624 research outputs found

    Cooperative Planning System for Self-Separation in En-route Airspace

    Get PDF
    The increase in flight density and the need to integrate Unmanned Areal Vehicles into the National Airspace demands higher flexibility. Distributing the conflict detection and resolution (CD&R) functions among the aircraft ensures a greater flexibility in the flight plans for the aircraft. A co-operative planning system is proposed for separation assurance by distributing the CD&R in the en-route airspace among a fully-connected network of aircraft. The aircraft cooperate to achieve the common goal of conflict-free trajectories, while attempting to reduce the disruptions from their original flight plans. A pairwise CD&R algorithm is developed through heuristics which is then implemented iteratively to obtain the solution. Coordination of the aircraft maneuvers in the distributed CD&R algorithm is ensured implicitly through geometric criteria and explicitly through communication for multiple conflicts. Furthermore, a novel robust aircraft trajectory model using cubic Bezier parametric curves is developed, which gives an accurate, minimalistic representation of flight paths for the algorithm to act on and modify for new resolutions. The algorithm is validated by sweeping through different parameters for a two aircraft configuration and also compared with a benchmark tactical CD&R algorithm. Furthermore, the planning system is shown to be feasible for implementation with the current ADS-B surveillance technology

    Development of Complexity Science and Technology Tools for NextGen Airspace Research and Applications

    Get PDF
    The objective of this research by NextGen AeroSciences, LLC is twofold: 1) to deliver an initial "toolbox" of algorithms, agent-based structures, and method descriptions for introducing trajectory agency as a methodology for simulating and analyzing airspace states, including bulk properties of large numbers of heterogeneous 4D aircraft trajectories in a test airspace -- while maintaining or increasing system safety; and 2) to use these tools in a test airspace to identify possible phase transition structure to predict when an airspace will approach the limits of its capacity. These 4D trajectories continuously replan their paths in the presence of noise and uncertainty while optimizing performance measures and performing conflict detection and resolution. In this approach, trajectories are represented as extended objects endowed with pseudopotential, maintaining time and fuel-efficient paths by bending just enough to accommodate separation while remaining inside of performance envelopes. This trajectory-centric approach differs from previous aircraft-centric distributed approaches to deconfliction. The results of this project are the following: 1) we delivered a toolbox of algorithms, agent-based structures and method descriptions as pseudocode; and 2) we corroborated the existence of phase transition structure in simulation with the addition of "early warning" detected prior to "full" airspace. This research suggests that airspace "fullness" can be anticipated and remedied before the airspace becomes unsafe

    Mathematic Models for Aircraft Trajectory Design: A Survey

    Get PDF
    Presented at the 2013 ENRI International Workshop on ATM/CNS (EIWAC2013), Tokyo, Japan, February 2013.Air traffic management ensure the safety of flight by optimizing flows and maintaining separation between aircraft. After giving some definitions, some typical feature of aircraft trajectories are presented. Trajectories are objects belonging to spaces with infinite dimensions. The naive way to address such problem is to sample trajectories at some regular points and to create a big vector of positions (and or speeds). In order to manipulate such objects with algorithms, one must reduce the dimension of the search space by using more efficient representations. Some dimension reduction tricks are then presented for which advantages and drawbacks are presented. Then, front propagation approaches are introduced with a focus on Fast Marching Algorithms and Ordered upwind algorithms. An example of application of such algorithm to a real instance of air traffic control problem is also given. When aircraft dynamics have to be included in the model, optimal control approaches are really efficient. We present also some application to aircraft trajectory design. Finally, we introduce some path planning techniques via natural language processing and mathematical programming

    Trajectory optimization for noise abatement arrival procedures. Case study at Barcelona airport.

    Get PDF
    The main objective of the presented bachelor thesis is the implementation of a trajectory optimizer, based on the minimization of a specific objective function, which describes the noise impact over a set of noise sensitive areas. In order to successfully achieve the desired goal, a convenient noise model is defined where the perceived noise levels are computed as a function of the aircraft trajectory (altitude, speed, thrust, etc.). In addition, the current in-house trajectory optimizer developed by UPC researchers, which before this work only allowed the optimization of the vertical profile (altitude and speed) given a fixed lateral route, has been improved to allow the optimization in the lateral domain by modifying the model describing the aircraft dynamics. Furthermore, with the purpose of obtaining feasible solutions fulfilling the requirements imposed by current air traffic management systems, a set of operational constraints are accurately imposed. Thus, the optimization problem is formulated as an optimal control problem, which is also converted into a non-linear programming problem by means of direct collocation methods. As main contribution of this work, splines interpolation functions are tested with the aim of modeling the measurement grid defining the noise sensitive areas. By doing this, a new unconventional approach is exposed with the intention of proposing an alternative methodology distinct from well-established methods based in implementing discrete points grids, offering then, a simpler way of measuring the noise impact, continuously, through the whole aircraft trajectory. Finally, with the aim of testing the performance of the optimizer, two cases are presented for which different descent trajectories are optimized from the cruise level to the interception of the instrument landing system at three different altitudes (1000, 2000 and 3000 ft). All the results are conveniently exposed with the purpose of obtaining relevant strong evidence-based conclusions. Furthermore, noise footprints are computed with the objective of providing a better visualization of the results. As the results show, the implemented methodology, where splines define the different noise sensitive areas as a continuous, differentiable function, has proven to be more than an effective method, giving very promising results on the two cases exposed

    Robust aircraft trajectory optimization under meteorological uncertainty

    Get PDF
    Mención Internacional en el título de doctorThe Air Traffic Management (ATM) system in the busiest airspaces in the world is currently being overhauled to deal with multiple capacity, socioeconomic, and environmental challenges. One major pillar of this process is the shift towards a concept of operations centered on aircraft trajectories (called Trajectory-Based Operations or TBO in Europe) instead of rigid airspace structures. However, its successful implementation (and, thus, the realization of the associated improvements in ATM performance) rests on appropriate understanding and management of uncertainty. Due to its complex socio-technical structure, the design and operations of the ATM system are heavily impacted by uncertainty, proceeding from multiple sources and propagating through the interconnections between its subsystems. One major source of ATM uncertainty is weather. Due to its nonlinear and chaotic nature, a number of meteorological phenomena of interest cannot be forecasted with complete accuracy at arbitrary lead times, which leads to uncertainty or disruption in individual air and ground operations that propagates to all ATM processes. Therefore, in order to achieve the goals of SESAR and similar programs, it is necessary to deal with meteorological uncertainty at multiple scales, from the trajectory prediction and planning processes to flow and traffic management operations. This thesis addresses the problem of single-aircraft flight planning considering two important sources of meteorological uncertainty: wind prediction error and convective activity. As the actual wind field deviates from its forecast, the actual trajectory will diverge in time from the planned trajectory, generating uncertainty in arrival times, sector entry and exit times, and fuel burn. Convective activity also impacts trajectory predictability, as it leads pilots to deviate from their planned route, creating challenging situations for controllers. In this work, we aim to develop algorithms and methods for aircraft trajectory optimization that are able to integrate information about the uncertainty in these meteorological phenomena into the flight planning process at both pre-tactical (before departure) and tactical horizons (while the aircraft is airborne), in order to generate more efficient and predictable trajectories. To that end, we frame flight planning as an optimal control problem, modeling the motion of the aircraft with a point-mass model and the BADA performance model. Optimal control methods represent a flexible and general approach that has a long history of success in the aerospace field. As a numerical scheme, we use direct methods, which can deal with nonlinear systems of moderate and high-dimensional state spaces in a computationally manageable way. Nevertheless, while this framework is well-developed in the context of deterministic problems, the techniques for the solution of practical optimal control problems under uncertainty are not as mature, and the methods proposed in the literature are not applicable to the flight planning problem as it is now understood. The first contribution of this thesis addresses this challenge by introducing a framework for the solution of general nonlinear optimal control problems under parametric uncertainty. It is based on an ensemble trajectory scheme, where the trajectories of the system under multiple scenarios are considered simultaneously within the same dynamical system and the uncertain optimal control problem is turned into a large conventional optimal control problem that can be then solved by standard, well-studied direct methods in optimal control. We then employ this approach to solve the robust flight plan optimization problem at the planning horizon. In order to model uncertainty in the wind and estimating the probability of convective conditions, we employ Ensemble Prediction System (EPS) forecasts, which are composed by multiple predictions instead of a single deterministic one. The resulting method can be used to optimize flight plans for maximum expected efficiency according to the cost structure of the airline; additionally, predictability and exposure to convection can be incorporated as additional objectives. The inherent tradeoffs between these objectives can be assessed with this methodology. The second part of this thesis presents a solution for the rerouting of aircraft in uncertain convective weather scenarios at the tactical horizon. The uncertain motion of convective weather cells is represented with a stochastic model that has been developed from the output of a deterministic satellite-based nowcast product, Rapidly Developing Thunderstorms (RDT). A numerical optimal control framework, based on the pointmass model with the addition of turn dynamics, is employed for optimizing efficiency and predictability of the proposed trajectories in the presence of uncertainty about the future evolution of the storm. Finally, the optimization process is initialized by a randomized heuristic procedure that generates multiple starting points. The combined framework is able to explore and as exploit the space of solution trajectories in order to provide the pilot or the air traffic controller with a set of different suggested avoidance trajectories, as well as information about their expected cost and risk. The proposed methods are tested on example scenarios based on real data, showing how different user priorities lead to different flight plans and what tradeoffs are then present. These examples demonstrate that the solutions described in this thesis are adequate for the problems that have been formulated. In this way, the flight planning process can be enhanced to increase the efficiency and predictability of individual aircraft trajectories, which would lead to higher predictability levels of the ATM system and thus improvements in multiple performance indicators.El sistema de gestión del tráfico aéreo (Air Traffic Management, ATM) en los espacios aéreos más congestionados del mundo está siendo reformado para lidiar con múltiples desafíos socioeconómicos, medioambientales y de capacidad. Un pilar de este proceso es el gradual reemplazo de las estructuras rígidas de navegación, basadas en aerovías y waypoints, hacia las operaciones basadas en trayectorias. No obstante, la implementación exitosa de este concepto y la realización de las ganancias esperadas en rendimiento ATM requiere entender y gestionar apropiadamente la incertidumbre. Debido a su compleja estructura socio-técnica, el diseño y operaciones del sistema ATM se encuentran marcadamente influidos por la incertidumbre, que procede de múltiples fuentes y se propaga por las interacciones entre subsistemas y operadores humanos. Uno de los principales focos de incertidumbre en ATM es la meteorología. Debido a su naturaleza no-linear y caótica, muchos fenómenos de interés no pueden ser pronosticados con completa precisión en cualquier horizonte temporal, lo que crea disrupción en las operaciones en aire y tierra que se propaga a otros procesos de ATM. Por lo tanto, para lograr los objetivos de SESAR e iniciativas análogas, es imprescindible tener en cuenta la incertidumbre en múltiples escalas espaciotemporales, desde la predicción de trayectorias hasta la planificación de flujos y tráfico. Esta tesis aborda el problema de la planificación de vuelo de aeronaves individuales considerando dos fuentes importantes de incertidumbre meteorológica: el error en la predicción del viento y la actividad convectiva. Conforme la realización del viento se desvía de su previsión, la trayectoria real se desviará temporalmente de la planificada, lo que implica incertidumbre en tiempos de llegada a sectores y aeropuertos y en consumo de combustible. La actividad convectiva también tiene un impacto en la predictibilidad de las trayectorias, puesto que obliga a los pilotos a desviarse de sus planes de vuelo para evitarla, cambiado así la situación de tráfico. En este trabajo, buscamos desarrollar métodos y algoritmos para la optimización de trayectorias que puedan integrar información sobre la incertidumbre en estos fenómenos meteorológicos en el proceso de diseño de planes de vuelo en horizontes de planificación (antes del despegue) y tácticos (durante el vuelo), con el objetivo de generar trayectorias más eficientes y predecibles. Con este fin, formulamos la planificación de vuelo como un problema de control óptimo, modelando la dinámica del avión con un modelo de masa puntual y el modelo de rendimiento BADA. El control óptimo es un marco flexible y general con un largo historial de éxito en el campo de la ingeniería aeroespacial. Como método numérico, empleamos métodos directos, que son capaces de manejar sistemas dinámicos de alta dimensión con costes computacionales moderados. No obstante, si bien esta metodología es madura en contextos deterministas, la solución de problemas prácticas de control óptimo bajo incertidumbre en la literatura no está tan desarrollada, y los métodos propuestos en la literatura no son aplicables al problema de interés. La primera contribución de esta tesis hace frente a este reto mediante la introducción de un marco numérico para la resolución de problemas generales de control óptimo no-lineal bajo incertidumbre paramétrica. El núcleo de este método es un esquema de conjunto de trayectorias, en el que las trayectorias del sistema dinámico bajo múltiples escenarios son consideradas de forma simultánea, y el problema de control óptimo bajo incertidumbre es así transformado en un problema convencional que puede ser tratado mediante métodos existentes en control óptimo. A continuación, empleamos este método para resolver el problema de la planificación de vuelo robusta. La incertidumbre en el viento y la probabilidad de ocurrencia de condiciones convectivas son modeladas mediante el uso de previsiones de conjunto o ensemble, compuestas por múltiples predicciones en lugar de una única previsión determinista. Este método puede ser empleado para maximizar la eficiencia esperada de los planes de vuelo de acuerdo a la estructura de costes de la aerolínea; además, la predictibilidad de la trayectoria y la exposición a la convección pueden ser incorporadas como objetivos adicionales. El trade-off entre estos objetivos puede ser evaluado mediante la metodología propuesta. La segunda parte de la tesis presenta una solución para reconducir aviones en escenarios tormentosos en un horizonte táctico. La evolución de las células convectivas es representada con un modelo estocástico basado en las proyecciones de Rapidly Developing Thunderstorms (RDT), un sistema determinista basado en imágenes de satélite. Este modelo es empleado por un método de control óptimo numérico, basado en un modelo de masa puntual en el que se modela la dinámica de viraje, con el objetivo de maximizar la eficiencia y predictibilidad de la trayectoria en presencia de incertidumbre sobre la evolución futura de las tormentas. Finalmente, el proceso de optimizatión es inicializado por un método heurístico aleatorizado que genera múltiples puntos de inicio para las iteraciones del optimizador. Esta combinación permite explorar y explotar el espacio de trayectorias solución para proporcionar al piloto o al controlador un conjunto de trayectorias propuestas, así como información útil sobre su coste y el riesgo asociado. Los métodos propuestos son probados en escenarios de ejemplo basados en datos reales, ilustrando las diferentes opciones disponibles de acuerdo a las prioridades del planificador y demostrando que las soluciones descritas en esta tesis son adecuadas para los problemas que se han formulado. De este modo, es posible enriquecer el proceso de planificación de vuelo para incrementar la eficiencia y predictibilidad de las trayectorias individuales, lo que contribuiría a mejoras en el rendimiento del sistema ATM.These works have been financially supported by Universidad Carlos III de Madrid through a PIF scholarship; by Eurocontrol, through the HALA! Research Network grant 10-220210-C2; by the Spanish Ministry of Economy and Competitiveness (MINECO)'s R&D program, through the OptMet project (TRA2014-58413-C2-2-R); and by the European Commission's SESAR Horizon 2020 program, through the TBO-Met project (grant number 699294).Programa de Doctorado en Mecánica de Fluidos por la Universidad Carlos III de Madrid; la Universidad de Jaén; la Universidad de Zaragoza; la Universidad Nacional de Educación a Distancia; la Universidad Politécnica de Madrid y la Universidad Rovira iPresidente: Damián Rivas Rivas.- Secretario: Xavier Prats Menéndez.- Vocal: Benavar Sridha

    Upravljanje putanjama vazduhoplova u kontroli letenja na pre-taktičkom i taktičkom nivou

    Get PDF
    Global air traffic demand is continuously increasing, and it is predicted to be tripled by 2050. The need for increasing air traffic capacity motivates a shift of ATM towards Trajectory Based Operations (TBOs). This implies the possibility to design efficient congestion-free aircraft trajectories more in advance (pre-tactical, strategic level) reducing controller’s workload on tactical level. As consequence, controllers will be able to manage more flights. Current flow management practices in air traffic management (ATM) system shows that under the present system settings there are only timid demand management actions taken prior to the day of operation such as: slot allocation and strategic flow rerouting. But the choice of air route for a particular flight is seen as a commercial decision to be taken by airlines, given air traffic control constraints. This thesis investigates the potential of robust trajectory planning (considered as an additional demand management action) at pre-tactical level as a mean to alleviate the en-route congestion in airspace. Robust trajectory planning (RTP) involves generation of congestion-free trajectories with minimum operating cost taking into account uncertainty of trajectory prediction and unforeseen event. Although planned cost could be higher than of conventional models, adding robustness to schedules might reduce cost of disruptions and hopefully lead to reductions in operating cost. The most of existing trajectory planning models consider finding of conflict-free trajectories without taking into account uncertainty of trajectory prediction. It is shown in the thesis that in the case of traffic disturbances, it is better to have a robust solution otherwise newly generated congestion problems would be hard and costly to solve. This thesis introduces a novel approach for route generation (3D trajectory) based on homotopic feature of continuous functions. It is shown that this approach is capable of generating a large number of route shapes with a reasonable number of decision variables. Those shapes are then coupled with time dimension in order to create trajectories (4D)...Globalna potražnja za vazdušnim saobraćajem u stalnom je porastu i prognozira se da će broj letova biti utrostručen do 2050 godine. Potreba za povećanjem kapaciteta sistema vazdušnog saobraćaja motivisala je promene u sistemu upravljanja saobraćajnim tokovima u kome će u budućnosti centralnu ulogu imati putanje vazduhoplova tzv. “trajectory-based” koncept. Takav sistem omogućiće planiranje putanja vazduhoplova koje ne stvaraju zagušenja u sistemu na pre-taktičkom nivou i time smanjiti radno opterećenje kontrolora na taktičkom nivou. Kao posledica, kontrolor će moći da upravlja više letova nego u današnjem sistemu. Današnja praksa upravljanja saobraćajnim tokovima pokazuje da se mali broj upravljačkih akcija primenjuje pre dana obavljanja letova npr.: alokacija slotova poletanja i strateško upravljanje saobraćajnim tokovima. Međutim izbor putanje kojom će se odviti let posmatra se kao komercijalna odluka aviokompanije (uz poštovanje postavljenih ograničenja od strane kontrole letenja) i stoga je ostavljen na izbor avio-kompaniji. Većina, do danas razvijenih, modela upravljanja putanjama vazduhoplova ima za cilj generisanje bez-konfliktnih putanja, ne uzimajući u obzir neizvesnost u poziciji vazduhoplova. U ovoj doktorskoj disertaciji ispitivano je planiranje robustnih putanja vazduhoplova (RTP) na pre-taktičkom nivou kao sredstvo ublažavanja zagušenja u vazdušnom prostoru . Robustno upravljanje putanjama vazduhoplova podrazumeva izbor putanja vazduhoplova sa minimalnim operativnim troškovima koje ne izazivaju zagušenja u vazdušnom prostoru u uslovima neizvesnosti buduđe pozicije vazduhoplova i nepredviđenih događaja. Iako predviđeni (planirani) operativni troškovi robustnih putanja mogu u startu biti veći od operativnih troškova bez-konfliktnih putanja, robusnost može uticati na smanjenje troškove poremećaja putanja jer ne zahteva dodatnu promenu putanja vazduhplova radi izbegavanja konfliktnih situacija na taktičkom nivou. To na kraju može dovesti i do smanjenja stvarnih operativnih troškova. U tezi je pokazano, da je u slučaju poremećaja saobraćaja bolje imati robustno rešenje (putanje), jer novo-nastali problem zagušenosti vazdušnog prostora je teško i skupo rešiti..

    Trajectory-Oriented Approach to Managing Traffic Complexity: Trajectory Flexibility Metrics and Algorithms and Preliminary Complexity Impact Assessment

    Get PDF
    This document describes exploratory research on a distributed, trajectory oriented approach for traffic complexity management. The approach is to manage traffic complexity based on preserving trajectory flexibility and minimizing constraints. In particular, the document presents metrics for trajectory flexibility; a method for estimating these metrics based on discrete time and degree of freedom assumptions; a planning algorithm using these metrics to preserve flexibility; and preliminary experiments testing the impact of preserving trajectory flexibility on traffic complexity. The document also describes an early demonstration capability of the trajectory flexibility preservation function in the NASA Autonomous Operations Planner (AOP) platform

    Multiobjective simulated annealing for collision avoidance in ATM accounting for three admissible maneuvers

    Get PDF
    Technological advances are required to accommodate air traffic control systems for the future growth of air traffic. Particularly, detection and resolution of conflicts between aircrafts is a problem that has attracted much attention in the last decade becoming vital to improve the safety standards in free flight unstructured environments. We propose using the archive simulated annealing- based multiobjective optimization algorithm to deal with such a problem, accounting for three admissible maneuvers (velocity, turn, and altitude changes) in a multiobjective context. The minimization of the maneuver number and magnitude, time delays, or deviations in the leaving points are considered for analysis. The optimal values for the algorithm parameter set are identified in the more complex instance in which all aircrafts have conflicts between each other accounting for 5, 10, and 20 aircrafts. Moreover, the performance of the proposed approach is analyzed by means of a comparison with the Pareto front, computed using brute force for 5 aircrafts and the algorithm is also illustrated with a random instance with 20 aircraft

    A Fast Multi-Objective Optimization Approach to Solve the Continuous Network Design Problem with Microscopic Simulation

    Get PDF
    The capacity of microscopic traffic simulation to estimate the environmental and road safety impacts opens the possibility to address the Network Design Problem from a new multi-objective point of view. Computation time, however, has hindered the use of this tool. The aim of this thesis was to find a continuous optimization method that would require only a very limited number of evaluations, and thus reduce the computation time. For this purpose, the most recent optimization literature was studied and two algorithms were selected: PAL and SMS-EGO. Both these algorithms rely on Gaussian process meta-models, but they are distinct with respect to the assumptions, criteria and methods used. They were then compared on a real-world case-study with NSGA-II, a genetic algorithm considered as state-of-the-art. Within the very limited computational budget allowed, SMS-EGO was found to outperform PAL and NSGA-II in the three configurations studied. However, the computational time required was still too important to allow for large scale optimization. To further accelerate the optimization process, three main adjustments were proposed, based on variable noise modeling, gradient-based optimization and conditional updates of the meta-models. Considering 20 runs for each optimization process, only variable noise modeling exhibited a statistically significant positive impact. The two other modifications also accelerated the optimization process on average, but high variability in the results led to p-values in the order of 0.15. Overall, the proposed optimization methodology represents a useful tool for transportation researchers to solve multi-objective optimization problems of limited scale

    Optimisation des trajectoires avion dans l'Atlantique Nord

    Get PDF
    This thesis investigates the ways to improve the air traffic system in the highly congested North Atlantic oceanic airspace (NAT). First, we consider the current system, where aircraft follow predefined NAT tracks. We favor the re-routings between tracks, decreasing congestion in pre-oceanic airspace, and apply stochastic methods of optimization to find a conflict-free flight configuration with reduced separation between aircraft. Second, we simulate trajectory prediction by Wind Networking (WN). While the main source of time prediction errors is the uncertainty in wind forecast, WN permits aircraft to exchange measured winds and adjust their predictions using this recent and accurate information. Third, we study the impact of introducing the free flight concept in NAT. We apply a stochastic method of optimization on data provided by NASA consisting of NAT flights with wind optimal trajectories. The aim is to reduce the number of conflicts on the strategic level, while keeping the trajectories close to the optimal routes. Our computational experiments show that the air traffic situation in NAT can be improved in several different ways, considering new technologies and new trajectory planning concepts.Cette thèse explore des pistes d'amélioration du système de trafic aérien dans l'espace océanique de l'Atlantique Nord (NAT). D'abord, on considère le système actuel, où les avions suivent les rails prédefinis. On favorise les re-routages entre rails, diminuant la congestion dans l'espace continental. On applique des méthodes stochastiques d'optimisation pour trouver une configuration de vols sans conflits avec la séparation reduite entre aéronefs. Ensuite, on simule la planification des trajectoires avec le Wind Networking (WN). La source prinicipale des erreurs dans la prédiction de trajectoires étant l'incertitude dans la prévision du vent, le WN permet aux avions d'échanger leurs vents mesurés afin d'ajuster leurs prédictions. Enfin, on introduit le concept de free-flight dans NAT. Etant donné des trajectoires vent-optimales, on applique une méthode stochastique d'optimisation pour réduire le nombre de conflits au niveau stratégique, tout en conservant les trajectoires proches de leur optimum. Nos résultats numériques mettent en évidence plusieurs pistes pour améliorer le système de trafic aérien dans NAT, en considérant de nouvelles technologies et de nouveaux concepts
    corecore