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Multi-product budget-constrained acquisition and pricing with 

uncertain demand and supplier quantity discounts 
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Abstract: We consider the joint acquisition and pricing problem where the retailer sells 

multiple products with uncertain demands and the suppliers provide all unit quantity 

discounts. The problem is to determine the optimal acquisition quantities and selling prices so 

as to maximize the retailer’s expected profit, subject to a budget constraint. This is the first 

extension to consider supplier discounts in the constrained multi-product newsvendor pricing 

problem. We establish a mixed integer nonlinear programming (MINLP) model to formulate 

the problem, and develop a Lagrangian based solution approach. Computational results for 

the test problems involving up to thousand products are reported, which show that the 

Lagrangian based approach can obtain high quality solutions in a very short time. 

Keywords: Newsvendor, pricing, discount, acquisition, uncertain demand; 
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1. Introduction 

Due to demand uncertainty, the matching of supply and demand is a constant challenge faced 

by a retailer. Product acquisition and pricing are used as two levers in the retailer’s up-stream 

and down-stream to better match supply and demand. A retailer can use pricing to manage 

demand and increase the revenue, and optimize acquisition quantity or inventory level to 

reduce the mismatch and cost by exploiting economies of scale.  How to integrate both 

pricing and acquisition decisions under uncertain demand is a challenging problem. The 

situation becomes more complicated when suppliers provide quantity discounts: the retailer 

can procure products at a lower unit price if the acquisition quantity is over a certain value - 

the threshold; however, since the demand is uncertain, the retailer’s overstocking risk will 

increase. Through setting a suitable price, the retailer can reduce overstocking risk and 

increase revenue. Thus coordinating the acquisition decision and pricing with uncertain 

demands becomes more practical and challenging when suppliers offer quantity discounts. 

Motivated by the observation, this research investigates the joint acquisition and pricing 

problem with uncertain demand and supplier discounts. The problem is to determine the 

optimal ordering quantities and selling prices simultaneously so as to maximize the retailer’s 

expected profit. 

     The problem is an extension of the newsvendor problem. The newsvendor problem is a 

classical model that is used to optimize the ordering quantity under uncertain demand. Due to 

its practical and theoretical importance, the newsvendor problem has been widely studied. 

Khouja (1999) presented a comprehensive review and classified the extensions of the 

newsvendor problem into eleven categories. Among those extensions are multi-product 



 3 

acquisition, newsvendor pricing, and supplier discounts. 

Extensions to multi-product involve two or more products, usually with resource 

constraints. The constrained multi-product newsvendor model was first proposed by Hadley 

and Whitin (1963). Since ordering multiple products under budget or other constraints is 

common, the constrained multi-product newsvendor problem is widely studied in the last two 

decades. Representative work in this area includes that by Lau and Lau (1995 and 1996), 

Erlebacher (2000), Abdel-Malek and Montanari (2005a, 2005b), and Niederhoff (2007). 

Incorporating pricing decision into the newsvendor problem was first presented by Whitin 

(1955), where selling price and stocking quantity are determined simultaneously. Then it was 

extensively studied by Petruzzi and Dada (1999), Webster and Weng (2008), and Chen and 

Bell (2009). Another important extension of the newsvendor problem is to take into account 

the supplier discount, which is a common policy for suppliers to promote their products. The 

notable work includes those of Pantumsinchai and Knowles (1991), Khouja (1996), Lin and 

Kroll (1997), and Zhang (2010). 

So far, the three extensions to multi-product, pricing, and supplier discounts have been 

widely studied separately. To the best of our knowledge, it is the first investigation in the 

literature that studies these three issues in one integrated model. As discussed before, through 

the integrated model, the coordination of the up-stream and down-stream’s decisions makes 

the problem more practical and challenging. Our objective is to develop the optimal 

acquisition and selling policy for the retailer, who faces uncertain demand and supplier 

discounts. Since suppliers provide quantity discounts, the product costs are piecewise linear.  

We develop a Mixed Integer Nonlinear Programming (MINLP) model to formulate the 

problem, and present a Lagrangian based solution approach, which is very efficient for large 

scale instances. 

An outline of this paper is as follows. Section 2 provides a brief literature review of the 



 4 

related research. Section 3 presents the MINLP model for the problem. A Lagrangian based 

solution approach is developed in Section 4, and numerical examples and computational 

results are presented in Section 5. We finally conclude the paper in Section 6. 

2. Related Research 

There are numerous works that address the newsvendor problem and various extensions.  

Here we mainly review the related studies on the extensions to multi-product, quantity 

discount, and newsvendor pricing. For a more comprehensive review, the reader is referred to 

Khouja (1999). A brief comparison of the features of the reviewed papers with the proposed 

model in this research is illustrated in Table 1.  

[Insert Table 1 here] 

The multi-product acquisition under uncertain demand is usually modeled as the 

multi-product newsvendor problem. A budget or other resource constraints are always 

associated with the problem otherwise it can be treated as a single product newsvendor 

problem. The Hadley and Whitin (1963) first presented a formulation for the constrained 

multi-product newsvendor problem and developed a solution method for the problem. Then 

Lau and Lau (1995, 1996) presented a formulation and a solution procedure for the 

multi-product constrained newsvendor problem, which can efficiently solve large scale 

problems involving 1000 products. Abdel-Malek and Montanari (2005a, 2005b) investigated 

the solution spaces for the multi-product newsvendor problem with one and two constraints 

respectively. Abdel-Malek and Areeratchakul (2007) developed a quadratic programming 

model for the multi-product newsvendor problem with side constraints, which can be solved 

by familiar linear programming software packages such as Excel Solver and Lingo. 

Niederhoff (2007) presented an approximation method for the multi-product multi-constraint 
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newsvendor problem by approximating the objective function with the piecewise linear 

interpolates. Zhang et al. (2009) presented a binary solution algorithm for the multi-product 

newsvendor problem with budget constraint. More articles on the multi-product newsvendor 

problem are included in Table 1. 

Quantity discount is a common and effective policy for suppliers to promote their 

products. Quantity discount is based on the quantity of an item purchased - promoting the 

buyer to order large quantities of a given item. Pantumsinchai and Knowles (1991) formulated 

a single-period inventory problem with the consideration of standard container size discounts. 

Khouja (1995) formulated a newsvendor problem in which multiple discounts are used to sell 

excess inventory, while Khouja and Mehrez (1996) studied the multi-product constrained 

newsvendor problem under progressive multiple discounts. Khouja (1996) studied the 

newsvendor problem that considers both multiple discounts used by retailers to sell excess 

inventory and all-units quantity discounts offered by the suppliers. However, the model does 

not consider any resource constraint. Lin and Kroll (1997) investigated the single-item 

newsvendor problem with quantity discount and dual performance measure consideration. 

The solution approaches for the all unit quantity discount and incremental discount are 

developed. Zhang (2010) introduced supplier discounts to the constrained newsvendor 

problem, and presented a mixed integer nonlinear programming model. A Lagrangian 

heuristic is developed to solve the problem. However, the problem does not consider pricing 

decision. 

By incorporating pricing into the newsvendor problem, Whitin (1955) first investigated 

the optimization problem of determining the stocking quantity and selling price 

simultaneously under uncertain demand environment. Petruzzi and Data (1999) presented a 

comprehensive review and some meaningful extensions for the newsvendor pricing problem. 

Parlar and Weng (2006) studied the effects of coordinating pricing and production decisions 
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on the improvement of a firm's position in a price-competitive environment and found that by 

coordinating their pricing and production decisions, the firm can increase their profitability, 

especially when conditions are unfavorable. Karakul (2008) studied the joint pricing and 

procurement of fashion products in the existence of clearance markets. Serel (2008) studied a 

single-period inventory and pricing problem where the risky supply is considered. Webster 

and Weng (2008) investigated a joint ordering and pricing problem for a manufacturing and 

distribution supply chain for fashion products. Chen (2009) addressed the simultaneous 

determination of price and inventory replenishment when customers return product to the firm. 

Pan et al. (2009) constructed a two-period model to determine the pricing and ordering 

problem for a dominant retailer with uncertain demand in a declining price environment.  

As shown in Table 1, the three extensions to the newsvendor problem have been widely 

investigated separately. There are a couple of articles that combine two of those three 

extensions in the newsvendor problem but none on all those three. The model presented in 

this paper enriches the newsvendor problem by considering pricing, quantity discount, and 

multiple products simultaneously. The properties of the newsvendor pricing problem with 

supplier quantity discounts are studied and a solution approach is developed based on 

Lagrangian method. 

3. Model formulation 

In this section, the multi-product acquisition and pricing problem is formulated as a MINLP 

model, which is developed based on the following assumptions. 

The retailer sells multiple products. It is assumed that the demand for each product is 

independent. We also assume that the demand is price-sensitive and stochastic: the 

relationship between demand and price is     iiiiii upDupD ,
~

, where 



Di pi  ai bi pi
 

(where 



ai  0 and



bi  0) is the expected demand and 



ui
 is the stochastic term defined on 

the range 



Ai,Bi  with mean 



i
 and standard deviation



 i
. In order to assure that the 
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demand is nonnegative for some range of p, Ai should not be less than –ai. This assumption 

for the demand has been applied widely in revenue management and operations research 

literature (Petruzzi and Dada 1999; and Pan et al. 2009).  

We assume that the retailer has a budget constraint and suppliers provide all-unit 

quantity discounts. For the details on all-unit quantity discounts, the reader is referred to 

Khouja (1996) and Zhang (2010). 

3.1 Notation 

The following notations are used to formulate the problem: 

Indices: 

i = 1,..., I: index of products 

ki = the number of price discounts for product i offered by suppliers 

j =  1,..., ki: index of price segments for product i offered by suppliers. 

Parameters: 

cij = the unit acquisition price of product i after discount on discount segment j 

L

ijd = the lower bound on the quantity of product i on discount segment j 

U

ijd = the upper bound on the quantity of product i on discount segment j 

BG = the available budget for the retailer 

gi = the estimated understocking cost (the loss of goodwill) of one unit of product i 

si = the estimated overstocking cost of one unit of product i 



Di pi  ai bi pi , the price-dependent expected demand function for product i 



˜ D i pi,ui  Di pi  ui , the price-dependent stochastic demand function for product i 

ui = stochastic term defined on the range [Ai, Bi] with mean i , in this paper



Ai  ai,     



Bi   and 



i  0 



f i , 



Fi  = pdf and cdf of the distribution of ui. 
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We define the following decision variables: 

ip = the retail price of product i 

ijq = the acquisition quantity of product i at discount segment j (explained in the model 

description) 

yij = 1 if the retailer buys product i at discount segment j; otherwise 0. 

Following Petruzzi and Dada (1999), we also define: 



zi  qij

j1

ki

 Di(pi)  qij

j1

ki

  ai bi pi .  

Where



qij

j1

ki

  is the acquisition quantity of product i. The introduction of the decision 

variable zi facilitates the modeling and analysis of the problem: there is overstocking cost if zi 

is larger than ui; otherwise understocking cost occurs. From the definition, we can see that the 

lower bound on zi is 



ai (where both acquisition quantity and the price are set to zero), 

which equals the lower bound Ai on ui. The upper bound on zi can be infinite. Thus the 

variable zi has the range [Ai, Bi]. Actually, it is common to apply the range of ui to variable zi 

(Petruzzi and Dada 1999; Pan et al. 2009). 

3.2 Model 

The model for the joint acquisition and pricing problem can be formulated as: 

Max 

                



 

 







I

i

k

j

ijij

I

i

B

z
iiiiiiiiii

z

A
iiiiiiiiii

i

i

i

i

i

qc

duufzugzpDpduufuzsupDp

1 1

1
 (1) 

subject to 



c ijqij

j1

ki


i1

I

  BG,                 (2) 
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

qij  dij

L y ij i, j ,                   (3) 

                  



qij  dij

U y ij i, j ,                      

(4) 



y ij

j1

ki

 1 i,                     (5) 



Di pi  zi  qij

j1

ki

 i,              (6) 



Ai  zi  Bi, i,             (7) 



pi  0, 



qij  0, 



y ij  0,1 , i, j.           (8) 

The objective function is to maximize the retailer’s expected profit: the first term of 

represents the expected revenue minus the overstocking cost when the ordering quantities are 

above the actual demand levels; the second term represents the expected revenue minus the 

understocking costs when the ordering quantities are lower than the actual demands; the 

revenue is evaluated based on selling quantity, which is equal to Di(pi) +ui when overstocking, 

or Di(pi) + zi for understocking; the third term is the total acquisition cost. Constraint (2) is the 

budget limitation. Constraints (3)-(5) are the quantity discount constraints: (3) and (4) ensure 

the amount purchased from the supplier at the price level positions in the corresponding 

discount interval. Constraints (5) ensure only one discount level is eventually applied, which 

implies that for each product i only one of qij, j = 1,..., ki, could be non-zero. Constraints (6) 

give the relationship between acquisition quantity and deterministic demand, as the definition 

on zi. Constraints (7) give the bounds on zi. Constraints (8) are nonnegative and integral 

constraints. 

The formulae given by (1) to (8) is a MINLP model. It is hard to obtain the exact optimal 

solution to the problem, especially for large scale instances. In the next section we propose a 

Lagrangian based approach to solve the problem. 
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4. Solution Approach 

The Lagrangian based approach consists of the following three phases: first, we 

construct the Lagrangian relaxation problem by relaxing the budget constraint (2); second, the 

Lagrangian relaxation problem is solved by bisection algorithm. The solution obtained may 

violate the budget constraint (2). Thus, in the last phase, a feasibility algorithm is developed 

to construct a feasible solution. Details of each phase are presented in the following. 

4.1 Lagrangian Relaxation 

By introducing a Lagrange multiplier λ, we relax the budget constraint (2) and construct 

the following Lagrangian relaxation problem: 

Max 

                




















 

  



I

i

k

j

ijijG

I

i

k

j

ijij

I

i

B

z
iiiiiiiiii

z

A
iiiiiiiiii

ii

i

i

i

i

qcBqc

duufzugzpDpduufuzsupDpLR

1 11 1

1



 (9) 

subject to (3)-(8). 

Then the relaxed problem can be decomposed into I single-product subproblems: 

Subproblem 



LRpi: 

Max 

               

 









i

i

i

i

i

k

j

ijij

B

z
iiiiiiiiii

z

A
iiiiiiiiiii

qc

duufzugzpDpduufuzsupDpLRp

1

1 

 (10) 

subject to (3)-(8). 

Substituting (10) into (9), the relaxed problem can be written as 

Max 



LR  LRpi

i1

I

  BG  
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subject to (3)-(8). 

4.1.1 Properties for single product newsvendor pricing problem 

In subproblem 



LRpi , constraint (5) ensures that only one discount segment can be 

selected. It implies that the solution to subproblem 



LRpi  must locate in one interval of ki 

discount levels. Thus, we can solve subproblem 



LRpi  by solving the ki subproblems and 

each of them is associated with one price level. Then the best solution of the ki subproblems is 

the optimal solution of subproblem



LRpi . Actually, as Proposition 2 shows later on, it is 

unnecessary to solve all subproblems in many situations. 

For price level j, we have the following subproblem 



LRpij: 

Max 

               

    iiiij

B

z
iiiiiiiiii

z

A
iiiiiiiiiiij

zpDc

duufzugzpDpduufuzsupDpLRp
i

i

i

i



 
1

 (11) 

subject to 

  L

ijiii dzpD                (12) 

  U

ijiii dzpD                   (13) 



Ai  zi  Bi,                (7) 



pi  0.                (8) 

We first introduce two Lemmas for the objective function of 



LRpij , which present the 

solution approach for the problem 



LRpij  without considering the discount interval 

constraints (12) and (13). 

Lemma 1. For a fixed iz , the optimal selling price to maximize the objective function 



LRpij is determined uniquely as a function of iz : 
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

pi

j  pi

j zi  pi

j 0 
 zi 
2bi

, 

where 



 zi  u zi  f i u du
zi

Bi

  and 



pi

j 0 
ai  bic ij 1   i

2bi

. 

Lemma 1 has been introduced by Petruzzi and Dada (1999). 

Substituting 



pi

j  pi

j zi  into 



LRpij
, the optimization becomes a maximization over 

the single variable iz : 



Maximize
zi



LRpij zi, pi

j zi  . Petruzzi and Dada (1999) present the 

sufficient conditions for the unimodality of the objective function 



LRpij
. For our problem, 

these conditions can be described as follows. 

Lemma 2: If   02  iiijijii Agccba   and the  
ii zF  is a distribution function 

satisfying the condition 



2ri zi 
2
 dri zi /dzi  0  for iii BzA  , where 



ri zi  f i zi  1 Fi zi   is the hazard rate, then function 



LRpij zi, pi

j zi   is unimodal in iz , 

and there is an unique j

iz  in the region 



Ai,Bi  that satisfies 



dLRpij zi, pi

j zi   dzi  0 . 

All the following propositions and algorithms are developed based on the assumption 

that the conditions in Lemma 2 are satisfied. Lemmas 1 and 2 provide a way to find the 

optimum in the region 



Ai,Bi  for function i jLRp , but mostly not for the subproblem



LRpij  

since the solution satisfies constraint (7) but may violate constraint (12) or (13). We call the 

solution realizable if it satisfies constraints (12) and (13). The following propositions are 

presented for the situation when the solution is unrealizable.  

We proceed to analyze the situation when constraint (12) is violated. As indicated in 

Lemma 2, function 



LRpij is unimodal in iz . Thus, if constraint (12) is violated, then the 

optimal solution to subproblem



LRpij  is obtained at the discount break point, that 

is,



Di pi  zi  dij

L
. It follows that



pi 
ai  zi  dij

L

bi

. We define 



pi

jL zi 
ai  zi  dij

L

bi

 and 
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substitute it into function



LRpij
. Then the optimization of function 



LRpij
 in 



Di pi  zi  dij

L  

becomes a maximization over the single variable iz : 



Maximize
zi

 



LRpij zi, pi

jL zi  . 

Let 



pi

jL  and 



zi

jL  denote the optimal solution of function 



LRpij
 in



Di pi  zi  dij

L . 

We have the following proposition. 

Proposition 1: When the ordering quantity is set to 



dij

L , the solution to maximize 

function 



LRpij is unique, and 



pi

jL 
ai  zi

jL  dij

L

bi

 where 



zi

jL  is the unique solution in the 

region 



Ai,Bi  that satisfies 



dLRpij zi, pi

jL zi   dzi  0 . 

The proof of proposition 1 is provided in the Appendix. Proposition 1 provides the way 

to solve subproblem 



LRpij
 when the solution to function 



LRpij
 violates constraint (12). 

Similarly, we can solve subproblem 



LRpij
 for the situation that the solution to function 



LRpij 
violates constraint (13). We omit the parallel analysis since the situation does not 

happen in our algorithm, which is discussed in the next section. 

The following propositions give the relationships among the solutions of the 

subproblems 



LRpij, ikj ,...,1 , i.e., with different price levels. 

Proposition 2: Let 


i jLRp  denote the maximum value of function 



LRpij , for ikj ,...,1 . 

If the conditions for Lemma 2 are satisfied, then we have 



LRpi, j1

  LRpij


. 

Proposition 3: The optimal solutions j

iz  and j

ip  to maximize function 



LRpij , for 

ikj ,...,1 , satisfy 



zi

j  zi

j1, and 



Di pi

j*  zi

j*  Di pi

j1*  zi

j1*
. 

Proofs of Propositions 2 and 3 are provided in the Appendix. Proposition 2 implies that 

we do not need to solve the subproblems with higher price levels if the solution to function 



LRpijat a price level is realizable. Proposition 3 shows that the optimal order quantity for 

lower price level is larger than that for higher price level. 
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4.1.2 Solution algorithm for subproblem 
iLRp  

Based on Lemmas 1-2 and Propositions 1-3, an algorithm for subproblem 
iLRp , called as 

Algorithm A, is developed. The main steps of Algorithm A are described below and a flow 

chart is presented in Figure 1. 

Let 

iz  and 

ip  denote the optimal solutions for subproblem 
iLRp . 

Algorithm A: 

Step 0: Initialization 

Initialize and set 
ikj . 

Step 1: 

     Calculate the optimal j

iz  and j

ip  for maximizing function 



LRpij
: 

     j

iz  is obtained by Lemma 2 and j

ip  is obtained by Lemma 1. 

Step 2: 

    If 



dij

L  Di pi

j  zi

j  dij

U
, 



jS  j  and go to Step 4; 

    Otherwise go to Step 3. 

Step 3: 

     Calculate the optimal 



pi

jL  and 



zi

jL  for maximizing function



LRpij  with 



Di pi  zi  dij

L

 
according to Proposition 1. 

Set 



j  j 1 and go to Step 1. 

Step 4: 

              









 

S

jL

i

jL

iijS

j

i

j

iijii
jj

zpLRp
jj

zpLRppz ,,,maxarg, . 

[Insert Figure 1 here].  

The algorithm starts with the lowest price. Step 1 calculates the optimal solution for 

function 



LRpij .  Step 2 checks if the optimal ordering quantity is realizable, i.e., 
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  U

ij

j

i

j

ii

L

ij dzpDd  
. If so, according to Propositions 2 and 3 we don’t need to calculate 

the optimal solutions to 



LRpij
 for 



j  j S, since their optimal values are less than that of 

S
i j

LRp . Otherwise, by Proposition 2 we know that the optimal ordering quantity at this 

discount segment is the discount break point. Thus Step 3 calculates the optimal 



pi

jL  and 



zi

jL  for maximizing function i jLRp  with



Di pi  zi  dij

L . Then the algorithm goes back to 

Step 1 to calculate the optimal solution to the next discount segment. Step 4 evaluates S
i j

LRp  

and compares with all the optimal solutions of subproblem i jLRp , for 



j  j S. Then the best 

solution is the optimum of subproblem
iLRp . Algorithm A is similar to the procedure followed 

to solve the single item newsvendor problem with quantity discount (Lin and Kroll 1997), but 

we incorporate the pricing decision into the problem. 

As indicated before, the algorithm does not need to consider the situation that the 

solution to function 
iikLRp violates constraint (13): Usually, the upper bound on the discount 

segment with the lowest price is a large value up to infinite, thus the optimal ordering quantity 

for function
iikLRp  is either within price range or less than 

L

iki
d . If the solution is in the 

discount range, the algorithm stops; otherwise go to the second lowest price.  According to 

Proposition 3, we know the solution to function 



LRpij  must satisfy constraint (13). 

4.2 Solving the Lagrangian Dual Problem 

For a given value of λ, the Lagrangian relaxation problem provides an upper bound to the 

original problem. Lagrangian Dual Problem is to find the optimal Lagrangian multiplier that 

minimizes the upper bound. 

4.2.1 Bisection algorithm 

We first set λ=0 and solve subproblems 
iLRp , for i=1,…,I, by Algorithm A. If 
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

c ijqij

j1

ki


i1

I

  BG, it indicates that the capacity constraint (2) is non-operative, and the optimal 

solutions with λ=0 are optimal to the original problem. Otherwise, we need to solve the 

Lagrangian dual problem to find the optimal Lagrange multiplier to minimize the upper 

bound. To solve the dual problem, the bisection iteration algorithm is introduced as follows:  

Step 0: Set 01   and 



2  max (



max  is explained in the next section). 

Step 1: Let 



  (1  2) /2 , solve all the subproblems 
iLRp  for Ii ,...,1 , by 

Algorithm A, and get their optimal solutions 

iz  and 

ip . 

Step 2: Calculate 



Berror . 

Step 3: If 



abs Berror 1
 or 



abs 1  2 2
, then Stop. 

Step 4: If 



Berror  0 ,  then set 



1   ; else set  2 . Go to Step 1. 

Where, we define



Berror  c ijqij

j1

ki


i1

I

  BG . 
1  and 

2  are parameters for stop criteria. In 

our case, 11   and 001.02  . 

Our computational experiments show that: for small scale problems such as involving 

less than 20 products, the algorithm stops with condition 



abs Berror 1
; for large scale 

problems such as involving hundreds of products, the algorithm stops with condition 



abs 1  2 2
. It implies that the bisection algorithm can obtain the optimal solutions for 

small scale problems, but for large scale problems, the dual solution from the bisection 

algorithm may violate budget constraint (2). A feasibility algorithm is needed to construct a 

feasible solution when the budget constraint is violated. 

4.2.2 Observations 

In each iteration of the bisection algorithm, Algorithm A is repeatedly employed to solve 

subproblems 
iLRp  for Ii ,...,1 . From Algorithm A we can see that a number of the 

following nonlinear equations should be solved: 
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

dLRpij zi, pi

j zi   dzi  0, j  j S ,...,ki ,            (a) 

  



dLRpij zi, pi

jL zi   dzi  0, j  j S,...,ki .                 (b) 

Equation (a) is used to find the optimal solution to maximize function i jLRp , while 

equation (b) is used to get the optimal solution to maximize function i jLRp  in 



Di pi  zi  dij

L , that is, the optimal solution at discount break point j. It is time-consuming to 

solve these nonlinear equations. The following property of equations (b) can used to reduce 

their solving times. 

Observation 1: The solutions of equations (b) are independent of the Lagrange multiplier 

 . 

Since 



dLRpij zi, pi

d ij
L

zi  
dzi


dij

L  ai  2zi

bi

 gi  si









Fi zi 

1

bi

ufi u du
A i

zi

 
dij

L

bi

 gi









, the 

equations (b) are independent of the Lagrange multiplier  . Observation 1 implies that the 

optimal selling price and the optimal value of 
iz  at the price break point are constant and 

they don’t vary with the change of  . We only need to solve equation (b) at most one time 

for each product at each discount break point. 

Observation 2: There is an upper bound on the Lagrange multiplier  . 

In terms of conditions in Lemma 2, we should keep 



ai  bi c ij  c ij  2gi  Ai  0  for 

all i, j, in order to make sure that every equation (a) has an unique root, that is, 



 
ai  Ai  2gibi

bic ij

1, i, j . 

Let 



max min
ai  Ai  2gibi

bic ij

1i, j








, which gives the upper bound on  . 

As pointed by Lau and Lau (1995, 1996), when the budget capacity is too small, some 

ordering quantities during the process of the bisection algorithm may be negative, which are 
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infeasible. Thus, in each iteration, the ordering quantities for all products, 



qi  Di pi  zi
 for 

i=1,…,I, should be checked and the negative ones are set to zero. 

4.3 Feasibility Algorithm 

The solution obtained by the bisection algorithm may violate the budget constraint. We have 

defined that



Berror  c ijqij

j1

ki


i1

I

  BG . If 0er r orB , then the solution is infeasible. While 

0errorB  implies the solution is feasible but the budget is not sufficiently utilized. Hence, we 

develop a feasibility procedure to either adjust the dual solution to be feasible or improve the 

solution. The feasibility algorithm is described as follows. 

Step 0: Sort the products in the descending order in terms of unit acquisition cost. 

Step 1: If 0er r orB , decrease the acquisition quantities of the products in the order until 

the total budget reaches its balance. 

Step 2: If 0errorB , increase the acquisition quantities for the products in the reverse 

order until the budget is fully utilized. 

Step 3: Recalculate the optimal selling prices for the adjusted products by Proposition 1. 

The basic idea of the feasibility algorithm is straightforward. Each product has an upper 

bound on the acquisition quantity, which is the optimal order quantity without the budget 

limitation. The acquisition quantity for each product adjusted in Step 2 cannot be more than 

the upper bound. 

For most of the cases, the balance is reached by adjusting only one product’s acquisition 

quantity since the Lagrangian dual solutions are very near to the optimal solution. 

Figure 2 shows the complete structure of the Lagrangian based approach, which mainly 

consists of bisection algorithm and feasibility algorithm. 

[Insert Figure 2 here] 
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5. Numerical Example and Computational Results 

The proposed approach is tested on the randomly produced examples. The algorithms are 

implemented with Matlab. The computational experiences for all the examples are conducted 

on the IBM T60 laptop with Windows XP (Intel® Core™2 Duo CPU, 1GB of RAM). 

5.1 Numerical example 

This section presents a numerical example to illustrate our procedures. We investigated 

the supply and random price-dependent demand of fashion clothes such as printable garment 

at a retail store in China. This example is designed based on the investigation data from the 

acquisition and pricing process of sweatshirts with five styles. The available budget (BG) for 

the sweatshirts is $ 125,000 and the random part ( iu ) of the price-dependent demand is 

assumed to follow the normal distribution with a mean of zero. The supplier offers three 

discount segments: less than 2000, from 2000 to 4000, and over 4000. Other parameters for 

the example are shown in Table 2. 

[Insert Table 2 here] 

We apply the proposed Lagrangian approach to the instance. We first solve the 

Lagrangian dual problem with the bisection algorithm. In the dual solution, the budget 

required 124999.22, which is slightly less than the available budget of 125,000. Thus the dual 

solution is feasible. The upper bound obtained by the dual solution is 184,725.75, while the 

profit of the feasible solution is $184,725.44. The relative gap between the feasible solution 

and the bound, defined as (upper bound-lower bound)/lower bound, is 1.67E-07, which is 

very small. Thus the feasible solution is very close to the optimal solution. Since the budget 

required almost reaches the limit and the gap is so small, it is unnecessary to employ the 

feasibility algorithm to adjust the dual solution for this instance. The optimal order quantities 

and selling prices for the example are presented in Table 3.  

[Insert Table 3 here] 
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5.2 Managerial analysis and comparisons 

We use the above example to investigate the relationships between the solutions and 

critical parameters to gain some insights to the joint ordering and pricing problem. 

The relationship between the expected profit and the budget capacity 

We observe the change of the expected profit by varying the budget capacity from 

115,000 to 175,000 while the other parameters are fixed. The relationship between the profit 

and the budget capacity is shown in Figure 3. It can be seen that the total expected profit 

increases when the budget capacity increases, but it keeps unchanged beyond about 145,000. 

It indicates that the profit can be increased by adding the available budget, but does not 

increase any more after a certain point, since the additional budget is not fully utilized due to 

the limitation on demands. 

[Insert Figure 3 here] 

The acquisition policy versus the standard deviation of a product’s demand 

To observe impacts of demand uncertainty on the acquisition policy, Figure 4 illustrates 

how the acquisition quantities of the products change when the standard deviation of product 

1’s demand varies from 200 to 2,000. It can be seen that the ordering quantities for products 4 

and 5 keep unchanged, while the ordering quantity for product 1 increases and the ordering 

quantities for products 2 and 3 decrease, when the standard deviation increases from 200 to 

800 and from 1400 to 2000. It implies that the retailer would shift the budget from the 

products with lower risk to the products with higher risk. It coincides with the result of 

classical newsvendor problem when the order quantity is above the demand average. But 

when the standard deviation varies from 800 to 1,400, the ordering quantities for all the 

products keep unchanged. This is because the ordering quantity for product 1 is at the 

discount break point 4,000. It shows that the acquisition policy is less sensitive to the 

uncertainty of demand when the ordering quantity is at the discount break point. 
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[Insert Figure 4 here] 

The pricing policy versus the standard deviation of a product’s demand 

We also observe how demand uncertainty affects the pricing policy by varying the 

standard deviation of product 1’s demand from 200 to 2,000. From Figure 5, it is interesting 

to see that the price of product 1 decreases when the standard deviation varies form 200 to 

800 and from 1,400 to 2,000 respectively, and increases when the standard deviation varies 

from 800 to 1,400. Note from Figure 4 that the order quantity of product 1 increases when the 

standard deviation varies form 200 to 800 and from 1,400 to 2,000. Thus retailer reduces the 

selling price to induce demand increase. When the standard deviation varies from 800 to 

1,400 the product 1 keeps the ordering quantity unchanged at 4000, which is the discount 

break point. In the situation the retailer reduces the understocking risk through increasing the 

selling price. 

[Insert Figure 5 here] 

Comparison of the solutions of discount case with that of non-discount case 

Since the problem without discount is a special case of the problem with discounts, the 

non-discount case can also be solved by the Lagrangian based solution approach, and the 

solutions are presented in Table 3. The optimal profit is $ 175,191.11, which is a little less 

than that of the discount case. Comparing the solutions for the two cases, we can see that the 

ordering quantities in the discount case are more than that of the non-discount case, while the 

selling prices in the discount case are less than that of the non-discount case. It indicates that 

the supplier quantity discounts can promote the retailer orders more products, and the retailer 

can increase the profit by offering lower selling prices to customers. Therefore both suppliers 

and retailers can benefit from the supplier discount policy. 

5.3 Performances of the Solution Approach 

In order to further test the performance of the solution approach, thirty test problems 
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with the sizes of 20, 200 and 1000 products are randomly produced based on our investigation 

data, and then solved by the proposed solution approach. Table 4 illustrates the running times 

and solution gaps for the problems. According to Table 4, the maximal relative gap for the 

small size examples is 9.59E-04 while the average gap is 2.21E-04, and the computational 

times for all the small examples are within 2 seconds. For the middle size examples, the 

maximal and average gaps are 2.00E-04 and 2.01E-05 respectively, and the computational 

times are less than 16 seconds. For the large size examples, the maximal and average gaps are 

3.86E-05 and 6.20E-06 respectively, which are less than that of small and middle size 

problems. The running time for the problem with 1000 products is no more than 80 seconds. 

It is concluded that our solution approach can present very good solutions for all scale 

examples in a short computational time. 

 [Insert Table 4 here] 

6 Conclusions 

This paper investigates the multi-product acquisition and pricing problem when uncertain 

demands and supplier quantity discounts are present. We illustrate that the problem is an 

extension of the newsvendor pricing problem. It is the first work to combine supplier 

discounts with the constrained multi-product newsvendor pricing problem. The combination 

makes the problem more practical and challenging. Through the proposed MINLP model and 

solution approach, this research provides the retailer an effective way to use both acquisition 

and pricing decisions as levers to better match demand and supply, and increase the profit 

under the circumstance.  

We analyze the properties of the newsvendor pricing problem with supplier quantity 

discounts. Based on the properties, we develop a Lagrangian based solution approach. The 

bisection algorithm is applied to solve the Lagrangian dual problem to obtain an upper bound. 

Thirty numerical examples are randomly produced for testing the approach. The 
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computational results show that the proposed solution approach can provide high quality 

solutions in terms of the relative gaps, in a very short time. Through a numerical example, we 

also compare the solutions of two cases with and without the discounts. It is found that the 

discount schemes have important impacts on the newsvendor’s acquisition and pricing 

policies: order more from suppliers and offer lower prices to customers, which benefit 

suppliers and also increase newsvendor’s profit. 

In this paper, we only consider the retailer’s budget constraint, while in practice the 

retailer may have multiple resource constraints. Thus, a natural extension of our study is to 

consider the problem with multiple constraints. In this scenario, bisection algorithm is 

unsuitable, and the subgradient algorithm can be employed to solve such more complicated 

problem. Another extension to our problem is to take into account other discount schemes, 

such as incremental quantity discount, volume discount, and bundle discount, which are also 

common in current business practice. Then new models and solution approaches need to be 

investigated. 
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Appendix 

Proof of Proposition 1. 



LRpij zi, pi

jL zi  
ai  zi  dij

L

bi

dij

L  zi  ui  si zi  ui 








f i ui duiA i

zi




ai  zi  dij

L

bi

dij

L  gi ui  zi 








f i ui duizi

B i

  c ij 1  dij

L .

 

The first and second derivatives of 



LRpi zi, pi

jL zi   are as follows: 
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

dLRpij zi, pi

jL zi  
dzi


dij

L  ai 2zi

bi

 gi  si









Fi zi 

1

bi

uf i u du
Ai

zi

 
dij

L

bi

 gi









, and 

   



d2LRpi zi, pi

jL zi  
dzi

2
 

2

bi

Fi zi 
ai  zi  dij

L

bi

 gi  si









f i zi 

 
2

bi

Fi zi 
ai  zi  dij

L

bi

 gi  si









f i zi  0.

 

Thus the first derivative 



dLRpij zi, pi

jL zi  
dzi

 is a monotonically decreasing function of 

iz . 

Since 



dij

L    Bi ,  



dLRpij Bi, pi

jL Bi  
dzi


2dij

L  ai 2Bi  i

bi

 gi  si  0, 

and 



dLRpij Ai, pi

jL Ai  
dzi


dij

L

bi

 si  0. 

Therefore there is a unique 



zi

jL  in the region 



Ai,Bi   that satisfies 



dLRpij zi, pi

jL zi   dzi  0 .□ 

Proof of proposition 2: 

Let 



zi

j  and 



pi

j  denote the optimal solutions to maximize function 



LRpij , for 



j 1,...,ki. Then we have  



LRpij


=



LRpij zi

j, pi

j . 

Since 



LRpij zi

j, pi

j  LRpij zi

j1, pi

j1  and 

   



LRpij zi

j1, pi

j1  LRpi, j1 zi

j1, pi

j1  ci, j1  cij D pi

j1  zi

j1  0 , 

we have 



LRpij zi

j, pi

j  LRpi, j1 zi

j1, pi

j1 .□ 

Proof of proposition 3: 

Let 
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

Rij zi 
dLRpij zi, pi

j zi  
dzi

  1  c ij  gi 
ai  bic ij 1   i

2bi

 gi  si 
 zi 
2bi









1 Fi zi  

 c ij

1   Fi zi 
2

 gi 
ai  i

2bi

 gi  si 
 zi 
2bi









1 Fi zi  ,

for 



j 1,...,ki . 

As 



zi

j and 



pi

j are the optimal solutions to 



LRpij
, for ikj ,...,1 , from lemma 2 we 

know that 



Rij zi

j  0, for ikj ,...,1 . 

Since 



Rij zi

j1  Ri, j1 zi

j1  
1   Fi zi

j1 
2

c ij  c i, j1  0 , 



Rij zi

j1  Ri, j1 zi

j1  0. 

Furthermore 



Rij A 
ai  bi c ij  c ij  2gi  Ai

2bi

 0 . 

Therefore the unique root 



zi

j  for 



Rij zi   belongs to range 



Ai,zi

j1*  , that is, 



zi

j  zi

j1. 

Let 



qi

j  Di pi

j  zi

j
, 



j 1,...,ki . 

Substitute



pi

j  pi

j zi

j  into 



qi

j, and we obtain  

        



qi

j 
ai  bic ij 1  i

2

 zi

j 
2

 zi

j . 

Function 



qi

j zi 
ai  bic ij 1  i

2

 zi 

2
 zi

 monotonously increases in 



zi , 

for



j 1,...,ki ,  as 



dqi

j zi 
dzi


1 Fi zi 

2
 0. 



zi

j  zi

j1, thus      1j

i

j

i

j

i

j

i zqzq . 

   
  

0
2

11,111 





jiijij

i

j

i

j

i

j

i

ccb
zqzq , therefore      111 j

i

j

i

j

i

j

i zqzq . 

We can get    *11*  j

i

j

i

j

i

j

i zqzq , that is,       11 j

i

j

ii

j

i

j

ii zpDzpD .□ 
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