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Abstract
This thesis aims to contribute to the developments of wireless communication
systems. The work generally consists of three parts: the first part is a dis-
cussion on general digital communication systems, the second part focuses on
wireless channel modelling and fading mitigation techniques, and in the third
part we discuss the possible application of advanced digital signal processing,
especially time-frequency representation and blind source separation, to wireless
communication systems.

The first part considers general digital communication systems which will
be incorporated in later parts. Today’s wireless communication system is a sub-
branch of a general digital communication system that employs various tech-
niques of A/D (Analog to Digital) conversion, source coding, error correction,
coding, modulation, and synchronization, signal detection in noise, channel es-
timation, and equalization. We study and develop the digital communication
algorithms to enhance the performance of wireless communication systems.

In the Second Part we focus on wireless channel modelling and fading mit-
igation techniques. A modified Jakes’ method is developed for Rayleigh fad-
ing channels. We investigate the level-crossing rate (LCR), the average dura-
tion of fades (ADF), the probability density function (PDF), the cumulative
distribution function (CDF) and the autocorrelation functions (ACF) of this
model. The simulated results are verified against the analytical Clarke’s channel
model. We also construct frequency-selective geometrical-based hyperbolically
distributed scatterers (GBHDS) for a macro-cell mobile environment with the
proper statistical characteristics. The modified Clarke’s model and the GBHDS
model may be readily expanded to a MIMO channel model thus we study the
MIMO fading channel, specifically we model the MIMO channel in the angular
domain. A detailed analysis of Gauss-Markov approximation of the fading chan-
nel is also given. Two fading mitigation techniques are investigated: Orthogonal
Frequency Division Multiplexing (OFDM) and spatial diversity.

In the Third Part, we devote ourselves to the exciting fields of Time-Frequency
Analysis and Blind Source Separation and investigate the application of these
powerful Digital Signal Processing (DSP) tools to improve the performance of
wireless communication systems.
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Chapter 1

Introduction

1.1 Motivation
The huge surge of wireless applications has inspired enormous amount of re-
search activities in physical-layer wireless communication theory. The funda-
mental challenge in wireless communication is to combat fading and interference
which otherwise may not exist in wired communication systems. In addition to
the efforts of eliminating fading and interference, increasing of spectral efficiency
is another goal to achieve.

The enormous challenges in wireless communications, such as complex and
highly dynamic channels, multiple-access/ cochannel interference, practical con-
straints on portability, power consumption and complexity, have provided a rich
research field for signal processing. Research in signal processing such as filter
design, time-frequency representation, adaptive antenna array and higher order
statistics, servers as a springboard to the development of novel methods in dig-
ital communications. In this thesis we aim to understand the various aspects of
wireless communications in an effort to contribute to the research community.

1.2 Mobile Channel Modelling
The design of spectrally efficient wireless communication systems requires a de-
tailed understanding of the radio propagation environment. The characteristics
of the radio channel have to be captured accurately in a channel model to assess
the relative performance of the various communication architectures. Efficiency
is another concern for computer simulation of mobile communication systems.
We investigate the classical mobile channel models and extend them to wide-
band channel models for future mobile communication systems which exploit
the directional properties of the mobile radio channel by using antenna arrays.

1



In a system with multiple transmit and receive antennas (MIMO channel), the
spectral efficiency can be greatly increased from that of the conventional sin-
gle antenna channels, without increasing the total transmitted power. Various
fading mitigation techniques are also investigated in an effort to validate the
channel models.

1.3 Blind Source Separation and Time-Frequency
Representation

We investigate the blind source separation techniques and time-frequency repre-
sentation in the context of MIMO wireless communication as these topics share
some common ground. In blind source separation (BSS), multiple observations
acquired by an array of sensors are processed in order to recover the initial
multiple source signals. The mixture is either convolutive or linear. In today’s
digital cellular system where transmitted signal is interfered not only by its
echoes (multipath interference), but also by other users in the neighborhood
(cochannel interference), we face the source separation problem similar to that
in a cocktail party.

The communications community has recognized the importance of blind sig-
nal processing techniques, partly due to the fact that wireless communications
field experienced explosive growth and demand for high data-rate services has
been increasing. In conventional techniques, channel estimation and equaliza-
tion rely on training signals. This approach lowers the throughput, for example:
in GSM, about 20% of the symbols are used for training. See [84], equalization
of linear FIR channels with training is commonly used in practice especially
with wired line transmissions over telephone lines, cable television, and asym-
metric digital subscriber loops (ADSL). Blind approaches show more promise
for future wireless and mobile communications, high-frequency modems, digital
audio and video broadcasting systems where rapid channel variations render
the overhead for training prohibitive.

1.4 Scope of the Thesis
The wireless communication is a web of interlocking concepts. The concepts
can be structured roughly into three levels according to [92]:

• Channel characteristics and modelling;

• Communication concepts and techniques;

2



• Application of these concepts in a system context.

In this thesis we aim to apply signal processing techniques to solve problems in
Σ∆ modulation, channel modelling, blind source separation, and time frequency
representation in the background of wireless communications.

1.5 Contributions of the Thesis
• A spectral analysis of Σ∆ modulation system and an investigation of

validity of the white noise linear model

• A modified Smith method with easier implementation and greater math-
ematical tractability

• A verification of Geometrical-Based Hyperbolically Distributed Scatterers
(GBHDS) model using statistical characteristics ACF,LCR, AFD.

• A frequency-selective GBHDS model is constructed

• A time-frequency viewpoint of diversity for spatial multiplexing/ blind
source separation/channel estimation

• An information-theoretic analysis of spatial diversity to mitigate fading

• A numerical solution to ε-outage capacity with L-fold receive diversity

• A Gauss-Markov approximation to GBHDS model

• A MIMO fading channel is modelled with beamforming

1.6 Thesis Organization
• Chapter 2: a general discussion of the components of a digital communi-

cation system: source coding, channel coding, modulation, and detection
in AWGN.

• Chapter 3: modelling of wireless communication channels, focusing on
channel capacity, modelling, statistical properties.

• Chapter 4: fading mitigation techniques, mainly with OFDM and diver-
sity techniques.

• Chapter 5: blind source separation and time-frequency representation.

• Chapter 6: Our conclusions and future directions.
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Chapter 2

The Digital Communication
System: An Overview

2.1 Components of the Digital Communication
System

In his 1948 landmark paper, Shannon states that: “The fundamental problem
of communication is that of reproducing at one point either exactly or approx-
imately a message selected at another point [82]". Figure 2.1 illustrates func-
tional diagram and the basic elements of a digital communication system. The
source encoder converts the messages produced by the source into a sequence
of binary digits. These binary digits, with redundancy possibly removed by the
source encoder, forms a finite set of bits as the message. This message is then
passed to the channel encoder to add in some redundancy to fight the detri-
mental effects in the transmission of the signal through the channel. As most of
the physical channels are capable of transmitting electrical signals (continuous
waveforms), the binary digits from the output of the channel encoder have to be
mapped into waveforms that are suitable for the physical transmission media.
The communication channel will generally corrupt the signal waveforms in a
random manner and therefore after the demodulation of the corrupted signal
waveforms, even with the help of the channel decoder, there is still a possibility
of errors when reproducing the message. The role of a communication system is
therefore to optimally reproduce at the receiver the message sent at the trans-
mitter. The components of the digital communication system are studied in
this section to serve as a foothold for further chapters.
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Figure 2.1: Basic elements of a digital communication system.

2.2 Quantization: Sigma-Delta modulation
A digital communication system is designed to transmit information in digital
form. The output of the information source therefore must be converted to a
format that can be transmitted digitally. As shown in Fig. 2.1, this conversion
of the source output to a digital form is performed by source encoder. The
discussion of mathematical models to describe information sources and coding
for discrete sources can be found in [64]. Here we mainly focus on a coding
technique for analog sources, the Σ∆ modulation.

2.2.1 Introduction

Assume the signal source in Fig. 2.1 is an analog source which emits a message
waveform x(t) that is a sample function of a stochastic process X(t) which can
be represented by a sequence of uniform samples taken at the Nyquist rate. The
samples are then quantized in amplitude and each of these discrete amplitudes
can be mapped to a sequence of binary digits. This process is named analog-
to-digital (A/D) conversion.

Sigma-Delta (Σ∆) modulation based analog-to-digital (A/D) conversion tech-
nology is a cost effective alternative for high-resolution applications. The funda-
mental technique in a Σ∆ system is oversampling. Oversampling eases analog
filter design, and also generates a spectrum with quantization noise pushed to-
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Figure 2.2: Effects of increasing sampling frequency

wards higher frequencies which are inaudible in audio applications. Over the
last few years Σ∆ analogue-to-digital converters (ADCs) and digital-to-analogue
converters (DACs) have become widely available, particularly for low-frequency
applications such as high-fidelity audio and speech processing, metering appli-
cations, and voice-band data telecommunications [27] [83] [87].

Fig. 2.2 demonstrates that increasing the sampling frequency in the time
domain will effectively increase the distance between the shifted replicas in the
frequency domain and consequently a lower order of reconstruction filter may
be applied.

Digital Σ∆ systems are easy for implementation and analysis. Analysis of
Σ∆ modulation in the z-domain conventionally involves the assumption of a
linear model in which the quantizer is modelled as Additive White Gaussian
Noise (AWGN) source. In some circumstances this white noise assumption is
not valid [43]. The input signal applied normally is a sinusoid or a DC. We
present here an analysis by applying a Linear FM (LFM) signal as the input
signal. The LFM possesses all possible frequencies with the same magnitude
in the bandwidth of interest. All signals used in our analysis will be discrete
sequences.

The oversampling process in Σ∆ modulators improves the resolution of a
Nyquist rate data converter. This improvement is achieved by sampling the
input signal at a significantly faster rate than the Nyquist rate. The ratio
between the sampling rate and two times the signal bandwidth is defined as the
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oversampling ratio (OSR) [43]

OSR =
fs

2fb

(2.1)

where fs is the sampling rate and fb is the signal bandwidth. A system
with OSR = 1 is generally called a Nyquist-rate system, while a system with
OSR À 1 is called an oversampling system. In this analysis of Σ∆ systems, the
bandwidth of the LFM applied signal is approximately 2 Hz and the sampling
rate is 100 Hz, hence OSR = 25.

A discrete-time LFM is given by [54]

x[n] = cos(ωon
2) (2.2)

whose instantaneous frequency (IF) is 2ωon.
The z-transform of a sequence x[n] is defined as [54]

X(z) = Z(x[n]) =
∞∑

n=−∞
x[n]z−n. (2.3)

The z-transform evaluated on the unit circle corresponds to the discrete
Fourier transform (DFT). As for practical digital ∆ or Σ∆ systems, all signals
are finite-duration sequences, it is convenient to find their spectra by DFT. We
plot the signals in the continuous-time domain for demonstration purposes.

2.2.2 Spectral Analysis of the Delta Modulator

We have studied the characteristics of Delta and Sigma-Delta systems using a
frequency-domain approach [55]. Consider the 1-bit digital ∆ modulator (en-
coder) and demodulator (decoder) shown in Fig. 2.3. A sinusoid of normalized
frequency is applied to the system as a test signal. Fig. 2.4 shows the signals in
the time domain and their corresponding spectra evaluated at the upper half
of the unit circle by z-transform for the configuration shown in Fig. 2.3. Using
this oversampled Σ∆ technique, the sinusoid is represented as a single-bit bi-
nary data stream ∈ {−1, 1}. For the plots of magnitude and phase in Fig. 2.4,
the value of 1 in the frequency axis corresponds to fs/2 which in this case,
OSR = 50. We see in this trivial scenario that, as long as no slope-overload
distortion occurs, the output of the quantizer y[n], which is a single-bit binary
data stream ∈ {−1, 1}, preserves the spectrum of the original signal in the band-
width of interest. The spectrum obtained by DFT of this binary data stream
∈ {−1, 1} is approximately equal to the spectrum of the input sequence x[n]
over baseband, and contains noise outside of baseband.
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Figure 2.3: First-order digital ∆ modulator and demodulator.

Now we use LFM as the input signal. The quantization process is shown in
Fig. 2.5. We see that the spectrum of y[n] is distorted as compared to the spec-
trum of x[n]. The ∆ modulator (encoder) is sensitive to the sampling frequency
and the quantization step. An integrator is necessary in the demodulator (de-
coder) to reconstruct the signal to x̂[n], as shown in Fig. 2.3, i.e, a step amplifier
and an integrator are needed in the demodulator before low-pass filtering (LPF).
We also notice that the phase is also "matched" in the bandwidth of interest.

Our design of the encoder focuses on matching the spectrum of y[n] to the
spectrum of the input signal x[n]. We first try an adaptive delta modulator
(DM).

For the ∆ modulator shown in Fig. 2.3, if the step is small and the input
signal has a steep slope, the ∆ modulator may loose tracking and a slope over-
load occurs. A large step size will incur a large granular noise. To avoid this
problem, adaptive Delta modulator should be used. Fig. 2.6 shows a first-order
digital adaptive ∆ system, and the adaptive step size is given as [64]:

∆n = ∆n−1K
y(n)y(n−1). (2.4)

where K > 1 is constant that can be arranged to minimize error. The quanti-
zation process of the LFM is shown in Fig. 2.7. The spectrum of y[n] is getting
closer to the spectrum of x[n] as compared to non-adaptive ∆ system over the
baseband, but the distortion is large, thus an integrator is still necessary at the
decoder.

The above analysis shows that the ∆ modulator is sensitive to the rate of
change of the signal.
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Figure 2.4: Quantizing a sinusoid by the ∆ modulator: x[n] is the input signal, x̂[n]
is its estimate, and y[n] is the output single-bit stream. The corresponding spectra
are also shown.

2.2.3 Spectral Analysis of the Sigma-Delta Modulator

Delta modulation requires two integrators for the modulation and demodulation
processes as shown in Fig. 2.3. Since integration is a linear operation, the sec-
ond integrator can be moved before the modulator and becomes a preprocessing
integrator. This will then be the configuration of Σ∆ modulator with two inte-
grators. Again, based on the linear property of integration, the two integrators
in Fig. 2.3 can be combined into a single integrator. A general configuration of
a 1-bit Σ∆ modulator is shown in Fig. 2.8.

We again implement a digital version of Fig. 2.8 and show that a Σ∆ modu-
lation system is a better solution for spectral matching. Σ∆ modulators encode
the integral of the signal and thus their performance is insensitive to the rate
of change of the signal.

Fig. 2.9 shows that the spectrum of the LFM x[n] is squashed to lower
frequencies by the preprocessing integrator and thus we have a situation similar
to that in Fig. 2.3 and Fig. 2.4. The spectrum of the encoder output y[n]
matches the spectrum of the input of the encoder x[n] over the bandwidth of
interest, and hence only a LPF is needed in the decoder. The Σ∆ modulator is
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Figure 2.5: Quantizing an LFM signal by the ∆ modulator: x[n] is the input signal,
x̂[n] is its estimate, and y[n] is the output single-bit stream. The corresponding spectra
are also shown.
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Figure 2.6: First-order digital adaptive ∆ modulator and demodulator.

less sensitive to the quantization step and the sampling rate.
It should be also interesting to investigate the spectra of the Σ∆ modulator

with one integrator as in Fig. 2.8. As shown in Fig. 2.10, there is no "spectrum
squash" observed and the bandwidth of the output of the integrator is almost
the same as that of the input signal x[n]. As in the case of two-integrator Σ∆,
the spectrum of the input signal x[n] matches that of the quantizer output y[n]
inside the bandwidth of interest, thus the decoder only needs a LPF to recover
the input signal.

2.2.4 Noise Shaping of the Sigma-Delta Modulator

The noise shaping ability of an oversampling Σ∆ modulator allows the input
signal of interest (baseband) to pass essentially unfiltered through the modulator
but high-pass filters the quantization noise. For the ease of analysis of the
important characteristics such as noise shaping, the nonlinearity of the quantizer
in the Σ∆ modulator is approximated by an analytical linear model. There
are arguments about the validity of the white noise linear model [43]. We
investigate under what condition the linear model is valid. In the literature,
Fig. 2.8 is approximated by a linear model to make the analysis tractable, i.e.,
the quantizer is linearized by using an input-independent additive white noise
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Figure 2.7: Quantizing an LFM by adaptive ∆ modulator.

model, and the modulator output is given by [43] [4]:

Y (z) = X(z)z−1 + E(z)(1− z−1) (2.5)

where X(z), Y (z), and E(z) are the z-transforms of the input, the output, and
the quantization error, respectively. If we let Hx = z−1 and He(z) = (1− z−1),
the output is just a delayed version of the signal plus quantization noise that
has been shaped by a first-order z-domain differentiator or a high-pass filter.
This process is known as the "noise shaping". The corresponding time-domain
version of the modulator output is

y[n] = x[n− 1] + e[n]− e[n− 1] (2.6)

where the e[n]− e[n− 1] term is the first-order difference of e[n].
The transfer function He(z) = (1−z−1) is also called noise transfer function

(NTF) N(z) = (1− z−1), and the magnitude of the NTF can be found out by
letting z = ej2πf/fs and we have

|N(f)| = 2 sin(πf/fs). (2.7)

From Eq. (2.5) and Eq. (2.6), we obtain Z(e[n] − e[n − 1]) = Z(y[n] −
x[n − 1]) = E(z)(1 − z−1). This provides a way to evaluate the spectrum of
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Figure 2.8: First-order digital 1-bit Σ∆ modulator and demodulator.

E(z)(1 − z−1) from the difference of the input x[n − 1] and the output y[n].
Again, we use the LFM as the input signal x[n]. Fig. 2.11 shows a comparison
of the magnitude spectra for N(f) and simulated power spectral density (PSD)
of E(z)(1 − z−1) for the Σ∆ modulator shown in Fig. 2.8. Apparently, the
match between the two curves in shape means E(z) = constant, and hence e[n]
is a white noise process. In our simulation with an LFM input, increasing the
duration of the LFM means a better match of the two curves (up to a scaling
factor). The PSD of (y[n]−x[n− 1]) in Fig. 2.11 is obtained with a sample size
of 212 and OSR = 25. The noise shaping is observed as the noise over the band
of interest is significantly attenuated and is high-pass filtered outside the band
of interest . In other words, the noise introduced by the quantization is pushed
to higher frequencies which can be easily filtered out by a low pass filter (LPF)
in DAC. Simulation also shows that with a higher OSR, the noise over the band
of interest will be further attenuated. We conclude that at least in this case the
linear model with the quantization error modelled as a white noise source is a
valid assumption.
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Figure 2.9: Quantizing an LFM by the Σ∆ modulator with two integrators: x[n], pre-
processing integrator output, feedback integrator output, y[n] and their corresponding
spectra.
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Figure 2.10: Quantizing an LFM by the Σ∆ modulator with one integrators: x[n],
Integrator output, y[n] and their corresponding spectra.
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2.3 A Geometric View of Digital Modulation
Binary phase-shift keying (BPSK) is the simplest form of the digital modulation
schemes, which can be represented in one-dimensional space. The concepts of
signal spaces here are discussed in the case of two dimensions. Extending to
higher-dimensional signal spaces is straightforward. Let ϕ1(t) and ϕ2(t) forms
a orthonormal set. That is,

∫ ∞

−∞
ϕi(t)

2dt = 1, i = 1, 2

and ∫ ∞

−∞
ϕi(t)ϕj(t)dt = 0, i, j = 1, 2, i 6= j.

Define the inner product

< ϕi(t), ϕj(t) >=

∫ ∞

−∞
ϕi(t)ϕj(t)dt, i, j = 1, 2,

and {ϕ1(t), ϕ2(t)} form an orthonormal set if

< ϕi(t), ϕj(t) >= δij i, j = 1, 2,

where δij = 1 when i = j and δij = 0 when i 6= j.
The signal s(t) as a function of time can be obtained as the linear combina-

tion of the two functions ϕ1(t) and ϕ2(t):

s(t) = x1ϕ1(t) + y1ϕ2(t).

Projection of s(t) on ϕ1(t) and ϕ2(t) will result in x1 and y1 respectively. That
is, a signal s(t) can be represented by a point (x1, y1) in the two-dimensional
space.

A transmitted QAM signal waveforms may be expressed as

sm(t) = AmgT (t)cos(2πfct + θm), m = 1, 2, ..., M, 0 ≤ t ≤ T (2.8)

where fc is the carrier frequency and gT (t) is a baseband pulse shape, which
determines the spectral characteristics of the transmitted signal.
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Expand sm as

sm(t) = AmgT (t)cos(2πfct + θn)

= AmgT (t)cos2πfctcosθn − AmgT (t)sin2πfctsinθn

=

√
Eg

2
Amcosθn

√
2

Eg

gT (t)cos2πfct−
√
Eg

2
Amsinθn

√
2

Eg

gT (t)sin2πfct

(2.9)

where Eg is the energy of the pulse gT (t). Note that the orthonormal basis
functions are ϕ1(t) =

√
2
Eg

gT (t)cos2πfct, and ϕ2 = −
√

2
Eg

gT (t)sin2πfct. And
the QAM signals can be represented geometrically as two-dimensional vectors

sm = (

√
Eg

2
Amcosθn,

√
Eg

2
Amsinθn) (2.10)

Fig. 2.12 illustrates a 16-QAM signal constellation.

In general, for signal x(t) and y(t), we define

• Energy of x(t):

Ex =

∫ ∞

−∞
|x(t)|2dt (2.11)

• Length of x(t):

‖x‖ =
√
Ex =

√∫ ∞

−∞
|x(t)|2dt (2.12)

• Distance between x(t) and y(t):

D(x(t), y(t)) = ‖x(t)− y(t)‖ =

√∫ ∞

−∞
|x(t)− y(t)|2dt (2.13)

The vector space representation of the signal provides a convenient way to
compute the above quantities. It is easy to prove relation like ‖x(t)‖ = ‖x‖.
For the signal constellations shown in Fig. 2.12, the average energy/symbol is
given by Eav = 1

M

∑M
i=1 ‖si‖2. The Euclidean distance between any pair of signal

points is
dmn =

√
‖sm − sn‖ (2.14)

To further demonstrate the understanding of a digital communication system
and the concept of the geometric representation of signal waveforms, we simulate
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Figure 2.12: M = 16-QAM signal constellation.

a 16-QAM system with ideal transmission channel, i.e., the channel is noiseless
and no Inter-Symbol-Interference (ISI) is introduced by the channel. The pulse
gT (t) having the raised cosine spectrum is

gT (t) = sinc(t/T )
cos(παt/T )

1− 4α2t2/T 2
(2.15)

Fig. 2.13 illustrates the pulse for α = 0.5 which is used in simulation of
the 16-QAM digital transmission system. In practice, the overall raised cosine
spectral characteristic is split evenly between the transmitting filter and the
receiving filter. The raised cosine pulse is a commonly used pulse which satisfies
Nyquist criterion. As the physical application is generally band-limited, the
Nyquist criterion indicates a maximum symbol rate for avoiding ISI for a given
bandwidth.

Figure 2.14 shows that the symbols modulated baseband signal in both
time domain and frequency domain. The randomness of the signal is due to the
random nature of the symbols. The symbols are modulated to the maximum
symbol rate for a given bandwidth. That is, assume the constraint of |f | < W ,
the maximum symbol rate that can be achieved with zero ISI is 1/T = 2W .

As the practical communication channels are generally passband in nature,
the baseband signal is modulated to the channel center frequency fc for the
transmission over the channel. The passband signal is illustrated in Fig. 2.15.
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Figure 2.13: Pulse having a raised cosine spectrum with the rolloff factor α = 0.5.

At the receiver, the passband is down-converted to the baseband and sam-
pled to recover the constellation as that of Fig. 2.12. The spectrum of the
down-converted signal and the low passed filtered signal is shown in Fig. 2.16.

In practice, the received signal is corrupted by ISI and noise introduced by
the channel and other factors such as multi-user sharing the same transmission,
in addition to constraints such as power consumption, therefore much more
complicated techniques are employed. Advanced Shannon-limit approaching
coding algorithms are also used to improve the system performance [25] [26] [72].
In the case of wireless communication, emerging and promising techniques such
as Orthogonal Frequency Division Multiplexing (OFDM), space-time coding are
employed to combat the highly dynamic channel [68].
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Figure 2.14: The baseband signal in time domain (top) and in frequency domain
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2.4 The Promise of Coding
In the previous section we discussed a digital communication system in the
noise free environment. In practice, s(t) may be disturbed by interference and
noise. Assuming that s(t) is a set of two waveforms, we consider the case of
s(t) corrupted by the additive white Gaussian noise corrupting

r(t) = s(t) + n(t), (2.16)

where the channel is modelled a white Gaussian noise process, having the prop-
erties that

E[n(t)] = 0 ∀t,

Rn(τ) = E[n(t)n(t− τ)] =
N0

2
δ(τ),

where n(t) denotes the sample function of the additive white Gaussian noise
(AWGN) process with power-spectral density N0

2
W/Hz. At the receiver, the

signal demodulator and the detector convert the received waveform r(t) into

R = s + N (2.17)

all are n-dimensional vectors, with N ∼ N (0, σ2I), and S ∈ {a,b} are two
transmitted vectors. Recovering the transmitted messages at the receiver is
now a classic detection problem. See [62] for a strict treatment of detection and
estimation theory.

The general relation for the probability of decision error is [49][63]

Pe = Q

(
d

2σ

)
(2.18)

where d =
√
‖a− b‖ is the Euclidean distance between vectors, and Q(·) is the

complementary cumulative distribution function of an N(0, 1) random variable.
With the variance for the channel is expressed as σ2 = N0

2
by optimal de-

modulation, Pe can be also expressed as

Pe = Q

(
d√
2N0

)
(2.19)

In the special case of BPSK signalling, the transmitted signal is S ∈ {−√Eb,
√Eb},

the Euclidean distance is therefore d = 2
√Eb and for the noise we have σ2 = N0

2
.

From (2.19) we calculate the probability of error as

Pe = Q

(√
2Eb

N0

)
(2.20)
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The main purpose of using coding in communication systems is to increase
the Euclidean distance d and consequently reduce Pe with the power constraint.

A significant result that emerges from information theory is that if the en-
tropy of the source is less than the capacity of the channel, then error-free
communication over the channel can be achieved, with the help of channel cod-
ing [82]. We demonstrate the promise of error correction coding using repetition
code and Hamming code. Although the repetition code improves nothing on
the performance, the study of it reveals the essential ideas of coding.

Assume a communication of BPSK over BSC (Binary Symmetric Channel)
with crossover probability p. We first investigate (n,1) repetition coding. The
probability of decoding error using hard-decision decoder with majority vote
strategy for a repetition code of length n is

P n
e =

n∑
i=t+1

(
n

i

)
pi(1− p)n−i + terms of higher degree in p. (2.21)

This shows that arbitrarily small probability of error can be obtained as n
increasing with p a constant. The price paid for this arbitrarily small probability
of error is the transmission rate approaching zero.

The AWGN channel can be roughly viewed as an equivalent BSC. With
power constraints, the energy available for each coded bit, which is denoted as
Ec, is Ec = Eb/n. The crossover probability for the equivalent BSC is therefore

p = Q(
√

2Ec/N0) = Q(
√

2Eb/nN0)

Since Q(x) is a decreasing function, the effective crossover probability p is
higher as a result of using the repetition. Replacing the crossover probability p
in (2.21) with different n shows that the coded performance by the repetition
coding is worse than the uncoded performance, and the performance gets worse
with increasing n. We conclude that with power constraint, repetition coding
by hard-decision decoding will only make the performance worse than uncoded
transmission.

We now show that soft-decision decoding is better than hard-decision decod-
ing, and with the soft-decision decoding, the probability of error for the (n, 1)
repetition code is exactly the same as uncoded transmission-still no performance
improvement.

Denote the output of BSC by

r = c + n,

where r is the received vector, c is the coded message by the repetition encoding.
The likelihood function is

p(r|c) =
n∏

i=1

p(ri|ci), (2.22)

25



4 5 6 7 8 9 10
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

E
b
/N

0
 (dB)

P
b

Uncoded
(7,4) Hamming code

Figure 2.17: Performance of (7,4) Hamming code.

so that the log likelihood ratio can be derived as

Λ(r) = log
p(r|m = 1)

p(r|m = 0)

= log
∏n

i=1 p(ri|m = 1)∏n
i=1 p(ri|m = 0)

= log
∏n

i=1 p(r1|s1 =
√Ec)∏n

i=1 p(r1|s1 = −√Ec)

= log
∏n

i=1 exp(− 1
2σ2 (ri −

√Ec)
2)∏n

i=1 exp(− 1
2σ2 (r1 −

√Ec)2)

=
2
√Ec

σ2

n∑
i=1

ri.

(2.23)

The soft-decoder thus decides m̂ as

m̂ =

{
1 if

∑n
i=1 ri > 0

0 if
∑n

i=1 ri < 0.
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In this case, the Euclidean distance d = 2n
√Ec and σ2 = nN0

2
. From (2.19), we

calculate the probability of error for the (n, 1) repetition code with soft-decision
decoding is

Pe = Q

(√
2Eb

N0

)
. (2.24)

This is the same as (2.20). We conclude that soft-decision decoding is superior
to hard-input decoding in terms of probability of error but is not effective as an
error correction code.

We simulate the Hamming codes which are much better than repetition
codes. The simulation result is given in Fig. 2.17. As shown in the figure,
(7,4) Hamming code will give a coding gain of 0.45 dB, i.e., the code is able
to overcome the 2.4 dB of loss due to rate (less energy per bit due to power
constraint), and add another 0.45 dB of improvement. According to Shannon,
there is at least 9.6 dB of coding gain possible.

The price paid to increase the performance is a bandwidth expansion due to
a narrow transmission pulse is needed. This can be intuitively understood from
the discussion of the previous section. For example, the bandwidth expansion
ratio for the (7,4) Hamming code is

Wcoded

Wuncoded

=
n

k
=

7

4
= 1.75.

2.5 Conclusion
In this chapter we have studied some of the fundamental notions in a digital
communication system. First, we considered the quantization process, including
sigma-delta data conversion, where a study based on frequency domain analysis
is introduced. A linear FM (LFM) signal is applied as a test signal at the
input of digital Σ and Σ∆ modulators to reveal the relationship of the spectra
at different stages. By squashing the spectrum of the signal using the Σ∆
modulator, a simpler decoder and a better performance is achieved for the
Σ∆ modulator. We see that for the same parameters such as the sampling
frequency and quantization step, the Σ∆ modulator outperforms the adaptive
∆ modulator. The noise shaping ability and the validity of the linear model of
the Σ∆ modulator are also investigated. Similar principle may be applied to
other configurations of the Σ∆ modulator in future works.

We also presented a geometric view of the main digital modulation tech-
niques. Error performance is also studied with AWGN channels. This per-
formance will be the basis for evaluating the chosen channel model and the
communication system.
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Chapter 3

Modelling of the Wireless Channels

3.1 General Description of the Wireless Channel
The communication system presented in the previous chapters is simulated us-
ing an ideal channel model. In wireless communication, the channel will in-
troduce degradation or interference. All relevant components of a mobile radio
system, from digital modulation techniques over to channel coding through to
network aspects, are determined by the propagation characteristics of the chan-
nel. Therefore, a precise knowledge of the mobile radio channels is crucial for
the development, evaluation and test of current and future mobile radio com-
munication systems [56] [3].

Sources of degradation from transmission channel can be categorized as
[101]:

1. Additive Gaussian noise

2. Bandlimiting of the signal by the channel

3. Non-Gaussian noise, such as impulse noise due to lightning discharges or
switches

4. Radio frequency interference due to other transmitters

5. Multiple transmission paths, termed multipath, due to stratifications in
the transmission medium or objects that reflect or scatter the propagating
signal.

The basic propagation mechanisms of the mobile radio channel such as reflec-
tion, diffraction and scattering impairments cause the signal at the receiver to
distort or fade significantly as compared to AWGN channels.
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Fading, or small-scale fading, is caused by interference between two or more
versions of the transmitted signal which arrives at the receiver at slightly differ-
ent times. These waves, called multipath waves, combine at the receiver antenna
to give a resultant signal which can vary widely in amplitude and phase, de-
pending on the distribution of the intensity and relative propagation time of
the waves and the bandwidth of the transmitted signal.

In the case of BPSK, the received direct-path signal may be described as

sd(t) = Ad(t) cos 2πfct (3.1)

where fc is the carrier frequency.
We consider a two-ray multipath model and the received signal is [101]

y(t) = sd(t) + βsd(t− τm) + n(t) (3.2)

where sd(t) is the received direct-path signal, β is the attenuation of the multi-
path component, and τm is its delay.

To find out the transfer function of the channel, Hc(f), we take Fourier
transform for y(t) and sd(t)

Hc(f) =
F [y(t)]

F [sd(t)]
(3.3)

For the Fourier pair sd(t) ↔ Sd(f), we apply the time delay property x(t−
t0) ↔ X(f)e−jωt0 to (3.2), we have

y(t) ↔ Sd(f) + βSd(f)e−j2πfτm = Sd(f)(1 + βe−j2πfτm)

and therefore the transfer function is

Hc(f) = 1 + βe−j2πfτm (3.4)

We demonstrate here with a simple two-ray multipath model that the wire-
less channel is in generally frequency-selective. Theoretically, the channel effect
can be reversed by a filter, referred to as an equalizer with the transfer function

Heq(f) =
1

Hc(f)
=

1

1 + βe−j2πfτm
(3.5)

In practice, channels are generally waveform channels that accept continuous-
time waveforms as their inputs and output continuous-time waveforms. Prac-
tical channels are always band-limited, and by using the sampling theorem,
a waveform channel can be equivalently represented by a discrete-time chan-
nel. This equivalence facilitates analysis and algorithm development because
standard digital signal processing may apply.
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The equivalent discrete-time channel may be modelled as a discrete-time
FIR filter. If a discrete channel does not have memory, it is called a discrete-
memoryless channel. A special case of a discrete-memoryless channel is the
binary-symmetric channel (BSC) which we have encountered in the previous
chapter.

The countermeasures to fading channels are equalization, diversity and chan-
nel Coding.

Equalization by equalizer such as Eq. (3.5) compensates for inter-symbol in-
terference (ISI) created by multipath within time dispersive channels. Channel
Coding such as the (7, 4) Hamming code improves the small-scale link perfor-
mance by adding redundant data bits.
Diversity is used to reduce the depth and duration of the fades. Diversity can
be further categorized as

• spatial diversity: multiple antennas

• time diversity: CDMA RAKE receiver

• frequency diversity: OFDM

• antenna polarization

As with an equalizer, diversity improves the quality of a wireless communi-
cations link without altering the common air interface, and without increasing
the transmitted power or bandwidth. However, while equalization is used to
counter the effects of time dispersion (ISI), diversity is considered more effec-
tive in wireless communication to combat the depth and duration of the fades
experienced by a receiver in a local area which are due to motion [70].

3.2 Modelling Philosophy
The channel filter taps are modelled statistically as random process. It should
be noted that probabilistic models for the channel filter taps are going to be far
less believable than the models for additive noise. On the other hand, despite
the inaccuracy of the channel models, we still need such models for system
design and performance evaluation. The reason is that even with a highly over-
simplified model, we can compare different algorithms for system designs. As
demonstrated in Chapter 2, a simple BSC will enable us to evaluate different
coding schemes in the example of (7, 4) Hamming code.

In typical wireless applications, communication occurs in a passband with
a certain bandwidth. The use of a baseband equivalent of the communication
system simplifies the analysis because the analysis is independent of carrier
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frequencies and channel frequency bands. Another advantage is that the only
the slowly varying parts of the signal need to be processed and therefore is
computationally less expensive.

3.3 Clarke’s Model with a Continuum of Paths
The Clarke’s model (or sometimes called Jakes ’ model) which is detailed in [17]
is a popular statistical model for flat fading channel. In this section we derive
the time-varying impulse response of this channel model. We incorporate the
input-output relationship of this model to the general linear time-varying filter
channel model and derive the time-varying channel impulse response for the
Clarke’s model with a continuum of paths. The mathematical structure and
physical interpretation of this derivation are insightful and will be very helpful
for further studies.

Physical channels such as wireless channels may be characterized by a time-
variant channel impulse response h(τ, t), where h(τ, t) is the response of the
channel at time t due to an impulse applied at time t− τ . For an input signal
x(t), the channel output signal in the noiseless condition is

y(t) =

∫ ∞

−∞
h(τ, t)x(t− τ)dτ (3.6)

In the Clarke’s model, the transmitter is fixed, and the scatterers are as-
sumed uniformly located around the mobile receiver which is moving at speed
v. In the discrete model, there are K paths, the ith path arriving at an angle
θi := 2πi/K, i = 0, ..., K−1, with respect to the direction of motion, where K is
assumed to be large. The path coming at angle θ with respect to the direction
of motion of the mobile has a delay of τθ(t) and a time-invariant gain aθ, and
the input-output relationship is given by:

y(t) =
K−1∑
i=0

aθi
x(t− τθi

(t)) (3.7)

The continuous version of (3.7) is

y(t) =

∫ 2π

0

aθx(t− τθ(t))dθ (3.8)
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Eq. (3.8) can be reorganized as

y(t) =

∫ 2π

0

aθx(t− τθ(t))dθ

=

∫ 2π

0

aθ

(∫ ∞

−∞
δ(τ − τθ(t))x(t− τθ(t))dτ

)
dθ

=

∫ 2π

0

aθ

(∫ ∞

−∞
δ(τ − τθ(t))x(t− τ)dτ

)
dθ

=

∫ ∞

−∞

(∫ 2π

0

aθδ(τ − τθ(t))dθ
)
x(t− τ)dτ

(3.9)

Comparing the last equality with (3.6), we obtain the impulse response as

h(τ, t) =

∫ 2π

0

aθδ(τ − τθ(t))dθ (3.10)

Alternatively, this result can be obtained intuitively and consequently more
insights into the channel can be gained. Let the input be x(t) = δ(t − t′), we
then have x(t− τθ(t)) = δ(t− τθ(t)− t′). Plug this into (3.8), we have

y(t) =

∫ 2π

0

aθx(t− τθ(t))dθ

=

∫ 2π

0

aθδ(t− τθ(t)− t′)dθ

(Let t′ = t− τ)

=

∫ 2π

0

aθδ(τ − τθ(t))dθ

(3.11)

which is the same as (3.10). This shows that h(τ, t) can be interpreted as the
response of the channel to an impulse that occurs at time t− τ .

3.4 Single Tap Discrete-Time Baseband Channel
Model

In this section we derive the single tap discrete-time baseband channel model.
A wireless channel bandlimited in [fc −W/2, fc + W/2] can be modelled by a
discrete-time baseband model in terms of channel filter taps as [92]

y[m] =
∑

`

h`[m]x[m− `] + w[m], (3.12)
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where

h`[m] =
∑

i

ai(m/W )e−j2πfcτi(m/W )sinc[`− τi(m/W )W ], (3.13)

and ai(m/W ) and τi(m/W ) are sampled attenuation and delay respectively.
The noise w[m] is distributed as CN (0, N0) and i.i.d. over time. We now show
that in the case that the delay spread of the channel Td satisfies Td ¿ 1/W ,
the discrete-time baseband model can be approximately represented by a single
tap model.

From Td ¿ 1/W we know for all τi(m/W ), we have τi(m/W ) ¿ 1/W , thus

0 ≤ τi(m/W )W ¿ 1, ∀i
That is, τi(m/W )W is approximately zero for all index i. Therefore (3.13) can
be expressed as

h`[m] =
∑

i

ai(m/W )e−j2πfcτi(m/W )sinc[`− τi(m/W )W ]

=
∑

i

ai(m/W )e−j2πfcτi(m/W )δ[`]

= δ[`] ·
∑

i

ai(m/W )e−j2πfcτi(m/W )

=

{∑
i ai(m/W )e−j2πfcτi(m/W ), ` = 0

0, else.

(3.14)

Plug this result into (3.12), we have the single tap model as

y[m] = h0[m]x[m] + w[m]

= h[m]x[m] + w[m],
(3.15)

where h0[m] = h[m] =
∑

i ai(m/W )e−j2πfcτi(m/W ) is the sum of large number of
small independent symmetric random variables, and by Central Limit Theorem
(CLT), is modelled as a zero-mean complex Gaussian random variable.

3.5 Capacity of Fading Channels
The motivation to investigate the capacity of fading channels is many-sided.
Harnessing information-theoretic tools to the investigation of fading channels,
in the widest sense of this notion, has not only resulted in an enhanced under-
standing of the potential and limitations of those channels, but in fact Informa-
tion Theory provided in numerous occasions the right guidance to the specific
design of efficient communications systems [9].

33



We have shown in Chapter 2 that by an intelligent design of coding such
as (7, 4) Hamming code, one can increase the performance of communication
over AWGN channel by making the error probability small without reducing
the data rate. Claude Shannon’s information theory indicates that in fact the
error probability can be made as small as possible as long as the transmission
rate is below the capacity of the channel.

The AWGN channel, which is a special case of (3.15) with h[m] = 1, can be
represented as

y[m] = x[m] + w[m], (3.16)

where w[m] is CN (0, N0) and is i.i.d over time. The capacity of this channel is
given by [82] [19] [92]

C = W log

(
1 +

P

N0W

)
bits/sec (3.17)

where W is the channel capacity, P is the signal power and N0 is the noise
power spectrum. Reliable communication is possible if the transmission rate R
is less than C, that is,

R < W log

(
1 +

P

N0W

)
(3.18)

If Eb is the energy per bit, then Eb = P
C
. By substituting in (3.17), we obtain

C

W
= log

(
1 +

C

W

Eb

N0

)
(3.19)

Consequently,
Eb

N0

=
2C/W − 1

C/W
(3.20)

This relation is plotted in Fig. 3.1. In the region below the curve in Fig. 3.1,
reliable communication is possible and in the region above the curve, reliable
communication is not possible. We can also calculate the absolute minimum
value of Eb/N0 for reliable communication

Eb

N0

= ln2 = 0.693 ∼ −1.6 dB (3.21)

as C/W tends to 0. The curve is thus the performance of an optimal system.
We investigate the optimal performance achievable on a given channel and

the techniques to achieve such optimal performance. The AWGN channel is
used as a building block to study the capacity of wireless fading channels. For a
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Figure 3.1: Spectral bit rate versus SNR/bit in an optimal system.

given wireless fading channel, we investigate the optimal performance achievable
and techniques to achieve such optimal performance just like the the scenario
of AWGN channel. Unlike the well established information theory for AWGN
channel, there is no single definition of capacity for fading channels that is
applicable in all scenarios. We first investigate the simplest scenario, the slowly
flat fading channel. In this scenario, the channel gain is random but remains
constant in a quasi-static period, i.e., h[m] = h for all m. In this case, the flat
fading channel input-output:

y[m] = h[m]x[m] + w[m] (3.22)

is reduced to a slow flat fading input-output:

y[m] = hx[m] + w[m], (3.23)

with the fading process {h[m]} reduced to a random variable h ∼ CN (0, σ2).
The distribution of r = |h| is Rayleigh,

f(r) =
r

σ2
e−r2/2σ2

, r ≥ 0, (3.24)

and x = |h|2 is exponentially distributed,
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any target rate R, there is a non-zero outage probability.

f(x) =
1

2σ2
e−x/2σ2

, x ≥ 0, (3.25)

The capacity of the channel can now be proceeded based on the well-
established results for AWGN channel. Let the symbol rate be W Hz, the
power constraint is P joules/symbol, and E[|h|2] = 1 is assumed for normaliza-
tion, i.e., h ∼ CN (0, 1). The noise process {w[m]} is i.i.d. CN (0, N0). Hence
SNR := P/N0 is the average received SNR.

Conditional on a realization of the channel h, Eq. (3.23) is a scenario of
AWGN channel with signal-to-noise ration |h|2SNR. The maximum rate of
reliable communication supported by this channel is log(1+|h|2SNR) bits/s/Hz.
The rate of communication R can be chosen to be less than the capacity and
an arbitrarily small error probability is achieved. As x = |h|2 is random, so is
log(1 + |h|2SNR). The density of this quantity is plotted in Fig. 3.2.

Let y = log(1 + |h|2SNR) be any possible value of random variable Y . With
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h ∼ CN (0, 1), the distribution of x = |h|2 is Eq. (3.25) with σ2 = 1:

f(x) =
1

2
e−x/2, x ≥ 0. (3.26)

The distribution of random variable Y can then be derived as

fY (y) =
2yln2

2SNR
exp{−2y − 1

2SNR
}, y ≥ 0. (3.27)

Given a targeted transmission rate R, the outage probability is defined as

pout(R) := P{log(1 + |h|2SNR < R}. (3.28)

For the slow fading channel with h ∼ CN (0, 1), pout(R) can be obtained as

pout(R) = P{log(1 + |h|2SNR < R}

= 1− exp
(
−2R − 1

SNR

)

≈ (2R − 1)

SNR
at high SNR.

(3.29)

The ε-outage capacity Cε is defined as the largest rate of transmission R
such that the outage probability pout(R) is less than ε. From this definition we
can find Cε by solving

pout(R) := P{log(1 + |h|2SNR < R} = ε. (3.30)

The ε-outage probability for the slow fading channel with h ∼ CN (0, 1) can
then be obtained by solving

pout(R) = P{log(1 + |h|2SNR < R} = ε

= 1− exp
(
−2R − 1

SNR

)
= ε.

(3.31)

The obtained ε-outage capacity Cε is

Cε = log(1− SNR · ln(1− ε)) (3.32)

Note the above result is obtained by assuming h ∼ CN (0, 1). Let F be the
complementary cumulative distribution function of |h|2, i.e., F (x) = P{|h|2 >
x} = e−x. We then have F−1(1 − ε) = −ln(1 − ε), and Eq. (3.32) can be
expressed as

Cε = log(1 + F−1(1− ε)) bits/s/Hz. (3.33)
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Figure 3.3: ε-outage capacity as a fraction of AWGN capacity under Rayleigh fading,
for ε = 0.1 and ε = 0.01.

To obtain some intuitions, Fig. 3.3 plots the ε-outage capacity as a function
of SNR for the Rayleigh channel. At an outage probability of 0.01, the outage
capacity is only 1% of the AWGN capacity. Low and high SNR have different
impact on the ε-outage capacity.

It should be noted although (3.33) is obtained by assuming a Rayleigh fading
channel, it is in fact the general result which can be derived with the distribution
of the channel gain h unknown.

3.6 Jakes’ Model: from Continuous to Discrete
In this section, we show that the various forms of Jakes’ model either continuous
or discrete, are essentially the same and can be used interchangeably.

Based on the sampling theory, we now prove that the continuous form of
Jakes’ model given in [64] is equivalent to its discrete form given in [92].
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The continuous-time baseband input-output relation is described as [64]

rl(t) =
L∑

n=1

cn(t)sl

(
t− n

W

)
(3.34)

where L = bTdW c+1 is the number of channel taps truncated for the multipath
spread Td. The impulse response for the channel can be derived as

c(τ ; t) =
L∑

n=1

cn(t)δ(τ − n/W ) (3.35)

Let C(f ; t) denote the time-variant transfer of c(τ ; t). If c(τ ; t) is modelled
as a complex-valued zero-mean Gaussian random process in the t variable, it
follow that C(f ; t) also has the same statistics. In the case of Jakes’ model, the
autocorrelation of the time-variant transfer function C(f ; t) is given as

φC(∆t) =
1

2
E[C∗(f ; t)C(f ; t + ∆t)]

= J0(2πfD∆t)
(3.36)

where J(·) is the zero-order Bessel function of the first kind and fD = vfc/c is
the Doppler frequency, where v is the vehicle speed in meters per second (m/s),
fc is the carrier frequency, and c is the speed of light (3×108 m/s). The Fourier
transform of this autocorrelation function gives the Doppler power spectrum:

Sc(λ) =

∫ ∞

−∞
φC(∆t)e−j2πλ∆td∆t

= J0(2πfD∆t)e−j2πλ∆td∆t

=

{
1

πfD

√
1−(f/fD)2

(|f | ≤ fD)

0 (|f | ≥ fD)

(3.37)

Sample the autocorrelation function φC(∆t) by the sampling frequency fs =
1/Ts = W , where W is the bandwidth of [fc−W/2, fc +W/2] around the center
frequency fc, we can readily obtain the discrete counterpart of the above Fourier
pair based on the sampling theorem. The discrete autocorrelation function R0[n]
is therefore

R0[n] = 2a2πJ0(nπDs/W )

= 2a2πJ0(2nπfD/W )

= 2a2πJ0(2nπfDTs)

(3.38)
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where J0(·) is the zero-order Bessel function of the first kind:

J0(x) :=
1

π

∫ π

0

ejxcosθdθ. (3.39)

and Ds = 2fcv/c is the Doppler spread and fD = fcv/c is the Doppler frequency.
And the power spectral density S(f), normalized by W , is given by

S(f) =

{
4a2W

Ds

√
1−(2fW/Ds)2

−Ds/(2W ) ≤ f ≤ +Ds/(2W )

0 else.
(3.40)

Eq. (3.38) and (3.40) are in fact the autocorrelation function and power
spectral density for the tap gain process {h0[m]} in (3.15) respectively.

Define the coherence time Tc to be the value of n/W such that R0[n] =
0.05R0[0], then

Tc =
J−1

0 (0.05)

πDs

(3.41)

Clearly, this relation shows that a slowly changing channel has a large coherence
time or, equivalently, a small Doppler spread.

3.7 An Efficient Mobile Rayleigh Fading Channel
Simulator

3.7.1 Introduction

We have shown that the sequence of random variables {h`[m]} (discrete-time
filter taps) and cn(t) (continuous-time filter taps) are generally modelled as
complex-valued random process. We now proceed to develop efficient simulation
models for these channel taps of the fading channels. To be general, we denote
the complex random process under investigation as µ(t) = µ1(t) + jµ2(t).

Simulation models for fading channels are extremely important for the de-
velopment, performance analysis, and test of modern wireless communication
systems. The designed fading channel simulator should fit the desired statistical
behavior with high precision before analyzing the performance of a new mobile
communication system. Accuracy, efficiency, flexibility and ease of implemen-
tation are the challenging requirements in designing the simulation models [57]
[22].

The characteristic quantities describing the statistics of mobile fading chan-
nels are the probability density function (PDF), cumulative distribution func-
tion (CDF), the autocorrelation function (ACF), the level-crossing rate (LCR)
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and the average duration of fades (ADF). The level-crossing rate (LCR) and
average duration of fades (ADF) are useful for designing error control codes
and diversity schemes to be used in mobile communication systems, since it
becomes possible to relate the time rate of change of the received signal to the
signal level and velocity of the mobile [70].

John I. Smith demonstrated a simple computer program in [86]. We modified
this method and developed a new method which promises a greater mathemat-
ical tractability. Verification of this new method against the analytic fading
channel model is thus necessary and a detailed analysis of the statistical char-
acteristics of this new method is given.

The aim of this section is to design a fading channel simulator based on
Smith’s method and to analyze the LCR and ADF of this simulation model for
Rayleigh fading channels. The results obtained will serve as the foothold for
the further investigation of the recently proposed parabolic channel model [78],
which will be analyzed in the following sections.

3.7.2 Description of the Analytical Model

The detailed derivation of Jakes Power spectral density or Clarke power spectral
density can be found in [17]. This derivation is briefly reviewed here and some
initial simulation results are given.

To derive the Jakes power spectral density, we follow these assumptions [56]:

1. The propagation of the electromagnetic waves takes place in the two-
dimensional(horizontal) plane, and the receiver is located in the center of
an isotropic scattering area.

2. The angles of arrival α of the waves arriving the receiving antenna are
uniformly distributed in the interval [−π, π).

3. The antenna radiation pattern of the receiving antenna is circular-symmetrical
(omnidirectional antenna).

The probability density function of the angles of arrival α is thus given by

pα =

{
1
2π

, α ∈ [−π, π),
0, elsewhere.

(3.42)

The Doppler frequencies can then be defined by

f = f(α) := fD cos(α), (3.43)
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Figure 3.4: Histogram of the angles of arrival α and the pdf of the Doppler frequencies
f .

where fD is the Doppler frequency. Obviously f is also a random variable. The
probability density function of the Doppler frequencies f , denoted by pf (f), can
be given by [17]

pf (f) =

{
1

πfD

√
1−(f/fD)2

, |f | ≤ fD,

0, |f | > fD.
(3.44)

This function of random variables is simulated and shown in Fig. 3.4 with
fD = 20 Hz.

The power spectral density Sµµ(f) of the scattered components µ(t) =
µ1(t) + jµ2(t), received at the receiving antenna, is obviously proportional to
pf (f) of the Doppler frequencies. The following relation holds:

Suu(f)df ∼ pf (f)df, (3.45)

The relation between the probability density function and the power spectrum
density is thus established. Further investigation which takes Eq. (3.44) into
account will lead into the Jakes Power spectral density or Clarke power spectral
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density as that of (3.37) (up to a scaling factor):

Suu(f) =

{
2σ2

0

πfD

√
1−(f/fD)2

, |f | ≤ fD,

0, |f | > fD.
(3.46)

where
∫∞
−∞ Suu(f)df = 2σ2

0, and 2σ2
0 is the power of the scattered components

µ(t) = µ1(t) + jµ2(t).
The autocorrelation function (ACF) rµµ(τ) of the scattered component µ(t) =

µ1(t) + jµ2(t) can be obtained by taking the inverse Fourier transform of the
Jakes power spectral density of Eq. (3.46):

rµµ(τ) = 2σ2
0J0(2πfDτ) (3.47)

where J0(·) is the zeroth-order Bessel function of the first kind.

3.7.3 Frequency Zero-Appending for Time Interpolation

Zero-padding is a well-known topic in signal analysis, normally associated with
upsampling or unifying signals’ lengths in circular convolution [66].

We use zero-padding in the frequency domain for the purpose of increasing
the resolution in the time domain. This approach is defined by simply appending
a number of zeros to both ends of the spectrum, hence we use the name zero-
appending. Based on the duality property of the Fourier Transform, we can state
that zero-appending in the frequency domain corresponds to ideal interpolation
in the time domain. We demonstrate this theorem using a simple example.
The sequence x(n) is obtained by sampling a sinc function x(t) = sinc(t/T )
with T = 1 s, Ts = 0.5 s, and the total time duration is from −L = 5 s to
L = 5 s, N = 2L/Ts, therefore N = 20, that is, both x(n) and its DFT X(k)
are 20 point sequence. We exploit again the time-domain/frequency-domain
duality of DFT, that is, the time duration of the signal in time domain will
determine the frequency resolution in frequency domain, while the frequency
span in frequency domain will determine the time resolution in time domain.
We append a total of M − N zeros to the spectrum, divided into two halves,
one half on each end of the spectrum of X(k). An IDFT is then performed on
X(k) to provide a finer interpolation in the time domain. Fig. 3.5 shows that
a total of M − N = 30 zeros are padded in the frequency domain to provide
sufficient detail to yield a good picture of x(n).

3.7.4 Design and Analysis of the Rayleigh Fading Channel

Smith demonstrated a computer simulator of Rayleigh fading channel in [86].
A detailed presentation of this method can also be found in [70]. This method
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time duration remains unchanged, but the new sampling period is Ts = 0.2 s, thus a
better resolution is achieved for x(n).

uses a complex Gaussian random number generator to produce a line spectrum
with complex weights in the positive frequency band. The maximum frequency
component of the line spectrum is fD. The negative frequency components are
constructed by simply conjugating the complex Gaussian values obtained for the
positive frequencies. The random valued line spectrum is then multiplied by a
discrete frequency presentation of

√
Suu(f) having the same number of points as

the noise source. An IFFT is then performed on the resulting frequency domain
signal to get two time series. The square root of the summed squared of the
two time series is the Rayleigh fading signal with proper Doppler spread and
time correlation. Note that this method requires a truncation of the spectrum
because Equation (3.46) approaches infinity at the baseband edge. We present
here a new method which avoids this truncation and gives better resolution
by zero-appending. Moreover, we will show that this method promises greater
mathematical tractability.
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Figure 3.6: The ACFs of the reference model and its FFT (fD = 20 Hz, σ2
0 = 1,

K = 5, ∆τ = 1/(KfD) = 0.01 s, L = 2 s).

To implement this simulator, the following steps are used:

1. In Eq. (3.47), specify the power σ2
0, maximal Doppler spectral fD, and let

∆τ = 1/(KfD), here K ≥ 1 is a constant. Define the range of τ from −L
to L. Compute the N point rµµ.

2. To perform an FFT on rµµ to get N point Sµµ.

3. Generate N complex Gaussian random variables, normalize the total
power to 1.

4. Multiple the N complex Gaussian random variable by the obtained Doppler
spectrum

√
Sµµ from step 2.

5. Perform an IFFT on the resulting frequency domain signal to obtain the
N point scattered component u = u1 + ju2. The envelope of obtained u
is the simulated Rayleigh fading signal with the proper Doppler spread.
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Fig. 3.6 shows the ACF and its FFT with fD = 20 Hz, σ2
0 = 1, K = 5, ∆τ =

1/(KfD) = 0.01 s, L = 2 s. Based on the discussion in the previous section,
the parameters of the fading process u can be easily calculated. The variance
of u, σ2

u = (2L)σ2
0, the duration of the fading signal 2L = 4 s, and the time

resolution of the fading signal ∆t = ∆τ = 0.01 s.
We now decide that the resolution is not satisfactory with K = 5 and let

K = 10. The time resolution is thus doubled, ∆t = 0.005 s. The envelope of
the simulated µ(t) is shown in Fig. 3.7. The PDF of the envelope is Rayleigh
distributed, and the phase of µ(t) is uniformly distributed. The plot also shows
the CDF of the envelope. The ACF of µ(t) is plotted in Fig. 3.8. Theoretical
values are also plotted for the PDF, CDF and the ACF for the purpose of
verification.

The advantages of this method are obvious. First, it is easy to implement.
Second, the truncation of the spectrum is avoided. Third, a better resolution can
be achieved by increasing the constant K, which means effectively appending
more zeros to the Doppler spectrum. Moreover, the variance and the ACF
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of the simulated u are simply related to the power σ2
0 and the theoretical ACF

specified in step 1: both are simply scaled down by the time duration 2L defined
in step 1. Based on the above discussion and the previous section, it is obvious
that all the properties of the simulated Rayleigh fading signal can be specified
in step 1, e.g., power, Doppler spread, time resolution, and time duration.

Apart from the probability density function, the cumulative distribution
function, the autocorrelation function, and other statistical quantities that char-
acterize the mobile fading channels like level crossing rate (LCR) and average
duration of fades (ADF), are all important for the design of the channel simu-
lator and mobile communication systems.

The level crossing rate, NR, is defined as the expected rate at which the
envelope crosses a specified signal level, R, in the positive direction. In general,
it is given by [41]

NR =

∫ ∞

0

ṙp(R, ṙ)dṙ =
√

2πfDρe−ρ2

, (3.48)

where the dot indicates the time derivative and p(R, ṙ) is the joint density

48



function of r and ṙ at r = R. And ρ = R/Rrms is the value of the specified
level R, normalized to the local rms amplitude of the fading envelope. We
simulate the NR for different K at fD = 90 Hz, L = 10 s and plot the results to
compare with the ideal situation. From Fig. 3.9, the effect of zero-appending is
significant. In this example, curves with K > 10 give satisfactory results which
are close enough to the ideal curve.

The average duration of fades, τ̄ , is defined as the average period of time
for which the received signal is below a specified level R. Let τi be the duration
of the ith fade, then the average duration of fade for a total time interval of
length T is τ̄ =

∑
τi/(NRT ). Like level crossing rate NR, the average duration

of fade can be also expressed as a function of ρ and fD as [41]

τ̄ = eρ2−1/(ρfD

√
2π) (3.49)

Fig. 3.10 shows the simulation of the average duration of fade for different
K at fD = 90 Hz, L = 10 s and the theoretical curve. Like the level crossing
rate, the effect of zero-appending is significant. Again, curves with K > 10 give
satisfactory results which are close enough to the ideal curve. Simulation also
shows that K should not be arbitrarily large with the fixed time duration of 2L.
In the example, overshoot is observed when K > 50 for both the level crossing
rate and the average duration of fades with L = 10 s.

3.7.5 Conclusions

In this section, we present a method to accurately and efficiently simulate
Rayleigh fading channels. The significance of this method is its ease of im-
plementation and greater mathematical tractability of the model parameters.
Some important statistics especially the LCR and ADF of the model are investi-
gated for the verification against the analytical model. Simulation results show
that the channel simulator accurately reproduces all of the important statisti-
cal properties, such as the probability density function (PDF), autocorrelation
(ACF), level crossing rate (LCR) and the average duration of fades (ADF).

3.8 A Frequency-Selective Mobile Radio Chan-
nel with Hyperbolically Distributed Scatter-
ers

In the previous section, we have shown an efficient way to simulate the classical
Jakes or Clarke’s model. Classical models provide information about signal
power level distributions and Doppler shifts of the received signals. Modern
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spatial channel models build on classical understanding of fading and Doppler
spread and incorporate additional information such as angle of arrival (AOA),
time delay spread and array geometries. In this section we investigate a spatial
channel model and construct a frequency-selective geometrical and time-variant
wireless channel model with hyperbolically distributed scatterers for a macrocell
mobile environment. We verify this model against the statistical properties
such as the level-crossing rate (LCR), the average duration of fades (ADF),
the probability density function (PDF), the cumulative distribution function
(CDF), and the autocorrelation functions (ACF) of this model. Simulation
results are verified against the analytical Wide Sense Stationary Uncorrelated
Scattering (WSSUS) channel model.

3.8.1 Introduction

In [78], a space-time geometrical based hyperbolically distributed scatterers
(GBHDS) model for a macrocell mobile environment was proposed. The com-
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bination of stochastic and geometrical assumptions results in a mathematically
tractable and computationally efficient channel model. This model provides
the power of each path, the time-of-arrival (TOA), and the direction-of-arrival
(DOA) of the multipath component as well as the fading effect. The model
enables the simulation of downlink beamforming as well as space diversity con-
cepts and handles both spatially narrowband and wideband signals.

Verification of the statistical properties for this newly proposed GBHDS
model against the analytic fading channel model will be given using the same
methods presented in the previous section. The aim of this work is to extend
previous results and to construct a frequency-selective GBHDS mobile channel
based on previous work [78] [79] [80] [81].

3.8.2 The GBHDS Channel Model

In this section we provide a general description for the space-time geometrical-
based hyperbolically distributed scatterers (GBHDS) model [78]. This model
combined a scalar stochastic fading model for the local scatterers with the geo-
metrical hyperbolic model proposed in [79, 80] for the distribution of the dom-
inant scatterers. The model in [78] assumes that the scatterers are arranged
circularly around the mobile, with the distances between 1) the mobile and
the local scatterers and 2) the local and dominant scatterers, both being dis-
tributed hyperbolically according to an inverse-cosh-squared distribution. This
model provides directional information as well as concerning with mobility issue.
Fig. 3.11 shows the geometry for the GBHDS model. The angle of departure
ψlk is uniformly distributed in the interval [0,2π]. The angle θlk is the direction
of arrival at the base station, while D denotes the distance between the base
station and the mobile station. The mobile is located at the origin. This model
has the following assumptions [78]

• The scatterers were arranged circularly around the mobile, with the dis-
tance between the mobile and the local scatterers rlk and the distance
between the local and dominant scatterers Rlk are both distributed hy-
perbolically.

• Signals received at the base station are plane waves propagating along the
horizon ( there is no vertical component to the signal propagation).

• Scatterers are omnidirectional re-radiating elements.

• The scatterers have identical scattering coefficients.

• The macrocell antenna heights are relatively high and there is no signal
scattering from locations near the base station.
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Figure 3.11: Geometry of the space-time hyperbolic model.

The probability density functions (pdf) of the distances rlk and Rlk for the
kth user in multiuser environment are given by [78]

frlk
(rlk) =

a1

tanh(a1Rls) cosh 2(a1 rlk)

0 ≤ rlk ≤ Rls (3.50)

and

fRlk
(Rlk) =

a2

tanh(a2Rds) cosh 2(a2 Rlk)

0 ≤ Rlk ≤ Rds (3.51)

and
where Rls is the radius of the circle enclosing the local scatterers, and Rds

is the radius of the dominant scatterers circle. The applicable values of a1 and
a2 lie in the interval (0,1). From the spatial probability density functions of
the scatterers in (3.50) and (3.51) we can determine the the DOA, TOA, and
the signal amplitude. A comprehensive study of these models (at theoretical
and simulation levels) as well as their validation with practical data have been
considered. They proved to be more realistic than other models in the literature
when tested against practical data [80, 81].
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3.8.3 Statistical Properties of the GBHDS channel model

To verify the statistical properties of the GBHDS channel, we first plot the
envelope of the Rayleigh process µ(t), shown in Fig. 3.12. The elementary
properties of µ(t) such as the the PDF, CDF and the phase of the Rayleigh
process µ(t) are plotted in Fig. 3.13. We simulated µ(kT ) with a sampling
interval of T = 0.5× 10−4s and sample number of 8000. The remaining model
parameters were maximum doppler frequency fD = 80 Hz, the carrier frequency
fc = 900 MHz. The autocorrelation (ACF) is also plotted in Fig. 3.14 for the
purpose of verification.
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Figure 3.12: The Rayleigh envelope of the simulated GBHDS channel.

The level crossing rate is plotted in Fig. 3.15 which shows that the GBHDS
model give satisfactory results which are close enough to the ideal curve.

The average duration of fades is plotted in Fig. 3.16 which shows the sim-
ulated average duration of fade for the above mentioned parameters with the
theoretical curve. Again, the simulated curve gives satisfactory results which
are close enough to the ideal curve.
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Figure 3.13: The PDF and CDF of µ(t), and the histogram of the fading phase.

3.8.4 Description of the Analytical Model

For digital communication systems, propagation delay differences from multi-
path cannot be ignored when the transmission data rate becomes higher or
symbol period becomes shorter. A multipath channel with differential path de-
lays introduces amplitude and phase distortion is classified as frequency-selective
fading channel.

The baseband input signal sl(t) and the output signal rl(t) of a time-variant
frequency-selective fading channel can be expressed as [64] [89]

rl(t) =
∞∑

n=−∞
cn(t)sl(t− n/W ) (3.52)

where W is the bandwidth covered by the band-pass signal. Therefor, the time-
variant frequency-selective channel can be modelled or represented as a tapped
delay line with tap spacing 1/W and tap weight coefficients {cn(t)}, Hence,
with the truncation by multipath spread Td, the time-varying impulse response
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Figure 3.14: The ACF of the reference model and the simulation model.

for the channel can be deduced from Eq. (3.52) as

c(τ ; t) =
L∑

n=1

cn(t)δ(τ − n/W ) (3.53)

where L = bTdW c + 1 is the number of taps, and cn(t) and τn = n/W are the
complex gains and path delays associated with the taps.

The time-variant tap weights {cn(t)} are complex-valued stationary random
processes with Doppler power spectrum Sc(λ). There are four types of Sc(λ)
specified by COST207 for different path delays [56] [89]. One of the four types,
Jakes or Classical, has been investigated in a previous section. The Jakes
power spectral density only occurs in the case of very short propagation delays
(≤ 0.5 µs). The power spectral density of the taps for longer delays may be
modelled as GAUS1 or GAUS2 (Sum of two Gaussian functions). The power
spectral density for shortest path is modelled as Rice.

We further assume a Wide Sense Stationary Uncorrelated Scattering (WS-
SUS) channel introduced by [6]. Due to the simplicity of WSSUS channel mod-
els, they are of great practical importance and are nowadays almost exclusively
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employed for modelling frequency-selective mobile radio channels [56]. For the
WSSUS channel, the time-frequency correlation function φC(∆f ; ∆t) or the
scattering function S(τ ; λ) solely characterizes its statistical properties. An-
other common assumption is separability of scattering function. We investigate
a mobile radio channel model with separable scattering function to facilitate
the analysis and simulation and to develop some intuitions.

Assume a separable scattering function defined as:

S(τ ; λ) =
1

σ2
0

Sc(λ)φC(τ) (3.54)

where σ2
0 = φC(0; 0). Then the multipath intensity profile is exponential,

φC(τ) =

{
σ2
0

τ0
e
− τ

τ0 , τ ≥ 0,

0, τ < 0.
(3.55)
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Figure 3.16: Normalized durations of fade of the envelopes.

and the Doppler power spectrum is given by

Sc(λ) =

{
σ2
0

πfD

√
1−(f/fD)2

, |f | ≤ fD,

0, |f | > fD.
(3.56)

The associated time-frequency correlation function φC(∆f ; ∆t) can be de-
termined by the double Fourier transform of Sc(τ ; λ)

φC(∆f ; ∆t) =

∫ ∫
S(τ ; λ)e−j2π∆fτej2π∆tλdτdλ

=
σ2

0

1 + j2π∆fτ0

· J0(2πfD∆t)

(3.57)

For the purpose of demonstration, we let σ2
0 = 0.5, τ0 = 0.05 s, and fD =

5 Hz, and plot the absolute value of time-frequency correlation function |φC(∆f ; ∆t)|
and the scattering function Sc(τ ; λ) as shown in Fig. 3.17 and Fig. 3.18, respec-
tively. The significance of scattering function or time-frequency correlation
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Figure 3.17: Time-frequency correlation function |φC(∆f ;∆t)| with σ2
0 = 0.5, τ0 =

0.05 s, and fD = 5 Hz.

function is that important parameters such as the multipath spread Td can be
derived.

The above discussion will serve as the basic principle of our simulation for the
frequency-selective mobile channels. In simulation, we take non-ideality into ac-
count. For example, we may use the multipath intensify profile (or power delay
profile) of the typical urban defined (discrete in value and approximately expo-
nential) by COST207 instead of Eq. (3.55), and the Doppler power spectrum
may be a combination of the four types by COST207 mentioned previously.
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3.8.5 A Frequency-Selective GBHDS Channel Model

Let T = 1/W be the transmission symbol period. If

Td ¿ T (3.58)

holds, then the frequency-selectiveness or time dispersion as an effect of propa-
gation delay differences can be ignored.

Based on the discussion in the previous sections, we develop a frequency-
selective GBHDS mobile channel model. We simulate the Typical Urban (TU)
(non-hilly) channel defined by COST207 [89] with all the time-variant taps
{cn(t)} experience Doppler spectrum generated from GBHDS model. The sim-
ulation can be readily extended to a combination of taps with different types of
Doppler spectra.

The power delay profile simulated is shown as in the following table:

Delay Fractional Doppler
µs Power Category
0.0 0.092 Jakes
0.1 0.115 Jakes
0.3 0.231 Jakes
0.5 0.127 Jakes
0.8 0.115 Jakes
1.1 0.074 Jakes
1.3 0.046 Jakes
1.7 0.074 Jakes
2.3 0.051 Jakes
3.1 0.032 Jakes
3.2 0.018 Jakes
5.0 0.025 Jakes

The simulation parameters for the GBHDS model are given as follows: the
distance between mobile and scatterer is 1000 m, the light seed is 3× 108 m/s,
the carrier frequency is 900 MHz, the maximum Doppler frequency is 90 Hz.

The statistical properties of the time-variant tap weights {cn(t)} verified
are the probability density function, the cumulative distribution function, the
autocorrelation function, the level crossing rate (LCR) and average duration of
fades (ADF).

Fig. 3.19 shows the input BPSK signal and the output BPSK signal with
Td = 5 µs and T = 20 µs. In this case of Td ¿ T , the time dispersion caused
by the frequency-selective GBHDS mobile channel is negligible. As shown in
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Figure 3.19: BPSK of symbol with period T = 20 µs, input (top), and output
(bottom), dispersed by channel with multipath spread Td = 5 µs.

Fig. 3.20, with Td = 5 µs and T = 4 µs, the time dispersion by the frequency-
selective GBHDS mobile channel can no longer be ignored as the channel intro-
duces amplitude and phase distortion into the signal.

3.8.6 Conclusion

In this section, we simulate a frequency-selective GBHDS channel. The simu-
lated model is verified against analytical model. Important statistical charac-
teristics such as amplitude and phase probability density function (pdf), also
the higher-order statistics such as the level crossing rate (LCR) and the average
duration of fades (ADF) are verified when constructing the frequency-selective
GBHDS channel. The results provide more support to the GBHDS model and
will be useful for simulating other practical channels, such as MIMO channels,
and space-time-selective mobile fading channels.
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Figure 3.20: BPSK of symbol period T = 4 µs, input (top), and output (bottom),
dispersed by channel with multipath spread Td = 5 µs.

3.9 Gauss-Markov Channel Model

3.9.1 Introduction

With an appropriate channel model, it is possible to design simple, effective
receivers. One such modelling approach is to approximate the fading process
experienced in the mobile wireless channel as a Gauss-Markov, and hence dis-
crete, random process. In doing so, well-known decoding techniques such as
the Viterbi algorithm (VA) can immediately be applied to decode the trans-
mitted information. The Gauss-Markov approximation of the fading channel
is also employed for channel estimation/tracking algorithms and evaluation of
multiuser diversity algorithms in the context of cellular networks [53] [73] [74].
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Figure 3.21: A Gauss-Markov approximation of Bessel autocorrelation with fD =
66.67 Hz and fs = 1000 Hz.

3.9.2 A Gauss-Markov Approximation of the Rayleigh Fad-
ing Channel

We have seen from the previous discussion that the transmitted sequence x[m]
passes through a discrete time frequency non-selective Rayleigh fading channel
(multipath spread Tm ¿ 1/W ) with AWGN, the received discrete-time base-
band signal y[m] is

y[m] = h[m]x[m] + w[m] (3.59)

where h[m] ∼ CN (0, 1) is the Rayleigh distributed fading coefficient and w[m] ∼
CN (0, 1) is a complex white Gaussian noise sample. From (3.38), the auto-
correlation function of the sequence {h[m]}, now regarded as a random process,
is

R[n] = J0(2nπfDTs) (3.60)

Exact modelling of the time evolution of h[m] with an autoregressive moving-
average (ARMA) model is impossible because the autocorrelation functions are
non-rational [53]. Accurate but large-order AR models for the fading channel are
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possible but the first few correlation terms are more important for the design
of the receiver. Low-order AR models, even a simple Gauss-Markov model,
matching the Bessel autocorrelation of (3.38) well for small lags, can capture
most of the channel dynamics and lead to effective tracking algorithms. A first-
order (Gauss-Markov) approximation for the variation of h[m] is to assume that
h[m] varies according to the auto-regressive model:

h[m + 1] =
√

1− δh[m] +
√

δw[m + 1], m ≥ 0, (3.61)

with {w[m]} a sequence of i.i.d. CN (0, 1) random variables independent of
h[0] ∼ CN (0, 1). The coherence time of the channel is controlled by the param-
eter δ. The autocorrelation function of the process in (3.61) can be obtained
as

R̃[n] = (
√

1− δ)|n| (3.62)
A detailed derivation of (3.62) can be found in the Appendix.

Using (3.60) and (3.62), we establish the following relation by letting R[1] =
R̃[1]

δ = 1− [J0(2πfDTs)]
2 (3.63)

Fig. 3.21 compares the Bessel autocorrelation with its Gauss-Markov ap-
proximated autocorrelation for different Ts (or fs = 1/Ts) with fD = 66.67 Hz.
It can be observed that the Gauss-Markov model matches the Bessel model well
for small lags and the coherence time Tc is inversely proportional to the Doppler
spread Ds

Tc =
1

4Ds

, (3.64)

which is approximately 2 ms here. To further verify the result, a comparison
plot is given in Fig. 3.22 for the amplitude of the fading sequences generated
from GBHDS model and the Gauss-Markov approximation. Resemblance of
time evolution can be observed. Further study may be extended to higher order
statistics such as level-crossing rate (LCR) and average duration of fades (ADF).

3.10 Conclusions
In this chapter we presented fundamentals of channel modelling and developed
an efficient channel simulator suitable for mobile communication. We analyzed
the sadistical characteristics of the fading channel model and its capacity. We
had results which proved that the diversity is an efficient way to improve the
capacity and general performance of wireless communication systems.

Based on these studies, we constructed a frequency-selective channel model
with hyperbolically-distributed scatterers for fading channel. We verified this
model against the theoretical statistical properties.
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(b) GBHDS, fs = 1 MHz.
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(c) Gauss-Markov, fs = 1 kHz.
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(d) Gauss-Markov, fs = 1 MHz.

Figure 3.22: Amplitude plots of fading sequences generated by GBHDS model
and the Gauss-Markov approxmiation with Doppler frequency fD = 66.67 Hz.
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We also developed a Gauss-Markov approximation to the proposed model
for development of channel estimation/tracking algorithms and evaluation of
multiuser diversity algorithms.
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Chapter 4

Fading Mitigation Techniques

4.1 Introduction
An efficient way to combat multipath fading and dramatically improve the per-
formance over fading channels is diversity. Diversity techniques can be generally
identified as:

1. Frequency diversity, one example is Orthogonal Frequency Division Multi-
plexing (OFDM); Another example is code division multiple access (CDMA),
which uses Rake receiver to extract frequency diversity.

2. Time diversity, such as coding and interleaving;

3. Spatial diversity, can be obtained by multiple transmit antennas or receive
antennas (MIMO).

MIMO systems employing various techniques promise to boost the capacity
of the communication and at the same time simplify the structure of the trans-
mitter/receiver. For example, space-time coding exploits spatial diversity and
results in a simple receiver structure [2]. Due to its many attractive features,
this signalling technique has been adopted in several wireless standards for
code division multiple access (CDMA) communications such as WCDMA and
CDMA2000. Wireless LAN standards, with OFDM to combat fading channels,
also employ spatial diversity at the mobile terminal and access point.

4.2 Orthogonal Frequency Division Multiplexing
(OFDM)

Orthogonal Frequency Division Multiplexing (OFDM) is a promising technique
for achieving high data rate and combating multipath fading in wireless com-
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munications. OFDM systems are multi-carrier systems. In OFDM systems,
transmit precoding is performed to convert the ISI channel into a set of non-
interfering, orthonormal sub-carriers, each experiencing narrowband flat fading.

4.2.1 Inter-Symbol Interference (ISI) Elimination

In the previous chapter, we have established and simulated the discrete-time
baseband model for the mobile fading channel. The input/output relation is

y[m] =
∑

`

h`[m]x[m− `] + w[m]. (4.1)

which is an LTV system with the sequence of {h`[m]} for any given ` modelled
as a complex circular symmetric process independent across the taps. Also, the
simulation shows that if the delay spread Td is greater than the symbol period T ,
ISI occurs. The basic idea behind OFDM is to divide the available bandwidth
into subcarriers and consequently the symbol period T becomes longer so that
ISI is negligible. In other words, the frequency-selective channel is decoupled
into flat fading subchannels. With the truncation of the multipath delay spread
Td, the channel has a finite number of taps which can be defined as L = TdW .
Further assuming the transmission happens within the coherence time Tc, we
can rewrite the channel model in (4.1) as an LTI system

y[m] =
L−1∑

`=0

h`x[m− `] + w[m]. (4.2)

The OFDM scheme performs several operations to convert the ISI channel
into orthogonal subchannels: cyclic prefix, IDFT/DFT and eigenvalue decom-
position. Consider a block of input symbols of length N :

x = [x[0], x[1], ..., x[N − 1]]t,

and denote the output of the channel (4.2) as

y = [y[0], y[1], ..., y[N − 1]]t.

Also the N i.i.d CN (0, N0) random variables of w[m] form a standard circular
symmetric Gaussian random vector w.

If we prefix the block x cyclicly to create a new input block of length N+L−1
as

x̃ = [x[N − L + 1], x[N − L + 2], ..., x[N − 1], x[0], x[1], ..., x[N − 1]]t,
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i.e., a cyclic prefix of length L − 1 symbols is inserted. To remove the ISI,
the length of the cyclic prefix has to be greater than the channel tap length L.
In wireless LAN (WLAN) standard such as IEEE 802.11a, the duration of the
cyclic prefix is referred as guard interval, therefore the guard interval has to last
longer than the multipath spread Td. For analysis, we generally assume they
are equal.

Eq. (4.2) can be expressed as

y = H̃x + w (4.3)

where

H̃ =




h0 0 . 0 hL−1 hL−2 . h1

h1 h0 0 . 0 hL−1 . h2

. . . . . . . .
0 . 0 hL−1 hL−2 . h1 h0


 (4.4)

is a circulant matrix of dimension N × N . By adding cyclic prefix a Toeplitz
channel matrix is converted to a circulant channel matrix. Circulant matrices
have many interesting and useful properties. The eigenvalues of such matrices
can easily be found exactly [30]. Investigation of the circulant channel matrix
H̃ will further simplify the problem. Define the operator matrix U, which is
the DFT matrix with the entries given by

ukn =
1√
N

exp

(−j2πkn

N

)
, k, n = 0, 1, ..., N − 1, (4.5)

and the IDFT matrix U∗ is the complex conjugate transpose of U. The DFT
matrix U is unitary, i.e.,

UU∗ = U∗U = I, (4.6)

The circulant matrix H̃ can be eigen-decomposed as

H̃ = U∗ΛU. (4.7)

Denote the first column in (4.4) the channel vector h = [h0, h1, ..., hL−1, 0, ..., 0]t,
we have the eigenvalues in the diagonal matrix Λ = diag(λ0, ..., λN−1) calculated
as

λm =
N−1∑

k=0

h`exp

(−j2πkm

N

)
, m = 0, 1, ..., N − 1. (4.8)

We notice the similarity between (4.5) and (4.8). We come to the conclusion
that

H̃ = U∗ΛU

= U∗ · diag(
√

NUh) ·U
(4.9)
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that is, the eigenvalues of H̃ are the DFT coefficients of the channel h. Eq. (4.3)
can thus be written as

y = H̃x + w

= U∗ΛUx + w
(4.10)

At the receiver, the output vector vector y is applied the DFT matrix U to
obtain the vector ỹ, and at the transmitter, the vector x is obtained by applying
IDFT U∗ to the actual data symbols d̃ = [d̃0, d̃1, ..., d̃N−1]

t. The final output
vector ỹ and the actual data vector d̃ are related through

ỹ = Λd̃ + w̃ (4.11)

where w̃ = Uw has the same distribution as w, i.e., a vector of i.i.d. CN (0, N0)
random variables. The above operations effectively eliminate ISI and convert
the frequency-selective channel into narrowband parallel sub-channels. The
capacity is therefore the familiar form:

C = max
Pn

N−1∑
n=0

log

(
1 +

|λn|2Pn

N0

)
bits/OFDM symbol, (4.12)

subject to the power constraint
∑

n P ≤ NP .
We see that while the channel knowledge is not necessary at the transmitter,

it is needed at the receiver for the estimation of the data symbol vector d̃ in
Gaussian noise w̃. In the case that channel information is available at the
transmitter, waterfilling strategy can be applied to achieve the maximum rate
of reliable communication.

The drawback of adding cyclic prefix is introducing overhead. To overcome
this a large block size N is preferable. The block size N is constrained by the
coherence time Tc of the channel and can not be arbitrary large if the channel
is frequency-selective slowly time-varying as in (4.2). For a slowly time-varying
channel, the coherence time Tc is much larger than the delay spread Td, the
coherence block length TcW is thus much larger than the multipath length
L = TdW . To approximate an LTV channel by (4.2) while keeping the overhead
small, the block length N is constrained as:

TdW ¿ N ¿ TcW.

For example, the indoor wireless channels in WLAN standards are well char-
acterized by frequency-selective slowly time-varying channels. For reference, a
list of key parameters of the OFDM standards regarding our discussion here is
listed in Table 4.1.
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Table 4.1: Key Parameters of the OFDM Standards

Number of Subcarriers 52
Number of Pilot Tones 4
OFDM Symbol Duration 4 µs
Guard Interval 800 ηs
Subcarrier Spacing 312.5 kHz
Signal Bandwidth 16.66 MHz

In the case of a macrocell environment discussed in the previous chapter,
the OFDM block size N may be chosen by calculating the coherence time Tc

of the channel. This can be illustrated by plotting the amplitude of Rayleigh
fading sequence generated by the GBHDS model. It can be observed that
the Rayleigh fading sequence in Fig. 4.1 undergoes different variations. The
simulation parameters are typical macrocell channel with carrier frequency fc =
900 MHz, velocity of mobile v = 64 km/h, Doppler shift fD = 50 Hz, the
distance between transmitter and receiver d = 1 km.
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Figure 4.1: Amplitude of a Rayleigh fading sequence.

In the example, the time interval needed for the fading sequence to undergo
a significant change as large as 30 dB is a few milli-seconds. To be specific, the
coherence time is inversely proportional to the Doppler spread Ds [92]

Tc =
1

4Ds

,

and Tc is 2.5 ms for Ds = 100 Hz. With sampling frequency fs = 1 MHz, the
variation of the fading sequence is significantly slow. This indicates that if the
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OFDM symbol duration is properly chosen, for example 4 µs in OFDM WLAN
standards, the assumption of a frequency-selective slowly time-varying channel
is valid.

4.2.2 Implementation of OFDM Systems

One of the key advantages of OFDM systems is that it can be implemented with
low cost by applying a discrete-time signal to an ideal D/A converter. Again
we assume the transmission is passband-limited to W , the symbol duration for
the information sequence is therefore T = 1/W . Consider the following set of
orthonormal pulses:

gn(t) =
1√
Tos

ej2πnt/Tosw(t), for n = 0, ..., N − 1, (4.13)

where w(t) = u(t) − u(t − Tos) is a rectangular pulse window over [0, Tos) and
Tos = NT is the duration of one OFDM symbol. To show the pulses in (4.13) are
orthonormal, the Fourier transform of gn(t), denoted as Gn(f), is calculated and
plotted in Fig. 4.2. The transmission bandwidth W is divided into N orthogonal
subcarriers or tones, and each tone occupies a bandwidth of W/N . The data
symbols are grouped into a block d̃ = [d̃0, d̃1, ..., d̃N−1]

t. Instead of transmitting
at the rate of W , each information symbol in the block is modulated on a
subcarrier in (4.13) and transmitted at a much slow rate of W/N . As the N
information symbols in the block are transmitted simultaneously, the overall
transmission rate remains unchanged as W . A one-shot OFDM transmitter
sends the baseband signal:

x(t) =
N−1∑
n=0

d̃ngn(t). (4.14)

The passband signal xp(t) with carrier frequency fc can be conveniently
expressed by:

xp(t) = <{ej2πfctx(t)}

= <
{

1√
Tos

N−1∑
n=0

d̃nexp

(
j2π

(
fc +

n

Tos

)
t

)}
, t ∈ [0, Tos].

(4.15)

As the pulses in (4.13) are not bandlimited due to the rectangular window,
in practical, gn(t) is approximated by [5]

g̃n(t) =
1√
N

N−1∑

k=0

exp

(
j2πnk

N

)
p(t− kTos/N), for n = 0, ..., N − 1, (4.16)
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Figure 4.2: |Gn(f)|, spectrum of gn(t) for n=0,1,2,3,4. The OFDM symbol duration
Tos is normalized to one.

where p(t) is an ideal unit-energy reconstruction filter with a sampling period
T :

p(t) =
1√
T
sinc

(
t

T

)
(4.17)

where the sinc function is defined as sinc = sin(πt)/(πt).
The approximation is demonstrated in Fig. 4.3 with n = 4, N = 16 and Tos

normalized to 1. It can be also shown that g̃n(t) is bandlimited to |f | < N/(2Tos)
with n taking values from 0 to N − 1.
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Figure 4.3: Approximating g4(t) by g̃4(t), N = 16, n = 4 and Tos = 1.

With (4.16), (4.14) can be expressed as:

x(t) =
N−1∑
n=0

d̃ng̃n(t)

=
N−1∑
n=0

d̃n
1√
N

N−1∑

k=0

exp

(
j2πnk

N

)
p(t− kTos/N)

=
N−1∑

k=0

{
1√
N

N−1∑
n=0

d̃n exp

(
j2πnk

N

)}
p(t− kTos/N)

=
N−1∑

k=0

x[k]p(t− kTos/N).

(4.18)

where x[k] is the kth inverse DFT coefficient of the vector d̃. This result indi-
cates a simple implementation scheme of an OFDM signal of (4.13). First we
perform an IDFT of the data symbols and then modulate the obtained coeffi-
cients to unit-energy pulses shown in Fig. 4.4. Another observation is that the
symbols x[k] propagate through the channel serially at the symbol rate of 1/T
whereas effectively the data symbols d̃n transmit though narrowband parallel
subchannels at the overall rate of N(1/Tos) = 1/T .
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Figure 4.4: Unit-energy pulses p(t− kTos), k = 0, ..., 15, with Tos normalized to 1.

4.3 Spatial Diversity
Spatial diversity or antenna diversity can be obtained by placing multiple an-
tennas at the transmitter and/or the receiver. A system that employs multiple
antennas at both transmitter and receiver is now termed as a MIMO system.
Channels with multiple transmit and multiple receive antennas are MIMO chan-
nels. We will see that diversity is an efficient way to combat fading channels
and in addition to providing diversity (improvement of the reliability), MIMO
channels also provide additional degrees of freedom (increase of the capacity)
for communication. In other words, the benefits of MIMO communication are
twofold: a multiplexing gain and a diversity gain. Investigation of the tradeoff
between these two types of gains leads to optimal space-time coding schemes
[99] [100].

There are three categories of MIMO techniques based on diversity-multiplexing
tradeoff [98] :

1. This kind of schemes improves the power efficiency by maximizing spatial
diversity, such as space-time block codes (STBC);
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2. A layered approach is used to increase capacity, such as the vertical-Bell
Laboratories layered space-time (V-BLAST);

3. This type needs the channel knowledge at the transmitter to decompose
the channel matrix using singular value decomposition (SVD) and uses
these decomposed unitary matrices as pre- and post-filters at the trans-
mitter and receiver to achieve capacity gain.

4.3.1 Selection Combining and Maximal-Ratio Combin-
ing: A Simulation Study

Fundamentally, diversity techniques improve the system performance over a fad-
ing channel by changing its statistical characteristics. We have shown that the
input/output relation over a slow flat Rayleigh fading channel can be expressed
as

y[m] = hx[m] + w[m], (4.19)

where h ∼ CN (0, 1).
Assuming a single input multiple output (SIMO) channel with a selection

combiner at the receiver using L receive antennas, and the received signal of
the `th diversity branch is defined by

y`[m] = h`x[m] + w`[m], ` = 1, 2, ..., L. (4.20)

and by the design, all h` are i.i.d CN (0, 1). Let α` = |h`|. Under the assumption
of Rayleigh fading α` is Rayleigh distributed and α2

` is exponentially distributed.
Let γ` denote the instantaneous signal-to-noise ratio measured at the output

of the kth receiver during the transmission of a given symbol. We may write

γ` =
Eb

N0

α2
` ` = 1, 2, ..., L (4.21)

where Eb is the energy per bit and N0 is the one-sided noise spectral density.
Since all the α2

` have the same mean, γav, we may express the probability density
functions of the random variables Γ` pertaining to the individual branches as

fΓ`
(γ`) =

1

γav

exp
(
− γ`

γav

)
γ` ≥ 0 and ` = 1, 2, ..., L. (4.22)

By selection combining, we have a random variable Γsc described by the
value

γsc = max{γ1, γ2, ..., γL}. (4.23)
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Figure 4.5: Simulation of selection combiner, the probability density function
of Γsc for different number L of receive antennas (L = 1, 2, 3, 4, 6, 10) and Eb/N0

is normalized to 1.

The probability of density of Γsc can be derived as [64] [34]

fΓ(γsc) =
L

γav

exp
(
− γsc

γav

)[
1− exp

(
− γsc

γav

)](L−1)

γsc ≥ 0 (4.24)

Fig. 4.5 plots the simulation result of fΓ(γsc) for L = 1, 2, 3, 4, 6, 10 with
Eb/N0 normalized to 1. From the figure, the following observations can be
made:

1. As expected, when single antenna, L = 1, fΓ(γsc) is exponentially dis-
tributed. As the number of diversity branches, L, is increased, the prob-
ability density function fΓ(γsc) moves progressively to the right.

2. fΓ(γsc) approaches Gaussian as L is increased.

In other words, a slow flat Rayleigh fading channel is modified into a Gaus-
sian channel through the use of selection combining, provided that the number
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L of diversity channels is sufficiently large. This modification is favorable and
is a "digital communication theorist’s dream" [34] because the classic theory of
communication can now be applied.
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Figure 4.6: Simulation of maximal-ratio combiner, the probability density function
of Γmrc for different number L of receive antennas (L = 1, 2, 3, 4, 6, 10) and Eb/N0 is
normalized to 1.

The maximal-ratio combiner produces an instantaneous output signal-to-
noise ratio that is the sum of the instantaneous signal-to-noise ratios of the
individual branches

γmrc =
L∑

`=1

γ` (4.25)

that is, γmrc is equal to the sum of L exponentially distributed random variables
for a slow flat Rayleigh fading channel. Unlike selection combiner chooses the
maximum value and discards other information, it takes consideration of avail-
able information from all the branches. The distribution of γmrc is (chi-square
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with 2L degrees of freedom)

fΓ(γmrc) =
1

(L− 1)!

γL−1
mrc

γL
av

exp
(
−γmrc

γav

)
γmrc ≥ 0 (4.26)

Fig. 4.6 plots the simulation result of fΓ(γmrc) for L = 1, 2, 3, 4, 6, 10 with Eb/N0

normalized to 1. Similar observation can be made to those for the selection
combiner except that the probability density function is scaled differently by L.
A practical example of maximal-ratio combiner is Rake receiver employed by
CDMA system which combines the signals from different delay paths. Further
analysis shows that the probability of error of system employing maxima ratio
combiner decreases inversely with the Lth power of the SNR [64].

4.3.2 Capacity of Fading Channels: the Diversity Gain

We have shown diversity increase the system performance by changing the chan-
nel statistics. In this section we investigate the same problem from a more fun-
damental point of view. We extend the results of ε-outage capacity for signal
antenna flat fading channel in (3.22) to multiple receive antennas. Again we
consider a SIMO channel with one transmit antenna and L receive antennas:

y`[m] = h`x[m] + w`[m] ` = 1, 2, ..., L, (4.27)

where h` is i.i.d. CN (0, 1) but remains constant for all time, and w`[m] is
CN (0, N0) additive Gaussian noise independent across antennas. Assuming a
perfect channel estimation at the receiver, i.e., the channel vector h = [h1, ..., hL]t

is known to the receiver, (4.27) can be converted to an AWGN channel with
sufficient statistic for detecting x[m]

ỹ[m] = ‖h‖2x[m] + h∗w[m], (4.28)

where the random variable X = ‖h‖2 is distributed as Chi-square with 2L
degrees of freedom

fX(x) =
1

(L− 1)!
xL−1e−x, x ≥ 0 (4.29)

In a similar fashion to (3.29), the outage probability can be obtained as

pout(R) = P{log(1 + ‖h‖2SNR < R}

= P{‖h‖2 <
2R − 1

SNR
}

≈ (2R − 1)L

L!SNRL
at high SNR.

(4.30)
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Obviously, (3.29) is the special case of (4.30) with L = 1. We see a gain from
diversity: the outage probability now decays like 1/SNRL.

An alternative way to see this performance gain from diversity is the ε, which
can be found as (cf. (3.33))

Cε = log(1 + F−1(1− ε)) bits/s/Hz,

with F the complementary cumulative distribution function of the random vari-
able X = ‖h‖2, i.e., F (x) = P{‖h‖2 > x}. The cumulative distribution function
(CDF) of X with distribution of (4.29) is

FX(x) = 1− e−x

L−1∑

k=0

1

k!
xk, x ≥ 0, (4.31)

so that the complementary CDF of X is

F (x) = e−x

L−1∑

k=0

1

k!
xk, x ≥ 0. (4.32)

This result can be verified again the result obtained by the single antenna
system.

To find out Cε, we have to solve this equation for different L:

e−x

L−1∑

k=0

1

k!
xk = 1− ε, (4.33)

which can be solved numerically by Newton’s method [71]. The ε-outage capac-
ity, normalized by AWGN channel capacity Cawgn = log(1 + LSNR), is plotted
in Fig. 4.7. The improvement on outage capacity by diversity is significant. At
SNR = −10 dB, the outage capacity is increased from 1% (L = 1) to more than
50% (L = 5).

We have investigated the performance gain by L-fold receive diversity. The
transmit diversity gain can be investigated in the same manner.
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Figure 4.7: ε-outage capacity with L-fold receive diversity, as a fraction of the AWGN
capacity log(1 + LSNR), for ε = 0.01 and different L.
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4.3.3 MIMO Channel Modelling

In the previous section, we have seen that multiple transmit or multiple re-
ceive antennas can provide a diversity gain or a power gain. With a MIMO
channel having both multiple transmit and multiple receive antennas, a degree-
of-freedom gain can be produced. This is achieved by spatially multiplexing
several data streams onto the MIMO channel and consequently the capacity is
increased. In this section, we first analyze the capacity of the MIMO channel
via singular value decomposition and find the analogy between MIMO channel
and OFDM parallel channels. We then model the MIMO channel in the angular
domain which can be extended to a statistical model.

A narrowband time-invariant wireless channel with nt transmit and nr re-
ceive antennas is described by an nr by nt deterministic matrix H. For wideband
system, the multipath characteristic of the environment causes the MIMO chan-
nel to be frequency-selective. Assuming that the transmission occurs within the
coherence time Tc, we consider the time-invariant frequency-selective MIMO
channel:

y[m] =
L−1∑

`=0

H`x[m− `] + w[m]. (4.34)

where x[m] ∈ Cnt , y[m] ∈ Cnr , and w[m] ∼ CN (0, N0Inr) denote the transmitted
signal, received signal and white Gaussian noise respectively at the symbol time
m. The channel matrix H` ∈ Cnr×nt . An appropriate OFDM transmission and
reception scheme can transform this frequency-selective MIMO channel into a
set of parallel frequency-flat MIMO channels

ỹn = H̃nx̃n + w̃n. n = 0, ..., N − 1 (4.35)

This combination of MIMO and OFDM boosts capacity and reduces receiver
complexity. Consequently, the analysis can be focused on the following time-
invariant frequency-flat MIMO channel model

y = Hx + w, (4.36)

where time index is dropped for simplicity. The MIMO channel can be converted
into equivalent parallel channels by singular value decomposition (SVD). Let the
SVD be given by H = UΛV∗, then U and V are unitary and Λ ∈ Rnr×nt is
a rectangular matrix whose diagonal elements are non-negative real numbers
and whose off-diagonal elements are zero, i.e. Λ = diag(λ1, λ2, ..., λnmin

, 0, ..., 0),
where nmin := min(nt, nr). The MIMO channel (4.36) can then be rewritten as
a parallel Gaussian channel:

ỹ = Λx̃ + w̃ (4.37)
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where ỹ = U∗y, x̃ = V∗x, and w̃ = U∗w. Since U is unitary, w̃ has the same
distribution as w, and ‖x̃‖2 = ‖x‖2. Thus the pre- and post-possessing will not
change the signal-to-noise ratio. The capacity of the parallel Gaussian channel
(4.37) is

C = max
Pi

nmin∑
i=1

log

(
1 +

λ2
i P

∗
i

N0

)
bits/s/Hz, (4.38)

where P ∗
1 , ..., P ∗

nmin
are the waterfilling power allocations:

P ∗
i =

(
µ− N0

λ2
i

)+

, (4.39)

with µ chosen to satisfy the total power constraint
∑

i P
∗
i = P . This SVD

decomposition structure is analogous to the decomposition of a circulant channel
matrix in the OFDM system that we have discussed previously except that SVD
decomposition is channel realization dependent and that channel knowledge at
transmitter is necessary.

We have seen that a MIMO channel provides nmin spatial degrees of free-
dom. Mathematically, the rank and the condition number (maxiλi/miniλi) of
H determines the performance of a MIMO channel. A good MIMO channel
model should therefore capture the essence of the spatial degree of freedom and
reflect the condition of the physical environment. We investigate the MIMO
model with angular domain representation shown in [76] [92].

Consider the time-invariant frequency-flat MIMO channel in (4.36). The nt

transmit and nr receive antennas are placed in uniform linear arrays of normal-
ized lengths Lt and Lr, respectively. The normalization is by the wavelength
λc of the passband transmitted signal, i.e., the physical length of the transmit
antenna array is Ltλc and the physical length of the receive antenna array is
Lrλc.

Suppose that there is an arbitrary number of physical paths between the
transmitter and the receiver; the ith path has an attenuation of ai, makes an
angle of φti (Ωti := cos φti) with the transmit antenna array and an angle of
φri (Ωri := cos φri) with the receive antenna array. The channel matrix H is
given by

H =
∑

i

ab
i er(Ωri)er(Ωti)

∗ (4.40)

where,

ab
i = ai

√
ntnr exp

(
− j2πd(i)

λc

)
,
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Figure 4.8: Lr = 2, nr = 2, different ∆r and k.

er(Ω) :=
1√
nr




1
exp(−j2π∆rΩ)

...
exp(−j2π(nr − 1)∆rΩ)


 , (4.41)

er(Ω) :=
1√
nr




1
exp(−j2π∆rΩ)

...
exp(−j2π(nr − 1)∆rΩ)


 . (4.42)

Also, d(i) is the distance between transmit antenna 1 and receive antenna 1
along path i. The vector et(Ω) and er(Ω) are, respectively, the transmitted
and received unit spatial signatures along the direction Ω. Examples of the
beamforming patterns of the receive angular basis vectors er(k/Lr) is shown in
Fig. 4.8, 4.9, and 4.10 with k = 0, ..., 7 for comparison.
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Figure 4.9: Lr = 2, nr = 4, different ∆r and k.
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Figure 4.10: Lr = 2, nr = 8, different ∆r and k.
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Let x and xa be the nt-dimensional vector of transmitted signals from the
antenna array and its angular domain representation respectively, they are re-
lated by

x = Utx
a, xa = U∗

tx, (4.43)

where the entry of Ut is

1√
nt

exp

(−j2πkl

nt

)
k, l = 0, ..., nt − 1. (4.44)

Similarly define the transformation for the received signal

y = Ury
a, ya = U∗

ry, (4.45)

where, the entry of Ur is

1√
nr

exp

(−j2πkl

nr

)
k, l = 0, ..., nr − 1. (4.46)

With the above definition, the MIMO channel described in (4.36) can be
equivalently represented by

ya = U∗
rHUtx

a + U∗
rw,

= Uaxa + wa.
(4.47)

We hence have an angular domain representation of the matrix H:

Ha = U∗
rHUt. (4.48)

Some simulation results of Ha are shown in Fig. 4.11. It can be observed
that how angular spread contributes to Ha. And we can also conclude that
in a rich scattering environment, i.e., there exists a large number of physical
paths, the Central Limit Theorem can be invoked and the entries of Ha can be
modelled as complex circular symmetric Gaussian variables. Further discussion
about Ha can be extended to the correlation of the entries, degree of freedom
etc.
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Figure 4.11: Some examples of Ha.

4.4 Conclusions
In this chapter we presented fading mitigation techniques, including OFDM,
MIMO Beamforming. We analyzed the channel capacity gain obtained by these
techniques. We studies and constructed a MIMO channel model based on an-
gular domain representation.
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Chapter 5

Time-Frequency Signal Analysis
and Blind Source Separation

5.1 Introduction to Blind Source Separation
Blind Source Separation (BSS) or blind signal separation is very closely related
to the method called Independent Component Analysis (ICA). A source means
here an original signal, i.e., independent component, like the speaker in the
cocktail-party problem. Blind means that we know very little, if anything, of
the mixing matrix, and make very weak assumptions on the source signals.
ICA is one method, perhaps the most widely used, for performing blind source
separation. ICA is a very general-purpose statistical technique in which ob-
served random data are expressed as a linear transform of components that are
statistically independent from each other.

The motivation to investigate blind source sedation is that communication
schemes provide several possibilities for applying ICA and BSS in a meaning-
ful way. The time-invariant frequency-selective channel described by (4.34) is
termed as convolutive mixtures in the domain of ICA/BSS. Mathematically
the CDMA signal model can be cast in the form of a noisy matrix ICA model
and ICA/BSS provides a low complexity minimization approach for estimating
fading channels [1] [39].

A classical BSS method is based on maximization of non-Gaussianity. Kur-
tosis is used to measure non-Gaussianity. The fundamental idea is that since
a sum of even two independent random variables is more Gaussian than the
original variables. The whitening makes the variables closer to Gaussian. The
whitening transformation is a subspace method. The subspace method is math-
ematically clean and elegant. The use of eigenvectors to characterize the signal
and noise portions of the observations is one of the cornerstones of modern
statistical signal processing.
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An alternative approach for BSS is to use time frequency analysis. The
advantage of time frequency based method is its ability to recover the non-
stationary signals. Moreover, the effects of spreading the noise power while
localizing the source energy in the time frequency (t-f) plane amounts to in-
creasing the signal to noise ratio (SNR) and hence improved performance.

5.2 Gaussian Variables are Forbidden
A n-dimensional random vector x is said to be Gaussian if the probability
density function of x has the form

px(x) =
1

(2π)n/2(detCx)1/2
exp

(
−1

2
(x−mx)

tC−1
x (x−mx)

)
, (5.1)

where mx = E{x} is the mean vector and Cx = E{(x−mx)(x−mx)
t} is the

covariance matrix.
Consider an example of two-dimensional random vector x = (x1, x2)

t. As-
sume both x1 and x2 are Gaussian random variables with zero-mean and vari-
ance is 1. We have mx = 0, and

Cx = E{xxt}

= E
[

x2
1 x1x2

x2x1 x2
2

]

=

[
1 0
0 1

]
,

therefore, we have

detCx = det

[
1 0
0 1

]
= 1,

and C−1
x = Cx. Substituting all the results into (5.1), we have

px(x) =
1

2π
exp

(
−x2

1 + x2
2

2

)
.

With the above result, we now discuss the problem why Gaussian variables
are forbidden in ICA/BSS.

Let x and y are n-dimensional random vectors that are related by the vector
mapping

y = g(x), (5.2)

for which the inverse mapping is

x = g−1(y). (5.3)
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The density py(y) of y can be obtained from the density px(x) of x as
follows:

py(y) =
1

|det Jg(g−1(y))|px(g
−1(y)) (5.4)

where Jg is the Jacobian matrix. In the special case of y = Ax, and x = A−1y,
so that (5.4) simplifies to

py(y) =
1

|detA|px(A
−1y). (5.5)

Let x be a two-dimensional vector, and A a 2×2 real-valued matrix, and V
the whitening matrix we then have z = Vx = VAs = Ãs, therefore s = A−1z.

Assume that the joint distribution of two independent components, s1 and
s2, is Gaussian, i.e.,

ps(s) = p(s1, s2) =
1

2π
exp

(
−s2

1 + s2
2

2

)
=

1

2π
exp

(
−‖s‖

2

2

)
. (5.6)

From (5.5), we can find out the pdf of z:

pz(z) =
1∣∣∣det Ã

∣∣∣
ps(Ã

−1z)

=
1∣∣∣det Ã

∣∣∣
1

2π
exp

(
−‖Ã

−1z‖2

2

)
.

(5.7)

Sine Ã is orthogonal, it has the following properties, Ã−1 = Ãt , ‖Ãz‖2 =

‖z‖2, and
∣∣∣det Ã

∣∣∣ = 1. And finally we have:

pz(z) = p(z1, z2) =
1

2π
exp

(
−‖z‖

2

2

)
. (5.8)

Compare (5.6) and (5.8), we come to the conclusion that the original and
mixed distributions are identical. Therefore, there is no way we could infer the
mixing matrix from the mixtures.

5.3 Gauss-Markov Process and Whitening Pro-
cedure

5.3.1 Whitening in Blind Source Separation

The aim of Blind Source Separation (BSS) is to separate sources without a prior
knowledge of the mixture structure. Blind source separation promises wide ap-
plications in signal processing and communication systems [39][32]. The first
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step (or preprocessing) is whitening. We explore the properties of Gauss-Markov
process to investigate the whitening procedures. We propose a Gauss-Markov
modelling of the signal source and visualize the whitening procedure geomet-
rically. An information-theoretic analysis and a computer simulation are de-
veloped to give intuitive and qualitative insights of the whitening in BSS and
enhance the understanding of the interrelation of Gaussian processes, and esti-
mation theory. Blind Source Separation (BSS) is used to recover the original
waveforms of sources without a prior knowledge of the mixture’s structure. To
define BSS, assume that we observe m linear mixtures x1, ..., xm of n indepen-
dent components

xj = aj1s1 + aj2s2 + ... + ajnsn, ∀j. (5.9)

where each mixture xj as well as each independent component sk is a random
variable. This model can be expressed as a compact vector-matrix notation

x = As, (5.10)

where x = (x1, x2, ..., xm)t, s = (s1, s2, ..., sn)t, and A being the matrix with
elements aij.

In BSS, we estimate both A and s based on the observed random vector
x. The term "blind" means we have very little knowledge about the mixing
matrix A, and the only assumption made here is that the components of s are
statistically independent.

The BSS of the random vector x = (x1, x2, ..., xm)t is obtained by finding
an n×m, full-rank, linear transformation (unmixing) matrix W such that the
output signal vector y = (y1, y2, ..., yn)t, defined as

y = Wx, (5.11)

which contains the components that are the estimates of xj. The most impor-
tant preprocessing for BSS is whitening. The BSS problem is greatly simplified
if the observed mixture vectors x are first whitened.

The Central Limit Theorem states that the sum of finite-variance indepen-
dent sources, regardless of their initial distribution, will tend at the limit to
form a Gaussian distribution. The histogram of a clean speech signal is decid-
edly more peaked than Gaussian. A speech signal recorded with a microphone
far across a room from the source does appear to be Gaussian. The multipath
reflections of the room have summed at the microphone to produce an almost
Gaussian signal. Equation (5.9) describes the situation where several micro-
phones in a room picking up the speeches of several human speakers. Here,
the Central Limit Theorem "Gaussianization" is due both to the convolution
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of distributions from the direct-signal speech signals and also the multipath re-
flections [32]. We conclude that the observed components xj in Equation (5.9)
are jointly Gaussian with certain correlation. This gives the possibility of mod-
elling the mixed signal source x using Gauss-Markov processes to investigate
the whitening procedure in BSS.

A zero-mean random vector z = (z1, z2, ..., zn)t is said to be white (or
sphered) if its elements zi are uncorrelated and have unit variances :

E{zizj} = δij, (5.12)

where δij = 1 when i = j and zero otherwise. In terms of the covariance matrix,
this means that E{zzt} = I, with I being the identity matrix. The whitening
procedure can be stated as follows: given a random vector x with n elements
defined in (5.9), find a linear transformation V into another vector z such that

z = Vx

is white.
After whitening, the blind separation task usually becomes somewhat easier,

because the subsequent unmixing matrix W can be constrained to be an or-
thogonal matrix for real-valued signals and a unitary matrix for complex-valued
signals and weights, that is, WWt = I. Since Equation (5.11) now becomes
y = Wz = WVx, the auto-correlation matrix Ry of y will satisfy

Ry = E{yyt} = E{WzztWt} = WWt = I. (5.13)

The whitening transform is given by

V = D−1/2Et, (5.14)

where E = (e1, ..., en) is the matrix whose columns are the unit-norm eigenvec-
tors of the covariance matrix Cx = E{xxt}, D = diag(d1, ..., dn) is the diagonal
matrix of the eigenvalues of Cx, and D−1/2 is computed by a simple component-
wise operation as D−1/2 = diag(d

−1/2
1 , ..., d

−1/2
n ). Since Cx can be expressed as

Cx = EDEt, it can be readily verified that Cz = I.
An immediate observation is that further repeating of the whitening trans-

form on z will not go anywhere but another whitened vector. Geometrically,
the distribution of the whitened vector z is invariant to rotations.

Another observation here is that if we remove D−1/2 in the whitening matrix
V defined in (5.14) and let V = Et, we will have Cz = D instead of Cz = I.
This means that the elements of z are now uncorrelated, but not normalized to
unit variances. The intuition we obtained is that the matrix of eigenvectors is
rotating Cx, while the matrix of eigenvalues is scaling Cx, which is duly implied
by the terminology of eigenvector and eigenvalue.
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5.3.2 Gauss-Markov Modelling of the Signal Source

Gauss-Markov processes are stochastic processes that satisfy the requirement
for both Gaussian processes and Markov processes. A Gauss-Markov process
can readily be generated by passing a Gaussian process through a linear shift-
invariant system. The output and the input of the system will form a random
vector with a non-diagonal covariance matrix [91].

To design a random vector of source signals with predefined covariance, let
us consider a linear shift-invariant system represented by the difference equation

y[n] + a1y[n− 1] + · · ·+
aP y[n− P ] = b0x[n] + · · ·+ bQx[n−Q] (5.15)

The mean of the output has the specific form [91]

my =

∑Q
j=0 bj

1 +
∑P

i=1 ai

mx (5.16)

The covariance functions for (5.15) satisfy the difference equation

Cyx[l] + a1Cyx[l − 1] + · · ·+
aP Cyx[l − P ] = b0Cx[l] + · · ·+ bQCx[l −Q] (5.17)

In our design, we consider the following causal first order linear system to
generate a Markov process

y[n] = −a1y[n− 1] + box[n] (5.18)

where the sequence of {x[n]} is a Gaussian process with mean mx and variance
σ2

x. To be general, we assume a1 is complex.
To solve (5.16) we obtain the mean

my = b0
mx

1 + a1

(5.19)

And from (5.17), the covariance is in the form

Cyx[l] = C∗
xy[−l] = b0σ

2
x(−a∗1)

lu[l] (5.20)

where * is the complex conjugate, and u[l] is the unit step function.
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Also form (5.17), the autocovariance function of the sequence of {y[n]} has
this specific form

Cy[l] = b2
0

σ2
x

1− |a1|2 (−a∗1)
−l l ≤ 0

Cy[l] = b2
0

σ2
x

1− |a1|2 (−a∗1)
l l > 0.

(5.21)

Let l = 0, we solve (5.20) and (5.21) to obtain b0 and a1 as

b0 =
Cyx[0]

σ2
x

=
C∗

xy[0]

σ2
x

(5.22)

a1 = ±
√

1− b2
0σ

2
x

Cy[0]
(5.23)

Note that in our design we take the negative value of a1 for the ease of plotting.
Assume that a1 is real-valued, an inequality can be derived from equation

(5.22) and equation (5.23) as follows

−1 ≤ Cxy[0]√
Cx[0]

√
Cy[0]

≤ 1 (5.24)

Note that (5.24) is defining the important property of the correlation coef-
ficient (or normalized covariance), that is,

−1 ≤ ρ =
µxy

σxσy

≤ 1 (5.25)

where σ2
x = Cx[0] is the variance of x[n], σ2

y = Cy[0] is the variance of y[n], and
µxy = Cxy[0] is the covariance of x[n] and y[n].

The obtained results will enable us to model Gauss-Markov signal source
with a predefined Hermitian symmetric matrix with elements satisfying the
constraint defined by (5.25).

5.3.3 Whitening the Gauss-Markov Source

The discussion in the previous sections suggests a possibility for us to model
the signal sources as a Gauss-Markov process during the whitening procedure.

If a Gaussian process is passed through a linear time-invariant (LTI) system,
the output of the system is also a Gaussian process. The output random process
is actually known to be both a Gaussian random process and a Markov process.
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We conclude that the input and the output of the LTI system described in the
previous section are jointly Gaussian.

It is convenient to group random variables of the same distribution into a
random vector. The density function for a Gaussian random vector can be
expressed as

fx(x) =
1

(2π)N/2|Cx|1/2
exp

(
−1

2
(x−mx)

tCx
−1(x−mx)

)
(5.26)

where x = (x1, x2, ...., xN)t, and all the components of x are real-valued random
variables.

The correlation of the vector components can be visualized in a geometrical
structure, e.g., a three-dimensional plot or a contour plot. We define the contour
as

(x−mx)
tCx

−1(x−mx) = c (5.27)

where c is a positive constant.
A linear transformation of the random vector x discussed in the previous

section will result in a random vector z, whose pdf can be also described as in
(5.26) and thus the correlation of the components of z can be also visualized by
a contour plot defined as in (5.27).

The Gauss-Markov signal sources we designed in the previous section provide
us with a vector of source signals with a predefined Hermitian symmetric matrix
as its covariance matrix. The contour plots or the three-dimensional plots for
both x and z will thus enable us to visualize the whitening procedure.

5.3.4 Numerical Simulation

We present simulation results for the analysis described in the previous sections.
Let the input and output of an LTI system hold the relation defined by (5.18)
be

x2[n] = −a1x2[n− 1] + box1[n] (5.28)

where {x1[n]} is a wide-sense stationary (WSS) Gaussian process with zero
mean and variance σ2

1 = 0.1. Let the variance of {x2[n]} be σ2
2 = .2, and the

correlation coefficient be ρ1 = 0.4.
Note here for the convenience of analysis we use the notation x1[n] and x2[n]

instead of x[n] and y[n] and drop the time index n due to stationarity to form
a vector x = (x1, x2)

t. As x1[n] and x2[n] are Gaussian random variables, the
covariance matrix Cx of the observed signal vector x = (x1, x2)

t can then be
expressed as

[
σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

]
=

[
.1 −0.0566

−0.0566 .2

]
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Figure 5.1: Auto-covariance and Cross-covariance between {x1[n]} and {x2[n]}.

From (5.23) and (5.22), we calculate a1 = −0.9165 and b0 = 0.5657. The
Gauss-Markov process {x2[n]} is then generated by (5.28). To verify the results,
we calculate the auto-covariance function and the cross-covariance function of
x = (x1, x2)

t and compare with the theoretical results shown in (5.20) and
(5.21). The results are plotted in Fig. 5.1. The marginal pdf of px1(x1) and
px2(x2) as well as the conditional pdf of px1|x2(x1|x2 = 0.5) and px1|x2(x1|x2 =
−0.5) are plotted in Fig. 5.2. The three-dimensional plot and the contour plot
for the joint pdf of x1 and x2 are plotted in Fig. 5.3. Using sufficient large
sample size, the simulation results match the theoretical curves perfectly.

The fact that the ellipse is tilted with respect to the original coordinates
shows that there is a correlation between the vector components x1 and x2

of x. A positive slope for the major axis of the ellipse indicates a positive
correlation and a negative slope indicates a negative correlation. The principal
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Figure 5.2: Marginal pdf and conditional pdf of x1 and x2 of x, where x = (x1, x2)t.

axes of the ellipse are aligned with the eigenvectors, and their sizes are given by
2
√

djc, j = 1, 2, which is demonstrated in Fig. 5.3 and Fig. 5.4. It can be also
observed that Fig. 5.4 and Fig. 5.3 are related by the correlation coefficients as
ρ2 = −ρ1. The ellipses are symmetrical about the vertical axis, and the tilted
angles have the relation of θ1 + θ2 = 180◦.

We now investigate the whitening procedure. As we discussed in Section II,
if the transformation matrix V = Et is applied, the random vector x = (x1, x2)

t

is rotated to the random vector z = (z1, z2)
t with its components uncorrelated.

Fig. 5.5 shows the geometrical structure of the resulting random vector z. The
axes of the ellipse are parallel to the coordinate axes, and hence the components
of z are uncorrelated. If the transformation matrix V = D−1/2Et is applied,
the random vector x will not only be rotated by the eigenvector matrix V, but
also scaled by the eigenvalue matrix D. Fig. 5.6 shows the joint pdf and the
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Figure 5.3: The three-dimensional plot and the contour plot of fx(x) with the cor-
relation coefficient ρ1 = 0.4.

contour plot of the resulting random vector z which is transformed by D−1/2Et.
The components of z are jointly Gaussian of unit variance with zero correlation.
The geometric interpretation of Fig. 5.6 is that the transformation involves a
rotation and a scaling for the covariance of the random vector x. The contour
plot shows a circle instead of an ellipse. It can be noted that in this situation
the probability density of z is less concentrated and thus a higher number of
data samples are needed to produce the three-dimensional plot and the contour
plot which are close enough to the theoretical curves.

It is thought-provoking to investigate the invariance of the whitened vector
z. As shown in Fig. 5.6, the direction of eigenvectors are far from ideal with
limited sample size. Repeating whitening transformation recursively will result
in a perfect identity matrix of Cz as shown in Fig. 5.7.
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Figure 5.4: The three-dimensional plot and the contour plot of fx(x) with the cor-
relation coefficient ρ2 = −ρ1 = −0.4.
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Figure 5.5: Diagonalizing: the transformation matrix V = Et, the covariance matrix
of z = (z1, z2)t is the diagonal matrix, i.e., Cz = D (uncorrelated).

5.3.5 An Information-Theoretic Analysis of the Whiten-
ing Transformation

Assuming wide-sense stationary (WSS) of the random processes we discussed
in the previous sections, we present an information-theoretic viewpoint of the
whitening transformation.

The mutual information between two random variables X and Y with joint
density f(x, y) is defined as [19]

I(X; Y ) =

∫
f(x, y) log

f(x, y)

f(x)f(y)
dxdy. (5.29)

where X is with a density f(x) and Y is with a density f(y).
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Figure 5.6: Whitening: the transformation matrix V = D−1/2E
t, the covariance

matrix of z = (z1, z2)t is the identity matrix, i.e., Cz = I (whitened or sphered).

For the correlated Gaussian random variables defined by
(

X
Y

)
∼ N2

(
0,

[
σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

])

and the mutual information I(X; Y ) can be derived from Equation (5.29) as

I(X; Y ) =
1

2
log

1

1− ρ2
. (5.30)

Other less significant quantities such as the differential entropy h(X) and
h(Y ), joint entropy h(X, Y ), conditional entropy h(X|Y ) and h(Y |X) are de-
rived as follows

h(X) =
1

2
log(2πeσ2

1) (5.31)
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Figure 5.7: Repeating the whitening transformation recursively.

h(Y ) =
1

2
log(2πeσ2

2) (5.32)

h(X,Y ) =
1

2
log[(2πe)2σ2

1σ
2
2(1− ρ2)] (5.33)

h(X|Y ) =
1

2
log[2πeσ2

1(1− ρ2)] (5.34)

h(Y |X) =
1

2
log[2πeσ2

2(1− ρ2)] (5.35)

Assuming normalized variances for X and Y , the above quantities are plot-
ted in Fig. 5.6. Equation (5.30) shows that the mutual information between
the two correlated Gaussian random variables is independent of the variances
σ1 and σ2 and is determined by the correlation coefficient ρ only. Moreover, the
mutual information I(X; Y ) reaches zero when ρ = 0. This important result
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Figure 5.8: Conditional entropy, joint entropy and mutual information.

shows that the whitening transformation minimizes the mutual information of
the received signal sources. As we know, mutual information minimization is
the implicit or explicit purpose of all the BSS methods.

5.3.6 Conclusions

A Gauss-Markov modelling of the signal source with predefined covariance ma-
trix is presented. The generated Gauss-Markov sources introduce the freedom
of arbitrary statistical properties up to the constraint of defining the correla-
tion coefficient. The freedom is exploited to interpret the whitening in BSS
geometrically. The visualization of the whitening procedure offers more math-
ematical tractability for the analysis of BSS algorithms. We also demonstrated
that whitening transformation is a way of mutual information minimization.
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5.4 Method based on Time-Frequency Signal Rep-
resentations

5.4.1 Introduction

Blind source separation based on time-frequency distributions (TFD’s) allows
the separation of Gaussian sources with identical spectral shape but different t-f
localization properties. As TFD’s spread noise power while localizing the source
energy in the t-f domain, the time-frequency BSS is characterized by robustness
of separation and improved overall performance. However, quadratic TFD’s,
which are the most important class of TFD’s suitable for this approach, differ
widely in resolution and their ability to reduce the cross-terms that disturb the
signal interpretation.

Blind Source Separation (BSS) is used to recover the original waveforms of
sources without a prior knowledge of the mixture’s structure [8]. The mixture
can be convolutive or instantaneously linear. The latter corresponds to a linear
memoryless channel. This means that BSS algorithms can be applied to the
estimation of communication channels [39].

A time-frequency based BSS approach was presented in [8]. In this sec-
tion, we investigate the performance of the above approach using the opti-
mal smoothing kernels designed in [37]. A subclass of Cohen’s Class of time-
frequency distributions, referred to as the T-distributions, was presented in [37]
and shown to be suitable for efficient amplitude and instantaneous frequency
(IF) estimation of mono- and multi-component FM signals. The exponential
and hyperbolic time-only kernels have proven to be efficient in reducing cross-
terms while retaining high resolution, with a compromise between these two
requirements depending on the selected parameters. We apply these kernels to
time-frequency based blind source separation of speech signals, linear FMs and
non-linear FMs to investigate possible performance improvements based on op-
timal kernel selection. The simulation results will show that the T-distributions
have advantages over Wigner-Ville and Choi-William distributions in terms of
noise performance, stability, and wider optimal dynamic range.

5.4.2 Method Description

We assume that the multidimensional observations of the signal s(t) are given
by

x(t) = y(t) + n(t) = As(t) + n(t) (5.36)

where x(t) = [x1(t), ...xn(t)]t is the observed noisy instantaneous linear mix-
ture of source signals s(t) = [s1(t), ...sn(t)]t, and n(t) is the additive noise. The
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m×n matrix A is the mixing matrix. The assumptions here are that the source
signal vector s(t) is a non-stationary multivariate process with its components
mutually uncorrelated, with their cross-correlation equal to zero. The addi-
tive noise n(t) is a stationary, temporally white, zero-mean, complex random
process, independent of the source signals.

In addition to the above assumptions, we also take advantage of the inde-
terminacies in the sources by normalizing the source signals to unit power, this
implies that the covariance matrix Rs of s(t) is the identity matrix, that is,
Rs = I, so that the covariance matrix Ry of y(t) is

Ry
def
= lim

T→∞

T∑
t=1

y(t)y∗(t) = AAH (5.37)

where ∗ denotes the conjugate transpose of a matrix.
The method is a two-step process involving whitening and diagonalizing

schemes as presented below:
Whitening: to transform the mixing matrix A into a unitary matrix.
A whitening matrix W is applied to the observed x(t) so that

z(t)
def
= Wx(t) = W(As(t) + n(t)) = Us(t) + Wn(t)) (5.38)

The matrix U is a unitary matrix, and the matrix W can be estimated by
the following implementation:

1. Estimate the autocorrelation matrix R̂ from data samples. Denote by
λ1, ...λn the n largest eigenvalues and h1, ..., hn the corresponding eigen-
vectors.

2. Under the white noise assumption, an estimate of the noise variance is
the average of the smallest eigenvalues of R̂.

We then have the estimation of W as

Ŵ(t) = [(λ1 − σ̂2)−
1
2 h1, ...(λn − σ̂2)−

1
2 hn]H . (5.39)

Diagonalizing: to jointly diagonalize a set of data-STFD (spatial t-f dis-
tribution) matrices and retrieve the unitary matrix U.

The STFD matrix is given by [Dxx(t, f)]ij = Dxiyj
(t, f) for i, j = 1, ...n,

where Dxiyj
(t, f) is the discrete-time form of the Cohen’s class of TFD’s, given

by [18]
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Dxiyj
(t, f) =

∞∑

l=−∞

∞∑
m=−∞

φ(m, l)xi(t + m + l)

× x∗j(t + m− l)e−j4πfl (5.40)

The matrix U can then be estimated by the following implementation:

1. Form K matrices by computing the STFD of z(t) for a fixed set of (ti, fi)
points, i = 1, ..., K, corresponding to signal auto-terms.

2. A unitary matrix is then obtained as a joint diagonalizer of the set

{Dzz(ti, fi)|i = 1, ...K}.

The obtained Û and Ŵ from the above two steps can then be used to
estimate the source signal s(t) and mixing matrix A as: ŝ(t) = Û∗Ŵx(t), and
Â = Ŵ#Û, where the superscript # denotes the Moore-Penrose pseudoinverse.

The performance index is the interference-to-signal ratio (ISR), defined as
[8]:

Ipq = E|(Â#A)pq|2. (5.41)

Ipq measures the ratio of the power of the interference of the qth source to
the power of the pth source signal estimated as in (5.41), and the global rejection
level is defined as

Iperf
def
=

∑

q 6=p

Ipq. (5.42)

5.4.3 Selected Time-Frequency Distributions

As mentioned in the previous section, a TFD that provides a good reduction
of the cross-terms is needed to make sure that the off-diagonal elements of the
TFD matrix of the sources are negligible and so that a diagonal structure can
be maintained.

The time-frequency distribution of the analytic signal z(t) associated with
the original real signal s(t) can be expressed as follows [37]

ρ(t, f) = F
τ→f

[G(t, τ) ∗
(t)

Kz(t, τ)] (5.43)

where Kz(t, τ) = z(t + τ
2
)z(t− τ

2
) is the instantaneous autocorrelation product,

F is the Fourier transform, and ∗
(t)

denotes time convolution. The time-lag

kernel G(t, τ) completely characterizes the corresponding TFD.
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Wigner-Ville distribution (WVD) and Choi-Williams distribution (CWD)
are the most famous TFDs of Cohen’s Class [18]. Time-only kernels (kernels of
the T-distributions) presented in [37] were shown to be more efficient than their
two-dimensional counterparts in Cohen’s Class in terms of t-f resolution and
cross-terms reduction, thus potentially they are more efficient in time-frequency
based blind source separation. In this work we consider the above TFDs with
the following kernels:

1. The constant kernel G(t, τ) = 1, which corresponds to the Wigner-Ville
distribution (WVD).

2. The exponential kernel of the Choi-Williams distribution(CWD), defined
by

G(t, τ) =
√

α/4πτ 2e−αt2/4τ2

(5.44)

where α is a real parameter.

3. The exponential time-only kernel, defined by

G(t, τ) = Gα(t) =
√

α/πe−αt2 (5.45)

where α is a real parameter and
√

α/π is the normalization factor.

4. The hyperbolic time-only kernel, defined by

G(t, τ) = Gα(t) = kα/ cosh2α(t) (5.46)

where α is a real positive number and the normalization factor kα =∫∞
−∞ 1/ cosh2α dt = Γ(2α)/22α−1Γ2(α) , Γ stands for the gamma function.

5.4.4 Numerical Simulation

To investigate the potential performance improvements of the T-distributions,
we carried out numerical simulations as shown in the following examples. Eight
TFD matrices were considered. The corresponding t-f points are those of the
highest power in the t-f domain.

Example 1: The source signals are two speech signals, with sample size N =
512. The 3× 2 complex mixing matrix is arbitrarily chosen using the Matlabr

expression: A = rand(3, 2)+j∗rand(3, 2). Here the Matlabr function rand(3,2)
produces 3-by-2 matrix with uniformly distributed random entries with values
range between 0 and 1.
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One of the T-distributions, the hyperbolic distribution is used to separate
these two signals. Fig. 5.9 and Fig. 5.10 illustrate the successful separation in
the time domain and time frequency distribution respectively. Note there are
three mixed signals because the number of sensors is three. For convenience of
illustration, the third one is not plotted here. Notice the reverse order of the
estimated signals. This permutation (more obvious with n > 2) is caused by
the inability to determine the ordering and the phases of the mixture matrix A,
hence any permutation of the estimated sources is also a satisfactory solution.
We can also notice the phase shift of the recovered signals because the mixing
matrix A is a complex matrix.

Example 2: Because of the non-linearity with the frequency components in
speech signals, we use two non-linear FMs to investigate the performance of dif-
ferent kernels. The source signals are two non-linear FM (parabolic law) signals
with total length N = 512 and instantaneous frequencies given according to:

s(t) = ej2π(A0t+
A1
2

t2+
A2
3

t3).
The 3 × 2 complex mixing matrix is arbitrarily chosen using Matlabr ex-

pression: A = rand(3, 2)+ j ∗ rand(3, 2). This time the exponential distribution
is used to separate these two signals.

The separation process is similar to that shown in Fig. 5.9 and Fig. 5.10.
Fig. 5.11 shows the successful separation in time frequency distribution.

All the four above mentioned distributions are used to separate these two
non-linear FMs to compare the performance. Fig. 5.12 shows the mean rejection
level versus different values of α for the above-mentioned four kernels.

These two non-linear FMs are close enough together that the Wigner-Ville
distribution has failed to separate them because of the large cross-terms.

It can be concluded that the two T-distributions provide a wider range of
optimal values. The simulation also shows that the T-distributions are more sta-
ble and less signal-dependent in comparison to Wigner-Ville and Choi-Williams
distributions. Fig. 5.12 also demonstrates the fact that the two T-distributions
converge to the Wigner-Ville case as α becomes large. This is in accord with
the fact that as α increases, the T-distributions converge to WVD [38].

The optimal parameter value αopt (in terms of the mean rejection level)
for each TFD is then obtained from Fig. 5.12. For Choi-Williams distribution,
αopt = 0.05, for the hyperbolic T-distribution αopt = 0.15, and for the exponen-
tial T-distributions, αopt = 0.3. We then obtain the noise performance of the
different TFDs as shown in Fig. 5.13. The mean rejection levels are evaluated
here over 100 Monte-Carlo runs. The performance improvement using time-only
kernels is clearly observed in Fig. 5.13.
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Figure 5.9: Time-domain signals for the blind source separation process using the
hyperbolic T-distribution, with SNR = 50 dB. First row: two test sound signals.
Middle row: signals resulting from mixing the above sound signals using a randomly-
generated mixing matrix. Last row: blindly separated two sound signals (compare
with the first row).
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Figure 5.10: Time-frequency distribution of the signals shown in Fig. (5.9) for the
blind source separation process of sound signals using the hyperbolic T-distribution.
The mean rejection level (MRL) obtained is -23.8 dB.
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Figure 5.11: Time-frequency distribution of the signals for the blind source separa-
tion non-linear FMs using exponential distribution. The mean rejection level (MRL)
obtained is -40.3 dB.

Example 3: In this example, we validate the effects of sample size to the
rejection level mentioned in [8]. One of the source signals is a non-linear FM and
the other is a linear FM, with sample size N = 1024. Again, the mixing matrix
is a 3 × 2 complex matrix, arbitrarily chosen using the Matlabr expression:
A = rand(3, 2) + j ∗ rand(3, 2).

Fig. 5.13 shows the separation process by Choi-Williams distribution. Fig. 5.14
shows that a larger number of t-f points improves the performance.
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Figure 5.12: Performance of different TFD’s versus their parameter α in terms of the
mean rejection level. Notice that the T-distributions converge in the limit to WVD.
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Figure 5.13: Performance of different TFDs versus SNR in terms of the mean rejection
level.
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Figure 5.14: Time-frequency distribution of the signals used for the blind source
separation process (one is a linear FM signal and the other is a non-linear FM signal).
Choi-Williams distribution has been used with α = 11. The mean reject level (MRL)
obtained is -28.9dB.

115



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−50

−45

−40

−35

−30

−25

−20

−15

−10

−5

0

α

M
e

a
n

 R
e

je
ct

io
n

 L
e

ve
l(
d

B
)

64
128
256
512
1024

Figure 5.15: Performance validation versus α with different sample sizes for signals
in Fig. 5.14.

116



5.4.5 Conclusions

A comparative study has been done using some well-known and recently-proposed
TFDs.

It is shown that the choice of the time-frequency distribution (TFD) has a
direct impact on the performance of a recently proposed t-f based blind source
separation (BSS). It is also true that the above t-f based method is highly
signal-dependent.

It is found that the T-distributions (TFDs with time-only kernels) have some
advantages over Choi-Williams and Wigner-Ville distributions in the above t-f
based BSS. The T-distributions have wider and more stable optimal ranges (less
signal-dependent); also better noise performance than WVD or CWD for the
separation of non-linear FMs.

The optimal value of α is signal-dependent and is obtained by sweeping
through all possible values by computer simulations. For the T-distributions
the optimal values are easier to obtain than for Choi-Williams distribution.
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5.5 Applications to Wireless Communications
ICA/BSS is closely related to blind deconvolution or blind equalization in com-
munication system design. Although our discussion on BSS and TFRs so far is
concentrated on solving instantaneous mixture of speech signal processing, the
concepts and knowledge gained can be readily extended to wireless communica-
tion systems. We now show that ICA/BSS and MIMO systems are intimately
related.

The time-invariant frequency-selective channel described by (4.34) is termed
as convolutive mixtures in the domain of ICA/BSS. Consider the MIMO channel
(4.34) without noise:

y[m] =
L−1∑

`=0

H`x[m− `], (5.47)

or, equivalently,

yi[m] =
nt∑

j=1

L−1∑

`=0

h`,ijxj[m− `] for i = 1, . . . , nr (5.48)

where h`,ij is the ith row and jth column entry of H`, x[m] = [x1[m], . . . , xnt [m]]t

is the nt inputs, y[m] = [y1[m], . . . , ynr [m]]t is the nr outputs. Rearrange the
input/output relation to an instantaneous mixture:

ỹ[m] = H̃x̃[m] (5.49)

where

x̃[m] = [x1[m], . . . , x1[m− (L + L′)], . . . , xnt [m− (L + L′)]]t (5.50)
ỹ[m] = [y1[m], . . . , y1[m− L′ + 1], . . . , ynr [m− L′ + 1]]t (5.51)

and,

H̃ =




H̃11 · · · H̃1nt

... . . . ...
H̃nr · · · H̃nrnt


 (5.52)

with

H̃ij =




h0,ij · · · hL−1,ij · · · 0
. . . . . . . . .

0 · · · h0,ij · · · hL−1,ij


 (5.53)

The relation of (5.49) is the classic matrix representation of the sum of a bank
of filters and can be also interpreted as a standard linear ICA model. One can
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now apply ordinary ICA methods to this standard linear ICA model. Note that
the number of receive antennas has to be greater than the number of transmit
antennas, i.e., nr > nt. Also H̃ is a [nrL

′ × nt(L + L′ − 1)] matrix and H̃ij are
[L′ × (L + L′ − 1)] matrices. L′ is chosen such that nrL

′ ≥ nt(L + L′ − 1).
A possible application in this case is blind estimation of the channel matrix

H`. As we have discussed in the previous section, to achieve the blind estimation
of H` the sources x[m] are assumed to have different structures and localization
properties in the time-frequency domain and H̃ is full column rank.

A more meaningful application of ICA/BSS is CDMA systems. In the sim-
ilar manner discussed above, the CDMA signal model can be cast in the form
of a noisy matrix ICA model. ICA/BSS will then provide a low complexity
minimization approach for estimating fading channels or estimating the desired
user’s symbol process.

Assume there are K users in the CDMA cell. The data of the kth user are
encoded into two BPSK sequences {aI

k[m]} and {aQ
k [m]}, which can be assume

to have equal amplitude for all m. Each sequence is modulated by a pseudonoise
sequence or chip sequence, so that the transmitted complex sequence is

xk[m] = aI
k[m]sI

k[m] + jaQ
k [m]sQ

k [m], m = 1, 2, . . . , (5.54)

where sI
k[m] and sQ

k [m] are chip sequence taking values ±1. The length of the
chip sequence sI

k[m] or sQ
k [m] is denoted by C.

We can only discuss the in-phase part of xk[m], let

xk[m] = ak[m]sk[m], m = 1, 2, . . . , (5.55)

and define the chip sequence

sk[m] =

{
±1, m = 1, 2, . . . , C,

0 elsewhere.
(5.56)

The ith symbol of the kth user is denoted by bki, and we have

ak[m] = bki, m = 1, 2, . . . , and i = (m mod C) + 1 (5.57)

Note that the rate for the sequence xk[m] is chip rate, m is therefore called
chip time. The date rate for the symbols bki is much slower than the chip
rate. For example, in IS-95, the chip rate is 1.2288 MHz and the data rate is 9.6
kbits/s or less, and the the length of the chip sequence is C = 1228.8/9.6 = 128.

The transmitted sequence of user k goes through a discrete-time baseband
equivalent multipath channel h(k) and is superimposed at the receiver:

y[m] =
K∑

k=1

(∑

`

h
(k)
` [m]xk[m− `]

)
+w[m]. (5.58)
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Assume a downlink transmission of N data symbols and the coherence time
of the channel is greater than the data symbol period but smaller than the
transmission time of N data symbols, the signal at the receiver expressed in
(5.58) becomes

y[m] =
N−1∑
i=0

K∑

k=1

bki

L−1∑

`=0

h`isk[m− iC − d`] + w[m]. (5.59)

where L = is the number of the multipaths, and d` ∈ {0, . . . , b(C − 1)/2c} is
the time delay for `th path.

Define the C − length vectors as

yi = (y[iC + 1], y[iC + 2], . . . , y[(i + 1)C])t, (5.60)

we can rearrange (5.59) in vector form [39]

yi =
K∑

k=1

L−1∑

`=0

[h`ibkigk`
+ h`,i+1bk,i+1ḡk`] + wi, (5.61)

where wi denotes the noise vector consisting of C samples of noise. The vector
g

k`
denotes the "early" part of the chip sequence, is given by

g
k`

= [sk[C − d` + 1], . . . , sk[C],0t
(C−d`)

]t (5.62)

and ḡk` the "late" part, is given by

ḡk` = [0t
(d`)

, sk[1], . . . , sk[C − d`]]
t (5.63)

where 0t
(C−d`)

is row vector having (C − d`) zeros as its elements, and 0t
(d`)

is
row vector having d` zeros as its elements. The reason to use g

k`
and ḡk` is to

reflect the fact that multipath will generally affect two adjacent data symbols
bk,i and bk,i+1, which can be observed from (5.59).

Y = [y0,y2, . . . ,yN−1], (5.64)

Y = GF + W (5.65)

where the C × 2KL matrix G contains all the KL early and late parts of the
chip sequence

G = [g
11

, ḡ11, . . . ,gK,L−1
, ḡK,L−1] (5.66)

and the 2KL×N matrix F = [f0 . . . fN−1] contains the data symbols and fading
terms

fi = [h0ib0i, h0,i+1b0,i+1, . . . , hL−1,ibKi, hL−1,ibKi]
t (5.67)
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The vector fi represents the 2KL data symbols and fading terms of all the
users and paths corresponding to the ith pair of early and late part of the chip
sequence. Also W is the C × 2KL noise matrix.

It is reasonable to assume all the multipaths are independent of each other.
Same assumption can be made to each user. Also each user’s subsequent trans-
mitted symbols are assumed to be independent. Hence every product of h`bi can
be regarded as an independent source signal. Based on the discussion from the
previous sections, the expression of (5.65) is a linear ICA/BSS model with F the
matrix of source signals, Y the observed data matrix, and G the unknown mix-
ing matrix. Hence classical ICA/BSS method or the Time-frequency method
investigated in the previous can be applied to estimate the fading channels or
to estimate the desired user’s symbol.

5.6 Conclusions
In this chapter we studied two important tools, independent component anal-
ysis (ICA) or blind source separation (BSS) and time-frequency representation
with the aim to improve the performance of wireless communication systems.
The blind source separation using time-frequency representation is investigated.
Compare to classical methods based on second order statistics, time-frequency
analysis based method exploits the non stationarity of the signal. Different
time-frequency distributions are compared to separate speech signals. We also
show that ICA/BSS and communication schemes such as MIMO and CDMA
are intimately related. Mathematically, a MIMO or a CDMA scheme can be
formulated into an ICA/BSS problem, hence classical ICA/BSS methods or
time-frequency representation based methods can be applied to improve the
performance of the communication system.

It should be also noted that time-frequency representation alone can be used
to combat fading channels in OFDM or CDMA systems [75]. The study in this
chapter opens up a gate to apply ICA/BSS and TFR to wireless communication
systems.
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Chapter 6

Conclusions and Future Directions

Growing interest in high data rate wireless communications attracted much
research interest in new techniques such as OFDM, MIMO, Blind Source Sepa-
ration (BSS) and Time-Frequency Representation (TFR) in the past few years.
The central topic is to combat the hostile wireless channel in an effort to achieve
higher spectral efficiency and more reliable communication. Many fundamental
problems have to be solved. This thesis is a part of our effort in that direc-
tion. The knowledge we acquired and the concepts we developed in this thesis
open up a family of new problems that help us design effective communication
schemes.

The knowledge acquired and the concepts developed in this thesis can be
summarized as:

1. An information-theoretic understanding of the wireless communication
systems

2. A complete analysis and simulation of mobile fading channels

3. Several fading mitigation techniques are studied, such as channel estima-
tion, CDMA, OFDM, MIMO, Time-frequency representation.

Future Directions

1. In Section 2.2, a linear FM (LFM) signal is applied as a test signal at
the input of digital Σ and Σ∆ modulators to reveal the relationship of
the spectra at different stages. The noise shaping ability and the validity
of the linear model of the Σ∆ modulator are also investigated. Similar
principle may be applied to other configurations of the Σ∆ modulator in
future works.
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2. In Section 3.7, the Rayleigh fading simulator may be extended to mul-
tiple cross-correlated Rayleigh fading channels according to the method
described in [95].

3. In Section 4.3.1, we simulated the selection combiner and the maximal-
ratio combiner over slow flat Rayleigh fading channel and obtained their
corresponding probability density functions. The simulation may be ex-
tended to investigate the performance of different modulation schemes
with diversity, see [64].

4. In Section 3.9, a Gauss-Markov approximation of the fading channel is
discussed. As an application of the Gauss-Markov channel model, we may
use it for joint channel estimation and Low-density-parity-check (LDPC)
decoding in flat Rayleigh fading shown in [53] and verify the statement in
the literature that a first-order Markov process is sufficient to represent
channel fading.

5. In Section 4.2, we discussed the principle of OFDM, and in Section 4.3.3
we investigated the capacity of MIMO channels by SVD decomposition.
We have seen that the combination of MIMO and OFDM boosts capacity
and reduces receiver complexity. To further improve the performance of a
MIMO-OFDM system, we might adopt LDPC code to provide the channel
coding gain as shown in [31].

6. In Chapter 5, we studied the BSS method based on entropy maximization
principle. This method is used to estimate the Rayleigh fading channel
in CDMA downlink transmission and shows performance improvement
over MMSE based channel estimation scheme in [39]. Other methods
such as time frequency based BSS might be used to further improve the
performance of estimation.

7. In Chapter 5, we studied time-frequency representation in the context
of Blind Source Separation (BSS). The powerful tool of time-frequency
representation in fact can be used to characterize the random LTV mobile
fading channel investigated in Section 3.8. The insightful results offered
by the time-frequency perspective are very useful in CDMA or OFDM
transceiver design [46] [75].
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Appendix A

A.1 Gaussian and Rayleigh Distributions
Assume two independent and identically distributed (i.i.d) Gaussian random
variables X1 ∼ N(0, σ2) and X2 ∼ N(0, σ2). Let R =

√
X2

1 + X2
2 and Θ =

actan(X2

X1
), i.e., (X1, X2) denotes the coordinates of a point in the plane, then

R is Rayleigh distributed

fR(r) =

{
r
σ2 e

− r2

2σ2 , r ≥ 0

0, r < 0
(A.1)

and Θ is uniformly distributed

fΘ(θ) =
1

2π
, 0 ≤ θ ≤ 2π (A.2)

A simulation is illustrated in Fig. A.1 for a demonstration. The detailed
derivation can be found in [63] or [64].
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Figure A.1: The histogram and pdf of X1, X2, R and Θ. With enough samples, the
simulation results match the theory well.
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A.2 Central Limit Theorem (CLT) and Approx-
imation of Integrals by Riemann Sums

In signal processing and digital communications, we constantly use Central
Limit Theorem which states that the probability distribution function of the
sum of the large number of random variables approaches a Gaussian distribu-
tion.

We consider the sum of Y of N independent random variables X1, X2, . . . , XN .
The density function of Y = X1 +X2 + · · ·+XN is the (N −1)-fold convolution
of the N individual density functions [60]:

fY (y) = fXN
(xN) ∗ fXN−1

(xN−1) ∗ · · · ∗ fX1(x1) (A.3)

Integrals are involved to find out fY (y). Computer simulation does not have
the ability to evaluate integrals but the values of the integral can be approxi-
mated to any level of accuracy desired. The simplest method of computing an
approximation of the integral is to use Riemann sums. If f(x) is continuous in
[a, b], and let a = x0 < x1 < · · · < xn = b, ∆xk = xk − xk−1, xk−1 ≤ ξk ≤ xk,
d = max ∆xk, then [67]

∫ b

a

f(x)dx = lim
d→0

n∑

k=1

f(ξk)∆xk = lim
n→∞

b− a

n

n∑

k=1

f

(
a +

k

n
(b− a)

)
(A.4)

We give an example to verify CLT by using approximation of integrals
by Riemann sums in computer simulation. Assuming the N random vari-
ables Xi, i = 1, 2, . . . , N , are all independent and distributed uniformly over
[−1/2, 1/2]. Calculate the (N − 1)-fold convolution using Riemann sums, the
resulting distribution fY (y) is approaching Gaussian N (0, N 1

12
). This is illus-

trated in Fig. A.2, where N = 10. All the convolution results are shown in the
figure.
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Figure A.2: Sum of several independent uniformly distributed random variables.
Here N = 10, a 9-fold convolution of the 10 individual density functions gives good
approach of Gaussian.

127



A.3 The Autocorrelation Function of Gauss-Markov
Time-Varying Channel Model

In this section we derive the autocorrelation function of the channel process of
(3.61).

To avoid notation confusion, we adopt the notation in [54] and rewrite (3.61)
as

y[m + 1] =
√

1− δy[m] +
√

δx[m + 1], m ≥ 0, (A.5)

First we notice both the input and the output are zero mean stationary pro-
cesses as {x[m]} is a sequence of i.i.d CN (0, 1) r.v.. This result is helpful because
the two stationary random processes {x[m]} and {y[m]} will have the following
relations for autocorrelation φxx[m], φyy[m] and autocovariance γxx[m], γyy[m]
[54]

φxx[m] = γxx[m], (A.6)

φyy[m] = γyy[m]. (A.7)

This provides convenience to find the autocorrelation function of y[m] be-
cause in general the z-transform can be used to represent the covariance function
but not a correlation function. When a signal has nonzero average value, its
correlation function will contain an additive constant component that does not
have a z-transform representation. Let Γxx(z) and Γyy(z) be the z-transform of
γxx[m] and γyy[m], respectively. We have this relation

Γyy(z) = H(z)H∗(1/z∗)Γxx(z), (A.8)

where H(z) is the transfer function to describe the linear time-invariant discrete-
time system in (A.5).

The transfer function H(z) of the system with difference equation (A.5) is

H(z) =

√
δ

1−√1− δz−1
(A.9)

Since {x[m]} is a sequence of i.i.d CN (0, 1) r.v., we have Γxx(z) = 1. And
Γyy(z) can then be expressed as

Γyy(z) =

√
δ

(1−√1− δz−1)(1−√1− δz)
. (A.10)
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Since Φyy[m] is an autocorrelation function, it is two-sided sequence (sym-
metric), we can determine the ROC here is

√
1− δ < |z| < 1/

√
1− δ. The

autocorrelation φyy[m] can be obtained as

φyy[m] = γyy[m]

= (
√

1− δ)mu[m]− [−(1/
√

1− δ)m]u[−m− 1]

= (
√

1− δ)|m|
(A.11)

Also note that the unit circle is in the ROC of
√

1− δ < |z| < 1/
√

1− δ,
thus Fourier transform exists for φy[m], which is the power spectrum density of
the sequence {y[m]}.

A.4 Kullback Leibler Distance and Entropy Max-
imizer

We have seen the importance of circular symmetric complex Gaussian random
variable in the analysis of OFDM scheme and MIMO channel capacity. To
demonstrate the understanding of circular symmetric complex Gaussian random
variable, we give the detailed proof of the following lemma: circular symmetric
complex Gaussian random vectors are entropy maximizers. The proof involves
a serial steps of definitions and theorems.

As the derivation involves expected value rule and matrix transformation of
random vectors, it is convenient to use the following notation in order to avoid
notation ambiguity:

• Deterministic scalar: x.

• Deterministic vector: x.

• Random variable: X.

• Random vector: X.

• Deterministic matrix: H.

• Random Matrix: H.

And we use superscript t to stand for transpose of a vector or a matrix, super-
script ∗ for complex conjugate-transpose of a vector or a matrix.
Remark. In this thesis and in the literature such as [92] and [39], a moderate
level of notation ambiguity is allowed for convenience. For example, notation
such as x is used for both random vector and deterministic vector.
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Definition A.4.1. The differential entropy h(X) of a continuous random vari-
able X with a density f(x) is defined as

h(X) = −
∫

S

f(x) log f(x)dx, (A.12)

where S is the support set of the random variable.

The definition of differential entropy of a signal random variable can be
extended to a random vector.

Definition A.4.2. The differential entropy of a set X1, X2, . . . , Xn of random
variables with density f(x1, x2, . . . , xn) is defined as

h(X1, X2, . . . , Xn) = −
∫

f(x1, x2, . . . , xn) log f(x1, x2, . . . , xn)dx1dx2 . . . dxn.

(A.13)
or,

h(f) = −Ef [log f(X)] (A.14)

Definition A.4.3. The Kullback Leibler distance D(f ‖ g) between two den-
sities f and g is defined by

D(f ‖ g) =

∫
f log

f

g
. (A.15)

Theorem A.4.1.
D(f ‖ g) ≥ 0. (A.16)

with equality iff f = g almost everywhere (a.e.).

Proof. see [19].

Theorem A.4.2. Let X ∈ Cn be a circular symmetric Gaussian random vector
with mean µ and covariance Q. The the probability density function X is given
by

f(x) = det(πQ)−1 exp(−(x − µ)∗Q−1(x − µ)). (A.17)

Proof. see [90].

Lemma A.4.1. Suppose the complex random vector X ∈ Cn is zero-mean with
covariance matrix E[XX†] = Q. Then the entropy of X satisfies h(X) ≤
log det(πeQ) with equality if and only if X is a circular symmetric Gaussian
with E[XX†] = Q.
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Proof. Let
f(x) = det(πQ)−1 exp(−x∗Q−1x), (A.18)

and let p be any density function satisfying Ep[XX∗] = Ef [XX∗] = Q.
We have the following relation:

−Ef [log f(X)] = log det(πQ) + (log e)Ef [X
∗Q−1X]

= log det(πQ) + (log e)tr(Ef [XX∗]Q−1)

= log det(πQ) + (log e)tr I

and,

−Ep[log f(X)] = log det(πQ) + (log e)Ep[X
∗Q−1X]

= log det(πQ) + (log e)tr(Ep[XX∗]Q−1)

= log det(πQ) + (log e)tr I

hence, we have this equality:

Ef [log f(X)] = Ep[log f(X)]

Then, from the definition of differential entropy, we have

h(p)− h(f) = −Ep[log p(X)] + Ef [log f(X)]

= −Ep[log p(X)] + Ep[log f(X)]

= −Ep

[
log

p(X)

f(X)

]

= −D(p ‖ f)

≤ 0,

with equality only if p = f . Thus h(p) ≤ h(f). From the above derivation, it
is easy to obtain the upper bound of h(X) = log det(πeQ) when X is circular
symmetric complex Gaussian.

A.5 The Mean Vector
In this section, we demonstrate how to derive the mean value of a component
in a random vector. Let X be a n-dimensional real random vector,

X = (X1, X2, . . . , Xn)t (A.19)

and pX(x) is the multivariate pdf (joint pdf) of X.
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The mean vector m = (m1,m2, . . . , mn)t of X is defined as the expectation
of X:

m = E[X]

=

∫ ∞

−∞
xpX(x)dx

=

∫ ∞

−∞

∫ ∞

−∞
· · ·

∫ ∞

−∞
xpX(x)dxn . . . dx2dx1

(A.20)

Note that the definition of the vector integral is the set of scalar integrals over
all of the components of the random vector.

Denote the marginal density of the ith component Xi of X by pXi
(xi), which

can be expressed as:

pXi
(xi) =

∫ ∞

−∞

∫ ∞

−∞
· · ·

∫ ∞

−∞
pX(x)dxn . . . dx2dx1, (A.21)

that is, pXi
(xi) is obtained by integrating all the other random variables in x

(x1, x2, . . . , xn, except xi).
By combining (A.20) and (A.21), each component mi of the n-vector m can

be obtained as:

mi = E[Xi]

=

∫ ∞

−∞
xipXi

(xi)dxi

=

∫ ∞

−∞
xipX(x)dx

(A.22)

Eq. (A.22) can be demonstrated by using m1 (without losing generality) as:

m1 = E[X1]

=

∫ ∞

−∞
x1pX1(x1)dx1

=

∫ ∞

−∞
x1

(∫ ∞

−∞

∫ ∞

−∞
· · ·

∫ ∞

−∞
pX(x)dxn . . . dx3dx2

)
dx1 (apply (A.21))

=

∫ ∞

−∞

∫ ∞

−∞
· · ·

∫ ∞

−∞
x1pX(x)dxn . . . dx2dx1

=

∫ ∞

−∞
x1pX(x)dx.
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