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Abstract: 

This paper proposes a new formulation of proportional-integral-derivative (PID) controller design using 

the dominant pole placement method for handling second order plus time delay (SOPTD) systems. The 

proposed method does not contain any finite term approximation like different orders of Pade for 

handling the time-delay term, in the quasi-polynomial characteristic equation. Rather it transforms the 

transcendental exponential delay term of the plant into finite number of discrete-time poles by a suitable 

choice of the sampling time. The PID controller has been represented by Tustin’s discretization method 

and the PID controller gains are obtained using the dominant pole placement criterion where the plant 

is discretized using the pole-zero matching method. A random search and optimization method has been 

used to obtain the stability region in the desired closed loop parameters space by minimising the integral 

squared error (ISE) criterion by randomly sampling from the stabilizable region and then these closed 

loop parameters are mapped on to the PID controller gains. Effectiveness of the proposed methodology 

is shown for nine test-bench plants with different lag to delay ratios and open loop damping levels, and 

the effect of choosing different sampling times, using credible numerical simulations.  
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1. Introduction 

In the last few decades several methods have been proposed to design PID controllers to handle the 

generic second order plus time delay (SOPTD) processes that can capture both sluggish and oscillatory 

open loop dynamics (O’Dwyer 2009). Amongst various PID controller design methods, the dominant 

pole placement is quite challenging for controlling plants with time delays because of the presence of 

exponential delay term (
Lse−

), thus making the system to have an infinite order. This gives rise to quasi-

polynomial type characteristic equations which is harder to tackle compared to the rational polynomials 

as reported in (Silva et al. 2007). The stability region of time delay systems may decrease with the 

increasing order of the Pade approximation (Bhattacharyya et al. 2009).  

1.1 Previous works on dominant pole placement based PID controller design 

Previously, few researchers have attempted to design dominant pole placement based PID controllers 

for handling time-delay systems in continuous time (either using root locus or Nyquist plot) (Wang et 

al. 2009) and discrete time domains (Dincel & Sӧylemez 2014). A semi-automated pole placement 

based state feedback controller has been proposed to shift the real part of the right most root of the 
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closed loop system to the far possible left-half of the s-plane in quasi-continuous way in (Michiels et 

al. 2002) and (Michiels & Vyhlidal 2005) for neutral and retarded type time delay system respectively. 

This methodology does not allow direct pole placement for SOPTD process models since these methods 

only monitor the real parts of the roots. A mixed PI and state feedback controller has been designed for 

retarded time-delay systems to overcome the above mentioned problem in (Michiels et al. 2010). This 

method combines both direct pole placement and the spectral abscissa minimization to determine the 

controller parameters. A dominant pole placement based PID controller has been designed to place three 

dominant poles of the delayed PID control loop in (Zitek et al. 2019), (Zitek & Fiser 2018) and (Zitek 

et al. 2013). These methods use dimensional analysis and integral absolute error (IAE) criterion for 

obtaining a generalized model of delayed PID control loop and satisfactory control performances. 

 

1.2 Previous works on stability regions for handling delayed systems with PID controllers 

For analyzing the stability of the time delay systems, several researchers have attempted to find the 

stability region mainly in the PI/PID controller parameter space. For example, (Silva et al. 2002) have 

derived admissible range of proportional controller gains using Hermite–Biehler theorem in quasi-

polynomial for the first order plus time delay (FOPTD) systems and then each proportional gain within 

the admissible range is used to obtain the stabilizing set of integral and derivative controller gains in 

two dimensional space. By deriving the necessary conditions with frequency equals to zero or infinity, 

the extended Hermite–Biehler theorem have been used to find the admissible ranges of PID controller 

gains in (Ou et al. 2006). Here, the complete set of stabilising PID controller gains were obtained as 

special parametric structure i.e. polyhedron by sweeping over the entire range of admissible 

proportional gain and then found a set of PID controller gains to be at the centre of the largest stability 

ball inscribed inside the polyhedron for second-order integrating processes with time delay. (Tan 2005) 

has used the stability boundary locus to obtain the stability region of PI and PID controller parameter 

space for time delay systems by converting the time delay term in real and imaginary part. A graphical 

technique based on D-partitioning technique has been used to find out the stability region in PID 

controller space for handling the time delay systems in (Shafiei & Shenton 1994). Using this graphical 

stability region criterion in quasi-polynomials, the stability region was obtained in integral-derivative 

plane for fixed proportional gain value for the time delay systems in (Wang 2012). A geometric 

approach has been used to find out the stability region in PI/PID controller parameter space for ensuring 

closed loop stability of time delay systems and fragility of PI and PID controllers in (Morarescu et al. 

2011; Méndez-Barrios et al. 2008) respectively. The controller gains are selected inside the stability 

region which is far away from the boundary of the stability region.  

Recently, proportional-delayed controllers were designed for handling linear time invariant systems 

in (Hernández-Diez et al. 2018) which considered a geometric approach that allows partitioning the 

parameter space in to regions, defined by separating hyperplane, with constant number of unstable roots. 

A graphical method was proposed for tuning the PI–PD controller parameters for time delayed unstable 

systems (Onat 2019). This method is based on the stability boundary locus by equating the real and the 

imaginary parts of the characteristic equation to zero and uses a concept named convex stability region. 

The drawbacks of this method is that in the region between the boundaries of the stability locus and the 

convex region, we cannot find any stable solution using convex optimization. Another study on PI-PD 

controller tuning for time delay system is proposed in (Hernández-Diez et al. 2019) which uses the 

graphical method to find out the stability region in the controller parameter space. For the digital 

implementation of the proposed control scheme in (Hernández-Diez et al. 2019), the PD controller uses 

the Euler approach for approximating the derivative term which is termed as the Pδ controller. However, 

all these methods, discussed above are designed to find a stabilizing set of PID controller parameters in 

2D space, keeping one controller parameter fixed, especially the proportional gain. (Mesbahi & Haeri 

2014) have used sampling-based stability region derivations but used the grid search whereas (Das et 

al. 2018) used rejection sampling for obtaining the stability region in three-dimensional space which is 

computationally expensive.  
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Contrary to the above approaches, in this paper, we have taken a random search and optimization 

route as an intelligent sampler to uncover the stability region in the joint space of dominant pole 

placement parameters and controller parameters in order to design dominant pole placement based PID 

controllers for handing time delay systems. Therefore, our approach is based on random sampling of 

the feasible stabilizing space while minimizing an objective function. Here, the design parameter space 

can be multidimensional compared to the previous works where by one controller gain was fixed to find 

out the others. Due to the nature of the random sampling based discovery of the stability region, our 

method is capable of approximating the complex shape of the stabilizable set in the controller 

parameters space, whereas most literature have drawn hard boundaries based on some approximations 

of the delays using Pade method.     

1.3 Novelty of this work 

This paper proposes a novel dominant pole placement based PID controller design method to control 

SOPTD plants which is an extension of the previous works reported in (Saha et al. 2012)(Das et al. 

2012)(Das et al. 2018). To eliminate the problem of increased order due to finite term approximation 

of the delay term, (Wang et al. 2007) have proposed a method of mapping the time-delay as finite 

number of poles in discrete time domain as 
Ls ne z− −= . This is based on the consideration that the delay 

(L) is an integer multiple of the sampling time (Ts) i.e. ,sn L T n +=  (Wang et al. 2007)(Ergenc 2012). 

Unlike the approximations in (Wang et al. 2007) e.g. sL T  to overcome the infinite dimensionality 

problem of the closed loop time delay systems for the design of dominant pole placement controllers, 

in practice the choice of Ts should be sufficiently small compared to the open loop time constants (τ) 

and delays i.e.  ,sT L which has been considered in this paper.  

In this paper, we assume the delay to sampling time ratio being an integer i.e. ,sL T n n +=   which 

allows handling of finite number of poles in the complex z-plane, for designing the PID controller using 

the pole placement method, instead of using fixed order Pade approximations (Silva et al. 2007). In 

contrast to the popular third order Pade approximation method to transform the quasi-polynomials into 

rational ones (Das et al. 2018), here the idea is to use the discretization method to transform the delay 

term as finite number of poles. Therefore, our proposed method can be extended for systems with large 

time delays unlike previous approaches. However, the idea of using all real and  all complex non-

dominant poles in (Das et al. 2018) have also been used here for the plants being discretized using pole-

zero matching method while the PID controller has been discretized using the Tustin’s method or 

bilinear transform as recommended in (Franklin et al. 1998). This is because it is not possible for the 

continuous time PID controller to be discretized using the pole-zero matching method, since at s = 0, 

the DC gain of the PID controller becomes infinite. To overcome this problem, we use the Tustin’s 

discretization method to transform the PID controller poles/zeros in the discrete-time domain from its 

continuous-time version. Next, in order to determine discrete time PID controller gains for SOPTD 

plants, the coefficient matching method (Kiong et al. 1999; Åstrӧm & Hägglund 2006) has been used. 

The obtained discrete time PID controller gains are then mapped back to its continuous time version 

(Wang et al. 2007), which can be used to control the continuous-time SOPTD plant. In this way, we get 

a scenario where as if the whole design method was carried out in continuous time domain. Here, the 

discretization for both the controller and the plant is used to transform the infinite-order quasi-

polynomial in s-domain so that it can be easily handled as rational polynomials in the z-domain. 

2. Theoretical formulation 

This section presents the design methodology of dominant pole placement based PID controller to 

handle SOPTD systems using the coefficient matching method which has been adopted from (Kiong et 

al. 1999; Åstrӧm & Hägglund 2006). 

2.1 Discretization of SOPTD system using pole-zero matching method 

In order to design the dominant pole placement based PID controller, the continuous time SOPTD 

system is discretized using the pole-zero matching method (Franklin et al. 1998) which can be described 

as the following steps: 
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Step 1: Transformation of zeros and poles of SOPTD system from s-domain to its equivalent z-domain 

using ssT
z e= and delay term ,Ls n

se z n L T− −

+= =  . 

Step 2: Poles/zeros at s =−  are mapped at 0z =  and poles/zeros at 0s = are mapped at 1z = . 

Step 3: DC Gain (K) of the open loop system in s z  domain has to be the matched as: 

0 1
( ) ( )

s z
G s G z

= =
= .           (1) 

Let us consider the continuous time open-loop SOPTD system as: 

2 2( ) ( 2 1)Ls

olG s Ke s s  −= + + ,         (2) 

where, , , , olK L   define the DC gain, time delay, time constant and damping ratio respectively.   

The system (2) can be controlled by the continuous time PID controller which can be represented as: 

( ) p i dC s K K s K s= + + ,          (3) 

where,  , ,p i dK K K  represents the proportional, integral and derivative gains. 

It is seen that excluding the delay part in (2), the plant has two open-loop poles, which are located at: 

( )2

1,2 1ol ols j  = −  − .          (4) 

Expressing the open loop natural frequency ( ol ) in the form of time constant ( )1/ol = , equation 

(4) can be rewritten as: 

2

1,2 1ol ol ol ols j   = −  − .          (5) 

Now discretizing (2) to map the open loop continuous time poles in discrete time domain with the 

specified sampling time ( sT ) as in (Franklin et al. 1998), yields: 

1 2

1 2,s ss T s T
z e z e= = .           (6) 

Using (6) and approximating the time delay term as in step 1 i.e. Ls ne z− −= , the corresponding 

discretized open loop transfer function of (2) can be represented as: 

( )( )( )1 2( ) nG z K z z z z z= − − ,          (7) 

where, K  is the equivalent static gain of the corresponding open-loop discrete time system. The value 

of K , described in step 3, can be obtained using the pole-zero matching method (Franklin et al. 1998) 

as: 

( )( )( )2 2

1 20 1
( 2 1)Ls n

ol s z
Ke s s K z z z z z  −

= =
+ + = − − .      (8) 

Therefore, we get:   

( )( )1 21 1K K z z= − − .           (9)  

2.2 Discrete time PID controller design using Tustin’s method 

     Here, the continuous time PID controller (3) has been discretized using Tustin’s method or bilinear 

transformation with specified Ts: 
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( ) ( ) ( )( )( )1 12 1 1ss T z z− −→ − + .         (10) 

Substituting (10) in (3), the equivalent discrete time PID controller can be written as: 

( )
( ) ( ) ( )( )

( )

2 2 2 2

2

4 2 2 8 4 2

2 1

d p s i s i s d d p s i s

s

K K T K T z K T K z K K T K T
C z

T z

+ + + − + − +
=

−
.     (11) 

Now, closed-loop characteristic polynomial for the discretized system (7) with the discrete PID 

controller (11) can be represented as: 

1 ( ) 1 ( ) ( ) 0olG z C z G z+ = + = ,          (12) 

which implies, 

( )( )( ) ( ) ( ) ( ) ( )2 2 2 2 2

1 22 1 4 2 2 8 4 2 0n

s d p s i s i s d d p s i sT z z z z z z K K K T K T z K T K z K K T K T− − − + + + + − + − + = .

            (13) 

   It can be seen that the order of the polynomial in (13) is (n+4) which means equation (13) has (n+4) 

number of roots or closed loop poles. Also, it can be determined that the closed-loop zeros and poles 

can be modulated by the selection of PID controller gains , ,p i dK K K and the sampling time (
sT ). For 

obtaining the PID controller gains using co-efficient matching method, here we have chosen (n+4)th 

order desired closed loop characteristic polynomial where the two specified poles are dominant and the 

rest are non-dominant in nature. 

2.3 Deriving expressions for stabilizing PID controllers 

Next, the analytical forms of the discrete time PID controller gains  , ,p i dK K K  are obtained by 

matching the coefficients of the discrete-time finite-term characteristic polynomial for the given set of 

open loop process parameters , , , ,ol olK L    vs. the desired characteristic polynomial which contains 

the user-defined closed-loop specifications , ,cl clm   as discussed in (Kiong et al. 1999; Åstrӧm & 

Hägglund 2006). Here, for the ( )4
th

n +  order closed loop process in (13), the PID controller gains

 , ,p i dK K K are found to be unique because these gains , ,p i dK K K are associated only with the order 

0 to 2 of the discrete-time operator ‘z’. So, only the coefficients of ( )0 1 2, ,z z z
 
in (13) are required to 

compare with the same coefficients of the desired closed-loop characteristic polynomial, in order to 

determine the three PID controller gains , ,p i dK K K , using the coefficient matching method. Since the 

closed loop polynomial is of ( )4
th

n + order, the desired closed loop characteristic equation should also 

contain two dominant and ( )2n +  number of non-dominant poles. However, the desired characteristic 

polynomial can be designed in two different ways depending on the nature of the non-dominant poles 

e.g. all real, all complex conjugate following the method in (Das et al. 2018). Again, in the case of all 

complex conjugate non-dominant poles, there may be two additional cases depending on the influence 

of the pole placement parameter (m) on either both real and imaginary parts or only on the real part. 

The detailed derivations for these three cases to obtain the PID controller gains are shown in the 

following section. 

3. Dominant pole-placement based PID controller design methodology 

3.1 All real non-dominant poles 

In the first case, to frame a dominant pole placement with the discrete time PID controller gains

 , ,p i dK K K , the dominant complex conjugate ( )1,2

ds  and the non-dominant real ( )3

nds  poles of the 

desired closed-loop characteristic polynomial in continuous time can be considered as: 
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( )2

1,2 31 , .d nd

cl cl cl cl cl cls j s m     = −  − = −         (14) 

Now, discretizing (14) with the sampling time (Ts) yields a mapping of the poles from s z→  plane as: 

1 2 3

1 2 3, ,
d d nd

s s ss T s T s Td d ndz e z e z e= = = .        (15) 

Then using (15), the ( )4
th

n +  order discretized desired characteristic polynomial with two dominant 

poles and the rest being non-dominant real poles can be expressed as:  

( ) ( )( )( )
2

1 2 3 0
n

d d ndz z z z z z z
+

 = − − − = .        (16) 

It is evident that (16) has no dependency on n being even or odd, unlike the latter cases. Again, using 

binomial expansion containing non-dominant poles, equation (16) yields: 

( )

( ) ( )( )

0
4

3

1 0
3

3 1 2 3

2

0

2 2

1 0

n nd

n nd d d nd

n
z z

n n
z z z z z

+

+

 + 
− +  

  

 + +   
− − + − + +    

    

  

( ) ( ) ( ) ( )
2 1

2

3 3 1 2 3 1 2

2 2 2

2 1

n n n
nd nd d d nd d d

n n n
z z z z z z z z

n n n

+ + + + +     
− − − + + − +      

+ +      
  

( ) ( ) ( )
2 1

1

3 1 2 3 1 2

2 2

2 1

n n
nd d d nd d d

n n
z z z z z z z

n n

+ + + +   
− − + + − +    

+ +    
  

( )
2

0

3 1 2

2
0

2

n
nd d d

n
z z z z

n

+ + 
− =  

+  
,         (17) 

where, ( )( )! ! !n

r

n
C n r n r

r

 
= = − 

 
 is the binomial coefficient. 

Now, using the coefficients  , ( 4),( 3), ,2,1,0jA j n n= + + , which can easily be obtained from the 

open-loop system parameters , , , ,ol olK L    and the desired closed-loop parameters , ,cl clm  

equation (17) can be represented as: 

( ) 4 3 2 1 0

1 4 3 2 1 0 0n n

n nz A z A z A z A z A z+ +

+ + = + + + + + = .       (18) 

 Now, matching the coefficients of 
0 1 2, ,z z z  in both the equations (13) and (18) yields:  

( )

( )

( )

0 2

0

1 2

1

2 2

2

: 4 2

: 2 8

: 4 2 .

d p s i s

i s d

d p s i s

z K K K T K T A

z K K T K A

z K K K T K T A

− + =

− =

+ + =

         (19) 

Solving (19) yields the three PID controller gains in explicit cascaded form as: 

2
20 1 2 01

2

( ) 1
, , 4

4 24 8

i s
i d p d i s

ss

A A A K T AA
K K K K K T

TKT K K

+ +  
= = − = + − 

 
 .    (20) 

It is seen from the actual closed-loop characteristics polynomial (13) that the three PID controller 

gains (Kp, Ki, Kd) are connected only with the three coefficients z0 to z2 and rest of the coefficients i.e. 

z3 to zn+4 do not contain any PID controller parameters. Thus, it is logical to compare only these three 

coefficients (z0 to z2) of the actual closed loop polynomial (13) with the desired closed loop polynomial 

(18) to obtain the analytical expression of PID controller parameters. However, it is also seen that the 
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three controller expressions (20) are the function of all chosen dominant and non-dominant poles. 

Therefore, it is true that the designed three controller parameters (Kp, Ki, Kd) will guarantee the position 

of the dominant poles and the non-dominant ones are safely placed far away from the imaginary axis 

so that they do not affect the dominant closed loop dynamics.    

3.2 All complex conjugate non-dominant poles when m is in both the real and imaginary parts 

In this subsection, to ensure dominant pole placement, all the non-dominant poles are considered as 

complex conjugates. However, this assumption is possible only for the even order discretized closed-

loop characteristic polynomial (13) i.e. 2n + . In this case, the non-dominant complex conjugate 

poles may be described as two types i.e. in the first case the pole placement parameter (m) being 

connected with both the real and imaginary parts. In the next case, the pole placement parameter (m) 

only affects the real part of the complex conjugate non-dominant closed-loop poles in the continuous 

time domain. In the first case, the non-dominant complex conjugate poles take the form: 

( )2

4,5 1nd

cl cl cl cls m j   = −  − .         (21) 

Then its discrete equivalent using (Ts) can be represented as: 

4 5

4 5,
nd nd

s ss T s Tnd ndz e z e= = .          (22) 

Now, using (15) and (22), the discretized desired closed loop characteristic polynomial becomes: 

( ) ( )( )( ) ( )
2 2

2 2
1 2 4 5 0

n n
d d nd ndz z z z z z z z z

+ +

 = − − − − = .      (23) 

It is to be noted that to obtain the (n+4)th order desired characteristic polynomial (23) with two dominant 

poles (15) and rest being non-dominant complex conjugate poles (22), the non-dominant terms 

( )
2n

ndz z
+

−  in (23) is partitioned with ( ) ( )
2 2

2 2
4 5

n n
nd ndz z z z

+ +

− − unlike the case of all real non-dominant 

pole type in (16). Under such scenario, the order of the desired characteristics polynomial (23) i.e. order 

of the closed loop discrete time system must be even by satisfying 2n + . 

Now, using binomial expansion containing the non-dominant poles, equation (23) yields: 

( ) ( )

2

0 0
4

4 5

2

2

0

n nd nd

n

z z z+

 + 
   − − +      

  

( ) ( ) ( ) ( ) ( )( )
2

0 1 1 0
3

1 2 4 5 4 5

2 2 2

2 2 2

0 0 1

n d d nd nd nd nd

n n n

z z z z z z z+

 + + +    
     − + + − − + − −               

+ +

  

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( )

2 2 2 2

2 2 2 2
1 2 4 5 4 5

2

2 2 2
1 2 4 5 1 2

2

2 2
4 5 4

2 2

2 2

2 2

2 2

2 2 2

2 2 2

2

2 2 2

n n n n
d d nd nd nd nd

n n
d d nd nd d d

n n
nd nd n

n n

z z z z z z
n n

n n n

z z z z z z z
n n n

z z z

− + + −

+

+ +  
    

 − − + − −    
− +    

  
  

+ + +    
    

+ − − − +    
+    

    
    

 − − + −( ) ( ) ( ) ( )

2

2 2 2

2 2 2 2
5 4 5

2

2

2

2

n n n n
d nd nd nd

n

z z z
n

+ + +

 
 
 
 
 
 
 
 
  +
 
 
 
 + 
   
 − + − −  

+   
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( ) ( ) ( ) ( )

( ) ( ) ( )

2 2

2 2 2 2
1 2 4 5 4 5

1

2

2 2

2 2
4 5 1 2

2 2

2 2

2

2 2

2

2

2

2

n n n n
d d nd nd nd nd

n n
nd nd d d

n n

z z z z z z
n n

z
n

z z z z
n

+ +

+ +

 + +  
     
  − − + − −    

+     
     
  +
 + 
  
 − − − + 

+  
    

  

( ) ( )

2

2 2
0 2 2

1 2 4 5

2

2
0

2

2

n n
d d nd nd

n

z z z z z
n

+ +

 + 
  
 − − = 
 + 
  
  

.        (24) 

Similar to the previous case, using the coefficients ( ) ( ) , 4 , 3 , , 2,1,0jA j n n = + +  (where jA  can be 

obtained from open loop  , , , ,ol olK L     and desired closed loop  , ,cl clm    parameters), equation 

(24) can be written as: 

( ) 4 3 2 1 0

2 4 3 2 1 0 0n n

n nz A z A z A z A z A z+ +

+ +
     = + + + + + = .      (25) 

Now matching the coefficients of (13) and (25), the following set of equations are obtained: 

( )

( )

( )

0

0

1 2

1

2 2

2

: 4 2

: 2 8

: 4 2 .

d p s i

i s d

d p s i s

z K K K T K A

z K K T K A

z K K K T K T A

− + =

− =

+ + =

         (26) 

Solving (26) for three different powers of the discrete time operator z i.e. 
0z to 

2z  yields the PID 

controller gains in cascaded explicit form as: 

( ) 2
0 1 2 2 01

2

1
, , 4

4 24 8

i s
i d p d i s

ss

A A A K T AA
K K K K K T

TKT K K

  + +   
= = − = + − 

 
.    (27) 

3.3 All complex conjugate non-dominant poles when m is only in the real part 

Similar to the above subsection, here the non-dominant complex conjugate closed-loop poles in 

continuous time can be described as: 

2

6,7 1nd

cl cl cl cls m j   = −  − ,          (28) 

where m is connected with the real part only. Then its discrete-time equivalent can be obtained as:   

6 7

6 7, .
nd nd

s ss T s Tnd ndz e z e= =            (29) 

Now using (15) and (29), the corresponding desired closed loop characteristic equation becomes: 

( ) ( )( )( ) ( )
2 2

2 2
1 2 6 7 0.

n n
d d nd ndz z z z z z z z z

+ +

 = − − − − =        (30) 

It is evident that both the expressions in (23) and (30) are exactly the same, except the choice of non-

dominant pole locations i.e. instead of ( )4 5,z z the non-dominant poles will be ( )6 7,z z , where the pole 

placement parameter (m) is associated with the real part only instead of being in both the real and 
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imaginary parts. Similar to (25), using the new coefficient ( )jA  instead of ( )jA , the equation (30) can 

be written as: 
 

( ) 4 3 2 1 0

2 4 3 2 1 0 0n n

n nz A z A z A z A z A z+ +

+ +
     = + + + + + = .      (31) 

Now matching the coefficients of (13) and (31), the following set of equations are obtained: 

( )

( )

( )

0

0

1 2

1

2 2

2

: 4 2

: 2 8

: 4 2 .

d p s i

i s d

d p s i s

z K K K T K A

z K K T K A

z K K K T K T A

− + =

− =

+ + =

          (32) 

Solving (32) for three different powers of the discrete time operator z i.e. 
0z to 

2z  yields the PID 

controller gains in similar cascaded explicit form like before as: 

2
20 1 2 01

2

( ) 1
, , 4

4 24 8

i s
i d p d i s

ss

A A A K T AA
K K K K K T

TKT K K

    + +
= = − = + − 

 
.    (33) 

4. Performance measures of the PID control loops   

In industrial process control involving PID control system design problems, the control loop 

performances are also of major concern apart from the stability (Das et al. 2018). Using the above three 

different expressions of PID controller gains, here we calculate different performance measures of the 

control loop. From Figure 1, it is seen for the three different inputs, nine transfer functions play an 

important role for guaranteeing internal stability and affects different performance measures (Doyle et 

al. 2013)(Das et al. 2018)(Herreros et al. 2002). Amongst these nine, the following four transfer 

functions play the key role to characterize the control system performances viz. sensitivity ( )eS s , 

complementary sensitivity ( )T s , control sensitivity ( )uS s and disturbance sensitivity ( )dS s (Das et al. 

2018; Das & Pan 2014)(Doyle et al. 2013)(Herreros et al. 2002) as follows: 

( ) ( )( )

( ) ( ) ( )( ) ( ) ( )

( ) ( ) ( )( ) ( ) ( ) ( )( )

2 3

3

1 1 ,

1 , 1,

1 , 1 ,

e ol re dx nx

ol ol rx e

u ol d ol

S s G s G G G

T s G s G s G S s T s

S s C s G s S s G s G s

= + = = =

= + = + =

= + = +

       (34) 

where, ( ) ( ) ( )olG s C s G s=  is the open loop transfer function. 

It is evident that the standard PID controller without derivative filter makes the control sensitivity 

transfer function improper with the number of poles less than the number of zeros which prohibit direct 

calculation using MATLAB’s ‘step’ command. As reported in (Das et al. 2018), the control signal can 

be computed with ‘impulse’ input to 
uS s  when 

uS  is improper which is an alternative approach and 

has been used in this paper. 

 

Figure 1: Schematic diagram of SOPTD plant G(s) with PID controller C(s).  
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5. Simulation and results 

5.1 PID controller design using optimization of closed loop design specifications 

Here, in order to analyze the effectiveness of the proposed methodology using three different PID 

controller expressions, we consider nine test-bench plants of different types viz. lag-dominant (G1-G3) 

( L  ), balanced (G4-G6) ( L  ) and delay dominant (G7-G9) ( L  ) plants which are also further 

separated by three different damping-ratios for representing different levels of open-loop oscillations 

i.e. under-damped ( 1ol  ), critically-damped ( 1ol = ), and over-damped ( 1ol  ), respectively. The 

detailed characteristics and open-loop parameters of each plant are described in (Das et al. 2018) and 

given in Table 1.  

Table 1:Parameters and characteristics of nine test-bench plants under control 

Plant Type  K L   ol  1ol =  L   

G1 (Das et al. 2018) Lag-dominant under damped 1 1 3 0.4 0.3333 0.3333<1 

G2 (Das et al. 2018) Lag-dominant critically damped 1 0.8 1 1 1 0.8<1 

G3 (Das et al. 2018) Lag-dominant over damped 1 2 6.324 1.106 0.1581 0.3162<1 

G4 (Das et al. 2018) Balanced under damped 0.5 1 1 0.6 1 1 

G5 (Das et al. 2018) Balanced critically damped 1 1 1 1 1 1 

G6 (Das et al. 2018) Balanced over damped 1 3 3 4 0.3333 1 

G7 (Wang & Shao 2000) Delay dominant under damped 0.327 1.28 1.025 0.504 0.9749 1.2479>1 

G8 (Das et al. 2018) Delay dominant critically damped 1 10 1 1 1 10>1 

G9 (Das et al. 2018) Delay dominant over damped 0.806 2 0.311 1.723 3.2144 6.4288>1 

 

The three different PID controller expressions (20), (27) and (33) have been used to determine the 

PID controller gains using the specified sampling time 
sT for nine test-bench plants. However, based 

on the choice of Ts, the optimum closed-loop design parameters may vary widely. Again, it may not 

always be possible to get a stabilizing solution for certain desired specifications in time/frequency 

domain (Das & Pan 2014)(Pan & Das 2013). Therefore, using a random search and optimization 

technique, we may determine the three-desired closed-loop performance parameters , ,cl clm   . The 

particle swarm optimization (PSO) algorithm is used here to determine the closed-loop performance 

parameters due to its faster capability of exploring a large parameter space for complicated objective 

function landscape and also filter out the feasible or stability region in the 3D space of three design 

parameters and the associated PID controller gains which is computationally advantageous over the 

rejection sampling approach in a blind Monte Carlo simulation framework adopted in (Das et al. 2018). 

The optimum values of three design parameter  , ,opt cl clm  = are obtained using a PSO based search 

and optimization algorithm when the integral of squared error (ISE): 

 ( ) ( ) ( )( )
2

0

arg min ,

T

opt J J r y dt


   


= = − ,       (35) 

criterion is minimized with three different non-dominant pole types for each test-bench plant. The 

obtained optimum values of user-specified parameters , ,cl clm   can then be used to find out the PID 

controller gains , ,p i dK K K which are given in Table 2, along with the plant types and the number of 

objective function evaluations (Neval). The 3D-stability region in the design and controller parameter 

space with different non-dominant pole types for each test-bench plants are shown in Figure 2-Figure 

3 which were obtained from the PSO algorithm with swarm size of particle 300N = . The parameter search 

ranges for (35) are considered as       0,20 , 0,5 , 0,20cl clm  =    . Also, a penalty method is 

adopted to avoid search in the infeasible regions of the objective function where ISE value is too large 

i.e. 6ISE 10 , which indicates an unstable or highly oscillatory closed loop response. The stability 

regions in Figure 2 are obtained via random sampling of the parameter space with PSO algorithm using 
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the ISE cost function (35) for a step input in the set-point. However, a similar stability region could also 

have been obtained using the ISE cost function corresponding to disturbance inputs.  

 

Figure 2: Stability region in the design parameter , ,cl clm   space for the nine test-bench plants and 

different sampling times. A threshold (ISE<4800) has been applied on the sampled points. Different 

colours represent the sampled data-points in the stability regions using the three classes of pole 

placement algorithms indicated in the legends.  

 

Figure 3: Stability region in the controller parameter space  , ,p i dK K K  for the nine test-bench plants 

and different sampling times. A threshold (ISE<4800) has been applied on the sampled points. 

 

The greatest common divisor (GCD) of the delay terms in Table 1 has been used to select a common 

sampling time so that it is divisible by a common factor for all the 9 test-bench plants as Ts = 0.04 sec, 

such that the delay to sampling time ratio (
sn L T= ) becomes an integer. However, we have derived 
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the PID controller expressions with non-dominant complex conjugate poles for even-ordered 

characteristic polynomial i.e. 2n + . Therefore, we have chosen different sampling times Ts = 

{0.005, 0.01, 0.02}sec by satisfying the condition 0.04ssT   and 2n +  for showing its effect on 

the control loop performances of the SOPTD systems under control. Amongst the three different Ts this 

paper selects Ts = 0.02 sec for all the nine test-bench plants since it yield the minimum ISE criterion (

minJ ) as shown in the box-plots in Figure 4 across plants and over different sampling times to choose 

the best Ts for this application. Moreover, during the PSO based random search and optimization for 

sampling from the feasible stability region, we have simulated the closed loop system using a 9th order 

Pade approximation for the transcendental equation of the closed loop system. In this paper, the stability 

derivations do not rely on any approximation of the delay unlike the previous works (Das et al. 2018) 

where a third order Pade approximation was used in the stability derivations, followed by a random 

sampling approach. This is required to filter out the unstable closed loop solutions within the random 

search process within PSO’s objective function evaluation, if there is any unstable pole upon Pade 

approximation of the whole closed loop system for a certain set of controller gains including the higher 

order effects of the delay term.  

 
Figure 4: Minimum ISE cost function (Jmin) with different sampling time (Ts) for nine test bench plants 

using three different PID controllers obtained from three different non-dominant pole types. Each 

boxplot shows the statistics across the nine test-bench plants. 

 

It is interesting to note that although the stability regions are found at distinctly different locations 

in the design parameter space , ,cl clm   in Figure 2, when they are mapped on to the controller 

parameter space  , ,p i dK K K in Figure 3, they follow almost a straight line for the three cases of 

sampling times  0.005,0.01,0.02sT = sec which is different from previous works described in section 

1.2. These stability regions are intrinsically different from the regular shapes obtained in (Bhattacharyya 

et al. 2009; Silva et al. 2007) found using analytical methods. However, here we use a random PSO 

based sampling or search and optimization method to uncover the hidden patterns of the stability region 

using a threshold (ISE<4800) on all the sampled ISE values, visited by the particles (Pan et al. 2011).  

The obtained minumum ISE values (Jmin) in Table 2 from PSO based random search and optimization 

algorithm for nine test-bench plants with three different PID controller expressions and sampling times 

are used to choose the best sampling time for rest of the simulation results. Figure 4 shows the box-plot 

of Jmin vs. Ts for all nine test-bench plants with the three different PID controllers obtained from the 

three different non-dominant pole types. It is seen that the values of Jmin are almost same for three 
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different non-dominant pole types with same sampling time and their median values are decrecesing 

with the larger value of Ts compared to smaller one for all three different non-dominant pole types. 

Therefore, we have selected the sampling time as Ts = 0.02 sec yielding the minimum ISE value to show 

the efficacy of the proposed methodology. 

 

Table 2: PSO based selection of optimum closed loop design parameters and controller parameters at 

different Ts for nine test-bench plants 

Plant 

Nondominant 

pole type Ts  (sec) ISE Neval m cl  
cl  Kp Ki Kd 

G1 

All real 

0.005 1487.46 15918 16.0623 0.2568 8.2407 0.00000002 0.12462740 0.00000079 

0.01 743.73 21356 13.2818 0.3006 7.4728 0.00000013 0.12462763 0.00000321 

0.02 371.86 19324 4.3607 2.5405 2.3045 0.00000102 0.12462838 0.00001305 

m in both 
real/imaginary 

0.005 1487.46 18658 5.5959 0.3924 15.3917 0.00000002 0.12462934 0.00000079 

0.01 743.73 18334 1.5817 4.8462 3.8605 0.00000013 0.12448930 0.00000320 

0.02 371.86 21370 14.4470 0.1666 10.6461 0.00000097 0.12462829 0.00001187 

m in real 

0.005 1487.46 25721 7.1589 2.3498 2.0192 0.00000002 0.12462740 0.00000079 

0.01 743.73 17765 1.9883 2.7253 5.4630 0.00000013 0.12462758 0.00000321 

0.02 371.86 22866 2.7510 1.2696 7.2751 0.00000102 0.12462839 0.00001304 

G2 

All real 

0.005 743.18 20620 1.4359 3.9174 6.6913 0.00000004 0.34216861 0.00000218 

0.01 371.59 20524 5.6485 0.4011 14.4150 0.00000035 0.34217031 0.00000886 

0.02 185.79 18929 0.6954 3.2629 11.4256 0.00000281 0.34217858 0.00003612 

m in both  
real/ 

imaginary 

0.005 743.18 17333 13.9068 0.5150 5.2783 0.00000004 0.34216852 0.00000218 

0.01 371.59 20502 8.8372 0.6373 5.7739 0.00000035 0.34217031 0.00000888 

0.02 185.79 15444 11.9460 4.3698 0.5345 0.00000280 0.34217910 0.00003588 

m in real 

0.005 743.18 8675 7.4931 0.4346 11.6362 0.00000004 0.34216844 0.00000218 

0.01 371.59 25131 5.7417 2.1495 2.6469 0.00000035 0.34217028 0.00000886 

0.02 185.79 22555 5.0624 3.1068 1.7437 0.00000281 0.34217869 0.00003613 

G3 

All real 

0.005 3732.57 12438 3.3276 0.3730 15.0295 0.00000001 0.07669311 0.00000048 

0.01 1866.28 11558 3.8042 3.5571 1.2243 0.00000008 0.07669315 0.00000195 

0.02 933.14 12910 20.0000 1.4490 0.5013 0.00000062 0.07669330 0.00000790 

m in both  
real/imaginary 

0.005 3732.57 18369 0.8456 2.8471 7.7168 0.00000001 0.07669311 0.00000048 

0.01 1866.28 20284 3.3449 0.4663 10.5862 0.00000008 0.07669315 0.00000195 

0.02 933.14 19202 8.8356 1.0149 1.6182 0.00000062 0.07669330 0.00000790 

m in real 

0.005 3732.57 18671 4.7688 3.6908 1.0604 0.00000001 0.07669312 0.00000048 

0.01 1866.28 19956 12.9099 0.1576 8.1536 0.00000008 0.07669315 0.00000195 

0.02 933.14 21181 6.3207 1.9434 1.1803 0.00000062 0.07669330 0.00000790 

G4 

All real 

0.005 709.36 18978 5.8575 3.4244 1.5387 0.00000008 0.61576541 0.00000391 

0.01 354.68 12796 6.7181 0.3056 13.0071 0.00000063 0.61656335 0.00001588 

0.02 177.34 18799 1.0387 4.2892 4.9060 0.00000505 0.61578624 0.00006465 

m in both  

real/imaginary 

0.005 709.36 24058 6.3039 0.6956 7.0329 0.00000008 0.61576549 0.00000391 

0.01 354.68 16275 9.8957 4.8140 0.5624 0.00000062 0.61576941 0.00001585 

0.02 177.34 25842 7.0000 1.2469 2.5905 0.00000504 0.61578623 0.00006454 

m in real 

0.005 709.36 12839 3.3809 4.0134 2.2719 0.00000008 0.61575900 0.00000391 

0.01 354.68 15186 2.2873 3.5658 3.2569 0.00000062 0.61578330 0.00001586 

0.02 177.34 21984 7.4917 0.3108 9.6710 0.00000505 0.61578607 0.00006470 
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G5 

All real 

0.005 811.96 18919 2.6098 1.8913 6.2400 0.00000004 0.30789366 0.00000196 

0.01 405.98 15850 12.8415 1.0794 1.9295 0.00000031 0.30789494 0.00000793 

0.02 202.99 20098 8.2242 0.4209 6.5194 0.00000252 0.30790144 0.00003233 

m in both 

real/imaginary 

0.005 811.96 14784 7.1645 0.9614 4.4820 0.00000004 0.30789353 0.00000196 

0.01 405.98 21709 5.2752 1.9267 2.6304 0.00000031 0.30789495 0.00000792 

0.02 202.99 35523 20.0000 0.1590 7.0610 0.00000240 0.30790064 0.00002915 

m in real 

0.005 811.96 17457 8.2667 4.6064 0.8109 0.00000004 0.30789355 0.00000196 

0.01 405.98 13299 12.1915 0.1879 11.6652 0.00000031 0.30789086 0.00000793 

0.02 202.99 36184 0.5846 1.8498 19.9857 0.00000251 0.30790139 0.00003206 

G6 

All real 

0.005 4629.90 17578 20.0000 5.0000 0.1217 0.00000001 0.09063826 0.00000057 

0.01 2314.95 23163 1.3519 1.1976 6.6332 0.00000009 0.09063827 0.00000229 

0.02 1157.47 16486 0.6111 4.2722 3.5303 0.00000073 0.09063838 0.00000926 

m in both  
real/imaginary 

0.005 4629.90 23994 1.5180 0.7173 11.1547 0.00000001 0.09063826 0.00000057 

0.01 2314.95 31087 8.1539 1.0958 1.2069 0.00000009 0.09063827 0.00000229 

0.02 1157.47 12567 5.0686 0.8179 2.2637 0.00000073 0.09063838 0.00000926 

m in real 

0.005 4629.90 37689 0.9511 3.9768 3.2075 0.00000001 0.09063824 0.00000057 

0.01 2314.95 21977 6.6195 0.7853 2.0741 0.00000009 0.09063827 0.00000229 

0.02 1157.47 17742 5.1773 3.9655 0.4574 0.00000073 0.09063838 0.00000926 

G7 

All real 

0.005 779.20 13742 16.2347 0.1869 8.1286 0.00000010 0.82971756 0.00000526 

0.01 389.60 22596 12.6640 0.2608 6.4837 0.00000084 0.82972223 0.00002126 

0.02 194.80 15878 0.7641 1.7574 13.0506 0.00000678 0.82974191 0.00008652 

m in both  

real/imaginary 

0.005 779.20 12570 18.8368 0.2807 4.6378 0.00000010 0.82960126 0.00000526 

0.01 389.60 15784 4.2810 0.9761 5.1117 0.00000084 0.82972229 0.00002126 

0.02 194.80 21736 8.8453 0.4895 4.1174 0.00000681 0.82973400 0.00008737 

m in real 

0.005 779.20 24682 0.7150 3.0894 11.0591 0.00000010 0.82971764 0.00000526 

0.01 389.60 13912 14.7030 0.6743 2.1600 0.00000084 0.82968995 0.00002126 

0.02 194.80 20291 7.7777 0.2307 10.0972 0.00000678 0.82974214 0.00008659 

G8 

All real 

0.005 3648.32 13774 20.0000 0.0631 2.9383 0.00000001 0.06241485 0.00000039 

0.01 1824.16 18373 2.5617 0.4622 2.7802 0.00000006 0.06249392 0.00000157 

0.02 912.08 15043 0.5694 0.9216 5.4501 0.00000050 0.06249401 0.00000630 

m in both 

 
real/imaginary 

0.005 3648.31 20999 0.1111 4.5444 7.2841 0.00000001 0.06249379 0.00000039 

0.01 1824.16 27725 0.2314 1.7977 7.8528 0.00000006 0.06249392 0.00000157 

0.02 912.08 18930 8.9848 0.6853 0.4675 0.00000050 0.06249401 0.00000630 

m in real 

0.005 3648.31 29461 17.2315 1.7137 0.1256 0.00000001 0.06249390 0.00000039 

0.01 1824.16 18791 0.4935 0.4585 14.4940 0.00000006 0.06249392 0.00000157 

0.02 912.08 20825 4.6351 0.0604 10.2585 0.00000050 0.06249401 0.00000630 

G9 

All real 

0.005 890.81 16013 6.5852 1.0844 2.1079 0.00000004 0.32875691 0.00000207 

0.01 445.40 19699 0.2671 3.8142 12.3083 0.00000033 0.32875831 0.00000836 

0.02 222.70 16802 2.6349 4.0728 1.0140 0.00000267 0.32876409 0.00003392 

m in both 
 

real/imaginary 

0.005 890.81 15784 5.7626 0.9134 2.8594 0.00000004 0.32875764 0.00000207 

0.01 445.40 20623 4.1118 0.7240 4.3556 0.00000033 0.32875828 0.00000836 

0.02 222.70 21801 2.0871 2.4744 2.1067 0.00000267 0.32876388 0.00003390 

m in real 

0.005 890.81 26222 0.1474 5.0000 19.9211 0.00000004 0.32875696 0.00000207 

0.01 445.40 15420 14.1554 0.1617 5.6758 0.00000033 0.32875828 0.00000836 

0.02 222.70 17760 0.9547 0.7859 14.2970 0.00000267 0.32876428 0.00003394 



15 
 

 
Figure 5: Controlled variable (y) due to step input in set-point for the nine test-bench plants. 

 

Figure 6: Controlled variable (y) due to step input in disturbance input for the nine test-bench plants. 

5.2 Control performance of the test-bench plants 

Although, our proposed method considers the dominant pole placement based PID controller design 

using co-efficient matching approach in discrete time with specified Ts to handle the time delay of 

SOPTD systems, but the obtained discrete time PID controllers are mapped back to its continuous time 

version for handling the continuous time SOPTD systems. The corresponding time responses of the 

controlled variables (y) and manipulated variables (u) due to a step change in set-point and disturbance 

inputs are shown in Figure 5-Figure 6 and Figure 7-Figure 8 respectively, with the PID controller gains 

obtained from three different non-dominant pole-types given in Table 2 for the nine test-bench plants. 

All the time-domain responses remain almost unchanged when the natures of the non-dominant poles 

are of above three types as shown in Figure 5-Figure 8. The tracking responses are found to be 
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oscillatory and sluggish in nature for small and large L/τ ratios respectively which are shown in Figure 

5 and Figure 7. The corresponding time responses of disturbance rejection in Figure 6 and Figure 8 are 

oscillatory for all the three types of plants. The three different set of PID controller gains , ,p i dK K K

are obtained from the respective cases of non-dominant pole types for case 1 to case 3 i.e. all real non-

dominant pole and two different complex conjugate non-dominant poles respectively and their 

differences can be quantified from Table 2.  However, it is found from Table 2 that the deviations of all 

the three different PID controller gains are negligibly small for all the three non-dominant pole types 

and nine test-bench plants which support the negligible difference in the corresponding time responses. 

However, it is to be noted the time responses of each plants are almost same with three different 

controllers while the corresponding stability regions are quite different to each other.  

 

Figure 7: Manipulated variable (u) due to step input in set-point for the nine test-bench plants. 

 

Figure 8: Manipulated variable (u) due to step input in disturbance input for the nine test-bench plants.   
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Figure 9: Sensitivity and complementary sensitivity functions with various non-dominant pole types for 

the nine test-bench plants. 

 

 

Figure 10: Closed loop pole/zero locations for the test-bench plants and PID controller with all complex 

conjugate non-dominant pole type (m in both real and imaginary parts) while increasing the order of 

Pade approximation. 

 

Figure 9 shows the magnitude plots of sensitivity ( )eS j  and complementary sensitivity ( )T j  

trade-offs (Das et al. 2018; Das & Pan 2014). Similar to the time-responses, the sensitivity and 

complementary sensitivity remain almost unchanged with three different non-dominant pole types for 

the nine test-bench plants, as expected. The sensitivity and co-sensitivity have high-pass and low-pass 

characteristics respectively and indicates good disturbance and noise rejection respectively.  

The closed loop pole-zero locations are shown in Figure 10 where the order of Pade approximation 

(NPade) has been increased from 1 to 10, using the second case for the PID expressions. Here, showing 
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a single case is sufficient since the difference in the controller gains are found to be negligibly small, 

although the optimum design parameters are different Table 2. Also, since the time delay gets 

manifested in terms of many interlaced poles and zeros, the relative location of the non-dominant poles, 

compared to the dominant poles are particularly important in this context.  

 
Figure 11: Frequency response of continuous and discrete time open loop system (Gol) for nine test 

bench plants using the PID controller obtained from all real non-dominant pole type. 

 

Figure 12: Closed loop pole location in discrete time with varying sampling time (Ts) for nine test-bench 

plants. 

We have now presented a comparison of the frequency responses between the continuous and discrete 

time versions of the control system as shown in Figure 11-Figure 13. This includes variation of the 

sampling time and investigation of its effect on the open loop Bode plots, root locus and closed loop 

pole locations. Figure 11-Figure 13 shows the frequency response of the open loop plants with the 
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controller designed at Ts = 0.02 sec. It is seen  from Figure 11 when we increase the value of Ts the 

bandwidth is reduced and the Nyquist frequency shifts towards the low frequency regions (Das et al. 

2011), while a drooping phase is observed for towards higher frequencies with smaller Ts and overlaps 

with the continuous time case for wider range of frequencies. Also, for smaller sampling time, the gain 

is found to be close to the continuous time case. Figure 12 demonstrates the closed lope location of each 

plants with the variation of Ts. In Figure 12, it can be observed that the closed loop poles are shifted 

towards the higher frequencies and lower damping regions with gradual increase in the sampling time 

shown by the arrows which indicates with the increasing sampling time the stability is decreasing while 

the controller was designed at a fixed sampling time i.e. Ts = 0.02 sec. This should not be confused with 

designing the control system with different sampling times at the first instant.     

 

Figure 13: Root locus plot of discrete open loop systems Gol(z) with varying sampling time for nine 

test-bench plants. 

From the root locus plot in Figure 13, it is seen that the asymptotes are spanned from the poles to the 

zeros which are crossing the unit circle faster with higher sampling time since zeros are outside the unit 

circle due to Pade approximation. Therefore, it is necessary for ensuring the stability of time delay 

systems, the controller gains need to be small as reported in Table 2. 

5.3 Convergence characteristics 

For the three non-dominant pole types and nine test-bench plants, the distribution of sampled data-

points or the stability regions can also be represented as the ISE values in terms of joint distributions of 

the parameter-pairs and are shown in Figure 14-Figure 16, where the colour-bars represent the ISE 

values. The evolution of the design parameters and controller parameters along with the ISE can also 

be visualised in terms of the sampled points over the iterations where they converge to different values 

for the design parameters , ,cl clm   but to similar values in the controller parameter space 

 , ,p i dK K K which are evident from Figure 17-Figure 19 and Figure 20-Figure 22 respectively.  

It is clearly visible from the Figure 17-Figure 19 that the closed loop desired parameters  , ,cl clm    

are converging with the increasing number of iteration for different sampling time. Whereas the 

controller parameters , ,p i dK K K obtained from three different PID controller expressions are merging 

with each other (at the dense locations) for different sampling time as shown in Figure 20-Figure 22. 
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Convergence of corresponding ISE values are shown in Figure 23-Figure 24 with the number of 

iterations. Figure 23 represents the convergence of ISE values obtained from random search and 

optimization with different sampling time while Figure 24 depicts the corresponding convergence of 

best ISE values in log-log plot derived from Figure 23. Such convergence characteristics have been 

previous shown in the PID controller parameter space exploration as the global optimization algorithm 

converges in (Tang et al. 2012).  

 
Figure 14: Distributions of ISE as functions of {m, ζcl}. 

 

Figure 15: Distributions of ISE as functions of {m, ωcl}. 

 

All the simulations were run on a 64-bit Windows PC with 64GB memory and an AMD Ryzen 7, 3.6 

GHz processor where simulations were run on a single core to stack all visited stabilizable datapoints 

in an archive. The simulation run time of the random search and optimization based sampling with the 

Ts drawn within the chosen interval of the design parameters are compared in Figure 25 as box plot for 

nine test-bench plants with three different non-dominant pole types. It is observed from Figure 25 that 

for both the complex conjugate non-dominant pole types the simulation time for convergence of PSO 

algorithm is decreasing with the increasing Ts  since the median values of each box are decreasing. 
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Whereas, simulation time for converging the PSO algorithm is higher with the Ts = 0.01 sec compared 

to Ts  = 0.005 sec and Ts = 0.02 sec when all real nondominant pole type is considered. However, the 

simulation time for converging the PSO algorithm is faster with the Ts = 0.02 for all three different non-

dominant pole types which justifies our choice of sampling time. 

 
Figure 16: Distributions of ISE as functions of {ζcl, ωcl}. 

 
Figure 17: Convergence of pole placement parameter (m) in semilog y-scale for the three pole types: 

(blue): all real, (red): m in both in both real/imaginary part, (black): m in real part.   
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Figure 18: Convergence of the desired closed loop damping (ζcl) in semilog y-scale for the three pole 

types: (blue): all real, (red): m in both in both real/imaginary part, (black): m in real part.   

 
Figure 19: Convergence of the desired closed loop frequency (ωcl) in semilog y-scale for the three pole 

types: (blue): all real, (red): m in both in both real/imaginary part, (black): m in real part.     
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Figure 20: Convergence of the proportional gain (Kp) in semilog y-scale for the three pole types: (blue): 

all real, (red): m in both in both real/imaginary part, (black): m in real part.   

 
Figure 21: Convergence of the integral gain (Ki) in semilog y-scale for the three pole types: (blue): all 

real, (red): m in both in both real/imaginary part, (black): m in real part.   
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Figure 22: Convergence of the derivative gain (Kd) in semilog y-scale for the three pole types: (blue): 

all real, (red): m in both in both real/imaginary part, (black): m in real part.   

 
Figure 23: Convergence of the ISE criterion in semilog y-scale for the three pole types: (blue): all real, 

(red): m in both in both real/imaginary part, (black): m in real part.   
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Figure 24: Convergence of the best ISE with the PSO iterations in log-log scale. 

 
Figure 25: Simulation time for convergence of the PSO algorithm with different sampling time (Ts) for 

nine test bench plants using three different PID controllers obtained from three different non-dominant 

pole types. Each boxplot shows the statistics of nine plants. 

5.4 Discussions 

It is well known fact that several optimization techniques have been used in the past e.g. in (Herreros 

et al. 2002)(Das & Pan 2014)(Pan & Das 2013) to determine the PID controller gains for optimal/robust 

control design while minimizing or maximizing chosen objective functions of the control performance. 

However, these optimization methods for determining the PID controller parameters do not provide any 

option of choosing the dominant pole placement parameters which are directly related to the closed 

loop response. In this paper, as an alternative approach to the stability boundary approach (Silva et al. 

2007), we have used a random search and optimization technique using PSO algorithm to determine 

the three-desired closed-loop performance parameters  , ,cl clm   in the first step and then derive the 
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PID controller parameters using the proposed analytical expressions which ensures dominant pole 

placement for SOPTD systems while choosing different types of non-dominant poles. However, the 

derivations of PID controller expressions for dominant pole placement of SOPTD process models 

without any approximating the delay term is one of the main contributions of this paper.  

Similar to the method proposed in (Das et al. 2018), this paper also uses three different PID controller 

expressions from three different non-dominant pole types to obtain the stability regions in the closed 

loop parameter space  , ,cl clm   and then the PID controller gain space. However, the delay terms 

here are mapped as finite number of poles in the z-domain rather being approximated by fixed order 

Pade. This is due to the fact that earlier literature (Bhattacharyya et al. 2009; Silva et al. 2007) have 

described that the stability region of time delay systems under PID control may shrink with increasing 

order of Pade approximation (Bhattacharyya et al. 2009; Silva et al. 2007) although the time response 

simulations may be very close to the original transcendental cases with the delay. Moreover, the Pade 

approximation of time delay terms increases the number of both zeros and poles of the open loop time 

delay system while the proposed discretization method will map the delay terms into only a finite 

number of poles of the open loop system i.e. Ls ne z− −=  where ,sn L T n +=  , depending on the choice 

of the sampling time (Ts). Therefore, the present method is capable of avoiding the appearance of zeros 

due to Pade approximation beside the poles, since the closed loop stability of the system with and 

without zeros can be very different. So, the current method has an advantage of less approximation 

going into the implementation of the time delays and the side effect of including unnecessary changes 

of the closed loop stability regions due to Pade approximations.  

Also, this paper does not specify the desired closed loop parameters  , ,cl clm    similar to previous 

works in (Wang et al. 2009; Wang et al. 2007)(Halder et al. 2020), rather here we have selected the 

optimum closed loop parameters  , ,cl clm    by minimizing the integral of squared error (ISE) 

criterion using the PSO algorithm. Moreover, minimization of ISE ensures the percentage overshoot, 

settling time, rise time etc. which are the commonly used time response measures, are already taken 

care of. Therefore, we do not need to specify the desired closed loop parameters  , ,cl clm    manually. 

Previously, the method proposed in (Das et al. 2018) shows a dominant pole placement based PID 

controller design method to handle SOPTD process models by using a 3rd order Pade approximation of 

the delay term to avoid the high dimensional problem. The method in (Das et al. 2018) was validated 

for the SOPTD systems by varying the order of Pade approximation for the delay where the PID 

controller derivations were done with an assumption of 3rd order Pade for the delay terms. However, it 

is well-known that the overall system’s order and dynamics of the SOPTD system will depend on the 

order of the Pade approximation. Therefore, the mathematical method in (Das et al. 2018) does not 

necessarily generalize the dominant pole placement based PID controller design for SOPTD process 

models beyond the third order Pade approximation. The proposed methodology in this paper does not 

consider any such approximation like different order of Pade and thus generalizes the dominant pole 

placement based PID controller design for handling SOPTD systems. However, for simulation 

purposes, we have also shown the time and frequency responses using different order of Pade 

approximation for highlighting the credibility of the method over existing literature. Recently, a similar 

dominant pole placement method based PID controller design has been proposed in (Das et al. 2020) 

where the Euler’s discretization formula was used for the PID controller. This paper differs in the 

methodology as compared to (Das et al. 2020) since it uses a more accurate – Tustin’s discretization 

formula for the PID controller. As a result, the mathematical derivations and the resulting stability 

regions explored by the global optimizer are very different. It is also evident that the present results 

using Tustin’s discretization for the controller are mostly insensitive to the choice of non-dominant pole 

types as evident from the time responses. On contrary, previous work (Das et al. 2020) considering an 

Euler’s discretization for the PID controller reported this choice of non-dominant pole type does matter 

in obtaining a satisfactory time and frequency response under similar design concepts. 

Here, a thorough investigation has also been reported on the selection of sampling time based on the 

minimum ISE criterion while searching for the best controller parameters. This is intrinsically different 
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approach compared to the design of a control system with a fixed sampling time and then varying it as 

explored in (Halder et al. 2020). Whereas in the present approach it has been shown that the control 

performances, stability regions, convergence characteristics are affected in a great extent by the 

selection of the sampling time which are shown in Table 2 and Figure 14-Figure 24. 

6. Conclusion 

In this paper, dominant pole placement based discrete time PID controller has been designed for 

controlling SOPTD plants. Three different transformations of PID controller gains have been obtained 

with three different non-dominant pole types. Using these different PID controller expressions, PSO 

based random search and optimization method has been used to draw samples from the stability region 

in the dominant pole placement and controller parameter space by minimizing the ISE criterion for 

different sampling times. The obtained PID controller gains are very close to each other from these 

three different expressions for a fixed sampling time although their corresponding stability regions may 

be different. In order to compare the control loop performances, the sampling time is selected based on 

the minimum ISE criterion, obtained from the PSO based random search and optimization algorithm 

for all the nine test-bench plants with three different non-dominant pole types. We found that the control 

performances remain almost unaltered for each plant when the PID controller gains are obtained from 

three alternative expressions of non-dominant pole types. The proposed discrete-time transformation of 

continuous time PID controllers using pole-zero matching method can be extended in the future to 

design dominant pole-placement based PID controllers for higher order plants. Also, the choice of 

sampling time in the proposed approach should be kept at a level where n = L/Ts is as low as possible 

for restricting the resulting polynomial having a reasonable degree which may be explored in a future 

research. Disturbance rejection based sampling approach can also be explored in the future instead of 

the current set-point tracking criterion for obtaining the stabilizable set of PID controller gains and for 

other type of plants under control e.g. with lead processes and non-minimum phase zeros. 
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