1,178 research outputs found

    Design and analysis of a parallel mechanism for kinematically redundant hybrid planar laser cutting machine

    Get PDF
    Conventional planar laser cutting machines cannot achieve high accelerations, because the required precision values cannot be achieved due to the high inertial loads. Machines configured as kinematically redundant mechanisms are able to reach 5-6 g acceleration levels since they include a parallel mechanism with a smaller workspace which is exposed to smaller inertial loads. The study presented in this paper focuses on the design of a parallel planar mechanism to be integrated to the main axes of conventional planar laser cutting machines to achieve higher accelerations of the laser head up to 6 g. Parallel mechanism’s conceptual design and dynamic balancing studies are provided along with the joint clearance effect on precision due to having more joint structures.Republic of Turkey Ministry of Science, Industry and Technology & Coşkunöz Metal Form (Project code: 01668.STZ.2012-2

    Complete Shaking Force and Shaking Moment Balancing of the Position-Orientation Decoupled PAMINSA Manipulator

    Get PDF
    International audienceThis paper deals with the complete shaking force and shaking moment balancing of the position-orientation decoupled PAMINSA manipulator. The dynamic reaction forces on the manipulator's base are eliminated by making the total mass center of the moving links stationary. The reaction moments on the frame are eliminated by optimal control of the end-effector, which rotates with prescribed velocity. The numerical simulations carried out using ADAMS software demonstrate that the balanced manipulators transmit no inertia loads to their bases

    Dynamic Balancing of the SCARA robot

    Get PDF
    International audienceThis paper deals with the complete shaking force and shaking moment balancing of the four degrees of freedom SCARA robot. Dynamic reaction forces on the frame of the manipulator are eliminated by traditional approach making the total mass center of the moving links stationary. Reaction moments on the frame of the manipulator are eliminated by optimal control of the end-effector, which rotates with prescribed acceleration. A numerical simulation carried out on the software ADAMS illustrates that such a balanced SCARA robot transmits no inertia loads to surrounding, i.e. the sum of all ground bearing forces and their moments are eliminated

    A New 3-DoF Planar Parallel Manipulator with Unlimited Rotation Capability

    Get PDF
    International audienceMost of three-degree-of-freedom (3-DoF) planar parallel manipulators encountered today have a common disadvantage that is their low rotational capability. However, for many industrial applications, by example in automated assembly systems, cutting machines, simulators, or micro-motion manipulators, a high rotation capability is needed. To overcome such a difficulty, this paper focuses its attention on the proposal of a new 3-DoF planar parallel manipulator capable of high rotational capability. Firstly, structure and mobility of the suggested manipulator are discussed. Then the forward and inverse kinematic problems are analyzed, as well as it is disclosed its singular configurations. The shaking force and shaking moment balancing are also considered. The proposed design concept is illustrated by a driven demonstrator which is a first model of the suggested manipulator

    Dynamics of Hexapods with Fixed-Length Legs

    Get PDF

    Enhanced Motion Control Concepts on Parallel Robots

    Get PDF

    Shaking Force Minimization of High-Speed Robots via Centre of Mass Acceleration Control

    Get PDF
    International audienceThis paper deals with the problem of shaking force balancing of high-speed manipulators. The known solutions of this problem are carried out by an optimal redistribution of moving masses which allows the cancellation or the reduction of the variable loads on the manipulator frame. In this paper an innovative solution is developed which is based on the optimal control of the robot links centre of masses. Such a solution allows the reduction of the acceleration of the total mass centre of moving links and, consequently, the considerable reduction in the shaking forces. The efficiency of the suggested method is illustrated by the numerical simulations carried out for different trajectories: for examined planar two and three links serial manipulators the shaking force reduction reaches up to 77%. This approach is also a more appealing alternative to conventional balancing methods because it allows the reduction of the shaking force without counterweights. As a result, the input torques are also decreased, which is shown using dynamic simulation software

    Optimal dimensional synthesis of force feedback lower arm exoskeletons

    Get PDF
    This paper presents multi-criteria design optimization of parallel mechanism based force feedback exoskeletons for human forearm and wrist. The optimized devices are aimed to be employed as a high fidelity haptic interfaces. Multiple design objectives are discussed and classified for the devices and the optimization problem to study the trade-offs between these criteria is formulated. Dimensional syntheses are performed for optimal global kinematic and dynamic performance, utilizing a Pareto front based framework, for two spherical parallel mechanisms that satisfy the ergonomic necessities of a human forearm and wrist. Two optimized mechanisms are compared and discussed in the light of multiple design criteria. Finally, kinematic structure and dimensions of an optimal exoskeleton are decided

    Parallel Manipulators

    Get PDF
    In recent years, parallel kinematics mechanisms have attracted a lot of attention from the academic and industrial communities due to potential applications not only as robot manipulators but also as machine tools. Generally, the criteria used to compare the performance of traditional serial robots and parallel robots are the workspace, the ratio between the payload and the robot mass, accuracy, and dynamic behaviour. In addition to the reduced coupling effect between joints, parallel robots bring the benefits of much higher payload-robot mass ratios, superior accuracy and greater stiffness; qualities which lead to better dynamic performance. The main drawback with parallel robots is the relatively small workspace. A great deal of research on parallel robots has been carried out worldwide, and a large number of parallel mechanism systems have been built for various applications, such as remote handling, machine tools, medical robots, simulators, micro-robots, and humanoid robots. This book opens a window to exceptional research and development work on parallel mechanisms contributed by authors from around the world. Through this window the reader can get a good view of current parallel robot research and applications

    An Overview of Kinematic and Calibration Models Using Internal/External Sensors or Constraints to Improve the Behavior of Spatial Parallel Mechanisms

    Get PDF
    This paper presents an overview of the literature on kinematic and calibration models of parallel mechanisms, the influence of sensors in the mechanism accuracy and parallel mechanisms used as sensors. The most relevant classifications to obtain and solve kinematic models and to identify geometric and non-geometric parameters in the calibration of parallel robots are discussed, examining the advantages and disadvantages of each method, presenting new trends and identifying unsolved problems. This overview tries to answer and show the solutions developed by the most up-to-date research to some of the most frequent questions that appear in the modelling of a parallel mechanism, such as how to measure, the number of sensors and necessary configurations, the type and influence of errors or the number of necessary parameters
    • …
    corecore