17,809 research outputs found

    Aggregate constrained inventory systems with independent multi-product demand: control practices and theoretical limitations

    Get PDF
    In practice, inventory managers are often confronted with a need to consider one or more aggregate constraints. These aggregate constraints result from available workspace, workforce, maximum investment or target service level. We consider independent multi-item inventory problems with aggregate constraints and one of the following characteristics: deterministic leadtime demand, newsvendor, basestock policy, rQ policy and sS policy. We analyze some recent relevant references and investigate the considered versions of the problem, the proposed model formulations and the algorithmic approaches. Finally we highlight the limitations from a practical viewpoint for these models and point out some possible direction for future improvements

    Energy-Efficient Transmission Scheduling with Strict Underflow Constraints

    Full text link
    We consider a single source transmitting data to one or more receivers/users over a shared wireless channel. Due to random fading, the wireless channel conditions vary with time and from user to user. Each user has a buffer to store received packets before they are drained. At each time step, the source determines how much power to use for transmission to each user. The source's objective is to allocate power in a manner that minimizes an expected cost measure, while satisfying strict buffer underflow constraints and a total power constraint in each slot. The expected cost measure is composed of costs associated with power consumption from transmission and packet holding costs. The primary application motivating this problem is wireless media streaming. For this application, the buffer underflow constraints prevent the user buffers from emptying, so as to maintain playout quality. In the case of a single user with linear power-rate curves, we show that a modified base-stock policy is optimal under the finite horizon, infinite horizon discounted, and infinite horizon average expected cost criteria. For a single user with piecewise-linear convex power-rate curves, we show that a finite generalized base-stock policy is optimal under all three expected cost criteria. We also present the sequences of critical numbers that complete the characterization of the optimal control laws in each of these cases when some additional technical conditions are satisfied. We then analyze the structure of the optimal policy for the case of two users. We conclude with a discussion of methods to identify implementable near-optimal policies for the most general case of M users.Comment: 109 pages, 11 pdf figures, template.tex is main file. We have significantly revised the paper from version 1. Additions include the case of a single receiver with piecewise-linear convex power-rate curves, the case of two receivers, and the infinite horizon average expected cost proble

    Improving healthcare supply chains and decision making in the management of pharmaceuticals

    Get PDF
    The rising cost of quality healthcare is becoming an increasing concern. A significant part of healthcare cost is the pharmaceutical supply component. Improving healthcare supply chains is critical not only because of the financial magnitude but also because it impacts so many people. Efforts such as this project are essential in understanding the current operations of healthcare pharmacy systems and in offering decision support tools to managers struggling to make the best use of organizational resources. The purpose of this study is to address the objectives of a local hospital that exhibits typical problems in pharmacy supply chain management. We analyze the pharmacy supply network structure and the different, often conflicting goals in the decisions of the various stakeholders. We develop quantitative models useful in optimizing supply chain management and inventory management practices. We provide decision support tools that improve operational, tactical, and strategic decision making in the pharmacy supply chain and inventory management of pharmaceuticals. On one hand, advanced computerized technology that manages pharmaceutical dispensation and automates the ordering process offers considerable progress to support pharmacy product distribution. On the other hand, the available information is not utilized to help the managers in making the appropriate decisions and control the supply chain management. Quantitative methods are presented that provide simplified, practical solutions to pharmacy objectives and serve as decision support tools. For operational inventory decisions we provide the min and max par levels (reorder point and order up to level) that control the automated ordering system for pharmaceuticals. These parameters are based on two near-optimal allocation policies of cycle stock and safety stock under storage space constraint. For the tactical decision we demonstrate the influence of varying inventory holding cost rates on setting the optimal reorder point and order quantity for items. We present a strategic decision support tool to analyze the tradeoffs among the refill workload, the emergency workload, and the variety of drugs offered. We reveal the relationship of these tradeoffs to the three key performance indicators at a local care unit: the expected number of daily refills, the service level, and the storage space utilization

    An enhanced approximation mathematical model inventorying items in a multi-echelon system under a continuous review policy with probabilistic demand and lead-time

    Get PDF
    An inventory system attempts to balance between overstock and understock to reduce the total cost and achieve customer demand in a timely manner. The inventory system is like a hidden entity in a supply chain, where a large complete network synchronizes a series of interrelated processes for a manufacturer, in order to transform raw materials into final products and distribute them to customers. The optimality of inventory and allocation policies in a supply chain for a cement industry is still unknown for many types of multi-echelon inventory systems. In multi-echelon networks, complexity exists when the inventory issues appear in multiple tiers and whose performances are significantly affected by the demand and lead-time. Hence, the objective of this research is to develop an enhanced approximation mathematical model in a multi-echelon inventory system under a continuous review policy subject to probabilistic demand and lead-time. The probability distribution function of demand during lead-time is established by developing a new Simulation Model of Demand During Lead-Time (SMDDL) using simulation procedures. The model is able to forecast future demand and demand during lead-time. The obtained demand during lead-time is used to develop a Serial Multi-echelon Inventory (SMEI) model by deriving the inventory cost function to compute performance measures of the cement inventory system. Based on the performance measures, a modified distribution multi-echelon inventory (DMEI) model with the First Come First Serve (FCFS) rule (DMEI-FCFS) is derived to determine the best expected waiting time and expected number of retailers in the system based on a mean arrival rate and a mean service rate. This research established five new distribution functions for the demand during lead-time. The distribution functions improve the performance measures, which contribute in reducing the expected waiting time in the system. Overall, the approximation model provides accurate time span to overcome shortage of cement inventory, which in turn fulfil customer satisfaction

    Mathematics in the Supply Chain

    Get PDF
    [no abstract available

    Multi-product budget-constrained acquistion and pricing with uncertain demand and supplier quantity discounts

    Get PDF
    We consider the joint acquisition and pricing problem where the retailer sells multiple products with uncertain demands and the suppliers provide all unit quantity discounts.The problem is to determine the optimal acquisition quantities and selling prices so as to maximize the retailer’s expected profit, subject to a budget constraint. This is the first extension to consider supplier discounts in the constrained multi-product newsvendor pricing problem. We establish a mixed integer nonlinear programming (MINLP) model to formulate the problem, and developaLagrangian based solution approach.Computational results for the test problems involving up to thousand products are reported, which show that the Lagrangian based approach can obtain high-quality solutions in a very short time

    Effective medical surplus recovery

    Get PDF
    We analyze not-for-profit Medical Surplus Recovery Organizations (MSROs) that manage the recovery of surplus (unused or donated) medical products to fulfill the needs of underserved healthcare facilities in the developing world. Our work is inspired by an award-winning North American non-governmental organization (NGO) that matches the uncertain supply of medical surplus with the receiving parties’ needs. In particular, this NGO adopts a recipient-driven resource allocation model, which grants recipients access to an inventory database, and each recipient selects products of limited availability to fill a container based on its preferences. We first develop a game theoretic model to investigate the effectiveness of this approach. This analysis suggests that the recipient-driven model may induce competition among recipients and lead to a loss in value provision through premature orders. Further, contrary to the common wisdom from traditional supply chains, full inventory visibility in our setting may accelerate premature orders and lead to loss of effectiveness. Accordingly, we identify operational mechanisms to help MSROs deal with this problem. These are: (i) appropriately selecting container capacities while limiting the inventory availability visible to recipients and increasing the acquisition volumes of supplies, (ii) eliminating recipient competition through exclusive single-recipient access to MSRO inventory, and (iii) focusing on learning recipient needs as opposed to providing them with supply information, and switching to a provider-driven resource allocation model. We use real data from the NGO by which the study was inspired and show that the proposed improvements can substantially increase the value provided to recipients
    • …
    corecore