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Abstract:  
In practice, inventory managers are often confronted with a need to consider one or more 

aggregate constraints. These aggregate constraints result from available workspace, 

workforce, maximum investment or target service level. We consider independent multi-item 

inventory problems with aggregate constraints and one of the following characteristics: 

deterministic leadtime demand, newsvendor, basestock policy, rQ policy and sS policy. We 

analyze some recent relevant references and investigate the considered versions of the 

problem, the proposed model formulations and the algorithmic approaches. Finally we 

highlight the limitations from a practical viewpoint for these models and point out some 

possible direction for future improvements. 
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1. Introduction and motivation 
In practice inventory managers have system wide limitations or goals. Applying a single item 

approach to attain these goals is not a best practice and neither is it effective to respect system 

constraints. Sherbrooke (2004) reports that using a system approach on 1.414 spare parts 

resulted in a 46% reduction of inventory investment without a decrease in performance. An 

optimal policy surface can be generated,  this is a practical tool to deduct the optimal link 

between system cost and system service, while respecting the system constraints. Within this 

article we want to give an overview of the relevant references for the considered policies  

together with insights in the used algorithms. The usefulness in practice requires the 

possibility for large data sets and easy implementation, e.g. closed form expressions. The 

article is organized according the following inventory policies: 

 Deterministic leadtime demand. 

 Newsvendor: a single period model with a stochastic demand and penalty costs for 

ordering too much or too little. 

 Basestock: an rQ policy with Q=1, this is relevant when ordering costs are negligible 

compared with other costs. 

 rQ policy: an order of size Q is placed as soon as the inventory position declines to or 

below the reorder point r. 

 sS policy: an order is placed to reach the stock maximum level S as soon as stock 

declines to or below reorder point s. 
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2 Situating the problem 
2.1 Problem in Scope 
We consider inventory problems with the following formulation: 

                            

 

   

                                                            (1) 
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                                                                    (3) 

The problem described here has J different items. Each item has m (1 or 2) variables with 

lower bound lj. The variable values are real or in some cases integer. The functions fj,g1j,..gzj 

are functions defined on R
m
 or Z

m
. We will only consider items with independent demand. 

Each of the problems must have at least one aggregate constraint (z>=1). The items cannot be 

optimized independently due to the active aggregate constraints. 

 

2.2 Lagrange multipliers 
Lagrange multipliers can be used to find a solution or as a starting point for an algorithmic 

approach. The method of Lagrange multipliers can be applied to optimize a function while 

certain equality constraints need to be respected. A new set of variables (ζn), the Lagrange 

multipliers, is used in a ‘Lagrange function’ Ζ(x,ζ) (4). We include only active constraints in 

the Lagrange function. Setting the partial derivatives of the Lagrangian function equal to zero 

provides a necessary condition for a solution to the constrained problem (5), see Bazaraa, 

Sherali, Shetty (2006). 

                      

 

   

 (4) 

     (5) 

Everett (1963) points out the usefulness of Lagrange multipliers for optimization in the 

presence of constraints and the fact that it is not limited to differentiable functions. It is 

indicated that this method is specifically useful to solve allocation problems with limited 

resources when faced with independent activities. Patriksson (2008) gives a survey on the 

continuous nonlinear resource allocation problem, an abundant list of applications is given, 

amongst which a few inventory cases. The most techniques are based upon iteratively finding 

the Lagrange multiplier(s). Within each iteration the xj values are calculated or approximated, 

which allows a check on the constraint validation. Within the algorithms discussed further, 

creative steps are taken to limit the number of iterations and the complexity to calculate xj. 

Some authors apply other algorithms such as LP and heuristics. In case of integer demand 

specific enumeration techniques are used or sometimes mixed integer programming, which 

may work fine for smaller models. Continuous approximations can serve well as lower bound. 

 

2.3 List of used symbols 
The subscript j refers to item j. 

 

cj Purchase cost 

coj Overage cost for remaining inventory at period end 

cuj Underage cost for unsatisfied period demand  

en Upper limit for aggregate constraint n 

fj Goal function 
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G
1

j Discrete first order loss function of demand distribution 

gnj Aggregate constraint function of aggregate constraint n 

hj Holding cost, cost to hold one unit in inventory for one unit of time 

J Number of items 

j Item index, j=1,..,J 

kj Ordering cost, fixed cost to place an order 

lj m lower bound value(s) for xj 

m Number of variables per item 

Mj Renewal function of Φj 

n Aggregate constraint index 

pj Shortage cost of dimension (moneys/[quantity-unit· time-unit]) 

Qj Order Quantity 

rj Reorder level for rQ policy 

sj Reorder point level for sS policy or target stock level in base stock policy 

Sj Order up to level of sS policy 

wnj Requirement of constrained resource n by item j 

x Matrix with variables for all items 

xj m variables that determine behavior of item 

z Number of aggregate constraints 

ζ n Lagrange variable for constraint n 

Ζ(x,ζ) The Lagrangian function 

λj Mean demand rate 

νj Mean of the demand during lead time 

πj Shortage cost of dimension (moneys/quantity-unit) 

Φ
*
 (L+1)-fold convolution of Φ with itself, L is lead time 

Φ
0
 Standard normal complementary distribution function 

Φ
1
 Standard normal first order loss function 

Φ
2
 Standard normal second order loss function 

φj Demand density function 

 

3. Inventory versions of the problem 
For each of the considered policies we give one model formulation. Afterwards extensions to 

this basic model are discussed. 

 

3.1 Deterministic leadtime demand 
Starr, Miller (1962) determine for each item the optimal order quantity to minimize the cost 

while the average total investment in inventory is limited, see (6), (7) and (8). They also 

create an ‘optimal policy curve’ expressing optimal total average inventory for each total 

number of orders and vice versa. Using Lagrange multipliers a closed form expression is 

created for this curve. 

 

                      (6) 
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Zipkin (2000) performs a sensitivity analysis based upon a ‘variety index’ that embodies the 

effective variety of the system on this ‘inventory-workload trade-off curve’. An increase of 

this variety index in a large conglomerate is linked to the increasing sales but declining 

turnover. Hadley, Within (1963) use the Lagrangian principle to handle one or multiple 

constraints such as average floor space and average number of orders. Page (1976) proposes a 

grouping procedure, ‘The equal order interval method’ that outperforms the Lagrangian 

approach when the maximum investment must be limited. Goyal (1978) improves this 

heuristic making use of order phasing and a basic replenishment cycle. Rosenblatt (1981) 

explains that neither of these methods, Lagrange or grouping, really finds the optimal value 

due to simplifications in both formulations. RosenBlatt, Rothblum (1990) shift towards a 

penalty like method where extra capacity can be bought. Puerto, Fernandez (1998) construct a 

multi objective problem using a Pareto-optimal approach. This is a way of doing global 

sensitivity analysis on the solution space. Haksever, Moussourakis (2005) proposes a  mixed 

integer programming model to deal with multiple linear constraints while making use of 

piecewise linear approximations. The model chooses between an independent or fixed cycle 

approach. Test problems with up to 30 items are solved. Boctor (2009) introduces a new 

mathematical formulation and an efficient heuristic for this inventory replenishment 

staggering problem. The replenishment cycles must be integer multiples of a basic cycle. 

Examples with up to 200 items can be solved approximately within seconds while 

outperforming previous heuristics with 11% better results. 

 

3.2 Newsvendor model with a single constraint 
In the work of Hadley, Within (1963) one can end up with negative service levels in case of 

very tight capacity constraints for the problem given in (9), (10) and (11). Lau, Lau (1996) 

extend the method so it can handle general demand distributions making use of the 

Lagrangian method.  
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 (10) 

                          

 

   
    (11) 

 

In an alternative approach using deterministic optimization by Vairaktarakis (2000) 

uncertainty is described using interval and discrete demand scenarios. Algorithms are applied 

for minimax regret objectives to obtain optimal solutions under the defined conditions. Abdel-

Malek, Montanari (2005a) further analyzes the phenomenon of the lower bounds and divides 

the solution space in three regions: a non binding constraint region, a binding constraint 

region where each product can be bought and finally a region with a very strict constraint 

resulting in zero order sizes for some products. An iterative Lagrangian based method is used 

whit an approximation of the cumulative distribution. Zhang, Xu, Hua (2009) continue on this 

work and creates a solution algorithm using a binary search procedure with near optimal 

solutions for a continuous demand distribution and a good approximate solution for discrete 

demand. Lower bounds or multiple aggregate constraints is considered as future research. In a 

5 item discrete demand test the reached solution has a gap of 2.2% with the optimal cost, 

while budget constraint violation is on average 5%, in case of violation. Abdel-Malek, 

Montanari, Meneghetti (2008) expand the scope of this problem by integrating a random 

yield. They refer to this problem as the Gardener Problem: a gardener has a limited acreage 
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and must divide this over several possible crops, while demand and yield of the crops is 

uncertain. An exact solution is reached in case of uniform distribution and an approximate 

solution in case of other distributions. A 5 item example is demonstrated and validated 

through simulation. 

 

3.3 Newsvendor model with multiple constraints 
The primary purpose of Lau, Lau (1996) was to deal with the considerable more difficult 

multi-constraint problem, see (12), (13) and (14). The primal problem is converted into a dual 

problem, because typically there is a huge number of items but only a small number of 

constraints. A solution is constructed using an ‘active set of constraints’ method that can 

handle very efficiently systems with a large number of items. The algorithm performance is 

linked to the number of constraints and the tightness of these constraints. A problem with 

1.000 items and 20 constraints is solved within seconds. 
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                                                                          (14) 

 

Abdel-Malek, Montanari (2005b) examine the dual of the solution space with two constraints. 

An important feature of their approach is its applicability to general probability distribution 

functions, while it yields an optimum or near optimum solution with a known pre-set error. A 

4 item example is solved within 4 iterations with an error on the constraints of less than 

0.05%. Abdel-Malek, Areeratchakul (2007) propose a quadratic programming approach, 

enabling the use of available software  packages so that lower bounds and multiple constraints 

pose no longer an issue. This software can also work with large number of items and offers 

sensitivity analysis. An example from Lau, Lau (1996) with 7 products and 5 constraints gives 

nearly the same cost while using familiar software, instead of specific algorithm. Niederhoff 

(2007) uses separable programming, the simplex method is used to find solutions for 

nonlinear programs where the objective function and the constraint functions are the sum of 

functions, where each function involves only one variable. A 10 product example is given, but 

larger problems form no issue for the software. Zhou, Chen, Wang (2008) introduce a risk 

factor in this problem defining a CVaR (conditional value at risk) aggregate constraint that 

represents a loss function of a portfolio. It is shown that the CVaR model can be represented 

as a linear program through approximation of the demand density function. A 10 item 

example is solved and analyzed. Özler, Tan, Karaesmen (2009)  use VaR (value at risk) to 

limit the risk of earning less than a desired target. The VaR constraint is an approximation of 

the total profit, of different products with independent demand, with a Normal distribution. A 

non-linear solver is used to solve the case with up to 50 items. 

 

3.4 Stationary inventory models: base stock models 
Within a spare parts environment it is assumed to have small demand rates and high unit 

costs, inducing a base stock policy. Sherbrooke (2004) uses a system approach on a set of 

1.414 spare parts, what results in a 46% reduction in inventory investment without a decrease 

in performance. The problem, see (15), (16) and (17), is solved using marginal analysis. It 

considers the decrease in backorders by adding one unit, while comparing with the cost of 

adding one unit for each item. 
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Thonemann (2002) quantifies the expected improvement in case of a system approach using 

only a single parameter representation of the unit cost and average demand skewness over all 

parts. He integrates a time weighted fill rate constraint. Systems with high unit cost skewness 

profit most from a system approach. Using a 400 item data set it is shown that a high cost 

skewness, typical in spare parts, gives an improvement between 13% and 25%. Hill, Pakkala 

(2007) minimize the cost that includes holding, backorder and order fill rate costs. The order 

fill rate is the probability that a customer order can be satisfied entirely and immediately from 

stock, this is relevant in a retail system to prevent extra shipping costs. Through an iterative 

procedure an approximate solution is reached, a problem with 2.187 items is solved in 

seconds. Future research to this work can focus on a compound Poisson demand process. 

Kranenburg, Van Houtum (2007) diversify the target aggregate fill rate over groups of items 

while commonality exists between groups and a shared stock is used. A heuristic provides a 

lower bound and an approximate solution. In a case study with 2 groups of 700 items on 

average 6% can be saved in spare parts provisioning costs and it takes 13 seconds to run this 

model. 

 

3.5 Stationary inventory models: General batch systems (rQ) 
Hadley, Within (1963) touch the problem with aggregate constraints and stochastic demand in 

case of lot size reorder point models. An iterative procedure is proposed to find the 

appropriate Lagrange multiplier. The expected number of orders has an upper limit, see (18), 

(19) and (20). A discussion is held on the difference between a constraint on the average or 

maximum value of a performance measure. The latter is more complex to solve and is linked 

to expressing probabilities and risks in constraints. 
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     (20) 

 

Ghalebsaz-Jeddi, Shultes, Haj (2004) extend this model and explore the impact of paying 

purchasing costs when orders arrive. They assume a Normal distribution for the total budget 

and use an approximate formulation for the expected shortage, which may perform poorly in 

many situations, see Zipkin (1986). Next they introduce linear and quadratic piecewise 

approximations. A 2 item example gives approximate results with less iterations than the 

Hadley, Within (1963) method. Additional constraints are considered as future work. Bera et 

al. (2009) transform this problem in a multi-objective  optimization format using a fuzzy 
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chance-constrained technique and surprise function. A minimax distribution free procedure is 

applied to solve this problem and a 2 item numerical example is also solved. Zhao, Fan, Liu 

(2007) consider the problem where demand is according a renewal process with customer 

demands of one unit, e.g. Poisson. The aggregate constraint is the sum of maximum storage 

for each item separately, as each item will have a fixed location space. An algorithm with 

polynomial time computation complexity finds the optimal solution and it is tested on an 

example with 30 items. The extension to aggregate constraints with commonly resources, 

such as budget, is seen as future research. 

 

3.6 Stationary inventory models: rQ system without marginal costs 
Marginal cost information for inventory models is not likely available in practice and the most 

important inventory performance indicators involve system objectives and constraints. 

Gardner, Dannenbring (1979) minimize the non-service, while respecting the aggregate 

budget and workforce constraint, see (21), (22), (23) and (24). This is visualized as an optimal 

policy surface. The formulations for service level and average inventory are approximate 

formulations. For the problem with one constraint an iterative procedure is used to find the 

Lagrange variable. In case of two constraints the iterative search for the Lagrange variables is 

more complex as there interdependency between rj and Qj. An application of this technique on 

a sample of 78.180 items showes that workload can go down 25% and service increases with 

1% to 6% without increasing the necessary investment. 
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Schrady, Choe (1971) minimize the long term time weighted backorders while respecting a 

system budget constraint, although a simplification was made to both formulations. A first 

solution approach finds the Wilson order sizes and iteratively calculates the reorder levels 

making use of a Lagrangian. For multiple constraints an exterior penalty function method is 

proposed, see Bazaraa, Sherali, Shetty (2006). Lenard, Roy (1995) group the different items 

in families. For each family an aggregate item is chosen for which efficient policy surfaces 

are drawn, based upon simulation. This approach prevents unacceptable shortage levels for a 

number of items, which is a possible result in case the aggregate service level is formulated as 

an arithmetic mean of the individual service levels. Hopp, Spearman, Zhang (1997) aim at 

minimizing the aggregate inventory investment  while respecting a maximum order frequency 

and a minimum service level in case of batch demand, thus implying integer variables. They 

present three Lagrangian heuristics approximating inventory performance measures. The two 

simpler heuristics are closed form expressions, but can perform poorer in cases of low service 

level and low order frequency. A practical case proves the necessity for lower bounds on the 

reorder level. An implementation of this heuristic in a 30.000 item system gives a 20% 

inventory investment reduction for comparable service levels. 

 

3.7 Stationary inventory models: General batch systems (sS) 
Mittchel (1988) developes an algorithm based upon an approximation of demand for the 

periodic review sS problem in a multi-item environment with a service constraint, see (25), 
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(26) and (27). The service constraint is not weighted by demand. He indicates that operating 

costs can be reduced significantly when a uniform service model is no longer used. For a 32 

item example with a service level of 85% cost reductions between 20% and 39% are 

achieved. 

 

                    (25) 
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Scheider, Rinks (1989) uses asymptotic properties from the renewal theory to approximate the 

optimal solution. Besides the service constraint, two other aggregate constraints are added: 

one on maximum workload and another on maximum storage room. An iterative grid search 

is performed for the Lagrange multiplier values. For an 100 item system the results are 

visualized in an optimal policy surface chart that shows the tradeoff between cost and service 

level, while respecting the workload and storage constraint. Cohen et al. (1992) add shortage 

costs and use a demand weighted fill rate constraint. There is no backlogging, so unmet 

demand is lost. A greedy algorithm is created to find near-optimal solutions for the 

approximate problem formulation. It is tested on a 4 item part and showes a small error of 3% 

in case of low service levels, but larger errors up to 17% in case of high service levels 

compared to a lower bound value. 

 

4. Concluding remarks  
Within a broad range of inventory policies we see a practical need for a system approach, 

rather than an item approach. This enables the manager to realize his goals with an optimal 

mix between cost and service while confronted with limited resources such as workspace, 

workforce or investment. For managers this can be expressed in optimal system policy curves. 

Test cases with a significant number of items report cost decreases from 10% up to 46%. 

Approximations, in performance measures and leadtime demand, are not always without risk. 

Lagrangian multipliers are often used as an initial approach, as it is attractive because a line 

search enables the user to solve this separable problem, in case of a single constraint. For the 

policies where one variable describes the behavior of one item we see that a step is made 

towards linear or quadratic programming. This give the practical user the ability to model 

large real life problems, do sensitivity analysis and include multiple constraints if necessary. 

In case of discrete demand complexity is higher and lower bounds and heuristics are used. 

Future work might focus on exact formulation of performance measures and demand 

distributions. Within discrete demand we see referrals to compound Poisson demand as a next 

step and also the use of multiple constraints. 
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