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Abstract: One of the most popular controllers for the automatic voltage regulator (AVR) in main-

taining the voltage level of a synchronous generator is the fractional-order proportional–integral-

derivative (FOPID) controller. Unfortunately, tuning the FOPID controller is challenging since there 

are five gains compared to the three gains of a conventional proportional–integral–derivative (PID) 

controller. Therefore, this research work presents a variant of the marine predators algorithm (MPA) 

for tuning the FOPID controller of the AVR system. Here, two modifications are applied to the ex-

isting MPA: the hybridization between MPA and the safe experimentation dynamics algorithm 

(SEDA) in the updating mechanism to solve the local optima issue, and the introduction of a tunable 

step size adaptive coefficient (CF) to improve the searching capability. The effectiveness of the pro-

posed method in tuning the FOPID controller of the AVR system was assessed in terms of the con-

vergence curve of the objective function, the statistical analysis of the objective function, Wilcoxon’s 

rank test, the step response analysis, stability analyses, and robustness analyses where the AVR 

system was subjected to noise, disturbance, and parameter uncertainties. We have shown that our 

proposed controller has improved the AVR system’s transient response and also produced about 

two times better results for objective function compared with other recent metaheuristic optimiza-

tion-tuned FOPID controllers. 

Keywords: marine predators algorithm; automatic voltage regulator; fractional-order PID  

controller; metaheuristic algorithms; optimization 

 

1. Introduction 

The main concern among the power system distributors is to stabilize and maintain 

the nominal voltage level produced by the synchronous generator at all times in order to 

increase the electrical energy supply, therefore increasing their profits. However, failing 

to stabilize the nominal voltage level can lead to the performance degradation of all con-

nected equipment and devices, thus reducing the quality of the electrical energy. Further-

more, an unstable voltage level can disturb the real and reactive power flows, increasing 

the real line losses during the distribution. Thus, the automatic voltage regulator (AVR) 

is designed to maintain and stabilize the voltage produced by a synchronous generator at 

a certain level. It also helps in controlling the reactive power flow by ensuring the proper 

reactive power distribution amongst all connected generators. In other words, AVR is able 

to maintain the consistency of the terminal voltage, although the exciter voltage of the 

alternator is varied [1]. Unfortunately, controlling the AVR system with a fast and stable 

response is hard to achieve because of the load variation and the high inductance of the 

alternator field windings. Additionally, the disturbance that may occur during the power 
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system distribution can cause insulation breakdowns in different parts and damage the 

connected equipment. Hence, it is essential to improve the control quality of the AVR 

system to ensure the stability and security of the power system distribution. 

Over the past few decades, the most popular controller among researchers has been 

the proportional–integral–derivative (PID) controller. A PID controller has several ad-

vantages, including robust performance, a simple structure, and low execution effort [2]. 

Therefore, it has been extensively utilized in many engineering areas, such as a piezoelec-

tric ultrasonic motor [3], doubly fed induction motor [4], and 2nd-order non-linear time-

invariant plants [5]. Nevertheless, to achieve excellent PID controller performance, the 

PID gains, which are proportional gain, Kp, integral gain, Ki, and derivative gain, Kd, 

should be optimally tuned first. Unfortunately, tuning PID gains is not an easy task for 

operators and researchers, especially when tuning using classical techniques such as Zieg-

ler–Nichols (ZN) [6], Cohen–Coon [7], and gain–phase margin [8]. These classical tech-

niques are based on the ‘trial and error’ method, which requires extra effort to attain op-

timal PID gains, especially for complex plants with complicated mathematical computing 

and time-varying dynamics. Additionally, in terms of the AVR system that faces incon-

stant operating points and non-linear load features, the implementation of classical tech-

niques can hinder the tuning process in obtaining the optimal PID gains. 

Alternatively, current researchers have given more attention to modern heuristic op-

timization techniques in finding the optimal PID gains for AVR systems. This technique 

tunes the PID gains automatically to minimize the objective function. One of the pioneers 

in implementing modern heuristic optimization for PID tuning in AVR systems was 

Gaing [9] in 2004. He proposed particle swarm optimization (PSO) and compared the re-

sults with a genetic algorithm (GA). However, the most recent studies in PID tuning for 

AVR systems focus on the state-of-the-art metaheuristic optimization algorithm. These 

studies include teaching–learning-based optimization (TLBO) [10], symbiotic organisms 

search (SOS) algorithm [11], ant colony optimization (ACO) [12], cuckoo search (CS) algo-

rithm [13,14], sine–cosine algorithm (SCA) [15], kidney-inspired algorithm (KIA) [16], 

whale optimization algorithm (WOA) [17], tree seed algorithm (TSA) [18], crow search 

algorithm (CSA) [19], equilibrium optimizer (EO) algorithm [20], and hybrid simulated 

annealing–manta ray foraging optimization (SA-MRFO) [21]. 

In the literature mentioned above, the PID controller has excellent performance in 

the AVR system towards maintaining and stabilizing the nominal voltage level produced 

by the synchronous generator. However, using the PID controller alone without modifi-

cation and improving the basic PID structure may degrade the power system’s steady-

state and transient performance since the current technology requires more precise and 

robust control. That is the reason that motivates researchers and practitioners to create 

variants of the PID controller in order to improve the performance of the AVR system. 

These PID variants comprised proportional–integral–derivative–acceleration (PIDA), 

which includes additional filter elements [17], PID with additional second-order deriva-

tive terms (PIDD2) [22], sigmoid PID, in which the controller parameters are varied ac-

cording to the changes in error [23], 2DOF PI controller that consists of two PI controllers 

connected at set point and feedback [24], and a real PID with derivative filter (PIDN) [21]. 

Meanwhile, the fractional-order method can be utilized on the conventional PID 

since the fractional-order method has been proven to produce more precise representa-

tions for complex systems [25,26]. Therefore, fractional-order PID (FOPID) controllers 

have become a prevalent choice among researchers since they introduce two more con-

troller gains, which are fractional exponential terms of integral � and derivative �. Thus, 

by having five controller gains, the FOPID controller can provide new control possibilities 

for researchers in designing the control system for various engineering fields [27]. In many 

cases, the FOPID controller outperformed the conventional PID in terms of time domain 

specifications, robustness, and stability, as presented in [27]. Based on the aforementioned 

advantages of the FOPID controller, this paper focuses on this type of controller. Unfor-

tunately, finding the optimal gains for a FOPID controller is more challenging with the 
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increment of controller gains compared to a conventional PID. Therefore, there is a high 

demand for tuning the FOPID controller gains using suitable optimization methods. 

Various attempts have been made to control the AVR systems using the FOPID con-

troller. This was initially studied by Karimi-Ghartemani et al. [28] in 2007. They proposed 

the PSO to tune the FOPID controller gains for the AVR system. The objective function is 

based on a combination of overshoot, rise time, settling time, steady-state error, integral 

absolute error (IAE), integral square error (ISE) of control input, phase margin, and gain 

margin with corresponding weighting coefficients. They illustrated that the FOPID con-

troller could provide better results in terms of transient response, stability assessment 

(Bode diagram), and robustness analysis (parameter variations) compared to the conven-

tional PID controller. Later on, a further method was proposed by Pan and Das [29] in 

2012. Their study considers various multi-objective functions, which consist of the integral 

time square error (ITSE) of the set point, the ISE of the control input, and the ITSE of the 

load disturbance. They have implemented a non-dominated sorting genetic algorithm II 

(NSGA II) for tuning the FOPID controller gains. They have shown that the NSGA II has 

produced superior results for transient response and robustness analysis (parameter var-

iations, load disturbance rejection) compared to other algorithms. In the same year, Tang 

et al. [30] suggested a chaotic ant swarm (CAS) optimization method to find the optimum 

FOPID controller gains that produce a high-performance result for AVR systems. The ob-

jective function is based on function of demerit (FOD), and the analysis involved the con-

vergence curve, transient response, and robustness analysis (parameter variations). In the 

subsequent year, Ramezanian et al. [31] proposed PSO to tune the FOPID controller gains 

for AVR systems. This work used the same algorithm as [28], which was PSO, but with a 

different objective function, which is a combination of FOD and ITSE. The analysis in-

volves the convergence curve and transient response. Then, in 2017, Lahcene et al. [32] 

applied the simulated annealing (SA) optimization algorithm to optimize the FOPID con-

troller gains by considering the combination of ITAE, overshoot, steady-state error, set-

tling time, rise time, and peak time with corresponding weighting coefficients as an ob-

jective function. They only consider transient response analysis in their work. 

Meanwhile, Sikander et al. [33] proposed a cuckoo search (CS) algorithm in an effort 

to enhance the operation of the AVR system in 2018. They have used the FOD as an objec-

tive function, with analysis based on transient response and robustness analysis (param-

eter variations). Apart from that, Khan et al. [34] introduced a salp swarm optimization 

algorithm (SSA)-based FOPID controller for enhancing the stability and dynamic re-

sponse of the AVR system in 2019. They only considered integrated time absolute error 

(ITAE) as an objective function. The simulation works involve the convergence curve, 

transient response, stability assessment (Bode diagram, pole-zero map), and robustness 

analysis (parameter variations). Following that, Micev et al. [35] introduced a chaotic yel-

low saddle goatfish algorithm (C-YSGA) in 2020 by hybridizing the existing YSGA and 

chaos optimization algorithm (COA). The tuning process of the FOPID controller is based 

on the objective function, which consists of ITAE, overshoot, steady-state error, and set-

tling time with corresponding weighting coefficients. The improved version of YSGA 

showed superior results for convergence curve, transient response, and robustness anal-

ysis (parameter variations, control signal disturbance and load disturbance rejection, 

measurement noise) compared to the existing one. 

Next, in the same year, Jumani et al. [36] proposed the Jaya optimization algorithm 

(JOA) to tune FOPID controller gains. However, they only considered ITAE as an objective 

function in optimizing the performance of the AVR system. The JOA produces better re-

sults for convergence curve, transient response, stability assessment (Bode diagram, pole-

zero map), and robustness analysis (parameter variations) compared to other algorithms. 

In 2021 and 2022, researchers were still focused on tuning the FOPID controller gains for 

AVR systems using metaheuristic optimization. For instance, Munagala and Jatoth [37] 

introduced chaotic black widow optimization (ChBWO). Furthermore, they used a new 

objective function by combining the FOD [9] and ITAE. The results of the analysis are 
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based on convergence curve, transient response (step response and trajectory tracking), 

stability assessment (Bode diagram), and robustness analysis (parameter variations, im-

pulse disturbance rejection). In comparison, Altbawi et al. [38] suggested a FOPID tuning 

method using gradient-based optimization (GBO) and implementing ITAE as an objective 

function. Their simulation works involve convergence curve, transient response, stability 

assessment (Bode diagram, pole-zero map, and Nyquist diagram), and robustness analy-

sis (parameter variations, load disturbance rejection, and noise tests). Furthermore, in [21], 

they utilized SA-MRFO as a tuning method for the FOPID controller. They introduced a 

new objective function, which consists of ITAE, overshoot, steady-state error, and settling 

time with corresponding weighting coefficients. The proposed SA-MRFO scores excellent 

results for convergence curve, transient response, and robustness analysis (parameter var-

iations, control signal disturbance, and load disturbance rejection) compared to other var-

iants of the PID controller. Based on the reported FOPID controller-tuning method above, 

it is justified that the metaheuristic optimization algorithm is regarded as an excellent tool 

for finding the optimal FOPID controller gains for the AVR system, thus providing a more 

accurate nominal voltage level. However, although such metaheuristic optimization tech-

niques have improved the performance of many AVR systems, the obtained results are 

still low in accuracy and need to be improved. Thus, other state-of-the-art metaheuristic 

optimization algorithms can be applied to tune the FOPID controller gains to improve the 

AVR system’s overall performance. 

Meanwhile, the marine predators algorithm (MPA) is one of the state-of-the-art me-

taheuristic optimization algorithms invented by Faramarzi et al. [39] in 2020. MPA is a 

nature-inspired metaheuristic algorithm that mimics the foraging strategy of ocean pred-

ators by considering the interaction between predator and prey. A large volume of pub-

lished studies describes the role of the MPA in solving optimization problems in various 

fields. For example, Sadiq et al. [40] used the MPA to find the optimal fair power allocation 

in non-orthogonal multiple access (NOMA) and visible light communications (VLC) for 

Beyond 5G (B5G) networks. In [41], the MPA is employed in renewable energy fields to 

solve the optimal reactive power dispatch (ORPD) problem under system uncertainties. 

Sowmya et al. [42] utilized the MPA to minimize the charging and discharging cycles of 

electric vehicles in order to decrease the electricity cost. Furthermore, the MPA is applied 

in wind plant systems to predict the total power production using an enhanced variant of 

the adaptive neuro-fuzzy inference system (ANFIS) [43]. The MPA has also been a popu-

lar optimization tool in control engineering fields. For example, the MPA is used to fine-

tune the proportional–integral–derivative–acceleration (PIDA) controller for the static 

synchronous compensator (STATCOM) to improve the frequency response of the power 

systems [44]. In [45], the authors adopted the MPA to fine-tune the PID cascaded control-

ler for the infinite bus power system and IEEE-39 bus system. Besides that, Sobhy et al. 

[46] have implemented the MPA as an optimizer to find the optimum value of PID gains 

for load frequency control in modern interconnected power systems. Furthermore, in [47], 

they have utilized the MPA as a robust, coordinated tuning method of damping control-

lers for improving the small-signal stability of high-wind integrated systems. Addition-

ally, the MPA is utilized to tune the multiple-node hormone regulation neuroendocrine-

PID (MnHR-NEPID) controller of the gantry crane system [48]. Also, in [49], MPA is re-

sponsible for tuning the controller parameters of a single row of ten turbines to improve 

the wind plant’s power production. 

From the above-mentioned studies, the MPA shows itself to be effective in solving a 

variety of engineering problems as well as control engineering problems and producing 

better performances than other state-of-the-art metaheuristic-based methods. Moreover, 

it has also been verified in the original study [39] that the MPA produces better conver-

gence accuracy in most of the benchmark functions than its rival. However, although the 

MPA has become a promising optimization tool for solving various problems, like other 

metaheuristic algorithms, it still poses some drawbacks. Firstly, in the existing MPA, there 

is a high possibility of the solution getting stuck in local optima. This is because, during 
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the transition from exploration to exploitation in Phase 2, each prey updates its location 

at each iteration only based on either its previous location or the location of the current 

best predator. Therefore, if the location of the current best predator is suddenly trapped 

in a local region, it may cause the other prey to be trapped in the same region. Similarly, 

if the current location of the prey is suddenly trapped in the local optima region, it is 

difficult for it to jump out from the region since it mostly depends on the information from 

its previous location. Secondly, our preliminary investigation has shown that the existing 

adaptive coefficient to control the step size (defined as CF [39]) is too restrictive. Thus, it 

is not able to properly control the exploration and exploitation phases more effectively. 

Therefore, it must be noted that if the existing MPA is solely used, less impressive control 

performance in the AVR system may be observed. 

In order to solve the issues of the existing MPA, a new variant of the hybrid algorithm 

formed by a combination of multi-agent and single-agent algorithms between MPA and 

the safe experimentation dynamics algorithm (SEDA), named MP-SEDA, with a tunable 

adaptive coefficient for controlling the step size (CF), is proposed. Firstly, the MP-SEDA 

is introduced to solve the local optima problem in Phase 2 of the existing MPA, where the 

next location of the prey is selected by changing some of the elements of the updated 

location vector of the prey with the elements of the best predator’s location vector ran-

domly according to the predefined probability. As a result, the current best predator or 

the existing prey can assist any outlier’s prey and predator in jumping out from the local 

optima region and continuing a new searching track. Secondly, the tunable CF is adopted 

in the existing MPA to improve the improper balance of exploration and exploitation 

phases. Note that the tunable CF is expected to provide more flexibility in retaining well-

balanced exploration and exploitation phases, thus improving the searching capability. 

This paper introduces a new optimization method for the FOPID controller of AVR 

systems based on MP-SEDA with tunable CF. In particular, the hybridization between 

MPA and SEDA solves the local optima problem, while the tunable CF was introduced to 

obtain a proper balance between the exploration and exploitation phases. The proposed 

MP-SEDA with tunable CF was then used to tune the FOPID controller gains of the AVR 

system. Here, the effectiveness of the proposed MP-SEDA-FOPID controller was compared 

with the existing MPA-FOPID controller, as well as other FOPID controller metaheuristic-

based methods, viz. SA-MRFO [21], GBO [38], ChBWO [37], JOA [36], C-YGSA [35], SSA 

[34], CS [33], SA [32], PSO [28,31], CAS [30], and NSGA II [29]. In this study, several case 

studies were conducted to evaluate the effectiveness of the MP-SEDA-FOPID controller.  

Firstly, the convergence curve of the objective function is analyzed to evaluate the 

overall performance of the proposed optimization method. Then, the statistical analysis 

of the objective function between the existing MPA-FOPID and the MP-SEDA-FOPID con-

troller is presented to highlight the superiority of the improved version of MPA. Next, the 

non-parametric statistical test is demonstrated using Wilcoxon’s rank test to estimate the 

statistical difference between the existing MPA-FOPID and the MP-SEDA-FOPID control-

ler. Then, the step response analysis was conducted to examine the control performance 

of the FOPID controller obtained by the MP-SEDA-based method with tunable CF in 

terms of time response specification in comparison with existing MPA as well as the afore-

mentioned compared algorithms. Furthermore, the stability analyses were implemented 

by evaluating the Bode plot. Finally, the robustness analyses were tested on all compared 

methods by assessing the trajectory tracking (including the measurement noise), disturb-

ance rejection, time-invariant, and time-varying parameter uncertainties. At this point, the 

robustness analyses were evaluated in terms of the integral absolute error (IAE), integral 

square error (ISE), integral time absolute error (ITAE), and integral time square error 

(ITSE). Overall, the significant contributions of this study can be identified as follows: 

(i) Note that the main challenge of the existing MPA in [39] is that the solution tends to 

get stuck in local optima since the prey updates its location at each iteration only 

based on either its previous location or the location of the current best predator. To 

overcome this difficulty, a new method for the updating mechanism based on the 
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SEDA characteristic was adopted in the existing MPA, where the following location 

of the prey would be selected by changing some of the elements of the updated loca-

tion vector of the prey with the elements of the best predator’s location vector ran-

domly according to the predefined probability. The merit of such a method is that 

the location of the current best predator or the location of the current prey can help 

any trapped prey or predator to jump out from the local optima region and continue 

a new search track. 

(ii) Another challenge of the existing MPA in [39] is that the CF is too restrictive and has 

no flexibility in adjusting the exploration and exploitation phases. Thus, to solve this 

difficulty, the tunable CF is introduced to give more flexibility to the user in finding 

well-balanced exploration and exploitation phases according to the given optimiza-

tion problem, thus improving the searching capability. 

(iii) The proposed MP-SEDA-based method with tunable CF was a new variant of the 

hybrid algorithm formed by a combination of multi-agent and single-agent algo-

rithms applied to tune the FOPID controller gains for the AVR system. Moreover, it 

was shown in this study that the MP-SEDA-FOPID controller could provide better 

control accuracy with significant results than other recent multi-agent-based meth-

ods, such as SA-MRFO-FOPID [21], ChBWO-FOPID [37], GBO-FOPID [38], and JOA-

FOPID [36]. 

(iv) A new objective function was introduced by modifying the existing FOD in [9] with 

an additional weighting coefficient to give more flexibility for users in adjusting the 

overshoot. 

(v) A new reference signal, which is the combination of the trapezoidal and sinusoidal 

signals, was introduced in both trajectory tracking and disturbance rejection analyses 

to show the superiority of the proposed method in comparison with other existing 

FOPID controllers. This reference signal differs from the previous studies conducted 

in [32], which utilized different step changes. 

(vi) Time-varying parameter uncertainties were introduced in robustness analyses to fur-

ther test the effectiveness of the proposed FOPID controller and to reflect the real 

application of the AVR system. Unlike [21,37,38], they are investigated based on time-

invariant parameter uncertainties. 

The outline of the paper is as follows: the problem formulation of the FOPID control-

ler for AVR systems is presented in Section 2. Section 3 describes the existing MPA-based 

method and the proposed MP-SEDA-based method with tunable CF. The procedure to 

apply the MP-SEDA-based method with tunable CF is also discussed in the same section. 

The effectiveness of the proposed method is validated in Section 4. Finally, some conclud-

ing remarks are given in Section 5. 

2. Problem Formulation of FOPID Controller for AVR System 

In this section, the working principle and mathematical model of the AVR system are 

initially interpreted and described. Then, the closed-loop block diagram of the AVR sys-

tem with the FOPID controller is provided. Lastly, the problem formulation of the AVR 

system with the FOPID controller is explained at the end of this section. 

AVR is designed to stabilize the power system’s operation by regulating the output 

voltage produced by a synchronous generator. AVR is responsible for ensuring the output 

voltage variations do not exceed 5% of the rated voltage under all operating conditions to 

meet the IEEE standards. Figure 1 shows the AVR system for a conventional synchronous 

generator voltage control mechanism, while Figure 2 shows the block diagram represen-

tation of the AVR system. As we can see in Figure 2, the AVR system consists of five major 

components, i.e., controller, amplifier, generator, exciter, and sensor [21]. To further un-

derstand the working principle of the AVR system, we start with the measurement of the 

output voltage of the synchronous generator that the voltage sensor has sensed. Then, the 

voltage from the sensor is rectified and filtered before being sent to the comparator circuit. 
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From the comparator circuit, the difference between measurement voltage (��) and refer-

ence voltage (����) known as an error signal (��) is produced. Next, this error signal is fed 

to the controller, which is responsible for providing a stable controlled signal to the am-

plifier according to the predetermined controller gains. Therefore, accurately tuning the 

controller gains is vital to avoid any unwanted response of the AVR system, such as higher 

overshoots and a longer time to achieve the desired voltage. Finally, after the appropriate 

amplification, the exciter circuit generates the controlled flux for the synchronous gener-

ator and produces the output voltage (����) which follows the desired voltage level [14]. 

 

Figure 1. Conventional AVR system. 

 

Figure 2. Block diagram of the AVR system. 

In this study, we use a linearized mathematical model of the AVR system proposed 

by Gaing et al. [9], derived from the frequency domain using the Laplace transformation. 

Note that the controller used in this study is the FOPID controller introduced by Pudlubny 

[50]. The FOPID controller is a variant of the conventional PID, which introduces two new 

terms, namely, fractional exponential terms of integral � and derivative �. The transfer 

functions for each component of the AVR system in Figure 2, i.e., FOPID controller, am-

plifier, exciter, generator, and sensor, are depicted in Equations (1)–(5), respectively. 

������(�) = �� + ����� + ����  (1)

����(�) =
��

1 + ���
 (2)

����(�) =
��

1 + ���
 (3)
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����(�) =
��

1 + ���
 (4)

����(�) =
��

1 + ���
 (5)

In Equation (1), ��, �� , ��, �, and � are proportional gain, integral gain, derivative 

gain, exponent of integral term, and exponent of differential term, respectively. Mean-

while, the gains of the amplifier, exciter, generator, and sensor in Equations (2)–(5) are 

denoted by ��, �� , �� , and ��, respectively. Moreover, the time constant for all compo-

nents is denoted by ��, �� , �� , and ��. Therefore, the closed-loop block diagram of the 

AVR system with the FOPID controller is represented in Figure 3. 

 

Figure 3. Closed-loop block diagram of the AVR system with FOPID controller. 

To guarantee the stability of the AVR system, the range of gains and time constants 

are shown in Table 1, as described in the literature [37]. Although those values are set to 

ensure the stability of the system, the response of the AVR system without the controller 

is exceptionally oscillating (see blue line in Figure 4) and requires considerable time to 

settle within the desired voltage (see green dotted-line in Figure 4). As seen in Figure 4, 

the response has a high overshoot of 65.21%, a rise time �� = 0.26 s, a settling time ����  = 

7.02 s, and a steady-state error ��� = 0.091. This response indicates that there is an unusual 

escalation happening in the generator’s reactive power load and dropping the voltage of 

the exciter. This situation causes high oscillations at the terminal voltage. Furthermore, it 

is noticeable that during the steady-state condition, the terminal voltage deviates from the 

nominal value by more than 9%. This deviation is too large to be handled by sophisticated 

equipment susceptible to voltage variations and can cause malfunctions or even trips 

when voltage variations happen for more than a second. Also, large overshoots in power 

system networks may force the system to be unstable. Thus, it is expected to have a re-

sponse with a settling time of less than a second and no overshoot to reduce the cost of 

downtime caused by equipment trips [14]. Therefore, it is important to employ a control-

ler in the AVR system to mitigate this problem and optimize the response. 

Table 1. Parameter ranges of the AVR system. 

AVR Component Parameter Ranges Used Values 

Amplifier 
10 ≤ �� ≤ 400 
0.02 ≤ �� ≤ 1.0 

�� = 10, �� = 0.1 

Exciter 
1.0 ≤ �� ≤ 10 
0.4 ≤ �� ≤ 1.0 

�� = 1, �� = 0.4 

Generator 
0.7 ≤ �� ≤ 1.0 
1.0 ≤ �� ≤ 2.0 

�� = 1, �� = 1 

Sensor 
1.0 ≤ �� ≤ 2.0 

0.001 ≤ �� ≤ 0.06 
�� = 1, �� = 0.01 
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Figure 4. AVR system step response without controller. 

Moreover, in order to evaluate the performance of the AVR system controlled by the 

FOPID controller, the objective function, as presented by Gaing et al. [9], is modified by 

introducing the weighting coefficient, �. Note that the merit of the proposed weighting 

coefficient is to give more flexibility for the user to solely adjust the overshoot without 

affecting other coefficients, which is formulated by 

� = (1 − ���) × �� ∗ �� + ���� + ���(���� − ��). (6)

In Equation (6), ��  represents overshoot, ���  represents steady-state error, ���� 

represents settling time, and �� represents rise time. The symbol � is a weighting factor 

that can be adjusted to meet the requirements of a system. For example, if � is set to 

higher than 0.7, then the system will have low �� and less ���. Meanwhile, if � is set to 

less than 0.7, then the values of ����  and �� can be reduced. In this study, the value of � 

was set to 1.0, which follows the value of other studies such as in [23,30,33]. In the mean-

time, the weighting coefficient, �, is set to 0.3 after conducting several preliminary inves-

tigations. Specifically, adjusting � is different from adjusting � where, by adjusting �, 

all time response coefficients (��, ���, ��, and ����) will be affected. Whereas, by adjust-

ing �, only the overshoot will be affected. Thus, depending on the application, the users 

can decide whether to have a high overshoot or a low overshoot without sacrificing the 

performance of other coefficients. Finally, the problem can be described as: 

Problem 1. Based on the given closed-loop system block diagram in Figure 3, the values of the 

FOPID controller gains ��, ��, ��, �, and � are obtained such that the objective function � is 

minimized. 

3. Improved Marine Predators Algorithm 

This section describes the improved marine predators algorithm for tuning the 

FOPID controller of the AVR system. Firstly, a brief explanation of the existing MPA-

based method is given. Then, the proposed MP-SEDA-based method with tunable CF is 

discussed. 

3.1. An Existing Marine Predators Algorithm (MPA)-Based Method 

The MPA, introduced in [39], is mainly inspired by the survival of the fittest of ocean 

predators in finding the optimal strategy during foraging for food. Generally, the foraging 
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pattern of marine predators follows a random walk strategy, which includes the Levy 

walk and Brownian walk. Therefore, the main inspiration of MPA is to find the best opti-

mal strategy through a tradeoff between the Levy and Brownian strategies. In the MPA, 

the predator is foraging for food, and the prey is foraging for its food. 

Firstly, the initial solution of predators and prey is randomly distributed over the 

given search space to solve the given optimization problem 

��� min
��(�),��(�)…

��(��(�)) (7)

for iterations � = 1, 2, … , ����, where �� is the objective function of the agent �, �� is the 

position vector of the agent �, and ���� is the maximum number of iterations. As both 

predators and prey are considered search agents, two main matrices should be defined. 

There is an elite matrix � that consists of the best predator and the prey matrix �. The 

elite matrix and prey matrix are defined as follows 

� =

⎣
⎢
⎢
⎢
⎡
��,�

� ��,�
� ⋯ ��,�

�

��,�
� ��,�

� ⋯ ��,�
�

⋮
��,�

�
⋮

��,�
�

⋮
⋯

⋮
��,�

� ⎦
⎥
⎥
⎥
⎤

, (8)

� =

⎣
⎢
⎢
⎡
��,� ��,� ⋯ ��,�

��,� ��,� ⋯ ��,�

⋮
��,�

⋮
��,�

⋮
⋯

⋮
��,�⎦

⎥
⎥
⎤

, (9)

where � is the total number of agents and � is the number of dimensions. For simplicity 

of explanation, let ��,�
�  in Equation (8) be the �-th element of the best predator vector ��

�, 

which are replicated � times in the matrix �. Here, ��
� is chosen from the best position 

vector among the search agent in each iteration. In Equation (9), ��,� presents the �-th 

dimension of the �-th prey or agent �� in Equation (7). Then, the predators and prey are 

updated based on three main phases as well as the environmental issues and marine 

memory to find the global optimum solution. The details of the MPA structure are de-

scribed as follows. 

A. Phase 1: Exploration phase 

During Phase 1, the prey is moving faster than the predator, which indicates the prey 

is in a hurry to search for their food while the predator waits or remains immobile. This 

situation happens in the first third of the maximum iterations (����), where the full ex-

ploration stage occurs. The prey location is updated using the following equation: 

�� = �� + �. ��⨂[��⨂(�� − ��⨂��)],       if       � <
1

3
����, (10)

for � = 1,2, … , �. In Equation (10), ��  and �� represent the �-th row of matrices � and �, 

respectively, and �� is a vector of random numbers for Brownian motion. Moreover, the 

notation ⨂ indicates the element-wise multiplication, � is a constant number that is set 

to 0.5, and �� is a random number withdrawn from a uniform distribution in the range of 

[0, 1]. 

B. Phase 2: Transition from exploration to exploitation phase 

In Phase 2, both predator and prey are moving at the same pace. This situation indi-

cates that some of the prey perturb their current position towards the exploitation phase, 

while other prey update their position based on the movement of predators towards the 

exploration phase. This phase is considered the transition from exploration to exploitation 

phase. For such a case, half of the agents are moving in a Brownian walk for exploration, 

while the other half are moving in a Levy walk for exploitation. This stage happens after 

one-third of ���� until two-thirds of ����. Therefore, the updated location of prey for 

� = 1,2, … , � 2⁄  is 
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�� = �� + �. ��⨂[��⨂(�� − ��⨂��)],        if        
1

3
���� < � <

2

3
����, (11)

while for � = � 2⁄ , � 2⁄ + 1, … , � is given by 

�� = �� + �. ��⨂[��⨂(��⨂�� − ��)],      if      
1

3
���� < � <

2

3
����. (12)

In Equation (11), �� is a random number based on Levy distribution, while �� and 

�� in Equation (12) are a random number based on Brownian distribution and an adap-

tive coefficient that controls the step size of the predator motion, respectively. The detailed 

expression of �� is given as follows 

�� = �1 −
�

����

�

��×
�

����
�

. (13)

C. Phase 3: Exploitation phase 

In the third phase of the MPA structure, the predators move faster than the prey, 

indicating the high exploitation phase. This phase is executed on the last third of the max-

imum iterations, where the predators follow the Levy walk. To respond to the faster mo-

tion of predators, each prey (� = 1, 2, … , �) updates its location using the following equa-

tion: 

�� = �� + �. ��⨂[��⨂(��⨂�� − ��)],       if      � >
2

3
����. (14)

D. Eddy Formation or Fish Aggregating Devices (FADs) Effect 

Besides the three main phases stated above, the MPA also considers the behavior of 

marine predators in different environmental conditions, which is the eddy formation or 

fish aggregating devices (FADs) effect. The predators not only move in Levy and Brown-

ian walks while searching for prey but they also perform longer vertical jumps into the 

sea to hopefully find a prey-abundant area. This vertical jump can help the predators 

avoid stagnation in the local optima region. The FADs effect can be presented in the fol-

lowing equation: 

�� = �
�� + ��[�� + ��⨂(�� − ��)]⨂�,                        if     �� ≤ ����,

�� + [����(1 − ��) + ��]����
− ���

�,                    if     �� > ����,
 (15)

where ���� = 0.2, �� and �� are the random numbers that are generated randomly in 

the range of [0, 1], and �� and �� represent the upper bound and the lower bound vec-

tors, respectively. The symbol � is a binary vector where its element consists of the value 

0 or 1. Specifically, � produces a zero array if �� ≤ 0.2. Otherwise, � generates its array 

to 1. Furthermore, �� and �� are random indexes of the column of the prey matrix. 

E. Marine Memory 

Another feature of MPA is memorizing the location of the high-production foraging 

sites of predators, thus avoiding local solutions. After updating the prey matrix and im-

plementing the FADs effect, the fitness of each prey is evaluated to update the elite matrix. 

Specifically, the fitness of each solution in the current iteration is compared to its equiva-

lent in the prior iteration, and the current one replaces the solution if it is more fit. This 

method simulates the return of predators to the successful high-production foraging area. 

Thus, the marine memory method is able to improve the quality of the solution for the 

entire iteration. 

A detailed explanation of the MPA can be obtained in [39]. 

3.2. An Improved MP-SEDA-Based Method with Tunable CF 

Although the MPA has its advantages and functions well for various optimization 

problems, in some cases, its ability to escape from the local optima is weakened, and the 
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balancing between exploration and exploitation phases is poor for some optimization 

problems. This limitation is supported by the no free lunch (NFL) theorem, which proves 

that no optimization algorithm can solve all optimization problems with equally good 

results. In other words, if Algorithm A can perform better than Algorithm B in solving 

certain optimization problems, Algorithm B can also perform better than Algorithm A in 

finding a suitable solution for another optimization problem. Therefore, many researchers 

are currently active in exploring different optimization algorithms to deal with various 

optimization problems. Hence, this study proposes the following modifications to solve 

the MPA limitations. Firstly, to avoid stagnation in local optima, the hybridization of MPA 

and SEDA will be explained in detail in Section 3.2.1. Secondly, to improve the capability 

to balance the exploration and exploitation phases, a tunable CF will be introduced in 

Section 3.2.2. 

3.2.1. Hybridization of MPA and SEDA 

In the existing MPA, during Phase 2, the location of the prey is updated based on 

either its previous location or the location of the current best predator. As a result, if the 

current best predator is suddenly trapped in the local optima region, it will remain in that 

region, and in the worst-case scenario, it will pull other prey towards the same local op-

tima region. Similarly, if the previous location of the prey is in the local optima region, the 

subsequent location of the prey will also remain in the same local optima region without 

any direct interactions with the current best predator. In order to solve this problem, the 

proposed MP-SEDA-based method is designed with a strategy to hybridize the existing 

MPA with the safe updating mechanism of the SEDA. With this hybridization, higher-

accuracy results can be obtained while maintaining a reasonable complexity level. As far 

as we can ascertain, this is a pioneering study that makes use of a multi-agent optimization 

algorithm and SEDA hybridizing concepts in the AVR system. 

The SEDA architecture is first explained as a preliminary to our hybrid design. SEDA 

is a single-agent algorithm first introduced by Marden et al. [51]. The inspiration for SEDA 

is based on a game-theoretic method that implements the concept of repeated multi-player 

games where the players choose strategies from a finite set of available strategies in a re-

peated and simultaneous manner, depending on the strategy adjustment process. Each 

player moves in a random motion that is decided based on a predetermined probability. 

Since its first debut, SEDA has been utilized as a tool to cater to various engineering ap-

plications such as flexible joint robots [52], pantograph–catenary systems [53], underactu-

ated container cranes [54], and DC/DC buck–boost converter–inverter–DC motors [55]. In 

the domain of a single agent, systematic studies have shown that SEDA has solid perfor-

mance and is very simple to implement, with a safe updating mechanism. The safe updat-

ing mechanism means the SEDA only updates a part of a design variable element depend-

ing on a predetermined probability, compared to most available algorithms that update 

all design variable elements during the entire iteration. This merit shows that SEDA is 

better in terms of complexity level and computational time. 

SEDA defines each element of the design variable as a player. Here, each player’s 

random motion is decided based on a predetermined probability such that an optimal 

goal or design variable is achieved, corresponding to the objective function’s minimum 

value. Let � ∈ �� be the design variable. The SEDA algorithm iteratively updates � ∈

�� using the updated law: 

��(� + 1) = �
ℎ���

� − ����, if     �� ≤ �,

��
�,                          if     �� > �,

 (16)

for k = 0, 1,…, ����. The symbols �� and �� in Equation (16) represent independent ran-

dom numbers uniformly distributed in the range of [0, 1], � is a coefficient that defines 

the probability of using the newly updated design variable, � represents the perturbation 

step size gain of the design variable, �� is the j-th element of � ∈ ��, ��
� is the element 
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of the current best design variable �� ∈ �� during the course of an iteration. In Equation 

(16), the function h is given by: 

ℎ(. ) = �

��, if     ��
� − ��� > ��,

��
� − ���,           if     �� ≤ ��

� − ��� ≤ ��,

��,          if      ��
� − ��� < ��,

 (17)

where �� and �� are predefined lower and upper bound values of the design variable, 

respectively. 

The vital feature of SEDA is that it can provide stable convergence due to its capabil-

ity to keep the best design variable during the tuning process. Moreover, the SEDA uses 

a fixed interval step size, independent of the number of iterations. Therefore, it would 

possibly be a useful tool to solve the existing MPA that suffered from local optima stag-

nation. Technically, this problem can be said to stem from its working principle, in which 

MPA rejects all the fitness values that exceed the global best and never preserves the pos-

sible set of solutions, which may have the potential to escape from a local optima region. 

In order to get rid of this problem, the safe updating mechanism in Equation (16) is 

adopted in Phase 2 of the existing MPA after executing Equations (11) and (12). Specifi-

cally, if the random number �� is greater than the predetermined probability �, the ele-

ment of the updated location vector of the prey ��(� + 1) will be substituted by the ele-

ment of the best predator’s location vector ��. Otherwise, the element of the prey ��(� +

1) will maintain the element of the previous updated location as executed in Equations 

(11) and (12). As a result, the adopted safe updating mechanism can prevent the current 

best predator from pulling the current prey into the local optima region. After several 

iterations, the current best predator or the current prey can indirectly help any previously 

trapped prey or predator to jump out from the local optima region and continue a new 

search track.  

Figure 5 illustrates the graphical representation of a predefined contour plot with a 

two-dimensional location (� = 2) for better understanding the purpose of MP-SEDA. Let 

us assume that during Phase 2, the current best predator �� (blue predator) is suddenly 

trapped in the local optima region. According to Equation (12) of the existing MPA, there 

is a high possibility of �� remaining trapped in that region, and in the worst-case scenario, 

it may pull the current prey ��  (red prey) to the same local optima region as illustrated 

by ��
���  (purple prey) and this perturbation is denoted by the red dotted arrow. A similar 

situation can also happen in Equation (11), which is not illustrated in this paper due to 

limited space. Nonetheless, this problem can be solved with the presence of a safe updat-

ing mechanism where only some elements in ��  will be changed according to the element 

in ��. In the example given, consider that the predetermined probability � = 0.5 and the 

generated random number �� is greater than 0.5. Then, the second element of the agent 

��  (i.e., represented by the y-axis), is changed to the second element in �� which allows 

��  to be perturbed to a new location ��
��� (green prey) that is denoted by the black dotted 

arrow. In particular, the resultant ��
���  has more possibility to avoid the trapped �� or 

�� , and then it can continue searching other regions with better solutions. Note that, for 

easy understanding, this example uses only two elements. The same concept can be ex-

tended to a larger number of elements. 
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Figure 5. Graphical representation of the safe updating mechanism in the SEDA. 

3.2.2. Tunable Adaptive Coefficient for Controlling the Step Size (CF) 

The suggested tunable adaptive coefficient for controlling the step size (CF) is elabo-

rated on in this section. Here, it is shown that the exploration and exploitation phases of 

the existing MPA can be enhanced further by modifying the existing CF. Hypothetically, 

exploration and exploitation have opposing relationships to each other, where excessive 

exploration will result in an inaccurate global optimum value. Conversely, excessive ex-

ploitation can lead to local optima stagnation. Previously, the existing version of the MPA-

based method placed the restricted CF in Phase 2, Phase 3, and FADs, which can lead to 

an improper balance between the exploration and exploitation phases. As we can see, the 

value of CF in Equation (13) was non-linearly decreasing from 1 to 0. However, such a 

setting is too restrictive since there is no flexibility for the user to control or manipulate 

the exploration and exploitation phases. In addition, the existing CF might limit the ap-

plications of the MPA, so it is essential to have a more generic equation of CF which can 

cover a broader class of applications. To solve this issue, the tunable CF is adopted in the 

existing MPA, which can provide more flexibility in retaining well-balanced exploration 

and exploitation phases, thus improving the searching capability. Therefore, the equation 

of CF in Equation (13) is modified as 

�� = �1 −
�

����

�

��×
�

����
�

, (18)

where � is the newly proposed tunable coefficient employed to alter the ratio of explora-

tion and exploitation phases throughout the tuning process. As a result, it is expected that 

the introduction of the MP-SEDA-based method with tunable CF might deliver further 

promising performance for optimizing the FOPID controller of the AVR system. Further-

more, our new tunable CF can provide more choices for exploration and exploitation por-

tions compared to the existing CF, which can cover a variety of real application optimiza-

tion problems. Technically, the proposed MP-SEDA-based method with tunable CF will 

replace CF in the existing MPA in Equations (12), (14) and (15) with the �� in Equation 

(18). Figure 6 shows the effect of varying the value of � to the value of the proposed ��. 

Precisely, in order to possess high exploitation ability, � can be set greater than 2, e.g., 

� = 10. In opposition, if � is set less than 2, e.g., � = 0.3, the algorithm is expected to 
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possess high exploration capability. The proposed MP-SEDA-based method with tunable 

CF pseudocode is shown in Algorithm 1. Based on the pseudocode, the proposed hybrid 

MP-SEDA is represented in lines 13–19, while the proposed tunable CF is demonstrated 

in lines 12, 21, and 24. 

 

Figure 6. Value of �� for different �. 

Algorithm 1 Proposed MP-SEDA with tunable CF algorithm 

1. Initialize ��, ��, ����, �, �, �, ����, �, and � 

2. Randomly initialize the search agents ��  populations � = 1,2, … , � 

3. � = 1 

4. While � < ����  

5. Evaluate the fitness of all �� , then construct the ��  matrix and accomplish 

memory saving 

6. If � <
�

�
 ����  

7. Update ��  based on Equation (10) 

8. Else if 
�

�
 ���� < � <

�

�
 ����  

9. For the first half of the populations (� = 1,2, … , � 2⁄ ) 

10. Update ��  based on Equation (11)  

11. For the second half of the populations (� = � 2⁄ , � 2⁄ + 1, … , �) 

12. Update ��  based on Equation (12) where �� is based on Equation (18) 

13. for � = 1: � 

14.       for � = 1: � 

15.           If �� > � 

16.           ���(� + 1) = ���  

17.          end if 

18.       end for 

19. end for 

20. Else if � >
�

�
���� 

21. Update ��  based on Equation (14) where �� is based on Equation (18) 

22. End if 

23. Evaluate memory saving and update �� 
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24. Applying FADs effect and update based on Equation (15) where ��  is 

based on Equation (18) 

25. End while 

From the elaboration above, we can see that our proposed modification can be di-

vided into two parts. Firstly, the MP-SEDA-based method is only applied during Phase 2 

of the MPA structure, where half of the population is designated for exploitation and the 

other half of the population is for exploration. During this phase, both prey and predator 

move at the same pace and medium velocity but with different behavioral motions. 

Hence, the possibility of the best predator location and the prey location missing the 

global optima is increased, and in the worst scenario, they may be trapped in the local 

optima region. Therefore, the SEDA characteristic is adopted in the MPA to compensate 

for the high-velocity nature of both predator and prey, where the updated location of the 

prey is selected by randomly changing some of the elements of the updated location vec-

tor of the prey with the elements of the best predator’s location vector according to the 

predefined probability. Here, the prey or predator can assist any outlier predator or prey 

to jump out from the local optima region and continue in the new search space. 

Furthermore, unlike in Phase 1, the prey’s velocity is higher than the predator’s, in-

dicating that the prey is the most active agent. Thus, the prey is responsible for exploring 

the new search space and moving in a Brownian walk while the predator only waits for 

the prey. So, the possibility of the prey being stuck in local optima is very low since they 

are always searching for a new search area. That is why the SEDA characteristic is not 

applied during Phase 1. 

Similarly, in Phase 3, the SEDA characteristic is not worth applying since the predator 

is moving in a Levy walk and has a high capability to exploit the prey. Thus, the possibility 

of the prey being stuck in local optima is minimal since the SEDA characteristic was im-

plemented in the previous phase. Secondly, the tunable CF is only applied in Phase 2, 

Phase 3, and FADs. In Phase 2, the tunable CF is implemented for the second half of the 

population since the predator is moving in a Brownian manner. Thus, there is an oppor-

tunity to control the step size of the predator in order to balance the exploration and ex-

ploitation phases properly. Meanwhile, in the high exploitation stage (Phase 3), although 

the predator starts to move in the Levy walk, there is still an opportunity to adjust the step 

size of the predator so that it can improve the global optimum searching capability. Mean-

while, during FADs, the new tunable CF can offer a variation of a longer vertical jump 

motion for predators to find more promising prey-abundant areas. Finally, the proposed 

MP-SEDA-based method with tunable CF is expected to improve the existing MPA in 

terms of local optima avoidance and well-balanced exploration and exploitation phases. 

3.3. Optimization of Benchmark Functions Using MP-SEDA-Based Method with Tunable CF 

The efficiency verification of the proposed MP-SEDA-based method with tunable CF 

in optimizing the benchmark functions is discussed in this section. Specifically, nine dif-

ferent benchmark functions were used, and they were categorized into three groups: uni-

modal benchmark functions, multi-modal benchmark functions, and fixed-dimension 

multi-modal benchmark functions. The uni-modal functions ( �� – �� ) are suitable for 

benchmarking the exploitation ability or the algorithm’s precision since they only have 

one global solution. Meanwhile, (��–��) are multi-modal functions that are helpful in ex-

amining exploration and poor local optima avoidance of an algorithm, as these multi-

modal functions have many local optima. A fixed-dimension multi-modal function (��) 

has a vast number of local optima, so it is used to test the local optima avoidance capability 

and the balance between exploration and exploitation of the algorithm. The function 

name, dimension, search range (i.e., the boundary of the function search space), and the-

oretical optimal value, ����, are shown in Table 2. For verifying the results, the proposed 

MP-SEDA-based method with tunable CF is compared with the existing MPA, SCA [56], 

ant lion optimizer (ALO) [57], multi-verse optimization (MVO) [58], spiral dynamic 
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optimization algorithm (SDA) [59], moth–flame optimization (MFO) [60], and grasshop-

per optimization algorithm (GOA) [61]. The coefficients for all compared algorithms are 

set as default, as stated in the cited articles. Note that the MP-SEDA-based method with 

tunable CF coefficients is set as � = 3.99 and predetermined probability � = 0.67, after 

performing several initial investigations. Meanwhile, the default MPA-based method co-

efficients that are also used in the MP-SEDA-based method with tunable CF remain as 

� = 0.5 and ���� = 0.2. All these optimization algorithms were run 30 times on each 

benchmark function using 30 agents and 1000 iterations. Then, the average minimization 

results are presented in Table 3. 

Table 2. Benchmark functions. 

Function Dim Range ���� 

�� (Sphere) 30 [−100, 100] 0 

�� (Schwefel 2.22) 30 [−10, 10] 0 

�� (Resenbrock) 30 [−30, 30] 0 

�� (Step) 30 [−100, 100] 0 

�� (Penalized) 30 [−50, 50] 0 

�� (Penalized 2) 30 [−50, 50] 0 

�� (Kowalik) 4 [−5, 5] 0.00030 

�� (Six-hump Camel Back) 2 [−5, 5] −1.0316 

�� (Shekel 10) 4 [0, 10] −10.5363 

Table 3. Minimization results of benchmark functions. 

Function MP-SEDA MPA [39] SCA [56] ALO [57] MVO [58] SDA [59] MFO [60] GOA [61] 

�� 1.7733 × 10−57 1.0011 × 10−49 3.5500 × 10−2 1.0400 × 10−5 2.8100 × 10−1 5.4500 × 10−5 2.6700 × 103 1.0200 × 102 

�� 1.4728 × 10−34 7.8671 × 10−28 2.9000 × 10−5 5.0800 × 101 4.2200 × 10−1 5.0800 × 105 3.3300 × 101 6.1500 × 101 

�� 21.6413 23.5923 322.8683 121.6280 249.8207 4242.5016 15,666.0566 1550.3452 

�� 3.0266 × 10−13 1.7756 × 10−9 4.7204 7.6800 × 10−6 0.3242 1.3234 × 10−4 673.3505 98.5412 

�� 1.4578 × 10−13 1.8239 × 10−10 643.9263 10.6160 1.5109 2.6983 855.9638 3.6662 

�� 7.3808 × 10−4 0.0021 381.8872 3.9262 0.0750 0.0524 0.4783 5.3572 

�� 3.0749 × 10−4 3.0749 × 10−4 8.9380 × 10−4 3.4667 × 10−3 4.58 × 10−3 0.0411 0.0022 0.0116 

�� −1.0316 −1.0316 −1.0316 −1.0316 −1.0316 −1.0316 −1.0316 −1.0316 

�� −10.5364 −10.5364 −4.3167 −6.8455 −8.8413 −6.1386 −8.8042 −5.9290 

As shown in Table 3, the MP-SEDA-based method with tunable CF dominates the 

best results for most benchmark functions, as highlighted in bold. In the uni-modal test 

function, the MP-SEDA-based method with tunable CF manages to provide the best re-

sults for all uni-modal functions (��–��). These results show that the proposed MP-SEDA-

based method with tunable CF has immense strength in searching for precision uni-modal 

problems. In the meantime, from the experimental results of the multi-modal functions, it 

is clearly seen that the MP-SEDA-based method with tunable CF highly outperforms other 

algorithms on �� and ��. For function ��, the MP-SEDA-based method with tunable CF 

gives a superior result compared to other algorithms except for existing MPA, which pro-

duces a similar result. Meanwhile, for function ��, the MP-SEDA-based method with tun-

able CF manages to produce similar results to other algorithms. Therefore, it can be said 

here that the proposed algorithm also has a high exploration ability and is able to escape 

from local optima. The rest of the results, which belong to the fixed-dimension multi-

modal benchmark function, can be observed in function ��. The resultant readings are 

consistent with those of other test functions, in which the proposed MP-SEDA-based 

method with tunable CF shows a similar result to the existing MPA and dominates other 

optimization algorithms. Thus, it is proven that the MP-SEDA-based method with tunable 

CF can avoid the local optima and balance between exploration and exploitation. 
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Additionally, the statistical analysis of the benchmark functions is conducted to em-

phasize the improvement of the MP-SEDA-based method with tunable CF compared to 

the existing MPA-based method. This is to counter the randomization effect due to gen-

erated random values at the initial stage of the algorithm; both algorithms are simulated 

for 30 trials to achieve the best statistical results. The statistical analysis of the benchmark 

functions is based on the mean, best, worst, and standard deviation (std). Meanwhile, to 

evaluate the statistical difference of the objective function between both methods, a non-

parametric statistical test using Wilcoxon’s rank test with a significance level of 5% is im-

plemented. Table 4 shows the statistical results over 30 trials and �-value for the MP-

SEDA-based method with tunable CF and the existing MPA. As we can see, the MP-

SEDA-based method with tunable CF has superior results for functions ��–�� compared 

to the existing MPA by dominating all statistical results and producing a �-value less than 

0.05, as highlighted in bold, which indicates there is a significant difference between the 

algorithms. Meanwhile, for functions �� and ��, both algorithms produce similar statis-

tical results except for standard deviation, where the MP-SEDA-based method with tun-

able CF produces more consistent results, as shown by a smaller value of std. Also, the �-

values for functions �� and �� are less than 0.05. Thus, it is proven that the algorithms 

are significantly different. Overall, the modifications of the existing MPA by introducing 

hybridization between MPA and SEDA, as well as tunable CF, have been proven signifi-

cantly valuable for improving the results of the aforementioned benchmark functions. 

Therefore, it is worth applying the proposed MP-SEDA-based method with tunable CF to 

tune the FOPID controller to solve the AVR system’s problem. 

Table 4. Statistical results and �-values between MP-SEDA-based method with tunable CF and ex-

isting MPA. 

Function MP-SEDA MPA 

�� 

Mean 1.7733 × 10−57 1.0011 × 10−49 

Best 2.8103 × 10−60 5.4111 × 10−52 

Worst 1.3615 × 10−56 1.0111 × 10−48 

Std 3.3577 × 10−57 1.9008 × 10−49 

�-value 3.0199 × 10−11 

�� 

Mean 1.4728 × 10−34 7.8671 × 10−28 

Best 2.9996 × 10−37 1.4558 × 10−29 

Worst 2.2540 × 10−33 5.0944 × 10−27 

Std 4.1165 × 10−34 1.1891 × 10−27 

�-value 3.0199 × 10−11 

�� 

Mean 21.64134 23.59235 

Best 20.7702 22.7601 

Worst 23.1648 24.9476 

Std 0.4923 0.5555 

�-value 6.0658 × 10−11 

�� 

Mean 3.0266 × 10−13 1.7756 × 10−9 

Best 3.9717 × 10−14 4.8925 × 10−10 

Worst 9.9068 × 10−13 5.6244 × 10−9 

Std 2.2752 × 10−13 1.0120 × 10−9 

�-value 3.0199 × 10−11 

�� 

Mean 1.4578 × 10−13 1.8239 × 10−10 

Best 2.5065 × 10−14 5.1272 × 10−11 

Worst 5.8420 × 10−13 3.5097 × 10−10 

Std 1.3549 × 10−13 7.8660 × 10−11 

�-value 3.0199 × 10−11 

�� Mean 7.3808 × 10−4 0.0021 
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Best 2.2081 × 10−13 1.0010 × 10−9 

Worst 0.0111 0.0165 

Std 0.0028 0.0049 

�-value 3.6459 × 10−8 

�� 

Mean 3.0749 × 10−4 3.0749 × 10−4 

Best 3.0749 × 10−4 3.0749 × 10−4 

Worst 3.0749 × 10−4 3.0749 × 10−4 

Std 1.2122 × 10−19 2.3864 × 10−19 

�-value 1.3914 × 10−8 

�� 

Mean −1.0316 −1.0316 

Best −1.0316 −1.0316 

Worst −1.0316 −1.0316 

Std 5.2156 × 10−16 6.5195 × 10−16 

�-value 3.4573 × 10−6 

�� 

Mean −10.5364 −10.5364 

Best −10.5364 −10.5364 

Worst −10.5364 −10.5364 

Std 1.0940 × 10−15 1.4752 × 10−15 

�-value 0.021614 

3.4. Application of the Proposed MP-SEDA-Based Method with Tunable CF for Tuning the 

FOPID Controller of the AVR System 

In this section, the procedure of optimizing the FOPID controller using the MP-

SEDA-based method with tunable CF is explained, which strives to decrease the objective 

function as presented in Equation (6). Firstly, each prey or agent position vector �� ∈ ℝ� 

in Equation (7) is mapped to the design variable of the FOPID controller 

� = [��, ��, ��, �, �] ∈ ℝ�. (19)

In the meantime, the objective function �� in Equation (7) is mapped with the objective 

function in Equation (6) as ��(��,� ��,� … ��,�) = �(�) . Technically, the proposed 

method updates the agent position ��(�) which corresponds to the prey location ��  such 

that the value of the objective function �� is minimized. Usually, the updated ��(�) (from 

��) produces a different �� value, which corresponds to the overshoot ��, steady-state 

error ���, settling time ����, and rise time �� values. Then, each �� is ranked, the best �� 

value is recorded, and its corresponding best position vector is kept as ��
�(�) in the matrix 

�. The detailed procedure of updating the agent position vector ��(�) is given in Algo-

rithm 1, which also corresponds to the process of tuning the value for the FOPID controller 

gains. This duplex coordination between the MP-SEDA-based method with tunable CF 

and the FOPID controller of the AVR system is recursively executed until the maximum 

iteration. In a nutshell, the summary of the step-by-step procedure for tuning the FOPID 

controller is given by: 

Step 1: The mappings of �� = �(�)  and ��,� = ��(� = 1, 2, … , �)  are established. Then, 

��, ��, ����, �, �, �, ����, �, and � are determined. 

Step 2: The MP-SEDA-based method with tunable CF in Algorithm 1 is executed. 

Step 3: After reaching the maximum iteration ����, the optimal design parameter ��
� is 

obtained from the elite matrix �. Then, these optimal design parameters are applied to 

the FOPID controller as the solution for the AVR control system. 

Remark 1. In this paper, it is highlighted that the tuning method of the FOPID controller is based 

on a data-driven or model-free approach. This method treats the AVR system as a ‘black box’ model. 

It means that all FOPID controller gains used in AVR control systems are tuned up solely based 

on the input and output information without knowing the plant model. This data-driven method 
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improves the feasibility of the proposed controller and makes it possible to utilize it in a real AVR 

system. As for the computational execution of the proposed algorithm, the process of tuning can be 

expedited by the existence of supercomputers. 

Figure 7 shows a detailed flow diagram of the FOPID controller tuning approach 

using the MP-SEDA-based method with tunable CF. There are two main blocks: the im-

plementation of the FOPID controller for the AVR system block and the MP-SEDA-based 

method with a tunable CF block. In the first block, the aim is to obtain the minimal objec-

tive function �(�) using the given overshoot �� , steady-state error ��� , settling time 

���� , and rise time �� values. By mapping �� to �(�), Algorithm 1 can be executed in the 

second block to obtain the updated design variable of each prey ��, which is obtained 

from �� . This updated design variable is then applied to the first block by defining �� =

��,�(� = 1, 2, … , �). This bidirectional flow between these two main blocks is repeated until 

reaching the maximum number of iterations to obtain the optimal design parameter ��
�. 

 

Figure 7. Block diagram of MP-SEDA-based method with tunable CF implementation for FOPID 

controller of the AVR system. 
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4. Results and Discussion 

The performance investigation of the AVR system using a FOPID controller based on 

the MP-SEDA-based method with tunable CF is presented in this section. There are five 

case studies conducted to investigate the performance of the proposed method, i.e., (i) 

step response analysis, (ii) Bode plot analyses, (iii) trajectory tracking, (iv) disturbance 

rejection, and (v) parameter variations of the AVR system. Here, the effectiveness of the 

MP-SEDA-based method with tunable CF is compared with the existing MPA [39], as well 

as other metaheuristics-based methods, viz. SA-MRFO [21], GBO [38], ChBWO [37], JOA 

[36], C-YGSA [35], SSA [34], CS [33], SA [32], PSO [28,31], CAS [30], and NSGA II [29], in 

tuning the FOPID controller for the AVR system. The following performance criteria are 

considered in this study: 

(i) The performance comparison of the best objective function convergence curve (out 

of 25 trials) between the MP-SEDA-FOPID and the existing MPA-FOPID controller. 

Specifically, the ability of the algorithms to minimize the objective function is ob-

served. 

(ii) The statistical analysis of the objective function � in Equation (6) from 25 independ-

ent trials based on the mean, best, worst, and standard deviation (std). Those statis-

tical performances are compared between the MP-SEDA-FOPID and the existing 

MPA-FOPID controller. 

(iii) The non-parametric statistical test uses Wilcoxon’s rank test to estimate the statistical 

difference between the MP-SEDA-FOPID and the existing MPA-FOPID controller 

with a significance level of 5%. The two different controllers must undergo the sta-

tistical test and the mean values are compared to find the �-value, which indicates 

the significance level. When �-value <  0.05, the experimental results and efficiency 

of both controllers are considered significantly different. On the other hand, when �-

value > 0.05, the experimental results of both controllers are considered not signifi-

cantly different, or in other words, the experimental results of the controllers are the 

same. 

(iv) The performance comparison of step response analysis of the AVR system in terms 

of overshoot ��, steady-state error ���, settling time ���� , and rise time �� between 

the MP-SEDA-FOPID controller and the aforementioned compared FOPID-based 

controllers. 

(v) The stability analyses between the MP-SEDA-FOPID controller and the aforemen-

tioned compared FOPID-based controllers need to be performed by evaluating the 

Bode plot. 

(vi) The robustness analysis is applied to all compared controllers by assessing the trajec-

tory tracking (including measurement noise), disturbance rejection, time-invariant, 

and time-varying parameter uncertainties. At this point, the robustness analyses are 

evaluated in terms of the integral absolute error (IAE), integral square error (ISE), 

integral time absolute error (ITAE), and integral time square error (ITSE), which are 

mathematically formulated as 

ISE = � (���� − ��)���,
��

�

 (20)

IAE = � ����� − �����,
��

�

 (21)

ITSE = � ��(���� − ��)����,
��

�

 (22)

ITAE = � ������ − �����,
��

�

 (23)
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where �� is the final simulation time. 

In this study, the simulation works were performed based on MATLAB/Simulink 

R2020a on a personal computer with the specifications of Microsoft Windows 10, 8 GB 

RAM, and Intel Core i7-6700 Processor (3.41 GHz). In finding the optimal values of the 

FOPID of the AVR system, the range of FOPID gains is set as �� = (0.1, 3), �� = (0.1, 1), 

�� = (0.1, 1.5), � = (0.5, 1.5), and � = (0.5, 1.5) by referring to the study in [37]. Then, the 

maximum number of iterations and the number of agents are set as ���� = 100 and � = 

40, respectively, which contribute to a total of 4000 function evaluations (NFEs), which is 

similar to the work in [23]. Next, the coefficients for the MP-SEDA-based method with 

tunable CF are set as � = 1.89 and a predetermined probability � = 0.67 after several ini-

tial investigations are performed. Finally, the default MPA-based method coefficients that 

are also used in the MP-SEDA-based method with tunable CF remain as � = 0.5 and 

���� = 0.2, which is similar to the original work in [39]. Next, the fractional order transfer 

functions are designed based on the 5th-order Oustaloup with a frequency range of � ∈

[10��, 10�] r/s, which is the same as the setting in [62]. The obtained results are catego-

rized into the following case studies. 

4.1. Step Response Analysis 

In this subsection, the first case study based on the applied unit step input for the 

FOPID controller of the AVR system is presented and discussed. Firstly, the effectiveness 

of the proposed MP-SEDA-FOPID controller is observed by comparing the best objective 

function convergence curve (out of 25 trials) with the existing MPA-FOPID controller. 

Furthermore, the statistical analysis of the objective function � from 25 independent trials 

is evaluated in terms of mean, best, worst, and standard deviation (std) to highlight the 

superiority of the improved version of MPA. Moreover, a non-parametric statistical test 

using Wilcoxon’s rank test is also conducted to estimate the statistical difference between 

the MP-SEDA-FOPID and the existing MPA-FOPID controller. Lastly, the step response 

analysis is evaluated in terms of time response specifications, such as overshoot �� , 

steady-state error ��� , settling time ���� , and rise time �� , in comparison with other 

FOPID-based controllers. 

Table 5 shows the statistical outcomes over 25 trials for the MP-SEDA-FOPID and the 

existing MPA-FOPID controller. As seen from Table 5, the proposed controller provides 

superior statistical results by producing the lowest values for mean, best, and worst, as 

highlighted in bold, compared to the existing MPA-FOPID controller. Meanwhile, the ex-

isting MPA-FOPID scores a slightly lower value for standard deviation (std), which indi-

cates it has slightly better quality in producing a consistent result for each trial compared 

to the proposed MP-SEDA-FOPID controller. In the meantime, Figure 8 shows the best 

convergence curves of the objective function for MP-SEDA-FOPID and the existing MPA-

FOPID controller out of 25 trials. As we can see, for MP-SEDA (blue line), the objective 

function � has successfully converged from � = 0.1019 and achieved the minimum � = 

0.01107 during 97 iterations. Meanwhile, for MPA (red line), it takes the entire iteration 

for the objective function to converge from � = 0.0472 to the minimum � = 0.01108. If we 

investigate the MP-SEDA convergence curve further, we can see that for the first tier of 

the maximum iterations, the algorithm is in the exploration phase (Phase 1), where the 

convergence curve behavior is approximately similar to MPA. This is because there was 

no modification to the MPA algorithm during Phase 1. After implementing the MP-SEDA 

algorithm during Phase 2 (
�

�
���� < � <

�

�
����), a steeper response of the convergence 

curve is produced compared to MPA. It justifies that the hybridization of MPA and SEDA 

can improve the exploration and exploitation phases of the algorithm, especially during 

Phase 2. Then, during Phase 3 (� >
�

�
����), it is clearly shown that the tunable CF in 

Equation (18) can further help the algorithm exploit the minimum objective function. The 

results prove that the proposed modification of MPA can reach a good solution with an 

excellent convergence rate and solution quality. 
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Meanwhile, a non-parametric statistical test using Wilcoxon’s rank test with a signif-

icance level of 5% is implemented to evaluate the statistical difference in the objective 

function between each method. The pairwise results of Wilcoxon’s rank test between the 

MP-SEDA-FOPID and the existing MPA-FOPID controller are shown in Table 6. In this 

table, �� is defined as the sum of ranks in which the proposed algorithm performed bet-

ter than its competitor, and �� is vice versa [23]. Based on the results, �� is dominated 

by the MP-SEDA-FOPID with a score of 179, as highlighted in bold, compared to the 

MPA-FOPID with a score of 139. This indicates a big enough difference between them. 

Moreover, it clearly shows that the �-value between the MP-SEDA-FOPID and the exist-

ing MPA-FOPID controller is less than 0.05. This result shows that the superior perfor-

mance of the MP-SEDA-FOPID compared to the existing MPA-FOPID is statistically sig-

nificant. 

Table 5. Statistical analysis over 25 trials for MP-SEDA and existing MPA. 

Objective Function MP-SEDA MPA 

� 

Mean 0.01269131 0.01402836 

Best 0.01107177 0.01108495 

Worst 0.01512334 0.01524987 

Std 0.00156338 0.00129324 

 

Figure 8. Convergence curves of the best objective function from 25 trials for MP-SEDA and MPA. 

Table 6. Wilcoxon’s rank test between MP-SEDA and MPA. 

 MP-SEDA versus MPA 

�-value 0.0023 

�� 179 

�� 139 
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Eventually, from the best convergence curve, the optimum FOPID gains obtained by 

the MP-SEDA-based method with tunable CF at the end of the simulation, i.e., ��  = 

2.948671163710841, ��  = 0.453269823092194, ��  = 0.439096791042741, �  = 

1.401573912220059, and � = 1.415394312394095, are found. Meanwhile, for MPA, the op-

timum FOPID gains obtained from the best convergence curve, i.e., ��  = 

2.940878878596037, ��  = 0.451028297446648, ��  = 0.438562480134299, �  = 

1.402697639316959, and � = 1.414674798488237, are found. The FOPID gains for both al-

gorithms are simplified to four decimal places, as shown in Table 7. Table 7 also presents 

the optimal FOPID gains obtained from other compared algorithms taken directly from 

their respective papers. Subsequently, the terminal voltage step responses attained by the 

proposed MP-SEDA-FOPID controller and other compared FOPID-based controllers are 

illustrated in Figure 9. Here, the simulation time is set as �� = 5 s and the desired terminal 

voltage is set to 1.0 p.u. It is noted that all compared controllers are rerun by considering 

the experimental settings in this study, such as Oustaloup, settling time tolerance, and 

simulation time. 

Table 7. Optimal setting of FOPID controller gains obtained from different algorithms. 

Type of Algorithm 
FOPID Controller Gains 

�� �� �� � � 

MP-SEDA 2.9487 0.4533 0.4391 1.4016 1.4154 

MPA 2.9409 0.4510 0.4386 1.4027 1.4147 

SA-MRFO [21] 1.8931 0.8699 0.3595 1.0408 1.2780 

GBO [38] 0.9961 1.4861 0.6124 0.4932 1.1131 

ChBWO [37] 2.8204 0.7387 0.4280 1.1294 1.3558 

JOA [36] 2.5982 1.1688 0.5809 1.1291 1.1622 

C-YSGA [35] 1.7775 0.9463 0.3525 1.1273 1.2606 

SSA [34] 1.9982 1.1706 0.5749 1.1395 1.1657 

CS [33] 2.5150 0.1629 0.3888 0.9700 1.3800 

SA [32] 0.7837 0.5027 0.2307 1.0103 1.0727 

PSO1 [31] 1.2623 0.5531 0.2382 1.1827 1.2555 

PSO2 [28] 0.3265 0.2506 0.2050 0.9680 1.4400 

CAS [30] 1.0537 0.4418 0.2510 1.0624 1.1122 

NSGA II [29] 0.8399 1.3359 0.3512 0.9147 0.7107 

 

Figure 9. Step responses of the AVR system obtained from the FOPID controller by different algorithms. 
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Furthermore, the time response specifications and objective function � for all opti-

mization-based FOPID controllers are depicted in Table 8. Here, the rise time is defined 

as the time taken by the response to increase from 10% to 90% of its final value, while the 

settling time is defined as the time taken to achieve 5% of the final value of the response. 

The step response analysis starts with the comparison of �� where the proposed MP-

SEDA produces a fourth smaller ��, pioneered by CS, then followed by SA and MPA. 

Hence, it shows that the value of �� for MP-SEDA is slightly comparable with CS, where 

the difference is only 0.5%. Nevertheless, the 0.56% overshoot produced by MP-SEDA is 

still acceptable, and it may not affect the output performance of the AVR system. Interest-

ingly, the proposed controller performed brilliantly for other time response specifications, 

where it produced the fastest ��, the fastest ���� , and the smaller ��� compared to other 

algorithms, as highlighted in bold. Lastly, to evaluate the overall performance, the objec-

tive function � in Equation (6) is obtained by using the ��, ��, ���� , and ��� produced 

by each algorithm. As expected, by winning three out of four time response specifications, 

the MP-SEDA has clearly generated an excellent result for � with the lowest value of 

0.01107177. This result shows that the MP-SEDA yields the best results by 0.12% in com-

parison to the existing MPA. Meanwhile, for the other controllers, MP-SEDA scores a 

lower objective function of 1.86 times in comparison to SA-MRFO, 16.53 times in compar-

ison to GBO, 1.82 times in comparison to ChBWO, 15.09 times in comparison to JOA, 2.07 

times in comparison to C-YSGA, 15.34 times in comparison to SSA, 9.62 times in compar-

ison to CS, 3.41 times in comparison to SA, 3.93 times in comparison to PSO [26], 81.6 times 

in comparison to PSO [23], 3.28 times in comparison to CAS, and 56.5 times in comparison 

to NSGA II. Overall, the MP-SEDA-based method with tunable CF is the best tool for 

FOPID controller tuning in terms of time response specification and objective function. 

Table 8. Time response specifications and objective function � obtained by FOPID controller from 

different algorithms. 

Type of Algorithm 
Time Response Specifications 

� 
��(%) ��(�) ����(�) (5%) ��� 

MP-SEDA 0.56 0.083 0.1103 1.24 × 10−7 0.01107177 

MPA 0.55 0.0833 0.1106 1.83 × 10−6 0.01108495 

SA-MRFO [21] 1.95 0.1311 0.1760 6.6745 × 10−4 0.02060125 

GBO [38] 12.46 0.1081 0.5161 0.0148 0.18305555 

ChBWO [37] 3.89 0.0956 0.1266 0.0022 0.02011246 

JOA [36] 19.49 0.0966 0.4468 0.0020 0.16703187 

C-YSGA [35] 1.93 0.1382 0.1858 0.0028 0.02294091 

SSA [34] 13.91 0.1008 0.4858 0.0028 0.16979448 

CS [33] 0.06 0.1039 0.3479 0.0262 0.10646490 

SA [32] 0.50 0.2656 0.3656 1.5454 × 10−5 0.03776948 

PSO1 [31] 1.37 0.2231 0.3227 0.0067 0.04346518 

PSO2 [28] 8.38 1.6453 4.0385 0.0112 0.90340689 

CAS [30] 3.63 0.2205 0.2989 8.4339 × 10−4 0.03627426 

NSGA II [29] 42.69 0.2025 1.6800 0.0016 0.62550586 

4.2. Bode Plot Analyses 

In this subsection, the second case study, which is the frequency response analysis of 

the MP-SEDA-FOPID controller and other FOPID-based controllers, is conducted in terms 

of a Bode plot. The stability characteristic is analyzed from the Bode plot by analyzing the 

phase margin ��, delay margin ��, peak gain, and bandwidth frequency. Specifically, 

the �� is a characteristic that indicates the amount of phase shift that can be handled by 

a system without causing any unstable conditions. Meanwhile, the �� is the maximum 

amount of time delay that can be tolerated by the system to retain its stability. Peak gain 



Fractal Fract. 2023, 7, 561 26 of 38 
 

 

indicates the overshoot performance of a system, while the bandwidth frequency is de-

fined as the frequency at which the closed-loop magnitude drops 3 dB below its magni-

tude at DC (magnitude as the frequency approaches zero). Generally, the system is said 

to be stable if the ��  is a positive value, while a system with a larger �� , longer �� , 

smaller peak gain, and higher bandwidth frequency is considered more stable. In partic-

ular, the stability performance of the closed-loop system response using the MP-SEDA-

FOPID controller is observed in comparison with other FOPID-based controllers. 

Figure 10 shows the Bode plots of magnitude and phase for the proposed MP-SEDA-

FOPID controller and other compared FOPID-based controllers, while Table 9 represents 

the comparative stability characteristic results obtained by all controllers. According to 

the results, a good frequency response is obtained by CAS with the highest ��  (i.e., 

178.4217 degrees) and longer �� (i.e., 21.6891 s), as highlighted in bold. Meanwhile, a 

good frequency response has also been obtained by SA, with the second highest �� (i.e., 

178.3847 degrees), second longest ��  (i.e., 20.4419 s), and the smallest peak gain of 

0.000109 dB. However, both CAS and SA algorithms produce low bandwidth values, 

which only score 9.9114 Hz and 8.3791 Hz, respectively. Theoretically, the system’s output 

response will face a higher distortion when the bandwidth value is small. This situation 

may lead to the performance degradation of the AVR system. In contrast, the proposed 

MP-SEDA scores the highest bandwidth value of 26.9955 Hz, 2.72 and 3.22 times better 

than the CAS and SA bandwidth values, respectively. Overall, we can say that the MP-

SEDA-FOPID controller has produced a good frequency response by considering the 

highest bandwidth value and other tolerable phase margins, delay margins, and peak gain 

values (i.e., 168.8267 degrees, 0.9986 s, and 0.0645 dB, respectively). 

 

Figure 10. Bode plots for AVR systems obtained by FOPID controller from different algorithms. 

Table 9. Stability characteristic results obtained by FOPID controller from different algorithms. 

Algorithm �� (deg) �� (s) Peak Gain (dB) Bandwidth (Hz) 

MP-SEDA 168.8267 0.9986 0.0645 26.9955 

MPA 168.8416 1.0008 0.0651 26.92 

SA-MRFO [21] 161.7465 0.8503 0.157 17.3936 

GBO [38] 88.4794 0.0957 1.2 20.0106 

ChBWO [37] 163.6947 0.7181 0.194 23.4647 
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JOA [36] 81.4664 0.0804 1.88 21.3722 

C-YSGA [35] 163.0984 0.9687 0.118 16.5389 

SSA [34] 88.2128 0.0895 1.32 21.2305 

CS [33] 166.7140 0.9244 0.0476 22.5192 

SA [32] 178.3847 20.4419 0.00109 8.3791 

PSO1 [31] 175.3853 5.6949 0.0606 10.0939 

PSO2 [28] 162.4166 4.2886 0.00515 1.1579 

CAS [30] 178.4217 21.6891 0.00662 9.9114 

NSGA II [29] 40.7036 0.0857 5.38 9.3804 

4.3. Trajectory Tracking Analysis 

In this subsection, the third case study, the trajectory tracking analysis, is considered 

to examine the precision of the proposed MP-SEDA-FOPID controller in tracking the de-

sired trajectory of the terminal voltage response. The trajectory tracking employed in this 

study differs from the previous studies conducted in [32], which utilized different step 

changes. In contrast, in this study, we focused on tracking the combination of sinusoidal 

and trapezoidal reference signals. As demonstrated, this reference input signal is formed 

in series between the sinusoidal and ramp signals with multiple set points. This new tra-

jectory tracking intends to escalate the challenges of controlling the AVR system and eval-

uate the efficiency of the proposed MP-SEDA-FOPID controller. Since there are various 

set points and slopes, this trajectory tracking is practically exciting to implement in the 

AVR system. Moreover, the FOPID gains in Table 7 are maintained in analyzing the tra-

jectory tracking assessment. The performance evaluation of each controller in comparison 

is evaluated in terms of the performance indices stated in Equations (20)–(23). In this tra-

jectory tracking analysis, the simulation time is set to �� = 15 s. 

The trajectory tracking responses by all controllers are displayed in Figure 11, while 

their magnified versions for different time intervals are shown in Figure 12a–f. The figures 

clearly show that the proposed MP-SEDA-FOPID controller provides an excellent trajec-

tory tracking response compared to other algorithms. Also, it is noticeable that the MP-

SEDA response successfully follows the reference input with high efficiency. Specifically, 

the MP-SEDA produces less overshoot and faster settling time at different set points, such 

as during time intervals t = 4–5 s, t = 6–7 s, t = 9–10 s, and t = 11–15 s in comparison with 

other controllers, especially the NSGA II [29] which produces 10 to 30 times higher over-

shoot and 1 to 7 times slower settling time than MP-SEDA. Meanwhile, we can say that 

the PSO [28] produces the worst trajectory tracking response, which is unable to follow the 

reference input accurately. Hence, it can be concluded that the MP-SEDA-FOPID is a better 

controller compared to others by producing a remarkable trajectory tracking capability, as 

shown by the voltage response profile that is very close to the reference input signal. 

Merely observing the trajectory tracking response is insufficient to distinguish which 

controller is best for tracking the desired input. Thus, the numerical evaluation in terms 

of ISE, IAE, ITSE, and ITAE performance indices for trajectory tracking responses for all 

FOPID-based controllers was conducted, and the results are tabulated in Table 10. The 

best performance among the controllers in following the reference signal can be identified 

by observing the smaller values of performance indices. Table 10 illustrates that the pro-

posed MP-SEDA produces the smallest values of ISE and ITSE compared to other algo-

rithms, as highlighted in bold. Meanwhile, the JOA has scored the best values for IAE and 

ITAE. Thus, a detailed comparison between the MP-SEDA and the JOA is made to indicate 

which algorithm is best for trajectory tracking. Firstly, for the IAE performance index, that 

of the MP-SEDA is 1.014 times greater than that of JOA, ranking it third compared to other 

algorithms. Secondly, for the ISE performance index, that of the JOA is 1.059 times greater 

than that of MP-SEDA and is ranked fourth. Thirdly, for the ITAE performance index, that 

of the MP-SEDA is 1.038 times greater than that of JOA and is ranked as no. 3. Lastly, for 

the ITSE performance index, that of the JOA is 1.115 times greater than that of MP-SEDA, 
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placing it at no. 4. If we total up how much better the two algorithms were than the others, 

it is evident that the MP-SEDA produces a better result, with a score of 2.052 times better, 

compared to the JOA, with a score of 2.174 times better. Then, if we compare both algo-

rithms in terms of rank, the total rank produced by MP-SEDA is considerably better, with 

a total rank of 8, compared to JOA, with a total rank of 10. Therefore, these numerical 

results of performance indices indicate that the proposed MP-SEDA-based method pos-

sessed superior control efficacy in following the trajectory tracking compared to other al-

gorithms. Besides that, the proposed MP-SEDA-FOPID controller has won all perfor-

mance indices compared to the existing MPA-FOPID. It is justified that the MPA modifi-

cation is worth implementing for tuning the FOPID controller of the AVR system. 

 

Figure 11. Trajectory tracking responses obtained by FOPID controller from different algorithms. 

  
(a) (b) 

  
(c) (d) 
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(e) (f) 

Figure 12. Magnified view for trajectory tracking responses with different time intervals (a) for t = 

0–2 s, (b) for t = 2–4 s, (c) for t = 4–6 s, (d) for t = 6–8 s, (e) for t = 8–10 s, and (f) for t = 10–12 s. 

Table 10. Trajectory tracking performances comparison of different FOPID-based controllers. 

Algorithm IAE ISE ITAE ITSE 

MP-SEDA 0.8433 0.09733 3.643 0.2791 

MPA 0.8451 0.09773 3.651 0.2803 

SA-MRFO [21] 1.16 0.2027 4.756 0.5945 

GBO [38] 1.042 0.1648 4.254 0.4729 

ChBWO [37] 0.8423 0.1013 3.535 0.2902 

JOA [36] 0.8314 0.1031 3.511 0.3112 

C-YSGA [35] 1.268 0.2447 5.24 0.739 

SSA [34] 1.063 0.1684 4.513 0.537 

CS [33] 0.8991 0.1131 3.725 0.3136 

SA [32] 2.277 0.7945 9.484 2.485 

PSO1 [31] 1.765 0.4688 7.388 1.438 

PSO2 [28] 6.146 3.683 35.74 17.85 

CAS [30] 1.859 0.5041 7.932 1.53 

NSGA II [29] 1.823 0.4715 7.649 1.385 

Next, the measurement noise �(�) is added to the AVR system, as shown in Figure 

13, in order to further evaluate the efficiency of each algorithm in the trajectory tracking 

analysis. In this study, �(�) is a white noise with a noise power of 0.001. Meanwhile, the 

trajectory tracking response with the existence of measurement noise obtained by the MP-

SEDA-FOPID controller is shown in Figure 14. From the response, it is evident that the 

proposed MP-SEDA response is able to follow the reference signal satisfactorily, espe-

cially during the sinusoidal input. While there is a slight ripple during the trapezoid input, 

it follows the reference without failure. In the meantime, Table 11 shows the numerical 

results of all performance indices obtained by all the controllers. The table shows that the 

proposed MP-SEDA-FOPID controller has produced the lowest values for all performance 

indices compared to other controllers, as highlighted in bold. Specifically, the MP-SEDA 

has produced a value of IAE that is 0.002 times better than the second place, which is the 

existing MPA. Compared to the last place (PSO [28]), the IAE value of MP-SEDA is 4.874 

times better. In the meantime, it is obvious that the MP-SEDA and the existing MPA are 

the only algorithms producing an ISE reading of less than 0.24. Furthermore, the ITAE 

and ITSE values obtained through the MP-SEDA are approximately 1.001 to 14.34 times 

better than those produced by other FOPID-based controllers. In essence, although the 

AVR system is subjected to measurement noise during the trajectory tracking simulation, 
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the proposed MP-SEDA-FOPID controller is still able to cater to it and successfully proves 

that this method is the most efficient and robust. 

 

Figure 13. AVR control system with the presence of measurement noise. 

 

Figure 14. Trajectory tracking response for MP-SEDA-FOPID controller with the presence of meas-

urement noise. 

Table 11. Trajectory tracking performance comparison of different FOPID-based controllers with 

the presence of measurement noise. 

Algorithm IAE ISE ITAE ITSE 

MP-SEDA 1.42 0.2372 9.194 1.344 

MPA 1.422 0.2379 9.209 1.347 

SA-MRFO [21] 1.822 0.3778 11.3 1.91 

GBO [38] 1.792 0.3675 11.57 2.005 

ChBWO [37] 1.497 0.2596 9.866 1.495 

JOA [36] 1.638 0.3115 11.23 1.899 

C-YSGA [35] 1.919 0.4227 11.73 2.073 

SSA [34] 1.776 0.3675 11.59 2.049 

CS [33] 1.52 0.2654 9.824 1.469 

SA [32] 2.797 0.9932 15.11 3.9 

PSO1 [31] 2.327 0.6492 13.18 2.761 

PSO2 [28] 6.294 3.874 37.17 19.28 

CAS [30] 2.401 0.7009 13.65 2.964 

NSGA II [29] 2.564 0.7654 14.41 3.353 
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4.4. Disturbance Rejection Analysis 

In this subsection, the fourth case study, which is the disturbance rejection analysis, 

is discussed. Notably, the capability of the system to withstand unpredicted disturbances 

is a significant property that has to be considered by the designer when developing a ro-

bust system. Consequently, the performances of the proposed MP-SEDA-FOPID and all 

compared FOPID-based controllers were evaluated in the presence of disturbances, as 

shown by the equivalent block diagram in Figure 15. In this analysis, a similar trajectory 

tracking input to that in the previous section was employed with additional disturbance 

signals �(�), which were modeled as follows: 

�(�) =

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧

0, if 0 < � < 1,
0.5, if 1 ≤ � ≤ 1.1,
   0, if 1.1 < � < 3,

−0.5, if 3 ≤ � ≤ 3.1,   
   0, if 3.1 < � < 8,
0.5, if 8 ≤ � ≤ 8.1,

         0, if 8.1 < � < 10.5,
     −0.5, if 10.5 ≤ � ≤ 10.6,

        0, if 10.6 < � < 15.

 (24)

Note that the disturbance expression �(�) in Equation (24) imitates the unexpected 

load changes with a persistently high or low voltage that happen in real power system 

operation due to the loss of important sources of reactive power support or loss of im-

portant transmission capability [63]. In contrast to existing studies reported in [23] that 

implemented two disturbance perturbations with a duration of 0.5 s and an amplitude of 

20% of the set point, this study implemented four disturbance perturbations with a dura-

tion of 0.1s and an amplitude of 50% of the set point. The reason for introducing these new 

disturbance signals is to further challenge the controller in recovering the reference signal. 

The same FOPID values listed in Table 7 are then used in this simulation test. 

 

Figure 15. AVR block diagram with additional disturbance. 

Figure 16 presents the system responses with disturbances obtained by the proposed 

MP-SEDA-FOPID and other compared FOPID-based controllers. Also, Figure 17a–d show 

the magnified version of Figure 16 to assist the reader in classifying the best response. It 

is noted that during the first disturbance, perturbations occur. As shown in Figure 17a, 

the MP-SEDA has the superior capability to reject the disturbance that occurs since it can 

regain the reference signal faster than other algorithms. At the same time, the responses 

obtained via SA-MRFO, GBO, ChBWO, JOA, C-YSGA, SSA, CS, SA, and CAS reveal fewer 

oscillations after the first disturbance perturbation. However, their responses fail to follow 

the desired response since their trajectories have diverged from the reference signal. The 

same pattern can be seen during the second, third, and fourth disturbance perturbations, 

as shown in Figure 17b, Figure 17c, and Figure 17d, respectively, where the MP-SEDA has 
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shown the best performance by requiring less time to recover the reference signal after the 

disturbances. 

 

Figure 16. System responses with disturbances. 

  
(a) (b) 

  

(c) (d) 

Figure 17. Magnified view of system responses with disturbances (a) for first disturbance perturba-

tion, (b) for second disturbance perturbation, (c) for third disturbance perturbation, and (d) for 

fourth disturbance perturbation. 
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Additionally, Table 12 tabulates the performance indices (i.e., IAE, ISE, ITAE, and 

ITSE) obtained using the proposed MP-SEDA-FOPID and other FOPID-based controllers. 

The table evidently shows that the proposed method obtains the lowest values for IAE, 

ISE, and ITAE, as highlighted in bold. Meanwhile, for ITSE, the MP-SEDA-FOPID pro-

duces the second lowest value, with only a 0.0033 difference from the existing MPA-

FOPID. These results undoubtedly support the outcomes of system responses with dis-

turbance, as shown in Figure 17. Overall, these simulation results prove that the proposed 

MP-SEDA-FOPID controller is efficient in tracking the desired signal and provides better 

robustness compared to other FOPID-based controllers, even with the existence of dis-

turbance perturbations. 

Table 12. Disturbance rejection comparison of different FOPID-based controllers. 

Algorithm IAE ISE ITAE ITSE 

MP-SEDA 1.0340 0.1687 4.6910 0.7071 

MPA 1.0360 0.1692 4.7010 0.7038 

SA-MRFO [21] 1.3400 0.2877 5.7530 1.1130 

GBO [38] 1.2940 0.2682 5.6680 1.0940 

ChBWO [37] 1.0500 0.1827 4.6920 0.7711 

JOA [36] 1.1140 0.2134 5.1230 0.9609 

C-YSGA [35] 1.4340 0.3295 6.1470 1.2630 

SSA [34] 1.3110 0.2703 5.8630 1.1480 

CS [33] 1.1020 0.1903 4.8410 0.7719 

SA [32] 2.3140 0.8626 9.5320 2.9890 

PSO1 [31] 1.8630 0.5430 7.8160 1.9350 

PSO2 [28] 6.1580 3.7080 36.3400 18.5300 

CAS [30] 1.9600 0.5864 8.35400 2.0710 

NSGA II [29] 1.9420 0.6128 8.6400 2.2120 

4.5. Parameter Variation Analysis 

The final case study, which is the parameter uncertainties analysis, is discussed 

within this subsection to assess the performance of the MP-SEDA-FOPID controller in 

dealing with the different conditions of the system’s parameters. In particular, two case 

studies are conducted: time-invariant and time-varying parameter uncertainties. For the 

prior case study, the parameters of the sensor (��), generator (��), exciter (��), and ampli-

fier (��) were initially varied from −50% to +50% in an increment of 25%. Meanwhile, in 

the case of the latter, the time-varying uncertainties of the generator gain ��  were con-

sidered. Note that the time-varying uncertainty in the generator gain mimics the actual 

behavior of the armature winding, which was subjected to a varying magnetic flux that 

contributed to surface eddy current losses [1]. Thus, the new generator gain can be formu-

lated by 

���(�) = �� + ∆�(�), (25)

where ∆�(�)  is the time-varying uncertainty in the generator that randomly changes 

throughout the time in the range of [−0.3, 0.3]. 

The terminal voltage step responses of the AVR system produced by the MP-SEDA-

FOPID controller under the time-invariant parameter uncertainties are displayed in Fig-

ure 18a–d. Meanwhile, the numerical results of the obtained time response specification 

are presented in Table 13. It can be observed that the all-time response specifications (��, 

��, and ����) differ in minimal ranges compared to the nominal value (see Table 8). Besides 

that, Table 14 shows the range of deviation (ROD) and the maximum deviation (MD) in 

times for all variations of the components in terms of ��, ��, and ����. For instance, if we 

analyze the variation of component ��, the ROD of �� is between +50% rate of change, 
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which is the maximum value (4.03%), and −50% rate of change, which is the minimum 

value (0.75%) (refer to Table 13). Meanwhile, for the MD of ��, the calculation is per-

formed by dividing the maximum value of �� (4.03%) with the nominal value in Table 8 

(0.56%). These calculations of ROD and MD are also applied to other time response spec-

ifications (�� and ����). Overall, it clearly shows that the proposed MP-SEDA-FOPID con-

troller has produced tolerable MD and ROD values for all time response specifications 

(��, ��, and ����) within all variations of the AVR components. 

  
(a) (b) 

  
(c) (d) 

Figure 18. Terminal voltage responses for (a) ��, (b) ��, (c) ��, and (d) �� varying from +50% to −50%. 

Table 13. Time invariant parameter uncertainties analysis of the MP-SEDA-FOPID controller. 

Component of Pa-

rameters 
Rate of Change (%) ��(%) ��(�) ����(�) 

�� 

+50 4.0300 0.1085 0.1432 

+25 2.3500 0.0979 0.1299 

−25 0.7600 0.0737 0.3511 

−50 0.7500 0.0596 0.3845 

��  

+50 3.2000 0.1335 0.1906 

+25 1.8200 0.1090 0.1500 

−25 4.4700 0.0653 0.3529 

−50 11.1500 0.0442 0.2647 

��  

+50 2.7100 0.1479 0.3549 

+25 1.6500 0.1135 0.3524 

−25 6.4300 0.0637 0.3258 

−50 16.1500 0.0423 0.2405 

�� 

+50 4.3600 0.0796 0.3532 

+25 2.3900 0.0828 0.3506 

−25 0.7500 0.0908 0.3480 

−50 0.7500 0.0961 0.3480 
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Table 14. The range of deviation (ROD) and maximum deviation (MD) in times for the MP-SEDA-

FOPID controller. 

Component of Parameters Time Response Specifications ROD MD (Times) 

�� 

�� 3.28 7.20 

�� 0.0489 1.31 

����  0.2546 3.49 

��  

�� 9.33 19.91 

�� 0.0893 1.61 

����  0.2029 3.20 

��  

�� 14.5 28.84 

�� 0.1056 1.78 

����  0.1144 3.22 

�� 

�� 3.61 7.79 

�� 0.0165 1.16 

����  0.0052 3.20 

Meanwhile, to assess the effectiveness of the MP-SEDA-FOPID controller for time-

varying parameter uncertainties, the same trajectory tracking input is used. Then, the nu-

merical results in terms of IAE, ISE, ITAE, and ITSE performances are again recorded and 

shown in Table 15. Furthermore, the percentages of deviation between the nominal values 

of IAE, ISE, ITAE, and ITSE (see Table 10) and their corresponding values for time-varying 

cases are also presented in Table 15. As seen from the results, the percentage of deviation 

for all performance indicators is less than 4%, which indicates the dominance of the pro-

posed MP-SEDA-FOPID controller in handling the time-varying parameter uncertainty in 

the generator. Overall, for this parameter variation analysis, those results confirmed the ro-

bustness of the proposed MP-SEDA-FOPID controller with the capability to maintain the 

desired terminal voltage response despite the parameter uncertainties in the AVR system. 

Table 15. Time-varying parameter uncertainties analysis of the MP-SEDA-FOPID controller. 

Component of Parameter 
Performance Indicator 

IAE ISE ITAE ITSE 

���(�) 0.8291 0.0943 3.619 0.2751 

 Percentage of deviation (%) 

 1.68 3.08 0.66 1.43 

5. Conclusions 

In this paper, a new optimization method for tuning the FOPID controller of the AVR 

system based on the MP-SEDA-based method with tunable CF is presented. The simula-

tion results revealed that the MP-SEDA-FOPID controller outperformed other FOPID-

based controllers in terms of the convergence curve of the objective function, the statistical 

analysis of the objective function, Wilcoxon’s rank test, the step response analysis, stability 

analyses, and robustness analyses where the AVR system was subjected to noise, disturb-

ance, and parameter uncertainties. Overall, the proposed method has good potential to be 

employed in several control applications because of its feasibility and applicability. Nev-

ertheless, for the time being, the proposed method is only applicable to optimization prob-

lems with a single fitness function. Thus, for multiple fitness functions with conflicting 

objectives, this method may provide an unsatisfactory solution. Furthermore, the pro-

posed MP-SEDA will introduce more predetermined coefficients that require preliminary 

investigation works. Therefore, for future work, consideration of the multi-objective MP-

SEDA-based method with tunable CF can be developed in order to enhance the perfor-

mance accuracy of the system. Furthermore, the MP-SEDA-based method with tunable 

CF can be further applied to other non-linear PID controllers to solve real application 
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problems such as multi-input–multi-output (MIMO) gantry crane control systems, electric 

vehicles with induction motor drive, and MIMO twin-rotor system maneuvering control. 
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