9 research outputs found

    Lambda-calculus and formal language theory

    Get PDF
    Formal and symbolic approaches have offered computer science many application fields. The rich and fruitful connection between logic, automata and algebra is one such approach. It has been used to model natural languages as well as in program verification. In the mathematics of language it is able to model phenomena ranging from syntax to phonology while in verification it gives model checking algorithms to a wide family of programs. This thesis extends this approach to simply typed lambda-calculus by providing a natural extension of recognizability to programs that are representable by simply typed terms. This notion is then applied to both the mathematics of language and program verification. In the case of the mathematics of language, it is used to generalize parsing algorithms and to propose high-level methods to describe languages. Concerning program verification, it is used to describe methods for verifying the behavioral properties of higher-order programs. In both cases, the link that is drawn between finite state methods and denotational semantics provide the means to mix powerful tools coming from the two worlds

    Proceedings of the NASA Conference on Space Telerobotics, volume 3

    Get PDF
    The theme of the Conference was man-machine collaboration in space. The Conference provided a forum for researchers and engineers to exchange ideas on the research and development required for application of telerobotics technology to the space systems planned for the 1990s and beyond. The Conference: (1) provided a view of current NASA telerobotic research and development; (2) stimulated technical exchange on man-machine systems, manipulator control, machine sensing, machine intelligence, concurrent computation, and system architectures; and (3) identified important unsolved problems of current interest which can be dealt with by future research

    Handbook of Lexical Functional Grammar

    Get PDF
    Lexical Functional Grammar (LFG) is a nontransformational theory of linguistic structure, first developed in the 1970s by Joan Bresnan and Ronald M. Kaplan, which assumes that language is best described and modeled by parallel structures representing different facets of linguistic organization and information, related by means of functional correspondences. This volume has five parts. Part I, Overview and Introduction, provides an introduction to core syntactic concepts and representations. Part II, Grammatical Phenomena, reviews LFG work on a range of grammatical phenomena or constructions. Part III, Grammatical modules and interfaces, provides an overview of LFG work on semantics, argument structure, prosody, information structure, and morphology. Part IV, Linguistic disciplines, reviews LFG work in the disciplines of historical linguistics, learnability, psycholinguistics, and second language learning. Part V, Formal and computational issues and applications, provides an overview of computational and formal properties of the theory, implementations, and computational work on parsing, translation, grammar induction, and treebanks. Part VI, Language families and regions, reviews LFG work on languages spoken in particular geographical areas or in particular language families. The final section, Comparing LFG with other linguistic theories, discusses LFG work in relation to other theoretical approaches

    Critical Thinking Skills Profile of High School Students In Learning Science-Physics

    Get PDF
    This study aims to describe Critical Thinking Skills high school students in the city of Makassar. To achieve this goal, the researchers conducted an analysis of student test results of 200 people scattered in six schools in the city of Makassar. The results of the quantitative descriptive analysis of the data found that the average value of students doing the interpretation, analysis, and inference in a row by 1.53, 1.15, and 1.52. This value is still very low when compared with the maximum value that may be obtained by students, that is equal to 10.00. This shows that the critical thinking skills of high school students are still very low. One fact Competency Standards science subjects-Physics is demonstrating the ability to think logically, critically, and creatively with the guidance of teachers and demonstrate the ability to solve simple problems in daily life. In fact, according to Michael Scriven stated that the main task of education is to train students and or students to think critically because of the demands of work in the global economy, the survival of a democratic and personal decisions and decisions in an increasingly complex society needs people who can think well and make judgments good. Therefore, the need for teachers in the learning device scenario such as: driving question or problem, authentic Investigation: Science Processes
    corecore