1,815 research outputs found

    Hessian-based occlusion-aware radiance caching

    Get PDF
    Simuler efficacement l'éclairage global est l'un des problèmes ouverts les plus importants en infographie. Calculer avec précision les effets de l'éclairage indirect, causés par des rebonds secondaires de la lumière sur des surfaces d'une scène 3D, est généralement un processus coûteux et souvent résolu en utilisant des algorithmes tels que le path tracing ou photon mapping. Ces techniquesrésolvent numériquement l'équation du rendu en utilisant un lancer de rayons Monte Carlo. Ward et al. ont proposé une technique nommée irradiance caching afin d'accélérer les techniques précédentes lors du calcul de la composante indirecte de l'éclairage global sur les surfaces diffuses. Krivanek a étendu l'approche de Ward et Heckbert pour traiter le cas plus complexe des surfaces spéculaires, en introduisant une approche nommée radiance caching. Jarosz et al. et Schwarzhaupt et al. ont proposé un modèle utilisant le hessien et l'information de visibilité pour raffiner le positionnement des points de la cache dans la scène, raffiner de manière significative la qualité et la performance des approches précédentes. Dans ce mémoire, nous avons étendu les approches introduites dans les travaux précédents au problème du radiance caching pour améliorer le positionnement des éléments de la cache. Nous avons aussi découvert un problème important négligé dans les travaux précédents en raison du choix des scènes de test. Nous avons fait une étude préliminaire sur ce problème et nous avons trouvé deux solutions potentielles qui méritent une recherche plus approfondie.Efficiently simulating global illumination is one of the most important open problems in computer graphics. Accurately computing the effects of indirect illumination, caused by secondary bounces of light off surfaces in a 3D scene, is generally an expensive process and often solved using algorithms such as path tracing or photon mapping. These approaches numerically solve the rendering equation using stochastic Monte Carlo ray tracing. Ward et al. proposed irradiance caching to accelerate these techniques when computing the indirect illumination component on diffuse surfaces. Krivanek extended the approach of Ward and Heckbert to handle the more complex case of glossy surfaces, introducing an approach referred to as radiance caching. Jarosz et al. and Schwarzhaupt et al. proposed a more accurate visibility-aware Hessian-based model to greatly improve the placement of records in the scene for use in an irradiance caching context, significantly increasing the quality and performance of the baseline approach. In this thesis, we extended similar approaches introduced in these aforementioned work to the problem of radiance caching to improve the placement of records. We also discovered a crucial problem overlooked in the previous work due to the choice of test scenes. We did a preliminary study of this problem, and found several potential solutions worth further investigation

    Atomic and Molecular Dynamics Probed by Intense Extreme Ultraviolet Attosecond Pulses

    Get PDF
    This thesis work was aimed to investigate dynamical processes in atoms and molecules on ultrafast time scales initiated by absorption of light in the extreme ultraviolet (XUV) regime. In particular, photoionization and photodissociation have been studied using pump-probe techniques involving ultrafast laser pulses. Such pulses are generated using either high-order harmonic generation (HHG) or free-electron lasers (FELs).The work of this thesis consists to a large extent in the development and application of a light source, enabling intense XUV attosecond pulses using HHG. In a long focusing geometry, a high-power infrared laser is frequency up-converted so as to generate a comb of high-order harmonics. An important aspect was the study of the spatial and temporal properties of the generated light pulses in order to gain control of their influence on the experiment. Combining theoretical and experimental results, the effect of the dipole phase on properties of high-order harmonics was explored, along with a metrological series of studies on the harmonic wavefront and the properties of the focusing optics used. Further, the HHG light source was employed to investigate photoionization. Individual angular momentum channels involved in the ionization were characterized using two-photon interferometry in combination with angle-resolved photoelectron detection. A method is applied allowing the full determination of channel-resolved amplitudes and phases of the matrix elements describing the single-photon ionization of neon.Finally, the process of photodissociation was investigated using light pulses generated via both HHG and FELs. The dissociation dynamics induced by multiple ionization of organic molecules were studied. Correlation techniques were used to unravel the underlying fragmentation dynamics, and additionally, pump-probe experiments provided insights into the time scales of the (pre-)dissociation dynamics

    A constructive theory of sampling for image synthesis using reproducing kernel bases

    Get PDF
    Sampling a scene by tracing rays and reconstructing an image from such pointwise samples is fundamental to computer graphics. To improve the efficacy of these computations, we propose an alternative theory of sampling. In contrast to traditional formulations for image synthesis, which appeal to nonconstructive Dirac deltas, our theory employs constructive reproducing kernels for the correspondence between continuous functions and pointwise samples. Conceptually, this allows us to obtain a common mathematical formulation of almost all existing numerical techniques for image synthesis. Practically, it enables novel sampling based numerical techniques designed for light transport that provide considerably improved performance per sample. We exemplify the practical benefits of our formulation with three applications: pointwise transport of color spectra, projection of the light energy density into spherical harmonics, and approximation of the shading equation from a photon map. Experimental results verify the utility of our sampling formulation, with lower numerical error rates and enhanced visual quality compared to existing techniques

    Doctor of Philosophy

    Get PDF
    dissertationReal-time global illumination is the next frontier in real-time rendering. In an attempt to generate realistic images, games have followed the film industry into physically based shading and will soon begin integrating global illumination techniques. Traditional methods require too much memory and too much time to compute for real-time use. With Modular and Delta Radiance Transfer we precompute a scene-independent, low-frequency basis that allows us to calculate complex indirect lighting calculations in a much lower dimensional subspace with a reduced memory footprint and real-time execution. The results are then applied as a light map on many different scenes. To improve the low frequency results, we also introduce a novel screen space ambient occlusion technique that allows us to generate a smoother result with fewer samples. These three techniques, low and high frequency used together, provide a viable indirect lighting solution that can be run in milliseconds on today's hardware, providing a useful new technique for indirect lighting in real-time graphics

    Strategies for pushing nonlinear microscopy towards its performance limits

    Get PDF
    The requirement for imaging living structures with higher contrast and resolution has been covered by the inherent advantages offered by nonlinear microscopy (NLM). However, to achieve its full potential there are still several issues that must be addressed. To do so, it is very important to identify and adapt the key elements in a NLM for achieving an optimized interaction among them. These are 1) the laser source 2) the optics and 3) the sample properties for contrast generation. In this thesis, three strategies have been developed for pushing NLM towards its limits based on the light sample interaction optimization. In the first strategy it is experimentally demonstrated how to take advantage of the sample optical properties to generate label-free contrast, eliminating the requirement of modifying the sample either chemically or genetically. This is carried out by implementing third harmonic generation (THG) microscopy. Here, it is shown how the selection of the ultra-short pulsed laser (USPL) operating wavelength (1550 nm) is crucial for generating a signal that matches the peak sensitivity of most commercial detectors. This enables reducing up to seven times the light dose applied to a sample while generating an efficient signal without the requirement of amplification schemes and specialized optics (such as the need of ultraviolet grade). To show the applicability of the technique, a full developmental study of in vivo Caenorhabditis elegans embryos is presented together with the observation of wavelength induced effects. The obtained results demonstrate the potential of the technique at the employed particular wavelength to be used to follow morphogenesis processes in vivo. In the second strategy the limits of NLM are pushed by using a compact, affordable and maintenance free USPL sources. Such device was designed especially for two-photon excited fluorescence (TPEF) imaging of one the most widely used fluorescent markers in bio-imaging research: the green fluorescent protein. The system operating parameters and its emission wavelength enables to demonstrate how matching the employed fluorescent marker two-photon action cross-section is crucial for efficient TPEF signal production at very low powers. This enables relaxing the peak power conditions (40 W) to excite the sample. The enhanced versatility of this strategy is demonstrated by imaging both fixed and in vivo samples containing different dyes. More over the use of this laser is employed to produce second harmonic generation images of different samples. Several applications that can benefit by using such device are outlined. Then a comparison of the employed USPL source is performed versus the Titanium sapphire laser (the most used excitation source in research laboratories). The final goal of this strategy is to continue introducing novel laser devices for future portable NLM applications. In this case, the use of chip-sized semiconductor USPL sources for TPEF imaging is demonstrated. This will allow taking NLM technology towards the sample and make it available for any user. In the last strategy, the light interaction with the optical elements of a NLM workstation and the sample were optimized. The first enhancement was carried out in the laser-microscope optical path using an adaptive element to spatially shape the properties of the incoming beam wavefront. For an efficient light-sample interaction, aberrations caused by the index mismatch between the objective, immersion fluid, cover-glass and the sample were measured. To do so the nonlinear guide-star concept, developed in this thesis, was employed for such task. The correction of optical aberrations in all the NLM workstation enable in some cases to have an improvement of more than one order of magnitude in the total collected signal intensity. The obtained results demonstrate how adapting the interaction among the key elements of a NLM workstation enables pushing it towards its performance limits.La creciente necesidad de observar estructuras complicadas cada vez con mayor contraste y resolución han sido cubiertas por las ventajas inherentes que ofrece la microscopia nolineal. Sin embargo, aun hay ciertos aspectos que deben ser ajustados para obtener su máximo desempeño. Para ello es importante identificar y adaptar los elementos clave que forman un microscopio optimizar la interacción entre estos. Dichos elementos son: 1) el laser, 2) la óptica y 3) las propiedades de la muestra. En esta tesis, se realizan tres estrategias para llevar la eficiencia de la microscopia nolineal hacia sus límites. En la primera estrategia se demuestra de forma experimental como obtener ventaja de las propiedades ópticas de la muestra para generar contraste sin el uso de marcadores mediante la generación de tercer harmónico. Aquí se muestra como la selección de la longitud de onda del láser de pulsos ultracortos es crucial para que la señal obtenida concuerde con la máxima sensibilidad del detector utilizado. Esto permite una reducción de la dosis de luz con la que se expone la muestra, elimina intrínsecamente el requerimiento de esquemas de amplificación de señal y de óptica de tipo ultravioleta (generalmente empleada en este tipo de microscopios). Mediante un estudio comparativo con un sistema convencional se demuestra que los niveles de potencia óptica pueden ser reducidos hasta siete veces. Para demostrar las ventajas de dicha técnica se realiza un estudio completo sobre el desarrollo embrionario de Caenorhabditis elegans y los efectos causados por la exposición de la muestra a dicha longitud de onda. Los resultados demuestran el potencial de la técnica para dar seguimiento a procesos morfogénicos en muestras vivas a la longitud de onda utilizada. En la segunda estrategia se diseñó una fuente de pulsos ultracortos que es compacta, de costo reducido y libre de mantenimiento para excitar mediante la absorción de dos fotones uno de los marcadores más utilizados en el entorno biológico, la proteína verde fluorescente. Los parámetros de operación en conjunto con la longitud de onda emitida por el sistema proporcionan la máxima eficiencia permitiendo el uso de potencias pico muy bajas (40 W), ideales para relajar la exposición de la muestra. La versatilidad de esta estrategia se demuestra empleando muestras fijas y vivas con diferentes marcadores fluorescentes. Este láser también es empleado para la obtención de señal de segundo harmónico en diferentes muestras. Adicionalmente, se llevó a cabo un estudio comparativo entre la fuente desarrollada y un sistema Titanio zafiro (uno de los láseres más utilizados en laboratorios de investigación). El objetivo final de esta estrategia es introducir fuentes novedosas para aplicaciones portátiles basadas en procesos nolineales. En base a esto se demuestra el uso de dispositivos construidos sobre un microchip para generar imágenes de fluorescencia de dos fotones. Esto permitirá llevar la tecnología hacia la muestra biológica y hacerla disponible para cualquier usuario. En la última estrategia se optimiza de la interacción de la luz con los elementos ópticos del microscopio y la muestra. La primera optimización se lleva a cabo en la trayectoria óptica que lleva el láser hacia el microscopio empleando un elemento adaptable que modifica las propiedades espaciales de la luz. Para mejorar la interacción de la luz y la muestra se miden las aberraciones causadas por la diferencia de índices refractivos entre el objetivo, el medio de inmersión y la muestra. Esto se realizo empleando el concepto de la “estrella guía nolineal” desarrollado en esta tesis. Mediante la corrección de las aberraciones en el sistema de microscopia nolineal se obtiene una mejora, en algunos casos de un orden de magnitud, en la intensidad total medida. Los resultados obtenidos en esta tesis demuestran como el adaptar la interacción entre los elementos clave en un microscopio nolineal permiten llevar su desempeño hacia los límites.Postprint (published version

    Antenna resonances in low aspect ratio semiconductor nanowires

    No full text
    We present numerical simulations of low aspect ratio gallium phosphide nanowires under plane wave illumination, which reveal the interplay between transverse and longitudinal antenna-like resonances. A comparison to the limiting case of the semiconducting sphere shows a gradual, continuous transition of resonant electric and magnetic spherical Mie modes into Fabry-Pérot cavity modes with mixed electric and magnetic characteristics. As the length of the nanowires further increases, these finite-wire modes converge towards the leaky-mode resonances of an infinite cylindrical wire. Furthermore, we report a large and selective enhancement or suppression of electric and magnetic field in structures comprising two semiconducting nanowires. For an interparticle separation of 20 nm, we observe up to 300-fold enhancement in the electric field intensity and an almost complete quenching of the magnetic field in specific mode configurations. Angle-dependent extinction spectra highlight the importance of symmetry and phase matching in the excitation of cavity modes and show the limited validity of the infinite wire approximation for describing the response of finite length nanowires toward glancing angles

    Nano- and microlenses as concepts for enhanced performance of solar cells

    Get PDF
    Both metallic nanoparticles exhibiting plasmonic effects and dielectric nanoparticles coupling the light into resonant modes have shown successful applications to photovoltaics. On a larger scale, microconcentrator optics promise to enhance solar cell efficiency and to reduce material consumption. Here, we want to create a link between the concentrators on the nano- and on the microscale. From metallic nanospheres, we turn to dielectric ones and then look at increasing radii to approach the microscale. The lenses are investigated with respect to their interaction with light using three- dimensional simulations with the finite-element method. Resulting maps of local electric field distributions reveal the focusing behavior of the dielectric spheres. For larger lens sizes, ray tracing calculations, which give ray distributions in agreement with electric field intensities, can be applied. Calculations of back focal lengths in geometrical optics coincide with ray tracing results and allow insight into how the focal length can be tuned as a function of particle size, substrate refractive index, and the shape of the microlens. Despite the similarities we find for the nano- and the microlenses, integration into solar cells needs to be carefully adjusted, depending on the goals of material saving, concentration level, focal distance, and lens size

    Nanoantennas for visible and infrared radiation

    Full text link
    Nanoantennas for visible and infrared radiation can strongly enhance the interaction of light with nanoscale matter by their ability to efficiently link propagating and spatially localized optical fields. This ability unlocks an enormous potential for applications ranging from nanoscale optical microscopy and spectroscopy over solar energy conversion, integrated optical nanocircuitry, opto-electronics and density-ofstates engineering to ultra-sensing as well as enhancement of optical nonlinearities. Here we review the current understanding of optical antennas based on the background of both well-developed radiowave antenna engineering and the emerging field of plasmonics. In particular, we address the plasmonic behavior that emerges due to the very high optical frequencies involved and the limitations in the choice of antenna materials and geometrical parameters imposed by nanofabrication. Finally, we give a brief account of the current status of the field and the major established and emerging lines of investigation in this vivid area of research.Comment: Review article with 76 pages, 21 figure
    corecore