313 research outputs found

    Single particle fragmentation in ultrasound assisted impact comminution

    Get PDF
    Impact fragmentation is the underlying principle of comminution milling of dry, bulk solids. Unfortunately the outcome of the fragmentation process is more or less determined by the dimensionality of the impactor and its impact velocity. Since fragmentation is dominated by interfering shock waves, manipulating traveling shock waves and adding energy to the system during its fragmentation could be a promising approach to manipulate fragment mass distributions and energy input. In a former study we explored mechanisms in impact fragmentation of spheres, using a three-dimensional Discrete Element Model (DEM) Carmona etal. (Phys Rev E 77:051302, 2008). This work is focused on studying how single spheres fragment when impacted on a planar vibrating targe

    CAD-Based Porous Scaffold Design of Intervertebral Discs in Tissue Engineering

    Get PDF
    With the development and maturity of three-dimensional (3D) printing technology over the past decade, 3D printing has been widely investigated and applied in the field of tissue engineering to repair damaged tissues or organs, such as muscles, skin, and bones, Although a number of automated fabrication methods have been developed to create superior bio-scaffolds with specific surface properties and porosity, the major challenges still focus on how to fabricate 3D natural biodegradable scaffolds that have tailor properties such as intricate architecture, porosity, and interconnectivity in order to provide the needed structural integrity, strength, transport, and ideal microenvironment for cell- and tissue-growth. In this dissertation, a robust pipeline of fabricating bio-functional porous scaffolds of intervertebral discs based on different innovative porous design methodologies is illustrated. Firstly, a triply periodic minimal surface (TPMS) based parameterization method, which has overcome the integrity problem of traditional TPMS method, is presented in Chapter 3. Then, an implicit surface modeling (ISM) approach using tetrahedral implicit surface (TIS) is demonstrated and compared with the TPMS method in Chapter 4. In Chapter 5, we present an advanced porous design method with higher flexibility using anisotropic radial basis function (ARBF) and volumetric meshes. Based on all these advanced porous design methods, the 3D model of a bio-functional porous intervertebral disc scaffold can be easily designed and its physical model can also be manufactured through 3D printing. However, due to the unique shape of each intervertebral disc and the intricate topological relationship between the intervertebral discs and the spine, the accurate localization and segmentation of dysfunctional discs are regarded as another obstacle to fabricating porous 3D disc models. To that end, we discuss in Chapter 6 a segmentation technique of intervertebral discs from CT-scanned medical images by using deep convolutional neural networks. Additionally, some examples of applying different porous designs on the segmented intervertebral disc models are demonstrated in Chapter 6

    Multi-scale active shape description in medical imaging

    Get PDF
    Shape description in medical imaging has become an increasingly important research field in recent years. Fast and high-resolution image acquisition methods like Magnetic Resonance (MR) imaging produce very detailed cross-sectional images of the human body - shape description is then a post-processing operation which abstracts quantitative descriptions of anatomically relevant object shapes. This task is usually performed by clinicians and other experts by first segmenting the shapes of interest, and then making volumetric and other quantitative measurements. High demand on expert time and inter- and intra-observer variability impose a clinical need of automating this process. Furthermore, recent studies in clinical neurology on the correspondence between disease status and degree of shape deformations necessitate the use of more sophisticated, higher-level shape description techniques. In this work a new hierarchical tool for shape description has been developed, combining two recently developed and powerful techniques in image processing: differential invariants in scale-space, and active contour models. This tool enables quantitative and qualitative shape studies at multiple levels of image detail, exploring the extra image scale degree of freedom. Using scale-space continuity, the global object shape can be detected at a coarse level of image detail, and finer shape characteristics can be found at higher levels of detail or scales. New methods for active shape evolution and focusing have been developed for the extraction of shapes at a large set of scales using an active contour model whose energy function is regularized with respect to scale and geometric differential image invariants. The resulting set of shapes is formulated as a multiscale shape stack which is analysed and described for each scale level with a large set of shape descriptors to obtain and analyse shape changes across scales. This shape stack leads naturally to several questions in regard to variable sampling and appropriate levels of detail to investigate an image. The relationship between active contour sampling precision and scale-space is addressed. After a thorough review of modem shape description, multi-scale image processing and active contour model techniques, the novel framework for multi-scale active shape description is presented and tested on synthetic images and medical images. An interesting result is the recovery of the fractal dimension of a known fractal boundary using this framework. Medical applications addressed are grey-matter deformations occurring for patients with epilepsy, spinal cord atrophy for patients with Multiple Sclerosis, and cortical impairment for neonates. Extensions to non-linear scale-spaces, comparisons to binary curve and curvature evolution schemes as well as other hierarchical shape descriptors are discussed

    2D and 3D digital shape modelling strategies

    Get PDF
    Image segmentation of organs in medical images using model-based approaches requires a priori information which is often given by manually tagging landmarks on a training set of shapes. This is a tedious, time-consuming, and error prone task. To overcome some of these drawbacks, several automatic methods were devised. Identification of the same homologous set of points in a training set of object shapes is the most crucial step in Active Shape Modelling, which has encountered several challenges. The most crucial among these are: (C1) defining and characterizing landmarks; (C2) obtaining landmarks at the desired level of detail; (C3) ensuring homology; (C4) generalizing to n>2 dimensions; (C5) achieving practical computations. This thesis proposes several novel modelling techniques attempting to meet C1-C5. In this process, this thesis makes the following key contributions: the concept of local scale for shapes; the idea of allowing level of detail for selecting landmarks; the concept of equalization of shape variance for selecting landmarks; the idea of recursively subdividing shapes and letting the sub-shapes guide landmark selection, which is a very general n-dimensional strategy; the idea of virtual landmarks, which may be situated anywhere relative to, not necessarily on, the shape boundary; a new compactness measure that considers both the number of landmarks and the number of modes selected as independent variables. The first of three methods uses the c-scale shape descriptor, based on the new concept of curvature-scale, to automatically locate mathematical landmarks on the mean of the training shapes. The landmarks are propagated to the training shapes to establish correspondence among shapes. Since all shapes of the same family do not necessarily present exactly the same shape features, another novel method was devised that takes into account the real shape variability existing in the training set and that is guided by the strategy of equalization of the variance observed in the training set for selecting landmarks. By incorporating the above basic concepts into modelling, a third family of methods with numerous possibilities was developed, taking into account shape features, and the variability among shapes, while being easily generalized to the 3D space. Its output is multi-resolutional allowing landmark selection at any lower resolution trivially as a subset of those found at a higher resolution. The best strategy to use within the family will have to be determined according to the clinical application at hand. All methods were evaluated in terms of compactness on two data sets - 40 CT images of the liver and 40 MR images of the talus bone of the foot. Further, numerous artificial shapes with known salient points were also used for testing the accuracy of the proposed methods. The results show that, for the same number of landmarks, the proposed methods are more compact than manual and equally spaced annotations. Besides, the accuracy (in terms of false positives and negatives and the location of landmarks) of the proposed shape descriptor on artificial shapes is considerably superior to a state-of-the-art scale space approach to finding salient points on shapes

    3-D Cloud Morphology and Evolution Derived from Hemispheric Stereo Cameras

    Get PDF
    Clouds play a key role in the Earth-atmosphere system as they reflect incoming solar radiation back to space, while absorbing and emitting longwave radiation. A significant challenge for observation and modeling pose cumulus clouds due to their relatively small size that can reach several hundreds up to a few thousand meters, their often complex 3-D shapes and highly dynamic life-cycle. Common instruments employed to study clouds include cloud radars, lidar-ceilometers, (microwave-)radiometers, but also satellite and airborne observations (in-situ and remote), all of which lack either sufficient sensitivity or a spatial or temporal resolution for a comprehensive observation. This thesis investigates the feasibility of a ground-based network of hemispheric stereo cameras to retrieve detailed 3-D cloud geometries, which are needed for validation of simulated cloud fields and parametrization in numerical models. Such camera systems, which offer a hemispheric field of view and a temporal resolution in the range of seconds and less, have the potential to fill the remaining gap of cloud observations to a considerable degree and allow to derive critical information about size, morphology, spatial distribution and life-cycle of individual clouds and the local cloud field. The technical basis for the 3-D cloud morphology retrieval is the stereo reconstruction: a cloud is synchronously recorded by a pair of cameras, which are separated by a few hundred meters, so that mutually visible areas of the cloud can be reconstructed via triangulation. Location and orientation of each camera system was obtained from a satellite-navigation system, detected stars in night sky images and mutually visible cloud features in the images. The image point correspondences required for 3-D triangulation were provided primarily by a dense stereo matching algorithm that allows to reconstruct an object with high degree of spatial completeness, which can improve subsequent analysis. The experimental setup in the vicinity of the Jülich Observatory for Cloud Evolution (JOYCE) included a pair of hemispheric sky cameras; it was later extended by another pair to reconstruct clouds from different view perspectives and both were separated by several kilometers. A comparison of the cloud base height (CBH) at zenith obtained from the stereo cameras and a lidar-ceilometer showed a typical bias of mostly below 2% of the lidar-derived CBH, but also a few occasions between 3-5%. Typical standard deviations of the differences ranged between 50 m (1.5 % of CBH) for altocumulus clouds and between 7% (123 m) and 10% (165 m) for cumulus and strato-cumulus clouds. A comparison of the estimated 3-D cumulus boundary at near-zenith to the sensed 2-D reflectivity profiles from a 35-GHz cloud radar revealed typical differences between 35 - 81 m. For clouds at larger distances (> 2 km) both signals can deviate significantly, which can in part be explained by a lower reconstruction accuracy for the low-contrast areas of a cloud base, but also with the insufficient sensitivity of the cloud radar if the cloud condensate is dominated by very small droplets or diluted with environmental air. For sequences of stereo images, the 3-D cloud reconstructions from the stereo analysis can be combined with the motion and tracking information from an optical flow routine in order to derive 3-D motion and deformation vectors of clouds. This allowed to estimate atmospheric motion in case of cloud layers with an accuracy of 1 ms-1 in velocity and 7° to 10° in direction. The fine-grained motion data was also used to detect and quantify cloud motion patterns of individual cumuli, such as deformations under vertical wind-shear. The potential of the proposed method lies in an extended analysis of life-cycle and morphology of cumulus clouds. This is illustrated in two show cases where developing cumulus clouds were reconstructed from two different view perspectives. In the first case study, a moving cloud was tracked and analyzed, while being subject to vertical wind shear. The highly tilted cloud body was captured and its vertical profile was quantified to obtain measures like vertically resolved diameter or tilting angle. The second case study shows a life-cycle analysis of a developing cumulus, including a time-series of relevant geometric aspects, such as perimeter, vertically projected area, diameter, thickness and further derived statistics like cloud aspect ratio or perimeter scaling. The analysis confirms some aspects of cloud evolution, such as the pulse-like formation of cumulus and indicates that cloud aspect ratio (size vs height) can be described by a power-law functional relationship for an individual life-cycle.Wolken haben einen maßgeblichen Einfluss auf den Strahlungshaushalt der Erde, da sie solare Strahlung effektiv reflektieren, aber von der Erde emittierte langwellige Strahlung sowohl absorbieren als auch ihrerseits wieder emittieren. Darüber hinaus stellen Cumulus-Wolken wegen ihrer verhältnismäßig kleinen Ausdehnung von wenigen hundert bis einigen tausend Metern sowie ihres dynamischen Lebenszyklus nach wie vor eine große Herausforderung für Beobachtung und Modellierung dar. Gegenwärtig für deren Erforschung im Einsatz befindliche Instrumente wie Lidar-Ceilometer, Wolkenradar, Mikrowellenradiometer oder auch satellitengestützte Beobachtungen stellen die für eine umfassende Erforschung dieser Wolken erforderliche räumliche und zeitliche Abdeckung nicht zur Verfügung. In dieser Arbeit wird untersucht, inwieweit eine bodengebundene Beobachtung von Wolken mit hemisphärisch projizierenden Wolkenkameras geeignet ist detaillierte 3-D Wolkengeometrien zu rekonstruieren um daraus Informationen über Größe, Morphologie und Lebenszyklus einzelner Wolken und des lokalen Wolkenfeldes abzuleiten. Grundlage für die Erfassung der 3-D Wolkengeometrien in dieser Arbeit ist die 3-D Stereorekonstruktion, bei der eine Wolke von jeweils zwei im Abstand von mehreren Hundert Metern aufgestellten, synchron aufnehmenden Kameras abgebildet wird. Beidseitig sichtbare Teile einer Wolke können so mittels Triangulation rekonstruiert werden. Fischaugen-Objektive ermöglichen das hemisphärische Sichtfeld der Wolkenkameras. Während die Positionsbestimmung der Kameras mit Hilfe eines Satelliten-Navigationssystems durchgeführt wurde, konnte die absolute Orientierung der Kameras im Raum mit Hilfe von detektierten Sternen bestimmt werden, die als Referenzpunkte dienten. Die für eine Stereoanalyse wichtige relative Orientierung zweier Kameras wurde anschließend unter Zuhilfenahme von Punktkorrespondenzen zwischen den Stereobildern verfeinert. Für die Stereoanalyse wurde primär ein Bildanalyse-Algorithmus eingesetzt, welcher sich durch eine hohe geometrische Vollständigkeit auszeichnet und auch 3-D Informationen für Bildregionen mit geringem Kontrast liefert. In ausgewählten Fällen wurden die so rekonstruierten Wolkengeometrien zudem mit einem präzisen Mehrbild-Stereo-Verfahren verglichen. Eine möglichst vollständige 3-D Wolkengeometrie ist vorteilhaft für eine darauffolgende Analyse, die eine Segmentierung und Identifizierung einzelner Wolken, deren raum-zeitliche Verfolgung oder die Ableitung geometrischer Größen umfasst. Der experimentelle Aufbau im Umfeld des Jülich Observatory for Cloud Evolution (JOYCE) umfasste zuerst eine, später zwei Stereokameras, die jeweils mehrere Kilometer entfernt installiert wurden um unterschiedliche Wolkenpartien rekonstruieren zu können. Ein Vergleich zwischen Stereorekonstruktion und Lidar-Ceilometer zeigte typische Standardabweichungen der Wolkenbasishöhendifferenz von 50 m (1.5 %) bei mittelhoher Altocumulus-Bewölkung und 123 m (7 %) bis 165 m (10 %) bei heterogener Cumulus- und Stratocumulus-Bewölkung. Gleichzeitig wich die rekonstruierte Wolkenbasishöhe im Durchschnitt meist nicht weiter als 2 %, in Einzelfällen 3-5 % vom entsprechenden Wert des Lidars ab. Im Vergleich zur abgeleiteten Cumulus-Morphologie aus den 2-D Reflektivitätsprofilen des Wolkenradars, zeigten sich im Zenit-Bereich typische Differenzen zwischen 35 und 81 m. Bei weiter entfernten Wolken (> 2 km) können sich Stereorekonstruktion und Reflektivitätssignal stark unterscheiden, was neben einer abnehmenden geometrischen Genauigkeit der Stereorekonstruktion in kontrastarmen Bereichen insbesondere mit einer oftmals unzureichenden Sensitivität des Radars bei kleinen Wolkentröpfchen erklärt werden kann, wie man sie an der Wolkenbasis und in den Randbereichen von Wolken findet. Die Kombination von Stereoanalyse und der Bewegungsinformation innerhalb einer Bildsequenz erlaubt die Bestimmung von Wolkenzug- und -deformationsvektoren. Neben der Verfolgung einzelner Wolkenstrukturen und der Erfassung von Wolkendynamik (beispielsweise der Deformation von Wolken durch Windscherung), kann im Fall von stratiformen Wolken Windgeschwindigkeit und -richtung abgeschätzt werden. Ein Vergleich mit Beobachtungen eines Wind-Lidars zeigte hierfür typische Abweichungen der Windgeschwindigkeit von 1 ms-1 und der Windrichtung von 7° to 10°. Ein besonderer Mehrwert der Methode liegt in einer tiefergehenden Analyse von Morphologie und Lebenszyklus von Cumulus-Wolken. Dies wurde anhand zweier exemplarischer Fallstudien gezeigt, in denen die 3-D-Rekonstruktionen zweier entfernt aufgestellter Stereokameras kombiniert wurden. Im ersten Fall wurde ein sich unter vertikaler Windscherung entwickelnder Cumulus von zwei Seiten aufgenommen, was eine geometrische Erfassung des stark durch Scherung geneigten Wolkenkörpers ermöglichte. Kennwerte wie Vertikalprofil, Neigungswinkel der Wolke und Durchmesser einzelner Höhenschichten wurden abgeschätzt. Der zweite Fall zeigte eine statistische Analyse eines sich entwickelnden Cumulus über seinen Lebenszyklus hinweg. Dies erlaubte die Erstellung einer Zeitreihe mit relevanten Kennzahlen wie äquivalenter Durchmesser, vertikale Ausdehnung, Perimeter oder abgeleitete Größen wie Aspektrate oder Perimeter-Skalierung. Während die Analyse bisherige Ergebnisse aus Simulationen und satellitengestützten Beobachtungen bestätigt, erlaubt diese aber eine Erweiterung auf die Ebene individueller Wolken und der Ableitung funktionaler Zusammenhänge wie zum Beispiel dem Verhältnis von Wolkendurchmesser und vertikaler Dimension

    Registration of multimodal dental and facial images

    Get PDF
    Master'sMASTER OF ENGINEERIN

    Uydu görüntülerinden yer kontrol noktasız sayısal yüzey haritaları.

    Get PDF
    Generation of Digital Surface Models (DSMs) from stereo satellite (spaceborne) images is classically performed by Ground Control Points (GCPs) which require site visits and precise measurement equipment. However, collection of GCPs is not always possible and such requirement limits the usage of spaceborne imagery. This study aims at developing a fast, fully automatic, GCP-free workflow for DSM generation. The problems caused by GCP-free workflow are overcome using freely-available, low resolution static DSMs (LR-DSM). LR-DSM is registered to the reference satellite image and the registered LR-DSM is used for i) correspondence generation and ii) initial estimate generation for 3-D reconstruction. Novel methods are developed for bias removal for LR-DSM registration and bias equalization for projection functions of satellite imaging. The LR-DSM registration is also shown to be useful for computing the parameters of simple, piecewise empirical projective models. Recent computer vision approaches on stereo correspondence generation and dense depth estimation are tested and adopted for spaceborne DSM generation. The study also presents a complete, fully automatic scheme for GCPfree DSM generation and demonstrates that GCP-free DSM generation is possible and can be performed in much faster time on computers. The resulting DSM can be used in various remote sensing applications including building extraction, disaster monitoring and change detection.Ph.D. - Doctoral Progra

    Advanced perception, navigation and planning for autonomous in-water ship hull inspection

    Get PDF
    Inspection of ship hulls and marine structures using autonomous underwater vehicles has emerged as a unique and challenging application of robotics. The problem poses rich questions in physical design and operation, perception and navigation, and planning, driven by difficulties arising from the acoustic environment, poor water quality and the highly complex structures to be inspected. In this paper, we develop and apply algorithms for the central navigation and planning problems on ship hulls. These divide into two classes, suitable for the open, forward parts of a typical monohull, and for the complex areas around the shafting, propellers and rudders. On the open hull, we have integrated acoustic and visual mapping processes to achieve closed-loop control relative to features such as weld-lines and biofouling. In the complex area, we implemented new large-scale planning routines so as to achieve full imaging coverage of all the structures, at a high resolution. We demonstrate our approaches in recent operations on naval ships.United States. Office of Naval Research (Grant N00014-06-10043)United States. Office of Naval Research (Grant N00014-07-1-0791
    corecore