basis matrix are Kronecker product

of two other matrices. Therefore, it is clear that for KPF the total correlation matrix

has separable eigen basis and separable eigen values.

It has been known that separable eigen basis corresponds to separable antenna

arrays, then: what does separable eigen values correspond to? Here it is claimed

that separable eigen values correspond to separable scatterers: If all scatterers are

distributed close to either transmitter or receiver, then KPF would be capable of

describing this environment. Otherwise, KPF would not be able to describe the

channel.

In what physical environments, scatterers would be separable? The answer is in

macrocell environments, e.g., cellular environments, scatterers would be separable.

According to geometrically based channel model [Ertel et al.(1998)], scatterers in

macrocell environments form a two ring shape. The two scatterer rings are around

base station and mobile, respectively. In this case, KPF is suitable since scatterers

are separable.
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On contrast, in microcell environments, e.g., Wi-Fi, scatterers would form an

elliptic shape [Ertel et al.(1998)], while the transmitter and receiver are on the two

focals of the ellipse. In this situation, KPF would not be applicable since scat-

terers are not separable. The above conclusion, which is about the suitabliity of

KPF in macrocell and microcell environments, has been checked via a ray tracing

approach [Tong and Zekavat(d tob)].

5.5 A Preliminary Error Analysis with VCR

In this section, we numerically evaluate the error performance of OSTBC in spatially

correlated channels, with both KPF and VCR. As we discussed, VCR is a realistic

model while KPF is not. Now we are interested in a question, assume we have

a channel generated via VCR, if this channel is misinterpreted as a KPF channel,

what will be the error performance of this particular KPF channel? Answer to this

question has good practical values: we will see why KPF was so popular although it

is not a correct model

5.5.1 Error Probability Evaluation

First, we consider a particular VCR model, in which the virtual variance matrix, Ψ,

corresponds to:

Ψ =
NR

1 + z(NT NR − 1)




1 z · · · z
z z · · · z
...

...
. . .

...
z z · · · z


 , (5.82)

where the dominance factor, z, determines the channel statistics. If z = 1, the

channel is completely independent; If z = 0, the channel is completely coherent; if

0 ≤ z ≤ 1, the channel is correlated, and, the correlation between antenna elements

decreases with z.
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Second, if the above VCR model is misinterpreted as a KPF channel, the local

correlation matrix GR would correspond to:

GR = Æ[H†H] = ARΛRA†
R, (5.83)

where

ΛR =

NR




1 + z(NT − 1) 0 · · · 0

0 zNT
...

...
. . . 0

0 · · · 0 zNT




1 + z(NT NR − 1)
. (5.84)

GT can be defined similarly.

Here, we also see the reason why we say KPF incorporate two marginal distri-

butions to describe a joint distribution: Considering Ψ as a joint distribution, the

diagonals of LambdaT and ΛR would be the marginal distributions.

Now, we have all the necessary components, ΛT , ΛR, and Ψ, for computing error

performance of OSTBC. The error performance results are depicted in Fig. 5.11 and

Fig. 5.12.

Observing Fig. 5.11, we notice that: 1)KPF and VCR have the same performance

in either independent or coherent channels; this is understandable since both VCR

and KPF can describe the two extreme cases; 2) KPF always predicts a lower error

probability than the real value (VCR results); and 3) the error probability difference

between VCR and KPF results are pretty small; in almost all z regions, the difference

is almost negligible. We believe this is the reason why KPF was reported as a valid

channel model[Kermoal et al.(2001)]. We notice that the experiment was conducted

in an indoor environment, in which low values of z may not be applicable.

From Fig. 5.11, we know that when 0.01 ≤ z ≤ 0.2, the difference between VCR

and KPF results is significant. Hence, we choose some z value in this range, and plot

the error performance, as shown in Fig. 5.12. As we expect, the error probability

decreases as z increases. More importantly, we see that KPF greatly overestimate

error performance in those cases.
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Figure 5.11: Error Probability of STC in Correlated Channels: Error Probability
with respect to Correlation (NT = NR = 4)

5 10 15 20
10

−6

10
−4

10
−2

10
0

SNR (dB)

F
ra

m
e 

E
rr

or
 R

at
e

KPF Results
VCR Results

z=0

z=0.05

z=0.1

z=0.2

z=1

Figure 5.12: Error Probability of STC in Correlated Channels: Error Probability
with respect to SNR (NT = NR = 4)

www.arts
pdf.com

This PDF has been modifie
d using a demo version of A

RTS PDF softw
are



154

5.5.2 Relating Capacity and Error Performance

In addition to the error performance in both VCR and KPF, the capacity perfor-

mance of MIMO systems in VCR and KPF has been studied. We first verify the

experiment results[Ozcelik et al.(2003)] via a simulation. Assuming channel state

information at receiver and no channel information at transmitter, (probably) the

most famous instantaneous channel capacity expression corresponds to:

C = log det

(
INR

+
SNR

NT

HH†
)

(5.85)

This equation is feasible for any spatial correlations.

Now, incorporating the particular VCR model in (5.82), and the correspond-

ing KPF model in (5.84) (if VCR is misinterpreted as a KPF model), we simu-

late channel fadings using (5.77) and (5.73). Then, the instantaneous capacity is

computed via (5.85). The ergodic capacity (mean of instantaneous capacity) with

respect to SNR is shown in Fig. 5.13. Analyzing those simulation results, we no-

tice that there is a violent agreement between our simulation and the experiment

results[Ozcelik et al.(2003)]. When z = 0.01 and SNR = 25 dB, we see the capacity

for VCR is about 10 bps/Hz and capacity for KPF is about 9 bps/Hz, which matches

with 10% capacity reduction conclusion reported in[Ozcelik et al.(2003)].

Now, we see in the same situation, KPF overestimates error performance and

underestimates capacity simultaneously; this leads to a new question: is there any

inherent relationship between error performance and capacity? To answer this ques-

tion, we study the distribution of C, as shown in Fig. 5.14.

Note that lower C values correspond to worse channel states (deeper fades).

Based on the PDF results sketched in Fig. 4, the probability that KPF achieves a

low capacity values is lower than VCR. Hence, KPF leads to better error performance

rates than VCR as confirmed in Fig. 2. While as seen in Fig. 4 the ergodic (average)
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capacity of KPF is lower than VCR. Hence, smaller error probability is achieved in

price of lower capacity.

Note that, when C is low, channel state is bad (deep fading). Analogous to SISO

fading systems, the deep fading situation is the major error component. This is

verified by results in Fig. 5.14: error probability is consistent with the capacity

distribution around C = 0.

We note that a similar conclusion has been made in[Wang and Giannakis(2003)]:

it is shown that diversity gain is consistent with SNR distribution at the vicinity of

the origin. The main difference between SNR distribution and capacity distribution,

is capacity distribution assumes maximum likelihood detection, while SNR distribu-

tion may vary with different detection process. Hence, we can safely assume error

performance is by determined the capacity distribution at the vicinity at the origin.

Based on these observation, we conjecture that there is an optimal tradeoff be-

tween capacity and optimal error performance: In one channel, we can achieve higher

throughput capacity than another channel. Then, the optimal error performance we

can achieve in the former channel must be worse than the latter one. The men-

tioned tradeoff matches with our intuitions: high risk (error) leads to high benefit

(capacity), and vice versa.

The conjectured tradeoff, if it is true, would bave a profound impact on MIMO

system design: In contrast to current MIMO designs, which directly optimizes error

performance or capacity, the optimal MIMO system design must consider both ca-

pacity and error performance. The optimal design should optimize capacity under

the constraint of error performance, or vice versa. A more thorough discussion of

the tradeoff is undergoing right away.

5.6 Beyond the Correlation Problem: Keyholes

Up to now, it has been shown that the total correlation matrix framework is a

comprehensive model for correlation structure of Rayleigh fading matrix. However,
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correlation consideration is not the only issue in physical environment modeling. For

example, the keyhole problem is not in the scope of correlation considerations. Con-

sequently, Gesbert model [Gesbert et al.(2002)], which considers the keyhole problem

of MIMO channel, can not be included in the total correlation matrix framework.

It has been well known that the throughput capacity gain of MIMO channel is

mainly determined by the rank of fading matrix H [Telatar(1999)]: high rank of H

leads to high throughput capacity gain. Note that the rank of H is a random variable.

It was first believed that channel correlation structure fully determines the statistics

of the rank of H: Low correlation leads to high rank and high correlation leads to

low rank. But soon it was discovered that correlation structure is not sufficient to

determine the statistics of rank of H [Chizhik et al.(2002)]: Keyhole effect is not

included in correlation structures.

The simplest keyhole model corresponds to:

H = ~α · ~β> (5.86)

where ~α = [α1, α2, · · · , αNT
]>

(
~β = [β1, β2, · · · , βNR

]>
)

is a column vector that repre-

sents the channel between the Tx (Rx) antenna elements and the hole, as illustrated

in Fig. 5.15. Both ~α and ~β contain independent zero-mean complex Gaussian random

variables. It is easy to verify that the elements of H are statistically independent,

however, the rank of H is still unity. Here, we observe that the correlation structure

does not fully determine the statistics of rank of H. This effect is called keyhole ef-

fect. As shown in Table 5.2, only when the channel has both low correlation and no

keyhole, the channel fading matrix would possess a high rank, i.e., high throughput

capacity. The general keyhole effects can be described by Gesbert model.

The Gesbert channel fading generation corresponds to:

H = G
1
2
RHRΥH†

TG
1
2
>

T (5.87)
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Figure 5.15: Simplest Keyhole Channel

where G
1
2
R, and G

1
2
†

T are the same as those introduced for the KPF. Moreover,

HR and HT, denotes two matrices consists of i.i.d. complex zero-mean Gaussian

random variables. Here, Υ denote a rank deficient matrix (detailed structure in

[Gesbert et al.(2002)]). When Υ is full rank, it would be an identity matrix; in this

case, Gesbert model reduces to the KPF. When Υ has a low rank, Gesbert model

would describe keyhole effects.

Observing (5.87), Gesbert model has a double decoupled structure. First, it de-

couples keyhole and correlation phenomenon into two separate structures: Υ (for

keyhole) and G
1
2
R, G

1
2
T (for keyhole), which greatly facilitate the modeling process.

Second, it decouples scatterers into transmit scatterers and receive scatterers: (G
1
2
R,

HR) and (G
1
2
T , HT). As we depict in [Tong and Zekavat(d tob)], the second decou-

pling, transmit and receive scatterer separation, is not a realistic approach in all

cases.

From the above discussion, we can see an interesting duality between W-model

and Gesbert model. First, both of them assume separable transmitter and receiver,
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Table 5.2: Effects of Correlation and Keyholes on Rank of Fading Matrix
With Keyhole Without Keyhole

Low Correlated Low Rank High Rank
Highly Correlated Low Rank Low Rank

Table 5.3: Channel Model Comparison
Correlation Only Correlation and Keyhole

Local Scatterers Only Kronecker product form Gesbert Model
Both Local and virtual channel representation The Most Comprehensive

Non-Local Scatterers or W-model Model is absent yet

which is generally satisfied in MIMO systems. Second, the W-model considers cor-

relation structure for both local and non-local scatterers; Gesbert model considers

correlation structure and keyhole problem only for local scatterers. As shown in

Table 5.3, there is no model that is capable describing non-separable correlation and

keyhole problem simultaneously yet. Now, an interesting problem would be: is there

any application that experiences both non-separable correlation and keyhole effect?

If so, what model would describe the environments for this application? To the best

of the authors’ knowledge, this problem is still open in literature.

5.7 Conclusions

This chapter discusses the suitability of the Kronecker product form (KPF) in various

environments. First, the Kronecker product form is shown to exhibit separable corre-

lation structures. Next, various physical environments are checked if they possesses

separable correlation structure. It is found that macrocell environments without

line-of-sight has separable correlation because scatterers in macrocell environments

are separable. Therefore, the KPF is capable of describing macrocell environments

without line-of-sight. On the other hand, scatterers in microcell environments are

not separable, hence microcell environments does not experience separable correla-

tions, i.e., the KPF is not valid in microcell environments. Finally, a generalization

of the KPF is proposed to described macrocell environments with line-of-sight.
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Figure 5.16: Main conclusions of this chapter.

In this chapter, we first introduce the most comprehensive description of MIMO

fading matrix description: the total correlation matrix. Then, the eigen structure

of the total correlation matrix is investigated for various correlated MIMO channels:

W-model, the virtual channel representation, and the Kronecker product form. It

is further noted that different eigen structure corresponds to different physical envi-

ronments. The eigen structure and the corresponding physical environments for the

aforementioned models are summarized in Fig. 5.16.
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Chapter 6

The Diversity-Multiplexing
Tradeoff in Correlated MIMO
Channels

The diversity-multiplexing tradeoff has been well studied for rich scattering multi-

input-multi-output (MIMO) channels. Defining outage probability as the probability

that the random channel capacity is smaller than transmission rate, the tradeoff can

be demonstrated through computing the outage probability. Traditionally outage

probability is computed by the joint distribution of eigen values of the fading matrix.

In this work, it is depicted that the outage probability in MIMO systems with

asymptotically high signal-to-noise ratio can be computed by decomposing it into

the production of multiple conditional outage probabilities. Each conditional out-

age probability corresponds to a parallel single-input-single-output (SISO) system.

Hence, the tradeoff in MIMO system can be decomposed to a summation of the

tradeoffs in multiple parallel SISO systems. It is noted that this approach does not

necessarily need the knowledge of the joint distribution of the eigen values of the

fading matrix.

In the next step, the above approach is extended to poor scattering MIMO chan-

nels. The Unitary-Independent-Unitary models are adopted to describe the fading

matrix in such environments. Because the closed form expression of eigen values
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of such fading matrices is mathematically difficult to compute, the tradeoff in poor

scattering channels was considered hard to obtain. Now, through the approach that

decomposes outage probability, the tradeoff in poor scattering environments can be

found. Closed form results for several special types of poor scattering environments

are presented in detail as well.

6.1 Introduction

Future generations of wireless communications demand a) high data rate and b) low

error rate [Paulraj et al.(2004)]. However, as information theory has revealed, in gen-

eral these two performance metrics can not be optimized simultaneously. Therefore,

there is a tradeoff between data rate and error rate.

The tradeoff between data rate and error rate varies with different applications.

Therefore, it possesses different names in history. In additive white Gaussian noise

(AWGN) channels, it is called “error exponent”[Gallager(1968)]. More recently, it

is studied in multi-input-multi-output (MIMO) fading channels with asymptotically

high signal-to-noise ratio (SNR) [Zheng and Tse(2003)]. In such environments, it is

called “the diversity-multiplexing tradeoff”. Here, diversity and multiplexing corre-

spond to error rate and data rate in high SNR regimes, respectively.

Original works on the tradeoff 1 assumes rich scattering environments, i.e., fad-

ings across different antenna pairs are independent. However, in real applications,

scattering sources can be poor [Sayeed(2002)]. For example, rural, on highway, or

on the top of a skyscraper. Therefore, practically fadings across different antenna

pairs are not independent: they are correlated. Hence, it is necessary to study the

tradeoff in poor scattering environments.

1Hereafter “the tradeoff” refers to “the diversity-multiplexing tradeoff”.
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There have been a number of models that try to describe poor scattering en-

vironments. Gesbert model depicts poor scattering due to lack of remote scatter-

ers, i.e., keyhole problem [Gesbert et al.(2002)]. On contrast, unitary-independent-

unitary (UIU) model corresponds to poor scattering due to lack of local scatterers

[Sayeed(2002)]. The tradeoff using Gesbert model has been studied in [Yang and Belfiore(2006)].

The goal of this work is to study the tradeoff based on UIU model. It should be

noted that the most widely used Kronecker product form correlation structure is a

special case of the UIU model [Weichselberger et al.(2006)].

Finding the tradeoff is equivalent to computing the outage probability, which

is defined as the probability that the random channel capacity is smaller than the

transmission rate. For rich scattering or Gesbert model or Kronecker product form,

the outage probability can be calculated through the knowledge of the joint distri-

bution of the eigen values of the fading matrix. However, this approach is not viable

for the general UIU model, because the joint distribution of the eigen values in such

models is a mathematically open problem [Veeravalli et al.(2005)].

In this work, we first depict that the outage probability can be decomposed into

a production of multiple conditional outage probabilities. Furthermore, it is found

that each conditional outage probability is equivalent to the outage probability of a

parallel SISO channel (in terms of measuring diversity gain). Therefore, the tradeoff

in MIMO systems is the summation of the tradeoff in multiple parallel SISO channels.

This approach does not need the computation of exact joint distribution of eigen

values. The tradeoff based on UIU models is computed using this approach ( outage

probability decopos.

The contributions of this work are: 1) showing that the outage probability can

be decomposed, which leads to a very novel, interesting and intuitive interpretation

of MIMO advantages, as shown in Section 6.2, and 2) establishing the tradeoff via

the UIU model.
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Figure 6.1: Channel Types

The rest of this chapter is organized as follows: Section 6.2 introduces defini-

tions and a preliminary example; Section 6.3 derives the tradeoff in rich scattering

environments, using the approach that decomposes outage probability; Section 6.4

establish the tradeoff based on the UIU model; Section 6.5 concludes this chapter.

6.2 Preliminaries and An Example

As shown in Fig. 6.1, single-input-single-output (SISO) system is a 1 × 1 system.

Similarly, single-input-multi-output (SIMO), multi-input-single-output (MISO), and

MIMO systems are called 1×N , M×1 and M×N systems, respectively. Here, M and

N represent the number of transmit and receive antennas, respectively. Moreover,

to distinguish a parallel SISO systems from an N ×N MIMO system, it is denoted

as N ®N .

In this section, we first introduce the definitions of multiplexing gain and diversity

gain. We explain how to obtain the tradeoff through computing outage probability.

Then, a simple outage computation shows that the tradeoff in 1× 1, 1×N , M × 1,

and N ® N systems exhibits a simple linear relationship. Finally, we preliminarily

demonstrate how to find the tradeoff in rich scattering MIMO channels through our

outage decomposition approach. 1 × 1, 1 × 2, 2 × 2, 2 × 3 and 3 × 3 systems are

studied successively. The tradeoff for the general M×N MIMO system with indepen-

dent fadings is computed in Section 6.3, using the consistent outage decomposition

approach.
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6.2.1 Definitions

Multiplexing gain is defined as the ratio between transmission rate and the logarithm

of SNR, in asymptotically high SNR regimes, i.e.,

r = lim
η→∞

R

log η
. (6.1)

Here, r, R, and η denote the multiplexing gain, transmission rate and SNR, respec-

tively. Multiplexing gain is essentially the transmission rate in high SNR regimes.

Because transmission rate may approach infinity when SNR is high, it has to be nor-

malized by the logarithm of SNR to maintain a meaningful discussion, which yields

the definition of multiplexing gain.

Diversity gain is defined as the ratio between the logarithm of error probability

and the logarithm of SNR, in asymptotically high SNR regimes, i.e.,

d = − lim
η→∞

log Pe

log η
. (6.2)

Here, d and Pe denote diversity gain and error probability, respectively. By this defi-

nition, diversity gain corresponds to the slope of error rate curve in high SNR regimes.

Hence, the diversity gain is the most critical measurement of error probability in our

interested area (high SNR regimes).

It should be noted that error probability varies with different transmission/reception

schemes, such as modulation constellation, space-time coding, zero-forcing decoding,

etc. Then, diversity gain is different for different signal processing schemes. In gen-

eral, it is very difficult to find the tradeoff through calculating the error probability,

due to the large number of available signal processing algorithms. Diversity gain for

a channel is defined as the upper bound of the diversity gain for all possible signal

processing schemes, given certain multiplexing gain and channel fading statistics.

Hereafter “diversity gain” refers to “diversity gain for a channel”, but not “diversity

gain for a signal processing scheme”, unless otherwise stated.
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It has been shown that error probability can be replaced by outage probability,

in terms of measuring diversity gain. In other words [Zheng and Tse(2003)],

d = − lim
η→∞

log Pout

log η
. (6.3)

The outage probability, Pout corresponds to the probability that the random channel

capacity in fading channels is smaller than the transmission rate,

Pout = P (C < r log η). (6.4)

For a single user, average power constrained MIMO system in non-ergodic chan-

nels, assuming no channel state information at the transmitter, the random channel

capacity corresponds to:

C = log det(I +
η

M
HH†), (6.5)

where H denotes MIMO channel fading matrix. Channel capacity in SISO, SIMO,

MISO and parallel SISO can be considered as special cases of (6.5).

Combining (6.3), (6.4), and (6.5), we can explicitly express diversity gain as a

function of multiplexing gain and fading statistics,

d = − lim
η→∞

P (det(I + η
M

HH†) < ηr)

log η
. (6.6)

It is clear that diversity gain is a function of multiplexing gain r and the statistics

of H.

Assuming Rayleigh fading, entries of H would be circularly symmetric Gaussian

random variables (RV). Then, the correlation structure of H would fully describe

fading statistics. The tradeoff assuming independent entries of H has been well

studied in [Zheng and Tse(2003)] through the knowledge of joint distributions of

eigen values of H. The goal of this chapter is to study the tradeoff with correlated

entries of H. Because the joint distribution of eigen values for correlated H is a
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mathematically open problem, it is necessary to find an alternative approach to

compute the outage probability in (6.6).

The approach in our work is to decompose MIMO outage probability to the

production of multiple simpler outage probabilities, i.e., the outage probability in

SISO, SIMO and parallel SISO. Section 6.2.2 studies those simple outage probabilities

and the corresponding tradeoff. Section 6.2.3 demonstrates how to decompose MIMO

outage probability to those simple outage probabilities.

6.2.2 The Tradeoff in SISO, SIMO, MISO and Parallel SISO

For convenience, we use the notation
.
= to represent that two functions are “equiva-

lent in terms of measuring diversity gain”. Mathematically, we can write

f1(η)
.
= f2(η) ⇐⇒ − lim

η→∞
log f1(η)

log η
= − lim

η→∞
log f2(η)

log η
(6.7)

It should be noted that the values of f1(η) and f2(η) themselves may not be identical:

their difference in fact can be large. For example, consider f1(η) = 106 ·η−1+η−2, and

f2(η) = 0.01η−1: When the value of η is moderate, f1(η) is much large than f2(η).

However, both of them yield the same diversity gain. Hence, they are equivalent in

terms of measuring diversity gain. Another more important example is that Pe and

Pout, as functions of η, are equivalent in terms of measuring diversity gain.

Now, we compute the tradeoff in SISO channels. Assuming non-ergodic fadings,

the channel capacity in SISO corresponds to:

CSISO = log(1 + ηA). (6.8)

Here, A denotes the square of amplitude of channel fadings, i.e., A = hh∗, where h

is the complex channel fading. Subsequently, the outage probability in this channel

corresponds to:

P (CSISO < r log η) = P (log(1 + ηA) < r log η)
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.
= P (A < η−(1−r)) (6.9)

The second equality is due to the fact that the constant 1 is negligible when η →∞,

in terms of measuring diversity.

Certainly, the outage probability in (6.9) can be easily obtained because |h|2

follows a simple exponential distribution. However, to keep the SISO derivation con-

sistent with our future derivations (for SIMO and MIMO), we use another approach:

we use Taylor series expansion of the cumulative distribution function (CDF) of |h|2.
Because A follows exponential distribution, its CDF corresponds to:

P (A < A0) = 1− e−A0 .

Using Taylor series expansion of exponential functions,

e−A0 = 1− A0 +
A2

0

2
− ...

the CDF of A corresponds to

P (A < A0) = A0 − A2
0

2
+ ...

For a very small value of ε,

P (A < ε) ' ε (6.10)

Using (6.10), because η−(1−r) is small when SNR is high and 0 < r < 1, the

outage probability in (6.9) corresponds to:

P (A < η−(1−r))
.
=

{
η−(1−r) if 0 < r < 1
1 if r > 1

(6.11)

Substituting (6.9) into the definition of diversity gain in (6.2), the tradeoff in non-

ergodic SISO channels turns out to be:

d(r) = (1− r)+, (6.12)
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where (·)+ denotes max(·, 0).

Extending the SISO tradeoff to non-Rayleigh fadings is possible via the above

approach. First, we let h be a (possibly) non-Rayleigh fading, and assume values

of A span over (0, ∞). Because P (A < A0) is a function of A0, we can express its

Taylor series expansion as

P (A < A0) = c0 + c1A0 + c2A
2
0 + c3A

3
0 + ... (6.13)

Because A has zero probability to be exactly zero, c0 is always zero. If c1 6= 0,

then the channels with h would possess the tradeoff in (6.12): Rayleigh fading is an

example of this case. If c1 = 0 and c2 6= 0 , then the tradeoff would be

d(r) = 2 · (1− r)+, (6.14)

Roughly speaking, this channel would have two folds of diversity. In summary, the

diversity gain in SISO corresponds to the lowest power of the Taylor series in (6.13).

This result matches our intuition, because higher power of P (A < A0) corresponds to

lower deep fading probability in this channel. For convenience, we still use Rayleigh

fading in our discussion, but it should be noted that our approach can be extend to

arbitrary types of fadings.

Next, we study the tradeoff in SIMO systems. In a 1 × N system, the channel

capacity corresponds to:

CSIMO = log(1 + η ·
N∑

n=1

An). (6.15)

where An is the fading power over nth path. Then, assuming independent fadings,

the outage probability in SIMO corresponds to:

P (CSIMO < r log η)
.
= P

(
N∑

n=1

An < η−(1−r)

)
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.
= P (A1 < η−(1−r) ∩ A2 < η−(1−r) ∩ · · · ∩ AN < η−(1−r))

=
N∏

n=1

P (An < η−(1−r))

.
=

{
η−N ·(1−r) if 0 < r < 1
1 if r > 1

(6.16)

The first equality follows the same manner as the derivation for SISO systems.

The second equality needs more discussion. First, if for any n ∈ {1, 2, · · ·N},
An > η−(1−r), then

∑N
n=1 An > η−(1−r). In other words, if

∑N
n=1 An < η−(1−r), then

An < η−(1−r) for any n. Therefore

P

(
N∑

n=1

An < η−(1−r)

)
≤̇P (A1 < η−(1−r) ∩ A2 < η−(1−r) ∩ · · · ∩ AN < η−(1−r))

Second, if for all n ∈ {1, 2, · · ·N}, An < η−(1−r), then
∑N

n=1 An < N · η−(1−r) .
=

η0 · η−(1−r), where η0 corresponds to a deterministic value (i.e., a value that is not a

function of η). Hence,

P

(
N∑

n=1

An < η−(1−r)

)
≥̇P (A1 < η−(1−r) ∩ A2 < η−(1−r) ∩ · · · ∩ AN < η−(1−r))

Combining the above two results, the second equality is obtained. This result will

appear multiple times in our future discussion.

The third equality exploits the independent fading assumption. For correlated

fading, the third equality may not hold. We will show how to find the tradeoff for

correlated SIMO in Section 6.4.

The fourth equality has been explained in SISO derivation.

Substituting the result in (6.16) into the definition of diversity gain in (6.2), the

tradeoff in SIMO corresponds to:

d(r) = N(1− r)+. (6.17)

Comparing the tradeoff for SIMO and SISO tradeoff, there are three notes that

are worth to mention, as shown in Fig. 6.2. First, given a diversity gain r, the
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Figure 6.2: Comparison of SIMO and SISO Tradeoffs

SIMO system diversity gain is N times of the diversity gain in SISO systems: This

is the reason why SIMO system is more reliable than SISO. Second, it is noted that

although the diversity gain is increased, the maximum possible multiplexing gain in

SIMO is still the same as SISO. This means that SIMO does increase the maximum

attainable transmission rate. Finally, if a given diversity gain is required (and it is

smaller than one), SIMO system can use a higher transmission rate than SISO.

MISO system has the same capacity equation except that there are M times SNR

reduction due to power splitting between multiple transmitters. Therefore, MISO

outage probability is:

P (CMISO < r log η)
.
=

N∏
n=1

P (An < M · η−(1−r))

.
=

{
η−N ·(1−r) if 0 < r < 1
1 if r > 1

(6.18)

Hence, SIMO and MISO systems have the same tradeoff. The reason is that the

tradeoff is studied in asymptotically high SNR regimes: a finite reduction in SNR
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does not alter its aysmptocity. The same concept will appear multiple times in our

future derivations.

The final tradeoff in Section 6.2.2 is for parallel SISO. This system is not discussed

as often as SISO or SIMO in the literature, but it is a key point in our work. An

N ® N system can be considered as a special case of MIMO system in which the

fading matrix is restricted to be diagonal. Then, the random channel capacity in

parallel SISO corresponds to:

CParallelSISO = log

(
N∏

n=1

(1 + ηAn)

)
. (6.19)

Thus, the outage probability in parallel SISO is:

P (
N∏

n=1

(1 + ηAn) < ηr). (6.20)

To quantitatively study the above outage probability, it is necessary to write
∏N

n=1(1+

ηAn) in an explicit form:

N∏
n=1

(1 + ηAn) = 1 +
N∑

n=1

cnηn, (6.21)

i.e., it is a polynomial of η. The maximum power of η is N . Using a simple algebraic

manipulation, it can be shown that the coefficient for the power of n, cn, corresponds

to:

cn =
∑
S

i=sn∏
i=s1

Ai (6.22)

Here, S is a subset of {1, 2, · · · , N} with n elements.
∑

S denotes the summation

over all possible S. Therefore, for an arbitrary n, there are Cn
N = N !

n!(N−n)!
elements

in the summation. Please note that in (6.22), cn is a random variable for any n.

Using (6.21), the outage probability in parallel SISO corresponds to:

P (
N∏

n=1

(1 + η|hn|2) < ηr)
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= P

(
N∑

n=1

cnηn < ηr

)

.
= P

(
cN < η−(N−r) ∩ cN−1 < η−(N−1−r) ∩ · · · ∩ c1 < η−(1−r)

)

= P
(
cN < η−(N−r)

) · P (
cN−1 < η−(N−1−r)|cN < η−(N−r)

) · · ·

· P (
c1 < η−(1−r)|cN < η−(N−r) ∩ cN−1 < η−(N−1−r) ∩ · · · ∩ c2 < η−(2−r)

)
(6.23)

The first equality is a direct result from (6.21). The second equality follows the

similar discussion as SIMO systems. The third equality decomposes one outage

probability into the production of multiple (N − 1) conditional probabilities. This

is the first time that we see how to decompose outage probability explicitly in this

chapter. We extend this approach to MIMO in Section 6.2.3. It is noted that this

decomposition is applicable in asymptotically high SNR regimes only, because the

second equality holds only in high SNR regimes.

Now, we compute the probabilities in (6.23). We show that in parallel SISO

systems, the first probability determines diversity, all other conditional probabili-

ties are equivalent to η0 in terms of measuring diversity. For MIMO system, those

conditional probabilities impact the final diversity expression as well.

Using (6.22), we find that

cN = A1A2 · · ·AN . (6.24)

Because the multiplication of two complex Gaussian random variables still follows

complex Gaussian distribution, cN follows exponential distribution. Thus, the first

term in (6.23) turns out to be

P
(
cN < η−(N−r)

) .
= η−(N−r). (6.25)

Next, we compute the second term in (6.23).

P
(
cN−1 < η−(N−1−r)|cN < η−(N−r)

)
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= P
(
A1A2AN−1 + A1A2 · · ·AN−2AN + · · ·+ A2A3 · · ·AN < η−(N−1−r)|cN < η−(N−r)

)

.
= P (A1A2 · · ·AN − 1 < η−(N−1−r) ∩ A1A2 · · ·AN−2AN < η−(N−1−r) ∩ · · ·

∩ A2A3 · · ·AN < η−(N−1−r)|cN < η−(N−r)) (6.26)

Therefore, calculating the second probability is equivalent to answering the fol-

lowing question: given ‖ h1h2 · · ·hN ‖< η−(N−r), what is the probability that ‖
h1h2 · · ·hN−1 ‖2

F< η−(N−1−r)? To answer this question, we calculate

P (A1A2 · · ·AN−1 < η−(N−1−r)|cN < η−(N−r))

.
= P (A1A2 · · ·AN−1 < η−(N−1−r)|cN < η−(N−r) ∩ AN < η−1)P (AN < η−1)+

P (A1A2 · · ·AN−1 < η−(N−1−r)|cN < η−(N−r) ∩ AN > η−1)P (AN > η−1)

= 1 · (1− η−1) + η−1 · P (A1A2 · · ·AN−1 < η−(N−1−r)|cN < η−(N−r) ∩ AN < η−1)

.
= η0, (6.27)

where η0 has been defined in the explanations of (6.16). The second equality in

(6.27) can be explained by the following three expressions:

P (AN > η−1)
.
= 1− η−1 (6.28)

P (AN < η−1)
.
= η−1, (6.29)

and noting that cN = A1A2 · · ·AN ,

P (A1A2 · · ·AN−1 < η−(N−1−r)|cN < η−(N−r) ∩ AN > η−1) = 1 (6.30)

Therefore, if cN < η−(N−r) then all elements in cN−1 would be smaller than

η−(N−1−r) almost surely (i.e., the probability that cN−1 < η−(N−1−r) approaches to

η0 when η →∞). Thus, the second term in (6.23) contributes zero to diversity gain

calculation. Similarly, it can be shown that all of the the remaining terms contributes

zero to diversity gain. The outage probability in parallel SISO corresponds to:

P (
N∏

n=1

(1 + ηAn) < ηr)
.
=

{
η−(N−r) if 0 < r < N
1 if r > N

(6.31)
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Figure 6.3: Simple Tradeoffs: SISO, SIMO and Parallel SISO

and the corresponding tradeoff in parallel SISO would be:

d(r) = (N − r)+. (6.32)

As expected, parallel SISO increases both maximum diversity gain and maximum

multiplexing gain, while SIMO increases only maximum diversity gain.

The summary of the tradeoff in SISO, SIMO and parallel SISO is presented in

Fig. 6.3. Given a certain multiplexing gain, SIMO creates more diversity than SISO,

while parallel SISO enables better diversity than SIMO. Therefore, we say parallel

SISO is better than SIMO, and SIMO is better than SISO. In Section 6.2.3, we see

that MIMO is better than parallel SISO.

6.2.3 Preliminary Tradeoff Results in MIMO

Up to now, we have investigated the tradeoff in SISO, SIMO, and parallel SISO

systems. Then, we can start studying the tradeoff in MIMO systems. In this section,
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we present some specific cases of independent MIMO channels. The first case is the

2 × 2 system, which is the simplest MIMO system. We show that the tradeoff in

2× 2 is the summation of the tradeoffs in one 2® 2 and two 1× 1. Following cases

are 2× 3 and 3× 3 systems.

First, we introduce a lemma to simplify mathematical expression.

Lemma 6.2.1. A finite reduction in SNR does not alter the diversity-multiplexing

tradeoff. For example,

P (det(I + ηHH†) < ηr)
.
= P (det(I +

η

M
HH†) < ηr), (6.33)

where M can be the number of transmit antennas.

Proof. See Appendix 6.A.

Based on this lemma, we can safely ignore the parameter M , which reduces SNR

by the factor of M , due to the power splitting between transmit antennas. This helps

us to express derivations concisely.

Now we present the tradeoff in some simple MIMO systems.

Case1: 2 × 2 MIMO Systems. First of all, the fading matrix in 2 × 2 system

corresponds to:

H =

[
h11 h12

h21 h22

]
. (6.34)

Then, it is easy to find that:

det(I + ηHH†) = η2 det(HH†) + η(A11 + A12 + A21 + A22) + 1, (6.35)

where A11, A12, A21, A22 are square of amplitudes of h11, h12, h21, h22, respectively.

Then, the outage probability in high SNR regimes can be decomposed:

P (det(I + ηHH†) < ηr)
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= P (η2 det(HH†) + η(A11 + A12 + A21 + A22) + 1 < ηr)

.
= P (η2 det(HH†) < ηr ∩ η(A11 + A12 + A21 + A22) < ηr)

.
= P (det(HH†) < η−(2−r))P ((A11 + A12 + A21 + A22) < η−(1−r)| det(HH†) < η−(2−r))

(6.36)

Note that the second equality follows the similar logic as (6.27). Therefore, the

MIMO outage probability can be decomposed into the production of one outage

probability and another conditional outage probability.

Now, we compute the first probability. Because H is a square matrix, we can

write

det(HH†) = det(H) · det(H†) = det(H) · (det(H))∗. (6.37)

Clearly,

det(H) = h11h22 − h21h12, (6.38)

It is has been found that det(HH∗) has the same Taylor series expansion as expo-

nential distribution when it is small [Springer and Thompson(1970)], and

P (det(HH†) < η−(2−r))
.
=

{
η−(2−r) if 0 < r < 2
1 if r > 2

(6.39)

The tradeoff corresponding to the first outage probability is:

d1(r) = (2− r)+. (6.40)

It should be noted that the tradeoff is the same as a 2® 2 system.

The second conditional probability is computed as follows. If det(HH†) < η−(2−r)

and η → ∞, then the matrix H is singular, i.e., [h11h12] would be a linearly scaled

version of [h21 h22] [Brookes(2005)]. Then, the probability that (A11 + A12 + A21 +

A22) < η−(1−r) would be identical to the probability that (A12 + A21) < η−(1−r), i.e.,

P ((A11 + A12 + A21 + A22) < η−(1−r)| det(HH†) < η−(2−r))
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.
= P ((A12 + A21) < η−(1−r))

.
= P (A12 < η−(1−r)) · P (A21 < η−(1−r))

.
=

{
η−2(1−r) if 0 < r < 2
1 if r > 2

(6.41)

Thus, the tradeoff corresponding to the second conditional outage probability is:

d2(r) = 2 · (1− r)+ = (1− r)+ + (1− r)+. (6.42)

This tradeoff corresponds to two 1× 1 systems.

Because diversity gain corresponds to the logarithm of outage probability, the

production of outage probability would turn out to be the summation of diversity.

Therefore, the final tradeoff in 2× 2 systems is:

d(r) = (2− r)+ + (1− r)+ + (1− r)+. (6.43)

As we have stated, this tradeoff is the summation of the tradeoff in one 2® 2 system

and two 1× 1 systems.

Case 2: 2×3 MIMO Systems. In this case, the channel fading matrix corresponds

to:

H =

[
h11 h12 h13

h21 h22 h22

]
. (6.44)

Again it is easy to show

det(I + ηHH†) = η2 · det(HH†) + η ·
2∑

n=1

3∑
m=1

Anm + 1. (6.45)

Similar as 2× 2 systems, the outage probability in 2× 3 systems is decomposed to:

P (det(I + ηHH†) < ηr)

= P

(
η2 · det(HH†) + η ·

2∑
n=1

3∑
m=1

Anm + 1 < ηr

)

.
= P

(
det(HH†) < η−(2−r)

)
P

(
2∑

n=1

3∑
m=1

Anm < η−(1−r)| det(HH†) < η−(2−r)

)

(6.46)
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Again, the first outage probability corresponds to:

P (det(HH†) < η−(2−r)). (6.47)

In 2× 3 systems, H is not square; hence, det(H) does not exist. Then, the method

in 2 × 2 systems is not applicable anymore. We have to use Cauchy-Binet formula

to express det(HH†) as

det(HH†) = det(H1H
†
1) + det(H2H

†
2) + det(H3H

†
3), (6.48)

where

H1 =

[
h11 h12

h21 h22

]
,H2 =

[
h11 h13

h21 h23

]
, and H3 =

[
h12 h13

h22 h23

]
. (6.49)

Here, the two column vectors of H1 correspond to the first and second columns of

H, the two column vectors of H2 correspond to the second and third columns of H,

and finally the two column vectors of H1 are the first and third columns of H.

Substituting (6.48) into (6.47), the first outage probability turns out to be

P (det(HH†) < η−(2−r))

= P (det(H1H
†
1) + det(H2H

†
2) + det(H3H

†
3) < η−(2−r))

.
= P (det(H1H

†
1) < η−(2−r) ∩ det(H2H

†
2) < η−(2−r) ∩ det(H3H

†
3) < η−(2−r)).

(6.50)

Equation (6.50) states that the event that H in outage would occur if and only H1,

H2 and H3 are all in outage, i.e., one outage event is decomposed into three outage

events. It should be noted that the three outage events are not independent: They

are mutually independent but not jointly independent.

For example, the first event would happen if the second column of H is a linearly

scaled version of its first column. Similarly, the second event would happen if the

third column is a linearly scaled version of the second column. Therefore, if both the
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first and second outage events happen, the third column would be a linearly scaled

version of the second column. This means that the third event would almost surely

happen. Therefore,

P (det(H1H
∗
1) < η−(2−r) ∩ det(H2H

†
2) < η−(2−r) ∩ det(H3H

†
3) < η−(2−r))

.
= P (det(H1H

†
1) < η−(2−r) ∩ det(H2H

†
2) < η−(2−r)) (6.51)

Note that the event that det(H1H
†
1) < η−(2−r) is mutually independent of the event

det(H2H
†
2) < η−(2−r), then

P (det(H1H
†
1) < η−(2−r) ∩ det(H2H

†
2) < η−(2−r))

= P (det(H1H
†
1) < η−(2−r)) · P (det(H2H

†
2) < η−(2−r))

.
=

{
η−2(2−r) if 0 < r < 2
1 if r > 2

(6.52)

, accordingly the tradeoff corresponding to the first outage probability is

d1(r) = (2− r)+ + (2− r)+. (6.53)

Therefore, the first outage probability corresponds to two 2® 2 systems.

The second outage probability is relatively easy to obtain. Given H in outage,

each column of H is a linearly scaled version of another. Therefore,

P

(
2∑

n=1

3∑
m=1

Anm < η−(1−r)| det(HH†) < η−(2−r)

)

.
= P (A21 + A13 < η−(1−r))

.
=

{
η−2(1−r) if 0 < r < 1
1 if r > 1

, (6.54)

and the tradeoff corresponding to the second outage probability would be:

d2(r) = (1− r)+ + (1− r)+. (6.55)

The final tradeoff is:

d(r) = (2− r)+ + (2− r)+ + (1− r)+ + (1− r)+, (6.56)
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which means that a 2 × 3 system can be considered as the summation of two 2 ® 2

systems and two 1× 1 systems.

Case 3: 3× 3 MIMO Systems. First, the fading matrix H corresponds to:

H =




h11 h12 h13

h21 h22 h23

h31 h32 h33


 . (6.57)

Moreover, let ~h1, ~h2, ~h3 denote the first, the second and the third rows of H. Then,

we define

H1 =

[
~h1

~h2

]
, H2 =

[
~h2

~h3

]
, and H3 =

[
~h1

~h3

]
. (6.58)

Defining H1,H2,H3 helps us to write the following result in an elegant form:

det(I + ηHH†) = η3 · det(HH†) + η2

3∑
n=1

det(HnH
†
n) + η

3∑
n=1

3∑
m=1

Anm + 1 (6.59)

Similar to 2×3 systems, the outage probability in 3×3 systems can be decomposed

into the production of three (conditional) outage probabilities:

P (det(I + ηHH†) < ηr)

.
= P (det(HH†) < η−(3−r)) · P (

3∑
n=1

det(HnH
†
n) < η−(2−r)| det(HH†) < η−(3−r))·

· P (
3∑

n=1

3∑
m=1

Anm < η−(1−r)| det(HH†) < η−(3−r) ∩
3∑

n=1

det(HnH
†
n) < η−(2−r))

(6.60)

First, outage probability is easy to obtain. Because H is a square matrix,

det(HH†) = det(H) · (det(H))∗ holds. Because det(HH†) follows exponential distri-

bution approximately when det(HH†) is small, we have

P (det(HH†) < η−(3−r))
.
=

{
η−(3−r) if 0 < r < 3
1 if r > 3

(6.61)

This outage probability is equivalent to a 3® 3 system.
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Using the similar logic as (6.27), the second outage probability can be equivalently

written as

P (
3∑

n=1

det(HnH
†
n) < η−(2−r)| det(HH†) < η−(3−r))

.
= P (det(H1H

†
1) < η−(2−r) ∩ det(H2H

†
2) < η−(2−r)

∩ det(H3H
†
3) < η−(2−r)| det(HH†) < η−(3−r)) (6.62)

Now, we analyze this conditional event. When the event det(H1H
†
1) < η−(2−r) occurs,

~h2 would be a linearly scaled version of ~h1. Similarly, when det(H2H
†
2) < η−(2−r)

occurs, ~h3 would be a linearly scaled version of ~h1. Therefore, if both det(H1H
†
1) <

η−(2−r) and det(H2H
†
2) < η−(2−r) occur, ~h2 would be a linearly scaled version of ~h3,

which means that det(H3H
†
3) < η−(2−r) would occur for sure. Therefore, (6.62) can

be simplified to:

P (det(H1H
†
1) < η−(2−r) ∩ det(H2H

†
2) < η−(2−r)| det(HH†) < η−(3−r)) (6.63)

Now, we try to remove the conditioning part. First, det(HH†) < η−(3−r) occurs when

~h3 is a linear combination of ~h1 and ~h2. Under this condition, if H1H
†
1 < η−(2−r)

occurs, i.e., ~h1 is a linearly scaled version of ~h2, then ~h3 would be a linearly scaled

version of ~h1, which means that H2H
†
2 < η−(2−r) would occur for sure. Therefore,

the second outage probability can be simplified to be:

P (det(H1H
†
1) < η−(2−r)). (6.64)

Similar to the computation for 2 × 3 system, the second outage probability corre-

sponds to:

P (
3∑

n=1

det(HnH
†
n) < η−(2−r)| det(HH†) < η−(3−r))

.
=

{
η−2(2−r) if 0 < r < 2
1 if r > 2

(6.65)
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This probability corresponds to two 2® 2 systems.

Finally, we compute the third conditional outage probability. Condition det(HH†) <

η−(3−r) means that ~h3 is a linear combination of ~h1 and ~h2, therefore:

P (
3∑

n=1

3∑
m=1

Anm < η−(1−r)| det(HH†) < η−(3−r) ∩
3∑

n=1

det(HnH
†
n) < η−(2−r))

.
= P (

2∑
n=1

3∑
m=1

Anm < η−(1−r)|
3∑

n=1

det(HnH
†
n) < η−(2−r))

.
= P (

2∑
n=1

3∑
m=1

Anm < η−(1−r)| det(H1H
†
1) < η−(2−r)). (6.66)

The condition that det(H1H
†
1) < η−(2−r) means that the columns of H1 are linearly

scaled version of each other. Therefore,

P (
2∑

n=1

3∑
m=1

Anm < η−(1−r)| det(H1H
†
1) < η−(2−r))

.
= P (A11 + A21 < η−(1−r))

.
=

{
η−2(1−r) if 0 < r < 1
1 if r > 1

. (6.67)

This outage probability is equivalent to two 1× 1 systems.

Combining the first, second and third outage probabilities, the tradeoff in 3 × 3

systems would be:

d(r) = (3− r)+ + (2− r)+ + (2− r)+ + (1− r)+ + (1− r)+. (6.68)

In other words, a 3 × 3 system is considered the combination of one 3 ® 3 system,

two 2® 2 systems and two 1× 1 systems.

6.3 The Tradeoff with Rich Scattering

In this section, we derive the tradeoff for independent N × M systems, using the

outage decomposition approach. Correlated N×M systems will be studied in Section

and 6.4, using the same outage decomposition approach.
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First, let Φ(η) = det(I + ηHH†), which is a polynomial of η. The key step of

outage decomposition is to find the coefficients of Φ(η). To write the coefficients in

a simple form, we first introduce two definitions.

Definition 6.3.1. Row-Wise Sub-Fading-Matrix with Order-n: Let the channel fad-

ing matrix H be a N ×M (M ≥ N) matrix. Denote the row vectors of H as ~h1, ~h2,

· · · , ~hN , i.e.,

H =




~h1

~h2
...

~hN


 , (6.69)

then a row-wise sub-fading-matrix with order-n of H (n ≤ N) is defined as

Hn,row =




~hs1

~hs2

...
~hsn


 , (6.70)

where {s1, s2, · · · , sn} is a subset of {1, 2, · · · , N}.

By definition, a row-wise sub-fading-matrix is an n × M matrix, whose n row

vectors are selected from the N row vectors. Obviously one fading matrix has Cn
N =

N!
(N−n)!n!

row-wise sub-fading-matrices.

Definition 6.3.2. Sub-Fading-Matrix with Order-n: Let the channel fading matrix

H be an N ×M (M ≥ N) matrix, and

H =




h11 h12 · · · h1M

h21 h22 · · · h2M
...

...
. . .

...
hN1 hN2 · · · hNM


 , (6.71)

then a sub-fading-matrix with order n of H is defined as:

Hn =




hsr1sc1 hsr1sc2 · · · hsr1scn

hsr2sc1 hsr2sc2 · · · hsr2scn

...
...

. . .
...

hsrnsc1 hsrnsc2 · · · hsrnscn


 , (6.72)
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where {sr1, sr2, · · · , srn} is a subset of {1, 2, · · · , N}, and {sc1, sc2, · · · , scn} is a sub-

set of {1, 2, · · · , M}.

By definition, a sub-fading-matrix with order-n is an n×n matrix. For an N×M

fading matrix, there are totally Cn
NCn

M sub-fading-matrices.

Using the above two definitions, the polynomial Φ(η) can be written in an elegant

form.

Theorem 6.3.3. Let fading matrix H be an N × M (N ≤ M) matrix. Define

Φ(η) = det(I + ηHH†), then Φ(η) can always be written as a polynomial of η, where

the maximal power is N , i.e.,

Φ(η) = cN · ηN + cN−1 · ηN−1 + · · ·+ c1 · η + 1 (6.73)

where the coefficients cn n ∈ 1, 2, · · ·N corresponds to

cn =
∑

S

det(Hn,rowH†
n,row). (6.74)

Here, the summation over S denotes the summation over all possible Hn,row, i.e.,

there are totally Cn
N elements in the summation.

Proof. See Appendix 6.B.

Combining the above theorem and the Cauchy-Binet formula, we have an impor-

tant corollary.

Corollary 6.3.4. The coefficients of ηn corresponds to the summation of all possible

determinants of sub-fading-matrix with order n, i.e.,

cn =
∑

S

det(HnH
†
n), n = 1, 2, · · ·N (6.75)

where the summation over S denotes the summation over all possible Hn. Therefore,

there are totally Cn
NCn

M elements in the summation.
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Proof. The Cauchy-Binet formula considers a non-square matrix Hn,row, which is a

n×M matrix (n < M). For such a matrix, we have

det(Hn,rowH†
n,row) =

∑
S

det(HnH
†
n). (6.76)

Here,

Hn =
[
~hsc1

~hsc2 · · ·~hscn

]
, (6.77)

where ~hsc1 denotes the sth
c1 column of Hn,row, and sc1, sc2, · · · scn is a subset of 1, 2, · · · ,M .

∑
S denotes the summation over all possible subsets of 1, 2, · · · ,M .

Combining the Cauchy-Binet formula and Theorem 6.3.3, corollary 6.3.4 is proved.

For future notation simplicity, we also define c0 = 1.

Writing the coefficients in an explicit form is a critical step in our outage decom-

position. As we have shown in (6.16), in high SNR regimes, the outage probability

corresponds to:

P (log Φ(η) < r log η)

= P (Φ(η) < ηr)

= P (
N∑

n=0

cnηn < ηr)

= P (cN · ηN < ηr ∩ cN−1 · ηN−1 < ηr ∩ · · · c1 · η < ηr)

= P (cN < η−(N−r))P (cN−1 < η−(N−1−r)|cN < η−(N−r)) · · ·

· P (c1 < η−(1−r)|cN < η−(N−r) ∩ cN−1 < η−(N−1−r) · · · c2 < η−(2−r)) (6.78)

Therefore, for an N ×M system, its outage probability can be decomposed into the

production of N (conditional) outage probabilities.

Next, we show that the first outage probability corresponds to M −N +1 N ®N

systems, the second (conditional) outage probability corresponds to two (N − 1) ®
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(N − 1) systems, the third (conditional) outage probability corresponds to two (N −
2)®N−2 systems, and the last outage probability corresponds to two 1®1 systems.

The first outage probability can be analyzed as following. Using Corollary 6.3.4,

it is clear that

cN = det(HH†) =
∑

S

det(HNH†
N) (6.79)

where HN denotes a sub-fading-matrix with order N . There are totally CN
M elements

in the summation. Because all of the elements in the summation are positive, the

first outage probability can be written as:

P

(∑
S

det(HNH†
N) < η−(N−r)

)
.
= P

(⋂
S

(
det(HNH†

N) < η−(N−r)
))

(6.80)

where
⋂

(·) denotes the union of all events in the bracket. Equation (6.80) states that

the total fading matrix in outage is equivalent to all its sub-fading-matrices (with

order N) are in outage.

We notice that in general the events that sub-fading-matrices are in outage are not

jointly independent, as we have shown for the 2×3 case. However, a finer observation

shows that selecting M −N + 1 sub-fading-matrices to be in outage would force all

CN
M sub-fading-matrices to be in outage. For example, if H = [~h1,~h2, · · · ,~hM ], we

can define:

H1 = [~h1,~h2, · · · ,~hN ]

H2 = [~h2,~h3, · · · ,~hN+1]

... (6.81)

HM−N+1 = [~hM−N+1,~hM−N+2, · · · ,~hM ] (6.82)

If H1 is in outage, then ~h1 is a linear combination of ~h2, · · ·~hN . Similarly, if H2 is

in outage, then ~hN+1 would be a linear combination of ~h2, · · ·~hN . If both H1 and H2

are in outage, then ~h2, · · ·~hN would form the basis of the matrix [~h1
~h2, · · · ,~hN ,~hN+1],
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which means this matrix is in outage. Next, in addition to H1 and H2, if H3 is in

outage, then ~hN+2 would be a linear combination of ~h3 · · ·~hN+1. Then, ~h3 · · ·~hN+1

would span the matrix [~h1
~h2, · · · ,~hN+1,~hN+2], which means this matrix is in outage

as well. This process can be repeated M − N + 1 times to cover the whole fading

matrix [~h1,~h2, · · · ,~hM ]. Therefore, the probability that all sub-fading-matrices are

in outage equals to the probability that H1,H2, · · · ,HM−N+1 are in outage, i.e.,

P

(⋂
S

(
det(HNH†

N) < η−(N−r)
))

= P

( ⋂
n=1,2,···M−N+1

(
det(HnH

†
n) < η−(N−r)

)
)

.

(6.83)

Moreover, it is noted that the above (M − N + 1) events are independent. For

example, H1 in outage denotes if ~h1 is a linear combination of ~h2, · · · ,~hN , while

H2 in outage denotes if ~hN+1 is a linear combination of ~h2, · · · ,~hN . Because ~h1

is independent of ~hN+1, the two outage events are independent. Similarly, we can

show that the third outage events is independent of both the first and second outage

events, and this process can be repeated multiple times. Therefore, in (6.83):

P

( ⋂
n=1,2,···M−N+1

(
det(HnH

†
n) < η−(N−r)

)
)

=
M−N+1∏

n=1

P
(
det(HnH

†
n) < η−(N−r)

)

(6.84)

Because for a square matrix H, P
(
det(HH†) < η−(N−r)

) .
= η−(N−r), we finally have:

P (cN < η−(N−r))
.
=

(
η−(N−r)

)(M−N+1)
, (6.85)

and the correspond tradeoff is:

d1(r) = (N − r)+ + (N − r)+ + · · ·+ (N − r)+

︸ ︷︷ ︸
totally (M−N+1)

, (6.86)

which means that the first outage probability corresponds to (M − N + 1) N ® N

systems.
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In the next step, conditional outage probabilities are computed. Now, the ques-

tion is: given all sub-fading-matrices with order greater than n in outage, how many

sub-fading-matrices with order n in outage would force all sub-fading-matrices with

order n in outage? The answer is two. Subsequently, those conditional outage prob-

abilities corresponds to two (N − 1)® (N − 1), two (N − 2)® (N − 2) systems, etc.

Detailed derivations follow.

Here, we study the case of sub-fading-matrices with order N−1. Let HN−1,a and

HN−1,b are two distinct sub-fading-matrices of H with order N−1, and suppose them

to be in outage. Let the rows of HN−1,a are the s1, s2, · · · , sN−1 row of H. Given

H in outage and using similar techniques for sub-fading-matrices with order N , it

is shown that all sub-fading-matrices with the same rows as HN−1,a are in outage.

Similarly, the sub-fading-matrices with the same columns as HN−1,b would be in

outage. Now, select an arbitrary sub-fading-matrix with order (N − 1), HN−1, we

can always find a sub-fading-matrix that has the same rows of Hn−1 in outage, and

another sub-fading-matrix that has the columns of Hn−1. This means that HN−1

would be in outage for sure. Hence, given sub-fading-matrices with order greater

than n in outage, just two sub-fading-matrices with order N − 1 would force all

sub-fading-matrices with order N − 1 in outage. Therefore,

P (cN−1 < η−(N−1−r)|cN < η−(N−r))
.
=

{
2 · η−(N−1−r) if 0 < r < N − 1
1 if r > N − 1

...

P (c1 < η−(1−r)|cN < η−(N−r) ∩ cN−1 < η−(N−1−r) · · · c2 < η−(2−r))

.
=

{
2 · η−(1−r) if 0 < r < 1
1 if r > 1

(6.87)

Combining the above outage probabilities, the final tradeoff in rich scattering

environments is:

d(r) =
M−N+1∑

n=1

(N − r)+ + 2 ·
N−1∑
n=1

(n− r)+ (6.88)

which matches the original expression in Zheng’s paper [Zheng and Tse(2003)].
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6.4 The Tradeoff with Poor Scattering

Because UIU model is the most comprehensive model among the three proposed

models, we prefer to study the tradeoff for UIU model. Because channel capacity is

invariant with respect to orthogonal transformation, it is found that:

C = log det
(
I +

η

M
HH†

)

= log det(I +
η

M
HvH

†
v), (6.89)

where Hv is defined as (see Chapter 5)

Hv = Ω¯Hiid. (6.90)

Therefore, the tradeoff is fully determined by the virtual variance matrix Ω, i.e., the

tradeoff is a function of Ω.

Next, we present a theorem that states the magnitudes of elements of Ω does not

alter the tradeoff.

Theorem 6.4.1. Denoting the (i, j)th element of Ω as ωi,j, and defining

ω′i,j = 1>0 (ωi,j) , (6.91)

another matrix Ω′ can be form with ω′i,j as its elements. Here, 1>0(·) denotes an

indicator function, i.e., its value would be one if its argument is greater than zero,

otherwise its value would be zero. It is found that the tradeoff for Ω′ and Ω is the

same.

The theorem states that, for computing the tradeoff, the elements of Ω can be

safely replaced by one, unless the value of the element is zero. For example, a 3× 3

system with

Ω =




0.1 3 0.1
0 8 2
5 0.01 0


 (6.92)
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has the same tradeoff as a system with

Ω′ =




1 1 1
0 1 1
1 1 0


 , (6.93)

while the latter is much easier to analyze.

Proof. First, we define

ωmax
i,j = max(Ω) · 1>0 (ωi,j) , and ωmin

i,j = min(Ω) · 1>0 (ωi,j) , (6.94)

where Ωmax corresponds to the largest value of Ω, while Ωmin is the smallest non-zero

value of Ω. Matrices Ωmax and Ωmin are formed by ωmax
i,j and ωmin

i,j , respectively.

For example, for the variance matrix in (6.92), correspondingly

Ωmax =




8 8 8
0 8 8
8 8 0


 , and Ωmin =




0.01 0.01 0.01
0 0.01 0.01

0.01 0.01 0


 . (6.95)

Clearly the capacity for the Ω, Ωmax and Ωmin has the following relationship:

Cmin = log det
(
I +

η

M
(Ωmin ¯Hiid)(Ω

min ¯Hiid)
†
)

< C = log det
(
I +

η

M
(Ω¯Hiid)(Ω¯Hiid)

†
)

< Cmax = log det
(
I +

η

M
(Ωmax ¯Hiid)(Ω

max ¯Hiid)
†
)

(6.96)

However, note that the capacity Cmin is the same as Cmax in terms of comput-

ing the tradeoff (i.e., when η → ∞), because the difference corresponds to a finite

reduction in SNR(the reduction ratio is
(

Ωmin

Ωmax

)2

). Therefore, the matrix Ω′ defined

in (6.91) is the same as Ω for computing the diversity-multiplexing tradeoff.

Through the above discussion, it is clear that correlated MIMO fading matrix is

equivalent to an independent matrix with some arbitrary elements set to be zero.

For KPF, because the fading matrix is separable (see Chapter 5), the tradeoff is

the same as independent MIMO: the only difference is that the number of antenna

www.arts
pdf.com

This PDF has been modifie
d using a demo version of A

RTS PDF softw
are



192

elements (M, N) has to be replaced by the rank of the receive and transmit matrix

ΓM , ΓN , respectively.

The only left non-trivial tradeoff problem is for UIU models. Unfortunately,

although the outage decomposition approach is still applicable, the linearity argu-

ment used in rich scattering is not applicable in poor scattering environments. For

example, given a virtual variance matrix

Ω =

[
0 1 1
0 0 1

]
, (6.97)

the determinants of two sub-fading-matrices with order 2 is zero (in outage), however,

the determinant of the third sub-fading-matrix is not necessarily zero.

The reason is that, if all elements are complex Gaussian RVs, the vectors in

a sub-fading-matrix span the whole R2×2 space (almost surely). However, for poor

scattering environments, the vectors in a sub-fading-matrix does not necessarily span

the whole R2×2 space. Therefore, the third column vector may not be expressed as

a linear combination of the other two column vectors. And all following discussions

can not be continued.

Fortunately, the outage decomposition is still applicable. Then, it is still possible

to compute the tradeoff for some special cases. The first non-trivial (i.e., the case

that can not be simplified to SISO, SIMO, and parallel SISP) 2 × 2 system in poor

scattering environments possesses the virtual variance matrix

Ω =

[
1 0
1 1

]
. (6.98)

The corresponding polynomial is (similar to (5))

Φ(η) = η2 · A11A22 + η · (A11 + A22 + A12) + 1. (6.99)

Recall that Ai,j corresponds to the square of the amplitude of corresponding fadings

hi,j, i ∈ 1, 2, · · · , N and j ∈ 1, 2, · · · ,M , then the outage probability is

P (Φ(η) < ηr)
.
= P (A11A22 < η−(2−r)) · P ((A11 + A22 + A12) < η−(1−r)|A11A22 < η−(2−r))

(6.100)
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The first outage probability corresponds to d1(r) = (2 − r)+. Note that if

A11A22 < η−(2−r), then A11 and A22 are always smaller than η−(1−r). Therefore,

the second outage probability corresponds to d2(r) = (1− r)+. The final tradeoff for

this 2× 2 system is:

d(r) = (2− r)+ + (1− r)+. (6.101)

which means that it corresponds to a combination of one 2® 2 system and one 1® 1

system.

For 2×3 systems, because switch rows and columns of virtual fading matrix does

not alter the tradeoff (based on Corollary 6.3.4), there are totally four non-trivial

poor-scattering cases:

Ω1 =

[
1 0 0
0 1 1

]
,Ω2 =

[
1 0 0
1 1 1

]
,Ω3 =

[
1 1 0
0 1 1

]
, and Ω4 =

[
1 1 1
0 1 1

]

(6.102)

The following computations are similar to (6.36).

For Ω1, the outage probability can be decomposed to:

P (Φ(η) < ηr)
.
=P (A11A22 + A11A23 < η−(2−r))

· P (A11 + A22 + A23 < η−(1−r)|A11A22 + A11A23 < η−(2−r)) (6.103)

Note that if A11A22 < η−(2−r), then A11 < η−(2−r), and then A11A23 < η−(2−r) almost

surely. Therefore, the first outage probability corresponds to d1(r) = (2 − r)+.

Moreover, if A11A22 < η−(2−r), then A11 < η−(1−r) and A22 < η−(1−r) for sure,

therefore, the second outage probability corresponds to:

d(r) = (2− r)+ + (1− r)+ (6.104)

For Ω2, the outage probability can be decomposed to:

P (Φ(η) < ηr)
.
=P (A11A22 + A11A23 < η−(2−r))
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· P (A11 + A21 + A22 + A23 < η−(1−r)|A11A22 + A11A23 < η−(2−r))
(6.105)

The same as Ω1, the first outage probability corresponds to d1(r) = (2 − r)+. Be-

cause there is one more fading in the second outage probability, the second outage

probability would correspond to (1− r)+ + (1− r)+. The tradeoff for Ω2 is

d(r) = (2− r)+ + (1− r)+ + (1− r)+ (6.106)

For Ω3, the outage probability can be decomposed to:

P (Φ(η) < ηr)
.
=P (A11A22 + A12A23 + A11A23 < η−(2−r))

· P (A11 + A12 + A22 + A23 < η−(1−r)|A11A22 + A12A23 + A11A23 < η−(2−r))
(6.107)

First, if A11A22 < η−(2−r) and A12A23 < η−(2−r), then A11 < η−(1−r) and A23 <

η−(1−r), finally A11A23 < η−(2−r). Therefore, d1r = (2− r)+ + (2− r)+. Moreover, if

A11A22 < η−(2−r) and A12A23 < η−(2−r), then A11, A12, A22, and A23 are all smaller

than η−(1−r). Therefore, the second outage probability is equivalent to 1 in terms of

measuring diversity gain. The tradeoff for Ω3 is

d(r) = (2− r)+ + (2− r)+. (6.108)

For Ω4, the outage probability can be decomposed to:

P (Φ(η) < ηr)
.
= P (A11A22 + A11A23 + det(H3H

†
3) < η−(2−r))

· P (A11 + A12 + A13 + A22 + A23 < η−(1−r)|A11A22 + A11A23 + det(H3H
†
3) < η−(2−r)),

(6.109)

where

H3 =

[
h12 h13

h22 h23

]
(6.110)

Note, if A11A22 < η−(2−r) and A11A23 < η−(2−r), then A22 < η−(2−r) and A22 < η−(2−r)

(i.e., the probability that cN−1 < η−(N−1−r) approaches to η0 when η → ∞), then
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det(H3H
†
3) < η−(2−r) for sure. Therefore, the first outage probability corresponds to

the tradeoff (2− r)+ +(2− r)+. Moreover, if A11A22 < η−(2−r) and A11A23 < η−(2−r),

the only fading that is not necessarily in outage is h21. In this case, the second outage

probability corresponds to the tradeoff (1− r)+. The final tradeoff for Ω4 is

d(r) = (2− r)+(2− r)+ + (1− r)+. (6.111)

There is a number of ways to decompose a poor scattering MIMO channel into

multiple parallel SISO channels. Based on the above derivations, we found that the

tradeoff for a small number of antennas are the best tradeoff for the decompositions.

It is conjectured that it is also true for a large number of antennas, although a manual

computation is too complicated to be realized.

6.5 Conclusions

In this chapter, an alternative approach for computing the diversity-multiplexing

tradeoff in time-invariant MIMO channels is proposed. The outage decomposition

approach in this chapter does not necessarily require the precise knowledge of the

joint distribution of eigen values of channel fading matrix: Hence, it can be extended

to the correlated MIMO channel case, which is described by the UIU models. For a

small number of antennas, the tradeoff in such environments is explicitly computed.

The tradeoff with large dimensional antenna arrays are conjectured.

6.A Proof of Lemma 6.2.1

Let

det(I +
η

M
HH†) =

N∑
n=0

bn

( η

M

)n

, (6.112)

where bn, n ∈ {1, 2, · · · , N} are functions of H. Then, the outage probability corre-

sponds to

P (det(I +
η

M
HH†) < ηr)
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= P (bN < MN · η−(N−r) ∩ MN−1bN−1 < η−(N−1−r) ∩ · · · ∩ ·b1 < Mη−(1−r))
(6.113)

However, because

− lim
η→∞

log
(
MN

)

log η
= 0, (6.114)

we can safely write

MN .
= η0, (6.115)

where η →∞. Similarly, we can find that MN−1 .
= η0, MN−2 .

= η0, M
.
= η0.

Substituting (6.115) to (6.113), it is shown that

P (det(I +
η

M
HH†) < ηr)

=P (bN < MN · η−(N−r) ∩ MN−1bN−1 < η−(N−1−r) ∩ · · · ∩ M · b1 < η−(1−r))

.
=P (bN < η0 · η−(N−r) ∩ bN−1 < η0η−(N−1−r) ∩ · · · ∩ b1 < η0η−(1−r))

.
=P (bN < η−(N−r) ∩ bN−1 < η−(N−1−r) ∩ · · · ∩ b1 < η−(1−r))

.
=P (det(I + ηHH†) < ηr) (6.116)

i.e., Lemma 6.2.1 is proved.

6.B Proof of Theorem 6.3.3

The proof is mainly based on the mathematical studies conducted on some previous

studies on characteristic polynomial [Pennisi(1987)]. Let K be an N × N matrix,

and I be an N ×N identity matrix, considering the following polynomial 2:

g(t) = det(K + tI) = bN tN + bN−1t
N−1 + bN−2t

N−2 + · · ·+ b1t + b0, (6.117)

it is found that the coefficient of tn, bn, corresponds to the summation of “sub-

determinants of K resulting from crossing out the rows and columns numbered

{i1, i2, i3, · · · , in}”, where {i1, i2, i3, · · · , in} is a subset of {1, 2, 3, · · · , N}.
2This is a variation of characteristic polynomial. For convenience, the minus sign in characteristic

polynomial was intentionally changed to plus sign, in the original work.
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Our interested problem is to find the coefficients of the following polynomial:

g(η) = det(I + ηHH†)

= ηN
(
det(HH† + η−1I)

)

=
N∑

n=0

bnηN−n (6.118)

where bn denotes the summation of “subdeterminants of K resulting from crossing

out the rows and columns numbered {i1, i2, i3, · · · , in}”, where {i1, i2, i3, · · · , in} is a

subset of {1, 2, 3, · · · , n}. The first equality exploits the basic properties of determi-

nant, and the second equality is based on the results in (6.117).

Complimentarily, for the coefficient of ηn, its coefficient is the summation of

“subdeterminants of HH† resulting from choosing the rows and columns numbered

{i1, i2, i3, · · · , in}”, where {i1, i2, i3, · · · , in} is a subset of {1, 2, 3, · · · , n}. For conve-

nience, let HH† = Ξ, then the coefficient of ηn, is the summation of the determinants

of:



ξi1,i1 ξi1,i2 · · · ξi1,in

ξi2,i1 ξi2,i2 · · · ξi2,in
...

...
. . .

...
ξin,i1 ξin,i2 · · · ξin,in


 , (6.119)

where ξi,j denotes the {i, j}th element of Ξ.

Let the row vectors of H be ~h1
~h2 · · ·~hn, it can be found that

ξi,j = ~hi
~h†j. (6.120)

Combining (6.119) and (6.120), it is finally shown that the coefficient of ηn corre-

sponds to the summation of determinants of all possible row-wise-sub-fading-matrix,

which is defined in (6.70), i.e., Theorem 6.3.3 is proved.
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Chapter 7

Conclusions and Future Works

This dissertation studies SISO, SIMO, and MIMO channels in a successive man-

ner. Both information theoretic and practical algorithm development aspects have

been investigated. For the former, a joint error rate and data rate analysis, namely

diversity-multiplexing tradeoff, is studied under certain practical considerations, such

as temporal correlations and spatial correlations. For the latter, system error perfor-

mances under array perturbation or non-stationarity effects have been analyzed and

simulated.

7.1 Conclusions

After giving motivations in Chapter 1, Chapters 2-6 apply multi-antenna techniques

in wireless comminations systems performance analysis with multi-antenna tech-

niques cumulatively. Chapter 2 considers SISO, i.e., single antenna system, and in-

vestigates the diversity-multiplexing tradeoff with temporal correlations. Chapter 3

and 4 apply multi-antenna at the receiver side (SIMO), under practical considerations

such as perturbations and non-stationarity. Chapter 5 and 6 deploy multi-antenna

at both transmitter and receiver side, that is, MIMO channels. A two dimensional

correlation structure analysis and the relevant error rate - data rate analysis have

been presented in the two chapters. Impacts of each chapter are listed as follows.
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Chapter 2 has inspired a novel interpretation of the diversity-multiplexing trade-

off: spike sharpening effect. Because lower correlations correspond to sharper spikes

(less randomness in the mutual information between channel input and output), given

the same multiplexing gain, better diversity is achievable under smaller correlations.

Both qualitative and quantitative results have been presented. This result supports

the process of examining the optimality of a designed channel coding scheme: if a

channel coding scheme can achieve this tradeoff, it is optimal. Otherwise, it is not

optimal on the information theoretical sense.

Chapter 3 opens the discussions on multi-antennas. Specifically, this chapter

considers mutli-antenna at receiver side, and spatial fadings are fully correlated. In

this environment, the so called “beamforming” techniques are adopted. The conven-

tional Fourier beamforming performance under array perturbations is theoretically

analyzed and numerically simulated. The perturbations are generated by the im-

perfect knowledge of array manifolds, which happens frequently in real applications.

Therefore, the result in this chapter helps wireless engineers to predict the perfor-

mance loss in real systems, due to certain imperfect prior knowledge of the system

parameters.

Chapter 4 extends the discussions in Chapter 3. Conventional Fourier beam-

forming is replaced by a statistically optimal beamforming, that is, linear constrained

minimum variance (LCMV) beamforming. Although generally LCMV beamforming

performs better than conventional beamforming in terms of interference suppres-

sion, in certain environment this is not the case. One example is the system that

transmits signals non-continuously, for example, wireless local positioning system.

Due to its non-stationary nature, standard sample covariance estimator does not

work properly in this system. Thus, directly applying LCMV beamforming in such

environments is not feasible. An alternative covariance estimator, which exploits
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the cyclostationarity property, is proposed to counter the non-stationarity problem.

Summarizing, this chapter introduces a novel solution for wireless system designers,

when non-stationarity presents in their systems.

Chapter 5 starts incorporating multi-antenna at both transmitter and receiver

side. This chapter considers MIMO channel modeling. Many channel models have

been proposed to describe correlated MIMO channels. We first propose a general

framework that can accommodate previously proposed channel models. Then, it

is shown that each of previously introduced channel model possesses different eigen

structures. Finally, via a ray tracing approach, it is verified that different eigen struc-

tures correspond to different physical environments. Thus, the previously proposed

channel models are feasible in specific environments, such as microcell or macrocell

environments. The results in this chapter help designers to select a proper channel

model based on their applications, and optimize their designs correspondingly.

Chapter 6 performs the joint data rate - error rate analysis in correlated MIMO

channels. An innovative outage decomposition approach is introduced in this chapter.

It is shown that, in high SNR regimes, the outage probability in MIMO channels

can be decomposed into the production of multiple conditional outage probabilities,

where each conditional outage probability corresponds to a parallel SISO channel.

Because diversity corresponds to the logarithm of outage probability, diversity in

MIMO channels would be the summation of the diversity in multiple parallel SISO

channels. Based on the results in Chapter 5, this approach is applicable for even

correlated MIMO channels. Then, incorporating the tradeoff results in Chapter 2,

the final tradeoff in correlated MIMO channels can be established, especially for a

small number of antennas.

7.2 Future Works

Based on the presented works in this dissertation, several meaningful problems can

launched in the near future. Moreover, multiple long term extensions are proposed
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at the end of this chapter.

The first is the elaborations of MIMO channel modeling results.

• Two Dimensional Auto-Regressive Moving Average (ARMA) channel model-

ing: Two dimensional spectral analysis has been preliminarily studied in this

dissertation. Moreover, it would be interesting to know if the two dimensional

spectral can be described by a two dimensional FIR/IIR filter. This would help

people to transfer results in filter design and spectral analysis MIMO channel

modeling areas.

• Non-Separable Time-Space Variation Considerations: Temporal correlations

and spatial correlations are considered as sealable in current works. In fact,

they are not separable practically. Only certain preliminary works tried to

model joint spatially-temporally correlated channels, in which frequently trans-

mitter and receiver correlation are assumed separable. A three dimensional

model that can depict joint temporal, transmitter and receiver correlations

should considered. Such a model can help the design of future Wi-Fi/WiMAX

systems.

• Multi-user MIMO channel modeling” In this dissertation, only intra-user cor-

relations are considered. With the development of current MIMO systems,

multi-user MIMO systems are emerging. Subsequently, inter-user correlations

have to dealt with. It would be interesting to know how two users are correlated

when they share the same local scatterers.

The second is the variations of the joint error rate - data rate analysis in correlated

MIMO channels.
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• Optimal transmit covariance matrix design: In the present work, neither chan-

nel state information nor channel statistical information is available at the

transmitter. If just channel statistical information is available at the transmit-

ter, it is shown that a “waterfilling-like” scheme can optimize the data rate.

However, minimal data rate - error rate analysis has been conducted for this

case. The solution to this problem would certainly help the system optimiza-

tion when only limited feedback bandwidth is available.

• Correlated space-time coding:. Current coding approach in space-time corre-

lated channels is a two-step approach: first designing the code for independent

channels, then applying a precoding scheme that takes correlation into consid-

eration. It would be interesting to know if a joint design can outperform the

two-step approach, i.e., the code is designed for correlated fading directly, but

not through the two-steps approach.

Finally, the works in this dissertation can be extended to multi-user MIMO and

mobile ad-hoc networks (MANET) MIMO. The proposed ideas here should be con-

sidered as long term goals, due to their complexities and mathematical difficulties.

• Single user MIMO and multi-user SIMO are considered in this dissertation. It is

necessary to extend the results to multi-user MIMO channels. Only preliminary

results (such as two users) are available in this area, because this is a (at

least) three dimensional problem. Henceforth, an extensive usage of Kronecker

product is inevitable in this study, which is not very familiar for many engineers.

Only partial results might be obtained in correlated multi-user MIMO channels.

For example, for a two users and one base scenario, different clusters of scatters

are located around each user and the bast station. In this case, the capacity

region might be obtainable.
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• MANET MIMO cases are even more complicated than multi-user cases, espe-

cially when multi-hop is allowed. Nonetheless, it is still important to study

this case, because MANET studies is turning to be popular in the foreseeable

future. Currently, MANET routing schemes are designed based on topology,

while physical scatterers are omitted. It would be interesting to know if it is

possible to design a routing scheme based on the knowledge of physical environ-

ments. Based on previous studies on simple MIMO channels, it is believed that

even a small amount of channel information would improve network throughput

significantly.
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