17 research outputs found

    Chaotic-based particle swarm optimization algorithm for optimal PID tuning in automatic voltage regulator systems

    Get PDF
    Introduction. In an electrical power system, the output of the synchronous generators varies due to disturbances or sudden load changes. These variations in output severely affect power system stability and power quality. The synchronous generator is equipped with an automatic voltage regulator to maintain its terminal voltage at rated voltage. Several control techniques utilized to improve the response of the automatic voltage regulator system, however, proportional integral derivative (PID) controller is the most frequently used controller but its parameters require optimization. Novelty. In this paper, the chaotic sequence based on the logistic map is hybridized with particle swarm optimization to find the optimal parameters of the PID for the automatic voltage regulator system. The logistic map chaotic sequence-based initialization and global best selection enable the algorithm to escape from local minima stagnation and improve its convergence rate resulting in best optimal parameters. Purpose. The main objective of the proposed approach is to improve the transient response of the automatic voltage regulator system by minimizing the maximum overshoot, settling time, rise time, and peak time values of the terminal voltage, and eliminating the steady-state error. Methods. In the process of parameter tuning, the Chaotic particle swarm optimization technique was run several times through the proposed hybrid objective function, which accommodates the advantages of the two most commonly used objective functions with a minimum number of iterations, and an optimal PID gain value was found. The proposed algorithm is compared with current metaheuristic algorithms including conventional particle swarm optimization, improved kidney algorithm, and others. Results. For performance evaluation, the characteristics of the integral of time multiplied squared error and Zwe-Lee Gaing objective functions are combined. Furthermore, the time-domain analysis, frequency-domain analysis, and robustness analysis are carried out to show the better performance of the proposed algorithm. The result shows that automatic voltage regulator tuned with the chaotic particle swarm optimization based PID yield improvement in overshoot, settling time, and function value of 14.41 %, 37.91 %, 1.73 % over recently proposed IKA, and 43.55 %, 44.5 %, 16.67 % over conventional particle swarm optimization algorithms. The improvement in transient response further improves the automatic voltage regulator system stability for electrical power systems.Вступ. В електроенергетичній системі потужність синхронних генераторів змінюється внаслідок збурень або різких змін навантаження. Ці зміни в потужності серйозно впливають на стабільність енергетичної системи та якість електроенергії. Синхронний генератор оснащений автоматичним регулятором напруги для підтримання напруги на його клемах на рівні номінальної напруги. Декілька методів управління використовуються для поліпшення реакції системи автоматичного регулятора напруги, однак пропорційний інтегральний похідний контролер (PID-контролер) є найбільш часто використовуваним контролером, але його параметри вимагають оптимізації. Новизна. У цій роботі хаотична послідовність, заснована на логістичній схемі, гібридизується за допомогою оптимізації рою частинок, щоб знайти оптимальні параметри PID для системи автоматичного регулятора напруги. Ініціалізація на основі хаотичної послідовності логістичної схеми та найкращий глобальний вибір дозволяють алгоритму вийти із локальної мінімальної стагнації та покращити швидкість збіжності, що дає найкращі оптимальні параметри. Мета. Основною метою запропонованого підходу є поліпшення перехідної реакції системи автоматичного регулятора напруги шляхом мінімізації максимального перевищення, часу встановлення, часу наростання та пікових значень напруги на клемах і усунення помилки у стаціонарного стані. Методи. У процесі настройки параметрів техніку оптимізації рою хаотичних частинок кілька разів пропускали через запропоновану гібридну цільову функцію, яка враховує переваги двох найбільш часто використовуваних цільових функцій з мінімальною кількістю ітерацій,і знайдено оптимальне значення коефіцієнту підсилення PID. Запропонований алгоритм порівнюється з сучасними метаевристичними алгоритмами, включаючи звичайну оптимізацію рою частинок, вдосконалений алгоритм нирок та інші. Результати. Для оцінки ефективності об'єднуються характеристики інтеграла у часі, помноженого на похибки у квадраті, та цільових функцій Цве-Лі Гейнга. Крім того, проводяться аналіз у часовій області, аналіз у частотної області та аналіз стійкості, щоб показати кращу ефективність запропонованого алгоритму. Результат показує, що автоматичний регулятор напруги, налаштований на хаотичну оптимізацію рою частинок, заснований на поліпшенні виходу PID в перевищеннях,часі налаштування та значенні функції перевищує на 14,41 %, 37,91 %, 1,73 % нещодавно запропонований нирковий алгоритм та на 43,55 %, 44,5 %, 16,67 % перевищує звичайні алгоритми оптимізації рою частинок. Поліпшення перехідної реакції ще більше покращує стабільність автоматичного регулятора напруги для систем електроенергетики

    Chaotic-based particle swarm optimization algorithm for optimal PID tuning in automatic voltage regulator systems

    Get PDF
    Introduction. In an electrical power system, the output of the synchronous generators varies due to disturbances or sudden load changes. These variations in output severely affect power system stability and power quality. The synchronous generator is equipped with an automatic voltage regulator to maintain its terminal voltage at rated voltage. Several control techniques utilized to improve the response of the automatic voltage regulator system, however, proportional integral derivative (PID) controller is the most frequently used controller but its parameters require optimization. Novelty. In this paper, the chaotic sequence based on the logistic map is hybridized with particle swarm optimization to find the optimal parameters of the PID for the automatic voltage regulator system. The logistic map chaotic sequence-based initialization and global best selection enable the algorithm to escape from local minima stagnation and improve its convergence rate resulting in best optimal parameters. Purpose. The main objective of the proposed approach is to improve the transient response of the automatic voltage regulator system by minimizing the maximum overshoot, settling time, rise time, and peak time values of the terminal voltage, and eliminating the steady-state error. Methods. In the process of parameter tuning, the Chaotic particle swarm optimization technique was run several times through the proposed hybrid objective function, which accommodates the advantages of the two most commonly used objective functions with a minimum number of iterations, and an optimal PID gain value was found. The proposed algorithm is compared with current metaheuristic algorithms including conventional particle swarm optimization, improved kidney algorithm, and others. Results. For performance evaluation, the characteristics of the integral of time multiplied squared error and Zwe-Lee Gaing objective functions are combined. Furthermore, the time-domain analysis, frequency-domain analysis, and robustness analysis are carried out to show the better performance of the proposed algorithm. The result shows that automatic voltage regulator tuned with the chaotic particle swarm optimization based PID yield improvement in overshoot, settling time, and function value of 14.41 %, 37.91 %, 1.73 % over recently proposed IKA, and 43.55 %, 44.5 %, 16.67 % over conventional particle swarm optimization algorithms. The improvement in transient response further improves the automatic voltage regulator system stability for electrical power systems.Вступ. В електроенергетичній системі потужність синхронних генераторів змінюється внаслідок збурень або різких змін навантаження. Ці зміни в потужності серйозно впливають на стабільність енергетичної системи та якість електроенергії. Синхронний генератор оснащений автоматичним регулятором напруги для підтримання напруги на його клемах на рівні номінальної напруги. Декілька методів управління використовуються для поліпшення реакції системи автоматичного регулятора напруги, однак пропорційний інтегральний похідний контролер (PID-контролер) є найбільш часто використовуваним контролером, але його параметри вимагають оптимізації. Новизна. У цій роботі хаотична послідовність, заснована на логістичній схемі, гібридизується за допомогою оптимізації рою частинок, щоб знайти оптимальні параметри PID для системи автоматичного регулятора напруги. Ініціалізація на основі хаотичної послідовності логістичної схеми та найкращий глобальний вибір дозволяють алгоритму вийти із локальної мінімальної стагнації та покращити швидкість збіжності, що дає найкращі оптимальні параметри. Мета. Основною метою запропонованого підходу є поліпшення перехідної реакції системи автоматичного регулятора напруги шляхом мінімізації максимального перевищення, часу встановлення, часу наростання та пікових значень напруги на клемах і усунення помилки у стаціонарного стані. Методи. У процесі настройки параметрів техніку оптимізації рою хаотичних частинок кілька разів пропускали через запропоновану гібридну цільову функцію, яка враховує переваги двох найбільш часто використовуваних цільових функцій з мінімальною кількістю ітерацій,і знайдено оптимальне значення коефіцієнту підсилення PID. Запропонований алгоритм порівнюється з сучасними метаевристичними алгоритмами, включаючи звичайну оптимізацію рою частинок, вдосконалений алгоритм нирок та інші. Результати. Для оцінки ефективності об'єднуються характеристики інтеграла у часі, помноженого на похибки у квадраті, та цільових функцій Цве-Лі Гейнга. Крім того, проводяться аналіз у часовій області, аналіз у частотної області та аналіз стійкості, щоб показати кращу ефективність запропонованого алгоритму. Результат показує, що автоматичний регулятор напруги, налаштований на хаотичну оптимізацію рою частинок, заснований на поліпшенні виходу PID в перевищеннях,часі налаштування та значенні функції перевищує на 14,41 %, 37,91 %, 1,73 % нещодавно запропонований нирковий алгоритм та на 43,55 %, 44,5 %, 16,67 % перевищує звичайні алгоритми оптимізації рою частинок. Поліпшення перехідної реакції ще більше покращує стабільність автоматичного регулятора напруги для систем електроенергетики

    A fractional order PID tuning tool for automatic voltage regulator using marine predators algorithm

    Get PDF
    The fractional-order proportional-integral-derivative (FOPID) controller stands as a widely embraced choice for the task of automatic voltage regulation (AVR) when it comes to maintaining the voltage output of synchronous generators. Nevertheless, fine-tuning the FOPID controller presents a formidable challenge, mainly because it possesses five tuning gains, in contrast to the conventional PID controller, which has three gains. Consequently, this paper introduces a novel tuning tool tailored to the AVR system by utilizing the marine predators algorithm (MPA). To gauge the effectiveness of the proposed approach, two key evaluation criteria are employed: step response analysis and trajectory tracking analysis. The results of this research reveal that the MPA-FOPID controller demonstrates exceptional performance criteria, notably enhancing the AVR transient response in comparison to other FOPID controllers optimized through recent metaheuristic algorithms

    Design of Intelligent PID Controller for AVR System Using an Adaptive Neuro Fuzzy Inference System

    Get PDF
    This paper presents a hybrid approach involving signal to noise ratio (SNR) and particle swarm optimization (PSO) for design the optimal and intelligent proportional-integral-derivative (PID) controller of an automatic voltage regulator (AVR) system with uses an adaptive neuro fuzzy inference system (ANFIS). In this paper determined optimal parameters of PID controller with SNR-PSO approach for some events and use these optimal parameters of PID controller for design the intelligent PID controller for AVR system with ANFIS.  Trial and error method can be used to find a suitable design of anfis based an intelligent controller. However, there are many options including fuzzy rules, Membership Functions (MFs) and scaling factors to achieve a desired performance. An optimization algorithm facilitates this process and finds an optimal design to provide a desired performance. This paper presents a novel application of the SNRPSO approach to design an intelligent controller for AVR. SNR-PSO is a method that combines the features of PSO and SNR in order to improve the optimize operation. In order to emphasize the advantages of the proposed SNR-PSO PID controller, we also compared with the CRPSO PID controller. The proposed method was indeed more efficient and robust in improving the step response of an AVR system and numerical simulations are provided to verify the effectiveness and feasibility of PID controller of AVR based on SNRPSO algorithm.DOI:http://dx.doi.org/10.11591/ijece.v4i5.652

    An Efficient Optimal Fractional Emotional Intelligent Controller for an AVR System in Power Systems

    Get PDF
    In this paper, a high-performance optimal fractional emotional intelligent controller for an Automatic Voltage Regulator (AVR) in power system using Cuckoo optimization algorithm (COA) is proposed. AVR is the main controller within the excitation system that preserves the terminal voltage of a synchronous generator at a specified level. The proposed control strategy is based on brain emotional learning, which is a self-tuning controller so-called brain emotional learning based intelligent controller (BELBIC) and is based on sensory inputs and emotional cues. The major contribution of the paper is that to use the merits of fractional order PID (FOPID) controllers, a FOPID controller is employed to formulate stimulant input (SI) signal. This is a distinct advantage over published papers in the literature that a PID controller used to generate SI. Furthermore, another remarkable feature of the proposed approach is that it is a model-free controller. The proposed control strategy can be a promising controller in terms of simplicity of design, ease of implementation and less time-consuming. In addition, in order to enhance the performance of the proposed controller, its parameters are tuned by COA. In order to design BELBIC controller for AVR system a multi-objective optimization problem including overshoot, settling time, rise time and steady-state error is formulated. Simulation studies confirm that the proposed controller compared to classical PID and FOPID controllers introduced in the literature shows superior performance regarding model uncertainties. Having applied the proposed controller, the rise time and settling time are improved 47% and 57%, respectively

    An improved marine predators algorithm-tuned fractional-order PID controller for automatic voltage regulator system

    Get PDF
    One of the most popular controllers for the automatic voltage regulator (AVR) in maintaining the voltage level of a synchronous generator is the fractional-order proportional–integral-derivative (FOPID) controller. Unfortunately, tuning the FOPID controller is challenging since there are five gains compared to the three gains of a conventional proportional–integral–derivative (PID) controller. Therefore, this research work presents a variant of the marine predators algorithm (MPA) for tuning the FOPID controller of the AVR system. Here, two modifications are applied to the existing MPA: the hybridization between MPA and the safe experimentation dynamics algorithm (SEDA) in the updating mechanism to solve the local optima issue, and the introduction of a tunable step size adaptive coefficient (CF) to improve the searching capability. The effectiveness of the proposed method in tuning the FOPID controller of the AVR system was assessed in terms of the convergence curve of the objective function, the statistical analysis of the objective function, Wilcoxon’s rank test, the step response analysis, stability analyses, and robustness analyses where the AVR system was subjected to noise, disturbance, and parameter uncertainties. We have shown that our proposed controller has improved the AVR system’s transient response and also produced about two times better results for objective function compared with other recent metaheuristic optimization-tuned FOPID controllers

    Parçacık sürü optimizasyonu ayarlı türev etkisi filtreli bir PID denetleyici için hata tabanlı ve kullanıcı tanımlı amaç fonksiyonlarının performans analizi

    Get PDF
    In this study, we investigate the performance analysis of transient and steady state characteristics of the commonly used error-based objective functions (EBOF) such as integral of squared error (ISE), integral of time weighted squared error (ITSE), integral of absolute error (IAE), and integral of time weighted absolute error (ITAE) and a user-defined objective function (UDOF). In optimization process, particle swarm optimization (PSO) algorithm tuned proportional-integral-derivative controller with derivative filter (PIDF) is employed for a second order plus dead time (SOPDT) test system. Simulation results shows the superiority of the UDOF in terms of settling time, overshoot, and settling minimum value compared to EBOFs.Bu çalışmada, hatanın karesinin integrali (HKİ), zaman ağırlıklı hatanın karesinin integrali (ZAHKİ), mutlak hatanın integrali (MHİ) ve zaman ağırlıklı mutlak hatanın integrali (ZAMHİ) gibi control sistemleri tasarımında sık kullanılan hata tabanlı amaç fonksiyonları (HTAF) ile kullanıcı tanımlı amaç fonksiyonlarının (KTAF) geçici ve kalıcı durum tepkilerinin performans analizi incelenmiştir. Optimizasyon sürecinde, parçacık sürüsü optimizasyonu (PSO) algoritması tarafından ayarlanan türev etkisi filtreli oransal-integral-türevsel denetleyici, ikinci dereceden ölü zamanlı bir test sistemi için kullanılmıştır. Simülasyon sonuçları, KTAF'IN oturma zamanı, aşım ve alt aşım değerlerindeki üstünlüğünü göstermektedir

    An optimized fractional order PID controller for suppressing vibration of AC motor

    Get PDF
    Fractional order Proportional-Integral-Derivative (PID) controller is composed of a number of integer order PID controllers. It is more accurate to control the complex system than the traditional integer order PID controller. The values of parameters of the fractional order PID controller play a decisive role for the control effect. Because the fractional order PID controller added two adjustable parameters than the traditional PID controller, it is very difficult to tune parameters. So the Back Propagation (BP) neural network is selected to optimize the parameters of the fractional order PID controller in order to obtain the high performance. Then the optimized fractional order PID controller and the traditional PID controller are used to control AC motor speed governing system. And the vibration spectrum and stator current spectrum under different rotating speeds are compared and analyzed in detail. The results show that the optimized fractional order PID controller has better vibration suppression performance than the traditional PID controller. The reason is that the optimized fractional order PID controller changed the stator current component, and further changed the frequency components and the amplitude of the vibration signal of the motor

    Time Delay Handling in Dominant Pole Placement with PID Controllers to Obtain Stability Regions using Random Sampling

    Get PDF
    This is the author accepted manuscript. The final version is available from Taylor & Francis via the DOI in this recordThis paper proposes a new formulation of proportional-integral-derivative (PID) controller design using the dominant pole placement method for handling second order plus time delay (SOPTD) systems. The proposed method does not contain any finite term approximation like different orders of Pade for handling the time-delay term, in the quasi-polynomial characteristic equation. Rather it transforms the transcendental exponential delay term of the plant into finite number of discrete-time poles by a suitable choice of the sampling time. The PID controller has been represented by Tustin’s discretization method and the PID controller gains are obtained using the dominant pole placement criterion where the plant is discretized using the pole-zero matching method. A random search and optimization method has been used to obtain the stability region in the desired closed loop parameters space by minimising the integral squared error (ISE) criterion by randomly sampling from the stabilizable region and then these closed loop parameters are mapped on to the PID controller gains. Effectiveness of the proposed methodology is shown for nine test-bench plants with different lag to delay ratios and open loop damping levels, and the effect of choosing different sampling times, using credible numerical simulations.ESIF ERDF Cornwall New Energy (CNE
    corecore