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Technological advances are required to accommodate air traffic control systems for the future growth of air traffic. Particularly,
detection and resolution of conflicts between aircrafts is a problem that has attracted much attention in the last decade becoming
vital to improve the safety standards in free flight unstructured environments. We propose using the archive simulated annealing-
based multiobjective optimization algorithm to deal with such a problem, accounting for three admissible maneuvers (velocity,
turn, and altitude changes) in a multiobjective context. The minimization of the maneuver number and magnitude, time delays, or
deviations in the leaving points are considered for analysis. The optimal values for the algorithm parameter set are identified in the
more complex instance in which all aircrafts have conflicts between each other accounting for 5, 10, and 20 aircrafts. Moreover, the
performance of the proposed approach is analyzed by means of a comparison with the Pareto front, computed using brute force for

5 aircrafts and the algorithm is also illustrated with a random instance with 20 aircrafts.

1. Introduction

Cargo and air traffic (AT) congestion has experienced a
general exponential growth throughout the world over the
last decade. Every minute of the day, both morning and after-
noon, there are about 11,000 aircrafts in the air somewhere in
the world, as can be seen in real time at https://www.flight-
radar24.com/.

2014 was the first year in which 100,000 flights per day
were exceeded. Europe’s largest airports handle about 2,000
daily takeoffs and landings. This trend continues to increase
gradually and estimates predict bending movements until
2030.

With the systems currently available, the air traffic control
agencies are not able to efficiently manage this large increase
which is taking place due to several factors as follows:

(1) Efficient use of airspace: currently, the airspace is
rigidly structured and with a large number of con-
straints that aircrafts have to comply with. They

must fly along predetermined routes through certain
waypoints, which are set by the agencies of air traffic
control (ATC), something that usually fails to produce
optimal results. Aircrafts are not allowed to fly directly
to their final destination taking advantage of favorable
winds without making changes to their trajectories
causing unnecessary fuel costs, which can indirectly
cause increases in ticket prices. This problem is
particularly evident in transoceanic routes, which are
experiencing the greatest growth in demand.

(2) Increased ATC workload: AT controllers have, among

other functions, to prevent collisions between air-
crafts and redirect routes to avoid adverse conditions.
In congested areas, such as regions near to airports
called terminal radar approach controls (TRACONS),
AT controllers often simplify their high workloads
making aircraft maintain default routes outside these
regions, causing delays in landings and takeoffs.



(3) Slow communication: communication is restricted to
a tedious voice communication between aircraft and
AT controllers, causing frequent bottleneck situa-
tions.

In view of the problems described, the aviation com-
munity has been working in recent years on a concept
called free flight. This innovative concept allows pilots to
choose their own routes, altitude, and velocity to reduce
delays and manage the use of aircraft fuel more efficiently.
The preferences of the pilots will be restricted only in very
congested airspace areas or to prevent unauthorized entry
into military areas.

Free flight is potentially possible due to the availability
of technologies such as global positioning systems (GPS);
communications data links such as automatic dependence
surveillance-broadcast (ADS-B); detection systems and colli-
sion avoidance; and powerful computing increasingly being
implemented in aircrafts.

In addition, there are several decision support tools that
reduce the workload of both AT controllers and pilots and
optimize their capacity, for example, the detection and reso-
lution of conflicts in airspace sectors, landings and takeofs
management in airports, and organizational systems of the
workload of AT controllers to better organize their tasks to
increase productivity.

These technological advances will also allow current
ATC systems to accommodate the future growth of air
traffic. Algorithms to detect and solve aircraft conflicts are
vital to improve the safety standards in free flight unstruc-
tured environments. These systems can be used on land by
ATC or by the flight management system (FMS) of each
aircraft.

In this paper, we focus on the development of algorithmic
tools for aircraft conflict detection and resolution (CDR) prob-
lem. We assume that each aircraft is surrounded by cylinder
representing a security virtual volume. Conflict between two
aircrafts occurs when the respective aircraft security volumes
overlap.

Different approaches can be found in literature to deal
with collision avoidance accounting for different number and
types of admissible maneuvers for aircrafts and with different
solution approaches, including the use of exact solvers,
simulation techniques, and metaheuristics. The work in [1]
present a survey with the most important of these up to the
year 2000, whereas [2] focuses on approaches from 2000 up
to 2012.

One of the first approaches to deal with collision avoid-
ance was [3]. A path planning problem among given way-
points avoiding all possible conflicts was considered aimed
at minimizing the total flight time. Two mixed-integer linear
programs were proposed accounting for velocity changes
and angle changes as admissible maneuvers, respectively. The
work in [4] proposes a three-dimensional formulation as
a mixed-integer nonlinear program in which only velocity
changes were admissible. CPLEX was used for the resolution
in both approaches.
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Simulation techniques have also been used to handle
CDR problems. For instance, [5] analyzes the economic per-
formance of a specific conflict resolution strategy based on
velocity change between two aircrafts in terms of extra time
and fuel consumption. The work in [6] also considers a veloc-
ity regulation problem, but from a different perspective,
distinguishing between crossing conflicts (the wider), in which
the aircrafts intersect at some point and security cylinders
overlap, and conflicts trail, caused when an aircraft pursues
another, both with different velocities.

Neural networks have been also used for performing
velocity changes in CDR problems [5, 7, 8].

More recently, [9] focuses on mixed-integer optimization
models based on velocity regulation. They propose to accel-
erate or decelerate during a specified time interval, reverting
back to the original velocity once the conflict is avoided.
They propose a heuristic procedure where the problem is
decomposed and locally exactly solved.

Other less frequent proposals consider turn changes that
lead to nonlinear optimization models. For instance, [10] pro-
poses a two-step approach. First, a nonconvex mixed-integer
nonlinear optimization is used to minimize the weighted air-
craft angle variations. Then, a set of unconstrained quadratic
optimization models are considered, where aircrafts are
forced to return to their original flight plan as soon as possible
once there is no aircraft in conflict with any other. Both an
exact and an approximate resolution are proposed. In the
second, the turn changes are discretized to reduce the search
space.

Different metaheuristics have been proposed for solv-
ing CDR models accounting for turn changes, such as
ant colony systems [11, 12], genetic algorithms [13], variable
neighborhood search [14], and particle swarm optimization
[15], which uses a series of waypoints the aircrafts can pass
through.

A pretty realistic proposal is described in [16], wherein
the acceleration variable is added to the model. It intends to
solve conflicts discretizing the time remaining until it occurs
at different intervals, optimizing acceleration, and velocity
that should be assigned to each aircraft. A nonlinear mixed
0-1 model is used to solve the problem, which is iteratively
linearized by using Taylor polynomials. This approach is
then enhanced in [17], extending control to aircraft outside
the aviation sector to manage, that is, taking into account
those aircrafts leaving it or entering it. Moreover, they take
into account the conflicts that may arise when an aircraft is
climbing or descending to change altitude.

The work in [18] improves the velocity change model
by adding altitude changes when necessary, for example, in
head-to-head conflict situations. A multiobjective perspec-
tive is considered including objectives such as velocity vari-
ation and total number of maneuvers and forcing to return to
the original flight configuration when no aircrafts are in con-
flict. An exactly solved mixed 0-1 linear optimization model
is used, with small computational time for the execution
making it suitable for real-time use.

In [19] an innovative point of view based on the choice of
different strategies to avoid conflicts is proposed. An original
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trajectory model using B-splines is introduced together with
anew semi-infinite programming formulation of the separa-
tion constraint involved in CDR problems.

In this paper we propose using simulated annealing to
deal with a CDR problem accounting for three admis-
sible maneuvers (velocity, turn, and altitude changes) in
a multiobjective context. Specifically, the archive simu-
lated annealing-based multiobjective optimization algorithm
(AMOSA) has been adapted to the CDR problem accounting
for objectives such as minimizing the maneuver number
and magnitude, time delays, or deviations in the leaving
points.

Both the possibility of performing three types of maneu-
vers and the multiobjective context make this paper an
original contribution regarding previous works on CDR
problems.

The paper is structured as follows. The mathematical
modeling for the multiobjective problem under considera-
tion is introduced in Section 2, including the identification
of parameters, decision variables, and constraints and the
description and modelization of the candidate objective
functions for analysis. AMOSA and its adaptation to the con-
sidered CDR problem are described in Section 3. Section 4
deals with the parameter setting and the performance analysis
when 5 aircrafts are considered. The parameter setting for 10
and 20 aircrafts and an example illustrating the flexibility of
the proposed algorithm are provided in Section 5. Finally,
some conclusions are provided in Section 6.

2. Mathematical Modeling

We assume that in a particular moment there are » aircrafts
in an aerial sector, a cubic volume in the space managed
by an AT controller; see Figure 1. We have to decide which
maneuvers to perform to avoid possible collisions between
them. We also assume that the decision on maneuvers will
be effective until # aircrafts leave the aerial sector or until a
new aircraft enters the aerial sector. At the moment a new
aircraft enters the aerial sector, the analysis we propose should
be again carried out to identify new maneuvers to avoid new
possible collisions caused by the entering aircraft.

Moreover, we assume that the number of maneuvers
performed by the aircrafts from the moment they entered
the aerial sector until the moment the analysis is carried
out is known. This information will be useful when ana-
lyzing the dispersion of maneuvers objective, as described
afterwards.

The collision avoidance problem can be mathematically
modeled as follows.

A conflict between two aircrafts occurs if the horizontal
and/or vertical distances between them are smaller than some
given security limits, making the security volume adopt a
cylindrical form; see Figure 2. Thus, the security cylinders
corresponding to any couple of aircrafts should never inter-
sect to avoid conflicts.

In the approach we propose, we account for three types
of aircraft maneuvers: velocity change (VC), altitude change
(AC), and turn change (TC). A best type of maneuver does
not exist since each maneuver has advantages and drawbacks.

Security
volume

Aircraft

~_

FIGURE 2: Security volume of an aircraft.

For example, the TC maneuver is efficient regarding fuel con-
sumption, but it makes the aircraft leave its original trajectory,
which constitutes an inconvenience.

Moreover, we consider a multiobjective perspective of the
problem including the minimization of the maneuver num-
ber, magnitude and dispersion, time delays, and deviations in
the leaving points.

The dispersion of the maneuvers objective aims at spread-
ing the effort of all aircraft maneuvers in an attempt to avoid
situations in which some aircrafts continuously perform
maneuvers over time whereas other aircrafts do not do so.
The deviations in the leaving points objective minimize the
sum of the distances between the theoretical leaving points
according to the initial trajectory when entering the aerial
sector and the real leaving points after possible maneuver
performances.

2.1. Parameters and Decision Variables. We consider n air-
crafts in an aerial sector at the time t. First, parameters
accounting for the features of the aircrafts are as follows:

v minimum velocity for the aircraft i.

min,i*

Vimax;: Maximum velocity for the aircraft .

max,i*

z minimum altitude for the aircraft i.

min,i*

z maximum altitude for the aircraft i.

max,i*

Binax;: Maximum variation of the angle for the aircraft
i



Secondly, initial parameters for each aircraft when enter-
ing the aerial sector (denoted by subscript ini) are as follows:

Vini,i¢ velocity of the aircraft i upon entry.

Z;,i;: altitude of the aircraft i upon entry.
Xin;; abscise of the aircraft i upon entry.

Yini;: ordinate of the aircraft i upon entry.

a,;;: angle of the aircraft i with respect to the
horizontal upon entry.

Next, we consider final parameters for each aircraft when
leaving the aerial sector assuming that no maneuvers have
been performed, that is, according to its initial trajectory
when entering the aerial sector, as follows:

Xg,,;: estimated abscise of the aircraft i when leaving
the aerial sector.

Yin,: €stimated ordinate of the aircraft i when leaving
the aerial sector.

Zg, ;- estimated altitude of the aircraft i when leaving
the aerial sector.

The parameters accounting for the configuration of the
aircrafts at the time ¢ are as follows:

vi: velocity of the aircraft i at the time t.
z!: aircraft i altitude at the time t.

! aircraft i abscise at the time f.

it

i+ aircraft i ordinate at the time ¢.

X

t;: time necessary to arrive to the bound of the aerial
sector with a constant velocity v;.

o;: angle with respect to the horizontal of the aircraft
i at the instant ¢.

man;: number of maneuvers performed by the aircraft
i at the time t since it entered in the aerial sector.

Finally, parameters accounting for security distances and
the collision risk for aircrafts are as follows:

Shor,i: horizontal security distance for the aircraft i.

Syeri: Vertical security distance for the aircraft i.

ver,i®
Ghor.ver: Telative importance between vertical and hor-
izontal risk.

According to current standards, the horizontal security
distance is usually 5 nautical miles, whereas the vertical secu-
rity distance is 1000 feet (see Figure 2), but other values could
be used in the analysis.

Regarding the decision variables, as mentioned before, we
propose three types of aircraft maneuvers: velocity change
(VC), altitude change (AC), and turn change (TC). Thus,
we consider three binary variables vc;, ac;, and tc; for each
aircraft i, pointing out whether a velocity, altitude, or turn
change is performed, respectively, and a continuous variable
q; representing the magnitude (proportion) of the change
performed. Note that vc; +ac; +tc; < 1 Visince each aircraft is
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FIGURE 3: Detecting conflict situations.

allowed to perform, at most, one maneuver, and g; € [-1,1]
since the changes can be negative or positive.

Consequently, a solution will consist of a vector with four
elements per aircraft, identifying the maneuver performed
and its magnitude.

2.2. Constraints. As a first approach, the main constraint
should be avoiding conflicts between aircrafts; that is, the
intersection between security cylinders should always be
empty for any two aircrafts in the aerial sector under con-
sideration. A geometric construction for detecting conflict
situations is considered [3, 10]; see Figure 3.

The velocity vectors of two aircrafts i and j are

ai = (Vnew,i X COos (“new,i) > Vnew,i X sin ((xnew,i)) ’
@

ij = (vnew)j X COS (ocnew,j) > Vnew,j X Si (ocnew)j)) ,

respectively, where v, ; is the new velocity considering the
VC maneuver and «,,,,, ; is the new angle with the horizontal
plane by adding the magnitude of the TC maneuver.

The basic idea of the model comes from the construction
of the relative velocity vector #; — iij; see Figure 3. The
two straight lines parallel to the relative velocity vector and
tangent to the security circle of aircraft j (dotted lines in
Figure 3) define a region where the intersection with the
trajectory for aircraft i is a segment named the shadow
segment.

A horizontal conflict occurs if the security cylinder of
aircraft i intersects the shadow segment generated by aircraft
j or, on the contrary, since #; — ii; and #i; — ii; are parallels.
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FIGURE 4: Main angles and distances.

Considering now the cutting planes that are tangent to
both cylinders (see Figure 4) and the angles g;; and [;;, there
is no conflict if one of the following two conditions holds:

vnew,i X sin ((xnew,i) - Vnew,j X sin ((xnew,j)
> tan (li]) ,
Vnew,i X €OS ((xnew,i) ~ Vnew,j X €os (‘Xnew,j)
)
Vnew,i X Sl ((Xnew,i) ~ Vnew,j X sin (‘xnew,j)
< tan ( g,-j)
Vnew,i X COs ((xnew,i) - Vnew,j X COs (“new,])

Note that the functions at the left of the above expressions
can cause a zero denominator. These cases are referred
to as model pathological situations and produce unstable
solutions since a conflict between two aircrafts may be
erroneously determined due to the null denominator, forcing
the aircrafts to crash in the worse case. This situation is
detected when |x; — X;| < Spop; + Shor,j- Therefore, variables
Opew,i> Onew,; and parameters /;; and g;;, which represent
angles, are rotated 77/2 radians when computing expressions
for horizontal risk detection to overcome such pathological
situation.

Vertical conflicts are detected more easily considering the
security cylinders. Computing the vertical distance between
two aircrafts can detect these conflicts. Figure 5 shows the
modeling of the vertical conflicts.

However, very restrictive situations may occur in an
aerial sector at certain times. For example, it could be very
difficult to find a feasible solution without (either horizontal
or vertical) conflicts when there is a high density of nearby
aircrafts. Therefore, we have relaxed the collision avoidance
constraint, which becomes an additional objective function
from now on, as described in the next section. This allows
us to better explore the solution space but, in contrast, it
complicates reaching the optimal solution.

Security
distance

®  Aircraft

Security
distance

FIGURE 5: Vertical security distance and turn vector.

Finally, the following constraints check whether the new
velocity, altitude, and turn satisfy the features of the corre-
sponding aircraft:

<V <v

Vmin,i =

new,i max,i>

z <z

min,i = “new,i < Zmax,i’ (3)

ocnew,i -« < ﬂmax,i’

where v, .\, > Zyew,» and a
tion.

new,i are the new aircraft configura-

2.3. Objective Functions. Six different objective functions will
be considered for analysis: specifically, minimizing the mag-
nitude of maneuvers, collision risks, number of maneuvers,
time delays, deviations in the leaving points, and the maneu-
ver dispersion. Further information and the mathematical
modeling of such objective functions are provided below.

2.3.1. Objective I: Minimizing Maneuver Magnitudes. It makes
sense to claim that aircrafts perform maneuvers as smoothly
as possible to avoid conflicts; that is, abrupt maneuvers that
may disturb passengers or even be dangerous should be
avoided. According to the above, the dispersion magnitude
maneuvers performed by aircrafts should be incorporated
into the analysis. Moreover, a high dispersion should be
penalized, that is, situations in which maneuver magnitudes
are very high for some aircrafts and very low for others.

The first objective function, f;, can be then modeled by
the sum of the average maneuver magnitude and a dispersion
term:

. Wy v
min f1=a1+712|a1—|qi||, (4)
i1
where
1 n
a == lal, (5)
nia

and w, represents the relative importance of the dispersion
term regarding the average maneuver magnitude.



2.3.2. Objective 2: Minimizing Collision Risks. This objective
is the constraint we decided to relax. As cited before, this
allows a better exploration of the solution space. Moreover, if
we consider two solutions in which there are no conflicts we
can compute a conflict risk measure for each of them account-
ing for the distances between all pairs of aircrafts.

There is a conflict between a couple of aircrafts if their
collision risk is positive r;; > 0; otherwise (r;; < 0) there is no
conflict.

We differentiate the situation in which there is at least one
conflict between a couple of aircrafts and the one in which
there are no conflicts to compute an average collision risk
(a,). In the first case, a, is computed taking into account only
thoser;; > 0, avoiding that negative values nullify the positive.
In the second case (r;; < 0, Vi, j), all r;; are used to compute
a,, which is a negative value:

B

1 n
k_z rij» i 1 <0 Vi, j
Li=1 j=i+1
“T11g L (6)
k_z @;j» if 3 at least one r;; > 0,
2i=1 j=i+l
where
Tij> if rij >0
Pij = )

0, otherwise,

and k, and k, are the numbers of elements considered in the
average computations, that is, k;, = n!/(n — 2)!4, since all
pairs of aircrafts are considered, whereas k, is the number of
couples with conflict.

The above two situations are also considered in the
modelization of objective function, f,. The average collision
risk is minimized in both cases, but in the second case
(a, < 0), the dispersion on the collision risk values is also
considered:

a,, ifa,>0

min = w, & & (8)
P a, + k—f; :Z |a2 - rij' , else.

Jj=itl

Next, we clarify how the collision risk for a couple of
aircrafts is computed. The collision risk r;; between two
aircrafts i and j is computed in four different ways, depending
on the combinations of vertical and horizontal conflicts:

T

7’hor,ij * Ghor,ver X rver,ij’ if rhor,ij SOAT <0

ver,ij =
_ rhor,ij + Chor,ver X rver,ij’ if rhor,ij >0A rver,ij >0 (9)
rhor,ij’ if rhor,ij <O0A rver,ij >0
Chor,ver X rver,ij’ lf rhor,ij >0A rver,ij <0.

To compute horizontal collision risk, we take into account
the analysis of the horizontal conflict shown in Section 2.2,
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which concludes that there is no horizontal conflict if one of
the following two conditions holds:

Vnew,i X Sl (‘xnew,i) ~ Vnew,j X sin (‘Xnew,j)
> tan (lij) ,
vnewz X COs ((Xnew,i) - Vnew,j X COs ((xnew,j)
Vhew,i X SII (‘xnew,i) ~ Vnew,j X SIN (“new,j) (10)
Vnew,l X Cos (‘Xnew,i) - Vnew,j X Cos (ocnew,j)
< tan ( gij) .

The horizontal collision risk (ry,;;) is computed as
Thor,ij = Min {Yij’aij} >
yy = tan (I;)

Vnew,i X S (‘Xnew,i) ~ Vnew,j X sin (“new,j)

bl
newi) — Vaew,j X COS (cxnew’j) 11)

View X €08 (o

new,i

Voew; X sin («

new,i

new,i) - Vnew,j X sin (“new,j)

X Cos ((xnew,i) - Vnew,j X Cos (“new,j)

0

ij =
vnew,i

—tan (gij) .

Thus, it is possible to assess how far two aircrafts are to
horizontally invade their respective security cylinders or, in
case of conflict, to measure the intensity of invasion.

The new aircraft configuration changes or not depending
on the maneuver being performed:

Vi if ve; =0
Voewi = 1Vi T4 (Vi = Vining)»  if v; =1Ag; <0
Vi + G (Viaxi = vi)» if ve;=1Ag;>0, (1)
&, if tc; =0
o=
A P QiPmax»  if te; = 1.

Parameters ;; and g;; are computed on the basis of the
angles and distances shown in Figure 4:

9ij = Wij — 9;‘;‘)
Yi—Jj
w;; = arctan (¥> > (13)
Xi - xJ
. Shor,i + Shor,j/2
0 = arcsin | ————— |.
d;;/2
The vertical collision risk (e ;;) just consists of computing

the vertical distance between aircrafts added to the vertical
security distance, so that if there is no conflict, then r,,,;; <0
and vice versa:
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max {Znew,j - Znew,i + Sver,j’ znew,j - Znew,i + Sver,i} > if znew,i > Znew,j

rver,i j =

max {znew,i = Zpew,j TS

where z,.,; takes different values depending on whether or
not this maneuver is performed and on whether the altitude

is increased or decreased:

0, if ac; =0

Znew,i = Z; + qi (zi - Zmin,i) > if ac; = IA qdi <0 (15)

2+ q; (Zmaxi — 2i)» if ac;=1Ag; > 0.

2.3.3. Objective 3: Minimizing the Numbers of Maneuvers.
The objective is to minimize the number of maneuvers
performed by » aircrafts. This is directly connected with
the AT controllers workload, since they communicate the
corresponding maneuvers to the pilots. Therefore, this goal is
equivalent to minimizing the controllers’ workload. To model
this objective function we just have to sum up the three binary
variables associated to possible maneuvers of the aircrafts in
the solution under consideration

n

min  f; = Z (ve; +ac; +t¢;) . (16)

i=1

Note again that vc; + ac; + tc; < 1 Vi since each aircraft can
perform at most one type of maneuver.

2.3.4. Objective 4: Minimizing Time Delays. The time an air-
craft will leave the aerial sector may differ from the expected
time according to its initial trajectory (when entering the
aerial sector) if a VC or TC maneuver is performed. Then, the
aim is now minimizing the sum of the delays for the aircrafts.
Moreover, we will again take into account the dispersion of
such delays.

This objective function, f,, is computed by adding the
average delay (a,) and the dispersion of the delays:

n
. w,
min f4 =ayt 742 |a4 - |tnew,i - ti” > (17)
i=1

where a, = (1/n) Y [tye; — t;l and

B \/(xﬁn,i - Xi)2 + (Vfinji — J’i)z) (18)

new,i —

t

Vnew,i

is the time aircraft i leaves the aerial sector once the maneu-

vers associated to the solution under consideration are per-

formed. Note that t ., ; = t; if an AC maneuver is performed.
In f,, w, € [0, 1] represents the relative importance of

the dispersion term regarding the average delay, analogously

to w; and w, in objective functions f; and f,, respectively.

ver,i> Znew,i

(14)

< .
new,i = Znew,]’

-z +s if z

new,j ver, j } ’

2.3.5. Objective 5: Minimizing Deviations in the Leaving Points.
The point at which an aircraft will leave the aerial sector
may differ from the expected point according to its initial
trajectory (when entering the aerial sector) as a consequence
of the maneuvers performed. As such, the aim is now
minimizing the sum of the distances between both leaving
points for each aircraft. Moreover, we will again take into
account the dispersion of such distances.

This objective function, fs, is computed by adding the
average (as) and the dispersion of the distances between the
original leaving point and the new leaving point once the
maneuvers associated to the solution under consideration are
performed:

n n
min fs=as+ %Z las — d;|  with a; = %Zdi’ (19)
i=1 i=1

where the distance is computed as follows:

d.

i

- o)

2 2
= \/(xﬂn,i - xﬁn,new,i) + (yﬁn,i - yﬁn,new,i) + (Zﬁn,i - Zﬁn,new,i) >

where xg, i =  intersection(x;, Qe i)s Yannew.i
intersection(y;, &ey.;)> and zg, o.; = intersection(z;, &,y ;)
are the coordinates of the new leaving point, with o, ;
being the new angle with respect to the horizontal of the
aircraft i once the maneuvers associated to the solution under
consideration are performed.

ws € [0, 1] again represents the relative importance of the
dispersion term regarding the average value (as).

2.3.6. Objective 6: Minimizing Maneuver Dispersion. The last
objective under consideration is related to the dispersion of
maneuvers over time, that is, over multiple executions of the
analysis. The aim is to share the maneuver effort among the
aircrafts to attempt to avoid situations in which some aircrafts
continuously perform maneuvers over time, whereas other
aircrafts scarcely do it.

For this, as mentioned before, we assume that a vector
including the number of maneuvers performed by each air-
craft from the moments they entered the aerial sector until
the moment the analysis is carried out is available (man,,

..,man,,...,man,). Thus, a dispersion measure can be
computed as follows:

. 1
min f = ;Z |a6 — man, |, (21)
i=1



. n
with a; = (3, man
maneuvers and

new,i)/1 being the average number of

mannew,i

man;, if ve;=0Aac;=0Atc; =0 (22)

man; +1, if vg;=1Vacg;=1Vte =1,

being the new number of maneuvers accumulated by aircraft
i if the maneuvers associated to the solution under consider-
ation are performed.

3. Multiobjective Simulated Annealing

Simulated annealing (SA) [20, 21] is a trajectorial meta-
heuristic which is named for and inspired by annealing in
metallurgy.

An initial feasible solution is randomly generated. In each
iteration a new solution y is randomly generated from the
neighborhood of the current solution, y € N(x;). If the new
solution is better than the current one, then the algorithm
moves to that solution (x;,; = y); otherwise the movement to
the worst solution is performed with certain probability. Note
that accepting worse solutions allows for a more extensive
search for the optimal solution and avoids trapping in local
optima in early iterations. The probability of accepting a
worse movement is a function of both a temperature factor
and the change in the cost function as follows:

p= e_(f(y)_f(xi))/Ti, (23)

where T; is the temperature in the ith iteration.

The initial value of temperature (T}) is high, which leads
to a diversified search, since practically all movements are
allowed. As the temperature decreases, the probability of
accepting a worse movement falls. If the temperature is zero,
then only better movements will be accepted, which makes
simulated annealing work similar to hill climbing.

Temperature is usually kept constant for L iterations and
is then decreased after multiplying by a cooling rate (¢ <
1). The algorithm stops when there has been a maximum
number of iterations without accepting solutions.

Metaheuristics have recently become very popular for
multiobjective optimization. The aim is now to derive a good
approximation of the efficient or Pareto set or, alternatively,
take advantage of a decision-maker’s preferences to identify
a satisficing efficient solution. There are several reasons that
explain the increasing acceptance of SA and other meta-
heuristics; for instance, they converge speedily to Pareto-
optimal solutions, handle both discrete and continuous prob-
lems with ease, and are less susceptible to the shape of the
Pareto front.

Multiobjective simulated annealing (MSA) was first pro-
posed in [22]. The algorithm is analogous to the classical SA
but now based on the concept of archiving the Pareto-optimal
solutions and introducing a modification in the acceptance
criteria of solutions, for which different approaches or a
combination of them can be found in the literature aimed at
increasing the probability of accepting nondominated solu-
tions; see, for example, the method of Ulungu et al. (UMOSA)
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[23], the method of Suppapitnarm et al. (SMOSA) [24], or the
Pareto simulated annealing (PSA) [25]. A comparison of the
above methods and other methods can be found in [26].

3.1. AMOSA Method. In this paper we consider the archive
simulated annealing-based multiobjective optimization algo-
rithm (AMOSA) [27], which incorporates the concept of
archive where the nondominated solutions generated are
stored and determine the acceptance probability of a new
solution taking into account the domination status of the new
solution (y) with the current one (x;), as well as those in the
archive. For this purpose, the amount of domination measure
is used [26] and defined as follows: given two solutions x; and

4

D, , = ﬁ[f] (xi)R_Afj (}/)]) (24)

j=1 J

where m is the number of objectives and R; is the range of the
jth objective.

Based on the domination status between current solution
x; and new solution y, we can face the following situations:

(1) If x; dominates y and k points from the archive also
dominate y, then x;,, = y with probability

p=e /T, (25)
where
k
3 Zl=1 Darchivel,y + Dxp)’ (26)
avg k+1

denotes the average amount of domination of y by
(k + 1) points, namely, the current solution (x;) and
k points of the archive.

(2) If y and x; are nondominating to each other, then we
check the domination status of y and points in the
archive.

(a) If y is dominated by k solutions in archive, then
x;,; = y with probability p = e Pos™B/T byt
now D, = Zle D ichive,y/k- E is anew element
accounting for the possible redundancy associ-
ated to the incorporation of y to the archive, as
explained later.

(b) If y is nondominated by all solutions in the
archive, then x;,; = y and add y to the archive.

(c) If y dominates k solutions in the archive, then
X;4,1 = ¥, add y to the archive, and remove k
dominated solutions from it.

(3) If y dominates x;, then we check the domination status
of y and points in the archive.

(a) If y is dominated by k solutions in the archive,
we compute the minimum of the difference
of domination amounts between y and the k
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points (Adom,,). Then, x;,, is the solution
in the archive corresponding to Adom,;, with

probability
1
= — 27
p 1+e—Adommin ( )
Else, x;,; = ».

(b) If y does not dominate any solution in the
archive, then x;,; = y, and add y to the archive.
If x; is in archive, then remove it from the
archive.

(c) If y dominates k solutions in the archive, then
X4, = ¥ add y to the archive, and remove the k
dominated solutions from it.

Element E in the above algorithm accounting for the
redundancy would produce the inclusion of y in the archive,
which is computed as follows:

m /C.\2
E= Z(R—1> (28)

j=1 J

where C jis the distance in each coordinate (objective) to the
nearest solution to y and R; is the range of each objective.

As a result of the incorporation of the element E, as the
temperature decreases, solutions that increase the diversity in
the archive will be accepted. This makes the algorithm tend
to converge faster, whereas in the exploitation phase it tends
only to improve solutions and add diversity to the Pareto
front.

It is important to note that nondominated solutions are
stored in the archive up to a maximum, MA. If the number of
nondominated solutions exceeds MA, clustering is applied to
reduce the size to MA [27].

3.1.1. AMOSA Adaptation to the CDR Problem. To adapt
AMOSA for the resolution of the CDR problem considered
in this paper, we must first identify the way solutions are
represented and how the neighborhood of a solution is
defined.

As mentioned in the mathematical modeling of the
CDR problem, each solution consists on a vector with four
elements per aircraft, three of them being binary elements
representing the maneuver performed (VC, AC, or TC) and
another element representing its magnitude (q;). However,
when the model was implemented, it was decided to replace
maneuver elements by a single element with 4 possible values
depending on the maneuver performed (VC = 1, AC = 2,
TC = 3, and NM = 0), where NM means no maneuver
performed. We denote by t{ € {0,1,2,3} and qf € [-1,1]
the type and magnitude of the maneuver performed by the
aircraft j in the solution x;, respectively.

Besides, given solution x;, a new solution y is randomly
generated from its neighborhood as follows. First, an aircraft

500
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~100 |
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—400
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0
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FIGURE 6: Standard instance of the CDR problem.

j is uniformly selected from the solution, then we randomly
decide if the type of maneuver for this aircraft is changed:

. mod (r,,4), ifr;<¢
t = ; (29)
t;, else,

where ¢ is an algorithm parameter and r,, 7, ~ U[0, 1].
If value 1, 2, or 3 is randomly selected, then we randomly
generate the magnitude of the maneuver:

j q{ +q, ifr, <05
91 = ; (30)
ql —q, else,

where g,7, ~ U0, 1].
The above expression works when t/,, = t/; that is, the
maneuver type remains. Otherwise,

. q ifr,<05
qi+1 = (3D
—-q, else.

We must check that g/, € [-1,1] Vj.

Besides, AMOSA parameters must be fixed by analyzing
the algorithm performance for a representative instance set
accounting for different sizes of the problem, that is, for
different numbers of aircrafts. For this, we have carried out
different tests accounting for different combinations for a
subset of the algorithm parameters, analyzing the algorithm
performance for each combination, as described in the fol-
lowing sections. We must distinguish between the algorithm
parameters and those associated with the nature of the CDR
problem, that is, parameters related to air traffic management.

We have used a standard instance to fix parameters,
also used by other approaches in the literature. The instance
consists of n of aircrafts with the same altitude and speed
and equidistant from the center of a circle and with direction
toward the center of that circle; see Figure 6. This implies
that all aircrafts have conflicts between each other, since if no
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change is performed they will meet in the center of the circle.
This instance is the most difficult one we can face and is often
used to measure the performance of new approaches.

Aircraft parameters were fixed values as close to reality as
possible using as a reference the features of an airbus A320,
that is, minimum velocity = 440 km/h, maximum velocity =
870 km/h, initial velocity = 800 km/h, minimum altitude =
10 km, maximum altitude = 15 km, initial altitude = 12 km,
and maximum angle = 45 grades. Horizontal and vertical
security distances are 4.0234 km and 0.1524 km, respectively.
The dimension of a Spanish aerial sector was used, that
is, aerial sector radio = 250 km. The number of maneuvers
performed by the aircrafts from the moment they entered
the aerial sector until the moment the analysis is carried
out (manf) will consist on values 0 and 1 for even and odd
aircrafts; that is, one maneuver at most has been performed
by aircrafts before the execution of the algorithm in time t.

The parameter values whose combinations were analyzed
are initial temperature, T,, (for 5 aircrafts it is 100, 1000,
10%, 10, and 10°, whereas for 10 and 20 aircrafts it is 10*,
10°, 10% 107, and 10®); number of iterations the temper-
ature is kept constant (L = 5,10,50,100,200); cooling
rate (¢ = 0.8,0.9,0.95,0.98,0.99); probability of maneuver
change (¢ = 1/2, 1/3, 1/4, 1/5, and 1/6); magnitude change
(g = 0.05,0.1,0.2,0.3,0.4); and maximum number of iter-
ations without accepting solutions (convergence criterion)
{10, 20, 50, 100, 200}.

The following indicators were used to measure the algo-
rithm performance:

(1) Minimum value for each of objective functions f, and
f>: although the aim of a multiobjective optimization
algorithm is to find compromise solutions equidis-
tantly spread around the Pareto front, this indicator
can give an idea of the exploitation capacity of the
algorithm.

(2) Number of nondominated solutions found: as the pre-
vious indicator, it is not a good measure of the
algorithm performance, since many solutions could
be found but which are not well spread around the
Pareto front. However, it may provide a rough idea of
the operating capability of the algorithm.

(3) Dispersion of solutions: this measure provides infor-
mation about the good or bad distribution of solu-
tions around the Pareto front. However, it could occur
that the algorithm derives a set of solutions which
are very well spread around the Pareto front but that
set includes very few solutions. Thus, this measure
should be interpreted together with the previous one.
Similarly, solutions could be well distributed but far
from the Pareto front.

A redundancy measure (R) is used, which consists of
taking the difference between the average distance of
each solution and its nearest one:

1 P
R= EZ Im—d; il » (32)
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where m = (1/p) Y2, d; i and d; y, is the mini-
mum distance of the solution i to any other solution.

(4) Dominance of solutions: it is computed as the mean
of the hypervolume dominated by each solution, H.
Combined with the previous two metrics, it is possible
to compare the performance of different executions of
the algorithm with different parameters.

If we simultaneously consider the previous four indica-
tors, it is not possible to derive the best parameter values.
However, this problem can be simplified if we aggregate
the metrics that measure the algorithm performance. If we
consider the relative importance of indicators by means of
(empirically obtained) weights, transform maximizing into
minimizing objectives, normalize them, and discard atypical
values when necessary, then we have the following metric:

fl,s + fz,s - mins (fZ,s)
max, (fl,s) —min; (fz’S)

maxs(Ns)—Ns+03 R

0.1

my, = 0.05

S

0.1 .
* max; (N,) max, (R,) (33)
max_(H.)- H
+ 0.45#_5,
max, (HS)

where f); and f, are the values in f; and f, for the sth
execution, N, is the number of nondominated solutions
derived in the sth execution, R, is the redundancy measure,
and H, is the mean hypervolume dominated, respectively.
A second metric represents the computation time:
to;
My = ———. (34)

max, (ti j)

4. Parameter Setting and Performance
Analysis with 5 Aircrafts

The results of several executions with different combination
of parameters regarding both metrics are shown in Figure 7,
whereas Figure 8 shows nondominated points (executions) in
Figure 7.

Twelve nondominated points were found. The combi-
nation of parameters we chose (pointed out in red) due to
its very good performance and very low computation time
(0.1156 seconds) is T, = 100, L = 5, = 0.99,q = 0.4, = 1/4,
and convergence iterations = 20.

The valuations in the indicators for the selected com-
bination are f,; = 0.1947, f,, = -960.7386 (0.0012
normalized), number of nondominated solutions = 115.2
(0.0938 normalized), R, = 78.7474 (0.0629 normalized),
H, = 60.9578 (0.1343 normalized), and tf;j = 0.1156 seconds
(m,, = 0.00073), with 3583.8 iterations carried out (0.0064
normalized).

We will now provide different figures showing the evolu-
tion of some interesting elements and the different individual
objectives along the algorithm execution with the selected
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FIGURE 7: Performance metric (see (33)) and computation time
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FIGURE 8: Nondominated and the selected (in red) solution regard-
ing both metrics. Note that we want to minimize performance and
computation time metrics, which are shown in Figure 7.

parameter combination. Note that each objective function
will be individually considered but in all cases we ensure no
collision (r;; < 0, Vi, j).

Figure 9 shows the evolution of the acceptance probability
of new solutions. At the beginning of the algorithm the
acceptance probability is very close to 1. This means that
in the first iterations the algorithm has a great capacity
for exploration in the search space, accepting nondominated
solutions that dominate the current one with any value of
redundancy as well as solutions dominated by the current
one. However, as the number of iterations progresses, the
acceptance probability gradually decreases, leading the algo-
rithm to an exploitation or intensification state, in which only
solutions that dominate the current one or nondominated
solutions with a redundancy value very small are accepted.

Figure 10 shows the evolution of the number of non-
dominated solutions. It is possible to see that the number
of nondominated solutions increases along the execution of
the algorithm. An even higher number of iterations would
imply a greater number of nondominated solutions. However,
not surprisingly, there is little practical difference between,
for example, 100 and 5000 solutions if we assume a similar
distribution of both set points around the Pareto front.

Figure 11 shows the evolution of the minimum value for
f, that ensures no collision. We can see that it improves
from 0.4 to 0.19. This means that aircrafts in the solution
with minimum value for f; would be forced to perform an
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FIGURE 9: Evolution of acceptance probability of new solutions.
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F1GURE 10: Evolution of the number of nondominated solutions.

average magnitude change maneuver of 20%, assuming that
the variance between them is not taken into account (w, = 0)
in this case.

Figure 12 shows the evolution of the minimum values
for f,. The average collision risk (w, = 0) improves from
a value close to —1 to value —30. This means that we go
from a situation in which though the average risk collision is
negative, there are some collisions, to another safer situation
in which there are no collisions and slack in the security
distances. This low risk has been reached on a solution
in which several turn change (TC) maneuvers have been
performed, since this maneuver more effectively reduces the
risk.

Regarding the evolution of the minimum values for f;,
the minimum and maximum number of maneuvers through-
out the execution are 4 and 5, respectively; that is, less than
4 maneuvers cannot be performed to avoid collisions. Note
that in the CDR instance under consideration the aircrafts
have the same altitude and speed and are equidistant from
the center of a circle and with direction toward the center of
that circle and that minimum number of maneuvers which
ensure no collision is 4.

If we now pay attention to the evolution of the minimum
values for f, that ensures no collision, the minimum value
achieved for time delay is 0, since a solution involving only
altitude change maneuvers was found. Note also that we have
assumed that maneuvers are instantly performed.

Figure 13 shows the evolution of the minimum values for
f5 that ensures no collision. We can see that the distances
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FIGURE 12: Evolution of the minimum value for collision risks ( f).

between the points at which aircrafts will leave the aerial
sector and the expected points according to their initial
trajectory (when entering the aerial sector) decrease from
10 km to almost 0. This means that a solution in which the
aircraft maneuvers are only velocity changes (VC) has not
been found, since this maneuver ensures that the real and
estimated leaving points are the same.

Finally, Figure 14 shows the evolution of the minimum
values for f; that ensures no collision. Maneuver dispersion
begins at 0.65 and decreases to a value close to 0.17. Note
that in the parameters setting we assumed that the number
of maneuvers performed by the 5 aircrafts from the moment
they entered the aerial sector until the moment the analysis
is carried out was {1, 0, 1, 0, 1}; that is, aircrafts 1, 3, and 5 had
previously performed one maneuver.

As mentioned before, when we analyzed f;, at least 4
maneuvers have to be performed to avoid collisions, leading
to three possible dispersion values, the lowest being 0.17.

Next, we will analyze the performance of the proposed
algorithm by comparing the set of nondominated solutions
derived from it with the real Pareto front, which can be
computed using brute force for this instance with 5 aircrafts
having conflicts between each other.

Of course, we discretized maneuver magnitude to 200
values in the range [-1, 1]; that is, a step of 0.01 is consid-
ered. Besides, we considered all the possible combinations
of maneuvers, 4°. Only those solutions for which there
was no conflict were stored, leading to 258719616 solutions
(14,326 Gbs). This set was iteratively reduced, leading to 6641
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FIGURE 13: Evolution of the minimum value for deviations in the
leaving points ( f5).
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nondominated solutions. Clearly, we obtained an approxi-
mation of the real Pareto front since a discretization in the
maneuver magnitudes was done.

The metric for comparison is the relationship of the
hypervolume dominated by each nondominated solution
derived by the algorithm with hypervolume dominated by the
solution derived using brute force closest to the first, among
those that dominate it:

halg,i
m= , (35)
i=1 hopt,min
N
where hgp in min’;_; {Agp j» hagi} and hgp ; are the

solutions that dominate h,g ;.

We carried out 100 executions of the algorithm with the
optimal parameter values identified above for 5 aircrafts. The
algorithm performance (on average) is 0.25 worse regarding
Pareto front. If a higher number of values were considered in
the discretization of the maneuver magnitude a higher num-
ber of nondominated would be obtained and the performance
would approach Pareto front. Figures 15-19 show an example
of nondominated solutions derived by the algorithm (in red)
and using brute force (in blue) for the different objectives with
respect to f,, the collision risks. In these figures, we can see
how the nondominated solutions derived by the algorithm
are spread around the Pareto front.
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FIGURE 15: Pareto front and its approximation when the objectives
shown on figure are maneuver magnitudes (f;) and collision risks
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FIGURE 16: Pareto front and its approximation when the objectives
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5. Parameter Setting for 10 and 20 Aircrafts
and Illustrative Example

In this section we first identify the best combination of
parameter values for 10 and 20 aircrafts, analogously as in the
previous section for 5. Then, we use a randomly generated
instance with 20 aircrafts to illustrate the algorithm and its
flexibility.

First, we consider 10 aircrafts and the possible values
for Ty: {10%,10°,10°% 107, 10%}. Figure 20 shows the values
regarding the performance and computation time metrics
for several executions, whereas nondominated points (execu-
tions) are shown in Figure 21.

The two points located at the right were discarded since
they have a very high execution time for a tiny variation
of performance with respect to the others. The following
combination of parameters was selected: T, = 10000, L = 5,
o =0.8,t =0.05, ¢ = 1/6, and convergence iterations = 100.

The valuations in the different indicators by the selected
combination are f,; = 0.2776, f,, = —154.9622 (0.0092
normalized), number of nondominated solutions = 48.8000
(0.1025 normalized), R, = 32.1758 (0.0498 normalized),
H, = 607.0908 (0.0329 normalized), and t:j = 0.0964 seconds
(m,, = 0.0019), with 1912 iterations carried out (0.0019
normalized).
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FIGURE 17: Pareto front and its approximation when the objectives
shown on figure are time delays ( f,) and collision risks (f).
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FIGURE 18: Pareto front and its approximation when the objectives

shown on figure are deviations in the leaving points (f;) and colli-
sion risks (f).

Regarding 20 aircrafts, the values regarding the perfor-
mance and computation time metrics for several executions
are shown in Figure 22, whereas nondominated points
(executions) are shown in Figure 23.

The combination of parameters chosen, see Figure 23, was
the following: T, = 10000, L = 5, « = 0.8,t = 0.1, ¢ = 1/5,
and convergence iterations = 200.

As mentioned before, the most difficult instance has
been used to identify the combination of parameter values
that yields the best performance of the algorithm. As such,
once that optimal parameter set has been identified we
will illustrate the algorithm for another randomly generated
instance with 20 aircrafts; see Figures 24 and 25.

The algorithm is then executed with the optimal param-
eters set, leading to a set of nondominated solutions. If only
one solution has to be implemented we need to incorporate
the preferences of a decision-maker (DM) to derive a com-
promise (nondominated) solution. Specifically, we assume
that the DM only wants to minimize the delay (f,) and
the deviations in the leaving points ( f5), with weights 1000
and 1/4, respectively; that is, we consider the following
expression:

£=1000x f, + i % fs. (36)

The compromise solution for the previous weighted
function is (VC, 0.43, NM, —, VC, 0.26, TC, 0.07, NM, —,
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FIGURE 20: Performance and computation time metrics for 10 air-
crafts.

VC, -0.08, AC, 0.95, VC, 0.07, VC, -0.27, VC, -0.49, VC,
—-0.13, TC, 0.39, VC, 0.47, NM, —, TC, -0.24, TC, 0.83, TC,
-0.06, VC, —0.48, AC, 0.88, VC, —0.38) with objective values
f, = 0.381293, f, = —152.273331, f, = 17.0, f, = 0.013386,
f, = 81.067757, and f, = 2.75.

Let us pay attention to the aircraft in blue in Fig-
ures 24 and 25, whose initial configuration is position =
(116.67,-47.70,12.15), entry point = (255.00,-90.91,12),
estimated leaving point = (-255.00, 68.41, 12), current veloc-
ity = 833.84km/h, initial velocity = 900.00 km/h, current
angle = 2.83 grades, initial angle = 3.21 grades, maneuvers
performed since it entered the aerial sector = 4, elapsed time
since it entered the aerial sector = 0.16, and estimated time
traveling in the aerial sector = 0.59.

The compromise solution implies that this aircraft must
perform a velocity change maneuver (VC) of magnitude 0.43.
That is, its velocity will increase by 43%. This is consistent,
since the current velocity before applying the algorithm was
833.84km/h, and the initial velocity when it entered the
aerial sector was 900 km/h. It could be interpreted as the
aircraft increases its velocity to try to counteract the delay it
would cause if we maintain the current velocity. Therefore,
the aircraft configuration changes after running the algorithm
and now the current velocity is 904.91 km/h and maneuvers
performed so far are 5.
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FIGURE 22: Performance and computation time metrics for 20
aircrafts.

The developed algorithm is very flexible since objectives
can individually or in combination be optimized. For exam-
ple, if we now want to optimize f, (minimizing maneuver
dispersion), the following compromise solution is reached:
(NM, —, NM, -, NM, -, NM, —, NM, —, NM, -, AC, -0.20,
AC, 0.09, TG, 0.57, NM, -, TC, 0.74, AC, -1.00, NM, —, AC,
0.07, VC, -0.25, NM, —, AC, 0.68, VC, -0.06, TC, 0.78, NM,
—), with objective values f; = 0.444926, f, = —151.998688,
£, = 10,0, f, = 0.013348, f, = 86.590012, and f, = 2.36.

We realize how, regardless of the maneuver performed,
the algorithm tends to homogenize the number of maneuvers
performed by the aircrafts. The minimum value for fy is
2.36 in comparison with value 2.75 obtained where f, and
f5 were optimized. The maneuvers performed before running
the algorithm were (4, 9,9,10,7,8,3,4,3,9,1,2,6,1,3,9, 8,
4, 4, 10), whereas maneuvers performed later are (4, 9, 9, 10,
7,8,4,5,4,9,2,3,6,2,4,9,9, 5,5, 10). Highlighted in bold
are those aircrafts that have performed a maneuver.

6. Conclusions

We have dealt with the conflict detection and resolution
(CDR) problem in air traffic management accounting for
three admissible maneuvers (velocity, turn, and altitude
changes). Moreover, a multiobjective context has been con-
sidered, accounting for the minimization of the maneuver
number and magnitude, collision risks, time delays, devia-
tions in the leaving points, and maneuver dispersion.
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FIGURE 24: Random instance with 20 aircrafts, Plane XY.

Both the possibility of performing three types of maneu-
vers and the multiobjective context make this paper an
original contribution regarding previous works on CDR
problems.

We have adapted the archive simulated annealing-based
multiobjective optimization algorithm to solve the CDR prob-
lem and conducted a thorough analysis of the effect of
parameters in the resolution based on some instances of
the problem, which led to a subset of optimal values for
such parameters. The results derived by a discretized version
of the algorithm for 5 aircrafts were compared with the
real Pareto front computed using brute force, showing a
good approximation. Moreover, a more complex random
instance with 20 aircrafts has been considered to illustrate the
algorithm and show its flexibility.

As future research work, we propose improving and
extending some of the model features and its resolution. We
have assumed that the altitude changes are instantaneous.
In general, the planes are far away enough from each other
so that the time required to perform an altitude change is
negligible. However, in some cases the algorithm could fail
to detect a conflict.
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Another improvement could be allowing aircrafts to per-
form more than one maneuver simultaneously (e.g., VC and
TC at once). This would mean better performances in some
objectives. Moreover, the evaluation objectives, the most
time-consuming part in the algorithm, could be parallelized
to improve execution times to come near to output real-time
solutions.

Finally, the good performance of the approach proposed
has been proven. However, its performance should be com-
pared with the application of other metaheuristics for the
specific CDR problem under consideration.
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