284 research outputs found

    Fast Dictionary Learning for Sparse Representations of Speech Signals

    Get PDF
    © 2011 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. Published version: IEEE Journal of Selected Topics in Signal Processing 5(5): 1025-1031, Sep 2011. DOI: 10.1109/JSTSP.2011.2157892

    Fast Dictionary Learning for Sparse Representations of Speech Signals

    Get PDF
    For dictionary-based decompositions of certain types, it has been observed that there might be a link between sparsity in the dictionary and sparsity in the decomposition. Sparsity in the dictionary has also been associated with the derivation of fast and efficient dictionary learning algorithms. Therefore, in this paper we present a greedy adaptive dictionary learning algorithm that sets out to find sparse atoms for speech signals. The algorithm learns the dictionary atoms on data frames taken from a speech signal. It iteratively extracts the data frame with minimum sparsity index, and adds this to the dictionary matrix. The contribution of this atom to the data frames is then removed, and the process is repeated. The algorithm is found to yield a sparse signal decomposition, supporting the hypothesis of a link between sparsity in the decomposition and dictionary. The algorithm is applied to the problem of speech representation and speech denoising, and its performance is compared to other existing methods

    Compressive Sampling for Remote Control Systems

    Get PDF
    In remote control, efficient compression or representation of control signals is essential to send them through rate-limited channels. For this purpose, we propose an approach of sparse control signal representation using the compressive sampling technique. The problem of obtaining sparse representation is formulated by cardinality-constrained L2 optimization of the control performance, which is reducible to L1-L2 optimization. The low rate random sampling employed in the proposed method based on the compressive sampling, in addition to the fact that the L1-L2 optimization can be effectively solved by a fast iteration method, enables us to generate the sparse control signal with reduced computational complexity, which is preferable in remote control systems where computation delays seriously degrade the performance. We give a theoretical result for control performance analysis based on the notion of restricted isometry property (RIP). An example is shown to illustrate the effectiveness of the proposed approach via numerical experiments

    NARX-based nonlinear system identification using orthogonal least squares basis hunting

    No full text
    An orthogonal least squares technique for basis hunting (OLS-BH) is proposed to construct sparse radial basis function (RBF) models for NARX-type nonlinear systems. Unlike most of the existing RBF or kernel modelling methods, whichplaces the RBF or kernel centers at the training input data points and use a fixed common variance for all the regressors, the proposed OLS-BH technique tunes the RBF center and diagonal covariance matrix of individual regressor by minimizing the training mean square error. An efficient optimization method isadopted for this basis hunting to select regressors in an orthogonal forward selection procedure. Experimental results obtained using this OLS-BH technique demonstrate that it offers a state-of-the-art method for constructing parsimonious RBF models with excellent generalization performance

    Sparse Packetized Predictive Control for Networked Control over Erasure Channels

    Get PDF
    We study feedback control over erasure channels with packet-dropouts. To achieve robustness with respect to packet-dropouts, the controller transmits data packets containing plant input predictions, which minimize a finite horizon cost function. To reduce the data size of packets, we propose to adopt sparsity-promoting optimizations, namely, ell-1-ell-2 and ell-2-constrained ell-0 optimizations, for which efficient algorithms exist. We derive sufficient conditions on design parameters, which guarantee (practical) stability of the resulting feedback control systems when the number of consecutive packet-dropouts is bounded.Comment: IEEE Transactions on Automatic Control, Volume 59 (2014), Issue 7 (July) (to appear

    An optimally concentrated Gabor transform for localized time-frequency components

    Full text link
    Gabor analysis is one of the most common instances of time-frequency signal analysis. Choosing a suitable window for the Gabor transform of a signal is often a challenge for practical applications, in particular in audio signal processing. Many time-frequency (TF) patterns of different shapes may be present in a signal and they can not all be sparsely represented in the same spectrogram. We propose several algorithms, which provide optimal windows for a user-selected TF pattern with respect to different concentration criteria. We base our optimization algorithm on lpl^p-norms as measure of TF spreading. For a given number of sampling points in the TF plane we also propose optimal lattices to be used with the obtained windows. We illustrate the potentiality of the method on selected numerical examples

    A Review of Bandlet Methods for Geometrical Image Representation

    No full text
    International audienceThis article reviews bandlet approaches to geometric image repre- sentations. Orthogonal bandlets using an adaptive segmentation and a local geometric flow well suited to capture the anisotropic regularity of edge struc- tures. They are constructed with a “bandletization” which is a local orthogonal transformation applied to wavelet coeffi cients. The approximation in these bandlet bases exhibits an asymptotically optimal decay for images that are regular outside a set of regular edges. These bandlets can be used to perform image compression and noise removal. More flexible orthogonal bandlets with less vanishing moments are constructed with orthogonal grouplets that group wavelet coeffi cients alon a multiscale association field. Applying a translation invariant grouplet transform over a translation invariant wavelet frame leads to state of the art results for image denoising and super-resolution

    RVM Classification of Hyperspectral Images Based on Wavelet Kernel Non-negative Matrix Fractorization

    Get PDF
    A novel kernel framework for hyperspectral image classification based on relevance vector machine (RVM) is presented in this paper. The new feature extraction algorithm based on Mexican hat wavelet kernel non-negative matrix factorization (WKNMF) for hyperspectral remote sensing images is proposed. By using the feature of multi-resolution analysis, the new method of nonlinear mapping capability based on kernel NMF can be improved. The new classification framework of hyperspectral image data combined with the novel WKNMF and RVM. The simulation experimental results on HYDICE and AVIRIS data sets are both show that the classification accuracy of proposed method compared with other experiment methods even can be improved over 10% in some cases and the classification precision of small sample data area can be improved effectively

    Data-Adaptive Graph Framelets with Generalized Vanishing Moments for Graph Signal Processing

    Full text link
    In this paper, we propose a novel and general framework to construct tight framelet systems on graphs with localized supports based on hierarchical partitions. Our construction provides parametrized graph framelet systems with great generality based on partition trees, by which we are able to find the size of a low-dimensional subspace that best fits the low-rank structure of a family of signals. The orthogonal decomposition of subspaces provides a key ingredient for the definition of "generalized vanishing moments" for graph framelets. In a data-adaptive setting, the graph framelet systems can be learned by solving an optimization problem on Stiefel manifolds with respect to our parameterization. Moreover, such graph framelet systems can be further improved by solving a subsequent optimization problem on Stiefel manifolds, aiming at providing the utmost sparsity for a given family of graph signals. Experimental results show that our learned graph framelet systems perform superiorly in non-linear approximation and denoising tasks
    corecore