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ABSTRACT A comprehensive assessment of machine learning applications is conducted to identify the
developing trends for Artificial Intelligence (AI) applications in the oil and gas sector, specifically focusing
on geological and geophysical exploration and reservoir characterization. Critical areas, such as seismic
data processing, facies and lithofacies classification, and the prediction of essential petrophysical properties
(e.g., porosity, permeability, and water saturation), are explored. Despite the vital role of these properties
in resource assessment, accurate prediction remains challenging. This paper offers a detailed overview of
machine learning’s involvement in seismic data processing, facies classification, and reservoir property
prediction. It highlights its potential to address various oil and gas exploration challenges, including
predictive modelling, classification, and clustering tasks. Furthermore, the review identifies unique barriers
hindering the widespread application of machine learning in the exploration, including uncertainties in
subsurface parameters, scale discrepancies, and handling temporal and spatial data complexity. It proposes
potential solutions, identifies practices contributing to achieving optimal accuracy, and outlines future
research directions, providing a nuanced understanding of the field’s dynamics. Adopting machine learning
and robust data management methods is crucial for enhancing operational efficiency in an era marked by
extensive data generation. While acknowledging the inherent limitations of these approaches, they surpass
the constraints of traditional empirical and analytical methods, establishing themselves as versatile tools for
addressing industrial challenges. This comprehensive review serves as an invaluable resource for researchers
venturing into less-charted territories in this evolving field, offering valuable insights and guidance for future
research.

INDEX TERMS Oil and gas exploration, machine learning, petrophysical properties prediction, facies and
lithofacies classification, seismic data processing.

I. INTRODUCTION
The oil and gas industry is a sophisticated sector that
combines many complex activities in its value chain broadly
segmented into Upstream, Midstream, and Downstream,
as illustrated in Fig. 1. In any industry operation, an unprece-
dented amount of data can be generated from the equipment
involved and routine human logs. The Upstream segment,
which concerns the exploration and production of oil and
natural gas, produces data such as geological surveys, well
logs, and readings from drilling equipment. This segment
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is also expected to generate significantly higher volumes
of data with improvements in seismic acquisition devices,
channel counting, and fluid front monitoring geophones [1].
The midstream segment involves transporting and storing
crude oil and natural gas using pipelines and their associated
infrastructure such as pumping stations and, tank trucks, etc.
All these enable the generation of large volumes of data. The
downstream segment involves turning crude oil and natural
gas into finished products and marketing them accordingly.
This involves generating and analyzing large amounts of data
for competitive advantage and cost reduction. The amount of
data generated in the oil and gas industry is so enormous that
even its capture and storage requires sophisticated techniques
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FIGURE 1. Oil and gas production process.

and expertise, let alone analysis, to derive hidden actionable
insights.

Oil and Gas Exploration is the practice of attempting to
locate accumulations of oil and natural gas trapped under
the surface of the Earth’s atmosphere by utilizing petroleum
geology. Exploration is carried out to offer the knowledge
necessary to use the best prospects presented by the regions
chosen for exploration and to oversee the research operations
on the blocks that have been obtained. Exploration controls
the inherent risks involved in this process and is generally
handled by selecting various probabilistic and economically
favourable options.

Procedures are commonly used in oil and gas exploration
to locate, evaluate, and exploit hydrocarbon resources.
Identifying and acquiring promising locations is the initial
phase, which may include studying geological information
and conducting aerial surveys to identify regions with a
high likelihood of harbouring hydrocarbon resources. A geo-
logical survey should be undertaken better to understand
the geology and hydrocarbon potential of the area when
a promising location is identified. This often uses various
methods, such as electromagnetic, magnetic, seismic, and
gravity surveys. Seismic surveys are one of the most essential
methods used to search for oil and gas. They work by sending
sound waves to the ground and recording and analyzing
their reflections. The collected data may provide extensive
information on underlying geology and aid in identifying the
probable hydrocarbon sources.

After a possible reservoir has been located, exploratory
drilling may be carried out to assess the reservoir’s existence,
quality, and amount of hydrocarbons. Drilling one or more
exploratory wells to collect core samples, fluid samples, and
other data that may be studied to identify the reservoir’s
properties is routine.

If hydrocarbons were identified, the next stage was
to assess the project’s economic feasibility. This includes
determining the reservoir size and productivity and the
costs of drilling, production, and transportation. If the
idea is deemed commercially feasible, the field will be
developed, and production will commence. The construction

of production facilities, drilling of production wells, and use
of various technologies and procedures to improve output and
maximum recovery are expected.

Overall, the stages involved in oil and gas exploration
are complicated and require various technical skills and
resources. A successful exploration operation, on the other
hand, may lead to the finding of significant hydrocarbon
deposits that can supply substantial energy sources for
humanity. The stages are shown in Fig. 2.

FIGURE 2. Stages in oil and gas exploration.

Although risks cannot be eliminated, theymay bemanaged
and reduced using appropriate operational, conceptual, and
technological breakthroughs such as reservoir characteriza-
tion. Reservoir characterization quantitatively defines differ-
ent reservoir features regarding their geographic variability
by integrating data collected from the field and laboratory.
It is a crucial aspect of the management of emerging
reservoirs. Reservoir characterization provides more insight
into the reservoir and its behaviour, which helps detect
possible drilling risks and improves the ability to recommend
well placement.

Employing a data-driven approach to address problems
in the development process of oil and gas exploration and
production is not a new concept, as it surpasses the limitations
posed by traditional techniques. Machine learning has been
used to address problems such as regression, classification,
and function approximations. Traditional methods are typ-
ically redundant and time-consuming and rely on trial and
error to achieve optimum results. They cannot accommodate
missing data or background noise and fail to perform
efficiently when presented with overwhelming interdepen-
dencies, requiring several simplifications and biased assump-
tions. Data-driven procedures were utilized to overcome these
problems. Data-driven approaches provide methodologies
that incorporate various data formats, calculate uncertainty,
discover hidden patterns, and extract the relevant data.
This data type is critical for estimating future trends,
resolving challenges, and anticipating unexpected activities
using traditional procedures. Data-driven predictions and
decisions are made using machine learning that accepts
extensive data. Machine learning has been used to address
problems, including regression, classification and function
approximation, in the development process for oil and gas
exploration and production.

Significant progress has been made in this area, and there
have been a number of reviews. Existing reviews in the field
of machine learning in the oil and gas industry tend to offer
a broad, high-level perspective [2], [3], [4], [5], there is room
for further exploration to delve into the intricate challenges
and nuances specific to the exploration stage in this complex
sector. Some of these challenges encompass the inherent
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uncertainties in various subsurface exploration parameters,
scale discrepancies and the complexities related to handling
temporal and spatial data in exploration processes. This lim-
ited scope results in a gap in addressing the specific hurdles
encountered across various industry sectors. Furthermore,
while some reviews touch upon the challenges inherent in
applying machine learning in the broader oil and gas domain,
they frequently fail to provide potential solutions or guide
future research endeavours.

This review aims to provide a comprehensive and up-to-
date overview of machine learning applications in upstream
oil and gas exploration. It aims to highlight the potential of
machine learning to address various challenges in this field,
identify key barriers impeding its widespread application,
and offer potential development trends and identify practices
that contribute to achieving optimal accuracy. The review
also outlines future research directions, providing a nuanced
understanding of the field’s dynamics.

This review brings novelty through three key dimensions.
Firstly, it delivers a deeply comprehensive study of machine
learning in the industry’s exploration phase, specifically
focusing on geological and geophysical aspects. When it
comes to exploration, critical areas need to be addressed
such as seismic data processing, lithofacies classification, and
predicting petrophysical properties. These areas come with
their own unique challenges, including inherent uncertainties
in various subsurface exploration parameters, discrepancies
in scale, and complexities related to handling temporal
and spatial data. This review provides a holistic view of
how machine learning is harnessed in the industry by
encompassing a broad spectrum of topics.

Furthermore, the review adeptly identifies and discusses
emerging trends in machine learning applications. It casts
a spotlight on the latest developments and innovations
within the field, shedding light on how these trends actively
shape the future of upstream oil and gas exploration. This
forward-looking approach ensures that the review captures
the current state of the art and provides valuable insights into
the industry’s potential evolution.

Lastly, the review stands out for its pragmatic approach
to addressing successes and challenges. While celebrating
the accomplishments of machine learning in the oil and gas
sector, it does not shy away from highlighting critical issues
such as data issues, model interpretability, and deployment
complexities. Furthermore, this comprehensive review pro-
vides potential solutions and recommended practices that
contribute to achieving optimal accuracy to address these
challenges effectively while highlighting promising avenues
for future research. This balanced perspective equips readers
with a nuanced understanding of the field’s dynamics and the
means to navigate them effectively.

This article explores the application of machine learning
in addressing challenges within the upstream oil and gas
industry, with a focus on exploration. Section II outlines
the review’s methodology. Section III delves into seismic
data processing and lithofacies classification in geological

and geophysical exploration, while Section IV covers the
prediction of petrophysical properties in reservoir charac-
terization. In Section VII, we discuss the strengths and
weaknesses of existing machine learning strategies for
these issues, presenting a roadmap for optimal accuracy in
their applications. Section VII outlines current challenges,
proposes solutions, and identifies future research directions.

The highlights of this review are stated below:

• Comprehensive Coverage: The paper offers an extensive
overview of machine learning applications within the
exploration stage of upstream oil and gas.

• Key Focus Areas: It explores seismic data processing,
lithofacies classification, and prediction of petrophysi-
cal properties such as porosity, permeability, and water
saturation.

• Identification of Barriers: The paper identifies unique
challenges and limitations that hinder the widespread
adoption of machine learning in the exploration sector.

• Potential Solutions: It provides potential solutions and
identifies practices that contribute to achieving optimal
accuracy to address the identified challenges effectively.

• Balanced Approach: The paper takes a balanced
approach by acknowledging the achievements of
machine learning while addressing critical issues like
data issues and model interpretability.

• Guidance for Future Research: It outlines future research
directions, offering a roadmap for those interested in the
industry’s evolving landscape of machine learning.

II. METHODOLOGY
The methodology presents a comprehensive overview of
the approach employed for the literature review focused on
machine learning applications within the upstream oil and
gas sector. The methodology outlined here serves as the foun-
dation for systematically identifying, selecting, and critically
analyzing relevant studies in the field. We aim to give readers
insights into our approach’s robustness and rigour, ensuring
the review’s credibility and comprehensiveness.

A. SELECTION OF RELEVANT LITERATURE
This stage details our search strategy, keywords, and
databases used. It also outlines the criteria for selecting
pertinent literature.

For this literature review, we meticulously followed a
systematic approach to identify and include studies related to
machine learning applications in upstream oil and gas, focus-
ing on geological exploration and reservoir characterization.
We conducted comprehensive searches across reputable
academic databases, including IEEE Xplore, ScienceDirect,
and Google Scholar. Our search queries incorporated care-
fully selected keywords, such as ‘‘lithofacies classification’’,
‘‘machine learning’’, ‘‘upstream oil and gas’’, ‘‘geological
exploration’’, ‘‘permeability prediction’’, ‘‘porosity predic-
tion’’, ‘‘water saturation prediction’’, ‘‘reservoir characteri-
zation’’, and ‘‘seismic data processing’’.
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We established specific inclusion criteria to ensure the
quality and relevance of the studies in our review. These crite-
ria encompassed relevance to machine learning applications
in geological exploration and reservoir characterization in
the upstream oil and gas sector, adherence to rigorous peer-
reviewed standards, and publication in English. As a result,
we narrowed our selection to a total of 128 papers for the
review.

B. DATA COLLECTION AND SYNTHESIS
This stage details the data extraction process from the relevant
literature and how the selected literature was categorized to
enhance the structure of the findings.

In this methodology phase, we conducted a detailed analy-
sis of the chosen literature. This analysis involved extracting
essential details from each study, including research objec-
tives, methodologies, key findings, and limitations. The goal
was to create a comprehensive dataset from the literature,
providing a well-rounded perspective for our review.

Subsequently, we systematically categorized the literature
into coherent themes, such as seismic data processing,
facies classification, and prediction of petrophysical prop-
erties. This thematic organization allowed us to present
the collective findings in a structured manner, facilitating
the identification of common trends and patterns across
the literature.

C. CRITICAL EVALUATION AND PRESENTATION
This stage critically assesses research quality, methodologies,
and contributions, highlighting strengths, limitations, and
findings organized by themes for clarity.

During the last stage of our methodology, we thoroughly
evaluated each study’s quality, research methodologies, and
contributions to the field.We considered themachine learning
techniques, data preprocessing strategies, feature selection
methods, and model evaluation approaches. This critical
analysis provides readers with insights into the strengths
and limitations of the existing body of research. Our
systematic thematic structure serves as a clear framework
for presenting our findings, ensuring comprehensibility and
providing valuable insights for our readers.

III. GEOLOGICAL AND GEOPHYSICAL EXPLORATION
Geological and geophysical exploration is carried out using
surface techniques to evaluate the physical characteristics
of the underlying earth, coupled with variations in these
qualities, to identify or deduce the existence and location
of hydrocarbons (oil and gas) in economical amounts.
This is done using physical methods, such as seismic,
electrical, coring, and well logging methods, to evaluate
the physical properties of rocks and, more specifically,
to identify the measurable physical differences between
rocks containing hydrocarbons and those that do not. This
is helpful in the placement of offshore structures and in
making knowledgeable decisions regarding the strategic and
economic considerations of oil and gas operations.

A. SEISMIC DATA PROCESSING
The primary geophysical approach employed to map geo-
logical features under the Earth’s surface, whether on land
or in marine environments, is seismic data. Inherently,
human-driven interpretation processes are sluggish, costly,
and non-reproducible. One of the most time-consuming
activities is the interpretation of large amounts of seismic
data. Because of their vast bulk, seismic data sets are well
suited for sophisticated machine learning algorithms such
as Convolutional Neural Networks (CNN), which must be
sufficiently trained with substantial data to work efficiently
and accurately. Several complex geological problems, includ-
ing fault detection, salt-body identification, sweet spots, and
seismic horizons, have been solved using machine learning
with seismic data. Furthermore, although humans excel at
discovering characteristics exclusively in two dimensions,
well-written algorithms can function in all dimensions.
The application of the Artificial Neural Network (ANN)
technique in the field of exploration has produced fruitful
outcomes in reducing exploration risks and increasing the
efficiency of exploration wells [6].
Structural breaks may be caused by various types of

subsurface movements, which can lead to the formation
of faults. After considering the existence of defects in the
area of interest, specific choices regarding operations must
be made. In traditional processes, fault interpretation is a
process that takes a significant amount of time. Henceforth,
Guitton et al. [7] employed a Support Vector Machine
(SVM) technique to detect faults in seismic sections. From
the labelled seismic sections, the authors employed the
Scale Invariant Feature Transform(SWIFT) and Histogram
of Oriented Gradients (HOG) to extract a set of features
that will be used to train the SVM to identify faults.
The advantage of combining HOG and SIFT features has
been noted as it surpasses their individual usage. However,
Xiong et al. [8] revealed the weakness of SVM in demanding
the precomputation of characteristics for mapping faults.
A laborious process of manually mapping faults must
be performed for every data set in the training dataset.
In addition, the technique has poor performance in the
zones with poor reflections. Hence, the superiority of CNN
was presented in [9], [10], and [8]. Using 3D seismic
data, Xiong et al. [8] CNN method automatically identified
and mapped fault zones, eliminating the need for human
precomputation.

Yang and Sun [11] suggested a technique for tracking
horizons with complicated seismic reflection characteristics
using deep CNNs. The suggested approach can determine
the locations of faults and precisely extract horizons that cut
across faults. The suggested model was more consistent and
faster than the conventional 3D horizon tracking technique.
The CNN-based approach has shown significant promise
for enhancing the effectiveness and accuracy of horizon
monitoring.

For a seismic full wave tomography study, Diersen et al.
[12] suggested an ANN and Importance-Aided Neural
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Network (IANN). The proposed models integrate machine
learning and Complex Wavelet Transform (CWT), which
is promising for improving the classification precision and
speeding up the computation of the classification of observed
data wave segments and synthesised data wave segment
matches. Both ANN and IANN showed positive results, with
IANN performing marginally better.

Using multiple neural network models, a considerable
amount of 3D seismic data was processed by Rastegar-
nia et al. [13] to obtain electrofacies volumes and the 3D
flow zone index (FZI). The authors suggested a probabilistic
neural network (PNN) for the electrofacies model that
uses multi-resolution graph-based clustering (MRGC) as an
optimizer. The 3D FZI model, on the other hand, used a
multi-attribute method utilising a radial basis function (RBF)
network, a multilayer feed-forward network (MLFFN), and a
PNN to enhance the model. According to the results, the two
models are in excellent agreement with one another, and the
PNN-based models can be used to estimate both the FZI and
electrofacies volume efficiently.

In their study, La Marca et al. [14] introduced a
novel quantitative assessment approach for unsupervised
machine learning algorithms, employing techniques like
Kmeans, Generative Topographic Maps (GTM), and Prin-
cipal Component Analysis (PCA) in seismic interpre-
tation. Their methodology, demonstrated using synthetic
multi-dimensional seismic data, successfully clustered data
into geologically meaningful groups. Machine learning
expands the range of attributes analyzed and reveals intricate
details often missed by human interpreters. It’s noteworthy
that machine learning algorithms are typically calibrated
using well logs; nevertheless, human expertise also plays a
pivotal role in the interpretation process.

Another study by Qian et al. [15] developed a support
vector machine method by combining data from geology,
well drilling, logging, and seismic surveys to make a
multi-attribute estimate of reservoir sweet spots and conduct
a thorough quantitative characterization of shale reservoirs.
This technique was superior to conventional techniques by
providing an efficient and accurate quantitative assessment
approach for evaluating shale reservoirs.

B. FACIES AND LITHOFACIES CLASSIFICATION
Facies are a basic geologic characteristic that influences
hydrocarbon production, making rock facies understanding
vital in oil and gas exploration [16]. Core and advanced
well log data may provide this information, but access
to this type of rich data is restricted by the expense and
time required to acquire it. Numerous low-cost data-driven
machine learning techniques leveraging inexpensive well log
data have been proposed for subsurface research. These well
log data advantages include continuous availability along
depth and easy data collection. As a result, they constitute
a valuable source of information about subsurface rock.
Lithofacies are often determined by integrating petrophysical

and geological properties, and they can be an essential
tool for reservoir characterisation [17]. Several mathematical
approaches have been developed since the advent of well logs
in predicting lithology relying on well logs [18]. Lithofacies
classification is regularly done utilising core samples and
wireline log data with machine learning.

Recently, machine learning has been utilised to assist in
the labour-intensive evaluation of well logs for lithofacies
classification. It can be used to classify lithofacies in uncored
wells after being trained using other cored wells in the
region. To train the model, lithofacies classification is applied
to depth measurement based on the combination of well
log and core data [19]. Gamma-ray (GR), resistivity(Rt),
neutron(NPHI) density(RHOB), and lithology are the most
often used logs for facies identification. These logs facilitate
the generation of sophisticated characteristics that can
improve predictions, including total organicmatter(TOC) and
matrix grain density(RHOMAA) [20].

Researchers have employed various machine learning
techniques such as Neural Network(NN), SVM, and Random
Forest(RF) [17], [19], [21], [22], [23], [24], [25], [26], [27].
They identified lithofacies from well logs across various
reservoir types and, according to their findings, inferred that
these strategies are effective and automated, requiring less
time and resources than conventional methods.

Various Researchers [17], [19], [21], [22] carried out their
research using NN to classify lithofacies. They concluded
that it was excelling over the traditional methods. But
when dealing with a small amount of data, Sebtosheikh and
Salehi [23] noted that the SVM performs better. However,
Xie et al. [16] conducted their research using both NN and
SVM and deduced that both methods are affected by the
number of features available, giving them a setback when
limited features are used. The work established that ensemble
methods are superior. The ensemble methods integrate
numerous base models to create a single best prediction
model [25]. Dell’aversana and, Tewari andDwivedi [24], [26]
also support the ensembles method as more robust, reliable
and accurate. In another research, Hou et al. [28] compared
Multilayer perception (MLP), SVM and ensemble eXtreme
Gradient Boosting (XGboost) and RF models for lithofacies
classification in the Gulong Shale. Based on the performance
of the models, it can be concluded that the ensemble yields
greater accuracy.

Despite this, new research has revealed that the Gradient
Boosting (GB) approach outperforms other machine learning
algorithms, mostly due to its robustness [19]. However, when
working with large data sizes, RF outperforms. Bhattacharya
and Mishra [27] studies similarly gave RF superiority over
GB as it minimised the computing time during the training
stage.

In a comparative study conducted by Al-Mudhafar et al.
[29], various boosting algorithms were evaluated for lithofa-
cies classification in an Iraqi carbonate reservoir. The study
examined the performance of several boosting algorithms,
including Logistic Boosting Regression (LogitBoost), Gen-
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eralized Boosting Modelling (GBM), XGBoost, Adaptive
Boosting Model (AdaBoost), and K-nearest neighbour
(KNN), using input data derived fromwell logs and core data.
Among these algorithms, XGBoost demonstrated the highest
level of accuracy in lithofacies classification.

In another study by Kim [30], a pioneering approach
was proposed for lithofacies classification in the challenging
Austin Chalk and Eagle Ford formations, renowned for their
suboptimal reservoir quality. The researchers introduced a
CNN to tackle this classification task using conventional
well logs, and remarkably, the CNN model outperformed
the traditional ANN model. This research underscores the
significance of harnessing cutting-edge methodologies like
CNNs to significantly enhance the precision of lithofacies
classification. An additional advantage of the CNN model
is its reduced dependency on interpreted wireline logs, such
as porosity, saturation, and brittleness, which mitigates the
uncertainties accompanied by subjective interpretations due
to manual intervention.

To tackle the complexities of lithofacies classification in a
dynamic subsurface setting, a novel approach was introduced
by Datta et al. [31]. This approach follows a multi-stage
change detection process. It commences by detecting sub-
stantial variations in well logs, aligning these variations with
lithofacies categories, optimizing the dataset by handling
overrepresented classes, and finally applying the SVM for
classification. Impressively, this method outperformed the
traditional SVM algorithm.

IV. RESERVOIR CHARACTERIZATION
The procedure of objectively assigning reservoir attributes
based on geological information and identifying uncertainties
in geographical variability is referred to as reservoir charac-
terisation [32].
Broadly, reservoir characterisation is performed during the

exploration phase to assess the location and magnitude of
possible oil reserves. Once it has been determined where and
how many hydrocarbons are present in the reservoir, the oil
field may be exploited to extract these reserves. Exploratory
drilling often occurs in several separate wells during the first
phase of this procedure. The objective of each well is to offer
details on the features of the rock formation that surrounds the
borehole and the types of hydrocarbon reserves that could be
located there.

The objective of reservoir characterization is to obtain
a deeper knowledge of reservoirs’ physical and chemical
features to make more knowledgeable choices about their
development and exploitation, which affect the profitability
of petroleum operations and their environmental impact.
They help determine the best production methods to max-
imise output by indicating how reservoir fluid behaviour will
change under various conditions. Reservoir characterisation
aims to create a geological model that uses existing data
to predict petrophysical properties across the oilfield [33].
Developing a precise image of a reservoir’s characteristics
may be challenging and time-consuming. Consequently,

there is a continual need to enhance automated reservoir
characterization approaches.

V. PETROPHYSICAL PROPERTIES PREDICTION
It is essential to collect precise data on reservoir properties
for reservoir characterization. The primary objective of
reservoir characterization is to develop 3D representations
of petrophysical characteristics. It comprises gathering data
on petrophysical features, providing more insight into the
fluid accumulation inside the rock formation. The most
accurate method for estimating petrophysical properties is the
laboratory-based method; however, it is expensive and time-
consuming. Because of this limitation, there is only a limited
number of samples accessible for certain wells, and these
samples only cover a chosen number of depth intervals [34].
A significant number of samples are needed to accurately
define a subsurface formation because of the complicated
geological behaviours and spatial heterogeneity of reservoirs.
Log-based approaches have been widely used to address this
issue.

Actual samples of rocks were examined in a laboratory,
and instrumental procedures that quantify physical qualities
were used as data sources for petrophysical parameters [35].
These included core, seismic, and well logs. According
to Xu et al. [36], petrophysical data can be regarded as
big data as it meets the characteristic. Table 1 shows the
petrophysical data. Machine learning has been widely used
to predict petrophysical properties such as porosity, perme-
ability, capillarity pressure, and water saturation. Machine
learning eliminates the need for human processing and
the geological complexities that traditional techniques must
contend with, allowing for a significantly shorter processing
time while maintaining exceptional quality and consistency
in the output [37].

Significant subsurface parameters must be identified or
evaluated; however, themost important factors are permeabil-
ity and porosity. They are crucial indicators of the quality and
financial feasibility of oil reservoirs. Porosity, a measurement
of the proportion of open spaces or pores in a rock, is a crucial
factor to consider when estimating the potential amount
of hydrocarbons contained in a reservoir. The open spaces
might serve as storage areas for hydrocarbons. Meanwhile,
permeability is an important factor in characterizing how
adjoined a rock’s distinct open spaces are. Permeability
measures the ability of hydrocarbons to flow up through the
pores toward the surface where they may be taken out. It is
impossible to obtain accurate solutions to many petroleum
engineering issues without an accurate figure of permeability.

A. PERMEABILITY
A study by Huang et al. [38] investigated the application of
an ANN to predict the permeability in an offshore gas field
in eastern Canada. The authors proposed a back-propagation
ANN using well log data from six wells. The proposed model
surpassed conventional techniques such as multiple linear
regression(MLR) and multiple nonlinear regression(MNLR).
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TABLE 1. Common Petrophysical data and their attributes.

Similarly, Helle et al. [39] supported this finding by
predicting the porosity and permeability of the North
Sea reservoir. The model also outperformed conventional
methods. Likewise, Singh [40] employed ANN to estimate
permeability from conventional well logs. The authors
highlighted the technique’s capacity to generate a constant
good match between the projected and actual outputs.
A study by Abdideh [41] predicted the permeability in an
oilfield in Iran using a feed-forward back-propagation ANN
technique. Utilizing well logs for prediction, the technique
has advantages over MLR regarding prediction accuracy.
The ANN model in Ben-Awuah and Padmanabhan [42]
was developed to predict the permeability of a sandstone
reservoir. However, only porosity was used as the model
input. Using only three well logs features: mobility index,
neutron porosity, and bulk density, Elkatatny et al. [43]
constructed an empirical formula from an ANN to estimate
the permeability in a heterogeneous carbonate reservoir. The
suggested ANN model provides slightly lower accuracy than
the Adaptive Neuro-Fuzzy Inference System (ANFIS) but
is better than SVM, yet the model provides an empirical
equation. However, Basbug and Karpyn [44] investigated the
relationship between the permeability and porosity, specific
surface area, and irreducible water saturation. The authors
suggested using the ANN model to predict permeability.
The proposed approach displayed acceptable levels of
accuracy. A study by Irani and Nasimi [45] introduced
evolving ANN to predict permeability. The model utilized

a Genetic Algorithm (GA) optimizer in ANN to search for
the optimal parameters for the network. The authors noted
that the proposed model provided a higher accuracy than
the conventional ANN. After applying Principal Component
Analysis (PCA) to extract relevant features from well logs,
Bagheripour [46] constructed a CM consisting of MLP,
Radial Basis Function (RBF), and Generalized Regression
Neural Network (GRNN), utilizing GA to predict permeabil-
ity. The proposed CM model produced better accuracy than
the individual methods. In addition to GA,Matinkia et al. [47]
examined Particle SwarmOptimization(PSO) and Social Ski-
Driver(SSD) algorithm to predict permeability using MLP in
the Fahlian Chahi Formation. TheMLP-SSD hybrid provided
the best accuracy after outlier removal and feature selection
with Shapley Additive explanations (SHAP) were carried out.
Also, Zhao et al. [48] utilized SHAP to visualize and explain
their predictions using LR, SVM, BPNN, RF, KNN, GBDT
and XGBoost algorithms. However, XGBoost provided the
most accurate results in their predictions. Likewise, Liu and
Liu [49] predicted the permeability in theOrdonBasin using a
hybrid of PSO and XGBoost. The authors also utilized SHAP
for feature selection and interpretation to make the model
more explainable. The proposed model performed better than
CNN, Long short-term memory (LSTM), and gated recurrent
unit(GRU).

Although ANN has been shown to be effective for
predicting permeability, they have the disadvantages of
slow convergence and trapping at local minima.A study
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by Tahmasebi and Hezarkhani [50] investigated a Modular
Neural Network (MNN) to predict permeability. The MNN
model comprises several interconnected neural networks that
effectively decompose a large issue into smaller components.
This enables quicker, simpler, and more accurate predictions.
The suggested model outperformed the conventional neural
network regarding prediction accuracy and performance. In a
research conducted by Jamialahmadi and Javadpour [51],
an RBF neural network was proposed to predict permeability
from porosity. This model distinguishes itself from conven-
tional neural networks because of its universal approximation
and higher learning pace. Similarly, [52] proposed utilizing
a GA as an optimizer inside an ANN to determine the
best parameters to decrease time while achieving the
greatest achievable performance. This technique was used
to predict permeability separately in an Iranian reservoir
based on geological zonation. However, Aïfa et al. [53]
investigated the efficiency of hybrid models for predicting
the permeability and porosity using well logs. The authors
suggested a neuro-fuzzy system that combines ANN and
Fuzzy Logic (FL) to reap the advantages of both approaches
while outperforming the methods individually. To overcome
certain limitations of ANN, Saljooghi and Hezarkhani [54]
introduced wavelet theory. The suggested technique utilizes
various wavelets as activation functions to estimate perme-
ability. The technique used well logs as input and showered
superiority over conventional ANN. Meanwhile, Baziar and
Tadayoni [55] compared the performance of the Co-Active
Neuro-Fuzzy Inference System (CANFIS), MLP and SVM
to estimate the permeability in a tight sandstone reservoir.
CANFIS provided the best accuracy at the expense of slow
computational speed. Using only porosity, specific surface
area and irreducible water saturation, Kamali et al. [56]
proposed using Group Method of Data Handling (GMDH)
algorithm to predict permeability in carbonate reservoirs
from Russia and Iran. The proposed algorithm was able to
predict permeability accurately and outperform polynomial
regression, Support Vector Regression (SVR) and Decision
Tree (DT) when compared.

A study by Hamada and Elshafei [57] introduced Nuclear
Magnetic Resonance (NMR) to complement conventional
well logs to address the heterogeneity of gas sand reservoirs.
NMR has been noted to offer lithology-independent quan-
titative porosity and a reliable estimate of the hydrocarbon
potential. The authors applied forward-feed ANN to predict
the porosity and permeability of a heterogeneous gas sand
reservoir. According to the findings, predictions using NMR
combined with conventional logs provide more accuracy than
predictions using only conventional logs.

Some authors have conducted research using differ-
ent machine learning techniques. A study conducted by
El-Sebakhy et al. [58] applied a Functional Network (FN)
technique to predict permeability in a carbonate reservoir.
Using a polynomial basis, the FN model’s predictive perfor-
mance showed a better correlation than the ANN, ANFIS,
and statistical regression, benefiting from the model’s basic

architecture. Conversely, Olatunji et al. [59] explored extreme
learning machines in predicting permeability in carbonate
Middle Eastern reservoirs. The suggested method is superior
to the ANN and SVM in performance, accuracy, and rapid
learning speed. On the other hand, Gholami et al. [60] exam-
ined the Relevance Vector Regression(RVR) in the prediction
of permeability in a carbonate reservoir using GA as an
optimizer. When the accuracy of the proposed method was
compared with that of SVM, it showed a modest advantage.
In another study, Abdulraheem et al. [61] investigated the
FL technique to predict the permeability in a Middle Eastern
carbonate reservoir. The authors noticed the efficiency of
subtractive clustering over the grid partitioning technique.
The suggested technique showed excellent matching and
proved effective for predicting the permeability. Furthermore,
Wang et al. [62] optimized FL using Student-Newman-
Keuls as a feature engineering technique. The proposed
model outperformed the conventional technique without an
optimizer.

In a study by Zhang et al. [63] compared the performance
of MLP, SVR and MLR in the prediction of permeability in a
heterogeneous tight gas sand reservoir. Porosity and well logs
were used as inputs. MLP and SVR displayed high prediction
accuracy, with SVR having a slightly higher correlation and
MLP having a marginally lower error measure. In another
study, Sheykhinasab et al. [64] proposed carbonate reservoir
permeability prediction using the Least Square Support
Vector Machine (LSSVM) and Multilayer Extreme Learning
Machine (MELM) algorithms. The authors utilized the
Cuckoo Optimization Algorithm (COA), PSO and GA to
optimize the models. After the Tukey method was used for
outlier removal, the hybrid of MELM and COA provided the
most accurate results.

On the other hand, Anifowose et al. [65] utilized
an ensemble machine learning paradigm to overcome a
single hypothesis of conventional computational intelli-
gence(CU) techniques and Hybrid Intelligent Systems (HIS)
and the choice of CI/HIS model parameters. A study
by Bhatt [66] attempted to predict porosity, permeability,
fluid saturation and lithofacies in the Oseberg field using
a bagging technique of committee machines. The author
used wireline and measurement while drilling (MWD)
logs for real-time prediction. The committee machines
proved to exhibit superior performance over a single neural
network.

However, Chen and Lin [67] used commonly employed
empirical formulas in reservoir characterization to construct
a novel ensemble model to calculate the permeability. The
ensemble model used Wyllie and Rose [68], Coates and
Dumanoir [69], and Schlumberger [70] empirical formulas to
form a committee machine. The proposed method produced
far more reliable predictions than individual methods and
offered considerably greater generalization. However, [71]
used empirical formulas and multiple regression in their
committee machine. The ideal combination of weights was
determined using GA. The authors predicted the permeability
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of a carbonate reservoir in the Balal oil field using con-
ventional well logs data. Similarly, the committee machine
produced more accurate predictions than the individual
methods. In Helmy’s [72] ensemble model, it consists of
SVM, ANN and ANFIS. Permeability was predicted in an oil
field in the Middle East using well logs. This demonstrates
that heterogeneous ensemble models may improve perfor-
mance more than individual models, as seen in the accuracy
and generalization. On the other hand, Anifowose et al.
[73] used well logs from a Middle Eastern carbonate
reservoir and employed three feature selection algorithms
to make permeability predictions. The SVM and Type-2
Fuzzy Logic (T2FL) were trained using FN, DT, and Fuzzy
Information Entropy (FIE) feature selection strategies. The
FN-SVM hybrid approach performed very well compared
to the other hybrid and standalone models. In contrast,
an innovative approach put forth by Masroor et al. [74]
introduces the Multiple-Input deep Residual Convolutional
Neural Network (MIRes CNN) for predicting permeability
in the Azadegan oil field, Iran. This unique technique
simultaneously utilizes two distinct datasets: Numerical Well
Logs (NWLs) and Graphical Feature Images (GFIs). The
GFIs were generated by converting the 1D vector of NWLs
to 2D matrices. While the NWL datasets are handled by a
Single-Input deep Residual one Dimensional CNN (SIRes
1D-CNN), the GFIs are processed by a Single-Input deep
Residual two Dimensional CNN (SIRes 2D-CNN). Com-
parative analysis demonstrated that this proposed approach
outperformed SIRes 1D-CNN, SIRes 2D-CNN, GMDH, and
RF methods.

Using forward feedback propagation neural network,
Anifowose et al. [75], [76] formed an ensemble model
to predict permeability and porosity. The cornerstone of a
variety is neural networks with a varying optimum number
of hidden neurons, with a randomized number of hidden
neurons and with various learning algorithms. A study by
Anifowose et al. [77] proposed an ensemble SVM model
to predict porosity and permeability. The suggested model
makes predictions based on various optimum regularization
parameter values. A comparison of the model’s perfor-
mance against that of an SVM implemented using the
bagging approach, a traditional SVM, and an ensemble
of Decision Trees proved the superiority of the proposed
model. A study by Anifowose et al. [78] suggested an
ensemble of Extreme Learning Machines(ELM) to predict
porosity and permeability. The proposedmodel utilizes an FN
technique for advanced feature selection, which makes it a
hybrid. The model performance surpassed the conventional
ELM and Random forest. Otchere et al. [79] developed
a hybrid model that utilized Random Forest and Lasso
Regularisation feature selection technique combined with
XGBoost to accurately predict water saturation and perme-
ability. Based on the results, it was found that the suggested
hybrid model outperformed both the conventional XGBoost
model and the hybrid model that integrated PCA and
XGBoost.

Even though newer well logging methods are more
accurate than older ones, researchers have shown little
interest in refining their algorithms. Although researchers
have shown a limited interest in developing their algorithms,
modern well logging methods have been demonstrated to
offer greater accuracy than traditional ones. According to
the literature review for the permeability prediction, Table 2
provides a thorough summary of the variousmachine learning
approaches used, the input parameters included, and the
reservoir location examined.

B. POROSITY
Researchers have commonly used ANN to predict porosity
in various formations [39], [57], [66], [80], [81], [82], [83],
[84]. Using a back-propagation ANN, Helle et al. [39]
predicted porosity and permeability in the North Sea. Using
density, neutron porosity, sonic and gamma-ray, the authors
could predict the porosity and permeability in Jurassic
reservoirs with acceptable accuracy. A comparative study
by Konate et al. [82] examined two ANN models to
predict permeability in the Zhenjing oilfield. GRNN and
feed-forward back propagation neural network (FFBP) were
the models that were examined. The GRNN displayed
superiority in prediction accuracy. Similarly, Zhang et al. [85]
examined GRU neural network in prediction of porosity.
The GRU provides a fast and demands less computational
resources for the prediction. The proposed model included
a Copula function as a correlation analysis(CA) for feature
selection. Compared to standalone GRU, Recurrent neural
network (RNN), and MLP models, the model’s superiority
has been shown. In another study, Hamada and Elshafei [57]
developed a model that uses NMR logs to augment traditional
well logs for gas sand reserves. The study found that
predictions utilising NMR with traditional logs are more
accurate than solely traditional logs.

Researchers have successfully hybridised ANN with other
methodologies to circumvent the limitations inherent to
ANN. In a comparative study, Zargari et al. [81] compared
ANN and ANFIS to predict the porosity and permeability in
an Iranian carbonate reservoir. The ANFIS provided better
accuracy than the ANN model. The authors also acknowl-
edged the potential of genetic algorithms for enhancing the
prediction of ANN. Also, Elkatatny et al. [83] compare ANN,
ANFIS and SVM. However, the authors noted that ANN
provides better accuracy. Conversely, Nourani et al. [84]
utilized Hand-held X-ray fluorescence (HH-XRF) as input
for porosity prediction in a chalk reservoir. The authors
relied on the speed and accuracy provided by the HH-XRF
approach for geochemical characterization. The RF, ANN,
GA-ANN, and GA-RF techniques were used to determine
the most accurate prediction approach. However, the GA-RF
offered the highest level of accuracy. However, Lim and
Kim [80] utilized fuzzy logic for the input parameter
selection between well logs before applying ANN for
prediction. In another study, Ahmadi and Chen [86] applied
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TABLE 2. Summary of literature on the prediction of permeability using machine learning.
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TABLE 2. (Continued.) Summary of literature on the prediction of permeability using machine learning.

an Imperialist Competitive Algorithm (ICA) and a hybrid GA
and PSO (HGAPSO) to predict porosity using an ANN. The
author also applied HGAPSO optimization to the LSSVM
for porosity prediction. The models were compared with
standalone ANN and fuzzy decision trees (FDT). However,
the HGAPSO-LSSVM model provided the high accuracy.
Furthermore, Sun et al. [87] suggested optimizing the
Elman neural network with a Whale Optimization Algorithm
(WOA) to predict porosity in oil wells in Western China.
Compared to the standalone Elman and BP algorithms, the
WOA-Elman algorithm provided better accuracy. A study
by Wang and Cao [88] proposed a prediction of poros-
ity using a deep learning method called an integrated
neural network. The suggested approach, combining a
1-dimensional CNN with bidirectional GRU, demonstrated
higher accuracy than the biGRU, GRU, LSTM, RNN
and MLR.

Other machine learning techniques have also been used
to predict porosity. A study by Al-Anazi and Gates [89]
investigated the SVR technique to estimate the porosity. The
proposed model proved superior to the MLP, GRNN and
Radial Basis Function Neural Network (RBFNN) in terms
of accuracy and robustness. However, the SVR robustness
is subject to kernel function selection. The advantage
comes with the burden of using far more computational
resources than various alternative approaches. However, Ani-
fowose et al. [73] applied three feature selection techniques
for porosity prediction using laboratory measurements from
theNorthernMarionOilfield. FN, DT, and Fuzzy Information
Entropy(FIE) feature selection techniques were applied to
the SVM and T2FL. The FN-SVM hybrid technique proved
outstanding among the alternative hybrid and standalone
models. Furthermore, Ahmadi et al. [90] employed GA’s
optimization ability to perform predictions using FL and
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LSSVM. The suggested models predicted the porosity and
permeability of wells from Northern Persian Gulf oilfields.
GA-LSSVM provided slightly better accuracy than the
alternative method. Also, Zhong and Carr [91] investi-
gated a hybrid SVM model with a mixed kernel function
(MKF). The model was optimized using particle swarm
optimization (PSO) to improve its predictive capabilities.
Regarding accuracy, the proposed method outperformed the
conventional SVM, LSSVM, ANN, and RBF. In a separate
study, Andersen et al. [92] undertook an optimization of
the LSSVM to predict porosity and water saturation in
the Varg field located in Norway. The authors explored
predictive models using various combinations of well logs.
Interestingly, their findings highlighted that the most accurate
predictions were achieved when focusing on porosity and
utilizing only three specific well logs: density, deep resistivity
and gamma-ray logs. Moreover, their research indicated
that incorporating additional well logs yielded no notice-
able enhancements in the model’s predictive performance.
In addition, Anifowose et al. [77] presented an ensemble
model using SVM. The proposed model offers predictions
based on several optimal regularisation parameter values.
A comparison of the performance of the proposed model with
that of an SVM implemented using the bagging technique,
a standard SVM, and an ensemble of DT demonstrated its
superiority. In another study, Tariq et al. [93] compared
deep neural network (DNN), DT, RF KNN, XGBoost, and
AdaBoost for predicting NMR porosity using conventional
well logs. Based on the outcome, it was found that DNN,
RF and XGBoost demonstrated superior levels of accuracy.
The experimental results strongly indicate that employing
DNN, RF, or XGBoost can significantly enhance the accuracy
of predictions.

On the other hand, Haqqi et al. [94] suggested pre-
dicting porosity in the Damar field, Indonesia, using the
XGBoost algorithm optimized with the GridSearchCV(GS)
technique. However, Pan et al. [95] proposed predicting
the porosity using an optimized XGBoost model with
GS and GA. The presence of two different optimization
strategies benefits the model, as shown by its accuracy. The
suggestedmodel outperforms the alternatives when examined
with a GS optimisation model alone, followed by LR,
SVR, RF, and XGBoost. According to the literature review
for the porosity prediction, Table 3 provides a thorough
summary of the various machine learning approaches used,
the input parameters included, and the reservoir location
examined.

C. WATER SATURATION PREDICTION
Water saturation is another vital reservoir property indicating
the water portion present in certain pore spaces. It aids in
calculations of perforation depth for offshore and onshore
hydrocarbon-producing sites [96]. It is necessary for the
appropriate computation of hydrocarbon volume. Over the
last few decades, various empirical methods for predicting

water saturation have been introduced using petrophysical
data from logs, including resistivity, sonic, density, and neu-
tron porosity. The pioneering empirical model for predicting
saturation was the Archie [97] model for clean sandstone
reservoirs. Several researchers have attempted to derive the
relationship betweenwater saturation andwell log data to pre-
dict water saturation in different formations [98], [99], [100],
[101], [102]. However, these approaches are constrained
by their formation and are only applicable in restricted
lithologies. These models lack generalization and cannot be
applied universally. Furthermore, the parameters associated
with each model have their underlying uncertainties, which
may lead to misinterpreted outcomes. Therefore, machine
learning techniques have been widely used to predict water
saturation.

ANN and FL are examples of popular Artificial Intel-
ligence (AI) techniques used to predict water saturation.
Among the many different machine learning approaches,
ANN has the widest range of potential applications and has
been shown to be successful in various contexts. Several
ANN models have been successfully applied to core data
and well logs. The earliest was Helle and Bhatt [103],
which proposed a committee neural network that utilized
sonic, density, neutron porosity and resistivity logs as inputs.
Subsequently, Shokir [104] implemented an ANN model
that included the self-potential log (SP log) to the input
features. The model’s superiority was proved by comparing
the water saturation predictions generated byANNwith those
generated by conventional petrophysical analysis. On the
other hand, Kamalyar [105]’s model solely considered the
porosity and permeability from the core as well as the height
above the free water level. Similarly, Al-Bulushi et al. [106]
proposed an ANN trained using a resilient back-propagation
learning algorithm. The authors also investigated the effect
of several different well log parameters that were the model’s
inputs using a feature ranking approach carried out on
the well logs. The proposed model was used to predict
water saturation, providing better accuracy than the statistical
approach. In addition to this, Mardi et al. [107] also out
the idea of using an ANN model to predict not only water
saturation but also cementation and the saturation exponent
in two carbonate reserves located in Iran. The model used by
the authors included not just well log measurement but also
core porosity. Water saturation, porosity and permeability in
the Niger Delta region were predicted by Okon et al. [108]
using a feed-forward back-propagation ANN. The proposed
model included feature ranking and achieved high accuracy.
In Al-Bulushi et al. [109]’s study, density, neutron, resistivity,
and photo-electric wireline logs were selected as input
features to construct a model using an ANN technique to
predict water saturation. According to Nyein et al. [110], the
superiority of the ANN model over the conventional models
in predicting the water saturation and porosity in a shaly
sandstone reservoir was reported. The core data from the two
wells exhibited an excellent fit to the suggested model, which
demonstrated good matching.
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TABLE 3. Summary of literature on the prediction of porosity using machine learning.

Another study by Kenari and Mashohor [111] formulated
an ANFIS by combining ANN and fuzzy logic to estimate
the water saturation in a carbonate Iranian field. The model
is superior to the conventional ANN as it can deliver more

accuracy, robustness, and generalisation than each of the sep-
arate components. In addition, Ibrahim et al. [112] compared
empirical equations with ANN and ANFIS to predict water
saturation. The ANFIS slightly outperformed the ANN in

VOLUME 12, 2024 19047



A. Lawal et al.: Machine Learning in Oil and Gas Exploration: A Review

the prediction outcome but was significantly better than the
empirical formulae. Additionally, Khan et al. [113] compared
ANN and ANFIS in a carbonate reservoir in the Middle
East. The results showed that ANFIS provided slightly better
output accuracy than ANN. Meanwhile, ANN and FL were
compared by Bageri et al. [114] in a carbonate reservoir in
theMiddle East. The output suggests that the FLmodel offers
higher accuracy than the ANN model.

Conversely, Amiri et al. [115] optimized their ANN
model using an Imperialist Competitive Algorithm (ICA)
in an unconventional reservoir. Furthermore, the authors
noticed the impact of outliers, which significantly improved
the prediction outcome when detected and deleted when
appropriate. In another study, Gholanlo et al. [116] proposed
the concept of using a radial basis neural network to predict
water saturation in the carbonate Sarvak Formation in Iran.
Compared to other neural network models, the advantages
of the RBF model include its straightforward structure and
ability to acquire knowledge quickly.

However, Adeniran et al. [34] reported the efficiency of
FN in predicting water saturation and reservoir porosity using
well logs. This model has been noted to produce a speedy
and unique solution that surpasses neural networks. Also,
Tariq et al. [117] suggested an FN model to predict the water
saturation. The model’s accuracy was improved by trying
many optimization algorithms, such as Differential Evo-
lution, PSO, and Covariance Matrix Adaptation Evolution
Strategy (CMAES) to develop the most accurate version. The
PSO proved to be the best choice among them. Additionally,
Andersen et al. [92] conducted an optimization of the Least
Squares Support Vector Machine (LSSVM) for predicting
porosity and water saturation in the Varg field, Norway.
Their investigation involved predicting using different sets of
well logs. Surprisingly, the best results were achieved when
predicting water saturation using only four logs: medium
resistivity, gamma ray, adjusted caliper, and self-potential
logs. Interestingly, their study revealed that the inclusion of
additional logs did not lead to any improvement in predictive
performance.

SVM is yet another alternative technique to machine learn-
ing that has been presented for predicting water saturation
by [96], [118], and [119]. According to Mollajan et al. [118],
the model outperformed the ANN in terms of the accuracy
of its predictions. Furthermore, Miah et al. [96] examined
another version of SVM, which used least squares as its
kernel function called least-squares support vector machine
(LS-SVM). The authors also considered the significance of
feature ranking because it reduces the model’s time and
complexity by considering only the most important input
characteristics. Their proposed LS-SVM surpassed the ANN
in terms of predictive accuracy.

Baziar et al. [120] compared the performance of an
SVM, ANN, Random forest and gradient boosting to
predict water saturation using a small data set in a
sandstone reservoir. Although the authors reported the
reliability of all the various techniques used, SVM was

noted to provide the best performance. In another study,
Hadavimoghaddam et al. [121] compared the accuracy of
various boosting algorithms, namely XGBoost, LightGBM,
AdaBoost, CatBoost and Super Learner, to predict water
saturation in a sandstone reservoir in the Russian Federation.
Of all the options, XGBoost proved to be the most precise.
Nevertheless, the accuracy was only slightly better than that
of the Super Learner.

Otchere et al. [79] constructed a hybrid model consisting
of an ensemble model of Random Forest and Lasso Reg-
ularisation as the feature selection technique and XGBoost
as a predictor to predict water saturation and permeability.
The suggested hybrid model was better than the traditional
XGBoost model and a hybrid model that included PCA
and XGBoost. According to the literature review for water
saturation prediction, Table 4 thoroughly summarises the var-
ious machine learning approaches used, the input parameters
included, and the reservoir location examined.

VI. DISCUSSION
Machine learning has seen remarkable growth in oil and gas
exploration. This can be attributed to its ability to address
various challenges in the industry, such as seismic data
processing, lithofacies classification and reservoir character-
ization.

Machine learning models have several benefits over
traditional oil and gas exploration approaches, derived
from empirical and semi-empirical models for estimating
reservoir parameters. Machine learning models can discover
insights from the well logs that traditional models have
overlooked by capturing the high-dimensional complicated
interactions and nonlinear behaviours among the well log
parameters. Furthermore, they yield remarkably accurate
results using significantly less time and resources than
traditional methods [112]. The benefits of machine learning
cannot be overstated because it is evident that they may
dramatically decrease the time required for seismic data
processing, lithofacies classification and reservoir charac-
terization. Similarly, as a result, the amount of labour and
resources needed to address problems in the industry is
decreased [13], [25], [63].

However, there are limits to what can be accomplished
with every method, and machine learning is no exception.
Despite significant progress in tackling linear, nonlinear, and
complicated problems, including classification, regression,
and prediction, several downsides exist. The commonly used
MLP is sluggish to train, prone to becoming trapped in local
minima and requires a lot of trial and error to determine the
ideal topology. Additionally, it demands a greater quantity of
data than its counterpart models.

Furthermore, there is a direct correlation between the
quality of the data used to train a machine learning algorithm
and the performance of the algorithm itself. The data
quality used to train the model directly affects how accurate
it is [122]. This is frequently referred to as the GIGO
principle (garbage in, garbage out). This indicates that a poor
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TABLE 4. Summary of literature on the prediction of water saturation using machine learning.

representation of the challenge inadequately represents the
situation’s dynamics, which is necessary to discover how
to translate instances of inputs into outcomes. The original
data may have been compressed into nonlinear correlations

revealed only after extensive data preprocessing. The data
may also be flawed for various reasons, such as values
that are out of range, contradictory information or minor
random changes in observations. As a result, substantial
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FIGURE 3. Road-map for optimal accuracy of machine learning techniques in oil and gas exploration.

data preparation must be conducted to capture the intricate
interaction of variables that might be discovered across data
sources in the upstream oil and gas industry.

Despite their effectiveness, individual machine learning
models are not sufficiently resilient to address complicated
issues and deal with uncertainties in the oil and gas sector.
Researchers have recently focused on using ensembles and
hybrid machine learning approaches to overcome this issue.
This is shown by the growing number of recent articles on
using ensembles and hybrid machine learning techniques for
seismic data processing, facies and lithofacies classification
and reservoir characterization. Despite this, a considerable
amount of work still has to be carried out to standardise the
techniques for ensemble integration.

Hybrid machine learning was used to supplement the indi-
vidual models with the strengths of others. Hybrid machine
learning combines diverse computations or processes from
multiple models, all intended to improve one another.
Various basic models collaborate to complete and strengthen
one another to produce improved outcomes compared to
their single model equivalents. Optimization algorithms
such as GA may enhance models by selecting the best
hyperparameters. Dimensional reduction algorithms, such as
PCA, may decrease model complexity while simultaneously
removing noise from data. There are various hybridization
options to explore for improving single machine learning
models capable of addressing the complex challenges of the
oil and gas sector.

A committee machine was used to develop the neural
network further. A more accurate, robust, and better capacity
to make generalisations is achieved by combining the
expertise of several experts rather than focusing solely on the
superior expert. This is due to the fact that the generalization
of individual members is not unique. Expert pruning may
circumvent the extra resource restrictions imposed by the
committee machine.

In addition, ensemble learning has been researched further
to enhance the performance of individual machine learning
models to address complicated problems in oil and gas explo-
ration. Ensembles can integrate various outcomes, including
multiple learning techniques, conflicting interpretations of

data, randomly sampled data considerations, multiple model
structures, and other well-defined properties of interest.
Because ensemble models can manage numerous hypotheses
simultaneously, they can assist in overcoming the high degree
of uncertainty present in reservoir attributes and model-
tuning variables. This enables more reliable and accurate
outcomes and provides overall conclusions with the least
chance of error and ambiguity. Ensemble learning can
manage the synthesis of highly dimensional and multi-modal
data, such as those in the oil and gas sector. Ensemble learning
has endless opportunities to be examined and analyzed to
achieve potentiality and enhanced performance.

Machine learning can significantly change the decisions
made by oil and gas industry specialists. Machine learning is
expected to become increasingly important in the oil and gas
sectors in the future years [20]. Nevertheless, researchers still
face difficulties obtaining data from laboratories and fields,
which is an obstacle to improving the literature.

As oil and gas exploration continues to generate massive
amounts of data, it is becoming more important to create,
improve, and incorporate big data management methods in
the field of AI. Utilizing the available data to its fullest
potential is a current focus, and it will likely remain in the
future. To achieve optimization, one must make use of AI’s
formidable resources.

The road map shown in Fig. 3 are processes critical for
achieving optimal accuracy in applying machine learning
in oil and gas exploration. The first stage involves collect-
ing high-quality data about the reservoir using the most
recent well logging instruments and methodologies. These
technologies may offer a wide variety of measurements
that can be used to determine the geological, geophysical
and characterization aspects of the reservoir. The second
stage is to verify that the highest data quality methods
are followed. Comprehensive data validation, cleaning, and
normalisation are required to ensure the data is correct
and dependable. The accuracy and efficacy of the machine
learning algorithm are affected by the data quality employed
for modelling. Data preparation is the third phase. This
process includes selecting important data characteristics,
scaling, and translating the data into a format suitable for
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machine learning algorithms. It is critical to identify and
eliminate features that are irrelevant to the problem at hand.
The fourth step is choosing the appropriate machine learning
algorithm for the data and task. Machine learning methods
such as classification, regression, hybrid, and ensembles
may be employed. The specific problem and dataset will
determine the algorithm used. The fifth stage assesses the
machine learning algorithm using several metrics such as
accuracy, precision, mean absolute error, mean squared error
and R-squared. This stage aids in determining the correctness
of the model and identifying any improvement areas. The
last phase is to increase the accuracy and performance of the
machine learning algorithm. This may be accomplished by
altering the hyperparameters or using a new method entirely.
The objective was to obtain the highest possible prediction
accuracy using the supplied data. Overall, the procedures
shown in the figure are a good starting point for academics
and practitioners interested in applying machine learning to
predict reservoir properties in the oil and gas exploration
stage.

VII. CHALLENGES
The oil and petrol sector generates massive quantities of
data through exploration, drilling, production, and refining
operations,making it one of themost data-intensive industries
in the world. The advantages of machine learning in the
industry cannot be understood, as it can boost efficiency,
lower costs, and increase safety. Nonetheless, some signifi-
cant technological problems must be addressed to leverage
the potential of machine learning in the exploration stage of
the industry. These are described below.

A. DATA ISSUE
1) DATA AVAILABILITY
The lack of readily available high-quality data is a significant
barrier to the widespread use of machine learning in the
oil and gas industry. The oil and gas sector produces huge
volumes of data, yet a lot of it is unstructured, dispersed, and
difficult to access [123], [124]. This is a serious concern for
machine learning algorithms because they function best when
fed with massive volumes of high-quality data [125].
The exploratory stage for oil and gas contributes to the lack

of data in the industry. During early exploration, limited data
is common due to the difficulty of drilling wells in extreme
conditions such as the deep sea or Arctic. This makes data
collection and transmission from such areas laborious and
expensive. Utilizing the obtained data in machine learning
applications might be difficult if they are limited, incomplete,
inconsistent, or of poor quality [1].

2) DATA PREPROCESSING
Poor quality gives rise to a data preprocessing challenge
due to the complexity of the data required for machine
learning model training [126]. These data may include
seismic surveys, drilling data, well logs, production data,

and other geophysical data of varying quality and format
geophysical data. There might be a substantial number of
redundancies, inconsistencies and missing values in the data,
requiring extensive cleaning and standardization before the
data can be useful.

Moreover, combining these diverse data sources results in a
substantial volume of data, presenting challenges associated
with high dimensionality due to the multitude of attributes
measured at different depths and locations. Additionally,
the inherently uncertain geological conditions contribute to
further subsurface data uncertainties arising from measure-
ment and calibration error, processing, interpolation, and
extrapolation.

Reservoirs exhibit geological features across different
scales, from microscopic pore-scale structures to macro-
scopic field-scale structures. Integrating data collected at
various scales is crucial for developing accurate and compre-
hensive reservoir models. Exploration activities often involve
spatial data, such as geological maps, seismic surveys,
and satellite imagery, introducing unique challenges in data
integration, feature engineering, and computational demands.
Temporal information present in some exploration datasets,
documenting historical changes in geology or environmental
factors, adds another layer of complexity and uncertainties,
requiring specialized techniques like time series analysis and
data fusion for meaningful insights.

Preprocessing is significantly more challenging in car-
bonate reservoirs owing to their severe heterogeneity and
complicated pore structure composed of matrix porosity,
vugs, fractures, and other geological features [43]. This
leads to a weak porosity-permeability relationship. Because
of this, the permeability prediction using the NMR log
becomes more difficult as it relies heavily on the correlation
between porosity and permeability. Furthermore, outliers and
anomalies could be present in the data, reducing the accuracy
of the machine learning models.

3) DATA FRAGMENTATION AND ACCESS RESTRICTIONS
The fragmented structure of the sector is another source of
data scarcity [124]. Many firms, contractors, and service
providers are engaged in exploration and production opera-
tions in the oil and gas sector, making it a highly decentralized
industry. Data silos and restricted access result from this
fragmentation, which makes it difficult to transfer data across
various entities.

Lastly, legal and privacy concerns restrict data access in
the oil and petrol industry. Because of the potentially sensitive
nature of the data gathered during exploration and production,
stringent rules limit its collection, use, and dissemination.

4) ADDRESSING CHALLENGES
Potential solutions can be applied to overcome these chal-
lenges. One answer is that stakeholders in the sector should
work together and share information. Developing common
data standards, publishing data in public repositories, and
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teaming up with academic institutions to build data-sharing
infrastructure are viable options.

Data augmentation is an alternative approach when new
information is added to preexisting data. This may entail
generating synthetic data using simulation tools, augmenting
seismic imagery with computer vision methods, or reusing
data from other sources via transfer learning. Numerous
methods, such as flipping, cropping, rotating, and adding
noise to the original data, are used to create additional training
data from preexisting data sets. This can be applied to image
data types such as SEM, thin sections, cores and seismic
images to increase the quality and quantity. Methods such as
downsampling, upsampling interpolation, extrapolation, and
smoothing can be implemented on the well logs.

Efforts should be undertaken to obtain additional data
using novel techniques to increase data accessibility. Data
from inaccessible areas can be gathered using remote sensing
technology such as drones and satellite photos. Drilling and
production data can be collected in real-time using modern
sensor technology.

Enhancing the quality of current data is another way to
address the issue of data scarcity. Investing in data prepro-
cessing methods can help ensure sufficient data quality. This
may involve data cleaning, normalization and transformation.
A quality control approach can also be utilized to ensure
adequate data quality for machine learning applications.
This might include establishing uniform guidelines for data
collection and conducting various data checks for consistency
and validation. Dimensionality reduction techniques can
be used to retain essential information while reducing the
number of features. Feature selection methods can also be
applied to identify and keep the most relevant attributes.

Furthermore, multiscale modelling techniques that con-
sider both microscopic and macroscopic features can be
utilized. This involves adapting algorithms to handle data at
different scales and integrating diverse datasets for a com-
prehensive reservoir model. Also, uncertainty quantification
techniques can be integrated into data preprocessing, which
can help model and manage uncertainties, providing a more
robust representation of geological conditions. Specialized
techniques like spatial data integration, feature engineering,
and computational methods to handle the unique challenges
of spatial data can be implemented. For temporal data,
employ time series analysis and data fusion techniques to
extract meaningful insights from historical changes.

Models specifically designed for carbonate reservoirs
should take into account the distinct characteristics of
matrix porosity, vugs, fractures, and other features. Exploring
advanced machine learning techniques that can handle
weak porosity-permeability relationships would be benefi-
cial. Additionally, it is important to carefully examine the
implementation of outlier detection methods, as some unique
subsurface structural features may be viewed as outliers,
which can improve the model’s accuracy.

Comprehensive methodologies capable of handling uncer-
tainties, heterogeneity and complex structures must be

developed. The future requires robust, adaptable machine
learning frameworks to handle data quality, uncertainties and
limitation challenges. This will allow the establishment of a
robust input-output relationship. Advanced machine learning
approaches, such as feature selection, dimensionality reduc-
tion, and appropriate regularisation, may be used to capture
complicated data correlations and improve forecast accuracy.

Research can focus on improving interpolation techniques
to make predictions more accurate and robust, especially
in areas with sparse data. Advanced spatial statistics and
machine learning methods like Gaussian processes can be
explored. Developing standardized data formats, ontologies,
and metadata standards for geospatial data can aid in data
integration. Automated tools for data harmonization can be
created. Techniques for effective data fusion of temporal and
spatial data can be developed. This can involve research in
spatiotemporal databases and GIS (Geographic Information
System) applications.

Furthermore, engaging with regulatory organizations to set
data exchange and utilization rules greatly increases regula-
tory compliance. Methods for doing so include data-sharing
agreements and data anonymization.

Future research can focus on novel approaches to effec-
tively address the challenge of data scarcity. Improved infor-
mation extraction may be possible by developing innovative
data mining algorithms to handle vast and complicated
data sets. Similarly, Predictive abilities can be improved
by developing new machine learning algorithms optimised
for learning from small and noisy data sets. In addition,
developments in data fusion techniques have enabled data to
be integrated from various sources more efficiently. Lastly,
improved machine learning techniques for data discovery in
limited data can be explored to identify new patterns and
insights in limited data.

When addressing the problem of data issues in the oil
and gas industry for machine learning purposes, a hybrid
approach is most likely to provide the best results. A holistic
approach involving data cleaning, dimensionality reduc-
tion, uncertainty management, multiscale modelling, and
specialized techniques for spatial and temporal data is
essential to address the data preprocessing challenges in
the oil and gas exploration sector. Tailoring solutions to
specific geological conditions, such as those in carbonate
reservoirs, further enhances the effectiveness of machine
learning models. Furthermore, the oil and gas sector can
realize the full benefits of machine learning in exploration
and production if its members work together to enhance data
sharing, collection, and quality. Future research directions
should also be embraced in the development of innovative
approaches.

B. TRANSPARENCY AND INTERPRETABILITY OF MODELS
1) TRANSPARENCY OF MODELS
Identifying how machine learning models produce pre-
dictions and what elements underlie the predictions are
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significant obstacles in oil and gas exploration. This difficulty
arises because many popular machine learning algorithms,
including neural networks, are considered ‘‘black-box’’,
meaning they are essentially opaque when explaining their
decision-making processes [20].

2) INTERPRETABILITY OF MODELS
Owing to the complex and multi-dimensional nature of the
data involved in oil and gas exploration, it is difficult to
interpret these models. Machine learning algorithms may
be trained on a wide range of geophysical data, including
seismic surveys, well logs, and production data, all of which
can have many characteristics and complicated relationships.
Because of the complexity of the data, it may be challenging
to interpret the predictions made by machine learning
models [49]. It might be difficult to assess model outputs
and spot inaccuracies or biases when they are not easily
interpretable.

3) VISUALIZATION OF HIGH DIMENSIONAL DATA
Visualization of high-dimensional data poses a significant
challenge in the oil and gas industry owing to its inherent
complexity and issues such as errors, inconsistencies, missing
values, and poor data quality. These factors collectively
contribute to inaccurate visualizations and limit insights that
can be derived from the data. Moreover, when dealing with
exceptionally large high-dimensional datasets, computational
constraints further exacerbate the difficulties in effectively
visualizing the information [127], [128].

4) ADDRESSING CHALLENGES
The difficulty in interpreting machine learning models is a
significant barrier to penetration in the oil and gas industry,
but there are ways to overcome this. This includes feature
significance analysis. It examines how each feature in the
model’s inputs affects its predictions. Determining which
elements are most crucial to the model allows researchers
better to comprehend the connections between the data and
model predictions.

Using Explanable AI, model interpretation could be
improved. Techniques such as SHAP (SHapley Additive
exPlanations) values, LIME (Local Interpretable Model-
agnostic Explanations), Permutation Importance and Partial
Dependence Plot facilitate a deeper understanding of how
the model interacts with input characteristics and produces
output. By examining these charts, researchers may learn
more about how various input variables influence model
predictions.

The use of an ensemble model is an alternative approach.
A model ensemble aims to provide a more accurate and
reliable prediction by merging different machine learning
models. Researchers may improve the predictability and
clarity of their findings by combining several models with
complementary strengths and shortcomings.

Another valuable approach is model visualization, which
involves examining the internal mechanisms of a model
to gain a deeper understanding of its prediction process.
Techniques such as decision tree visualization, activa-
tion maximization, and saliency mapping offer insights
into hidden connections and patterns within the data
that underpin the model’s accuracy. However, special
attention is necessary for high-dimensional data to han-
dle the complexities associated with these visualizations
effectively. Implementing robust data quality management
processes is crucial to ensure accuracy and meaningful
insights.

Furthermore, there is a pressing need for advancements
in computational capabilities to facilitate the visualization
of even larger and more intricate datasets. As the volume
and complexity of data continue to grow in the oil and gas
industry, it is essential to invest in developing computational
resources that can handle the demands of visualizing such
vast datasets.

Ultimately, integrating these methods is necessary to
overcome the difficulty of interpreting machine learning
models in oil and gas exploration by better comprehending
the connections between the data and the model’s predictions.
Researchers can have more assurance in their estimates and
put them to better use in oil and gas exploration if the
models are easier to understand. Additionally, by leveraging
advancements in visualization, the industry can gain deeper
insights into its large and complex data, leading to more
informed decision-making processes and improved overall
performance.

C. DOMAIN EXPERTISE
Domain expertise in this context is the familiarity with intri-
cate geology and engineering of oil and gas exploration that
comes from years of experience in the field. In addition, there
is expertise inmachine learning technologies and processes to
implement the latest and most effective techniques. Domain
knowledge is crucial for ensuring the accuracy and reliability
of machine learning models when used in the oil and gas
sector.

1) EXPERTISE IN OIL AND GAS
Since machine learning models are dependent on input
data, the need for domain knowledge arises. Data from
seismic surveys, well logs, and production records are all
examples of information that may be collected during oil and
gas development, all requiring a thorough familiarity with
geological and technical fundamentals.

It might be difficult to determine which input characteris-
tics are most important to the machine learning models and
whether they correctly represent the underlying geological
or engineering processes if one does not have domain
knowledge in the field. To guarantee the accuracy of the
model’s predictions, domain knowledge is required for
calibration and validation.
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2) EXPERTISE IN MACHINE LEARNING
Expertise in machine learning techniques is essential, as it
is in oil and gas. This ensures that an appropriate tech-
nique is used at an appropriate time. Machine learning
approaches are not one-size-fits-all; each problem and dataset
requires a unique solution. Every decision is essential, from
model selection to the model optimisation technique. The
performance of a machine learning model may depend
on the parameters of the model structure that should fit
the data. Optimising the parameters in a machine learn-
ing model can improve the model’s performance. As a
result, selecting the best optimisation approaches, including
models and evaluation methodologies, is a major challenge
that influences the effectiveness and dependability of the
industry’s machine learning models. Therefore, choosing
the optimal optimisation methods, including models and
evaluation methodologies, is a major challenge that affects
the effectiveness and reliability of the machine learning
models of the industry.

3) ADDRESSING CHALLENGES
Working collaboratively with domain specialists such as
geologists, petrophysicists, and reservoir engineers to train
and evaluate machine learning models is one way to
overcome this difficulty. This may be done in several ways,
including integrating inputs from domain experts throughout
the model building process and verifying the models against
recognized geological or engineering principles.

Machine learning algorithms that explicitly factor domain
expertise are viable options. For instance, some scientists
have investigated physics-based machine learning models
that leverage well-established scientific principles to enhance
model precision and human interpretability.

Overall, the difficulty of domain knowledge in using
machine learning in the oil and gas sector highlights
the need for data engineers and domain experts to work
closely together to ensure that the models are appropriately
calibrated, verified and interpreted. If they work together,
researchers can createmachine learningmodels that are better
suited to the complexity and specialization of the oil and gas
industry.

VIII. CONCLUSION
This study provides an extensive and rigorous examination
of machine learning applied within the upstream oil and
gas sector, with a particular focus on its pivotal role in the
oil and gas exploration domain. Our research endeavours
encompass an array of data sources, including meticulously
scrutinized research papers, academic theses, and insights
shared through conference presentations. A notable concern
consistently encountered is the scarcity of data accessible for
study in this highly specialized field.

As our investigation underscores, machine learning algo-
rithms have exhibited an extraordinary capability for seismic
data processing, accurately classifying facies and lithofacies

and estimating essential petrophysical properties, such as
water saturation, permeability, and porosity, across a diverse
spectrum of geological formations. The panorama of algo-
rithms employed in these explorations is strikingly diverse,
encompassing stalwart techniques like ANN, CNN, SVM,
XGBoost, FL, FN, and CM. Notably, the synergy found in
hybrid models, which amalgamate multiple algorithms or
machine learning models with sophisticated feature selection
techniques, consistently offers superior accuracy compared to
standalone methodologies.

Despite these promising advancements, several substantial
challenges must be addressed for machine learning to reach
its full potential in the exploration stage of the oil and gas
sector:

• Data Quality and Availability: The quality and acces-
sibility of data continue to be a major hurdle. Data
in exploration is often limited, unstructured, incon-
sistent and may contain uncertainties. Solutions must
be developed to improve data quality, enhance data
sharing among stakeholders, and leverage emerging
technologies like remote sensing and real-time data
collection.

• Transparency and Interpretability: The ‘‘black-box’’
nature of many machine learning models poses chal-
lenges in terms of understanding how they arrive at their
predictions. Methods for enhancing model transparency
and interpretability, such as Explainable AI techniques,
must be further explored and integrated into industry
practices.

• Domain Expertise: Bridging the gap between machine
learning experts and domain specialists is essential.
Collaboration between data scientists, geologists, petro-
physicists, and reservoir engineers is vital to ensure that
machine learning models are accurate and aligned with
the geological and engineering principles that govern the
oil and gas industry.

• Ethical and Regulatory Considerations: As with any
technology, the use of machine learning in the oil
and gas sector must adhere to ethical standards and
industry regulations. Addressing data privacy, security,
and regulatory compliance is crucial for the responsible
application of these powerful tools.

In looking toward the future, several promising directions
emerge:

• Enhancing Robust Machine Learning Frameworks: The
development of robust machine learning frameworks
stands as a paramount direction. Oil and gas exploration
data is often limited, poor, and compounded by inherent
uncertainties. The path forward for machine learning in
this domain lies in the creation of adaptive and resilient
frameworks. These frameworks should be capable of
deriving dependable insights even when faced with the
challenges posed by limited, poor, and uncertain data.
Such innovation is essential for ensuring the continued
efficacy of machine learning in oil and gas exploration.
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• Advanced Visualization: Innovations in data visual-
ization techniques are critical, especially for han-
dling high-dimensional and complex oil and gas data.
Researchers should focus on visual analytics methods
that allow for meaningful insights from large and
intricate datasets as computational capabilities continue
to evolve.

• Interdisciplinary Collaboration: Encouraging collabora-
tion between academia, industry, and regulatory bodies
can accelerate progress. Joint data sharing, research
funding, and standards development efforts can help
resolve data quality and access issues.

• Regulatory Compliance Tools: The development of tools
and frameworks that assist in navigating the complex
regulatory landscape of the oil and gas industry is
essential. These tools should facilitate compliance while
ensuring data security and privacy.

• Computational Capabilities: Continued investment
in computational resources is vital to handle the
increasing volume of data and the computational
demands of machine learning algorithms. This includes
exploring cloud computing, distributed computing, and
high-performance computing solutions.

The review contributes significantly to understanding the
unique challenges in applying machine learning to the explo-
ration stage in the oil and gas industry, such as uncertainties in
exploration parameters, scale discrepancies, and complexities
in handling temporal and spatial data. Notably, the review
goes beyond identification; it offers potential solutions, iden-
tifies practices contributing to achieving optimal accuracy,
and outlines future research directions, providing a nuanced
understanding of the field’s dynamics. This comprehensive
analysis provides a roadmap for overcoming challenges and
enriching the knowledge base for researchers and industry
stakeholders.
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