1,142 research outputs found

    Disaster management in industrial areas: perspectives, challenges and future research

    Get PDF
    Purpose: In most countries, development, growth, and sustenance of industrial facilities are given utmost importance due to the influence in the socio-economic development of the country. Therefore, special economic zones, or industrial areas or industrial cities are developed in order to provide the required services for the sustained operation of such facilities. Such facilities not only provide a prolonged economic support to the country but it also helps in the societal aspects as well by providing livelihood to thousands of people. Therefore, any disaster in any of the facilities in the industrial area will have a significant impact on the population, facilities, the economy, and threatens the sustainability of the operations. This paper provides review of such literature that focus on theory and practice of disaster management in industrial cities. Design/methodology/approach: In the paper, content analysis method is used in order to elicit the insights of the literature available. The methodology uses search methods, literature segregation and developing the current knowledge on different phases of industrial disaster management. Findings: It is found that the research is done in all phases of disaster management, namely, preventive phase, reactive phase and corrective phase. The research in each of these areas are focused on four main aspects, which are facilities, resources, support systems and modeling. Nevertheless, the research in the industrial cities is insignificant. Moreover, the modeling part does not explicitly consider the nature of industrial cities, where many of the chemical and chemical processing can be highly flammable thus creating a very large disaster impact. Some research is focused at an individual plant and scaled up to the industrial cities. The modeling part is weak in terms of comprehensively analyzing and assisting disaster management in the industrial cities. Originality/value: The comprehensive review using content analysis on disaster management is presented here. The review helps the researchers to understand the gap in the literature in order to extend further research for disaster management in large scale industrial cities.Peer Reviewe

    Transportation Operations Master Plan

    Get PDF
    This document outlines a long-range vision of transportation operations for the DVRPC region. It presents transportation operations goals, objectives, and operational strategies to achieve them. An operations vision establishes a plan of where ITS infrastructure, emergency service patrols, and incident management task forces, should be deployed in the region. A series of plans and programs are identified to accomplish the regional goals and vision. Lastly, a financial analysis was conducted to estimate the costs to construct, operate, and maintain these projects

    Computational environment for modeling and enhancing community resilience: Introducing the center for risk-based community resilience planning

    Get PDF
    The resilience of a community is defined as its ability to prepare for, withstand, recover from and adapt to the effects of natural or human-caused disasters, and depends on the performance of the built environment and on supporting social, economic and public institutions that are essential for immediate response and long-term recovery and adaptation. The performance of the built environment generally is governed by codes, standards, and regulations, which are applicable to individual facilities and residences, are based on different performance criteria, and do not account for the interdependence of buildings, transportation, utilities and other infrastructure sectors. The National Institute of Standards and Technology recently awarded a new Center of Excellence (NIST-CoE) for Risk-Based Community Resilience Planning, which is headquartered at Colorado State University and involves nine additional universities. Research in this Center is focusing on three major research thrusts: (1) developing the NIST-Community Resilience Modeling Environment known as NIST-CORE, thereby enabling alternative strategies to enhance community resilience to be measured quantitatively; (2) developing a standardized data ontology, robust data architecture and data management tools in support of NIST-CORE; and (3) performing a comprehensive set of hindcasts on disasters to validate the data architecture and NIST-CORE

    Improving Disaster Response Efforts With Decision Support Systems

    Get PDF
    As evidenced by Hurricane Katrina in August, 2005, disaster response efforts are hindered by a lack of coordination, poor information flows, and the inability of disaster response managers to validate and process relevant information and make decisions in a timely fashion. A number of factors contribute to current lackluster response efforts. Some are inherent to the complex, rapidly changing decision-making environments that characterize most disaster response settings. Others reflect systematic flaws in how decisions are made within the organizational hierarchies of the many agencies involved in a disaster response. Slow, ineffective strategies for gathering, processing, and analyzing data can also play a role. Information technology, specifically decision support systems, can be used to reduce the time needed to make crucial decisions regarding task assignment and resource allocation. Decision support systems can also be used to guide longer-term decisions involving resource acquisition as well as for training and the evaluation of command and control capability

    Optimization Approaches for Improving Mitigation and Response Operations in Disaster Management

    Get PDF
    Disasters are calamitous events that severely affect the life conditions of an entire community, being the disasters either nature-based (e.g., earthquake) or man-made (e.g., terroristic attack). Disaster-related issues are usually dealt with according to the Disaster Operations Management (DOM) framework, which is composed of four phases: mitigation and preparedness, which address pre-disaster issues, and response and recovery, which tackle problems arising after the occurrence of a disaster. The ultimate scope of this dissertation is to present novel optimization models and algorithms aimed at improving operations belonging to the mitigation and response phases of the DOM. On the mitigation side, this thesis focuses on the protection of Critical Information Infrastructures (CII), which are commonly deemed to include communication and information networks. The majority of all the other Critical Infrastructures (CI), such as electricity, fuel and water supply as well as transportation systems, are crucially dependent on CII. Therefore, problems associated with CII that disrupt the services they are able to provide (whether to a single end-user or to another CI) are of increasing interest. This dissertation reviews several issues emerging in the Critical Information Infrastructures Protection (CIIP), field such as: how to identify the most critical components of a communication network whose disruption would affect the overall system functioning; how to mitigate the consequences of such calamitous events through protection strategies; and how to design a system which is intrinsically able to hedge against disruptions. To this end, this thesis provides a description of the seminal optimization models that have been developed to address the aforementioned issues in the general field of Critical Infrastructures Protection (CIP). Models are grouped in three categories which address the aforementioned issues: survivability-oriented interdiction, resource allocation strategy, and survivable design models; existing models are reviewed and possible extensions are proposed. In fact, some models have already been developed for CII (i.e., survivability-interdiction and design models), while others have been adapted from the literature on other CI (i.e., resource allocation strategy models). The main gap emerging in the CII field is that CII protection has been quite overlooked which has led to review optimization models that have been developed for the protection of other CI. Hence, this dissertation contributes to the literature in the field by also providing a survey of the multi-level programs that have been developed for protecting supply chains, transportation systems (e.g., railway infrastructures), and utility networks (e.g., power and water supply systems), in order to adapt them for CII protection. Based on the review outcomes, this thesis proposes a novel linear bi-level program for CIIP to mitigate worst-case disruptions through protection investments entailing network design operations, namely the Critical Node Detection Problem with Fortification (CNDPF), which integrates network survivability assessment, resource allocation strategies and design operations. To the best of my knowledge, this is the first bi-level program developed for CIIP. The model is solved through a Super Valid Inequalities (SVI) decomposition approach and a Greedy Constructive and Local Search (GCLS) heuristic. Computational results are reported for real communication networks and for different levels of both disaster magnitude and protection resources. On the response side, this thesis identifies the current challenges in devising realistic and applicable optimization models in the shelter location and evacuation routing context and outlines a roadmap for future research in this topical area. A shelter is a facility where people belonging to a community hit by a disaster are provided with different kinds of services (e.g., medical assistance, food). The role of a shelter is fundamental for two categories of people: those who are unable to make arrangements to other safe places (e.g., family or friends are too far), and those who belong to special-needs populations (e.g., disabled, elderly). People move towards shelter sites, or alternative safe destinations, when they either face or are going to face perilous circumstances. The process of leaving their own houses to seek refuge in safe zones goes under the name of evacuation. Two main types of evacuation can be identified: self-evacuation (or car-based evacuation) where individuals move towards safe sites autonomously, without receiving any kind of assistance from the responder community, and supported evacuation where special-needs populations (e.g., disabled, elderly) require support from emergency services and public authorities to reach some shelter facilities. This dissertation aims at identifying the central issues that should be addressed in a comprehensive shelter location/evacuation routing model. This is achieved by a novel meta-analysis that entail: (1) analysing existing disaster management surveys, (2) reviewing optimization models tackling shelter location and evacuation routing operations, either separately or in an integrated manner, (3) performing a critical analysis of existing papers combining shelter location and evacuation routing, concurrently with the responses of their authors, and (4) comparing the findings of the analysis of the papers with the findings of the existing disaster management surveys. The thesis also provides a discussion on the emergent challenges of shelter location and evacuation routing in optimization such as the need for future optimization models to involve stakeholders, include evacuee as well as system behaviour, be application-oriented rather than theoretical or model-driven, and interdisciplinary and, eventually, outlines a roadmap for future research. Based on the identified challenges, this thesis presents a novel scenario-based mixed-integer program which integrates shelter location, self-evacuation and supported-evacuation decisions, namely the Scenario-Indexed Shelter Location and Evacuation Routing (SISLER) problem. To the best of my knowledges, this is the second model including shelter location, self-evacuation and supported-evacuation however, SISLER deals with them based on the provided meta-analysis. The model is solved through a Branch-and-Cut algorithm of an off-the-shelf software, enriched with valid inequalities adapted from the literature. Computational results are reported for both testbed instances and a realistic case study

    Annual Report - 2012

    Get PDF

    Training of Crisis Mappers and Map Production from Multi-sensor Data: Vernazza Case Study (Cinque Terre National Park, Italy)

    Get PDF
    This aim of paper is to presents the development of a multidisciplinary project carried out by the cooperation between Politecnico di Torino and ITHACA (Information Technology for Humanitarian Assistance, Cooperation and Action). The goal of the project was the training in geospatial data acquiring and processing for students attending Architecture and Engineering Courses, in order to start up a team of "volunteer mappers". Indeed, the project is aimed to document the environmental and built heritage subject to disaster; the purpose is to improve the capabilities of the actors involved in the activities connected in geospatial data collection, integration and sharing. The proposed area for testing the training activities is the Cinque Terre National Park, registered in the World Heritage List since 1997. The area was affected by flood on the 25th of October 2011. According to other international experiences, the group is expected to be active after emergencies in order to upgrade maps, using data acquired by typical geomatic methods and techniques such as terrestrial and aerial Lidar, close-range and aerial photogrammetry, topographic and GNSS instruments etc.; or by non conventional systems and instruments such us UAV, mobile mapping etc. The ultimate goal is to implement a WebGIS platform to share all the data collected with local authorities and the Civil Protectio

    NRPT: Improve Preparedness for Storm Events and Nuisance Flooding in the Norfolk Region

    Get PDF
    On June 18-20th, 2019, the Coastal Response Research Center (CRRC) and NOAA’s Disaster Preparedness Program (DPP) co-sponsored a NOAA Regional Preparedness Training (NRPT) Workshop at Old Dominion University Tri-Cities Higher Education Center (Portsmouth, VA). The workshop, titled “Improve Preparedness for Storm Events and Nuisance Flooding in the Norfolk Region”, focused on preparedness, planning and response to extreme weather events and nuisance flooding. This was the fifth workshop in a series of DPP NRPTs. The overall goal of the Norfolk workshop was to provide focused discussion regarding lessons learned from local partners during the 2018 Atlantic hurricane season and build a common understanding of how storm events and nuisance flooding will be addressed when they threaten mission personnel, infrastructure or natural resources. The specific objectives were to: Establish networks with local partners to improve preparedness. Identify gaps and ways to improve regional preparedness. Increase coordination among participants to bolster regional preparedness. Determine ways to provide adequate information and communicate knowledge, so that (1) the public and response community will make informed decisions relative to personal protection and safety, and (2) responders and natural resource managers more effectively mitigate regional disaster impacts. A one-day Tools CafĂ© was held prior to the workshop, with presentations and subsequent hands-on demonstrations of national and regionally-specific preparedness and response tools that are currently available to responders or the public. The two-day workshop included plenary presentations from local and federal emergency responders outlining their day-to-day operations, continuity of operations during an emergency, tools used to make decisions, and lessons learned from previous events
    • 

    corecore