2,033 research outputs found

    Research and Education in Computational Science and Engineering

    Get PDF
    Over the past two decades the field of computational science and engineering (CSE) has penetrated both basic and applied research in academia, industry, and laboratories to advance discovery, optimize systems, support decision-makers, and educate the scientific and engineering workforce. Informed by centuries of theory and experiment, CSE performs computational experiments to answer questions that neither theory nor experiment alone is equipped to answer. CSE provides scientists and engineers of all persuasions with algorithmic inventions and software systems that transcend disciplines and scales. Carried on a wave of digital technology, CSE brings the power of parallelism to bear on troves of data. Mathematics-based advanced computing has become a prevalent means of discovery and innovation in essentially all areas of science, engineering, technology, and society; and the CSE community is at the core of this transformation. However, a combination of disruptive developments---including the architectural complexity of extreme-scale computing, the data revolution that engulfs the planet, and the specialization required to follow the applications to new frontiers---is redefining the scope and reach of the CSE endeavor. This report describes the rapid expansion of CSE and the challenges to sustaining its bold advances. The report also presents strategies and directions for CSE research and education for the next decade.Comment: Major revision, to appear in SIAM Revie

    Oil and Gas flow Anomaly Detection on offshore naturally flowing wells using Deep Neural Networks

    Get PDF
    Dissertation presented as the partial requirement for obtaining a Master's degree in Data Science and Advanced Analytics, specialization in Data ScienceThe Oil and Gas industry, as never before, faces multiple challenges. It is being impugned for being dirty, a pollutant, and hence the more demand for green alternatives. Nevertheless, the world still has to rely heavily on hydrocarbons, since it is the most traditional and stable source of energy, as opposed to extensively promoted hydro, solar or wind power. Major operators are challenged to produce the oil more efficiently, to counteract the newly arising energy sources, with less of a climate footprint, more scrutinized expenditure, thus facing high skepticism regarding its future. It has to become greener, and hence to act in a manner not required previously. While most of the tools used by the Hydrocarbon E&P industry is expensive and has been used for many years, it is paramount for the industry’s survival and prosperity to apply predictive maintenance technologies, that would foresee potential failures, making production safer, lowering downtime, increasing productivity and diminishing maintenance costs. Many efforts were applied in order to define the most accurate and effective predictive methods, however data scarcity affects the speed and capacity for further experimentations. Whilst it would be highly beneficial for the industry to invest in Artificial Intelligence, this research aims at exploring, in depth, the subject of Anomaly Detection, using the open public data from Petrobras, that was developed by experts. For this research the Deep Learning Neural Networks, such as Recurrent Neural Networks with LSTM and GRU backbones, were implemented for multi-class classification of undesirable events on naturally flowing wells. Further, several hyperparameter optimization tools were explored, mainly focusing on Genetic Algorithms as being the most advanced methods for such kind of tasks. The research concluded with the best performing algorithm with 2 stacked GRU and the following vector of hyperparameters weights: [1, 47, 40, 14], which stand for timestep 1, number of hidden units 47, number of epochs 40 and batch size 14, producing F1 equal to 0.97%. As the world faces many issues, one of which is the detrimental effect of heavy industries to the environment and as result adverse global climate change, this project is an attempt to contribute to the field of applying Artificial Intelligence in the Oil and Gas industry, with the intention to make it more efficient, transparent and sustainable

    Cyber-Physical Systems for Smart Water Networks: A Review

    Get PDF
    There is a growing demand to equip Smart Water Networks (SWN) with advanced sensing and computation capabilities in order to detect anomalies and apply autonomous event-triggered control. Cyber-Physical Systems (CPSs) have emerged as an important research area capable of intelligently sensing the state of SWN and reacting autonomously in scenarios of unexpected crisis development. Through computational algorithms, CPSs can integrate physical components of SWN, such as sensors and actuators, and provide technological frameworks for data analytics, pertinent decision making, and control. The development of CPSs in SWN requires the collaboration of diverse scientific disciplines such as civil, hydraulics, electronics, environment, computer science, optimization, communication, and control theory. For efficient and successful deployment of CPS in SWN, there is a need for a common methodology in terms of design approaches that can involve various scientific disciplines. This paper reviews the state of the art, challenges, and opportunities for CPSs, that could be explored to design the intelligent sensing, communication, and control capabilities of CPS for SWN. In addition, we look at the challenges and solutions in developing a computational framework from the perspectives of machine learning, optimization, and control theory for SWN.acceptedVersio

    Multi-Fidelity Methods for Optimization: A Survey

    Full text link
    Real-world black-box optimization often involves time-consuming or costly experiments and simulations. Multi-fidelity optimization (MFO) stands out as a cost-effective strategy that balances high-fidelity accuracy with computational efficiency through a hierarchical fidelity approach. This survey presents a systematic exploration of MFO, underpinned by a novel text mining framework based on a pre-trained language model. We delve deep into the foundational principles and methodologies of MFO, focusing on three core components -- multi-fidelity surrogate models, fidelity management strategies, and optimization techniques. Additionally, this survey highlights the diverse applications of MFO across several key domains, including machine learning, engineering design optimization, and scientific discovery, showcasing the adaptability and effectiveness of MFO in tackling complex computational challenges. Furthermore, we also envision several emerging challenges and prospects in the MFO landscape, spanning scalability, the composition of lower fidelities, and the integration of human-in-the-loop approaches at the algorithmic level. We also address critical issues related to benchmarking and the advancement of open science within the MFO community. Overall, this survey aims to catalyze further research and foster collaborations in MFO, setting the stage for future innovations and breakthroughs in the field.Comment: 47 pages, 9 figure

    Machine Learning in Oil and Gas Exploration: A Review

    Get PDF
    A comprehensive assessment of machine learning applications is conducted to identify the developing trends for Artificial Intelligence (AI) applications in the oil and gas sector, specifically focusing on geological and geophysical exploration and reservoir characterization. Critical areas, such as seismic data processing, facies and lithofacies classification, and the prediction of essential petrophysical properties (e.g., porosity, permeability, and water saturation), are explored. Despite the vital role of these properties in resource assessment, accurate prediction remains challenging. This paper offers a detailed overview of machine learning’s involvement in seismic data processing, facies classification, and reservoir property prediction. It highlights its potential to address various oil and gas exploration challenges, including predictive modelling, classification, and clustering tasks. Furthermore, the review identifies unique barriers hindering the widespread application of machine learning in the exploration, including uncertainties in subsurface parameters, scale discrepancies, and handling temporal and spatial data complexity. It proposes potential solutions, identifies practices contributing to achieving optimal accuracy, and outlines future research directions, providing a nuanced understanding of the field’s dynamics. Adopting machine learning and robust data management methods is crucial for enhancing operational efficiency in an era marked by extensive data generation. While acknowledging the inherent limitations of these approaches, they surpass the constraints of traditional empirical and analytical methods, establishing themselves as versatile tools for addressing industrial challenges. This comprehensive review serves as an invaluable resource for researchers venturing into less-charted territories in this evolving field, offering valuable insights and guidance for future research

    Ontology based data warehousing for mining of heterogeneous and multidimensional data sources

    Get PDF
    Heterogeneous and multidimensional big-data sources are virtually prevalent in all business environments. System and data analysts are unable to fast-track and access big-data sources. A robust and versatile data warehousing system is developed, integrating domain ontologies from multidimensional data sources. For example, petroleum digital ecosystems and digital oil field solutions, derived from big-data petroleum (information) systems, are in increasing demand in multibillion dollar resource businesses worldwide. This work is recognized by Industrial Electronic Society of IEEE and appeared in more than 50 international conference proceedings and journals

    An innovative metaheuristic strategy for solar energy management through a neural networks framework

    Get PDF
    Proper management of solar energy as an effective renewable source is of high importance toward sustainable energy harvesting. This paper offers a novel sophisticated method for predicting solar irradiance (SIr) from environmental conditions. To this end, an efficient metaheuristic technique, namely electromagnetic field optimization (EFO), is employed for optimizing a neural network. This algorithm quickly mines a publicly available dataset for nonlinearly tuning the network parameters. To suggest an optimal configuration, five influential parameters of the EFO are optimized by an extensive trial and error practice. Analyzing the results showed that the proposed model can learn the SIr pattern and predict it for unseen conditions with high accuracy. Furthermore, it provided about 10% and 16% higher accuracy compared to two benchmark optimizers, namely shuffled complex evolution and shuffled frog leaping algorithm. Hence, the EFO-supervised neural network can be a promising tool for the early prediction of SIr in practice. The findings of this research may shed light on the use of advanced intelligent models for efficient energy development
    • …
    corecore