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1. Introduction 

Hexapod is a new type of machine tool based on the parallel closed-chain kinematic 
structure. Compared to the conventional machine tool, parallel mechanism structure offers 
superior stiffness, lower mass and higher acceleration, resulting from the parallel structural 
arrangement of the motion systems. Moreover, hexapod has the potential to be highly 
modular and re-configurable, with other advantages including higher dexterity, simpler and 
fewer fixtures, and multi-mode manufacturing capabilities.  
Initially, hexapod was developed based on the Stewart platform, i.e. the prismatic type of 
parallel mechanism with the variable leg length. Commercial hexapods, such as VARIAX 
from Giddings & Lewis, Tornado from Hexel Corp., and Geodetic from Geodetic 
Technology Ltd., are all based on this structure. One of the disadvantages for the variable 
leg length structure is that the leg stiffness varies as the leg moves in and out. To overcome 
this problem, recently the constant leg length hexapod has been envisioned, for instance, 
HexaM from Toyada (Susuki et al., 1997). Hexaglibe form the Swiss Federal Institute of 
Techonology (Honegger et al., 1997), and Linapod form University of Stuttgart (Pritschow & 
Wurst, 1997). Between these two types, the fixed-length leg is stiffer (Tlusty et al., 1999) and, 
here, becoming popular. 
Dynamic modeling and analysis of the parallel mechanisms is an important part of hexapod 
design and control. Much work has been done in this area, resulting in a very rich literature 
(Fichter, 1986; Sugimoto, 1987; Do & Yang, 1988; Geng et al., 1992; Tsai, 2000; Hashimoto & 
Kimura, 1989; Fijany & Bejezy, 1991). However, the research work conducted so far on the 
inverse dynamics has been focused on the parallel mechanisms with extensible legs.  
In this chapter, first, in the inverse dynamics of the new type six d.o.f. hexapods with fixed-
length legs, shown in Fig. 1, is developed with consideration of the masses of the moving 
platform and the legs. (Xi & Sinatra, 2002) This system consists of a moving platform MP 
and six legs sliding along the guideways that are mounted on the support structure. Each 
leg is connected at one end to the guideway by a universal joint and at another end to the 
moving platform by a spherical joint. The natural orthogonal complement method (Angeles 
& Lee, 1988; Angeles & Lee, 1989) is applied, which provides an effective way of solving 
multi-body dynamics systems. This method has been applied to studying serial and parallel 
manipulators (Angeles & Ma, 1988; Zanganesh et al., 1997) automated vehicles (Saha & 
Angeles, 1991) and flexible mechanisms (Xi & Sinatra, 1997). In this development, the 

Source: Parallel Manipulators, Towards New Applications, Book edited by: Huapeng Wu, ISBN 978-3-902613-40-0, pp. 506, April 2008, 
I-Tech Education and Publishing, Vienna, Austria
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Newton-Euler formulation is used to model the dynamics of each individual body, 
including the moving platform and the legs. All individual dynamics equations are then 
assembled to form the global dynamics equations. Based on the complete kinematics model 
developed, an explicit expression is derived for the natural orthogonal complement which 
effectively eliminates the constraint forces in the global dynamics equations. This leads to 
the inverse dynamics equations of hexapods that can be used to compute required actuator 
forces for given motions. 
 

 

Fig. 1. New hexapod design 

Finally, for completeness of the dynamic study of the parallel manipulator with the fixed-
length legs, the static balancing is studied (Xi et al., 2005).  
A great deal of work has been carried out and reported in the literature for the static 
balancing problem. For example, in the case of serial manipulator, Nathan (Nathan, 1985) 
and Hervé (Hervé, 1986) applied the counterweight for gravity compensations. Streit et al. 
(Streit & Gilmore, 1991), (Walsh et al., 19) proposed an approach to static balanced rotary 
bodies and two degrees of freedom of the revolute links using springs. Streit and Shin  
presented a general approach for the static balancing of planar linkages using springs(Streit 
& Shin, 1980). Ulrich and Kumar presented a method of passive mechanical gravity 
compensation using appropriate pulley profiles (Ulrich & Kumar, 1991). Kazerooni and Kim 
presented a method for statically-balanced direct drive arm (Kazerooni & Kim, 1990). 
For the parallel manipulator much work was done by Gosselin et al. Research reported in 
(Gosselin & Wang, 1998) was focused on the design of gravity-compensated of a six–degree-
of-freedom parallel manipulator with revolute joints. Each leg with two links is connected 
by an actuated revolute joint to the base platform and by a spherical joints the moving 
platform. Two methods are used, one approach using the counterweight and the other using 
springs. In the former method, if the centre of mass of a mechanism can be made stationary, 
the static balancing is obtained in any direction of the Cartesian space. In the second 
approach, if the total energy is kept constant, the mechanism is statically balanced only in 
the direction of gravity vector. The static balancing conditions are derived for the three-
degree-of-freedom spatial parallel manipulator (Wang & Gosselin, 1998) and in similar 
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conditions are obtained for spatial four-degree-of-freedom parallel manipulator using two 
common methods, namely, counterweights and springs (Wang & Gosselin, 2000). 
In this chapter, following the same approach presented by Gosselin, the static balancing of 
the six d.o.f. platform type parallel manipulator with the fixed-length legs shown is studied. 
The mechanism can be balanced using the counterweight with a smart design of 
pantograph. The mechanism can be balanced using the method, i.e., the counterweight with 
a smart design of pantograph. By this design a constant global center of mass for any 
configurations of the manipulator is obtained. 
Finally, the leg masses become important for hexapods operating at high speeds, such as 
high-speed machining; then in the future research and development the effect of leg inertia 
on hexapod dynamics considering high-speed applications will be investigated. 

2. Kinematic modeling  

2.1 Notation  

As shown in Figure 2, this hexapod system consists of a moving platform MP to which a 
tool is attached, and six legs sliding along the guideways that are mounted on the support 
structure including the base platform BP. Each leg is connected at one end to the guideway 
by a universal joint and at another end to the moving platform by a spherical joint. 
 

 

Fig. 2. Kinematic notation of the ith leg 

The coordinate systems used are a fixed coordinate system O-xyz is attached to the base and 
a local coordinate system Ot-xtytzt attached to the moving platform. Vector bi, si, and li are 
directed from O to Bi, from Bi to Ui, and from Ui to Si respectively. Bi indicates the position of 
one end of the ith guideway attached to the base, Ui indicates the position of the ith 
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universal joint, and Si indicates the position of the ith spherical joint. Six legs are numbered 
from 1 to 6.  
Furthermore, a local coordinate frame Oi-xiyizi is defined for each leg, with its origin located 

at the center of the ith universal joint. Two unit vectors are used. Unit vector l
iu is along the 

leg length representing the direction of the ith leg, and unit vector s
iu  is along the guideway 

representing the direction of the ith guideway. The orientation of the ith coordinate frame 

with respect to the base can therefore be defined by a 3 3× rotation matrix, for  i  = 1,…,6, as 

 a l a l
i i i i i

⎡ ⎤= ×⎣ ⎦Q u u u u   (1) 

where  a
iu  is expressed as 

 
×

=
×

s l
a i i
i s l

i i

u u
u

u u
  (2) 

Note that vector l
iu  is configuration-dependent and determined for the given location of the 

moving platform; vector s
iu is constant and defined by the geometry of the hexapod. 

For the purpose of carrying out the inverse dynamics analysis of the hexapod, the following 
symbols are defined. As shown in Figure 2, Ci is the center of mass of the ith leg, Cp is the 
center of mass of the moving platform, c, $

i

c and $$
i

c are the position, velocity and acceleration 

vectors, respectively, of Ci with respect to the fixed coordinate frame, ρ is the vector 

pointing from Ot to Cp with respect to the local coordinate frame Ot-xtytzt.  

2.2 Kinematics 
Consider one branch of the leg-guideway system, as shown in Figure 2, the following loop 
equation for i = 1,…,6, holds, 

 + − − − =i i i ih Rp b s l 0   (3) 

where h and R are the vector and rotation matrix that define the position and orientation of 

the moving platform relative to the base, respectively, ip is the vector representing the 

position of the ith spherical joint on the moving platform in the local coordinates.  
Since the leg always moves along the guideway, si can be expressed as 

 = s
i i iss u   (4) 

where is is a scalar representing the displacement of the ith actuator along the guideway. 

Likewise, leg vector il can be expressed as 

 = l
i i ill u   (5) 

where li is a scalar representing the fixed length of the ith leg. As mentioned in Section 2.1, 
the leg axis is parallel to the zi axis of the local coordinate frame Oi-xiyizi. In the light of 

eq.(1), l

i
u  can be expressed as 
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 =l
i i iu Q z  (6) 

Substituting eqs.(4 & 5) into eq.(3) and rearranging it yields the following kinematics 
equations for the fixed-length leg hexapod, for i = 1,…,6, 

 = + − −s l
i i i i i is lu h Rp b u   (7) 

To obtain the velocity of the moving platform, taking the time derivative of eq. (7) yields 

 = + × − ×$ ( ) ( )s
i i i i is u v ω Rp ω l   (8) 

where v and ω  are the vectors representing the velocity and angular velocity of the moving 

platform, respectively, and 
i

ω is the vector representing the angular velocity of the ith leg.  

Furthermore, by taking dot product on both sides of eq.(8) by li, it leads to 

 ⋅ = + × ⋅$ [ ( )]s
i i i i is u l v ω Rp l   (9) 

It is well known that the kinematic analysis of parallel manipulator leads to two Jacobian 
matrices, namely, the forward and the inverse Jacobian (Gosselin & Angeles, 1990). To find 
the Jacobians for the hexapod under study, rearranging eq.(9) yields the following form 

 ( )⋅ = ×$ [ , ( ) ]s T T
i i i i i i ps u l l Rp l t   (10) 

where [ ]= ,T T T

p

t v ω is the ×6 1  twist vector of the moving platform. Consider all six legs it 

leads to the following expression 

 =$ pBs At   (11) 

where [ ]1 6,...,
T

s s=s$ $ $ is the ×6 1  vector of the actuator speeds, and A and B are the ×6 6  

matrices representing the inverse and forward Jacobian of the hexapod and they are defined 
as 

 

⎡ ⎤×
⎢ ⎥

= ⎢ ⎥
⎢ ⎥×⎣ ⎦

B B
1 1 1

6 6 6

( )

( )

T T

T T

l Rp l

A

l Rp l

  (12) 

 ( )1 1 6 6,...,s sdiag= ⋅ ⋅Β u l u l   (13) 

Eq.(11) defines the differential relationship between the actuator speeds $s and the twist of 
the moving platform tp. Rewriting eq.(11) gives  

 =$ p ps J t   (14) 

Provided that B is invertible, the Jacobian matrix of the moving platform pJ can be given as 

 − ⎡ ⎤= = ⎣ ⎦
1

1 6,...,
TT T

p p pJ B A J J   (15) 
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where 

 
( )⎡ ⎤×

⎢ ⎥=
⎢ ⎥⎣ ⎦

,

TT
i ii

pi T s T s
i i i i

Rp ll
J

l u l u
  (16) 

for i = 1,..,6. From eq.(14), tp can be expressed in terms of s$ as, 

 = $p pt T s   (17) 

where 1
p p

−=T J . 

To obtain the acceleration of the moving platform, taking the time derivative of eq. (14) 
yields 

 = +$ $$$ p p p ps J t J t   (18) 

where [ ]=$$ $$ $$1 6,...,
T

s ss is the ×6 1 vector of the actuator accelerations, ⎡ ⎤= ⎣ ⎦
$ $,  T T T

pt a ω  is the 

time derivative of the twist of the moving platform, $
pJ  is the time derivative of the Jacobian 

matrix of the moving platform obtained by differentiating pJ with respect to time, that is 

 − −= −$ $ $1 1( )pJ B A BB A   (19) 

where $A and $B given as 

 

⎡ ⎤× × × + × ×
⎢ ⎥

= ⎢ ⎥
⎢ ⎥× × × + × ×⎣ ⎦

$ B B
1 1 1 1 1 1 1

6 6 6 6 6 6 6

( ) (( ) ( ))

( ) (( ) ( ))

T T

T T

ω l ω Rp l Rp ω l

A

ω l ω Rp l Rp ω l

  (20) 

 ( )= ⋅ × ⋅ ×$
1 1 1 6 6 6( ),..., ( )s sdiagB u ω l u ω l   (21) 

If the mass of the leg is uniformly distributed, then the center of mass is in its middle. The 
velocity of the center of mass can be given as 

 = + ×$ $
2
i

i i i

l
c s ω   (22) 

Upon differentiating eq.(22), the acceleration of the center of mass can be given as 

 = + × + × ×$$ $$ $ ( )
2 2
i i

i i i i i

l l
c s ω ω ω   (23) 

To obtain the leg angular velocity and acceleration, denote by Ei the ×3 3  cross-product 

matrix associated with vector l
iu , then eq.(9) may be re-written as  

           ⎡ ⎤= + × −⎣ ⎦$1 s
i i i i i

i

s
l

E ω v ω Rp u                    (24) 
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Consider all six legs, it forms a set of linear equations containing the unknowns of the leg 

angular velocity. There are three components of iω  for each leg. Because matrix iE  is a 

skew symmetric and singular, it is impossible to directly solve eq.(24). However, since the 
leg does not spin about its longitudinal axis, this indicates (Tsai, 2000) 

 ⋅ = 0i iω l   (25) 

In the light of eq.(25), eq. (24) may be rewritten as   

 i i i=A ω e   (26) 

where iA  is a ×4 3 matrix and ie  is a 4-dimensional vector, and they are defined as  

 
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

i

i T
i

E
A

l
  (27) 

 
1

0

s
i i i

i
i

s

l

⎡ ⎤+ × −
= ⎢ ⎥

⎣ ⎦

v ω Rp u
e

$
  (28)  

Solving eq. (26) leads to the expression for the leg angular velocity 

 ⎡ ⎤= × + × −⎣ ⎦$
2

si
i i i i

i

s
l

lω v ω Rp u   (29) 

Now eq.(29) is substituted back into eq.(22), and the velocity becomes 

 ⎡ ⎤= + × −⎣ ⎦$ $1

2
s

i i i isc v ω Rp u   (30) 

By examining eqs.(29 & 30), it may be noted that the two terms in the brackets are identical. 
The first term may be expressed as 

 + × = [ , ]i pi pv ω Rp 1 E t   (31) 

where piE  is the cross-product matrix of iRp . In the light of eq.(17), eq.(31) may be related 

to $s  as 

 = $1[ , ]pi p i1 E t T s   (32) 

where 1 is the 3 3× identity matrix and 1iT is the 3 6× matrix pertaining to the first term 

defined as 

 1 [ , ]i pi p=T 1 E T   (33) 

The second term in eqs.(29) and (30) can also be expressed in terms of $s  

 = $$ 2
s

i i is u T s   (34) 
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where 2iT  is the 3 6× matrix pertaining to the second term defined as 

 =2 3 3[ ,..., ,..., ]s
i iT 0 u 0   (35) 

In eq.(35), 03 is the 3-dimensional null vector. The twist of the ith leg can be expressed in 

terms of $s  as 

 = $i it T s  (36) 

where ti is the twist of the ith leg, i.e. ⎡ ⎤= ⎣ ⎦$ ,T T T
i i it c ω , and the 6 6× matrix Ti is given as 

 1 2,T T T
i i i

⎡ ⎤= ⎣ ⎦T T T   (37) 

Furthermore, the leg angular acceleration can be obtained by differentiating eq.(26) with 
respect to time, that is  

 = − $$ $ei i i i iA ω A ω   (38) 

where  

 
⎡ ⎤× ×

= ⎢ ⎥
⎣ ⎦

$ ( )

0

l
i i i

i i

ω u ω
A ω   (39) 

 
( )1

0

s
i i i i

i
i

s

l

⎡ ⎤+ × + × × −
= ⎢ ⎥

⎣ ⎦

a ω Rp ω ω Rp u
e

$ $$$   (40) 

From eq.(38), vector $ iω  representing the angular acceleration of the ith leg is given as 

 ( ) ( )2

1
( ) a ( )s s

i i i i i i i i i i i
i

s s
l

⎡ ⎤= × × + × − + × + × + × × −⎣ ⎦ω ω l v ω Rp u l ω Rp ω ω Rp u$ $$ $$   (41) 

3. Dynamic modeling 

3.1 The natural orthogonal complement method  

Prior to performing dynamic modeling of the hexapod, a brief review of the natural 
orthogonal complement method (Angeles & Lee, 1988) is provided. Consider a system 
composed of p rigid bodies under holonomic constraints, the Newton-Euler equations for 
each individual body can be written, for i = 1,.., p, as  

 = − +$
i i i i i iM t W M t w   (42) 

where it is the twist of the ith body, ⎡ ⎤= ⎣ ⎦,T T T
i i iw n f  represent the wrench acting on the ith 

body, ni and fi are the resultant moment and the resultant force acting at the center of mass. 

In general wi can be decomposed into working wrench w
iw and non-working wrench N

iw . The 

former can further be decomposed as 
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 gw a d
i i ii= + +w w w w   (43) 

where ,  and  ga d
i iiw w w are the actuator, gravity and dissipate wrenches, respectively.  

In eq. (42), the 6 6×  angular velocity matrix Wi and the 6 6×  inertia matrix Mi are defined 

as 

 
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

i
i

Ω O
W

O O
, 

⎡ ⎤
= ⎢ ⎥

⎣ ⎦

i
i

im

I O
M

O 1
  (44) 

with 

 
∂ ×

=
∂

( )i
i

ω eΩ
e

  (45) 

where Ii is the 3 3×  matrix of the moment of inertia of the ith body, mi is the body mass, O 

denotes the 3 3×  null matrix, and e is an arbitrary vector. 

If consider all p bodies, the assembled system dynamics equations are given as 

  = − + +$ W NMt WMt w w   (46) 

where the 6 6p p× generalized mass matrix M and generalized angular velocity matrix W 

are defined as  

 ≡ …1( , , ),pdiagM M M   (47) 

 ≡ …1( , , )pdiagW W W   (48) 

and the 6p-dimensional generalized twist t, generalized working wrench Ww  and 

generalized non-working wrench Nw are defined as 

 
1

p

⎡ ⎤
⎢ ⎥

≡ ⎢ ⎥
⎢ ⎥
⎣ ⎦

t

t

t

B , 
1
W

W

W
p

⎡ ⎤
⎢ ⎥

≡ ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

w

w

w

B , 
1
N

N

N
p

⎡ ⎤
⎢ ⎥

≡ ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

w

w

w

B   (49) 

It can be shown that the kinematic constraints hold the following relation with the 

generalized twist 

 = 6pKt 0   (50) 

where 6p0 is the 6p-dimensional null vector, K is the ×6 6p p  velocity constraint matrix with 

a rank of m which is equal to the number of independent holonomic constraints. The 

number of degrees of freedom of the system, i.e. independent variables, is determined as n = 

6p - m. Denote the independent variables by s, they can be related to the twist as 

 = $t Ts   (51) 
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 = + $$ $$ $t Ts Ts   (52) 

where T is a ×6p n  twist-mapping matrix.  

By substituting eq.(51) into eq.(50), the following relation can be obtained 

 = 6pKT 0   (53) 

where T is the natural orthogonal complement of K. As shown in (Angeles & Lee, 1988, 

1989) the non-working vector wN lies in the null space of the transpose of T. Thus, if both 

sides of eq. (46) are multiplied by TT, in the aid of eqs. (51 & 52), the system dynamics 

equations can be obtained as 

 + = + +$$ $ ( )gT a dIs Cs T w w w   (54) 

where the n n×  generalized inertia matrix I and coupling matrix C are defined as 

 T≡I T MT , ( )T≡ +C T MT WMT$   (55) 

Furthermore, by defining the following generalized forces 

 τ τ τ= = =, ,g ga T a T d T dT w T w T w ,     = +$$ $Iτ Is Cs   (56) 

the inverse dynamics of the system can be given as  

 = − −ga I dτ τ τ τ   (57) 

where aτ is the vector representing the applied actuator forces. 

3.2 Inverse dynamics 

The key in applying the natural orthogonal complement method is to derive the expression 

for the twist-mapping matrix T, which relates the speeds of the independent variables to the 

generalized twist. For the hexapod under study, the independent variable s is the vector 

representing the actuator displacement, with the total number of six, as defined before. The 

generalized twist is expressed as 

 

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

B
1

6

pc

t

t
t

t

  (58) 

Note that t1 to t6 are the twists for the six legs. Since the twist in eq.(36) is defined at the 

center of mass of the leg, Ti represents the twist-mapping for the legs. For the moving 

platform, tpc is defined as the center of mass which may be expressed as 

 = +pc h Rρ   (59) 

Differentiating eq.(59) gives 
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 = + ×$ pc v ω Rρ   (60) 

In the light of eq.(60), the following relation can be obtained 

 tpc = Hp tp  (61) 

where pH  is the 6 6× matrix defined as 

 
ρ⎡ ⎤

= ⎢ ⎥
⎣ ⎦

p

1 E
H

O 1
  (62) 

In eq.(62), Eρ is the cross-product matrix of Rρ . Note that when ρ  is zero, i.e. the center of 

mass coincides with the coordinate origin, Hp becomes an identity matrix, and tpc = tp. 

The twist-mapping matrix T for the hexapod under study can be given in the light of 
eqs.(17), (36) and (62) as 

 

1

6

p p

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

T

T
T

H T

B
  (63) 

where T is a 42 6× matrix. With T, the generalized forces can be defined according to 

eq.(56), and the applied actuator forces can be determined according to eq.(57). 

4. Simulation 

4.1 Geometric and inertial parameters 

The geometry of the base and the moving platform is shown in Figure 3.  
 

 
 
 
 
 
 
 
 
 
 
 
 

 

 

Fig. 3. Geometry of the base and the moving platform 

Accordingly, the coordinates of vector bi with respect to the fixed frame are given as 

S5S2

B1

B6
Lb

B4

B5

lpS6S1

B2

lb

B3

Lp

S3 S4
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1

2

3 s

4 s

5 s

6

[ 2 , ,0]

[( ) 2 , ,0]

[l 2 ,( ) ,0]

[- 2 ,( ) ,0]

[( )/2, ,0]

[ /2, ,0]

T
b b

T
b b b s

T
b b b b

T
b b b b

T
b b b b

T
b b

L y

L l l c

L l c y

l L l c y

L l l c y

L y

≡ −

≡ + −

≡ + −

≡ + −

≡ + −

≡ − −

b

b

b

b

b

b

 

(64a) 

(64b) 

(64c) 

(64d) 

(64e) 

(64f) 

(64g) 

(64h) 

(64i) 

where Lb and lb are the long and short side of the base hexagon, cos(30 )sc = c , and 

( /2 ) (30 )b b by L l tg= + c . Likewise, the coordinates of vector ip  with respect to the local 

frame are given as 

1

2

3 s

4 s

5 s

6

[ , , 0]

[( ) , , 0]

[ , ( ) , 0]

[- , ( ) , 0]

[( )/2, , 0]

[ /2, , 0]

T
p p

T
p p p s

T
p p p p

T
p p p p

T
p p p p

T
p p

L 2 y

L l 2 l c

l 2 L l c y

l 2 L l c y

L l l c y

L y

≡ −

≡ + −

≡ + −

≡ + −

≡ + −

≡ − −

p

p

p

p

p

p

 

(65a) 
(65b) 
(65c) 
(65d) 
(65e) 
(65f) 
(65g) 
(65h) 
(65i) 

 

where Lp and lp are the long and short side of the moving platform hexagon, and 

( /2 ) (30 )p p py L l tg= + c . The geometric parameters and inertial parameters are given in 

Tables 1 and 2, respectively. In Table 1, S is the guideway length, γ is the guideway angle 
between the guideway and the vertical direction, and l is the length of the leg. These three 
parameters are the same for all the guideways and legs. Parameters Lb, lb, Lp and lp are 
defined in Figure 3. In Table 2, m is the mass, and Ixx, Iyy and Izz are the moments of inertia.  
 

S 
Guideway 

length 

γ  
Guideway

angle 

l 
Leg length

Lb 
Long side BP

lb 

Short side BP
Lp 

Long side MP
lp 

Short side MP 

0.60 m 45o 0.50 m 1.00 m 0.09 m 0.50 m 0.09m 

Table 1. Geometric parameters 

 

 m (kg) 
Ixx = Iyy 

(kg⋅m2) 
Izz (kg⋅m2)

Platform 3.983 0.068 0.136 

Leg 0.398 0.0474 - 

Table 2. Inertial parameters 
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4.2 Numerical example 

A simulation program has been developed using Matlab based on the method described in 

the previous sections. In terms of computation, as can be seen from eq. (54), the inverse 

dynamics of the hexapods mainly involves the twist-mapping matrix T and its derivative, 

which could be computed numerically for each time interval. This way, it is computationally 

more efficient. To further speed up computation, parallel computation techniques could be 

used. As shown in Figure 4, the motion part including actuator speeds and accelerations 

could be computed in parallel to the inertia part including mass matrix I and coupling 

matrix C. Since the program is done in Matlab, parallel computation is not realized.  

However, this strategy can certinaly be applied to model-based control using the dynamic 

equations. 

In terms of singularity, as can be shown from eq. (63), the twist-mapping matrix T becomes 

degenerate when the moving platform Jacobian Jp (Tp = Jp-1) is singular. 

The movement of the moving platform is defined in terms of 3-4-5 polynomials that 

guarantee zero velocities and zero accelerations at the beginning and at the end. The 

selection of a smooth motion profile is very important for the hexapod as it is operated 

under high speeds. The conventional machine tools are run at a maximum velocity of 

30m/min with a maximum acceleration of 0.3 g. Hexapods can run at a maximum velocity 

of 100 m/min with a maximum acceleration over 1 g.  

The first simulation is for high speed, with a maximum velocity of 102 m/min. The second 

simulation is for low high speed with a maximum velocity of 30 m/min. In both cases, the 

hexapod moves a distance of 0.1m along the z axis. The initial position of the moving 

platform is at xo = 0, yo = 0 and zo = 0.7m. Figure 4 shows the velocity profiles of the moving 

platform. Figures 5, 6 and 7 show the displacements, velocities and accelerations of the six 

actuators, respectively. Figure 8 shows the computed actuator forces. The simulations show 

that high speed motions result in large actuator forces. 

 

 
 

a)   High speed (b) Low speed 

Fig. 4. Motion Profile of moving platform 
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(a) High speed (b) Low speed 

Fig. 5. Actuator displacements 

 

(a) High speed (b) Low speed 

Fig. 6. Actuator velocities 

 

(a) High speed (b) Low speed 

Fig. 7. Actuator accelerations 
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(a) High speed (b) Low speed 

Fig. 8. The computed actuator forces 

5. Static balancing of the hexapod 

The static and dynamic balancing is a classic problem in the theory of machines and 
mechanisms. In particular, when a mechanism is not statically balanced, the weight of 
linkage produces force or torque at actuators under static conditions and actuators have to 
contribute to support the weight of the moving links for any configurations. The problem 
becomes more serious for the parallel manipulator applied as flight simulator where the 
weight of the moving platform is very large with respect to the masses of the links. Static 
balancing also called gravity compensation is important. If the forces/toques exerted by joint 
actuators are reduced, the full potential of machine will be improved. 
In this paragraph, following the same approach presented by Gosselin, the static balancing 
of the hexapod with the fixed-length legs is studied.  

5.1 Static balancing using counterweight 

The static balancing of the parallel manipulator under study is investigated using 

counterweights. The base coordinate frame Oxyz frame, is fixed to the base with Z-axis 

pointing vertically upward and the moving coordinate frame O'x'y'z' is attached to the 

moving platform. The Cartesian coordinates used to describe the pose of the platform are as 

shown in Fig. 9 given by the position of O' with respect to the fixed frame and the 

orientation of the platform represented by the rotation matrix Q 

 
11 12 13

21 22 23

31 32 33

q q q

q q q

q q q

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

Q   (66) 

Using the counterweights, static balancing is obtained if the global center mass of the 

mechanism is kept stationary at any values of the independent variables. To choose an 

suitable constant, namely 

 =Mr 0   (67) 
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Fig.9 Kinematic mode 

where r is the position vector of the global mass center, and M is: 

 
6

p i

i 1

M m m
=

= + ∑   (68) 

where pm  is the mass of the platform, im is the mass of the leg. The global centre of the 

mass of the manipulator is written as  

 
6

p p i i

i 1

M m m
=

= + ∑r r r   (69) 

where pr  is the platform center of the mass, ir is the leg center of the mass. From Fig. 9, 

vectors pr , ir can be derived, and substituted into eq.(69), yielding 

 ( ) ( ) ( )
6

gi
p i i i i i

ii 1

l
M m m

l=

⎡ ⎤
= + ⋅ + + ⋅ − + ⋅ − −⎢ ⎥

⎣ ⎦
∑r h Q g h Q p h Q p b s   (70) 

where g is the vector center of mass of the moving platform with respect to the frame 
O'x'y'z', h is the position of O' with respect to the fixed frame, pi is the position of the 
spherical joint with respect to the moving coordinate frame, bi is the position of the lower 
end of the guideway with respect to the fixed frame, li is the length of the leg, si can be 
written, for  i=1,…,6, as 

 ρ= ⋅ ˆ
i i is s   (71) 

where ˆ
is  is the unit vector of guideway, ρi is the independent variable of the prismatic joint. 

In concise form, eq. (70) is expressed as 
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6

1 5 0i i

i 1

M A A
=

= + + +∑h QB s Ar   (72) 

where 

 
=

⎛ ⎞
= + −⎜ ⎟

⎝ ⎠
∑

6
gi

1 p i
ii 1

l
A m m 1

l
  (73) 

 
=

⎛ ⎞
= + −⎜ ⎟

⎝ ⎠
∑

6
gi

p i i
ii 1

l
m m 1

l
B g p   (74) 

 =5
gi

i i
i

l
A m

l
 , for i=1,..,6   (75) 

 

=

= ∑
6

5i i

i 1

A0A b   (76) 

The conditions for static balancing can be given for i=1,..,6, as follows: 

 = = = =5 00 , 0 , 0 , 01 iA AB A   (77) 

From conditions =5 0iA , i=1,..,6, one can obtain  

 = 0gil   (78) 

By condition = 01A , one can obtain 

 
6

p i

i 1

m m
=

=− ∑   (79) 

Eq.(79) shows that the balancing by counterweight is impossible. If it was substituted in the 
condition B= 0, 

 
6

p i i

i 1

m m
=

+ =∑g p 0   (80) 

then one can obtain 

 

6

i i

i 1
6

i

i 1

m

m

=

=

=
∑

∑

p

g   (81) 

From eq. (81), it shows that the manipulator could be balanced by a device that provide a 
force that is 
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1. equal to the weight of the links and the platform; 
2. in opposite direction of the weight. 

5.2 Static balancing wit a pantograph counterweight 

Since it is shown that the static balancing of the examined mechanism is impossible with the 
help of counterweights, we propose a method to add a pantograph connecting the moving 
platform O' to the fixed platform O, as shown in Fig. 10. The pantograph is a device that 
allows to keep two end points on the same line and keep their distance at the centre with a 
constant ratio. In this application it is possible to use a pantographs with two or more mesh 
as shown in Fig. 10 and Fig. 11, respectively. In both case the manipulator is balanced. The 
pantograph is fixed to the moving platform on the point O' by a spherical joint and fixed to 
the point O by an universal joint. The leg counterweight is shown in Fig.12. 
 

 

Fig. 10. Model with counterweights mass       Fig. 11. Balanced Hexapod using pantograph 

 

Fig. 12. Leg counterweight 

In this case, the mass M becomes, 

 ∗ ∗ ∗

= =

= + + + + +∑ ∑
6 6

p p a a i i

i 1 i 1

M m m m m m m   (82) 
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where pm  and ∗
pm  are the mass of the platform and the mass of the platform counterweight, 

im and ∗
im are the mass of the legs and the mass of the legs counterweights, am  and ∗

am are 

the mass of the pantograph and the mass of the of the pantograph counterweight. In this 
case, the global center of the mass of the manipulator is written as 

 
6 6

p p p p a a a a i i i i

i 1 i 1

M m m m m m m∗ ∗ ∗ ∗ ∗ ∗

= =

= + + + + +∑ ∑r r r r r r r   (83) 

 where pr and p
∗r are the platform center of the mass and the platform counterweight 

position, ir and i
∗r are the legs center of the mass and the legs counterweight position, 

ar and a
∗r are the pantograph center of the mass and the pantograph counterweight position. 

From Figs. 9-10, vectors pr , p
∗r , ar , a

∗r , ir and i
∗r can be derived and substituted into eq.(83), 

yielding 

 

( )

( ) ( )

( ) ( )

( ) a a
p p a a

6
gi

i i i i i
ii 1

6
gi

i i i i i
ii 1

l l
M m m m m

l
m

l

l
m

l

∗
∗ ∗ ∗

=

∗
∗

=

⎛ ⎞ ⎛ ⎞
= + ⋅ + + ⋅ + + +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
⎡ ⎤

+ + ⋅ − + ⋅ − − +⎢ ⎥
⎣ ⎦
⎡ ⎤

+ + ⋅ − + ⋅ − −⎢ ⎥
⎢ ⎥⎣ ⎦

∑

∑

r h Q g h Q g h h
h h

h Q p h Q p b s

h Q p h Q p b s

  (84) 

where, la is the center of mass of the pantograph with respect to the fixed frame, la* is the 
pantograph counterweight position with respect to the fixed frame, lgi is the length of the leg 
counterweight link, li is the length of the leg, si can be written, for i=1,...,6, as 

 ρ= ⋅ ˆ
i i is s   (85) 

In concise form, eq.(84) can be expressed as 

 
=

= + + +∑
6

1 5 0i i

i 1

M A Ah QB s Ar   (86) 

where 

 
∗∗

∗ ∗ ∗

= =

⎛ ⎞⎛ ⎞
⎜ ⎟= + + + + − + −⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

∑ ∑
6 6

gi gia a
1 p p a a i i

i ii 1 i 1

l ll l
A m m m m m 1 m 1

l lh h
  (87) 

 
∗

∗ ∗ ∗

= =

⎛ ⎞⎛ ⎞
⎜ ⎟= + + − + −⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

∑ ∑
6 6

gi gi
p p i i i i

i ii 1 i 1

l l
m m m 1 m 1

l l
B g g p p   (88) 

    5
gi gi

i i i
i i

l l
A m m

l l

∗
∗= + ,  i=1,..,6                  (89) 
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=

= ∑
6

5i i

i 1

A0A b   (90) 

The conditions for static balancing can be given, for i =1,..,6, as follows  

 = = = =5 00 , 0 , 0 , 01 iA AB A   (91) 

From conditions =5 0iA , for i=1,..,6, one can obtain  

 
∗

∗+ = 0
gi gi

i i
i i

l l
m m

l l
  (92) 

From eq. (92), for i=1,..,6, the following is obtained 

 ∗
∗= − i gi

gi
i

m l
l

m
  (93) 

By condition = 01A , i.e., 

 0
6

a a
p p i i a a

i 1

l l
m m (m m ) m m

∗
∗ ∗ ∗

=

+ + + + + =∑
h h

  (94) 

one can obtain 

 ( )
=

⎛ ⎞
= − + + + +⎜ ⎟⎜ ⎟

⎝ ⎠
∑*

*

6
* * a

a p p i i a
a i 1

l
l m m m m m

m

h

h
  (95) 

Finally, condition B= 0 leads to the following 

 ( )∗ ∗ ∗

=

+ + + =∑
6

p p i i i

i 1

m m m mg g p 0   (96) 

Eq.(96) shows that the static balancing can be achieved by fixing the global center of the 
mass of the moving platform, that of the legs and their counterweights at the same position, 
O'. In order to obtain it, the platform counterweight should be placed  in the position: 

 

( )∗

∗ =
∗

+ +
=

∑
6

p i i i

i 1

p

m m m

m

g p

g   (97) 

Simulation is carried out to demonstrate the proposed method. The results are shown in 
Figs. 13-14, from which it can be seen that the centre of mass of the robot is non-stationary 
for non balanced case, while it is fixed for the balanced case.  
After static balancing the global mass of the device increases by  

 ∗ ∗ ∗

=

Δ = + + + ∑
6

p a a i

i 1

M m m m m   (98) 
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The negative effect for the dynamic performance by the increasing global mass can be 
reduced by optimum design of the pantograph. A graph can be arranged to provide such 
help. Fig. 15 shows the ratios,  

 
+ ΔM M

M
, 

+ *
i i

i

I I

I
, 

+ *
a a

a

I I

I
,  (99) 

which vary respect to the ratio ra*/ h and  lgi*/ lgi and where Ii is the moment of inertia of the 
leg, Ii* is the moment of inertia of the leg counterweight whit respect of Pi, Ia is the moment 
of inertia of the moving platform and Ia* is the moment of inertia of the pantograph 
counterweight with respect of O. It should be noted that with a suitable design it is possible 
to reduce MΔ  at the same time, it may increase Ii and Ia. The effect of gravity compensation 
on the dynamic performances was studied in detail in (Xi, 1999). 
 

 

Fig. 13. Mobile center of mass Hexapod 
 

  

Fig. 14. Fixed center of mass of Balanced Hexapod 
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Figure 15. Graph for optimum design 

 

 Input  

Mobile platform   

mass [kg] short side [mm] long side [mm] 

8 200 800 

Fixed platform 1   

mass [kg] short side [mm] long side [mm] 

/ 100 400 

Fixed platform 2   

mass [kg] short side [mm] long side [mm] 

/ 250 1000 

leg   

mass [kg] li [mm] lgi [mm] 

0.5 750 375 

Pantograph   

mass [kg] side length [mm] ra [mm] 

3 100 0 

 Output  

ma* [kg] mi* [kg]  

17 1  

Table 3. Geometric and inertial parameters 
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7. Conclusion 

In this chapter, the inverse dynamics of hexapods with fixed-length legs is analyzed using 
the natural orthogonal complement method, with considering the mass of the moving 
platform and those of the legs. A complete kinematics model is developed, which leads to 
an explicit expression for the twist-mapping matrix. Based on that, the inverse dynamics 
equations are derived that can be used to compute the required applied actuator forces for 
the given movement of the moving platform. The developed method has been implemented 
and demonstrated by simulation. 
Successively, the static balancing of  hexapods is addressed. The expression of  the global 
center of mass is derived, based on which a set of static balancing equations has been 
obtained. It is shown that this type of parallel mechanism cannot be statically balanced by 
counterweights because prismatic joints do not have a fixed point to pivot as revolute joints. 
A new  design is proposed to connect the centre of the moving platform to that of the fixed 
platform by a pantograph. The conditions for static balancing are derived. This mechanism 
is able to release the actuated joints from the weight of the moving legs for any 
configurations of the robot. 
In the future research the leg inertia will be include for modeling the dynamics of the 
hexapod for high-speed applications.  
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