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ABSTRACT 

The Oil and Gas industry, as never before, faces multiple challenges. It is being impugned for being 

dirty, a pollutant, and hence the more demand for green alternatives. Nevertheless, the world still has 

to rely heavily on hydrocarbons, since it is the most traditional and stable source of energy, as opposed 

to extensively promoted hydro, solar or wind power. Major operators are challenged to produce the 

oil more efficiently, to counteract the newly arising energy sources, with less of a climate footprint, 

more scrutinized expenditure, thus facing high skepticism regarding its future. It has to become 

greener, and hence to act in a manner not required previously. 

While most of the tools used by the Hydrocarbon E&P industry is expensive and has been used for 

many years, it is paramount for the industry’s survival and prosperity to apply predictive maintenance 

technologies, that would foresee potential failures, making production safer, lowering downtime, 

increasing productivity and diminishing maintenance costs. Many efforts were applied in order to 

define the most accurate and effective predictive methods, however data scarcity affects the speed 

and capacity for further experimentations. Whilst it would be highly beneficial for the industry to invest 

in Artificial Intelligence, this research aims at exploring, in depth, the subject of Anomaly Detection, 

using the open public data from Petrobras, that was developed by experts.  

For this research the Deep Learning Neural Networks, such as Recurrent Neural Networks with LSTM 

and GRU backbones, were implemented for multi-class classification of undesirable events on naturally 

flowing wells. Further, several hyperparameter optimization tools were explored, mainly focusing on 

Genetic Algorithms as being the most advanced methods for such kind of tasks. 

The research concluded with the best performing algorithm with 2 stacked GRU and the following 

vector of hyperparameters weights: [1, 47, 40, 14], which stand for timestep 1, number of hidden units 

47, number of epochs 40 and batch size 14, producing F1 equal to 0.97%. 

As the world faces many issues, one of which is the detrimental effect of heavy industries to the 

environment and as result adverse global climate change, this project is an attempt to contribute to 

the field of applying Artificial Intelligence in the Oil and Gas industry, with the intention to make it 

more efficient, transparent and sustainable. 

KEYWORDS 

Anomaly Detection; Multivariate Time Series Classification; Deep Neural Network; Oil and Gas; 

Genetic Algorithm. 

Sustainable Development Goals (SGD):  
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1. INTRODUCTION 

Artificial Intelligence (AI) has revolutionized the perspectives of industries and businesses, creating 

value by learning from data, accumulating knowledge from patterns and trends, simulating human 

logic and automating decision making. It has been used in many industries, such as finance, smart 

cities, healthcare, cybersecurity, education, criminal justice, etc. The domain knowledge and expertise 

were the main pillars of decision making, however AI brings huge benefits by automating many 

processes, thereby improving accuracy and further augmenting human intelligence. 

The Oil and Gas industry has been somewhat relatively slow in applying AI to many parts of the E&P 

Life allowing for a reduction in costs and risks (KUANG et al., 2021) and thereby converting the industry 

into greener version of itself. Nowadays, AI has entered into all its branches, creating many 

“intelligent” versions of the sectors, such as intelligent drilling, intelligent development, intelligent 

exploration, intelligent production, etc. (Sircar et al., 2021). There is still huge potential for further AI 

development within the industry, such that the E&P industry can reach the point, where many 

industries enjoy the full scale of revolution 4.0. 

1.1. CONTEXT AND PROBLEM IDENTIFICATION 

The Petroleum industry is the oldest and the most reliable source of energy, that emerged after coal 

and kerosine in the late 19th century. Once discovered, it became highly popular and an extremely 

desired commodity, initializing a surge in oil discoveries and starting an “oil rush” worldwide. As shown 

in the Figure 1.1, it developed into three main branches: 

- Upstream – oil and gas exploration, development and production (E&P) 

- Midstream – their transportation and storage 

- Downstream – refining, product marketing and retail. 

 

 
 

Figure 1.1 - Division of the oil and gas industry into sectors (adapted from Koroteev & Tekic, 2021). 
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While each of the segments carries its own function, they are all part of a heavy industry, that handles 

flows of highly hazardous and inflammable materials, which move at high rates, high temperatures, 

and pressure (Al-Anzi et al., 2022). Such complicated systems require many sensors to control each 

process, with additional monitoring of the data flow to identify any anomalies thereby allowing for 

preventive action to be taken. Since there are thousands of sensors on each platform, refinery, 

pipelines, other tools or machinery, that produce continuous data, the problem turns into a Big Data 

problem, that requires development of technologies to analyze a massive amount of data (Martí et al., 

2015). 

There is still a huge lack of personnel, as a whole number of engineers moved out of the industry during 

the numerous oil industry crises, and as result less experts are available to apply the domain 

knowledge. This lower number of highly qualified engineers, that can be involved in the real time 

processes and in analyzing ginormous amounts of data produced by each oil platform, creates a new 

issue, which is a deficiency in expertise (Amy Chronis & Kate Hardin, 2022). The alarm system, 

informing rig personnel of a potential failure in early or transient stages, can effectively assist in timely 

decision making and allow the application of preventive steps. Considering the time window required 

for diagnosing the issue and the preventive actions that are necessary before the failure occurs, it is 

essential to spot the transient moment condition as soon as possible to prevent major losses (Marins 

et al., 2021). 

Due to the demanding nature of the Oil and Gas industry, it requires consistent real time monitoring, 

that is performed by surveillance engineers. This is a formidable task, that has been in existence for 

many years (Hasan et al., 2017). In the Upstream sector, one engineer might be in charge of not just 

one well, but multiple within one field, monitoring many aspects of the production from these wells. 

Considering the limited time window available between start of the issue and the actual failure, an 

anomaly detection in real time can alleviate the surveillance task to a great extent. In the Downstream 

sector there is a possibility to perform real time monitoring remotely through Distributed Control 

Systems (DCS) and Supervisory Control and Data Acquisition (SCADA) systems, measuring an array of 

variables from the sensors (Athar Khodabakhsh et al., 2018). Yet it is not sufficient for full reliance on 

the huge data flow, which requires consistent attention from a human being for anomaly 

identification. 

Nowadays the entire production sector of the Petroleum business can be automated, putting the 

entire cycle of crude oil extraction, transportation and refining under the control of Artificial 

Intelligence. The Downstream sector has been automated since 1990 with implementation of digital 

process control networks, as result event-based scheduling and planning software for hydrocarbon 

movements are quite mature in this part of the petroleum industry  (Blancett et al., 2019). However, 

it can still benefit from AI by implementing new models for predictive maintenance and drone 

examination of equipment which is inaccessible to personnel. As for the Midstream sector, it is also 

relatively mature in its AI employment, with software optimizing and implementing actions on loading 

quantities and transportation routes for each distribution network (Blancett et al., 2019). It can also 

be further improved by supply chain automation and advancing transmission lines between oil rigs, 

refineries and final points of petrochemical and fuel sales. Further, surveillance drones and machine-

vision algorithms could also diminish the necessity for human’s presence and daily monitoring. 



3 
 

According to the McKinsey report a leading offshore oil and gas operator’s predictive maintenance 

system helped to reduce downtime by 20% and increase production by more than 500 barrels of oil 

annually (Guillaume Decaix et al., 2021). It is not surprising that Artificial Intelligence and Digital 

Transformation are gaining more popularity within all sectors of the Oil and Gas industry. 

Schlumberger, which is a top high-tech service company, developed Automated Drilling Solutions, in 

collaboration with National Oilwell Varco, where oilfield domain knowledge is supported by advanced 

machine learning applications. This allowed automation of the drilling process to make it safer and 

more efficient (Schlumberger, 2021). Kongsberg Digital who specializes in the digitalization of the Oil 

and Gas and maritime industry, have built digital twins and whole ecosystems to advance the drilling 

process even further (Kongsberg Digital, 2022). 

Once Artificial Intelligence was introduced to the Oil and Gas industry, surveillance of numerous 

processes has undergone through major improvements by combining business or operational 

intelligence with automated technical calculations (Hasan et al., 2017). The real-time monitoring 

centers were established to pass the sensor data to remote displays, and advanced Artificial 

Intelligence models were applied to provide data monitoring and improved control. The introduction 

of the industrial revolution 4.0 created the new era of industry development by integrating the Internet 

of Things (IoT), automating cloud computing, real-time data analysis, etc. (Aslam et al., 2022). 

The Upstream sector is the most capital-intensive and important sector out of the three industry 

segments (Koroteev & Tekic, 2021). However, it is the least automated in many aspects, due to the 

nature of the activity, being often performed in harsh conditions, such as deep-water, in arid deserts, 

arctic colds, extreme wind, etc. Drilling is a high risk and high capital expenditure operation, that 

involves fire and explosion risks, operations with radioactive sources, the threat of gas leaks, the 

movement of personnel by unconventional means of transport, such as helicopters and supply boats, 

which offer many opportunities for human error due to complexities of the operations, etc. It is 

characterized by high level of uncertainty due to the unpredictability of the processes, which need to 

be handled manually, and thus relies heavily on the experts’ knowledge (Koroteev & Tekic, 2021). 

Nowadays many Artificial Intelligence methods and technologies are incorporated into Upstream 

branch to resolve its demands. In order to make the Oil and Gas industry more intelligent-based, major 

operators created many collaborations with IT companies, such as Total and Google Cloud, Chevron 

and Microsoft, Shell and HP, ExxonMobil and MIT, etc. (KUANG et al., 2021), as shown in Table 1.1. 

Table 1.1 - Comparison of AI strategies among global key oil and gas companies and service 
companies (adapted from KUANG et al., 2021). 

No Companies Orientation AI Platform Partners 

1 BP 
Horizontal well trajectory control, 
drilling data processing algorithm 

Sandy 

Beyond Limits, 

Belmont 

technology 

2 Shell 
Horizontal well trajectory control, 
drilling data processing algorithm 

Geodesic Microsoft 

3 Exxon Mobil 
Data collection and integrated 

solutions 
XTO Microsoft 

4 Total Intelligent solution for E&P, Cloud Platform Google 
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intelligent seismic imaging processing 

5 Chevron 
E&P, storage & transportation 

projects 
DELFI 

Microsoft, 
Schlumberger 

6 Schlumberger 
E&P, storage & transportation 

projects 
DELFI 

Microsoft, 

Chevron 

7 Baker Hughes 
Seismic modeling, malfunction 

prediction 
and supply chain optimization 

Desktop Platform, 
Azure 

NVIDIA, 

Microsoft 

8 Halliburton 
Reservoir characterization and 

simulation 
Azure Microsoft 

9 PetroChina 

Intelligent basins, intelligent logging, 
intelligent geophysical 

exploration, intelligent drilling & 
completion, intelligent oil 

production, intelligent fracturing and 

intelligent equipment 

Dream Cloud Platform, 
Cognitive Computing 

Platform 
Huawei 

10 Sinopec 
Intelligent factories, intelligent 

oilfields and 
intelligent institutes 

Oilfield Smart Cloud 
Industrial Internet 

Platform 
Ali 

11 CNOOC 
Intelligent oilfields, E&D data 

management 
Intelligent Oilfield 

Technology Platform 
Ali 

 

For well surveillance a new hybrid solution was generated by integrating management by exception 

(MBE), Business Intelligence (BI) and situational awareness (SA) (Hasan et al., 2017). This MBE method 

equipped engineers with well control and optimization techniques, that identify anomalies as a 

deviation from the expected data pattern, allowing personnel to focus just on the challenging wells or 

processes. Personnel no longer need to drive to the oilfield for visual observation, since it can be done 

by drones or other visual automation mechanisms, thus decreasing fuel expenditure and expensive 

human time. 

Condition-Based Monitoring (CBE) is another popular approach, a state-of-art technology, in which 

equipment and machinery is being monitored, involving data-driven analysis to foresee and detect 

potential failure (Brønstad et al., n.d.). It is applied throughout all the Oil and Gas industry with success, 

creating systems for anomaly detection and maintenance. 

Overall maintenance strategies can be divided into proactive and reactive types, as depicted in Figure 

1.2. The conventional Preventive Maintenance, based on failure history analysis and planned 

scheduled maintenance, can be costly and unworthy. Predictive Maintenance can be performed after 

the continuous equipment condition monitoring has revealed a high potential for a failure or 

deteriorating performance (Al-Anzi et al., 2022b). 
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Figure 1.2 - Maintenance strategies (adapted from Al-Anzi et al., 2022b) 

Digital Oilfield is a new concept, symbolizing a collection of automation and information technologies, 

that revolutionizes the way the petroleum industry operates and allows for work processes to be 

conducted more efficiently (Pandey et al., 2020). It involves data management, automation, integrated 

production models, predictive maintenance, etc. – a combination of all the emerging technologies that 

assist in timely reaction and decision making. 

According to the United Nation’s “The sustainable Development Goals Report 2022”, an increased 

dependence on natural resources exacerbates the pressure on sensitive ecosystems and ultimately 

affects both human health and the economy(United Nations, 2022). Considering the high global 

greenhouses gas emissions, increased global average temperature and resultant extreme weather 

events, it is important to focus on fossil fuel production efficiency, minimizing operating costs, make 

informed decisions and provide equipment maintenance at a right time, and to eliminate potential 

failures and catastrophic events. This research will contribute to the application of the Artificial 

Intelligence in the Oil and Gas industry, with the aim of mitigating its adverse climate effect, whilst 

enhancing its safety and sustainability. 

1.2. OBJECTIVES 

Most decisions in the Upstream sector are based on expert knowledge, rather than on the enormous 

amount of field data, due to high uncertainty of the application, which might result in biased 

conclusions (Koroteev & Tekic, 2021). An example is geophysical and petrophysical interpretation of 

seismic surveys, that would enable to produce a reservoir geological model, predict its productivity 

and allocate locations of appraisal and production wells. This process might take more than a year, and 

automation using Artificial Intelligence can significantly speed up parts of it and make it more 

objective. 

Drilling itself faces multiple challenges such as shock and vibrations, bit wear, loss of circulation, drill-

pipes washout, borehole instability, excessive torque, etc. (Sircar et al., 2021). AI methods were applied 

to optimize drilling parameters, identify lithology and directional drilling, predict potential tool failure 

and downtimes. 
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The same applies to reservoir modelling (Figure 1.3), the process is lengthy and cumbersome, requiring 

calculations of oil flows via various reservoir development scenarios. The questions related to 

developing new assets or investing in production enhancement and technologies, can be answered 

quicker and be expert-independent, with more AI involvement in the process (Koroteev & Tekic, 2021). 

 

 

Figure 1.3 - Reservoir modelling outline using artificial neural network (Sircar et al., 2021). 

A particular challenge for the Oil and Gas industry is the lack and availability of open data (Vargas et 

al., 2019a), which hinders further research and AI application advancement. One of the reasons is the 

confidentiality of high-cost information, whilst another is the difficulty in recognizing and labeling all 

potential unlikely events from the available data (Soriano-Vargas et al., 2021).  

Another issue is the absence of an author’s active up to date network, who performed the research in 

the subject matter. It slows any advancement due to the fact that most papers were not produced by 

academic researches, but company appointed professionals, applying AI to specific core activities and 

using proprietary data, which does not encourage further networking (D’Almeida et al., 2022). The lack 

of collaboration between oil companies, perceiving each other as a competitor, does not help in AI 

advancement within the petroleum industry (Koroteev & Tekic, 2021). Most companies tend to follow 

a strategy of developing their own AI projects, without experience and knowledge sharing. 

A real Petrobras 3W dataset will be used for this research, which has instances of eight types of 

undesirable events characterized by eight process variables (Vargas et al., 2019a). It is a unique dataset 

of naturally flowing oil wells, for which industry experts spend extensive amount of time to validate 

historical events and produce simulated and hand-drawn instances, that are useful to counterpart data 

imbalance, under different operating conditions. This research objective is to contribute to the 

Artificial Intelligence development in the Oil and Gas Upstream area, promoting openness and 

collaboration between industry players and data scientist, and creating a precedent of adding value 

for the future safe hydrocarbon energy. 
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1.3. STUDY IMPORTANCE AND RELEVANCE 

The Upstream sector, in comparison to Midstream and Downstream, has caused most of the fatal 

failures and devastating environmental effects in the industry history. 

One of the many disastrous events was the catastrophe of the Macondo well in 2010 due to safety 

equipment failure which resulted in the death of 11 rig personnel, 17 were also seriously injured, the 

sinking of the Deepwater Horizon rig, and caused a massive oil spill into the Gulf of Mexico for 87 days, 

damaging costal and marine environment by releasing 5 million barrels of oil (U.S. Chemical Safety 

Board, 2016). 

There have been other multiple smaller scale events, which also caused enormous harm to the nature 

and ecosystems. In 2016 the Plugging and Abandonment (P&A) operations in the G-4 well of the Troll 

Field on the Norwegian Continental Shelf (NCS), performed by Statoil, failed and caused leakage of oil, 

gas and other flammable substances. Similarly, in 2012 the Elgin P&A operations resulted in an 

uncontrollable gas release to the seabed (Babaleye et al., 2019). 

Less disastrous failures in the Production sector have also caused many smaller scale adverse impacts, 

such as oil spills, natural gas release, which affected wildlife and polluted nature. This section will cover 

the basics of oil production theory in order to highlight the importance of identifying potential 

anomalies and prevent failures. 

At the commencement of production, most wells have sufficient pressure to produce oil without 

having to use pumps. As time progresses, the formation pressure starts to diminish, as less oil and 

more water are getting produced (Figure 1.4), natural oil lift methods become insufficient, and Artificial 

lift methods need to be implemented in order to maintain or enhance production (Pandey et al., 2020). 

 

Figure 1.4 - Production stages (adapted from Bellarby, 2009) 
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Artificial lift is a method of adding energy to the flow of oil within the completion interval to increase 

the production rate (Bellarby, 2009). 

Gas lift, Electric Submersible Pump (ESP), Turbine-Driven Submersible Pumps, Jet Pumps, Progressive 

Cavity Pump, Beam (Rod) Pump, Hydraulic Piston Pumps are the main methods used to maintain the 

flow of oil from the well (Bellarby, 2009). During production operations other well intervention 

techniques might be applied, such as replacement of completion parts, wellbore acid treatment, 

chemical inhibition, hydraulic fracturing, to name just a few (Cedric Malate, 2003). 90% of all producing 

oil wells need Artificial lift techniques and equipment to stimulate oil production, which creates very 

high levels of failures, resulting in downtime with high economical losses and harm to ecosystems 

(Pandey et al., 2020).  

In this study we will focus on malfunctions within naturally flowing wells, since the availability of open 

data dictates the research. However, most wells require Artificial lift methods, hence more failures are 

observed due to decline of pumps or turbines. Yet, the selected types of the undesired events are 

responsible for most of the production losses in the last years (Vargas et al., 2019a) and are relevant 

for the production optimization. 

The United Nations “17 Sustainable Development Goals” calls for a global partnership in collaboration 

for a better World, with less poverty, raised economic growth, tackled climate change, preserved 

nature, etc. (United Nations, 2022). The fossil fuels sector emits devastating amount of GHG, affects 

local ecosystems and environment with each oil spill, produced water and drilling waste discharge. The 

UN goals № 12 “Responsible consumption and production” and № 13 “Climate action” are the first 

two, that need to be addressed by the petroleum business, as it is one of the biggest contributors to 

the global climate change. 

This research would deepen the knowledge of anomaly detection in the Oil and Gas industry in order 

to demonstrate the unlimited potential of Data Science application in the hydrocarbon and fossil fuel 

domain, and encourage all the industry key players to implement AI-based processes more extensively 

and eagerly. With a better understanding of timely decision making and the impact of predictive 

maintenance, the industry has the opportunity to contribute to the United Nation’s goals 

accomplishment, and to make our world a greener and safer place to be. 
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2. LITERATURE REVIEW 

Artificial Intelligence and Internet of Things application in the Oil and Gas industry has spurred 

increased interest in the research of recent Machine Learning, Data Mining and Deep Learning models 

to resolve its every day demands. A growing number of publications in the last few years has created 

a necessity to obtain a better understanding about most popular algorithms and the latest 

developments in the subject. 

This section is dedicated to the literature review of the methods, techniques and algorithms used for 

resolving Oil and Gas problems and detecting potential faults, failures and anomalies in the Upstream 

and Midstream sectors. 

2.1.  OIL AND GAS INDUSTRY 

The Oil and Gas industry has a long history, originating from 1848, when the first modern well was 

drilled in the north-east of Baku on the Absheron Peninsula by Russian engineer Vasily Semenov. 

Further, the first commercial oil well was drilled in North America Pennsylvania by Erwin Drake in 1859. 

The history and development milestones of both Oil and Gas industry is demonstrated in Figure 2.1, 

together with simultaneously developing Artificial Intelligence from its infancy as mostly statistical 

methods, to its birth in 1950 with British logician and computer pioneer Alan Turing inventing famous 

Turing’s Learning Machine. Since then both sciences have developed in their own way, and just 

recently meeting to create a unique opportunity of integrating one into the other for a more efficient 

and safe practice. 

The Oil and Gas industry used Artificial Intelligence and Digital Transformation for decades (Pandey et 

al., 2020). Many large companies invest now heavily in Research, Development and Innovation looking 

for opportunities to eliminate accidents, improve decision making, by implementing more actively 

digital transformation applications (D’Almeida et al., 2022b). 
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Figure 2.1 – Oil and Gas industry and Machine Learning milestones 
(adapted from Pandey et al., 2020). 
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2.2. ANOMALY DETECTION 

Anomaly detection is a statistical technique used to identify abnormal patterns in data that deviate 

from a priori expected behavior (Martí et al., 2015b). It is being applied in many industries: 

manufacturing, aviation, transportation, banking, health, etc. Oil and Gas has joined recently the trend 

and started to take the opportunity of identifying anomalies in time and to improve general 

performance along with reducing potential downtime, minimizing costs and in some occasions saving 

lives. 

2.3. ANOMALY DETECTION IN THE OIL AND GAS INDUSTRY WITH AI METHODS 

The aim of the literature review is to explore the methods already applied in the area of the Oil and 

Gas industry for anomaly detection, using Machine Learning or Deep Learning techniques. The 

research would help to recognize the recent development and most used methods, that can be further 

explored and potentially improved in the future. 

The framework of this analysis focuses on the Upstream and Midstream sectors of the petroleum 

industry, which involves Drilling and Exploration, Production and Transportation, where most of the 

failures occur. 

2.3.1. Literature review methodology 

The Systematic Literature Review (SLR) was performed following PRISMA methodology (Preferred 

Reporting Items for Systematic Reviews and Meta-Analyses), which is well known method for 

establishing the state of knowledge in regards to certain topics. In order to identify and visualize the 

most significant keywords and terms related to anomaly detection using AI methods in the Petroleum 

industry, a VOSviewer (VOSviewer - Visualizing Scientific Landscapes, n.d.) , a bibliometric visualization 

tool was applied. 

With intention of narrowing our research on the stated above agenda, we focus on the following 

questions: 

• RQ1: What are the most applicable and significant Artificial Intelligence methods that were 

applied for detection of anomalies and potential failures in the Oil and Gas industry? 

 

• RQ2: Which AI methods were applied for 3W dataset anomaly detection and classification? 

The research consists of 3 steps: (1) Planning the review: PRISMA search strategy development and 

initial data selection from the scholar databases, (2) Conducting the review: selection of journals and 

conference proceedings according to inclusion and exclusion criteria, visualization and bibliometric 

analysis, (3) analysis of the findings, discussion and conclusion (Figure 2.2). 
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Figure 2.2 - Systematic Literature Review methodology 

According to PRISMA guidelines, the data selection was initialized through the publications search, 

that contain in the titles, abstracts or keywords the following Boolean expressions: 

("oil and gas" OR “oilfield” OR "oil wells" OR "naturally flowing wells") AND ("artificial 

intelligence" OR "neural networks" OR "machine learning" OR "deep learning" OR "anomaly" 

OR "fault" OR "failure" OR "detection" OR "prediction" OR "classification" OR "unsupervised") 

The databases Web of Science, Scopus and Science Direct were analyzed using the above query, on 

11th of December 2022. Since the 3W Dataset was created in 2019, we select 2019-2022 time period 

to limit the research to the recent 4 years. 

The OnePetro database, which collects journal articles and conference proceedings from the Society 

of Petroleum Engineers (SPE), wasn’t used for this research, since it doesn’t provide free access to its 

contents. It would be beneficial to include this database for further systematic literature review, since 

it might provide deeper insight about industry related artificial intelligence application for anomaly 

detection. 

The selected pool of articles was analyzed using Mendeley, an open-source reference manager from 

Elsevier. The application allowed to perform further data processing, remove duplicates, pull 

metadata, such as authors, sources, date of publication, citations, etc. 

2.3.2. PRISMA results 

The quantitative and qualitative analysis was initialized by collecting data through 3 databases: Scopus 

(1394 results), ScienceDirect (752 results) and Web of Science (668 results). Overall, there were 2814 

articles extracted for further analysis using PRISMA framework. General inclusion criteria for all 

databases were articles having Open Access, written in English, published in the 2019 – 2022 frame, 

document type Article or Conference Paper. 
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In order to limit the research to the most relevant material, there were further inclusion criteria 

applied for each database: 

▪ Web of Science: 

 

Web of Science Index: (Science Citation Index Expanded ((SCI-EXPANDED) 

 

Web of Science Categories: (Energy Fuels OR Geosciences Multidisciplinary OR Engineering 

Petroleum OR Geochemistry Geophysics OR Geology OR Computer Science Information Systems OR 

Remote Sensing OR Computer Science Artificial Intelligence OR Automation Control System) 

 

▪ Scopus: 

 

Scopus Subject Area: (Earth and Planetary Sciences OR Engineering OR Energy OR 

Environmental Science OR Computer Science OR Decision Sciences) 

 

Scopus Exact Source Title: (Energies OR Journal Of Petroleum Exploration And Production 

Technology OR Frontiers In Earth Science OR Remote Sensing OR Geofluids OR IEEE Access Petroleum 

Exploration And Development OR Journal Of Petroleum Science And Engineering OR Marine And 

Petroleum Geology OR Energy Reports OR Geophysical Journal International OR Energy Science And 

Engineering OR Frontiers In Energy Research OR Advances In Geo Energy Research OR Applied Energy 

OR Geophysical Research Letters OR  Energy Geoscience OR Geochemistry Geophysics Geosystems OR 

Petroleum Science OR  Journal Of Petroleum Exploration And Production OR Reliability Engineering And 

System Safety OR   Energy Exploration And Exploitation OR Lithosphere OR Natural Gas Industry B OR 

Oil And Gas Science And Technology OR  Petroleum OR  Petroleum Research OR Shock And Vibration 

OR  Earth And Planetary Science Letters OR China Geology OR Journal Of The Geological Society OR 

Engineering Structures  OR Journal Of Pipeline Science And Engineering OR  Open Geosciences OR 

Journal Of Geophysics And Engineering OR Energy OR Exploration Geophysics OR Fuel OR Journal Of 

Geophysical Research Solid Earth OR Journal Of Loss Prevention In The Process Industries OR Geophysics 

OR Journal Of Natural Gas Science And Engineering OR Petroleum Geoscience OR Computational 

Intelligence And Neuroscience  OR Geology OR Applied Computing And Geosciences OR Earth Sciences 

Research Journal OR International Journal Of Advanced Computer Science And Applications OR Natural 

Resources Research OR Process Safety And Environmental Protection OR Results In Engineering OR 

Energy Strategy Reviews OR IEEE Journal Of Selected Topics In Applied Earth Observations And Remote 

Sensing OR IEEE Transactions On Geoscience And Remote Sensing OR Computational Geosciences OR 

Computers And Geosciences OR Energy Engineering Journal Of The Association Of Energy Engineering) 

 

▪ Science Direct: 

 

Science Direct Publication Title: (Journal of Petroleum Science and Engineering OR Energy 

Strategy Reviews OR International Journal of Applied Earth Observation and Geoinformation OR 

Applied Energy OR Safety Science OR Journal of Cleaner Production OR Journal of Natural Gas Science 

and Engineering OR Expert Systems with Applications OR Computers & Geosciences OR Energy 

Research & Social Science OR Energy OR Reliability Engineering & System Safety OR Marine and 

Petroleum Geology) 
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Once the articles were extracted according to inclusion criteria, an additional 32 articles were added 

from other sources, which were directly related to the 3W dataset or published in other databases, 

such as OnePetro, Research Gate or from Oil and Gas conferences, focusing on anomalies detection in 

Upstream and Midstream sector. 

The final set of material was checked for duplicates, and 729 duplicated articles were removed. 

Further, the titles were screened, and based on the relevance to the subject, 1509 records were 

excluded. Next, the abstracts were screened, and further 514 records were deleted, since they were 

not corresponding to the research agenda. As shown in Figure 2.3, 94 articles were selected for the full 

text screening, according to inclusion and exclusion criteria, from which 36 articles were removed. 

Finally, 58 articles were used for further analysis. 

 

Figure 2.3 - PRISMA flowchart 
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2.3.3. Results and analysis 

The analysis of the final 58 papers reveals that 44 were journal articles and 14 were proceedings from 

conferences. 

As expressed in Table 2.1, the articles were published in 25 journals, majority of which were in Journal 

of Petroleum Science and Engineering (10). The rest are in IEEE Access (6), Energies (5), Journal of 

Petroleum Exploration and Production Technology (2), Petroleum Research (1), ACS Omega (1), 

Advances in Geo-Energy Research (1), American Journal of Operations Research (1), Applied Artificial 

Intelligence (1), Applied Computational Intelligence and Soft Computing (1), Applied Intelligence (1), 

Computation (1), Energy Engineering: Journal of the Association of Energy Engineering (1), Expert 

Systems (1), Frontiers in Earth Science (1), International Journal of Disaster Risk Science (1), 

International Journal of Greenhouse Gas Control (1), Journal of Applied Logic (1), Journal of Energy 

Resources Technology, Transactions of the ASME (1), Oil and Gas Science and Technology (1), 

Petroleum (1), Petroleum Science (1), Sensors (1), SPE Journal (1), Brazilian Journal of Development 

(BJD) (1). 

The corresponding Scimago Ranks and further details are indicated in Table 2.1. Most of the journals 

are Q1-quartile ranked (7), the next majority are in Q2-quartile (6), and there are 5 cases, in which the 

journals have mixed ranking Q1 or Q2, depending on the subject area (5). The rest of the journals have 

Q3-quartile rank (2), Q2/Q3 (2), Q4 (1), and two are not classified (2). 

Among the most covered subject areas are Energy (12), Engineering (10), Earth and Planetary Science 

(9), Computer Science (7) and Mathematics (4). The journals publishers are based mostly in the United 

States (7), Netherlands (4), Switzerland (4), China (3) and United Kingdom (2), with minority from 

Germany (1), Hong Kong (1), Egypt (1), France (1) and Brazil (1). The leading publishers are 

Multidisciplinary Digital Publishing Institute (MDPI) (3), Elsevier (2) and KeAi Communications Co. (2). 

Table 2.1 - Journals details and their Scimago Ranks 

Journals 
Scimago 

Rank 

Number 

of articles 
Publisher Country 

Journal Subject 

Area 

Journal of Petroleum 

Science and 

Engineering 

Q1 10 Elsevier Netherlands 

Earth and 

Planetary 

Sciences, Energy 

IEEE Access Q1 6 

Institute of 

Electrical and 

Electronics 

Engineers Inc. 

United States 

Computer 

Science, 

Engineering, 

Material Science 

Energies Q1/Q2 5 

Multidisciplinary 

Digital Publishing 

Institute (MDPI) 

Switzerland 

Energy, 

Engineering, 

Mathematics 

Journal of Petroleum 

Exploration and 

Production Technology 

Q2 2 Springer Verlag Germany 

Earth and 

Planetary 

Sciences, Energy 
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Petroleum Research Q2/Q3 1 

KeAi 

Communications 

Co. 

China 

Earth and 

Planetary 

Sciences, Energy 

ACS Omega Q1 1 
American 

Chemical Society 
United States 

Chemical 

Engineering, 

Chemistry 

Advances in Geo-

Energy Research 
Q1 1 

Yandy Scientific 

Press 
Hong Kong 

Earth and 

Planetary 

Sciences, Energy, 

Engineering 

American Journal of 

Operations Research 
n/a 1 

Scientific 

Research 

Publishing 

United States 

Operations 

Research and 

Optimization 

Theory and 

Research 

Technical 

Approaches, 

Manufacturing 

and Service 

Operations 

Research, 

Interfaces with 

Other Disciplines 

Applied Artificial 

Intelligence 
Q3 1 

Taylor and 

Francis Ltd. 

United 

Kingdom 

Computer 

Science 

Applied Computational 

Intelligence and Soft 

Computing 

Q2 1 Hindawi Limited Egypt 

Computer 

Science, 

Engineering 

Applied Intelligence Q2 1 
Springer 

Netherlands 
Netherlands 

Computer 

Science 

Computation Q2/Q3 1 

Multidisciplinary 

Digital Publishing 

Institute (MDPI) 

Switzerland 

Computer 

Science, 

Mathematics 

Energy Engineering: 

Journal of the 

Association of Energy 

Engineering 

Q4 1 
Tech Science 

Press 
United States 

Energy, 

Engineering 

Expert Systems Q2 1 
Wiley-Blackwell 

Publishing Ltd 

United 

Kingdom 

Computer 

Science, 

Engineering, 

Mathematics 

Frontiers in Earth 

Science 
Q1 1 

Frontiers Media 

S.A. 
Switzerland 

Earth and 

Planetary 

Sciences 
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International Journal of 

Disaster Risk Science 
Q1/Q2 1 

Springer Science 

+ Business Media 
United States 

Environmental 

Science, Social 

Sciences 

International Journal of 

Greenhouse Gas 

Control 

Q1 1 Elsevier Netherlands 

Energy, 

Engineering, 

Environmental 

Science 

Journal of Applied Logic Q3 1 Elsevier BV Netherlands Mathematics 

Journal of Energy 

Resources Technology, 

Transactions of the 

ASME 

Q2 1 

The American 

Society of 

Mechanical 

Engineers (ASME) 

United States 

Earth and 

Planetary 

Sciences, Energy, 

Engineering 

Oil and Gas Science and 

Technology 
Q2 1 Editions Technip France 

Chemical 

Engineering, 

Energy 

Petroleum Q1/Q2 1 

KeAi 

Communications 

Co. 

China 

Earth and 

Planetary 

Sciences, Energy 

Petroleum Science Q1/Q2 1 

China University 

of Petroleum 

Beijing 

China 

Earth and 

Planetary 

Sciences, Energy 

Sensors Q1/Q2 1 

Multidisciplinary 

Digital Publishing 

Institute (MDPI) 

Switzerland 

Biochemistry, 

Genetics and 

Molecular 

Biology, 

Chemistry, 

Computer 

Science, 

Engineering, 

Medicine, Physics 

and Astronomy 

SPE Journal Q1 1 

Society of 

Petroleum 

Engineers (SPE) 

United States 

Earth and 

Planetary 

Sciences, Energy 

Brazilian Journal of 

Development (BJD) 
n/a 1 

Brazilian Journals 

Publicações de 

Periódicos e 

Editora Ltda. 

Brazil 

Engineering, 

Biomedical and 

Clinical Studies, 

Education, 

Agricultural, 

Veterinary and 

Food Sciences, 

Language, 

Communication 

and Culture 
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Table 2.2 represents the details of conferences, from which 14 proceedings are related to the current 

research. Most of the publishers originate from United States (9), the rest are from Greece (1), United 

Kingdom (1), Slovakia (1), Spain (1) and Brazil (1). The major subjects of research are Engineering (8), 

Energy (3) and Computer Science (2). 

Table 2.2 – Conference details 

Conference 
Number of 

proceedings 

Publisher 

Country 
Subject 

SENSORDEVICES 2021: The Twelfth International Conference 

on Sensor Device Technologies and Applications (2021) 
1 Greece Sensor Devices 

International Joint Conference on Neural Networks (IJCNN) 

(2020) 
1 

United 

Kingdom 

Neural 

Networks 

Society of Petroleum Engineers Western North American 

Regional Meeting 2010 - In Collaboration with the Joint 

Meetings of the Pacific Section AAPG and Cordilleran Section 

GSA (2010) 

1 
United 

States 

Earth and 

Planetary 

Sciences 

2021 23rd International Conference on Process Control (PC) 

(2021) 
1 Slovakia 

Process 

Control 

2017 6th International Symposium on Advanced Control of 

Industrial Processes, AdCONIP (2017) 
1 

United 

States 

Chemical 

Engineering, 

Engineering, 

Mathematics 

IEEE International Conference on Data Mining, ICDM (2011) 1 
United 

States 
Engineering 

IEEE International Symposium on Industrial Electronics 

(2021) 
1 

United 

States 
Engineering 

Annual Offshore Technology Conference (2019) 1 
United 

States 

Energy, 

Engineering 

SPE Western Regional Meeting 2015: Old Horizons, New 

Horizons Through Enabling Technology (2015) 
1 

United 

States 

Energy, 

Engineering 

Proceedings of the International Joint Conference on Neural 

Networks (2020) 
1 

United 

States 

Computer 

Science 

IEEE 16th International Conference on Data Mining (ICDM) 

(2016) 
1 Spain Engineering 

XLII Ibero-Latin-American Congress on Computational 

Methods in Engineering and III Pan-American Congress on 

Computational Mechanics, ABMEC-IACM (2021) 

1 Brazil Engineering 

Offshore Technology Conference (2021) 

 
1 

United 

States 

Energy, 

Engineering 

2021 IEEE 19th International Conference on Industrial 

Informatics (INDIN) (2021) 
1 

United 

States 

Computer 

Science 
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2.3.4. Keywords co-occurrence 

The co-occurrence of keywords was performed using VOSviewer, a text mining software for creating 

maps based on network data. The analysis was done using the full counting method with two minimum 

number of keyword occurrences. Out of 150 terms, 26 met the threshold, which are listed in Table 2.3. 

Table 2.3 - Keywords co-occurrence and the total link strengths 

Keyword Occurrences Total link strength 

Machine Learning 10 15 

Fault Diagnosis 6 10 

Classification 3 9 

Oil Well Monitoring 3 8 

Electrical Submersible Pump 2 7 

Fault Detection 3 7 

Metric Learning 2 7 

Triplet Network 2 7 

Fault Detection and Classification 3 6 

Convolutional Neural Network 3 5 

Dynamometer Card 3 5 

Multivariate Time Series Classification 2 5 

Pattern Recognition 2 5 

Artificial Intelligence 3 4 

Flow Instability 2 4 

Random Forest Classifier 2 4 

Working Condition Diagnosis 2 4 

Autoencoder 2 3 

Diagnostics 2 3 

Sucker Rod Pump 2 3 

Unsupervised Machine Learning 3 3 

Anomaly Detection 4 2 

Deep Learning 2 2 

Neural Network 2 2 

Support Vector Machine 2 2 

Drilling 2 0 

 

The top five keywords that were encountered most often are Machine Learning (9 occurrences, 15 

total link strength), Fault Diagnosis (6 occurrences, 10 total link strength), Classification (3 occurrences, 

9 total link strength), Oil Well Monitoring (3 occurrences, 8 total link strength) and Electrical 

Submersible Pump (2 occurrences, 7 total link strength). 

As shown in Figure 2.4, the keywords co-occurrence analysis revealed 5 clusters with 25 keywords, 52 

links and 66 total line strength. The clusters characterized by colors with the following major nodes: 
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- Machine Learning – Red 

- Fault Diagnosis – Yellow 

- Anomaly Detection – Blue 

- Unsupervised Machine Learning – Purple 

- Convolutional Neural Network – Green. 

The keyword co-occurrence network shows that clusters exhibit distinct separation between each 

other with limited interconnections. Specifically, the blue cluster (major node Anomaly Detection), 

purple cluster (Unsupervised Machine Learning) and green cluster (Convolutional Neural Network) link 

just to the yellow (Fault Diagnosis) and red (Machine Learning) clusters. All of them don’t have any 

links between each other. The two biggest clusters, yellow (Fault Diagnostics) and red (Machine 

Learning) have multiple links in-between and with other clusters. 

 

Figure 2.4 - Keywords Co-occurrence Network 

The keywords co-occurrence network by year overlay visualization shows that Machine Learning 

methods gained most popularity from 2021, and there were many methodologies tried and 

implemented for anomaly detection, such as unsupervised machine learning methods, Random Forest, 

Support Vector Machine, the most recent being Autoencoder and Neural Network (Figure 2.5). 
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Figure 2.5 - Keywords Co-occurrence by Year 

 

2.3.5. Authors co-authorship 

The author’s co-authorship was performed in VOSviewer using 25 maximum number of authors per 

document and minimum number of documents of an author of 2. Out of 282 authors only 20 meet the 

threshold (Table 2.4). 

The authors with the highest rank of total link strength and hence collaborating the most are Varejão 

Flávio Miguel with a total link strength of 11 ((Mello et al., 2020), (Carvalho, Vargas, Salgado, Munaro, 

& Varejão, 2021), (Mello et al., 2022)), Antipova Ksenia with a total link strength of 9, Gurina Ekaterina 

with a total link strength of 9, Klyuchnikov Nikita with a total link strength of 9, Koroteev Dmitry with 

a total link strength of 9 ((Gurina et al., 2022a), (Gurina et al., 2022b), (Gurina et al., 2020)), Mello Lucas 

Henrique Sousa with a total link strength of 8, Oliveira-Santos Thiago with a total strength of 8, Ribeiro 

Marcos Pellegrini with a total strength of 8, Rodrigues, Alexandre Loureiros with a total strength of 8 

((Mello et al., 2022), (Mello et al., 2020)) and Vargas, Ricardo Emanuel Vaz with a total link strength of 

7 ((Carvalho, Vargas, Salgado, Munaro, & Varejão, 2021), (Machado et al., 2022), (Vargas et al., 2017), 

(Carvalho, Vargas, Salgado, Munaro, & Varejao, 2021), (Scoralick et al., 2021), (Marins et al., 2021)). 
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Table 2.4 - Authors Co-authorship and the total link strengths 

Authors Publications Total link strength 

Varejão Flávio Miguel 3 11 

Antipova Ksenia 3 9 

Gurina Ekaterina 3 9 

Klyuchnikov Nikita 3 9 

Koroteev Dmitry 3 9 

Mello Lucas Henrique Sousa 2 8 

Oliveira-Santos Thiago 2 8 

Ribeiro Marcos Pellegrini 2 8 

Rodrigues Alexandre Loureiros 2 8 

Vargas Ricardo Emanuel Vaz 6 7 

Carvalho Bruno Guilherme 2 6 

Garcia Ana Cristina Bicharra 2 6 

Martí, Luis 2 6 

Molina, José Manuel 2 6 

Salgado Ricardo Menezes 2 6 

Sanchez-Pi Nayat 2 6 

Munaro Celso Jose 2 4 

Alsaihati Ahmed 2 2 

Elkatatny Salaheldin 2 2 

Gao X 2 0 

 

In the authors co-authorship network 6 clusters were identified with 20 items, 32 links and total link 

strength 65, as depicted in Figure 2.6. 

Cluster 1 (red) with Varejão, Flávio Miguel as a top author with most total link strength, consists of 

Oliveira-Santos Thiago, Rodrigues Alexandre Loureiros, Mello Lucas Henrique Sousa and Ribeiro 

Marcos Pellegrini. Cluster 2 (yellow) with Vargas Ricardo Emanuel Vaz, an author with the most 

collaborated publications (6), has other three authors: Carvalho Bruno Guilherme, Munaro Celso Jose, 

Salgado Ricardo Menezes. Cluster 3 (blue) identified four authors, which are Antipova Ksenia, Gurina 

Ekaterina, Klyuchnikov Nikita, Koroteev Dmitry. Cluster 4 (purple) corresponds to Alsaihati, Ahmed and 

Elkatatny, Salaheldin ((Alsaihati et al., 2021), (Alsaihati et al., 2022)). Cluster 5 (green) consists of 

Sanchez-Pi Nayat, Martí Luis, Garcia Ana Cristina Bicharra and Molina, José Manuel ((Martí et al., 

2015b), (Martí et al., 2017)). Cluster 6 (azure) has only one member Gao X ((J. Liu et al., 2019), (Wei & 

Gao, 2020)). 

The red and yellow clusters are connected through Varejão, Flávio Miguel, who collaborated the most 

with other authors. 

 

 



23 
 

 

Figure 2.6 - Authors Co-authorship network visualization 

Considering the years of publications, clusters 1 (red), 2 (yellow), 3 (blue) and 4 (purple) are the most 

recent, being produced between 2020 -2022. This group of authors identify the majority of 

collaboration, which was present in 2021. Cluster 6 (azure) is related to 2019-2020 years. Cluster 5 

(green) corresponds to the 2015-2017 interval (Figure 2.7). 

 

Figure 2.7 - Authors Co-authorship network visualization by Year 
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2.3.6. Discussion 

The aim of the Systematic Literature Review was to identify the journal articles and conference 

proceedings, that were focused on techniques for anomaly detection in Oil and Gas industry using 

Machine Learning/ Deep Learning methods. 

There were two questions stated in order to narrow our research: 

▪ RQ1: What are the most applicable and significant Artificial Intelligence methods that were 

applied for detection of anomalies and potential failures in the Oil and Gas industry? 

 

▪ RQ2: Which AI methods were applied for 3W dataset research? 

All the identified literature was classified according to industry division into 4 main groups: (1) Drilling 

and Exploration, (2) Oil and Gas pipelines transportation system, (3) Production and reservoir 

management, (4) 3W Dataset. 

Drilling and Exploration anomaly detection 

There are 15 articles related to the subject of drilling operations, which focus on such issues as 

circulation loss, stuck pipe, washout, bit balling, drill pipe breaks, fluid show, potential kick and other 

downhole abnormalities. For anomaly detection several unsupervised methods were applied in order 

to identify unusual data records in multivariate time series from downhole and rig floor sensors, such 

as Regression, K-Nearest Neighbor (KNN), K-Means, t-SNE, dendrograms clustering analysis, Recurrent 

Neural Networks (RNNs), LSTM Autoencoder (LSTM-AE). 

The following supervised Machine Learning methods were implemented to classify the abnormalities: 

Adaptive Neuro-Fuzzy Inference System (ANFIS), Random Forest (RF), Support vector machine (SVM), 

K-Nearest Neighbor (KNN), Gradient Boosting (GB), Shapley additive explanations (SHAP), Fully 

Connected network that has a multi-head attention mechanism (FCMH), eXtreme Gradient Boosting 

(XGBoost), Adaboost (ADA), Decision tree (DT), Multi-Layer Perceptron (MLP), Naïve Bayes Classifier 

(NBC) and Quadratic Discriminant Analysis (QDA). 

In some publications Deep Learning methods were used either as an unsupervised learning tool to 

build Autoencoders (Mopuri et al., 2022) or for classification: Convolutional Neural Network (CNN), 

Artificial Neural Network (ANN), Functional Network (FN), Bag-of-features, the Feed Forward Back 

Propagation neural network (FFBPN), Recurrent Neural Networks (RNN) with Long Short-Term 

Memory variant (LSTM-RNN) or Gated Recurrent Unit variant (GRU-RNN) type of architecture. 

In a few cases Genetic Algorithm was applied to optimize the multilayer Back Propagation Neural 

Network, creating GA-BP Neural Network ((Su et al., 2021), (Li et al., 2022)). 

For the computer vision algorithm, the following backbones were attempted for image recognition 

using Regional Convolutional Neural Network (Faster-R-CNN): Single Shot Detector (SSD), You Only 

Look Once (YOLOv3), ResNet, DarkNet and Inception (Magana-Mora et al., 2021). 
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Oil and Gas pipelines transportation system anomaly detection 

There are 8 articles with research subject related to pipelines transportation system. The major 

problems highlighted are pipeline leakage due to corrosion and harsh environment, damaged 

insulation, equipment failure, that provides pressure for oil and gas transportation, such as pumps and 

compressors, formation of gas hydrate due to low temperature and high pressure, etc. Since most 

pipelines are unobservable for humans in real time, many remote surveillance algorithms using 

computer vision are implemented. 

The following deep-learning CNN classifiers were applied to detect leakage in underwater pipelines 

analyzing images: You Only Look Once (YOLO) architectures (YOLOv4, YOLOv4-Tiny, CSP-YOLOv4, 

YOLOv4@Resnet, YOLOv4@DenseNet), and one on Faster Region-based CNN (RCNN) (Gasparovic et 

al., 2022). For a DARTS-Drone Technological Solution computer vision algorithm was developed using 

deep learning neural network DeepLabV3+ and data augmentation (Ravishankar et al., 2022). 

Among the unsupervised learning methods that were applied for pattern recognition and clustering 

were Gaussian mixture model (GMM) and K-Means. The supervised models employed are: Random 

Forest (RF), Support Vector Machine (SVM), K-Nearest Neighbor (KNN), Gradient Boosting (GB), 

Decision Tree (DT), Multiple Linear Regression, Neural Network and Multi-layer perceptron (MLP). 

The following Deep Learning methods were used in addition to already mentioned computer vision 

techniques: Long Short-Term Memory (LSTM) and Stacked Auto-Encoder (SAE) (Seo et al., 2021), 

Convolutional Neural Network (CNN), Inception ResNet V2 and Visual Geometry Group with 16 layers 

(VGG16) (Vankov et al., 2020). 

Production and reservoir management anomaly detection 

24 articles are related to production and reservoir management and it is the biggest group from the 

pool of the identified literature. Apart from naturally flowing wells, in which formation pressure is high 

enough to provide extraction without additional treatment, most wells require Artificial lift techniques: 

Beam Pumps (sucker rod system), Electrical Submersible Pumping (ESP), Gas Lift Systems, Hydraulic 

Pumps, Plungers and Progressive cavity pumps (PCP) (The Defining Series: Artificial Lift | SLB, n.d.). 

Regardless of how robust and well maintained this equipment, they are susceptible to many failures, 

and most of the research is focused on anomaly detection in this production branch of the industry. 

The following supervised learning methods were applied: K-Nearest Neighbor (KNN), Logistic 

Regression (Logit), Support Vector Machines (SVM), Decision Tree (DT), Random Forest (RF), Rule Fit 

Classifier (RFC), Extreme Learning Machine (ELM), supervised shapelet-based classification algorithm 

Fast Shapelets, Naive Bayes (NB), Stochastic Gradient Descent (SGD), Quadratic discriminant analysis 

(QDA), Linear Discriminant Analysis (LDA), boosting techniques e.g., Extreme Gradient Boosting (XGB), 

Adaptive Boosting (AdaBoost), and Categorical Boosting (CatBoost). 

Since for most of the methods the explanation of the decision process is not straightforward, further 

model analysis for explainability using LIME (Local Interpretable Model-agnostic Explanations) and its 

interpretability was performed (Alharbi et al., 2022). 

A few Genetic Algorithms were applied to optimize the SVM model, due to the problem that the 

parameters of the Support Vector Machine are difficult to determine when classifying: Chicken Swarm 
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Optimization (CSO), differential mutation strategy and adaptive inertial strategy (DACSO), Particle 

Swarm Optimization (PSO) and Bat Algorithm (BA) (J. Liu et al., 2019). Also, Genetic Algorithm 

optimized Back Propagation neural network (GA-BP) was implemented for offshore submersible motor 

fault diagnosis (Y. Zhang & Yang, 2022). 

One-class Support Vector Machine (SVM) in combination with Yet Another Segmentation Algorithm 

(YASA), which is designed for time series pattern analysis, and Kalman filters, were applied for anomaly 

detection of offshore platform turbomachines ((Martí et al., 2015b), (Martí et al., 2017)). 

Unsupervised machine learning algorithms that were used are: Cluster based local outlier factor 

(CBLOF), Histogram-based Outlier Score (HBOS), Isolation Forest (IF), Median Absolute Deviation 

(MAD), Minimum Covariance Determinant (MCD), Principal Component Analysis (PCA), Gaussian 

Markov random fields (GMRF), graphical Gaussian model (GGM), sparse Principal Component Analysis 

(sPCA), sparse Autoencoder, Alternating Decision Tree (ADTree), Support Vector Machine (SVM), Naïve 

Bayesian Network, Fuzzy C-means algorithm. 

A semi-supervised method Random Peek was employed for the case of Artificial Lift systems anomaly 

detection, where only a small number of samples is labeled, assuming that most of the unlabeled 

samples should be labeled Normal ((Y. Liu et al., 2010), (Y. Liu et al., 2011)). 

The following Deep Learning methods were exercised: Back Propagation Neural Network (BPNN), 

Convolutional Neural Network (CNN), Triplet network, i.e., an artificial neural network based on a 

Triplet loss metric, and other metric learning losses, such as Proxy-Anchor loss, Contrastive loss, Lifted 

Structured loss, CosFace loss (Mello et al., 2022), two stacked Autoencoders (Scoralick et al., 2021), 

Multilayer Feedforward Neural Network (MFNN), Long Short-Term Memory (LSTM), Convolutional-

LSTM (CONV-LSTM) (Sinha et al., 2020), CNN with backbones ResNet50, SE-ResNet50, ResNet50Ⅱ, SE-

ResNet50Ⅱ, AlexNet (Tan et al., 2022), Deep-Broad Learning System (DBLS), Fast Fourier transform 

(FFT), Wavelet transformation (Wei & Gao, 2020). 

Finally, transfer learning techniques were used for diagnosis of sucker-rod pump working conditions: 

AlexNet Network, GoogLeNet Network, shallow Convolutional Neural Networks (CNN3 model and 

CNN2 model) and Fully Connected Neural Network model (FC model) (R. Zhang et al., 2021). 

3W Dataset Anomaly Detection and Classification 

To the best of our knowledge, there are officially published 11 articles about anomaly detection and 

classification on offshore naturally flowing wells, using 3W dataset from Petrobras, that was created 

by combining real, simulated and hand-drawn records, written in English and having open access. 

For analysis of the time series data, all authors applied Sliding Windows technique. Some researchers 

attempted multiclass classification of undesirable events, while others selected one particular 

abnormality (ex. flow instability) and performed binary classification against all the rest of the classes. 

(Marins et al., 2021) performed 3 experiments: One-class classifier to identify normal vs abnormal 

events, thus combining all faults into one unique class, Multiple binary classifiers with several 

classifiers discriminating each individual fault against normal events, and Single multiclass classifier, 

identifying each fault against all events, as mentioned earlier. 
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The next supervised learning methods were applied: KNN (k-Nearest Neighbors), One Nearest 

Neighbor (1NN), Logistic regression, Support Vector Classifier (SVC), Linear and Quadratic Discriminant 

Analysis (LDA & QDA), Decision Tree (DT), Random Forest (RF), AdaBoost (ADA), Gaussian Naive Bayes 

(GNB), Zero Rule (ZR), Extreme Learning Machine (ELM), Multilayer Perceptron (MLP). 

A few Genetic Algorithms were again used to optimize the algorithm: (Gatta et al., 2022) created a 

Convolutional 1D Autoencoder with genetic approach for hyperparameters selection via Biased 

Random Key Genetic Algorithm (BRKGA), in which different combinations of hyperparameters are 

regarded as an individual of a population, and each hyperparameter is regarded as a gene of the 

individual. 

Explainability of the classifiers was also researched, and three XAI techniques were applied to interpret 

black box models to understand the causes of abnormalities: global surrogate model using DT, Shapley 

Additive Explanation (SHAP), and Local Interpretable-Agnostic Explanation (LIME) (Aslam et al., 2022). 

Unsupervised algorithms that were implemented are: t-distributed Stochastic Neighbor Embedding (t-

SNE), Principal Component Analysis (PCA), one-class Support Vector Machine (SVM), Cluster-based 

Algorithm for Anomaly Detection in Time Series Using Mahalanobis Distance (C-AMDATS), Luminol 

Bitmap, SAX-REPEAT, KNN, Bootstrap, and Robust Random Cut Forest (RRCF). 

Finally, the Deep Learning methods that were attempted are: Long Short-Term Memory (LSTM) 

Autoencoder and Convolutional Neural Network 1D Autoencoder. 

The summary of all the publications with corresponding AI methods is represented in Table 2.5. 

Table 2.5 - PRISMA method selected publications 

No Publication Research Question Methods 

Drilling and Exploration Anomaly Detection 

1 Application of adaptive neuro-

fuzzy inference system and 

data mining approach to 

predict lost circulation using 

DOE technique (case study: 

Maroon oilfield) (Agin et al., 

2020) 

Prediction of lost circulation 

problem during drilling 

Data mining (regression) and 

Adaptive Neuro-Fuzzy Inference 

System (ANFIS). 

2 Deep Learning and Time-Series 

Analysis for the Early Detection 

of Lost Circulation Incidents 

during Drilling Operations 

(Aljubran et al., 2021) 

Detection of lost circulation 

during drilling 

Random Forest as a baseline, 

Deep Learning methods CNN, 

ANN and LSTM. 

3 Application of Machine 

Learning Methods in Modeling 

the Loss of Circulation Rate 

Predicting the loss of 

circulation rate (LCR) while 

drilling 

Support vector machine (SVM), 

Random Forest (RF), and K-

Nearest Neighbor (KNN). 
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while Drilling Operation 

(Alsaihati et al., 2022) 

4 Use of Machine Learning and 

Data Analytics to Detect 

Downhole Abnormalities while 

Drilling Horizontal Wells, with 

Real Case Study (Alsaihati et al., 

2021) 

Continuous profile of the 

surface drilling torque (T&D) 

prediction to enable the 

detection of operational 

problems ahead of time. 

Random forest (RF), Artificial 

Neural Network (ANN), and 

Functional Network (FN). 

5 Forecasting the abnormal 

events at well drilling with 

machine learning (Gurina et al., 

2022a) 

Prediction of six types of 

drilling accidents probabilities 

in real-time, using the data 

from 

the drilling telemetry 

representing the time-series. 

Bag-of-features, K-Means, 

Gradient Boosting (GB), 

Convolution Neural Network 

(CNN) 

6 Making the black-box brighter: 

Interpreting machine learning 

algorithm for forecasting 

drilling accidents (Gurina et al., 

2022b) 

Interpretability and 

development of explanatory 

model of Bag-of-features 

approach, used for drilling 

accidents prediction. 

Bag-of-features, Shapley additive 

explanations (SHAP), Fully 

connected network that has a 

multi-head attention mechanism 

(FCMH), T-SNE 

7 Application of machine learning 

to accidents detection at 

directional drilling (Gurina et 

al., 2020) 

Development of data-driven 

algorithm for anomaly 

alarming for directional 

drilling. 

Gradient Boosting (GB), 

dendrograms clustering analysis 

8 AI-Driven maintenance support 

for downhole tools and 

electronics operated in 

dynamic drilling environments 

(Kirschbaum et al., 2020) 

Artificial Intelligence (AI)-

driven Condition Based 

Maintenance (CBM), 

combining Bottom Hole 

Assembly (BHA) data with Big 

Data Analytics 

(BDA) for downhole 

electronics failure detection 

Random Forest (RF), eXtreme 

Gradient Boosting (XGBoost) 

9 Drilling performance 

monitoring and optimization: a 

data-driven approach (Lashari 

et al., 2019) 

Prediction of ROP, drilling 

performance monitoring and 

optimization, identifying the 

bit malfunction or failure, like 

bit balling. 

The feed forward back 

propagation neural network 

(FFBPN) 

10 A New Method for Intelligent 

Prediction of Drilling Overflow 

and Leakage Based on Multi-

Parameter Fusion (Li et al., 

2022) 

Mud overflow and leakage 

prediction during drilling 

Genetic Algorithm to optimize 

the multilayer Back Propagation 

Neural Network (GA-BP Neural 

Network) 

11 Well Control Space Out: A 

Deep-Learning Approach for 

the Optimization of Drilling 

Surveillance method for 

drilling operations control 

using cameras and computer 

vision in real time. The model 

Deep Learning methods: Regional 

Convolutional Neural Network 

(Faster-R-CNN), Single Shot 

Detector (SSD), You Only Look 
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Safety Operations (Magana-

Mora et al., 2021) 

for tool joint detection is used 

to compute the location of the 

tool joint below the drill floor. 

In the case of an uncontrolled 

flow, the Well Control Space 

Out determines the 

appropriate measures to 

take. 

Once (YOLOv3), ResNet, DarkNet 

and Inception backbones 

 

 

 

12 Early sign detection for the 

stuck pipe scenarios using 

unsupervised deep learning 

(Mopuri et al., 2022) 

Detecting early signs for the 

stuck events in drilling 

Unsupervised learning: Recurrent 

Neural Networks (RNNs), LSTM 

Autoencoder (LSTM-AE) 

13 Supervised data-driven 

approach to early kick 

detection during drilling 

operation (Muojeke et al., 

2020) 

Early kick detection during 

drilling for implementing the 

appropriate well control 

strategy to manage kick 

situations 

Supervised models: Artificial 

Neural Network (ANN), Recurrent 

Neural Networks (RNN), Long 

Short-Term Memory variant of 

RNN, (LSTM-RNN), Gated 

Recurrent Unit variant of RNN, 

(GRU-RNN) 

14 Prediction of drilling leakage 

locations based on optimized 

neural networks and the 

standard random forest 

method (Su et al., 2021) 

Creating real-time model for 

predicting leakage layer 

locations in drilled formations, 

that cause potential 

circulation loss 

Genetic Algorithm-Back 

Propagation (GA-BP) neural 

network, Random Forest (RF) 

15 Effective prediction of lost 

circulation from multiple 

drilling variables: a class 

imbalance problem for 

machine and deep learning 

algorithms (Wood et al., 2022) 

Prediction of lost circulation 

during drilling 

8 Machine Learning methods: 

Adaboost (ADA), Decision tree 

(DT), K-Nearest Neighbour (KNN), 

Multi-Layer Perceptron (MLP), 

Naïve Bayes Classifier (NBC), 

Quadratic Discriminant Analysis 

(QDA), Random Forest (RF) and 

Support Vector Classifier (SVR). 

3 Deep Learning methods: 

Convolutional Neural Network 

(CNN), Gated Recurrent Unit 

(GRU) and Long Short-Term 

Memory (LSTM). 

Production anomaly detection and classification 

16 Explainable and Interpretable 

Anomaly Detection Models for 

Production Data (Alharbi et al., 

2022) 

Study of white-box and black-

box classifiers for supervised 

anomaly detection on oil and 

gas production data. 

K-Nearest Neighbor (KNN), 

Logistic Regression (Logit), 

Support Vector Machines (SVMs), 

Decision Tree (DT), Random 

Forest (RF), and Rule Fit Classifier 
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(RFC). Further models analysis for 

explainability using LIME (local 

interpretable model-agnostic 

explanations) and 

interpretability. 

17 Self-Diagnosis of Multiphase 

Flow Meters through Machine 

Learning-Based Anomaly 

Detection (Barbariol et al., 

2020) 

Method AD4MPFM (Anomaly 

Detection for Multiphase Flow 

Meters), enabling the 

metrology system to detect 

outliers and to provide a 

statistical level of confidence 

in the measures for oil 

production. 

Unsupervised machine learning 

algorithms: Cluster based local 

outlier factor (CBLOF), Histogram-

based Outlier Score (HBOS), 

Isolation Forest (IF), Median 

Absolute Deviation (MAD), 

Minimum Covariance 

Determinant (MCD), and Principal 

Component Analysis (PCA) 

18 Sparse Gaussian Markov 

Random Field Mixtures for 

Anomaly Detection (Ide et al., 

2017) 

Anomaly detection of a 

compressor of offshore oil 

production, from multivariate 

noisy sensor data. 

Gaussian Markov random fields 

(GMRF), graphical Gaussian 

model (GGM), sparse Principal 

Component Analysis (sPCA), 

sparse Autoencoder 

19 Fault Diagnosis of Rod Pumping 

Wells Based on Support Vector 

Machine Optimized by 

Improved Chicken Swarm 

Optimization (J. Liu et al., 2019) 

Diagnosis the faults of 

pumping wells by classifying 

and identifying the indicator 

diagrams 

Support vector machine (SVM), 

chicken swarm optimization 

(CSO), differential mutation 

strategy and 

adaptive inertial strategy 

(DACSO), particle swarm 

optimization (PSO) and bat 

algorithm (BA) 

20 Failure Prediction for Rod 

Pump Artificial Lift Systems (Y. 

Liu et al., 2010) 

Prediction of Failure for Rod 

Pump Artificial Lift Systems 

Unsupervised methods: 

Alternating Decision Tree 

(ADTree), Support Vector 

Machine (SVM), Naïve Bayesian 

Network. Semi-supervised: 

Random Peek. 

21 Semi-supervised failure 

prediction for oil production 

wells (Y. Liu et al., 2011) 

Development of Smart 

Engineering Apprentice 

(SEA) framework for Artificial 

Lift Systems failure prediction 

Semi-supervised classification 

using Random Peek, Support 

Vector Machines (SVM) 

22 Adaptive fault diagnosis of 

sucker rod pump systems 

based on optimal perceptron 

and simulation data (X.-X. Lv et 

al., 2022) 

The improved model of fault 

diagnosis for the sucker rod 

production system (SRPS) 

Back Propagation Neural Network 

(BPNN), Extreme Learning 

Machine (ELM), and Support 

Vector Machine (SVM) with 

improved feature extraction 

23 An evolutional SVM method 

based on incremental 

algorithm and simulated 

Fault diagnosis of the sucker 

rod pumping system (SRPS) 

Evolutional SVM method based 

on incremental algorithm and 



31 
 

indicator diagrams for fault 

diagnosis in sucker rod 

pumping systems(X. Lv et al., 

2021) 

simulated IDs, ELM, PSO-ELM, 

BPNN and SVM as baselines 

24 Anomaly Detection Based on 

Sensor Data in Petroleum 

Industry Applications (Martí et 

al., 2015b) 

Anomaly Detection in 

Offshore Oil Extraction 

Turbomachines 

One-class support vector machine 

(SVM), Yet Another Segmentation 

Algorithm (YASA) 

25 On the combination of support 

vector machines and 

segmentation algorithms for 

anomaly detection: A 

petroleum industry 

comparative study (Martí et al., 

2017) 

Anomaly detection of 

turbomachinery installed in 

offshore petroleum extraction 

platforms. 

One-class Support Vector 

Machines (SVM), Kalman filters, 

Yet Another Segmentation 

Algorithm (YASA) 

26 Metric Learning for Electrical 

Submersible Pump Fault 

Diagnosis (Mello et al., 2020) 

Electrical Submersible Pump 

(ESP) fault diagnosis 

Convolutional neural network 

(CNN) trained with a triplet loss 

learning for extracting relevant 

features, standard machine 

learning algorithm such as K-

Nearest Neighbors, Support 

Vector Machine, Decision Tree, 

Random Forest, Quadratic 

Discriminant Analysis and Naïve 

Bayes Classifier 

27 Ensemble of metric learners for 

improving electrical 

submersible pump fault 

diagnosis (Mello et al., 2022) 

Electrical Submersible Pump 

(ESP) fault diagnosis 

Ensembles composed of deep 

neural networks (convolutional 

network (ConvNet) with 5 

metrics: Triplet network, i.e., an 

artificial neural network based on 

a metric called Triplet loss, Proxy-

Anchor loss, Contrastive loss, 

Lifted Structured loss, CosFace 

loss. Random Forest (RF), 

majority voting, Principal 

Component Analysis (PCA) 

28 Unsupervised Methods to 

Classify Real Data from 

Offshore Wells (Orestes et al., 

2021) 

Anomalies detection during oil 

and gas production 

Fuzzy C-means algorithm for 

classification into clusters, 

Control Chart method, Random 

Forest (RF) 

29 Predicting Compressor Valve 

Failures from Multi-Sensor 

Data (Patri et al., 2015) 

Ranking sensor dimensions 

and finding signatures in 

compressor sensor data, 

which may aid in the 

prediction of valve failure 

Decision Tree, supervised 

shapelet-based classification 

algorithm Fast Shapelets 
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30 Electric submersible pump 

broken shaft fault diagnosis 

based on principal component 

analysis (Peng et al., 2020) 

Identify the cause and the 

time of ESP shaft fracture, 

predict the impending 

breakage time and determine 

the variable most responsible 

Principal Component Analysis 

(PCA) 

31 Machine Learning Models to 

Predict Gas Hydrate Plugging 

Risks Using Flowloop and Field 

Data (Qin et al., 2019) 

Evaluating gas hydrate risk 

based on measurable process 

parameters 

Support vector classifier (SVC) 

with several kernels, such as 

linear, polynomial, radial basis 

functional (RBF), and artificial 

neural networks (ANN). Feature 

selection methods SelectKBest 

and ExtraTreesClassifier. 

32 A novel machine learning 

model for autonomous analysis 

and diagnosis of well integrity 

failures in artificial-lift 

production systems (Salem et 

al., 2022) 

Automated prediction of 

integrity failures in wells with 

Artificial Lift gas lift production 

method 

Logistic regression, Naive Bayes 

(NB), Decision trees (DT), Random 

Forests (RF), KNN, SVM, 

Stochastic gradient descent 

(SGD), Quadratic discriminant 

analysis (QDA), boosting 

techniques e.g., Extreme 

Gradient Boosting 

(XGB), Adaptive Boosting 

(AdaBoost), and Categorical 

Boosting (CatBoost). 

33 Fault detection with Stacked 

Autoencoders and pattern 

recognition techniques in gas 

lift operated oil wells (Scoralick 

et al., 2021) 

Detection and classification of 

failures in oil production 

wells operated with elevation 

by gas lift. 

Two stacked autoencoders with 9 

and 5 neurons, Decision Tree 

(DT), Linear 

Discriminant Analysis (LDA), 

Support Vector Machine (SVM), 

KNN 

34 Normal or abnormal? Machine 

learning for the leakage 

detection in carbon 

sequestration projects using 

pressure field data (Sinha et al., 

2020) 

Automation of the leakage 

detection process in carbon 

storage reservoirs using rates 

of (CO2) injection and 

pressure data measured by 

simple harmonic pulse testing 

(HPT). 

Multilayer Feedforward Neural 

Network (MFNN), Long Short-

Term Memory (LSTM), 

Convolutional Neural Networks 

(CNN), Convolutional-LSTM 

(CONV-LSTM) 

35 A visual analytics approach to 

anomaly detection in 

hydrocarbon reservoir time 

series data (Soriano-Vargas et 

al., 2021b) 

Anomaly detection in time 

series data of hydrocarbon 

reservoir using visual analytics 

approach based on interactive 

visualizations of time series 

connected with machine 

learning approaches. 

Isolation Forest (IF) 

36 Multi-Scale Normalization 

Method Combined with a Deep 

Development of diagnosis 

model to identify the working 

Four CNN backbones: ResNet50, 

SE-ResNet50, ResNet50Ⅱ, SE-
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CNN Diagnosis Model of 

Dynamometer Card in SRP Well 

(Tan et al., 2022) 

condition of each sucker rod 

pumping (SRP) well 

ResNet50Ⅱ, SVM with radial 

basis function and particle swarm 

optimization (PSO), AlexNet 

model for comparison 

37 Fault Diagnosis of Sucker Rod 

Pump Based on Deep-Broad 

Learning Using Motor Data 

(Wei & Gao, 2020) 

Fault diagnosis methods of 

sucker rod pump (SRP) 

Convolutional Neural Network 

(CNN), Deep-Broad Learning 

System (DBLS), Fast Fourier 

transform (FFT), Wavelet 

transformation, Extreme Learning 

Machine (ELM), Support Vector 

Machine (SVM), Hidden Markov 

Model (HMM) 

38 Fault Diagnosis of Submersible 

Motor on Offshore Platform 

Based on Multi-Signal Fusion 

(Y. Zhang & Yang, 2022) 

Offshore submersible motor 

fault diagnosis 

Back Propagation Neural Network 

(BP), Genetic Algorithm 

optimized Back Propagation 

neural network (GA-BP) 

39 An intelligent diagnosis method 

of the working conditions in 

sucker-rod pump wells based 

on convolutional neural 

networks and transfer learning 

(R. Zhang et al., 2021) 

Diagnosis of sucker-rod pump 

working conditions 

Transfer deep learning methods: 

AlexNet Network, GoogLeNet 

Network, shallow convolutional 

neural networks (CNN3 model 

and CNN2 model) and Fully 

Connected Neural Network 

model (FC model) 

Oil Pipelines and Transportation System Anomaly Detection 

40 An Anomaly Detection Model 

for Oil and Gas Pipelines Using 

Machine Learning (Aljameel et 

al., 2022) 

Oil pipeline leakage detection. Random Forest (RF), Support 

Vector Machine (SVM), K-Nearest 

Neighbour (KNN), Gradient 

Boosting (GB), Decision Tree (DT). 

41 A data-driven pipeline pressure 

procedure for remote 

monitoring of centrifugal 

pumps (Giro et al., 2021) 

Automated strategy to 

remotely monitor the status of 

centrifugal pumps in pipeline 

transportation systems, when 

the network of sensors is not 

available or not present. 

Unsupervised clustering 

techniques: Gaussian mixture 

model (GMM) 

42 Deep Learning Approach for 

Objects Detection in 

Underwater Pipeline Images 

(Gasparovic et al., 2022) 

Underwater seafloor pipelines 

leakage detection, using 

images, to verify their integrity 

and determine the need for 

maintenance 

Convolutional Neural Network 

(CNN), Six different architectures: 

You Only Look Once (YOLO) 

architectures (YOLOv4, YOLOv4-

Tiny, CSP-YOLOv4, 

YOLOv4@Resnet, 

YOLOv4@DenseNet), and one on 

the Faster Region-based CNN 

(RCNN) architecture. 
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43 DARTS-Drone and Artificial 

Intelligence Reconsolidated 

Technological Solution for 

Increasing the Oil and Gas 

Pipeline Resilience 

(Ravishankar et al., 2022) 

Integrating drone technology 

and deep learning technique 

to detect the targeted 

potential root problems that 

can cause critical pipeline 

failures and predict the 

progress 

of the detected problems by 

collecting and analyzing image 

data periodically 

Computer vision algorithm using 

deep learning neural network 

DeepLabV3+, data augmentation 

44 Development of AI-based 

diagnostic model for the 

prediction of hydrate in gas 

pipeline (Seo et al., 2021) 

Diagnose hydrate for flow 

assurance purposes in gas 

pipelines 

Multi-layer perceptron (MLP), 

Long Short-Term Memory LSTM, 

and Stacked Auto-Encoder (SAE) 

45 Microwave Nondestructive 

Testing for Defect Detection in 

Composites Based on K-Means 

Clustering Algorithm (Shrifan et 

al., 2021) 

Non-destructive testing (NDT) 

to detect the underneath 

defect in composites, used for 

insulation of steel pipelines in 

oil and gas industry, based on 

microwave reflection 

coefficients 

Unsupervised machine learning: 

K-Means clustering 

46 Assessment of the condition of 

pipelines using convolutional 

neural networks (Vankov et al., 

2020) 

Analysis of amplitude-

frequency measurements in 

pipelines to identify the 

presence of a defect and 

further clarify its variety 

Convolutional Neural Network 

(CNN), Inception ResNet V2, 

Visual Geometry Group with 16 

layers (VGG16) 

47 A minimalist approach for 

detecting sensor abnormality in 

oil and gas platforms (Wong et 

al., 2022) 

Detecting abnormality of 

compressor's shaft's RPM 

sensor 

Multiple Linear Regression, 

Neural Network 

3W Dataset Anomaly Detection and Classification 

48 Proposal for two classifiers of 

offshore naturally flowing wells 

events using k-nearest 

neighbors, sliding windows and 

time multiscale (Vargas et al., 

2017) 

Identification of four 

anomalous events in oil wells 

for 3W Dataset: Spurious 

Closure of DHSV, Rapid 

Productivity Loss, Hydrates in 

Production Lines, Choke Valve 

Closure 

KNN (k-Nearest Neighbors), t-

distributed Stochastic Neighbor 

Embedding) (t-SNE) 

49 Classification of undesirable 

events in oil well operation 

(Turan & Jaschke, 2021) 

Multiclass classification of 

anomalous events in oil wells 

for 3W Dataset 

Decision Tree, as baseline 

attempted Logistic Regression 

(LR), Support Vector Classifier 

(SVC), Linear and Quadratic 

Discriminant Analysis (LDA & 

QDA), Random Forest, AdaBoost 
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(ADA), Principal Component 

Analysis (PCA) 

50 Statistical analysis of offshore 

production sensors for failure 

detection applications (Santos 

et al., 2021) 

Identification of abnormal 

events in oil wells for 3W 

Dataset 

Principal Component Analysis 

(PCA) and Logistic Regression (LR) 

51 Fault detection and 

classification in oil wells and 

production/service lines using 

random forest (Marins et al., 

2021) 

Development of CBM system 

for identification of 

anomalous events in oil wells 

for 3W Dataset 

Random Forest, Principal 

component Analysis (PCA), 

Bayesian non-convex 

optimization strategy 

52 Improving performance of one-

class classifiers applied to 

anomaly detection in oil wells 

(Machado et al., 2022) 

Identification of two types of 

faults in oil wells for 3W 

Dataset: Spurious closing of 

Downhole Safety Valves 

(DHSV) and Hydrate in 

Production Line. 

Two unsupervised learning 

methods: Long Short-Term 

Memory (LSTM) autoencoder and 

one-class Support Vector 

Machine (OCSVM), trained on 

faulty events as a target class. 

53 Predictive maintenance for 

offshore oil wells by means of 

deep learning features 

extraction (Gatta et al., 2022) 

Multiclass classification of 

anomalous events in oil wells 

for 3W Dataset 

Deep learning method for feature 

extraction: 1D AutoEncoder using 

Convolutional Neural Network. 

Machine learning classifiers: 

Random Forest, Nearest 

Neighbors, Gaussian Naive Bayes 

and Quadratic Discriminant 

Analysis, hyperparameters 

selection via Biased Random Key 

Genetic Algorithm (BRKGA). 

54 Data-driven Detection and 

Identification of Undesirable 

Events in Subsea Oil Wells 

(Brønstad et al., 2021) 

Development of CBM system 

for identification of 

anomalous events in oil wells 

for 3W Dataset 

Random Forest (RF), Principal 

Component Analysis (PCA) 

55 Flow Instability Detection in 

Offshore Oil Wells with 

Multivariate Time Series 

Machine Learning Classifiers 

(Carvalho, Vargas, Salgado, 

Munaro, & Varejao, 2021) 

3W Dataset Flow Instability 

prediction 

Binary machine learning 

classifiers: One Nearest Neighbor 

(1NN), Gaussian Naïve Bayes 

(GNB), Linear Discriminant 

Analysis (LDA) and Quadratic 

Discriminant Analysis (QDA), 

Random Forest (RF). As a baseline 

- the Zero Rule (ZR) classifier. 

56 Hyperparameter Tuning and 

Feature Selection for Improving 

Flow Instability Detection in 

Offshore Oil Wells. (Carvalho, 

Vargas, Salgado, Munaro, & 

Varejão, 2021) 

Improvement of previous 3W 

Dataset Flow Instability 

prediction 

Random Forest (RF), Support 

Vector Machine (SVM), K-Nearest 

Neighbor (KNN), Adaptive 

Boosting (ADA), Extreme Learning 

Machine (ELM) and Multilayer 

Perceptron (MLP), Zero-rule (ZR) 
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classifier, Sequential Feature 

Selection SFS-F (forward), SFS-B 

(backward) and Genetic 

Algorithm for feature selection. 

57 Detecting Interesting and 

Anomalous Patterns in 

Multivariate Time-Series Data 

in an Offshore Platform Using 

Unsupervised Learning 

(Figueirêdo et al., 2021) 

A comparative evaluation 

performance of unsupervised 

learning algorithms for pattern 

recognition in 3W Dataset 

undesirable events, such as 

Spurious closure of DHSV and 

Quick restriction in PCK 

Six unsupervised machine 

learning algorithms: Cluster-

based Algorithm for Anomaly 

Detection in Time Series Using 

Mahalanobis Distance (C-

AMDATS), Luminol Bitmap, SAX-

REPEAT, KNN, Bootstrap, and 

Robust Random Cut Forest 

(RRCF). 

58 Anomaly Detection Using 

Explainable Random Forest for 

the Prediction of Undesirable 

Events in Oil Wells (Aslam et 

al., 2022) 

Identification of anomalous 

events in oil wells for 3W 

Dataset and model 

interpretation 

Logistic Regression (LR), Decision 

Tree (DT), Random Forest (RF), 

and K-Nearest Neighbor (K-NN), 

SMOTE, Explainable Artificial 

Intelligence (XAI). Three XAI 

techniques: global surrogate 

model using DT, Shapley Additive 

Explanation (SHAP), and Local 

Interpretable-Agnostic 

Explanation (LIME). 

 

The systematic literature review following PRISMA methodology allowed an insight into the current 

state of knowledge in the area of anomaly detection in the Petroleum industry. Specifically, most of 

the publications are related to the Production sector, and the least - to the Oil and Gas pipeline and 

transportation equipment. The specter of applied methods is wide and many advanced techniques are 

implemented to enhance the result, such as using Genetic algorithms for Machine Learning and Deep 

Learning model optimization, creating stacked Autoencoders algorithms, applying Convolutional 

Neural Networks for improved feature extraction, explaining black box models using Explainable 

Artificial Intelligence techniques, etc. 

Regarding the detection of undesirable events in naturally flowing wells for 3W Dataset, there were 

many experiments attempted in setting up multiclass or binary classifications. An array of supervised 

and unsupervised learning methods was applied with some outstanding results. The recent 

publications, made in 2022, focused more on Deep Learning algorithms, since they provide higher 

accuracy of classification. It would be suggested to develop further the latest contributions by 

attempting other Recurrent Neural Network configurations with LSTM and GRU architectures, or focus 

on identifying other particular types of faults, which were not analyzed before. 
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3. METHODOLOGY 

The research methodology is composed of 3 main phases, which are Exploration, Analytical and 

Conductive Phases. 

As the objective of the literature review process was to obtain the insight about the state of the 

knowledge in the area of anomaly detection, identifying potentially applicable but not yet exploited 

algorithms, the result will be implemented for designing the Methodology of the project. 

The Exploration Phase starts with a literature review of the recent development in the field of Artificial 

Intelligence in the Oil and Gas industry and the 3W dataset particularly (Figure 3.1). It was recognized, 

that Deep Learning methods were implemented only in 2 out of 11 official publications (taking into 

account those only written in English): 

• “Improving performance of one-class classifiers applied to anomaly detection in oil wells” 

(Machado et al., 2022), in which LSTM Autoencoder was used for binary classification of two 

types of anomalies, such as Spurious closing of Downhole Safety Valves (DHSV) and Hydrate in 

Production Line, and then compared to the one-class Support Vector Machine (OCSVM) 

classifier, 

• “Predictive maintenance for offshore oil wells by means of deep learning features extraction” 

(Gatta et al., 2022), where instead of applying statistical methods for feature engineering, the 

Autoencoder (AE) using the Convolutional Neural Network (CNN) is created in order to 

decrease the dimensionality of the feature space. Then the extracted features are loaded to 

four Machine Learning algorithms for multi-class classification. The hyperparameters of the 

classifiers were optimized using Biased Random Key Genetic Algorithm (BRKGA). 

 

 

Figure 3.1 - Phases of the research 

 

 

Exploration 
Phase

• Step 1 - Literature review

• Step 2 - Methodology

Analytical 
Phase

• Step 3 - Data preprocessing (Cleaning, Missing vaues, Normalization)

• Step 4 - Data transformation (Reshaping the time series into 3D matrix)

• Step 5 - Algorithms selection (RNN based on LSTM and GRU)

• Step 6 - Model and Classification Execution 

Conclusive 
Phase

•Step 7 - Comparison with  benchmarks

• Step 8 - Conclusions and results presentation

• Step 9 - Final revisions

CRISP-DM 

Analogy 
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The suggested Methodology of the research is based on further exploration of Deep Learning 

techniques for multi-class classification, creating Recurrent Neural Network (RNN) configurations with 

Long-Short Term Memory (LSTM) and Gated Recurrent Unit (GRU) architectures. 

As shown in Figure 3.1, the Analytical and partially Conclusive Phases of the research methodology are 

greatly inspired by the Cross-Industry Standard Process for Data Mining (CRISP-DM), which consists of 

6 phases: business understanding, data understanding, data preparation, modelling, evaluation and 

deployment (Nick Hotz, 2022). Despite this being a Data Mining approach, the main pillars of the 

process model are highly relevant for the project, and can be implemented in the research parts of it. 

The Analytical Phase would include the following intermediate objectives: 

• Pre-processing the 3W Dataset by data cleaning, imputing or removing missing values, 

standardizing the data for better performance of the deep neural networks 

• Data transformation by converting into the 3D matrix expected by LSTM and GRU backbones: 

[samples, timesteps, features] 

• Based on Recurrent Neural Network (RNN), developing the algorithm with LSTM and GRU 

architectures to perform the abnormal events multi-class classification 

• Evaluating the results by comparing with benchmarks from the previous researches. 

The suggested workflow is presented in Figure 3.2, starting with the overview of the 3W Dataset. Its 

descriptive introduction and analysis are essential and detailed in the Data Processing part of the 

research, since it is a challenging dataset, and requires a thorough grasp for the task of anomaly 

detection in this project.  

The Research Design runs in parallel, including already performed literature review, overview of the 

suggested algorithms and an on-going process of improving the model with the consideration of 

potentially adding unsupervised algorithms for dimensionality reduction or genetic algorithms for 

hyperparameters tuning. 

The core of the research is the project itself, where the pipeline of the algorithms will be setup, and 

the classification performed to detect the undesirable events. Finally, a comparison with the previous 

publications results will be implemented, with the main focus on the papers, which performed multi-

class classification. 
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                  Figure 3.2 - Methodology overview 

 

 

 

 

 

 

 

 

 

 

Systematic 

Literature Review 

(PRISMA) 

Algorithms 

Selection (LSTM, 

GRU) 

 

Algorithms tuning 

and improvement  

3W Dataset 

Overview 

Data cleaning, 

Missing data 

imputation, 

Normalization, 

Correlation 

analysis, Data 

transformation into 

3D matrix format 

DATA 

PROCESSING 

RESEARCH 

DESIGN 

DL Models 

implementation 

Ubnormal Events 

Classification 

Evaluation and 

Benchmarks Comparison 

PROJECT 



40 
 

4. PROJECT    

The major goal of the 3W Petrobras project is development of a new automated AEM (Abnormal Event 

Management) with machine learning algorithms, for which the 3W dataset was created by compiling 

real data from 21 wells during actual operations from 2012 to 2018 (Vargas et al., 2019b). The naturally 

flowing wells were selected as being less complex and more suitable for research and innovation in 

predictive maintenance. As displayed in Figure 4.1, the types of undesirable events, which are a focus 

of the project, account for most of the production losses, hence it is highly desirable to detect their 

start at the earliest opportunity and to take appropriate measures to mitigate or eliminate adverse 

scenarios. 

 

 

Figure 4.1 - Breakdown of cumulative oil volume loss (blue bars) and corresponding number of 
failures (green bars) between 2014 and 2017 for Petrobras (Marins et al., 2021). 

4.1. 3W DATASET 

Naturally flowing wells are those in which the formation pressure is sufficient to produce oil at a 

commercial rate without requiring a pump. Most reservoirs at the initial stage of development have 

sufficient pressure for a natural flow and thus require less equipment and automation for control and 

also for successful oil and gas production. Figure 4.2 presents the basic schema of an offshore platform 

connecting to a subsea Christmas tree through a production line and subsequently to production 

tubing and the reservoir itself. Subsea Christmas trees are a complex assembly installed on top of 
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wellhead to monitor and control the production, whilst being operated through an electro-hydraulic 

umbilical.  

 

 

Figure 4.2 - Simplified schematic of a typical offshore naturally flowing well (Vargas et al., 2019b). 

The 3W dataset combines measurements from topside and subsea sensors: located in the production 

tubing (P-PDG), on the subsea Christmas tree (P-TPT and T-TPT), the production line (P-MON-CKP and 

T-JUS-CKP), and the gas lift line (P-JUS-CKGL, T-JUS-CKGL, and QGL) (Santos et al., 2021) (Table 4.1).  

 

Table 4.1 - 3W dataset variables 

Number Tag Name Unit 

1 P-PDG Pressure at the PDG Pa 

2 P-TPT Pressure at the TPT Pa 

3 T-TPT Temperature at the TPT deg°C 

4 P-MON-CKP Pressure upstream of the PCK Pa 

5 T-JUS-CKP Temperature downstream of the PCK deg°C 

6 P-JUS-CKGL Pressure downstream of the GLCK Pa 

7 T-JUS-CKGL Temperature downstream of the GLCK deg°C 

8 QGL Gas lift flow rate sm^3/s 

 

The 3W dataset is organized into folders according to the type of fault, with each event progressing 

from normal operation to transient condition, following through to a steady-state anomaly. The 8 

types of recognized and labeled events are:  
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• Class 0 – Normal operation 

• Class 1 – Abrupt Increase of Basic Sediment and Water (BSW) – suspended water, sediments 

and other impurities in the production measured as a percentage of the production stream 

(The SLB Energy Glossary | Energy Glossary, n.d.). The lifecycle of each well contains periods 

of increasing level of BSW, however an unexpected rise of it indicates a developing production 

issue, which needs to be remedied quickly. 

• Class 2 – Spurious Closure of the Downhole Safety Valve (DHSV) – the valve isolates wellbore 

fluids in the event of a catastrophic failure of surface equipment (The SLB Energy Glossary | 

Energy Glossary, n.d.). In case the valve fails in a spurious manner without any surface signs, it 

needs to be reopened, hence the automatic event identification is essential. 

• Class 3 – Severe Slugging – an event in which a sequence of liquid slugs is followed by large gas 

bubbles. It is a cyclical phenomenon, that can lead to wellhead and pipeline damage, hence it 

is considered as a critical type of abnormality (Vargas et al., 2019b). 

• Class 4 – Flow Instability – pressure changes within acceptable thresholds, with differences 

due to slugging which represent absence of cyclicity. This event can transform into slugging 

and then a severe variant, which requires imminent actions (Vargas et al., 2019b). 

• Class 5 – Rapid Productivity Loss – flow loss due to changes in reservoir static pressure, with 

alternating BSW percentage, production viscosity and changes in production line diameter, 

etc. (Vargas et al., 2019b). 

• Class 6 – Quick Restriction in the Production Choke (PCK) – a term used by Petrobras to indicate 

issues with a PCK valve, which is installed at the beginning of the production line. When it is 

operated manually, short restrictions might be observed due to operational problems, which 

need to be identified and reversed (Vargas et al., 2019b). 

• Class 7 – Scaling in PCK – a mineral deposit, which can create a significant restriction or even a 

plug in the production tubing (The SLB Energy Glossary | Energy Glossary, n.d.). Thus, 

monitoring the production choke is helpful for recognizing the event and taking appropriate 

actions, such as scale inhibitor injections (Vargas et al., 2019b). 

• Class 8 – Hydrate in Production Line – compounds of complex ions formed by water and other 

substances, at reduced temperatures and high pressure, which might lead to plugging of the 

pipelines (The SLB Energy Glossary | Energy Glossary, n.d.). It is one of the biggest issues in oil 

and gas production and which can stop flow for a long period, hence it needs to be recognized 

immediately.  

These faults might interact with each other, which might create a difficulty in identifying one of them, 

or one fault might trigger another one from a different class  (Marins et al., 2021).  

Two types of labelling are implemented on two levels: first by instance (which is a file within each 

folder, be it real, simulated or hand-drawn) and second by observation (each row within each file also 

has a label according to the event).  

The real ones were obtained from the real wells, the simulated were generated by Schlumberger 

through OLGA system (OLGA Dynamic Multiphase Flow Simulator, n.d.), the hand-drawn were 

produced by the 3W database creators using expert knowledge, so that the data mimics a typical 

sensor reading of the particular event type (Figure 4.3). However, for anomaly detection only real 

instances with an undesirable event of a normal period (1, 2, 5, 6, 7 and 8) longer or equal to 20 minutes 

must be used (Vargas et al., 2019c).  
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Figure 4.3  – The number of instances in the 3W Dataset 

 

As depicted in Figures 4.4 and 4.5, each observation is labelled according to the three periods as 

normal, faulty transient and faulty steady state. The faulty transient state is characterized by the 

development of undesirable events, but still not reaching a failure condition, and is labelled by three 

digits with the last one corresponding to the event label (for example, 105 as faulty transient and 5 as 

steady state fault). 

 

 

 

Figure 4.4 - Class 5 time series of the WELL-00015 instance  
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Figure 4.5 - Class 5 time series of the WELL-00015 instance with observations Normal (green), Faulty 
Transient (yellow) and Faulty Steady State (red) 

 

4.2. DATA PREPROCESSING 

Since the objective of this project is anomaly detection, only real instances were considered for the 

analysis. All the Simulated and Drawn instances were ignored, leaving only files, that start with “Well”.  

With the removal of synthetic data, it turns into a very imbalanced dataset, classes 0 and 4 being the 

majority classes and the rest a minority (Figure 4.6). 
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Figure 4.6 - Real instances and observations distribution according to fault events 

For this project it is decided to treat faulty transient as faulty events, since they naturally progress into 

failure and this way they will be recognized sooner. First, all the csv files were combined into one file, 

converting all faulty transient classes into corresponding steady state faulty. Considering them as faulty 

events, the classification becomes multiclass classification with 9 classes identified. Also, while 

concatenating the files, they were down sampled to 1 minute to decrease the calculation time. As 

demonstrated in Figure 4.7, the final combined file shows the presence of multiple spikes and noise as 

well as frozen and missing data. 

Since there are observations without class, they were deleted, and “class” type was converted to 

categorical. 

 

 

Figure 4.7 - Combined data visualization 
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The box plots identify that P-PDG has negative values, and other channels encounter many outliers. 

Their nature might be due to sensors readings being affected by jumps in temperature and pressure, 

which is common for oilwell operations. Despite that, some of them might indicate the start of failure, 

and care needs to be taken with their treatment or removal (Figure 4.8).  

 

 

Figure 4.8 - All features box plots 

For the initial attempt, the outliers were replaced by their corresponding lower and upper limits using 

quantile ranges of 0.1 and 0.9. Then, since variable T-JUS-CKGL has no data, and QGL is a frozen channel 

with value 0, they were both dropped. 

The correlation heatmap of remained data shows, that two pairs of variables have high correlation 

(Figure 4.9): 

• P-MON-CKP and P-TPT (0.83) - Pressure upstream of the PCK and Pressure at the TPT 

 

• T-JUS-CKP and T-TPT (0.9) - Temperature downstream of the PCK and Temperature at the TPT. 

These correlations are valid, since they represent pressure and temperature at the subsea Christmas 

tree and at the Production Choke (PCK), which are connected by the production line. One of each 

channel can be dropped, or dimensionality reduction methods could be implemented, however, since 

the number of remaining variables is just 6, they are all retained for further analysis. 
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Figure 4.9 - A heatmap visualization of the correlation matrix 

The missing values were filled by the “forward fill” method, in which the last valid observation is 

propagated forward. The final processed dataset is saved and divided into training and testing sets, 

stratifying by y to ensure that relative class frequencies are approximately preserved in each train and 

test split. The histogram-distribution, box plots and relationship between variables and classes of the 

final processed data are shown in Figures 4.10, 4.11 and 4.12 respectively.  

 

Figure 4.10 - Histogram - distributions of the final processed data 
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Figure 4.11 - Box Plots of the final processed data 
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Figure 4.12 - Relationship between variables and classes 

There are many methods to handle imbalanced data, such as Random Oversampling, SMOTE, 

BorderLine SMOTE, KMeans SMOTE, SVM SMOTE, ADASYN, SMOTE-NC, etc.(Satyam Kumar, 2020). 

One of the newest techniques, which was just recently developed, is CLUBS, standing for Clustering of 

Lower and Upper Boundaries standardization, based on examining dissimilarity correlations between 

classes and creating synthetic samples for the minority classes (Michele Lanni et al., 2020). 

For this project, to tackle the imbalanced data issue, the train set was augmented using SMOTE 

method, since it is the most basic and simplest method, and all the further data processing can easily 

become computationally expensive. If it significantly improves the classification, then potentially other 

methods can be attempted too. With SMOTE the data was augmented to the size of the X-train and y-

train from 164563 rows to 1067463. Then the data was scaled with StandardScaler and passed for 

further data transformation.  

Since Recurrent Neural Network (RNN) requires a 3D format [samples, timesteps, features], the data 

was converted into a 3D matrix with the window size equal to 30 as an initial experiment.  
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4.3. ALGORITHMS 

For the project two algorithms were selected as being potentially powerful enough for resolving such 

tasks and were currently un-explored, according to the literature review, namely Recurrent Neural 

Network configurations with LSTM and GRU architectures. 

The first attempt of an LSTM algorithm was run with the original processed data (without train set 

being transformed by SMOTE) to evaluate the initial classification. The network had just 2 stacked 

LSTM layers and one Dense layer, with the number of hidden units equal to 10, an activation function 

“tanh”, a batch size equal to 30 and 10 epochs, which resulted in a macro average F1 score equal to 

0.75%. 

To understand the general response of different backbones and their parameters, the algorithms were 

run with the same batch size, timestep and number of epochs, but with activation functions “relu”, 

“softmax”, “LeakyReLU” or “swish”, with 10 or 20 number of hidden units, and a different number of 

LSTM or GRU layers, applied both before and after SMOTE oversampled train data (Table 4.2).  

Table 4.2 - Deep Neural Networks model architectures F1 scores 

Model architecture 
Before 

SMOTE F1 

After SMOTE 

F1 

Stacked 2 LSTM and 1 Dense, 10 hidden units, activation “tanh” 0.75 0.90 

Stacked 2 LSTM and 1 Dense, 10 hidden units, activation “softmax” 0.19 0.71 

Stacked 2 LSTM and 1 Dense, 10 hidden units, activation “relu” 0.85 0.88 

Stacked 2 LSTM and 1 Dense, 20 hidden units, activation “relu” 0.90 0.92 

Stacked 2 LSTM and 1 Dense, 10 hidden units, activation “LeakyReLU” 0.83 0.91 

Stacked 2 LSTM and 1 Dense, 20 hidden units, activation “LeakyReLU” 0.85 0.85 

Stacked 2 LSTM and 1 Dense, 10 hidden units, activation “swish” 0.87 0.88 

Stacked 3 LSTM, 1 RepeatVector, 1 Dense, 10 hidden units, activation “relu” 0.82 0.90 

Stacked 2 GRU and 1 Dense, 10 hidden units, activation “LeakyReLU” 0.86 0.87 

Stacked 2 GRU and 1 Dense, 20 hidden units, activation “LeakyReLU” 0.90 0.92 

 

The best result was achieved by models with LSTM and GRU backbones of 2 layers with 20 hidden units 

each, giving a F1 score equal to 0.90% before SMOTE (Figure 4.13) and 0.92% after SMOTE. 
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Figure 4.13 - LSTM with “relu” activation and 20 hidden units 

To summarize the observations from the initial algorithms settings, it is recognized that an increased 

number of layers doesn’t improve the results. To the contrary, it makes them worse.  A higher number 

of hidden units in each layer helps in increasing the classification metrics. However, it is not clear, 

whether there is an optimal number, that would significantly affect the results, or whether 20 units is 

a plateau value, which has already produced the maximum possible F1 score. To investigate further 

effects of hyperparameter settings, their optimization was performed using Random Search, Hyperopt 

and Genetic Algorithms in order to identify the best model for classification. 

 

4.4. HYPERPARAMETERS OPTIMIZATION 

The following hyperparameters were selected for the model optimization:  

- timestep (or window size) 

- number of hidden units of each layer 

- number of epochs 

- batch size. 

There are many other parameters that could be optimized, such as learning rate, activation function, 

optimizer type, number of layers.  Some of them have already been attempted for visibility and 

transparency of the model performance: both LSTM and GRU backbones were implemented with 

various activations, and several network layers were also built, which showed poorer results. For the 

purpose of making computations less expensive, only quantitative parameters were estimated, and 

RNN was run with just the GRU backbone, since it is much faster and produced similar to the LSTM 

results. All attempts were made on original without oversampling with SMOTE data for the 

abovementioned reasons. 

The traditional GridSearch CV was not selected, since it works by trying every possible combination of 

parameters and can get very resource intensive. However, another standard method Random Search 

was attempted, despite its drawbacks of potentially missing important points in the search space. 
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4.4.1. Random Search 

For the Random Search method, the parameters search space was selected without limiting the step 

between the minimum and maximum range, thus giving more freedom of choice. The algorithm was 

run with the objective of identifying parameters with a resultant minimum validation loss, a batch size 

of randomly selected parameters set to equal 10, and a number of iterations to 1. The identified 

optimum parameters are a timestep equal to 23, number of units equals 40, epochs of 16 and a batch 

size 24, which produced an improved result of F1 = 0.94% (Figure 4.14). 

 

Figure 4.14 - Random Search optimized model with F1 = 0.94% 

 

4.4.2. Hyperopt Optimization 

Next, a hyperparameters tuning technique Hyperopt was applied, which uses a form of Bayesian 

optimization. Only 3 trials were implemented, since it takes a very long time to run the process (more 

than 8 hours), and the search space was set limited by the steps for each parameter within the selected 

range, in order to decrease the scope of settings to evaluate (Figure 4.15). The objective was again to 

minimize the validation loss, and the best parameters were run for the final evaluation. 

As shown in Figure 4.16, the maximum F1 score achieved was 0.94% with a window size of 10, the 

number of hidden units 20, number of epochs 20 and a batch size of 10, which was an improvement 

from the after SMOTE result of 0,92%, but is similar to Random Search method achievement.  

 



53 
 

 

Figure 4.15 - Hyperopt hyperparameters change per each iteration 

 

  

Figure 4.16 - Hyperopt optimized model with F1= 0.94% 
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4.4.3. Genetic Algorithms 

Genetic Algorithm is an extensively used method for hyperparameter optimization, which applies 

evolution by natural selection and is highly inspired by Charles Darwin’s theory of evolutionary biology. 

The idea that individuals with higher survival potential and better adaptation to the surrounding 

environment conditions will have a higher probability of existence and passing their genes to further 

generations, is implemented by creating individuals, representing hyperparameters selection. Children 

with better qualities will pass their chromosomes to their children, and so in generation after 

generation only the strongest and fittest candidates will survive and become a global optimum. 

The advantage of Genetic Algorithm over other standard methods is the absence of the requirement 

for an exhaustive analysis of the search space (Vanneschi & Silva, 2023), which is impractical, 

considering the huge size of the potential combinations of variables. An iterative process of improving 

individuals’ initial random population, utilizing nature-inspired concepts, such as selection, crossover 

and mutation, creates a population with the highest fitness, which would be the best solution and can 

be utilized for further model tuning. 

For hyperparameter optimization, each individual is a collection of decimals, representing phenotypes, 

based on which fitness is evaluated and, as it happens in nature, further selection is performed. To 

apply genetic operators, each phenotype is converted to a genotype, that is completely independent 

of fitness and has a binary representation of 0 and 1.  

 

4.4.3.1. Genetic Algorithm 1 

There are a few pre-built Genetic Algorithm methods, that are extensively used, such as TPOT, PyGAD, 

DEAP (Distributed Evolutionary Algorithms in Python), Neuroevolution optimization, etc. 

For this project, the DEAP framework was selected, since it provides a unique evolutionary algorithm, 

that simplifies each step with its toolbox – a container of tools for all sorts of initializers and genetic 

operators (Overview — DEAP 1.3.3 Documentation, n.d.). 

Each individual was encoded into binary string of bit length 26, with the timestep equal to 8 bits, the 

number of hidden units 6, epoch 5 bits and a batch size of 7 bits. The gene initialization values are 

chosen as the most appropriate for representing the decimal values of the hyperparameters. 

To identify the best model settings, the DEAP toolbox was run for 5 generations with a population size 

of 5 each (Figure 4.17). The hyperparameters range was not set to have limits, as was done with 

Random Search and Hyperopt, since this method doesn’t require an exhaustive search by iteration 

through the entire search space. As depicted in Figure 4.18, the variables could have extreme values, 

and the best model achieved F1 score 0.96% is with a window size equal to 1, the number of hidden 

units 53, with 29 epochs and a batch size of 25. 
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Figure 4.17 - DEAP Genetic Algorithm fitness and statistics per generation 

 

  

Figure 4.18 - DEAP Genetic Algorithm optimized model with F1= 0.96% 

 

4.4.3.2. Genetic Algorithm 2 

Another approach is creating the Genetic Algorithm by assigning all operators manually, which would 

give more transparency to the optimization process and an opportunity to tailor the process for the 

task. The initial set up is similar to previous experiment, with binary encoding, with each chromosome 

length equal to 26 bits. This time, the fitness function was selected as the F1 score of each model. The 
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evolutionary algorithm included selection of the fittest individual with maximum fitness in each 

population, one point crossover and mutation by flipping bits at the random change point. 

The algorithm was run for 3 generations with 3 chromosomes in each population (Figure 4.19). It was 

highly desired to experiment with a higher number of individuals and iterations, however, due to 

technical limitations it was not feasible. As shown in Figure 4.20, the best result was achieved with 

timestep 125, the number of hidden units of 61, epochs 15 and a batch size of 99, resulting in a final 

F1 of 0.94%. 

 

Figure 4.19 - Genetic Algorithm 2 fitness evolution per generation 

 

  

Figure 4.20 - Genetic Algorithm 2 optimized model with F1= 0.94% 
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The experiment results were worse than the first Genetic Algorithm, which could be due to the small 

number of iterations and individuals. As result, the evolution process was extremely limited, 

converging on the best individual among 3 chromosomes after 2 generations. 

 

4.4.3.3. Genetic Algorithm 3 

The third Genetic Algorithm experiment was performed with value chromosome encoding, in which 

each phenotype is represented as a string of direct hyperparameter decimal values. The fitness 

function was set as a validation loss of each model. The evolutionary operators included tournament 

selection with size 3, one point crossover and random resetting mutation methods. The algorithm was 

attempted to run many times, with 5 generations and 3 generations and a corresponding population 

size; however, it was revealed, that for successful evolution, the number of individuals should be 

sufficient for an increased chance of crossover and mutation. With a small number of chromosomes, 

the algorithm was selecting the same best individual and converging early, without attempting any 

other variations of hyperparameters. Increasing the number of generations and population size was 

not feasible, as it became extremely computationally expensive. 

To overcome this issue, and considering Genetic Algorithm 1 results with DEAP toolbox, it was decided 

to decrease the timestep size to 1 and the number of epochs to 1 for the initial set up, which would 

speed up the process and allow for an increasing population size and the running of more generations. 

In this case the objective was to optimize the number of hidden units and batch size, which could be 

later implemented for the final model evaluation with an arbitrary number of selected of epochs. 

The algorithm converged with the best model [1, 47, 1, 14] and which actually was the best model for 

all 5 generations. The variation in the best model fitness is due to the stochastic nature of RNN 

algorithms, however, the best fitness was still the smallest in each generation (Figure 4.21). 

 

Figure 4.21 - Genetic Algorithm 3 fitness evolution per generation 

To evaluate the final best model, it was run for an arbitrary 40 epochs, assigning the best model with 

a timestep of 1, the number of hidden units equal 47 and a batch size of 14. 
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As shown in Figure 4.22, the F1 score achieved is 0.97%, and it is the best result for all the algorithms. 

 

 

   

Figure 4.22 - Genetic Algorithm 3 optimized model with F1= 0.97% 

 

4.5. DISCUSSION 

The algorithms proposed in this study showed good performance for multiclass classification. Although 

only real instances were selected for the analysis, since this was a requirement for realistic 

benchmarking with other papers. The data also appeared to be heavily imbalanced, the RNN model 

variations with LSTM and GRU backbones identified all the undesirable events with F1 score 0.90% 

before oversampling and 0.92% after SMOTE.  

Since there were many parameters, that could affect the deep neural networks performance, a few 

trials were initiated to evaluate their effect, such as number of layers, activation function and the 

number of hidden units. It was revealed, that LSTM and GRU produce similar results, with “relu” and 

“LeakyReLU” being the most efficient, but GRU performs much faster, which is an advantage for 

hyperparameter optimization. To speed up the process and make it less computationally expensive, 

all the algorithms were run with GRU backbone and “relu” activation function. The results are 

presented in Table 4.3, where the final F1 score per best model is calculated.  
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Table 4.3 - Hyperparameters optimization best results 

Algorithm Best model F1 score 

Random Search [23, 40, 16, 24] 0.94 

Hyperopt [10, 20, 20, 10] 0.94 

Genetic Algorithm 1 [1, 53, 29, 25] 0.96 

Genetic Algorithm 2 [125, 61, 15, 99] 0.94 

Genetic Algorithm 3 [1, 47, 40, 14] 0.97 

 

The best F1 score was achieved with Genetic Algorithms, however, it is worth mentioning, that there 

were a few limitations, that potentially affected results. The first two Genetic Algorithms were 

performed with binary chromosome representation, so the upper and lower limits of each parameter 

was not set, but configured by selecting the number of bits for each gene. This allowed for an 

“accidental” application of the most extreme version of 3D GRU matrix selection, with a timestep equal 

to 1, i.e., selecting each single observation for classification, rather than a window of several 

observations. Despite producing good F1 score, it could potentially create an “overfitting” issue, if 

applied on new timeseries data. 

Another limitation was the difficulty to run all Genetic Algorithms for more than 5 generations, and 

while DEAP allowed this to occur due to internal shortcuts through not running all individual 

evaluations, the second and third experiments clearly struggled to run till the end. Genetic Algorithm 

2 particularly could not be run for more than 3 generations, which lead to poor individual crossover 

and mutation, and a convergence with best model on the 2nd generation. It could only be speculated, 

that with higher computational resources, this algorithm could have been run for many more 

generations and individuals in each population, possibly resulting in a higher F1 score. 

The Genetic Algorithm 3, in which each chromosome was represented as decimal values, was also 

attempted to run for more than 3 generations. However, since it also failed to run until the end, the 

decision was made to amalgamate the DEAP finding, where the best timestep was equal to 1, and 

rerun the Genetic Algorithm 3 for just 1 epoch for each chromosome, but with an increased number 

of generations and individuals. This allowed for the simulation of the desired wide-range of 

chromosome evaluation, with an assumption of an increasing number of epochs on the most 

successful final model. As result, the algorithm was allowed to create many variations of individuals by 

mutating and creating new children with crossover operators, and produced the best F1 equal to 

0.97%. 

This result might be not strictly comparable to the outcomes in other papers, since each research 

applied different assumptions for evaluations, such as, choice of training and testing sets, treatment 

of faulty transient observations (in this project they were combined with faulty steady state events 

and considered as faults). Despite that, the following papers also performed multiclass classification 

for 3W dataset and can be approached as a reference: 

• “Classification of undesirable events in oil well operation”, by Turan & Jaschke. The best F1 

macro average achieved is 0.85% with Decision Tree algorithm 
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• “Fault detection and classification in oil wells and production/service lines using Random 

Forest” by Marins et al. The F1 score was not calculated, but this had Accuracy of 0.94% 

 

• “Predictive maintenance for offshore oil wells by means of deep learning features extraction” 

by Gatta et al. A number of Machine Learning algorithms were applied after Convolutional 

Neural Network 1D AutoEncoder was implemented for feature extraction, which resulted in 

F1 equal to 0.898%. 

This research has a different approach to the above-mentioned papers, but shows a comparable result 

for multiclass classification of undesirable events for the dataset. It can form the basis for developing 

further Deep Learning algorithms as a precedent with a confirmed good response to the task and a 

high attained outcome. 
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5. CONCLUSION 

5.1. SYNTHESIS OF THE DEVELOPED WORK 

In this project the detection of anomalies in the production of oil and gas was addressed using Deep 

Neural Networks and Genetic Algorithms for their optimization. The 3W dataset from Petrobras was 

taken as an example of labelled time series data, which can be applied to the pre-build algorithm and 

identification of anomalies with high accuracy. Ten initial RNN models with LSTM and GRU 

architectures were tested and the best one was optimized using Random Search, Hyperopt and three 

Genetic Algorithms. This identified and classified abnormal events with an outstanding 0.97% F1 score, 

and can be implemented for other labeled time series anomalies detection and classification. 

The research was developed in response to a global awareness of heavy industries adverse effect on 

global climate change and a demand for enhanced efficiency and sustainability.  The United Nation’s 

“The sustainable Development Goals Report 2022” states it is paramount to address the growing issues 

of greenhouse gas emissions and irresponsible consumption without timely equipment maintenance, 

which might lead to failures and catastrophic events. Anomaly detection in the Oil and Gas industry is 

a huge step forward for action in support of the global collaboration for these United Nations goals, 

with aspiration to increase the chances of preserving our planet for the next generations. 

 

5.2. LIMITATIONS AND RECOMMENDATIONS FOR FUTURE WORKS 

The main limitation of the project, as with any Deep Learning and Big Data projects, is technical 

capacity of performing the algorithms for the desired number of epochs and iterations. Since the main 

objective was creating a pipeline of models for the detection and classification of anomalies, Google 

Colab was sufficient to obtain the primary results and an F1 score for quality justification. However, in 

the case of more robust calculation required by Genetic Algorithms hyperparameter optimization, 

more computational resources will be needed. 

For future work it would be of high interest to employ Explainable Artificial Intelligence (XAI) 

algorithms to interpret the Deep Learning algorithms, as being a black box models due to hidden 

nature of layers and neurons actions. With better understanding which parameters reveal potential 

faults and the need to diagnose it sooner with higher precision, within the scope of the suggested Deep 

Learning algorithm, the anomaly detection can become a straightforward task for reservoir and 

production engineers in the Oil and Gas industry. 
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